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E
stimating reaction times (RTs) and drowsi-
ness states from brain signals is a notable 
step in creating passive brain–computer 
interfaces (BCIs). Prior to the deep learning 
era, estimating RTs and drowsiness from 

electroencephalogram (EEG) signals was feasible only 
with moderate accuracy, which led to unreliability for 
neuro-engineering applications. However, recent devel-
opments in machine learning algorithms, notably sta-
tionarity-based approaches and deep convolutional 
neural networks (CNNs), have demonstrated promising 
results for a class of BCI systems, e.g., motor imagery 
BCIs, and affective state classification. These methods 
have not been systematically analyzed for EEG-based 
driver drowsiness detection and RT prediction.

This article studies the approaches, proposes new vari-
ants, and compares them with classical baselines to pre-
dict RTs from EEG data. We assess performance within 
subject-specific and subject-independent calibration set-
tings, helping to reduce the need for session and subject 
calibration in BCI systems. Our results show that a sta-
tionarity incorporating the information theoretic joint 
approximate diagonalization method with fuzzy diver-
gence (F-DivIT-JAD), when combined with a least absolute 
shrinkage and selection operator (LASSO) regressor, 
showed superior performance, recording the lowest root-
mean-square error (RMSE), followed by other stationarity 
methods and CNNs, such as EEGNet regression networks. 
Our results motivate researchers to improve EEG driver 
drowsiness detection via deep learning and stationarity-
based methods. In addition, guidelines are provided for 
using specific machine learning approaches.

Overview 
BCIs facilitate communication between a brain and a 
device that enables neurological signals to direct an 
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external act [1], [2]. The earliest research into BCIs was 
conducted during the 1970s. In [1], all the elements to build 
a BCI are outlined. In the past few decades, human BCIs 
have generated ample interest. With the goal of appending 
cognitive monitoring to BCI systems, for instance, in driv-
er assistance applications, recent approaches have 
employed BCI systems in driving simulators [3]–[6] to 
assess operator performance and inattention.

Driver Drowsiness Detection
Cognitive fatigue is a neurological state arising from extended 
exhaustive mental work [7]. Fatigue marks the arrival of, 
and generally coexists with, drowsiness, an intermediate 
state between waking and sleep [8]. Recent research 

indicates that drowsiness can be correctly diagnosed by 
effective decoding brain dynamics [9]. Several studies 
concluded that there are significant differences in the 
EEG power spectrum across fatigue and alert states [10]. 
Thus, a large number of EEG-based drowsiness tracking 
and detection systems have been introduced for real-
world driving.

Drowsiness estimation and EEG-based RT prediction 
[3], [4] are regression problems. After capturing a signal, 
the regression problem involves multiple blocks, which are 
outlined in the following:
1)	  Signal processing to enhance the signal-to-noise ratio 

and frequency realm filters. These include bandpass 
filters and notch filters [11], [12] and spatial filters 
analogous to the common spatial pattern (CSP), fuzzy 
common spatial patterns regression one versus reset 
(CSPROVR), the fuzzy time delay common spectrospa-
tial pattern (FTDCSSP) [5], and stationarity optimizing 
methods, such as fuzzy divergence common spatial pat-
terns one versus reset (F-DivCSP-WS) [13].

2)	  Feature processing to identify semantic predictors. 
For example, Riemannian geometry (RG) [14] and EEG 
power band features [15], [16]. 

3)	  Regression routines to project an analog output level. 
For example, ordinary linear regression [11], [12], ridge 
regression [16], [17], the LASSO [18], transfer learning 
[16], dual task learning [4], and optimal learning [15] with 
deep CNNs.
In this work, we analyze the performance of the fuzzy 

CSPROVR, FTDCSSP, and F-DivCSP-WS and their novel 
variants. We benchmark the results of the proposed 
approach to RT prediction from EEG signals measured in 
a lane-keeping, sustained-attention psychomotor vigilance 
task [3], which collected 32-channel EEGs from 27 sub-
jects while they drove on a four-lane road. CNNs that have 
shown promising results for multiple BCI systems are dis-
cussed. The state of the art (including the baseline and 
proposed methods) is detailed in Figure 1.
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CNNs
Deep learning has widely nullified 
the necessity for expertise in fea-
ture extraction, achieving ad
vanced performance in computer 
vision and speech recognition. In 
particular, the use of deep CNNs 
has ramped up, in part, because of 
their success in many challeng-
ing computer vision classification 
problems [19], [20], overpowering 
approaches that depend on hand-
crafted, domain-specific features 
(see [21] for recent reviews). Despite 
these developments, a majority of 
BCI systems depend on bespoke features. In addition, sever-
al recent works [22] have focused on applying deep learning 
to EEG signals. For example, a shallow CNN [23] was imple-
mented to classify cognitive and affective states. In [24], 
CNNs were developed to monitor epileptic subjects. These 
models are already employed for music information retriev-
al [25], detecting event-related potentials [26], motor imag-
ery class prediction [27], sleep staging [28], anomaly 
discovery [29], and cognitive load prediction [30].

In this article, we derive compact CNN models for 
regression: a shallow CNN–regression (CNN–R), a deep 
CNN–R, and an EEGNet–R. Contemporary research 
includes CNNs suited to EEG motor task classification: 
shallow and deep CNNs [27] and EEGNets [31]. A shallow 
CNN–R consists of a three-layer CNN with parameter 
settings optimized under robust empirical validation 
[27]. The primary layer is convolutional along the tempo-
ral dimension, while the subsequent layer is a convolu-
tional across the EEG channels, i.e., along the spatial 
coordinates. The temporal convolution focuses on 
obtaining optimal bandpass kernels, while the spatial 
convolution aims at optimized spatial kernels. Further, 
the output signals are squared, followed by mean pooling 
to compute signals’ band power, and the CNN ends with 
a fully connected linear regression layer. In summary, 
this network processes EEG data in a manner similar to 
the filter bank common spatial pattern (FBCSP) [32] 
(log-normalized power), followed by linear regression. 
Partitioning convolution into spatial and temporal opera-
tions [33] may improve accuracy for a large number of 
EEG input channels. This was the motivation for shallow 
and deep CNNs. In contrast to the FBCSP, these filters 
are simultaneously optimized, enabling them to outper-
form the FBCSP on motor EEG signals. All the preceding 
CNNs use minimally preprocessed EEG signals as input 
and filter them at 4–40 Hz.

Depth-wise convolution is a nice way of extracting opti-
mal frequency-specific spatial filters. Further, we introduce 
depth-wise separable convolutions (depth-wise convolu-
tions followed by pointwise convolutions). When applied 
to particular EEG signal processing, this procedure 

distributes learning into jointly 
pruned distinctive feature maps in 
time (the depth-wise convolution) 
and efficiently fuses the feature 
maps (the pointwise convolution). 
These advances have been realized 
in the form of an EEGNet–R CNN 
[31]. Several BCI baseline methods 
and learning models have been 
designed and fine-tuned for classi-
fication problems, but it is chal-
lenging to adapt them to regression 
scenarios. For the ease of notation, 
in this article, the deep CNN–R, 
EEGNet–R, and shallow CNN–R 

are referred to as the deep CNN, EEGNet, and shallow 
CNN, respectively.

Methods

Multichannel Persistent Attention Data Set
We examine driver demeanor and brain dynamics ob
tained from a 90-min persistent attention task (PAT) per-
formed in a driving simulator. The information was 
gathered during 62 sessions in which 32-channel EEG elec-
trode data were collected for 27 subjects who were driving 
on a four-lane road and directed to navigate in the center 
of a lane. Incidents were randomly triggered to make the 
car veer toward the left or right. A plenary trial consisted 
of three events: a deviation onset, response onset, and 
response offset. A subsequent trial, in which subjects were 
instructed to maneuver back to the primary cruising lane, 
started 5–10 s after the previous one. The temporal differ-
ence between the deviation onset and the response onset 
was a driver’s RT, which is an objective indicator of drows-
iness. In this article, a 5-s EEG trial prior to the deviation 
onset is used to assess a subject’s drowsiness level via his 
or her RT.

Machine Learning Methods
The algorithms we evaluate have been applied to EEG-
based motor imagery classification, cognitive load pre-
diction, and so on, which are BCI problems, and the 
methods have produced remarkable results. It is quite 
important to note, in line with the opinions of the authors 
of [23], that motor imagery and drowsiness detection 
both involve changes in oscillatory activity (variations in 
the EEG signal power across various frequency bands); 
therefore, the approaches applicable to the former can be 
adapted to the latter. Hence, we devised the evaluation 
procedure discussed in this article. We also explored 
novel alternatives to these approaches. Altogether, we 
studied and proposed algorithms for regression: the fuzzy 
CSPROVR a nd FTDCSSP a nd stat iona r ity-ba sed 
approaches, such as the F-DivCSP-WS, F-DivIT-JAD, and 
deep CNNs.

Estimating reaction 
times and drowsiness 
states from brain 
signals is a notable 
step in creating 
passive brain–
computer interfaces.
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CSP
The CSP is a supervised learning 
method for increasing the binary 
classification results in oscillatory 
EEG BCIs. This algorithm finds 
optimal spatial filters (which are 
nothing but a superposition of 
actual EEG channels) while ensur-
ing that the variance of a filtered 
signal is amplified for one binary 
class and decayed for the other. We 
describe the OVR-CSP proposed to 
adapt a conventional CSP from a 
binary classification to M (M > 2) 
classes. For each class m, the OVR-
CSP finds a matrix ,W Rm

C L! #*  
where L is the number of spatial filters to maximize the 
variance of class m against the rest:

	
W

.argmax
Tr(

Tr(
W

W*
m

W j
j m
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Here, mRu  is the mean covariance matrix of trials in 
class m, and W*

m  is the concatenation of the L eigenvectors 
associated with the L largest eigenvalues of the matrix 
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i m
i m
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-u u  We concatenate the obtained L filters for 
each of the M classes to obtain .[ , ... ]W W W R* * * C ML
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Then, one can extract a spatially transformed trial by 
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The obtained features are passed through LASSO and NN 
modules for the RT regression. Fuzzy CSP also requires 
the EEG signals to be bandpass-filtered in the range of 
{1, 20} Hz prior to spatial filtering.

Fuzzy CSPROVR
Let X ,  { , , .., }r N0 1Rr C T! !#  indicate the rth EEG trial pat-
tern, and C and T describe the number of channels and 
temporal points, respectively. Primarily, the set ,[ ]0 100  is 

broken into K + 1 adjoint blocks, 
with the separating points denoted 
by pr ,  where

  	   , { , , ... } .p K
r r K1

100 1 2r != +     (2)

For every pr ,  we associate its pr

th percentile point Ypr  in the train-
ing set yn  (see Figure 2). Out of all 
such points, K sections are quali-
fied as fuzzy sets. Now, it is possi-
ble to allocate training set yn  into 
K fuzzy classes. Every yn  pertains 
to a fuzzy class through a respec-
tive membership value [ , ] .0 1!  In 
Figure 2, .K M=

In the literature, OVR, one-versus-one (OVO), and JAD 
approaches calculate common spatial filters for multiclass 
problems. OVO computes CSPs for every two class combina-
tions, and OVR calculates CSPs for every class against the 
rest of the classes considered jointly. In addition, one can 
derive a mean covariance matrix for each fuzzy class ml  as
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where ( )ynmn  is the membership degree of yn  in fuzzy 
class m.

We propose the OVR-CSP to generalize the CSP from 
the binary classification to K classes. In particular, on a 
class m, the OVR-CSP calculates a transform W ;R*

m
C F! #  

here, F denotes the number of spatial filters:

	 W
W W

W W
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where W*
m  is the column-wise collection of the F eigen-

vectors corresponding to the F biggest eigenvalues 
of the matrix ( ) .i

i m

m
1

R R
!

-M M|  We organize the obtained 
F  f i l ters column-wise for all K classes to obtain 
W W W[ , ... ] .RK

* * * C KF
1 != #  Later, one can calculate a spatial-

ly transformed trial by X W X , , .., .n N1*
n n= =<l

JAD
The JAD algorithm is a popular alternative to the OVR-CSP 
for the classification of multiclass motor imagery. Given 
EEG data of K different classes, JAD finds a linear trans-
formation W RK K! #  that diagonalizes the class covari-
ance matrices :Ri

K K!R #

	 , { , , , },W W D i N1i i g g!R =< � (5)

where D RK K
i! #  denotes diagonal matrices. The JAD for-

mulation is motivated from the binary class, where one 
jointly diagonalizes two covariance matrices. Equation (5) 

Fuzzy
Class 1

Fuzzy
Class 2

Fuzzy
Class M

Fuzzy
Class M–1

1

0

µ
(y

)

yP1
yP2

yP3
yPM–2

yPM–1
yPM

Figure 2. The M fuzzy classes for training RT values 
through triangular fuzzy membership.

Prior to the deep 
learning era, 
estimating RTs and 
drowsiness from 
electroencephalogram 
signals was feasible 
only with moderate 
accuracy.
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can be solved using [34] and [35]. In the literature, the 
information theoretic filter extraction algorithm is the 
most commonly used technique for selecting filters 
obtained in matrix W [36].

FTDCSSP
Fuzzy time-delayed filters are used, generating the extend-
ed state space model

	 Z W X* ( ),k k( ) ( )
0

2

. n dx x x

x=

| � (6)

where

	 X X( )( ) ( )k kd =x x- � (7)

is the delay operator across the signal state space, nx  is 
the fuzzy membership value for the variable x, and W( )x  is 
the optimized fuzzy CSSP weights matrix. Further, the 
terms in (6) can be simplified to obtain
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The fuzzy CSSP filters, which are the rows in the matri-
ces W W,( ) ( )0 1  and W ,( )2  maximize the fuzzy mutual 
information criterion [5, eq. (22)], [37]. Each of the 
matrices W W, ,( ) ( )0 1  and W( )2  apply to X ,( )k0n  X ,( )k1 1n -  
and X ,( )k2 2n -  respectively. In the CSP method [38], we 
select at least two filters (pertaining to the largest and 
smallest variances) for every class. In this manner, 
F K2 6= =  is chosen in the experiments for K = 3. In (8), 

estimating three spatial transforms consists of calculating 
K3 2 18# =  row vectors.

Stationarity-Based Approaches
Nonstationarities are very frequent and can arise at dif-
ferent time instances. They are mainly caused by eye 
blinking, head/body movements, and drowsiness during 
the course of a trial. Between sessions, they can be trig-
gered by different calibration settings and by constantly 
changing the positions of electrodes. In addition, subjects 
have physiological differences, leading to various signal 
probability distributions. These result in time-varying 
feature vectors. In fact, several traditional methods, 
including the fuzzy CSP algorithm, produce poor results 
from this feature space. We discuss approaches to deal 
with the problem of nonstationarity in EEG regression 
machine learning problems. One of them is the diver-
gence-based technique. We generalize the notion of diver-
gence-based CSP for regression through the concept of 
fuzzy sets.

F-DivCSP-WS
We propose a cost function for regression by deploying 
fuzzy covariance matrices. We begin by using two fuzzy 
classes and later generalize for multiple classes (K > 2). The 
conditional probability of every fuzzy class is normal, i.e., 

( , )N 0 1R  and ( , )N 0 2R  for two fuzzy classes, respectively 
( 1R  and 2R  denote the fuzzy class covariances). The Kull-
back–Leibler (KL) divergence across two D variate gauss-
ians ~ ( , )Np1 0 0n R  and ~ ( , )Np2 1 1n R  is calculated as
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EEG trial X is to be spatially filtered, and one calcu-
lates the spatial filters by some approach; for instance, 
fuzzy CSP with regression gives W, where Y W X.= <  
Thus, the conditional probability of spatially transformed 
EEG trials is approximated by W),N(p W01 1R= <  and 

W W( , ) .Np 02 2R= <  One can compute the symmetric KL 
divergence between two distributions p1  and p2  as
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Here, W( )F  denotes the regression cost function and 
represents the regression approach’s forecasting strength. 
The symmetric KL divergence [39] ( )sD p pkl 1 2<  linking the 
conditional probabilities of two fuzzy classes, after spatial 
filtering, can be written as

	
w w
w w

w w
w w( ) ,sD p p 2

1 2kl 1 2
2

1

1

2
<

R
R

R
R= + -< <

<<

; E � (11)

which is synonymous with the CSP objective function 
given by (13):

	 W W W W W),(argmin sD
W

skl kl 1 2<R R= << � (12)

	 W
W W
W W .argmax

W

*

2

1

R
R= <

<

� (13)

In this article, we address an EEG-based driving scenario 
in which we examine the stationarity within sessions for 
every subject. The regularization function W( )G  is designed 
to optimize stationarity covering every fuzzy class:

	 W W W W W( ) ( ),G N N D1
j i i, ,klj i

ji

N

1 2 11

2 i

<n R R= +
<<

==

|| � (14)

where Ni  captures the number of trials in the ith fuzzy 
class. In (14), j i,R  and iR  indicate the trial and class fuzzy 
covariances. We therefore put together a mixed objective 
function that conjointly optimizes coupled prediction and 
stationarity objectives:
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	 W W W( ) ( ) ( ) ( ),F G1d a a= - - � (15)

where a  is regularization multiplier. The optimization strat-
egy to be maintained is the subspace approach utilizing 
gradient descent on an orthogonal manifold [39, p. 5, 
Algorithm 1]. In (15), we negate the regularization function 
as we maximize the stationarity [which minimizes diver-
gence W( )G  and maximizes the forecasting ability of the 
model for every fuzzy class, boosting the divergence W( )] .F

The framework so formulated is also generalized for 
multiple fuzzy classes by employing an OVR approach. The 
objective function is

	 W W W W W( ) ( ),F sDOVR
kl OVRj j j<R R= << � (16)

                   ,K
1

OVR K
K

K1jR R R= =  

where K > 2 is total number of fuzzy classes; and
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where Nk  is the number of trials in the kth fuzzy class and 
iR  and j i,R  denote the fuzzy class covariance and trial 

covariances, respectively. Membership value ,j in  is inter-
preted for the jth trial pertaining to the ith. After including a 
regularization objective in the OVR framework, we arrive at

	 W W W( ( )) ( ) ( ) .argmin F G1
W

* OVR
i i multiclassa a= - - � (18)

We estimate the spatial filter column for every OVR 
model by optimizing (18); ( , )0 1!a  is the regularization 
parameter. Filter matrix W is optimized using a subspace 
technique, where a group of filters is collectively optimized. 
Further, the filter (W) is broken as a multiplication of whit-
ening matrix (T) and an orthogonal transform (R); dl  indi-
cates the stationary subspace rank that is to be selected 
through cross validation/leave-one-out validation: W ,RT=< M  

I R,R d=u  T, ,W R RD d D D! !# #  and T T( ) .I1 2R R+ =<  The 
optimal filter is calculated on an orthogonal subspace/mani-
fold; i.e., .RR IT =  The cost functions now rely on orthogonal 
matrix R

R F I R I R( ) ( ) ( ) ( ) ( ),G1
Fuzzy OVR CSP Stationary

multiclass
OVR

j d da aD = - -
1 2 34444 444 1 2 344444 44444

where :d D1  for a subspace approach with ( , ) .0 1!a

F-DivIT-JAD
Equation (5) presents the basic JAD formulation. It finds 
minima of the KL divergence between covariances of the 
transformed trials and a diagonal version of the diver-
gence. For instance, if Y is a matrix and R is a diagonal 
matrix, by a Pythagorean decomposition, one obtains

	 ( (( ) ( ( ),D D diag D diag Ykl kl kl< < <R R= +Y )Y Y )) � (19)

where ( )diag X  is a matrix array whose elements in a diag-
onal are same as the diagonal elements of Y. Minimizing 

( ),Dkl < RY  the expression of R  equals ( .Ydiag )  In other 
words, the formulation of the F-DivIT-JAD appears in (21):
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We propose another formulation of the stationarity-
based method for regression deploying fuzzy covariances 
in (22). In it, we integrate within a session the stationarity 
developed in (14) with an information theoretic formula-
tion of JAD as follows:
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In contrast to the DivCSP-WS method, as indicated by 
[39, eq. (10)], the regularizing expression is “added” 
because we are minimizing the diagonalization term as 
well as the group stationarity term. The spatial filters W*  
are estimated such that

	 ( .argminW W*

W
D= ) � (23)

We optimize (23) on the subspace W:

	 ( ) ( ) ( ),argmin J J1R R I R*
ds

R
a a= - + � (24)

where J and Js  denote the diagonalization cost and the 
stationarity cost in terms of R (the orthogonal trans-
form). In (24), we optimize the whole subspace for the 
JAD term. But for optimizing stationarity, we use I Rd  in 
place of R. In other words, I Rd  points to the selection of 
the first d rows of the orthogonal transform R while 
choosing the first d columns of the filter transform W to 
incorporate stationarity. Using the proposed approach, 
we accomplish a pair of objectives: the JAD of the matri-
ces and the imposition of stationarity on the primary d 
elements of the transform.

Spatial filters W are optimized using the following 
approaches:

◆◆ Subspace approach: a collection of jointly optimized 
filters

◆◆ Deflation technique: the sequential optimization of 
filters.

Filters (W) are broken into a product of whitening matrix 
(S) and orthogonal matrix (R); dl  represents the dimen-
sion of the stationary subspace tuned by cross validation:
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 , ,W R I R W SRS RRT
d

D d D D! != = # #u u

( ) .S S IT
1 2R R+ =

Optimization is conducted on an orthogonal manifold; i.e., 
.RR IT =  The objective functions now depend on orthogo-

nal matrix R:

( ) ( ) ( ),argmin J J1R R I R*
s

R
da a= - +

where :d D1  for the subspace method and :d 1=  for the 
sequential optimization or deflation method.

CNNs for Regression
In a nutshell, a CNN is a multilayer feedforward NN 
designed to learn spatial dependencies by employing 
fundamental subsystems as convolution layers, pooling 
layers, and fully connected layers. Convolution and pool-
ing layers extract features, while fully connected layers 
transform the computed features to an output, which is 
useful for classification and regression. Recently, several 
studies developed novel models for CNNs adapted to 
motor imagery classification and P300 classification in 
EEGs, including the shallow CNN, deep CNN [27], and 
EEGNet [31]. A deep CNN is composed of four convolu-
tion maximum pooling blocks, with a specified primary 
block outlined to work with an EEG input, accompanied 
by three typical convolution maximum pooling clusters 
and a dense softmax classification output. The idea of 
split convolutions was used in the first convolution clus-
ter. It consisted of a temporal convolution followed by 
spatial filtering. This was followed by maximum pooling 
and subsequent convolutional layers. Linear units were 
used in the temporal convolution, and exponential linear 
units were employed in spatial convolution. A shallow 
CNN has three layers and tunable parameters. It was 
recently tested and validated for classification problems 
[27]. The preliminary layer performs convolution across 
the time direction, while the subsequent layer accom-
plishes convolution across the spatial dimension, i.e., 
across EEG channels.

Convolution across the time dimension focuses on opti-
mizing bandpass filters, and spatial convolution seeks to 
optimize spatial filters. The obtained signal amplitude is 
squared and averaged in a pooling fashion to derive the 
band power. Then, the last one is a fully connected linear 
classification layer. Although the network processes the 
signal in a manner analogous to the FBCSP, there is a dif-
ference in terms of the convolutional network conjointly 
optimizing spatial and temporal filters. In summary, this 
CNN processes EEG data in a manner similar to the 
FBCSP and linear discriminant analysis. In contrast to the 
FBCSP, all these filters are simultaneously optimized, pro-
ducing better performance using motor EEG signals. A 
shallow CNN uses minimally preprocessed EEG signals as 
input, so we filtered the signals at 4–40 Hz. In this article, 

the preceding CNN models are adapted and fine-tuned for 
regression. We implement three models: the shallow CNN, 
deep CNN, and EEGNet.

Implementation and Results

PAT and EEG Preprocessing
The PAT experiment is shown in Figure 3. The goal is to 
study the correlation between fatigue and driving perfor-
mance, based on the proposition that poor vigilance leads 
to significant delays before drivers notice events. The 
experiment details, EEG trial preprocessing, and RT pro-
cessing remain the same as reported in [5, Secs. 3(a), 3(b)
(1), and 3(b)(2)]. The raw data are available for download 
from https://doi.org/10.6084/m9.figshare.6427334.v5 [3]. 
They are targeted to assess RTs by utilizing a 5-s EEG win-
dow shortly ahead of drowsiness/alert states.

Methods for Performance Comparison
In practice, three approaches—an EEGNet [31], a shallow 
CNN [23], and a deep CNN [27]—applied to EEG trials are 
generally used for predicting RTs. The fuzzy CSP [18] and 
FTDCSSP [5] feature extraction methods with LASSO-
based RT prediction are additional methods used as base-
lines. We compare the performance of the proposed 
methods (F-DivCSP-WS- and F-DivIT-JAD-based feature 
extraction with LASSO-based RT prediction), with the pre-
ceding approaches used as baselines.

Hyperparameter Tuning and  
Performance Comparison
Figure 3 and 4 along with Figures 5 and 6 in the supplemen-
tary material depict the average performance of the 
methods on the RT data set. The analysis is done with a 
leave-one-session-out validation approach for each of 
the subjects. Subjects , , , , , , ,S S S S S S S04 06 11 23 48 52 54
and S55  are left out of the analysis, as their data were 
limited to a single session. The EEGNet, deep CNN, and 
shallow CNN architectures are trained via the Keras 
deep learning platform with a TensorFlow backend, and 
the server is an Intel Xeon CPU with a 2.2-GHz proces-
sor, a Tesla T4 15079MiB GPU, and 13 GB of random-
access memory. Five hundred epochs were used to train 
the networks.

Hyperparameter Tuning in Each Method

Shallow CNN
The shallow CNN was the slowest, with an epoch taking 
5–6 s. This is attributed to the custom activation functions 
that were implemented from scratch and not optimized for 
the model. To reduce the time complexity, we changed the 
filters in the first convolution layer to 20, from the original 
40. The learning rate obtained from the line search was 
0.0001, and the average model showed better results. The 
network had approximately 26,500 trainable parameters.
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Deep CNN
This method had the largest number of trainable parame-
ters—around 300,000—which made it the most complex 
model to train. Even with a dropout of 0.5, it was clearly 
overfitting. The trick to training it, again, was to tune the 
learning rate by using a line search ( . ),0 001h =  and the 
model yielded better results in leave-one-session-out 
cross-validation. The computational time to train it was 
the longest of all the CNNs in this article.

EEGNet
The EEGNet demonstrated the best results of the three 
CNNs. We ran the standard EEGNet model, without any 
changes, for a filter size of 128 and a standard learning 

rate of 0.01. After changing the learning rate for the shal-
low and deep CNNS and seeing the results improve, 
we decreased the learning rate. The learning rate 
( . )0 001h =  and filter size (64) were hyperparameters 
tuned for the EEGNet through a grid search using leave-
one-session-out cross-validation. This was also the fast-
est method of the three described. It was the most 
optimized of the three networks, with slightly more than 
2,000 trainable parameters.

Fuzzy CSP
We implemented the fuzzy CSP method with LASSO 
regression, treating the number of fuzzy classes and filters 
per fuzzy class as hyperparameters and performing tuning 
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Figure 3. The EEG PAT driving scenario. (a) A pictorial description of the experimental protocol design and  
(b) the corresponding time information. 
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with a grid-search in a leave-one-session-out cross-valida-
tion paradigm. The average results for each subject were 
plotted: { , , , },K 3 6 9 12!  and F was fixed at six.

FTDCSSP
The tunable hyperparameters consisted of the number of 
spatial filters F, which lay in the set { , , , } .5 10 15 20  We fixed 
the number of fuzzy classes at three (a number borrowed 
from the literature) and varied F.

F-DivCSP-WS
We used ; ,K F3 3= =  where F was the number of filters 
per fuzzy class; and d 2=  (the number of OVR compo-
nents), which was an estimate of the size of the subspace 
of filters. This was borrowed from the selection of the 
number of spatial filters in OVR-CSP [40, Sec. 4]. Also, 

.0 5a =  was obtained through leave-one-out validation.

F-DivIT-JAD
We used ; ,K F3 3= =  where F was the number of fil-
ters per fuzzy class; and d 2=  (the number of OVR 
components), which was an estimate of the size of 
subspace of filters. Also, .0 6a =  was obtained through 
leave-one-session/subject-out cross-validation.

Evaluation Criterion
The RMSE constitutes the criteria used for measuring the 
regression results. Consider N training samples, with ydi  
denoting the actual RT for the ith example and yi  repre-
senting the predicted RT:

	
( )

.RMSE N

y yd i
i

N
2

1
i

=
-

=

|
� (25)

Performance Comparison
Figure 3 and 4 along with Figures 5 and 6 in the supplemen-
tary material depict the average RMSE performance of all 
the methods applied to the RT data set when analyzed 
through a leave-one-session-out validation for all the ses-
sions of a particular subject. The respective percentage 
performance improvements obtained by using the seven 
methods (proposed and baseline) are given in Figures 5 
and 6 in the supplementary material. For instance, the 
terms F-DivIT-JAD/F-DivCSP-WS represents the 
improvement of the F-DivIT-JAD representations over the 
F-DivCSP-WS representations. F-DivIT-JAD/EEGNET 
denotes the improvement of the F-DivIT-JAD features over 
the EEGNet CNN-based RT prediction. On an average, 
using the F-DivIT-JAD, we recorded a 21.2% smaller 
RMSE than for the EEGNET, a 41.14% smaller RMSE than 
for the deep CNN, a 51.39% smaller RMSE than for the 
shallow CNN, a 21.93% smaller RMSE than for fuzzy 
CSPROVR, a 16.03% smaller RMSE than for FTDCSSP, and a 
5.67% smaller RMSE than for F-DivCSP-WS. These reduc-
tions translate into a significantly smaller driving distance 
error at a constant speed of 100 km/h.

Figures 7–10, along with figures 11 and 12 in the supple-
mentary material depict the average performance of all the 
methods applied to the RT data set when analyzed in a 
leave-one-subject-out validation for all subjects. On an 
average, using the F-DivIT-JAD, we recorded a 47.12% 
smaller RMSE than for the EEGNET, a 45.65% smaller 
RMSE than for the deep CNN, a 39.05% smaller RMSE 
than for the shallow CNN, a 27.24% smaller RMSE than 
for the fuzzy CSPROVR, a 17.61% smaller RMSE than 
for the FTDCSSP, and an 8.96% smaller RMSE than for the 
F-DivCSP-WS. These reductions translate to a signifi-
cantly smaller driving distance error at a constant speed 
of 100 km/h.

Regression RMSE values are reported in Figure 4. We 
ran a two-way variance analysis to evaluate an algorithm’s 
impact on the EEG RT data set, regarding the calibration 
setting (subject-specific/independent), while treating the 
subjects as random factors. The results are presented in 
Tables 1 and 2 along with Table 3 in the supplementary 
material (  . );p value 0 051  they indicate that there are sta-
tistically significant differences in the RMSE for different 
algorithms for a variety of calibration settings (subject-
specific/independent). In other words, the selection of a 
regression method has a significant effect on the perfor-
mance metric RMSE (  . );p value 0 051  see Tables 1 and 2 
along with Table 3 in the supplementary material.

Furthermore, multiple comparisons in the form of paired 
t-tests are employed to find out if the difference between 
any couple of algorithms is statistically significant, with the 
p value corrected through the false discovery rate method 
[41]. The p values are in Table 1, where bold-face entries val-
ues are statistically significant, with large effects, and the 
other p values corresponded to medium effects. The size 
of the p value does not necessarily estimate the size of 
the effect; statistics, such as the partial eta squared, give 
effect sizes. Effect sizes for p value < 0.2 are reported as the 
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partial eta squared ( ),2
partialh  whose 

values can be benchmarked against 
Cohen’s [43] criteria of small (0.01), 
medium (0.06), and large (0.14) 
effects, according to Richardson 
(2011) [42].

During this subject-independent 
(cross-subject) analysis, all the deep 
networks (the EEGNet, shallow 
CNN, and deep CNN) and methods 
(the fuzzy CSP and FTDCSSP) used 
hyperparameter settings that were 
similar to those mentioned in the 
preceding for the cross-session 
(subject-specific) analysis. In addi-
tion, 500 epochs were employed to 
train the deep networks. In summary, the F-DivIT-JAD per-
formed better than the other algorithms for predicting the RT in 
subject-specific and subject-independent settings. Table 2 con-
tains the average RMSE obtained from all the methods in subject-
specific and subject-independent settings.

Discussion and Conclusion
In this article, several intelligent machine learning systems 
were provided for driver drowsiness detection through EEG 
signals. The algorithms were tested under subject-specific 
and subject-independent calibration settings. In summary, 

we studied the EEGNet, shallow 
CNN, deep CNN, fuzzy CSPROVR 
with a LASSO, FTDCSSP with a 
LASSO, and two new methods (the 
F-DivCSP-WS with a LASSO and 
the F-DivIT-JAD with a LASSO). We 
observe that the EEGNet CNN per-
formed decently in subject-specific 
and subject-independent settings. 
The deep and shallow CNNs demon-
strated overfitting in the subject-inde-
pendent setting. This is attributed to 
the depth-wise and separable convo-
lutions used in the EEGNet architec-
ture. The proposed methods (the 
F-DivCSP-WS with a LASSO and the 

F-DivIT-JAD with a LASSO) had a lower average RMSE 
than the baseline methods (the FTDCSSP, shallow CNN, 
deep CNN, and fuzzy CSPROVR). The fuzzy CSPROVR and 
FTDCSSP performed close to and even better than the 
EEGNet in subject-specific and subject-independent set-
tings. This is attributed to the diverse nature of the filters 
learned in both methods by using optimal variance criteri-
on (the fuzzy CSPROVR and FTDCSSP) and the mean-
square-error loss (the EEGNet, deep CNN, and shallow CNN).

In general, the regression performances of the deep 
CNN and EEGNet were analogous across all cross-subject 

analyses, whereas the deep 
CNN performed worse for sub-
ject-specific analyses. One 
explanation for this is the multi-
tude of data employed to train 
the model; in subject-indepen-
dent analyses, the training set 
sizes were 15–20 times larger 
than those for subject-specific 
analyses. This helps us infer 
that the deep CNN is more data-
hungry in comparison to the 
EEGNet, an expected result, pro-
vided that the architecture of the 
deep CNN is two times larger 
than the EEGNet. We presume 
that the argument is consistent 
with the findings originally pub-
lished by the developers of the 
deep CNN [27], who mentioned 
that a training data augmenta-
tion technique was mandatory 
to record good classification 
performance on sensorimotor 
rhythm data. In contrast to that 
work, the EEGNet and the other 
proposed and baseline models 
performed well across all test 
settings, beyond the need for 

Deep learning has 
widely nullified the 
necessity for expertise 
in feature extraction, 
achieving advanced 
performance in 
computer vision and 
speech recognition.

Cross-Session (Leave-One-Session-Out Validation)

F-DivCSP-WS FTDCSSP Fuzzy CSPROVR Shallow CNN Deep CNN EEGNet

F-DivIT-JAD 0.002 0.01 0.001 0.002 0.01 0.001

Cross-Subject (Leave-One-Subject-Out Validation)

F-DivCSP-WS FTDCSSP Fuzzy CSPROVR Shallow CNN Deep CNN EEGNet

F-DivIT-JAD 0.001 0.02 0.002 0.001 0.01 0.0001

Bold-face p values indicate large effects (h2
partial > 0.13). 

Table 1. Paired t-test results (p values) for RMSE comparison 
across methods.

Subject Specific (Leave-One-Session-Out Validation)

EEGNet Deep CNN Shallow CNN Fuzzy CSPROVR FTDCSSP F-DivCSP-WS F-DivIT-JAD

0.024 0.032 0.038 0.024 0.022 0.02 0.019

Subject Independent (Leave-One-Session-Out Validation)

EEGNet Deep CNN Shallow CNN Fuzzy CSPROVR FTDCSSP F-DivCSP-WS F-DivIT-JAD

0.029 0.028 0.025 0.021 0.019 0.017 0.015

Table 2. A comparison of the average RMSE across methods 
for subject-independent and subject-specific (cross-session) 
validation.
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data augmentation, rendering the 
models simpler, adaptable, and 
generic to use in practical settings.

For the proposed models (the 
F-Div-IT-JAD and F-DivCSP-WS), 
the hyperparameter space was suf-
ficiently explored to choose opti-
mal settings for reporting results. 
In the future, we will focus on the 
efficient selection of optimization 
parameters through cross-valida-
tion and the integration of subject-
independent stationarity to estimate 
robust spatial filters. Such results 
enable us to suggest guidelines 
for which algorithm to use for RT 
predictions from EEGs. The F-DivIT-
JAD and F-Div-CSP-WS are recom-
mended for subject-specific and subject-independent 
calibration, whatever the amount of training data. The 
EEGNet CNN is recommended for subject-specific RT cali-
bration (several hundreds of training trials), but its perfor-
mance is slightly compromised, with an enormous number 
of trials (in which case the deep CNN can be used).

In summary, we extended the divergence framework of 
the CSP algorithm for multiple fuzzy class settings by using 
the OVR strategy. We also proposed a composite frame-
work employing information theoretic JAD to optimize 
within session stationarity. The regression performance of 
the F-DivCSP-WS (the F-Div-CSPROVR reduces to fuzzy 
CSP in a binary fuzzy class setting) and F-DivIT-JAD fol-
lows a similar trend when the regularization parameter 
controlling stationarity is regulated, which further reinforc-
es our formulated divergence-based JAD framework. Also, 
in multiple fuzzy class settings, the F-DivIT-JAD and 
F-DivCSP-WS techniques have similar performance for dif-
ferent values of a . One of the main advantages of the 
F-DivIT-JAD in comparison to the F-DivCSP-WS method is 
computational time. This is because, in the OVR frame-
work, the gradient descent optimization is repeatedly per-
formed for n iterations (where n is the number of classes in 
multiple fuzzy class settings). However, when the initializa-
tion of the orthogonal matrix for each OVR case is the cor-
responding fuzzy CSPROVR solution, the computation time 
in the F-DivCSP-WS drastically reduces and outperforms 
that of the F-Div-IT-JAD. In essence, our results demon-
strate that CNNs and the proposed stationarity-enforcing 
methods are machine learning assets for scientists and 
engineers whose aim is to decode drowsy states from EEG 
signals using intelligent system models.

Limitations and Future Work
Real-world deployment of the proposed solutions in this 
article requires further validation through a resource utili-
zation study consisting of a rigorous analysis of metrics 
such as the RMSE, memory trace, number parameters, 

operations enumeration, prediction 
time, and so on. This is a limitation 
and will be addressed in future 
work. In addition, for practical appli-
cations, high-density EEG systems 
can be replaced by ergonomic head-
sets, which employ few channels to 
perform several applications. Good 
examples include Neurosky Mind-
Wave, InteraXon Muse, Emotiv 
Epoc, Emotiv Insight, and OpenBCI. 
Also, including other intrusive 
drowsiness detection modalities 
with sensors, such as electrocardio-
gram, electromyogram, and electro-
dermal activity, can contribute to a 
significant improvement in the 
drowsiness detection system’s per-

formance. In addition, long short-term memory and recurrent 
neural network (RNN) models constitute a standard choice 
for the time series data, which need to be further explored for 
drowsiness detection. Approaches to the fusion of multiple 
sensor modalities and the incorporation of RNN models for 
regression can be explored in upcoming research.
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