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Abstract: Every year, cervical cancer is a leading cause of mortality in women all over the world. This
cancer can be cured if it is detected early and patients are treated promptly. This study proposes a
new strategy for the detection of cervical cancer using cervigram pictures. The associated histogram
equalization (AHE) technique is used to improve the edges of the cervical image, and then the
finite ridgelet transform is used to generate a multi-resolution picture. Then, from this converted
multi-resolution cervical picture, features such as ridgelets, gray-level run-length matrices, moment
invariant, and enhanced local ternary pattern are retrieved. A feed-forward backward propagation
neural network is used to train and test these extracted features in order to classify the cervical
images as normal or abnormal. To detect and segment cancer regions, morphological procedures are
applied to the abnormal cervical images. The cervical cancer detection system’s performance metrics
include 98.11% sensitivity, 98.97% specificity, 99.19% accuracy, a PPV of 98.88%, an NPV of 91.91%,
an LPR of 141.02%, an LNR of 0.0836, 98.13% precision, 97.15% FPs, and 90.89% FNs. The simulation
outcomes show that the proposed method is better at detecting and segmenting cervical cancer than
the traditional methods.

Keywords: cervigram; associated histogram equalization technique; finite ridgelet transform;
gray-level run-length matrices; morphological operation; enhanced local ternary pattern

1. Introduction

Cervical cancer is the second most common cancer in women worldwide, with a
mortality rate of 60%. Cervical cancer begins with no overt signs and has a long latent
period, making early detection through regular checkups vitally important. In this study,
we compare the performance of two different models, machine learning and deep learning,
for the purpose of identifying signs of cervical cancer using cervicography images. [1]. In
a study by Chang et al., innovative data mining approaches for recurrent cervical cancer
survival analyses were used. The medical records and pathology were obtained from the
Chung Shan Medical University Hospital Tumor Registry. Twelve variables were studied
after a literature review, expert consultation, and data collection from patients, including
age, cell type, tumor grade, tumor size, pT, pStage, surgical margin involvement, LNM,
number of fractions of other RT, RT target summary, the sequence of locoregional therapy
and systemic therapy, and LVSI [2]. Adjuvant therapy for patients with intermediate-risk
cervical carcinoma (CC) remains unclear. A study by Chu aimed to examine the prognoses
of patients with early-stage CC who had pathological characteristics of intermediate risk
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and to provide a reference for adjuvant therapy selection [3]. Magnetic resonance imaging
is used to evaluate the different parts of the brain and study the brain tissues. In the medical
image processing arena, in a previous work we offered a method called convolutional
neural network database learning with neighboring network limitation (CDBLNL) for brain
tumor picture classification. The suggested system architecture was built with multilayer-
based metadata learning and has a CNN layer to offer reliable information [4]. Basic
research has also been conducted on cervical cancer detection using an optical sensor and a
prediction system. Because each substance has a refractive index, monitoring this index and
detecting variations in its value provides information about a tissue’s status. Datasets from
the optical measurements were used to train and validate the analysis program. Another
work provided data pre-processing and machine learning findings using four algorithms
(random forest, extreme gradient boosting, naive Bayes, and convolutional neural network),
as well as an evaluation of their performance in classifying tissue as healthy or sick [5].
Early-stage cervical cancer is treated with radical hysterectomy. However, this surgery
is associated with considerable morbidity as a result of parametrium ablation. PMI is
identified in a small percentage of patients, but there is no effective system in place to
forecast it. The proposed a novel machine learning (ML)-based predictive model (named
iPMI) based on a random forest model for the practical detection of PMI in women [6].
Because cancer cells can grow everywhere, they can develop anywhere, penetrate the walls
of arteries and lymph vessels, and aggressively infiltrate other parts of the body. Figure 1
shows a typical uterine cervix image of normal and abnormal cases. There are several
varieties of cancer, including skin cancer, breast cancer, lung cancer, and others. The cervix
is an important organ in women that generates mucus to help in sexual intercourse [7].
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Cervical cancer has surpassed breast cancer as the third most frequent type of cancer
worldwide. The majority of cervical cancer cases are connected to the risk of infection with
human papillomavirus. Preventive care, the most expensive method of fighting cancer, can
prevent approximately 37% of cancer cases. The pap smear test is a routine screening tool
for the early detection of cervical cancer. However, due to individual flaws, this manual test
process produces a high number of false-positive results. ML (machine learning) methods
for classifying cervical papillomatous cells have been studied in depth by a number of
academics in order to improve manual testing [8]. It is heartening to note that the world
has reached a strategic agreement on cervical cancer eradication, and has established and
launched a worldwide plan to expedite cervical cancer elimination. Although there is
still a long way to go towards the worldwide elimination of cervical cancer, it is expected
that via the contiguous promotion and widespread implementation of existing efficient
preventive and control strategies, cervical cancer could become the first cancer abolished
by humans [9].

2. Related Works

As mentioned previously, cervical cancer is one of the leading causes of cancer deaths
in women. If this cancer is detected and treated at an early stage, its complications can
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be minimized. In this study, we present a cervical cancer cell detection and classification
system based on a convolutional neural network (CNN). To extract deep-learning fea-
tures, the cell pictures are loaded into a CNN model. The input photos are then classified
by an extreme learning machine (ELM)-based classifier. Transfer learning and fine tun-
ing are utilized to implement the CNN model. Alternatives to ELM include multi-layer
perceptron (MLP)- and autoencoder (AE)-based classifiers. The Herlev database is used
for experiments in [10]. Women in developing countries often cannot participate in ade-
quate screening programmes due to the high expense of frequent examinations, a lack of
knowledge, and a lack of access to medical facilities. As a result, the risk for individual
patients becomes quite significant. There are several risk factors for malignant cervical
cancer development. Carcinoma has displaced breast cancer as the third most frequent
type of cancer worldwide [11]. Tests such as pap smears require laboratories to identify
malignancy from a network of cervical cells. The IVA test uses acetic acid fluid, whereas
colposcopy involves assessing the status of the vulva and the vagina and recording it
in colposcopy photo data. Photos from colposcopy can be automatically detected using
computer-aided diagnosis (CAD) by applying image processing and classifying them using
artificial intelligence approaches. The early detection of cervical cancer based on cancer
stage using texture information in colposcopy images is investigated in this study, which
examines pixel neighbor information using the gray-level co-occurrence matrix (GLCM)
method and classifies it using the kernel extreme learning machine (KELM) method, which
is a development of the ELM method, adding a kernel to the system [12]. Microscopic
examination of skin lesions is the primary method for detecting skin cancer. Significant
work has gone into developing computer-aided technologies for analyzing skin lesions.
To better analyze and classify skin lesions for diagnosis, one group developed a method
for an algorithm design using support vector machine (SVM) learning classification based
on particle swarm optimization (PSO) principles [13]. However, because of individual
differences, this manual test approach produces a high number of false-positive results. A
rising number of people and businesses are turning to machine learning to analyze vast
volumes of data and deliver meaningful insights using machine and deep learning [14].
The goal of another study was to develop a machine-learning-based model that incorpo-
rates these risk factors into cervical cancer prognosis and prediction. Data on cytokine
gene variants, normal healthy controls, and cervical cancer cases were all included in the
analysis. Machine learning methods were used to examine a wide variety of potential
risk factors, such as demographic information and cytokine gene variants. The proposed
method was tested with several statistical measures. Machine learning techniques were
applied to the data, evaluated using 5-fold cross-validation, and then tested on the unseen
records of a collected dataset to ensure accuracy in evaluation and analysis [15]. Traditional,
manual, and human-powered methods are still used by most of the healthcare industry.
These methods are hard to use, take a long time, and often result in mistakes. The cur-
rent paradigm, the chances of new scientific discoveries, the current state of technology,
the chances of supervised machine learning (SML) in different areas of healthcare, and
ethical concerns. Disease diagnosis, personalized medicine, clinical trials, non-invasive
image analysis, drug discovery, patient care services, remote patient monitoring, hospital
data, and nanotechnology are evaluated in various learning-based automation tools in
healthcare, as is the need for explainable artificial intelligence (AI) in healthcare [16]. The
identification of any illness improves a patient’s chances of effective therapy compared to
disease detection at a later stage of development. Even if model designers do not know
how to treat patients, early diagnosis provides the opportunity for treatment that could be
beneficial and make life more comfortable for patients [17]. In the preclinical imaging of
patient-derived tumor xenografts (PDXs), magnetic resonance imaging (MRI) is usually
used to find and measure how well a treatment is working. The main goal was to develop
a way to automatically find and divide tumors in PDXs so that they can be studied further.
Automated segmentation reduces user bias, which is beneficial. From volumetric MR
images, tumor volume was found and divided using a hybrid method that combined fast
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k-means, morphology, and level setting. The local density peak estimation method was
used to choose the initial centers of k-means. A new variational model was used to take
advantage of the information about the region by minimizing the energy function in level
set. The mask-specific initialization method was used to create a true boundary for the level
set. The performance of tumor segmentation was compared with manually segmented
images and with algorithms that had already been used [18]. Timely detection of carcinoma
improves recovery rates and lowers mortality rates [19]. Skin cancer is one of the most
common types of cancer worldwide. Dermatoscopic images can be used to find it. In a
paper by Srivastava et al., the authors develop a method to classify dermatoscopic images
using a texture-based feature extraction algorithm. After obtaining a local ternary pattern
based on the median, local quantized ternary patterns are made. A modified convolutional
neural network is then used to classify the set of extracted features. Images used to find
multiple types of skin cancer came from HAM10000 and ISICUDA11 datasets, which are
both available to the public [20]. Cancerous cells can be found in their early stages when
screening tests are performed on a regular basis, lowering the death rate of individuals
each year [21]. Carcinoma is among the most lethal illnesses in women worldwide. It is
caused by a long-term infection in the vaginal skin and mucous membrane cells. The most
concerning aspect of this cancer is that it has no symptoms when it first appears [22]. The
proposed model has been used for predicting the proper stage of infection in breast cancer.
In recent decades, the computer-aided classification of smear pictures has been regarded
as difficult task [23]. Computerized image analysis technologies are particularly valuable
because they give major benefits to doctors by providing reliable and quick diagnosis of
data [24]. Table 1 describes the various techniques utilized in state-of-the-art methods and
their outcomes.

Table 1. Different state-of-the-art-methods.

Author Name Technique Obtained

Ghoneim et al. (2020) [10] ELM-, multi-layer perceptron (MLP)- and
autoencoder (AE)-based classifiers

Using the Herlev database, the proposed system with the
ELM-based classifier achieved 98.7% accuracy in the
2-class problem and 97.2% accuracy in the 7-class problem

Dian Candra Rini
Novitasari et al. (2020) [12]

Texture information, pixel neighbor
information, gray-level co-occurrence matrix
and kernel extreme learning machine

Linear kernel resulted in an error of 78.5%, polynomial
kernel an error of 87.5% and the best accuracy of 95%
was achieved using a gaussian kernel with the best
neighborhood angle of 45◦

Fei et al. (2020) [13] Support vector machine,
particle swarm optimization

Segmentation was robust because the local extracted
features from ROI were acceptable. This technique
provides high accuracy to support assisting clinicians
in classifying skin lesion images into relevant
diagnostic categories

Kaushik et al. (2021) [15] Five-fold cross-validation,
logistic regression

Highest average accuracy of 82.25% and highest
average F1-score of 82.58%

Sudipta Roy et al. (2022) [10] Supervised machine learning
Effectiveness and potential for innovation of disease
diagnosis, personalized medicine, clinical trials,
non-invasive image analysis, drug discovery

Sudipta Roy et al. (2019) [16] Patient-derived tumor xenografts,
fast k-means, morphology

Segmentation results obtained from six metrics were
Jaccard score (>80%), Dice score (>85%), F-score (>85%),
G-mean (>90%), volume similarity matrix (>95%)

Varun Srivastava et al. (2022) [20] Median-based local ternary pattern
The proposed technique, the average recall value,
average precision and average accuracy were found to
be 75.20%, 95.44%, and 96% respectively

Abbas et al. (2021) [23] Extremely randomized tree and
whale optimization algorithm

BCD-WERT outperformed all with the highest
accuracy rate of 99.30% followed by SVM achieving
98.60% accuracy

Simaiya et al. (2021) [24] Hierarchical k-means clustering with
fuzzy c and Super-Rule-Tree

Plus-Rule-Tree to face the issue of misplaced patterns.
Proposed method had accuracy of 88.9%, and existing
k-means clustering method showed accuracy of 85.4%
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3. Proposed System
3.1. Materials

The cervical images in this paper are from the ARC Cervical Cancer Image Bank [25].
It is a global open-access image database and comprises a huge number of cervical pic-
tures, each with an equivalent ground-truth image annotated by an expert clinician. The
images from this collection are dynamically sorted into several sensitivity classifications
in this study.

3.2. Methods

A computer-aided automatic detection system is the proposed method for detecting
cervical cancer. Figure 2 depicts the overall process for the detection mechanism. The
original cervical image is first pre-processed using the associated histogram equalization
technique for image enhancement, after which the enhanced image is transformed using
the finite ridgelet transform. Then, features like ridgelets, gray-level run-length matrices,
moment invariant, and enhanced local ternary pattern are extracted from the pre-processed
image. By comparing the cervical image with the trained features, the neural network
classifier is trained to classify the tumor as benign or malignant. Performance metric
parameters such as sensitivity, specificity, and accuracy are used to analyze the cervical
image classification.

Diagnostics 2023, 13, x FOR PEER REVIEW 6 of 15 
 

 

 
Figure 2. Proposed system block diagram. 

3.2.1 Associated Histogram Equalization Technique 
The pre-processed image is used to extract features including ridgelet, GRLM, and 

phase-independent features. When compared to the learned characteristics, these fea-
tures are utilized to build the neural network classification model to categorize the cer-
vical pictures as benign or cancerous. In this article, pre-processing is performed to im-
prove the interior regions of the cervical image in order to achieve significant irregular 
section segmentation. The cervix pictures are in RGB format, and are transformed to 
grayscale for more processing. 

Improvement is also necessary for poor-quality cervical images, to enhance the im-
age edges. The AHE improvement approach is employed in this work to enhance con-
trast in cervical pictures. This approach is a variation on limited histogram equalization 
(LHE), differing in that it also records edge orientation. AHE is used to calculate for each 
pixel of a cervical picture utilizing a local window centered on the given pixel, as 𝑠(𝑎) = 𝑟𝑜𝑢𝑛𝑑[௨௨௧௩ ௗ௦௧௨௧ ௨௧ ()ି௨௨௧௩ ௗ௦௧௨௧ ௨௧௪ௗ௧∗௧ି௨௨௧௩ ௗ௦௧௨௧ ௨௧ (𝐿 − 1)]. (1)

Here, (a) in Equation (1) is the value of pixel intensity, cumulative distribution 
function (a) is the function of histogram equalization of the intensity of the pixel value, 
the dimensions (width × height) of the window are generally 3 × 3 pixels for starting and 
ending points of the image, the min value is the cumulative distribution function’s lesser 
intensity value of the window, and 𝐿 is the gray-level outcome. This value is floating, 
resulting in pixel losses during reconstruction. To circumvent this, the improved pixel 
value is rounded to the nearest integer. At the beginning of the image, the window is 
shifted from right to left, ending with the final pixel in the cervical image. Improved 
pixels are created with each window movement. The anchor is the center of the k × k 
window. The anchor point for AHE is the pixel to be processed. The formal definition of 
the AHE operators is given below: 𝑇𝑜𝑝 𝐿𝑒𝑓𝑡 (𝑇𝐿) = 𝑀((షభ)మ ,ష(షభ)మ )

  (2)

𝑇𝑜𝑝 𝑅𝑖𝑔ℎ𝑡 (𝑇𝑅) = 𝑀(ష(షభ)మ ,ష(షభ)మ )
  (3)

𝑇𝑜𝑝 𝐶𝑒𝑛𝑡𝑒𝑟 (𝑇𝐶) = 𝑀(,ష(షభ)మ )
  (4)

𝐶𝑒𝑛𝑡𝑒𝑟 𝑅𝑖𝑔ℎ𝑡 (𝐶𝑅) = 𝑀(ష(షభ)మ ,)
  (5)
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3.2.1. Associated Histogram Equalization Technique

The pre-processed image is used to extract features including ridgelet, GRLM, and
phase-independent features. When compared to the learned characteristics, these features
are utilized to build the neural network classification model to categorize the cervical
pictures as benign or cancerous. In this article, pre-processing is performed to improve
the interior regions of the cervical image in order to achieve significant irregular section
segmentation. The cervix pictures are in RGB format, and are transformed to grayscale for
more processing.

Improvement is also necessary for poor-quality cervical images, to enhance the image
edges. The AHE improvement approach is employed in this work to enhance contrast in
cervical pictures. This approach is a variation on limited histogram equalization (LHE),
differing in that it also records edge orientation. AHE is used to calculate for each pixel of a
cervical picture utilizing a local window centered on the given pixel, as

s(a) = roundi

[
Cumulative distribution f unction (a)− Cumulative distribution f unctionmin

width ∗ height− Cumulative distribution f unctionmin
(Li − 1

)
]. (1)

Here, (a) in Equation (1) is the value of pixel intensity, cumulative distribution
function (a) is the function of histogram equalization of the intensity of the pixel value,
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the dimensions (width × height) of the window are generally 3 × 3 pixels for starting
and ending points of the image, the min value is the cumulative distribution function’s
lesser intensity value of the window, and Li is the gray-level outcome. This value
is floating, resulting in pixel losses during reconstruction. To circumvent this, the
improved pixel value is rounded to the nearest integer. At the beginning of the image,
the window is shifted from right to left, ending with the final pixel in the cervical image.
Improved pixels are created with each window movement. The anchor is the center of
the k × k window. The anchor point for AHE is the pixel to be processed. The formal
definition of the AHE operators is given below:

Top Le f t (TL) = M( (n−1)
2 , −(n−1)

2 )
n (2)

Top Right (TR) = M(−(n−1)
2 , −(n−1)

2 )
n (3)

Top Center (TC) = M(0, −(n−1)
2 )

n (4)

Center Right (CR) = M(−(n−1)
2 , 0)

n (5)

Center Le f t (CL) = M( (n−1)
2 , 0)

n (6)

Lower Le f t (LL) = M( (n−1)
2 , (n−1)

2 )
n (7)

Lower Right (LR) = M(−(n−1)
2 , −(n−1)

2 )
n (8)

Lower Center (LC) = M(0 , −(n−1)
2 )

n (9)

If n is an odd number, during the AHE procedure, eight high-resolution pictures are
created. In each contrast-improved image, the higher-intensity pixels are utilized to pick
the best pixel intensity to generate the improved image. This approach produces improved
cervical pictures in each direction, as seen in Figure 3.
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Figure 3 clearly shows that the pixels in the enhanced cervical pictures have greater
pixel values than the original cervical images. In the enlarged cervical picture, the aberrant
patterns are plainly obvious. The cervical image decomposition can be conducted using
the MATLAB software.

3.2.2. Finite Ridgelet Transform

Several image processing tasks make use of sparse image data representations, in
which the majority of information is compressed into a limited amount of data. These
structures are often obtained via differentiable and nonredundant transformations. The
wavelet transform and the discrete cosine transform are now the most common solutions
for this purpose. The construction of discrete variants of the ridgelet transform which
relate to computational solutions is a difficult challenge for practical uses. Because of
the ridgelet’s radial character, simple implementations based on the discretization of
continuous equations necessitate interpolation, resulting in transformations that are either
redundant or incompletely restored. The function f(a) and its finite ridgelet transform in S2

are expressed as:

FRTf (x, y, θ) =
∫ n

S2
ψx,y,θ(a) f (a)da. (10)

Here, the ridgelets ψx,y,θ(a) in two dimensions are expressed from a one-dimensional
wavelet-based function ψ(a),

ψx,y,θ(a) = x−
1
2 ψ(((a1 cosθ + a2 sinθ − y))/x). (11)

The finite ridgelet function is shown in Figure 4, and it has an orientation angle θ with
constant given as a1 cosθ + a2 sinθ = const.
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The separable finite transform in S2 of f (a) is written as,

FRTf (x1, x2, y1, y2) =
∫ n

S2
ψx1,x2,y1,y2(a) f (a)da. (12)

Here the ridgelets in two-dimensional tensor components are

ψx1,x2,y1,y2(a) = ψx1,y1(a1)ψx2,y2(a2). (13)

Wavelets excel at expressing things with isolated point singularities, whereas ridgelets
excel at representing objects with singularities along lines. Ridgelets may be thought
of as a technique for concatenating one-dimensional wavelets along lines. As a result,
the justification for employing ridgelets in image processing tasks is compelling, because
singularities in pictures are frequently connected along edges or contours.

Ro(θ, n) =
∫ t

S2
f (a)ϑ(a1cosθ + a2sinθ − n)da. (14)

FRTf (x, y, θ) =
∫ ∝

S2
ψx,y(n)Ro(θ, n)dn. (15)

This typical ridgelet transform is a one-dimensional wavelet transform applied to
Radon transformation slices.

3.2.3. Enhanced Local Ternary Pattern (ELTP)

Local binary pattern [26] handles rotation-invariant texture classification by completely
rejecting any microstructure that is not absolutely rotation-invariant under large lighting
variations. To solve the shortcomings of LBPs, the suggested enhanced local ternary pattern
is adopted herein. The gray level in a zone (tolerance) of width ±we around ae

c is quantized
to 0, and is then further quantized to +1 and −1. The local binary pattern is replaced by

Te(ap, ae
c, we) =


1, ap − ae

c ≥ we

0,
∣∣ap − ae

c
∣∣ < we

−1, ap − ae
c ≤ −we

(16)

where ae
c = mean, we= mad, A = {ai|j = 0, 1, 2, 3 . . . n|}. The qualities of the pattern of

pixels in the image are represented by features. In this research, features such as GRLM,
moment-invariant features, wavelet features, and enhanced local ternary pattern features
are recovered from Gabor converted cervical images to distinguish between normal and
pathological cervical images. To keep things simple, the experiments employ a coding
scheme that divides each ternary pattern into its positive and negative halves, as shown
in Figure 5, before merging the two different channels of LBC definitions to form the final
improved LTP descriptor and computing the histogram and correlation matrix. Naturally,
improved LTP is rotation-invariant.
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3.2.4. Gray-Level Run-Length Matrices

One of the most difficult tasks in image processing is texture categorization under
different lighting conditions. This work provides a novel texture classification method
based on the application of robust illumination normalization techniques to a gray-level
run-length matrix (GLRLM) for the extraction of texture information. The GLRLM was
chosen as a texture descriptor because it collects information from an image’s gray-level
transitions. A gray-level run is a series of successive, collinear image points with the same
gray-level values. Variations in light and camera attitude frequently cause a significant shift
in the pictures of textured materials. For example, keeping all parameters fixed but altering
size and rotation might result in an entirely different texture. As a result, the gray-level
values change. The gray-level run is a cluster of image points that are linearly nearby and
have comparable gray-level values. A run-length matrix M is defined as follows: each
element M (x, y) represents the number of runs with pixels of a given gray-level intensity,
and y is the length of a cycle in a specified orientation. Matrix M has dimensions p × q,
where p is the highest gray level in the image and q is the greatest viable run length in the
corresponding image.

SHE = 1
len ∑a,b

M(a,b)
b2 LOE = 1

len ∑a,b M(a, b) GLNU = 1
len ∑a (∑b M(a, b))2

RLNU = 1
len ∑a (∑a M(a, b))2 RUP = ∑a,b

1
M(a,b)b LGLRE = 1

len ∑a,b
M(a,b)

b2

HGLRE = 1
len ∑a,b a2M(a, b) 1 1

(17)
The orientation is specified using a displacement vector x (a, b), where a and b are

the displacements for the x- and y-axes, respectively. Four orientations (0◦, 45◦, 90◦, and
135◦) are utilized to create texture runs in this method, and four run-length matrices are
formed as a result. GLRLM is used to generate seven features: short run emphasis (SHE),
long run emphasis (LOE), gray-level non-uniformity (GLNU), run-length non-uniformity
(RLNU), run percentage (RUP), low-gray-level run emphasis (LGLRE), and high-gray-level
run emphasis (HGLRE).

3.2.5. Moment Invariant Features (MIF)

The moment invariants approach is used to extract the input features. Moment
invariants are classified into several categories, including Legendre, geometric, Zernike,
and nonlinear moment invariants. Legendre moment invariants were chosen because their
performance is superior to others. They are employed in the cervical images for pattern
recognition. Normalization is accomplished by the application of complex and geometric
moment invariants.

∂a,b = ∑p ∑q(p− p)a·(q− q)b f (p, q). (18)

Figure 6a,b illustrate the different extracted moment invariant feature images and
Equation (18) is the MIF equation.

3.2.6. Morphological Function

Cancer areas are segregated utilizing morphological procedures on aberrant cervical
images. The erosion and dilation of the set with a structuring element are morphological
operators. Releasing is the erosion followed by dilation of a picture; it fractures narrow
isthmuses and removes tiny items and sharp peaks from the image. Closing, on the other
hand, is picture dilation followed by erosion; it fuses thin cracks and fills microscopic holes
and gaps in the image. By eliminating and adding small shapes in the focused photos, this
approach may properly increase the regions of interest (ROIs) in images. Dilation is used
on the identified abnormal cervical pictures to gradually increase the limits of foreground
pixel areas.

Di ⊕ r = {a|[(r̂)a ∩ Di|}. (19)

Di � r = {a|[(r)a ⊆ Di|}. (20)
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Erosion function is used on the categorized abnormal cervical picture to erode the
borders of foreground pixel areas. Figure 7 illustrates the different image types (e.g., binary
image, ROI image, cancer segmented image).
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4. Results and Discussion

The proposed cervical cancer detection system’s performance is assessed using a
confusion matrix of size 2 × 2, and the values of true positive, true negative, false positive,
and false negative are estimated with regard to ground-truth pictures collected from an
experienced radiologist. The average sensitivity, specificity, accuracy, positive predictive
value, negative predictive value, positive likelihood ratio, and negative likelihood ratio are
determined, and the essential definitions of these performance metrics are explained below.
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All these performance metric indicators are expressed as percentages. Table 2 summarizes
the performance evaluation results. Figure 8 clearly shows the findings of the categorized
cervical cancer images with cancer stages (e.g., normal and segmented instances).

Table 2. Evaluation outcomes.

Metric Parameters Estimated Values (%)

Sensitivity 92.17

Specificity 98.92

Accuracy 97.11

Positive Prediction Value 98.88

Negative Prediction Value 91.91

Positive Likelihood Ratio 141.02

Negative Likelihood Ratio 0.0878

Precision Rate 98.13

False Positive 97.15

False Negative 90.89
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Table 3 illustrates the feature indexed accuracy values of cervical cancer segmentation.
The proposed system obtained 92.87% accuracy with GLRLM features, 93.92% accuracy with
GLRLM + finite ridgelet transform features, and 94.66% accuracy with GLRLM + finite ridgelet
transform + moment invariant features. Finally, the proposed system obtained 96.21% accuracy
with GLRLM + finite ridgelet transform + moment invariant features + enhanced local ternary
pattern. Figure 9 depicts a graphical illustration of the cervical cancer segmentation accuracy
outcomes of different features.
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Table 3. Accuracy result of cervical cancer segmentation.

Indexed Features Accuracy (%)

GLRLM 92.87

GLRLM+FRT 93.92

GLRLM+FRT+MIF 94.66

GLRLM+FRT+MIF+ELTP 96.21
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Table 4 summarizes the performance metric comparison of the proposed cervical
cancer segmentation technique and other traditional methods; the proposed system ob-
tained superior performance metric outcomes to other methods, yielding 98.11% sensitivity,
98.97% specificity, and 99.19% accuracy. Figure 10 depicts a graphical illustration of per-
formance metric comparison outcomes of the proposed method and existing methods. In
this paper, the proposed model is tested using k-fold cross-validation. In this method of
validation, the total number of images of the cervical region is divided into k equal numbers
of sample data. The first set of sample data from a set of k samples is used for validation,
and the other k-1 sample data are used to train the method. In this paper, the results of the
proposed method are checked using two-fold cross-validation with k = 2. The following
equation is used to determine the cross-validation error (µ) between k samples:

µ =
1
k ∑K

k=1 C(k). (21)

Table 4. Performance metric comparison of proposed and existing techniques.

Technique/Method
Parameters

Sensitivity (%) Specificity (%) Accuracy (%)

Proposed system 98.11 98.97 99.19

Umesh Kumar Lilhore et al. (2021) [24] 97.51 98.11 98.19

Michał Kruczkowski et al. (2022) [5] 97.49 98.07 97.99

Dian Candra Rini Novitasari et al. (2020) [12] 97.41 97.87 97.59
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Here, k is set to 2 to reduce the error in cross-validation between samples after many
trials. The error in cross-validation is between 0 and 1. A low cross-validation error
indicates that a method is the best one for testing, while a high cross-validation error
indicates that a method is not the best for testing. The most important goal of this study
on cancer segmentation is to determine the best performance evaluation parameters for
determining the severity of cancer in each area with an automated process.

5. Conclusions

For the purpose of detecting cancer from cervical images, an automated detection
and classification method is proposed that makes use of a set of biologically and clinically
relevant features. A convolutional neural network is used to detect and classify the cancer
regions. The associated histogram equalization technique is used to enhance the cervical
images. A neural network classifier is used to classify the cervical images into normal
and abnormal images. The simulation results demonstrated that the proposed scheme
for detecting benign and cancerous regions in cervical images obtained better outcomes
than existing methods. The cervical cancer detection system achieved 98.11% sensitivity,
98.97% specificity, 99.19% accuracy, a PPV of 98.88%, an NPV of 91.91%, an LPR of 141.02%,
an LNR of 0.0878, 98.13% precision, 97.15% FPs, and 90.89% FNs. This method can be
developed in the future to classify segmented cancer areas in cervical imaging as “Early”
for treatment to prevent death. In the future, cervical imaging and pap smear images may
also be used to determine how this cancer affects other disorders.
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