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EEG-Based Drowsiness Detection With Fuzzy
Independent Phase-Locking Value Representations
Using Lagrangian-Based Deep Neural Networks
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Abstract—Passive electroencephalogram (EEG) brain–
computer interfaces (BCI) have common usage in the area of
Driver Drowsiness Detection. The approach presented herein
identifies the cognitive state of the user while no mental action
is required. Data recorded in EEG-based BCI experiments are
generally noisy, nonstationary, and contaminated with artifacts
that can deteriorate any analyzer’s performance. Recently,
common spatial patterns (CSPs) have been adapted with EEG
state-space incorporating spatiospectral optimization using fuzzy
time delay (FTD-CSSP). Temporal phase disparity sequence
(TPDS) is used to measure synchrony between EEG signals. The
output of Linear transforms operating on the TPDS constitute
useful features for EEG regression problems. On similar lines,
this article proposes spatiospectral optimized fuzzy-independent
phase-locking value (SSO-FIPLV) representations (exploiting
the spatiospectral information from TPDS) for EEG signals
to monitor a user’s cognitive states. Specifically, we analyze
changes in EEG synchronization for a car driver as she/he drifts
between alert and drowsy states. We use neural networks (NNs)
for prediction. This article also proposes a cutting-edge method
for training NN using the Euler–Lagrangian formulation. A
stability proof is provided for the intended training approach
alongside, and the performance is corroborated on the EEG
reaction time prediction task, both within and across subjects,
using a publicly available dataset. The NN trained by the
proposed approach performs better than other competitive
approaches in terms of minimizing root-mean-squared error
and maximizing correlation coefficient. Channelwise feature
importance in terms of average relevance values calculated
from NN feature representations is visualized in the form of
Topoplots using layerwise relevance propagation for regression.
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I. INTRODUCTION

DRIVER debility ending up in sleepiness has been noted
to be an important factor liable for severe road casu-

alties. In an article from U.S. NHTSA, it is established that
drivers’ fatigue concludes in 1550 demises, 71 000 wounded,
and U.S. $12.5 billion losses in revenue annually [1]. In
this era of deep learning, a lot of technologies are coming
up which automatically detect drowsiness based on signals
recorded from the body. Prior research in drowsiness systems
[1] demonstrates that physiological parameters-based tech-
niques (electroencephalogram (EEG), ECG, etc.) give more
accurate results than others (vision-based sensors). Amidst
such signals, EEG stands as the most steady marker of the cog-
nitive state because it is closely connected to the performance
of psychological and biological actions [2].

A wide range of methods is proposed in the literature
that uses power spectrum-based analysis for drowsy state
classification [3]–[6]. Within the same class of approaches,
mutual information-based wavelets [7] and entropy-based fea-
tures [8] constitute the alternate approaches using the EEG
signal amplitude. Prior studies [9], [10] reveal that the EEG
spectra in theta rhythm (4–7 Hz) and alpha rhythm (8–11 Hz)
usually reflect the cognitive state and memory performance.
Hence, EEG spectra in theta and alpha rhythms can be used
to derive the drivers’ alert models and detect their cognitive
state. Beta band (β) conforms to the interval of 13–30 Hz. It
conveys tension and anticipation and is usually displayed in
both alert and anxious subjects. The fluctuations in β activ-
ity during the individual fatigues are still unclear [11]. Gamma
band (γ ) consists of frequencies above 30 Hz and usually does
not have an impact on drowsiness detection [12].

Another class of approaches relies on the time-varying phase
information recorded from multiple EEG signal channels.
Phase-dependent methods are based on the correlation between
individual signal channel pairs by studying the interconnection
of the transitory phase across signals independent from their
amplitudes [13]. In addition, such approaches are found use-
ful in implementing psychotherapies [14]. Several studies have
attempted to localize the drowsiness (or discrimination of
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drowsy and awake states) to certain brain regions [15], [16].
In other words, the working of phase synchrony is crucial
for processing within a brain region as well as establish-
ing information transfer between different brain regions [17].
Prior studies (cf. [18, Fig. 1] and [19, Fig. 2A]) in this
area demonstrated that study of the six main sources (frontal,
central, parietal, occipital, left motor area, and right motor
area) in the brain capture the drowsiness phenomenon. In
recent works [19], [20], 30 channels are used to cover all
these regions [additionally (A1 and A2 references placed on
the mastoid bones)] and this is a standard montage used in a
lot of drowsiness research published across time [19], [20].

Phase synchrony refers to a study of an interplay between
two EEG channels by only looking at the momentous phase
disparity among signals independent of their magnitude [21].
In addition, the part played by synchronization is subject
to specific frequencies. For example, synchrony in EEG
theta waves is contrasted to active memory capacity [22],
while high-frequency synchrony is instrumental to disseminate
messages [23]. The phase-locking value (PLV) [24] explic-
itly quantifies frequency synchrony among the multichannel
signals. PLV is nevertheless limited to compare frequency
synchrony at a fixed time across trials. Since there is also
a need to quantify trial-specific synchrony of the phase,
researchers have come up with a per trial PLV [25]. Later,
several works further modified per trial PLV [26]. Recently,
a method was proposed in [27] that relies on features from
the temporal phase disparity sequence (TPDS) for individ-
ual brain–computer interface trials. Furthermore, in [28], for
the first time, authors proposed the differential phase syn-
chrony (DPS) features for regression while combining TPDS
with fuzzy common spatial filtering for regression-one versus
rest (FCSPR-OVR). In all of these approaches, optimization
is performed only across the spatial domain while not con-
sidering the optimization of spectral content. In a recent
work, we proposed FTD CSSP-OVR [29], which performs
joint spatiospectral filter optimization for EEG-regression. In
this work, we propose novel spatiospectrally optimized fuzzy-
independent PLV (SSOFIPLV) feature representations for
drowsiness detection (SSO-FIPLV). We tested the SSO-FIPLV
features for reaction time (RT) prediction in an EEG-based
persistent attention task (PAT) [30].

Over the last decade, we have seen the contributions made in
the field of neural networks (NNs) for many applications [31].
In particular, for EEG-based driver drowsiness detection appli-
cation, NNs have received extensive attention, for instance, deep
feedforward NNs (FNNs) [28], [32], [33], common Bayesian
network [34], and fuzzy NN [35]. Recently, a novel complex
network (CN) [36]-guided broad learning system is proposed to
conceive an EEG data-driven drowsiness detection. The superi-
ority of NN over various other models is the automated feature
learning/feature extraction. In literature, training algorithms for
the NNs are categorized into single-step and multistep algo-
rithms depending upon the number of weight change steps per
iteration. In recent times, Gradient Descent [BackPropagation
(BP)], AdaGrad (ADG) [33], Rmsprop, Adam [37], etc., are
the few examples of single-step learning algorithms for training
NN. Several single-step weight update algorithms derived using
recursive least squares [38], extended Kalman filtering [39],

and Lyapunov stability theory [33] have been adapted from
other fields, such as the optimal control theory and signal
processing.

Multistep approaches [40] distinctly update only a sub-
set of the weights at once. Output weight optimization–BP
(OWO-BP), a multistep approach [40], updates the weights in
the input layer while subsequently solving the linear equa-
tions for the weights in the output layer. Similar to many
first-order algorithms, such as BP, LM, Adagrad etc., the mul-
tistep OWO-BP is susceptible to sluggish convergence and
does not accommodate the affine invariance property [40].
Therefore, it is perceptible to input data mean and the
selection of initial weights. However, we will focus on the
single-step-based methods in this work. In [33] and [41], an
update law has been derived to train the FNN by using the
Hamilton–Jacobi–Bellman (HJB) framework. Dynamic pro-
gramming is a prominent paradigm for optimal control of
dynamical systems [42]. The learning process in NN can be
treated as a dynamical system [31]. Dynamic optimization esti-
mates a control input which is optimal, i.e., it leads to an
optimal weight trajectory for the case of NN that optimizes
a predefined objective. In this work, we hereby introduce a
novel Lagrangian-based optimization approach while incor-
porating neural system dynamics for adapting FNN. Several
supervised learning algorithms are explored in the literature
for Drowsiness Detection. Support vector machine (SVM) is
the most commonly used classifiers/regressors, which provided
better accuracy and speed in most of the situations, but it is not
suitable for large datasets with multiple subjects [31]. Also,
recently, learning-based methods are proposed for drowsi-
ness detection [43]. But, in the literature, sufficient testing
or validation has not been done with diverse optimal learning
methods for feedforward NN architectures, which we explored
in this work. Interindividual variability is another big challenge
that restricts the commercial use of physiological signal-based
drowsiness detection systems, as generalization is the major
problem. We demonstrated the generalizability of our method
across subjects also indicating it in this regard in the sup-
plementary material. This has been highlighted in green in
the supplementary material. The error in RT prediction trans-
lates to the error in distance in detecting a drowsy driver. A
new metric is formulated in this regard [denoted as error in
estimated driving distance (EEDD)].

The central purposes leading to this research are as follows.
1) Toward establishing the efficacy in regard to a novel

Lagrangian and neural system dynamics-based NN
regressor for a PAT.

2) To represent the drivers’ RT prediction as a learn-
ing task based on SSO-FIPLV features and adapting
computationally intelligent models with the designated
objectives.

The novelty and important contributions to be taken out of
this research are as follows.

1) A unique Lagrangian and NN system dynamics-based
learning scheme for NN regression problems.

2) Novel SSO-FIPLV features establish the efficacy of
using phase-based EEG signal processing for the PAT.

3) Comprehensive tests (inclusive of contrast with
advanced prediction models) are used with the goal of

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY ROORKEE. Downloaded on December 12,2024 at 17:03:24 UTC from IEEE Xplore.  Restrictions apply. 



REDDY et al.: EEG-BASED DROWSINESS DETECTION WITH FUZZY INDEPENDENT PLV REPRESENTATIONS 103

substantiating the efficacy of the developed approach in
an EEG PAT.

This work is constituted as follows. Section II con-
tains the formulation of a novel NN weight update law.
Section III describes the proposed SSO-FIPLV features.
Section IV-D assesses the effectiveness of feature sets on the
EEG PAT. Sections IV-E and IV-F describe the performance of
Lagrangian-based learning DNN and all other key results with
sufficient comparison to baseline approaches. Finally, conclu-
sive assertions are indicated in Section V. Here, # is used to
denote “number of.”

II. PROPOSED METHOD

Consider an FNN, having O layers (hidden+output), with
No neurons in the oth layer (o ∈ {0, 1, . . . ,O}, o = 0 for
the input layer) and Nθ total number of tunable weights. For
supervised learning, we are given N pairs of input and target
output in a batch. Now, learning can be seen as a dynamic
control problem, where the error e ∈ R

NON between the esti-
mated and the target outputs changes with a change u ∈ R

Nθ

in FNN weights θ

ė = −Ju; u = θ̇ . (1)

Here, e = [eᵀ1 , eᵀ2 , . . . , eᵀN]ᵀ, and J = [Jᵀ1 , Jᵀ2 , . . . , JᵀN]ᵀ is an
NON×Nθ matrix. The derivation of (1) and further explanation
about different terms is provided in the supplementary material
under Section III. The cost function in the discrete form shown
in (2) is taken from [33]

V(ek,uk) =
K∑

l=k

L(el,ul)�t (2)

where, L(el,ul) = 1

2

(
eᵀl Qel + uᵀ

l Rul
)
. (3)

Here, k is the iteration index. To optimize the cost function
defined in (2) while satisfying constraint (1), HJB formula-
tion has been used in the past, and the weight update laws
so derived have been employed [33], [44] to update NN
weights during learning. But in this article, our approach
is inspired from the Euler–Lagrangian formulation, which is
commonly used for functional optimization. It is popularly
used in the calculus of variation and in physics for action
minimization/maximization. The constraint from (1) can be
discretized using the Euler approximation and added to the
cost function (2) to get the Lagrangian cost function

L(ek,uk) =
K∑

l=k

(
L(el,ul)�t + λl

ᵀ(el − el−1 + Jlul�t)
)
. (4)

To derive the weight update law, we optimize L w.r.t. el

and ul

∂L
∂el

= 0 =⇒ Qel�t + λl − λl+1 = 0 (5)

∂L
∂ul

= 0 =⇒ Rul + Jᵀl λl = 0. (6)

Eliminating λ’s from (5) and (6), we get the optimal u as

ul+1 = R−1Jᵀl+1

(
(Jᵀl )

†Rul − Qel�t
)
. (7)

The FNN weights can be updated as

θk+1 = θk + ηuk (8)

where η ∈ R is the learning rate and † denotes Moore–
Penrose pseudo inverse. The optimal uk has been derived
above. The learning rate can also be optimized. Several
methods have been proposed earlier for optimal learn-
ing rates for gradient descent-based learning schemes [33].
We use the adaptive gradients [AdaGrad (ADG)] method
to update the learning rate. The final weight update law
becomes

θk+1 = θk + η√∑k
l=0 ||ul||2

uk. (9)

Input to state stability (ISS) of the proposed approach
is provided in Section 3 of the supplementary material
(Supplementary.pdf). The ISS criterion ensures that the update
law is stable.

III. SSO-FIPLV REPRESENTATIONS

Let Xr ∈ R
C×T , r ∈ {0, 1, . . . ,N} denote the rth EEG

trial, C denotes the #channels, and T denotes the # time sam-
ples. The output variable (here, RT in each trial) denoted by
Yr or yr is split into K + 1 regions uniformly (with “K”
fuzzy classes) [cf. Fig. 1(a)]. Any Yr or yr lies in a fuzzy
class with a respective membership value μ(Yr) ∈ [0, 1].
In Fig. 1(a), we partition [0, 100] into K + 1 intervals
where P1,P2, . . . ,PK−1,PK denote percentile points with
(100K)/(K + 1) standing for (100K)/(K + 1th) percentile
point.

A. Fuzzy Multiple Class Common Spatial Patterns

Common spatial patterns (CSPs) [45] is an important super-
vised technique to be applied for dealing with EEG-based
machine learning problems. In the literature, three approaches
are generally used to compute CSP filters: 1) one versus
one; 2) one versus rest (OVR) [30]; and 3) joint approxi-
mate diagonalization (JAD) [46]. In this article, we demon-
strate the optimization of the CSP algorithm for regression
using JAD.

1) Joint Approximate Diagonalization Approach: Consider
a regression problem, where the output variable is fuzzified
using K fuzzy classes [cf. Fig. 1(a)]. We then compute an aver-
aged signal Xs for every fuzzy class s. Then, the covariance
matrix corresponding to each fuzzy class 	s is determined

Xs =
∑Ns

r=1 μr,sXr

Ns
s ∈ {1, 2, . . . ,K}. (10)

In (10), Ns denotes # trials in the sth fuzzy class

	s = X
s
X

sᵀ
s ∈ {1, 2, . . . ,K}. (11)

We normalize the class covariance matrices thus obtained
above by using

	s = 	s

Tr(	s)
∀s ∈ {1, 2, . . . ,K}. (12)

After computing the average and normalized covariance
matrices for all K classes, a transformation matrix W ∈ R

N×N
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Fig. 1. Plots of the experimental paradigm with fuzzy set-based analysis. (a) Fuzzified RT. (b) EEG signals with associated events. (EEG and behavior data
were recorded simultaneously.)

needs to be found which concurrently diagonalizes them.
Specifically, W must satisfy

W	sWᵀ = Ds ∀s ∈ {1, . . . ,K} (13)
K∑

s=1

Ds = IN×N . (14)

Although, such kind of diagonalization can be obtained
accurately for N = 2, only approximate solutions are exist-
ing for N > 2. Employing the weight matrix W, we compute
the transformed EEG signal

Z = WXr. (15)

The spatial filters are the rows of matrix W.

B. Fuzzy Time-Delay CSSP

In [47], we proposed a novel robust invariant CSP features
extraction methodology by incorporating a fuzzy time-delay
variable in the state-space model. We further demonstrated
an improved version of (15) by introducing a generalizable
state-space reconstruction with a fuzzy time delay

Zr =
∫

t′
μ(t′)W

(t′) ∗ (δt′Xr)dt′. (16)

Here, δ(t
′) is the delay operator on the signal state space,

μt′ is the membership value of variable t′, and W(t′) stands
for the optimal fuzzy time-delay CSSP (FTDCSSP) transform

δ(t
′)(Xr) = X(r−t′). (17)

We consider the time delay term t′ to follow an exponen-
tial membership e−t′ for the reason that in system dynamics,
higher order delays add marginally to the integral beyond a
specific delay threshold. Equation (16) is thus reduced to

Zr ≈
2∑

t′=0

μ(t′)W
(t′) ∗ (δt′Xr). (18)

Furthermore, (18) can be reduced to get

Zr =
[
W(0) W(1) W(2)

]
⎡

⎣
μ0X(r)

μ1X(r−1)

μ2X(r−2)

⎤

⎦. (19)

The composite vector

⎡

⎣
μ0X(r)

μ1X(r−1)

μ2X(r−2)

⎤

⎦ is indicated as the

resultant EEG signal Xr in (15). Furthermore, fuzzy class
covariance matrices (K = 3) 	1, 	2, 	3 are obtained

from

⎡

⎣
μ0X(k)

μ1X(k−1)

μ2X(k−2)

⎤

⎦. Following the approach mentioned in

steps (11)–(13), we generate a composite weight matrix[
W(0) W(1) W(2)

]
as the result of our optimization problem,.

Each of the three matrices W(0), W(1), and W(2) correspond
to μ0X(k), μ1X(k−1), and μ2X(k−2), respectively. Among the
rows of the matrices W(0), W(1), and W(2), the FTDCSSP
filters are those filters which maximize the fuzzy mutual
information criterion (22) mentioned in [29]. Before applying
CSP filters [27], it is advised to pick at least two separate filters
for individual class corresponding to maximum and minimum
variance directions. Following this guideline, we have chosen
K = 3 and F = 2K = 6 in the experiments. In (19), to calcu-
late three weight matrices, we need to calculate 3 × 2K = 18
row vectors. The entire approach is summarized taking the
shape of Algorithm 1.

C. Spatiospectral Optimized Fuzzy Independent
Phase-Locking Value Representations

In this section, we propose the SSO-FIPLV obtained as
an output of fuzzy spatiospectral filter optimization over
TPDS. We describe the TPDS in Section III-C1. Subsequently,
fuzzy spatiospectral optimization over TPDS is described in
Section III-C2.

1) Temporal Phase Disparity Sequence: Consider two time
series r1(t) and r2(t) whose phases are ψ1(t) and ψ2(t), respec-
tively. The per-trial PLV (pPLV) [49] concerning each trial is
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Algorithm 1 FTDCSSP

Input: EEG training signals (X(r),Y(r)) r ∈ {1, 2, ..N}
X(r) ∈ R

C×T

‘Ls’, # spatial filters per fuzzy class ‘s’ (let Ls = F)
‘K’ is the # fuzzy classes

Output: Spatial filter matrices
[
W(0) W(1) W(2)

]

EEG signals passed through PREP [48];
EEG signals processed through PREP are passed through
band-pass filter in range [1-20] Hz;
Calculate the thresholds Pr for specific fuzzy classes
(Fig. 1a);
Estimate Xs using (10);
Estimate Co-variance 	s for respective fuzzy class ‘s’
with (11);
Adapt the covariances for respective classes through (12);
Calculate filter matrix W by (13);
Excerpt ‘Ls’ filters for respective fuzzy class as per
equation (27);
Spatial filter matrix

[
W(0) W(1) W(2)

]
is obtained, com-

prising
∑K

i=1 Ls # rows;
return

[
W(0) W(1) W(2)

]

determined by

pPLV =
∣∣∣∣∣

1

Nt

Nt∑

i=1

e|ψ1(i)−ψ2(i)|
∣∣∣∣∣ (20)

where Nt is the sample size per trial. The temporal phase ψ(t)
is calculated from the complex-valued time series (using the
Hilbert transform). For a generic signal r(t), the corresponding
complex signal z(t) is obtained as

z(t) = r(t)+ ir̃(t) (21)

r̃(t) = 1

π

∞∫

−∞

r(t′)
t − t′

dt′. (22)

Here, r̃(t) is the Hilbert transform of r(t). The temporal
phase ψ(t) is then obtained as

ψ(t) = arctan

(
r̃(t)

r(t)

)
. (23)

pPLV ∈ [0, 1] and the corner values pertain to the instances
of signal with no synchrony and full synchrony, respectively.
TPDS �ψ(t) between a pair of distinct signals r1(t) and r2(t)
is designated as

�ψ(t) = |ψ1(t)− ψ2(t)|. (24)

Kumar et al. [27] emphasized the concept of the variance
of TPDS with pPLV. Later, a framework was proposed to cal-
culate a linear transformation that enhances the variance of
TPDS over a specific class whilst concurrently minimizing it
over an auxiliary class. This scheme is analogous to CSP yet,
in contrast, it largely uses knowledge of phase for two-class
classification. Hence, extracting a similarity from the Fuzzy
CSP for Regression, a novel scheme is devised in [28] which
computes a linear transform on the TPDS in an aforesaid man-
ner with variance optimization across fuzzy classes. Because

TPDS is used to gauge co-instantaneity between EEG signals,
we indicate the extracted representations as phase-synchrony
(PS) features. The extensions to multiclass paradigms of CSP
(OnevsOne, OnevsRest) are based on heuristics and a more
principled approach uses JAD for CSP. But, CSP implemented
using JAD is tantamount to independent component analysis
(ICA) [46]. Motivated by these arguments, we propose a novel
SSOFIPLV representation for the EEG RT regression problem.

2) Fuzzy Spatial Filter Optimization With TPDS (Fuzzy
CSPR-OVR Applied Over TPDS): Fuzzy CSPR-OVR [30]
widens the scope of CSP to solve regression problems by
incorporating fuzzy sets. FTDCSSP [29] further improves
the scope of fuzzy spatial filtering by incorporating spa-
tiospectral content in filters. Multichannel EEG time series
is subject to possess a subsided SNR, due to spatial blearing
and spattering effects. With an objective to secure discrimi-
native PS representations to classify across fuzzy classes, we
estimate spatial filters to magnify the variance of the tem-
poral phase with a specific fuzzy class and minimize over
others. Reddy et al. [29] proposed an algorithm to optimize
the spatial filters in order to maximize the resulting PS feature
discriminative power. Mathematically, it can be written as

Wu
∗ = arg max

W

Tr(Wᵀχ�ψu W)

Tr(Wᵀ ∑
v 
=u χ�ψv W)

. (25)

Here, χ�ψu and χ�ψv are the covariance matrices of the
TPDS for the fuzzy classes u and v. The column vectors of
W are the spatial synchrony filters. An approach close to
the FTDCSSP method is selected to extract features out of
TPDS for each EEG trial filtered within a specific frequency
spectrum. The computed representations are denoted as “DPS-
CSPROVR” representations. In this work, we improve upon
the feature representations by using SSO-FIPLV representa-
tions.

3) Filter Selection and Feature-Extraction for Proposed
SSO-FIPLV Method (FTDCSSP Applied Over TPDS):
FTDCSSP by JAD has been applied on the TPDS and further
the obtained filters are to be selected using a criterion men-
tioned below. The eigenvalues corresponding to the JAD are
given by

λs = diag
(
WT	sW

)
s ∈ {1, 2, . . . ,K}. (26)

Here, K denotes the number of fuzzy classes and λi stands
for the vector of eigenvalues. Furthermore, we employ a fil-
ter selection criterion (27), where the eigenvalues obtained for
each of the fuzzy classes are transformed and the L eigenvec-
tors corresponding to the L largest eigenvalues are selected.
It is possible that some eigenvectors may be repeated, so in
that case, we have chosen the eigenvector corresponding to
the next largest eigenvalue

λi,j = max{λi,j,
λi,j

1 + (K−1)2λi,j
1−λi,j

}. (27)

Furthermore, the so-obtained filters constitute the weight
matrix W. The TPD sequences collected in triads (19) are
transformed by W to obtain a 6K × T matrix from which
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we extract the final “SSO-FIPLV” features. F=

⎡

⎣
F1
..

F6K

⎤

⎦ where

Fi is given by log10 [(‖Zi‖2)/(
∑6K

j=1 ‖Zi‖2)]. We refer to
them as independent phase-locking representations due to
the reason that CSP by JAD is tantamount to ICA and
since the transformations are computed on TPDS, which indi-
cates the phase-locking level or synchronization between two
waveforms, they are denoted as Phase-locking-independent
value representations (PILV). Incorporating spatiospectral
optimization for regression, the features so obtained constitute
the “SSO-FIPLV.”

IV. EXPERIMENTS AND DISCUSSION

In this section, we evaluate the performance of the proposed
approach with respect to the existing approaches for RT
prediction on EEG data collected in a PAT [20]. We compare
the performance of the proposed approach with different fea-
ture extraction techniques, regression models, and NN learning
schemes.

A. PAT and EEG Data Preprocessing

The paradigm was designed to quantitatively measure
the subject’s RT to perturbations during a continuous driv-
ing task. A brief pictorial depiction can be found in
Fig. 1(b), but the experimental description and preprocessing is
described in detail in Section 1 of the supplementary material
(Supplementary.pdf).

B. Feature Extraction

EEG signal further is prefiltered into a frequency range
of [1, 20] Hz. Comprehensive reasons for selection of this
band can be found in Section 5, page 4 of the supplemen-
tary material. Alpha and Theta power features [9], [10] can
be extracted post spatial filtering (FS3) (K = 3, F = 10) and
also without spatial filtering (FS1). F and K are two param-
eters whose appropriate values are set from [28] and [30] to
ensure the correctness of comparison. We evaluate every com-
bination of the feature set and regression approach using k-fold
cross-validation (k = 8) and leave-one last session out cross-
validation. There are two sets of subjects in the current study.
One set of subjects have multiple sessions of data recorded at
different times (denoted Subject set-2). We performed leave-
one last session out cross-validation for these subjects. While
for the other set of subjects (subjects 3, 5, 7, 12, 21, 24, 26, and
27) (denoted Subject set-1) with a single session of recorded
data, 8-fold cross-validation is performed. The causality of the
machine learning model during analysis could be maintained
for this second set of subjects with multiple recorded sessions
(Subject set-2) while it is not the case for the first set of sub-
jects (Subject set-1). Each subject’s sessionwise data can be
found in Table 8 of the supplementary section.

1) Power in Theta and Alpha bands is extracted in dB from
the prefiltered EEG trials to get the feature set FS1.

2) DPS features [28] are computed from the prefiltered
EEG. We set K = 3 and F = 21 to get the feature
set FS2.

TABLE I
EVALUATION PERFORMANCE OF FS1, FS2, FS3, AND FS4

3) Prefiltered EEG signal is passed through spatial filters
via fuzzy CSPR-OVR. Furthermore, the power in Theta
and Alpha bands are extracted in dB. We used F = 10 so
that the filtered signal (30×1250) and the original signal
(30 × 1250) have the same dimensions, ensuring a fair
performance comparison. The feature set so obtained is
denoted by FS3. Each feature vector has a size of 60×1.

4) The proposed SSO-FIPLV features are calculated from
the prefiltered EEG trials. We set K = 9 and F = 10
again for the same reason stated above for FS3. So, the
obtained feature is of size (54 × 1) = 54 (SSO-FIPLV)
and is indicated as FS4.

The features computed above are passed through LASSO
for getting the predicted value of RT.

C. Evaluation Criterion

RMSE and CC comprise the criteria used for measuring
the results of the regression. Consider N number of training
samples, ydi denoting the actual RT for the ith example and
yi denoting the predicted RT. If RMSE is smaller, then our
system is trained correctly for predicting the RT of drowsy
drivers with minor errors. CC depicts the usefulness of the
predicted features for RT prediction. Furthermore, to enhance
practicability of the developed system, we introduce a criterion
of EEDD (28) (a similar one is reported in the discussion
of [50]) to detect a drowsy driver. We assume the average
speed of the vehicle is 100 km/h

EEDD = Average speed of vehicle × RMSE. (28)

D. Comparison of SSO-FIPLV Features With Other Feature
Sets

The mean RMSE and CC computed after passing all
features (elucidated in Section IV-B) through the LASSO
regression block are displayed in Table I. For subject set-1,
we have taken an average of all the performances for each
of the 8-folds. While for subject set-2, the performance on
the last session is recorded. Also, the mean performances of
all the subjects for all the folds are determined. Both FS4
and FS2 achieved much smaller RMSEs and much larger CCs
compared to FS3 and FS1. In general, FS4 demonstrated the
best performance indicating that it is well suited for the RT
regression task. In addition, the EEDD is the smallest for FS4
in comparison to all other features helping us to detect drowsy
drivers within the smallest driving distance. An in-depth anal-
ysis of results and implementation technicalities examining the
performance of the features is provided in Section V of the
supplementary material (Supplementary.pdf).
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TABLE II
(a) p-VALUES FOR PAIRED T-TESTS (LGN VERSUS NN LEARNING MODELS (HJB, ADG, AND BP) FOR {FS4; FS2}) (b) REGRESSION

PERFORMANCE COMPARISON OF FS4 WITH LGN VERSUS OTHERS (SVM, RR, AND LASSO)

(a) (b)

TABLE III
(a) p-VALUES FOR POST-HOC PAIRED T-TESTS (DNN TRAINED WITH LGN AGAINST OTHER REGRESSION MODELS (SVR, LASSO,

AND RR) FOR {FS4; FS2} (b) REGRESSION PERFORMANCE OF FS4 WITH DIFFERENT NN REGRESSORS

(a) (b)

E. Comparison of NN Lagrangian (LGN) Regression With
Other NN Learning Methods

In practice, three approaches—1) HJB [28]; 2) BP; and
3) ADG [33]—are generally used for updating NN weights.
We compare the performance of our method with all of the
above approaches. For comparison of learning methods, we
use a network with four hidden layers having 200, 150, 120,
and 45 hidden units, respectively. A similar network was
validated in previous work [28]. The proposed SSO-FIPLV
features are fed as input to the network, which is trained
using BP, ADG, HJB, and the proposed Lagrangian-based
learning in each of the cases, respectively. The dimension
of the SSO-FIPLV feature is 54 × 1. Two hundred itera-
tions are used for training. For the optimization of DNN
learning, ADG is instantiated with learning rate {η = 0.1},
drop-out rate (p = 0.5), L1 regularization parameter is 0.01,
the size of minibatch is set to 8, and R is also fixed to iden-
tity while using the Lagrangian-based update law. SSO-FIPLV
features (input features) are normalized to zero mean and
unit variance. RMSE and CC are averaged considering all
the subjects with 20 unique weight initializations for the deep
network and is reported in Table III(b). The Lagrangian is an
established paradigm from the mathematical optimization liter-
ature, allowing objective-only or bound-constrained optimizers
to be deployed in settings with constraints. Considering the
mean performance, from Table III(b), the Lagrangian-based
DNN approach clearly outperformed HJB, ADG, and BP-
based NN regression as far as RMSE and CC concern. The
HJB-based method is a greedy approach for learning in NNs.
The approach based on HJB performed superior to BP and
ADG methods as visible from the Table III(b). We performed
a simple hyperparameter tuning to determine the value of the

initial learning rate, using a few common values, namely, 0.1
and 0.01. The initial value of u is chosen to be equal to that
of the initial value of the HJB-based update law u∗ [33]

u∗(e(t)) =
√

eᵀ(t)e(t)
||Jᵀe(t)|| R−1/2Jᵀe(t). (29)

We noted that this initialization gave us a better performance
than either random initialization or initialization using the
backpropagation update law. The initial weights of the network
are chosen using Glorot initialization [51]. The correspond-
ing percentage improvements of the proposed deep network
trained with LGN over the competing NN-based regression
designs are displayed in the Figs. 5 and 6 in the supplementary
material. For instance, the terms in legend LGN/HJB repre-
sent the improvements with Lagrangian-based learning over
the HJB method. On average, LGN recorded a 12.35% smaller
RMSE and a 4.35% larger CC than that of HJB. On average,
the LGN method finished by a 26.55% lower RMSE, and a
14.44% larger CC than BP. Also, LGN achieved a 26.98%
lower RMSE, along with a 12.09% larger CC than ADG.
In Figs. 5 and 6 (from the supplementary material), on the
y-axis, we refer to percent decrement in RMSE and percent
increment in CC due to the proposed method over the other
baseline methods. We note poor performance of RMSE for
the 24th subject owing to smaller # informative EEG trials.
Observations based on the RMSE and CC performance com-
parison, depicted in Figs. 5 and 6 (from the supplementary
material), indicate significant improvements on training sets
with fewer data points. Furthermore, an intersubject statistical
analysis is demonstrated to examine different hypotheses on
RMSE and CC. A two-way analysis of variance (ANOVA) is
conducted for diverse kinds of regression approaches with the
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TABLE IV
RESULTS COMPARISON BOTH WITHIN AND ACROSS NN METHODS. (a) p-VALUES OF TWO-WAY ANOVA : PROPOSED LGN VERSUS BP,

ADG, AND HJB FOR {FS4; FS2} (b) p-VALUES OF TWO-WAY ANOVA: PROPOSED LGN VERSUS SVR, RR, AND LASSO FOR {FS4; FS2}

(a) (b)

goal to find out if the RMSE and CC deviations due to the
discrepancies in regression methods used are statistically sig-
nificant for features FS2 and FS4, while treating the subjects as
a random factor. The results are demonstrated in Table IV(a),
(p-value<0.05) which indicates that there exist statistically
significant differences in RMSEs, and CCs for various regres-
sion models for features {FS4,FS2} (Section IV-B). In other
words, regression method selection creates a significant effect
on the performance metrics RMSE and CC [p-value<0.05,
cf. Table IV(a)].

Then, post-hoc nonparametric multiple comparison tests
(paired t-tests in this case) are applied to find out if the dif-
ference between pairs of regressors is statistically significant,
with the p-value corrected employing the false discovery rate
(FDR) method [52]. The p-values are shown in Table II(a),
where in most of the values point out probabilistic relevance.
The proposed LGN method performed superior to the HJB,
ADG and BP-based NN schemes for the chosen EEG drowsi-
ness problem. Some of the advantages offered in particular
include the nature of the update law which is iterative both
in terms of the control input and current weights, unlike BP
and HJB methods. It is also not dependent on the closed form
expression for control input unlike the other update laws. The
proposed method (LGN) works to optimize the integral of a
functional over a curve using calculus of variations which leads
to the Euler–Lagrange equations and corresponding control law
for weight update. An alternative method explored in our prior
work was based on Bellman’s optimality principle, which leads
to the HJB equations which when solved leads to optimal con-
trol law. Based on the literature,1 each of these approaches offer
advantages and disadvantages depending on the application,
with numerous technical differences between them, but in the
case for the regression problem when both are applicable, the
LGN method demonstrated superior performance.

F. Comparison of NN Lagrangian (LGN) Regression With
Other Regression Models

In order to describe the dynamic learning ability of the
NN-based method, we contrast our LGN-based NN approach
with the existing models, such as LASSO Regression, ridge
regression (RR), and support vector regression (SVR) [53].
We have employed a Scikit-Learn SVR tool [54] and Scikit-
Learn jointly to spurt the SVR models. We make use of
grid-search to determine parameters C and γ , which are opti-
mally obtained to be 25 and 22, with ε = 0.2, respectively. For
the cases of LASSO and RR, the adjustable parameter λ was
selected by an inner 8-fold cross-validation [55] on the training

1https://cutt.ly/mmY0tgc

dataset. On average, from Table II(b), the proposed LGN-based
DNN approach clearly outperformed SVR, LASSO, and RR
schemes in terms of RMSE and CC. The DNN is trained
for 200 epochs with a learning rate of 0.1 and R is also
fixed to identity while using Lagrangian-based update law.
The respective percentage performance improvements of LGN
over the other regression models are shown in Figs. 7 and 8 in
the supplementary material. For instance, the terms in legend
“LGN/SVR” represent the improvements with LGN over the
SVR method. The notation of other terms in the legend is to be
understood in a similar manner. On average, LGN recorded a
15.45% smaller RMSE and a 5.58% larger CC than SVR. On
average, LGN had performed with a 22.35% smaller RMSE
and a 10.71% larger CC than LASSO. Also, LGN had per-
formed with a 22.69% smaller RMSE and a 12.28% larger
CC than RR. We notice a drop in RMSE performance for
subjects # 15, 22, and 23. This is again attributed to a limita-
tion of designing subject adaptive DNN learning models with
sufficiently elaborate neural architecture search and hyperpa-
rameter tuning. The reason for this is that the deep NN is
not able to generalize effectively for certain subjects, which is
either due to a mismatch between the number of parameters
in the NN model and the volume of EEG trials collected for
training for each subject. This will be dealt with separately
in future work. For example, readers are referred to the paper
on EEGNET [56], where authors also encountered this issue
which they tried to deal with using separable and depthwise
convolutions.

% CC performance is improved for LGN over all the base-
line models (HJB, BP, SVR, RR, and LASSO). This is due
to the effective SSO-FIPLV feature correlation with actual
RT values. The proposed LGN method in certain situations
although does not predict RT values accurately, its trajectory
over accumulated time overlaps with actual RT values (referred
to as ‘matching trends’). This saturation at times leads to poor
RMSE. Performance across subjects # 2, 7, 9, and 15 needs
to be interpreted further while amassing more EEG sessions
from these subjects, so that the deep network can be fine-tuned
adequately for deducing better conclusions. Furthermore, an
intersubject Statistical analysis is conducted to verify vari-
ous hypotheses on RMSE and CC’s. A two-way ANOVA is
demonstrated for various kinds of learning-based regression
approaches to find out if the RMSE and CC digressions due
to the differences in learning-based regressors are statistically
significant when subjects are considered as a random factor.
The results presented in Table IV(a) (p-value<0.05) shows
that a statistically significant difference exists in RMSEs,
and CCs for different learning-based regression models when
subjects are considered as a random factor. In other words,
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performance metrics RMSE and CC depend on the selection
of regression approach [p-value<0.05, cf. Table IV(a)]. Then,
post-hoc nonparametric multiple comparison tests (paired t-
tests in this case) are applied to find out if the difference
between pairs of regressors is statistically significant, with
the p-value corrected employing the FDR method [52]. The
p-values are shown in Table III(a), where most of the val-
ues are statistically significant. Effect sizes for p < 0.2 are
reported as partial eta squared, whose values can be bench-
marked against Cohen’s criteria [57] of small (0.01), medium
(0.06), and large (0.14) effects, according to Richardson [58].
The p-values associated with effect sizes > 0.13 are
bolded.

In the last phase of this work, we integrate the whole
pipeline for regression, i.e., SSO-FIPLV features with LGN
method for DNN regression. On average, this pipeline
recorded the smallest RMSE and largest CC of all the DNN
regression pipelines [cf. Table III(b)]. For all the above exper-
iments, a standard DNN architecture is used which has been
validated in a previous work by us [28]. In addition, we
present a performance comparison of various combination
of features and regression blocks in the Section 7 of the
supplementary material. We obtain best performance for the
combination of SSO-FIPLV features with LGN method for
DNN regression. Layerwise relevance propagation (LRP) [59]
explains for each input pattern, its importance in the network
output decision. LRP analysis has been done for the NN
trained with the proposed method and reported in Section 6 of
the supplementary material (Supplementary.pdf). Channelwise
feature importance in terms of average relevance values cal-
culated from NN feature representations are visualized in
the form of Topoplots. The drowsiness prediction system in
Lin et al. [50] can estimate the driver RT in RMSE error to
be 0.076 s on an average. In other words, it means that the
EEDD is around 2 m under the constant speed 100 km/h. The
average RMSE error in this manuscript is 0.00685 s trans-
lating to an EEDD of 1.708 m. This is better than that of
Lin et al. [50].

V. CONCLUSION

In this work, we have explored the stability, conver-
gence, and regression performance of the proposed LGN-based
update law. Although, the proposed feature extraction method
(SSO-FIPLV) is applied to EEG RT prediction task, the
method is generalizable to various EEG Regression problems
like depth decryption of cognitive processing [60], single-trial
motor performance prediction [61], continuous estimation of
movement path [62], etc. Based on the analysis of results,
future work should include: the expansion of EEG trials to be
collected for specific subject #’s (2, 7, 9, and 15) to be able
to use deeper models for learning. Adaptation of the order of
fuzzy time-delay approach across subjects is another important
future work. In addition, the inclusion of regularization within
the JAD framework for enhancing the scope of spatial filters
generalization and second, transfer learning inclusion into the
FTDCSSP framework to enhance generalization between sub-
jects and within subjects across sessions are additional future

works. A major development to be addressed in future work is
to incorporate parallelism and implement the LGN update law
for both convolutional and recurrent networks. Also, in addi-
tion to alpha and theta power features, gamma power features
will be explored for drowsiness detection in future work. In
the current experimental paradigm, as per the current design
of road conditions, the response time for emergency stops has
not been considered. In addition, driving at night is generally
affected by the light on the road. These two concerns are lim-
itations of the current study and will be taken care of in future
work.
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