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A B S T R A C T

Underwater images often suffer from low visibility, serious color cast, and loss of details due to various factors
such as light absorption, scattering, and turbidity. In recent years, underwater technology has become increas-
ingly important for application in the fields of marine science and marine engineering. However, underwater
image enhancement methods sharpen fine details like edges, contrast, and noise reduction. Vision-based image
enhancement methods mainly focus on pixel values, which can result in image artifacts and a lack of fine-tuning
capabilities. In this paper, a novel underwater image enhancement method is proposed to address quality
degradation issues via color channel correction, texture, and contextual contrast enhancement. The pixel in-
tensity optimization is employed to improve visibility and contrast while restoring the true colors of underwater
images. The proposed texture enhancement optimizes the model to produce images with more realistic textures
by simultaneously ensuring color consistency. Subsequently, contextual contrast enhancement is used to improve
the contrast of the underwater image by enhancing the contrast in localized regions. Extensive evaluation of
various datasets show that the proposed method outperforms the state-of-the-art methods in terms of naturalness,
visibility, and contrast enhancement of underwater images. Experimental results on several existing underwater
datasets demonstrate that the proposed method achieves the best quantitative results compared to other un-
derwater image enhancement methods. The outcomes of different investigations illustrate the efficiency of the
proposed method in restoring the high visual quality images while preserving the naturalness and fine details of
the underwater scene compared to the other existing enhancement methods. The proposed technique achieves
the best values interms of entropy, UIConM, UCIQE, UIQM, PCQI, and BRISQUE metrics of 2463 underwater
degraded images obtained from benchmark datasets with different enhancement methods.

1. Introduction

Underwater technology plays a significant role in conducting
extensive scientific research, monitoring the environment, and utilizing
underwater resources [1]. However, the light scattering and absorption
effect of the water bodies can lead to undesirable distortions, such as low
contrast, distorted colors, and blurred features in images captured under
complex underwater environments. Underwater image enhancement
aims to improve the valuable information or local characteristics of the
acquired images [2]. To be specific, an inadequate light source reduces
the visual quality of the image captured in deep water, making it diffi-
cult to emphasize detailed information in the underwater scene. The
scattering and absorption of light cause detail blurring and color bias in
underwater images. In recent years, numerous methods have been
proposed to address the contrast degradation. Contrast-limited adaptive

histogram equalization (CLAHE) enhances image contrast through his-
togram equalization [3,4]. Moreover, enhancement-based methods can
directly manipulate image pixel intensities and thus are inefficient in
enhancing image quality and improving color bias in underwater scenes.
However, they are prone to over-exposure or over-enhancement. Ancuti
et al. [5] presented a color balance and fusion (CBF) approach for
enhancing underwater images degraded by medium scattering and ab-
sorption, which requires no specialized hardware or knowledge of un-
derwater conditions. This technique involves the fusion of two images
derived from a color-corrected and white-balanced version of the
degraded image to improve edge detection and color contrast. However,
this method has limitations in fully restoring colors and achieving
natural-looking results. Marques et al. [6] introduced a contrast-guided
approach (CGA) to enhance underwater images using local contrast in-
formation. This approach is evaluated using the OceanDark dataset,
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which significantly improves the visibility of low-light underwater im-
ages. However, this method fails to reproduce the original color cast
because of the limited information available in complex underwater
scenes. Yuan [7] implemented a contour bougie morphology (CBM)
based underwater image enhancement method to improve the visual
quality affected by medium scattering and light absorption. To highlight
rich details, this method employs two structuring elements, roving
windows, and multiple morphological operations. The results obtained
from the CBM method often have a problem in recovering the complete
details of the underwater image. However, this method generates
enhanced images with inconsistent color perception. Wu et al. [8] pre-
sented a two-stage convolutional neural network (CNN) to effectively
improve the quality of degraded underwater images. This network ad-
dresses the color distortion, blurred details, and low contrast inherent in
underwater images by incorporating structural decomposition. Most
experiments concentrate on images acquired near the water’s surface,
where objects are easily discernible. In comparison, underwater images
in shallow depths generally exhibit better clarity than those captured in
deep water, where the dense blue-green illumination and scarcity of
light sources severely limit visibility. To address these limitations, many
researchers have dedicated efforts to improve the visual quality of
degraded underwater images and proposed some feasible solutions.

Singh and Bhandari [9] developed a dark image enhancement
method using a reflection model and principal component analysis
(PCA). This algorithm is used to correct color distortion of dark images
through a reflection model, and Fechner principle-based brightness
enhancement. The PCA method struggles to produce satisfactory results
for underwater images with complex information. Pei and Chen [10]
developed a revised underwater dehazing approach to eliminate color
correction directly. Multiscale illumination fusion is implemented to
reveal more details, making it applicable for underwater detection. Yuan
et al. [11] presented a novel underwater image enhancement method
that extracts high-quality image textures through multiscale fusion. The
texture enhancement-based blurriness and color fusion (TEBCF) method
adaptively enhances the contrast to recover visibility, demonstrating
impressive contrast, saturation, and sharpness improvements. However,
this method overly emphasizes the brightness, resulting in overexposed
regions with annoying distortions. Kumar and Bhandari [12] proposed a
fuzzy c-means clustering-based image enhancement to address the issue
of color detail loss in nearly unseen images. The fuzzy-based contrast
enhancement for nearly invisible images (FCENII) approach groups the
pixels into clusters and modifies the intensity levels based on member-
ship values to preserve the color and brightness information. This
method introduces color distortions, leading to inaccurate representa-
tion of colors in the underwater scene. Kumar et al. [13] proposed an
auto-color transfer (ACT) method to enhance dark regions of haze im-
ages. The scale factors are adaptively selected to dehaze the hazy images
captured under different environments. However, this method struggles
to accurately restore the original colors due to the complex interactions
of the underwater environment. Wang et al. [14] presented a multi-
weight and multi-granularity (MWMG) enhancement algorithm to
address underwater image degradation due to light scattering. In this
approach, color-corrected and contrast-adjusted versions are fused, and
it is incorporated with normalized weight maps to attain natural visual
quality with even illumination. However, the accuracy of the recovered
results heavily depends on precise estimates of the unknown parameters
in the underwater imaging model.

Zhang et al. [15] developed a local adaptive contrast enhancement
(LACE) scheme to address poor visibility and color distortion of the
degraded underwater images. A minimum color cost strategy and a
guided fusion are incorporated to reduce color distortion in underwater
images. The mean and variance are calculated using the integral maps to
regulate the distorted contrast. However, the available color informa-
tion in the enhanced images is insignificant. Zhang et al. [16] introduced
an attenuated color channel correction and detail-preserved contrast
enhancement (ACDC) framework to effectively enhance poorly

illuminated underwater images. Although the ACDCmethod is crucial to
recover color shifts and overall illumination in underwater images,
addressing the loss of image details and edge information caused by
scattering remains a challenging task. Dual-histogram-based contrast
enhancement and multiscale fusion are incorporated to generate un-
derwater images with better quality. However, the enhanced images
affect the overall color appearance and introduce annoying distortion.
Zhuang et al. [17] presented a hyper-laplacian reflectance prior (HLRP)
based retinex variational framework to enhance the salient structures
and fine-scale details of the underwater images. In this method, the
extreme brightness improvement in the enhanced images leads to a loss
of fine details. Zhou et al. [18] introduced the complementary advan-
tage fusion method as a robust solution for overcoming the quality
degradation challenges in underwater images. This approach ensures
color fidelity and superior image quality by addressing attenuation
through the strategic fusion of global and local contrast-enhancement
techniques. Sun et al. [19] developed a novel underwater imaging
method that employs a band selection algorithm based on multicriteria
decision-making. This system uniquely enhances the image quality
while avoiding postprocessing-induced distortion.

Xiao et al. [20] introduced a novel turbid underwater image
enhancement method employing parameter-tuned stochastic resonance
to address degradation, blurring, and reduced contrast caused by light
scattering in turbid water. This framework includes dimensionality
reduction and normalization to enhance the weak signals in turbid un-
derwater images. Lu et al. [21] implemented a denoising diffusion
probabilistic model to address the challenge of severe color distortions
in underwater images. This approach effectively enhances the quality of
underwater images by utilizing two U-Net networks and distribution
transformations. Zhou et al. [22] developed a complementary advantage
fusion method to eliminate the degradation of underwater images
captured in an aquatic environment. This method employs double his-
togram optimization to improve global contrast and utilizes the mean
and variance features for local contrast enhancement. Wang et al. [23]
introduced an optimal contrast and attenuation difference approach for
enhancing underwater images plagued by color casts and blurring
caused by complex phenomena. This method employs a two-step
approach involving contrast optimization, transmission map refine-
ment, and concealing light estimation. Mainly, enhancement-based
methods are employed to address brightness distortion and loss of
edge details which are frequently encountered in the processed dim light
underwater images. Huang et al. [24] presented a novel zero-reference
deep network to address the color attenuation and contrast reduction
in underwater images without extensive paired training data. This
method employs a lightweight deep network utilizing an underwater
curve model to mitigate color dispersion and casting. Zhang et al. [25]
developed a transfer-learning-based framework to enhance the under-
water images captured by ocean engineering vehicles. This framework
addresses low visibility and color distortion issues by transferring in-air
image-dehazing techniques. Zhu et al. [26] developed an unsupervised
representation disentanglement method to enhance underwater images
affected by water medium distortions. This method separates the con-
tent and style information to address chromatic aberration, blur, noise,
and clarity. Liu et al. [27] implemented a real-time scene recovery
framework for restoring degraded images under various weather and
imaging conditions, such as underwater, sand dust, and haze. The
method utilizes a rank-one prior (ROP) to mathematically characterize
the superimposition of a clear image with the same color imaging
environment. This method leads to a loss of information in highlights
and a lack of balance in the overall brightness distribution of the un-
derwater images. Consequently, an effective underwater image
enhancement method is desirable for various complex underwater
applications.

Liu et al. [28] designed a grouped color-compensation encoder and
channel fusion decoder for underwater image enhancement. This
lightweight and scalable deep-learning-based network addresses color
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deviation and low contrast in underwater images. This approach ex-
ploits the information-rich green channel and a learnable compensation
module to enhance the red and blue channels. Zhang et al. [29] devel-
oped a lightweight network for single underwater image enhancement.
The depth convolution and one-shot aggregation are implemented to
improve the enhancement performance without affecting the running
time. Zhang et al. [30] devised a CNN and UNet-based method to
enhance the visual quality of the degraded underwater images. This
network incorporates a cascade mechanism, information exchange be-
tween resolution streams, and a triple-attention module to enhance
feature extraction. Yang and Wang [31] proposed an underwater image
enhancement method using golden jackal optimization to improve the
visibility and quality of underwater images suffering from severe color
deviation and low contrast. This algorithm employs a two-stage process.
The first stage uses a color compensation and correction strategy to
address the color deviation in the RGB color space. The second stage
optimizes the image contrast using the golden jackal algorithm. Park
and Eom [32] introduced a machine learning-based underwater image
enhancement approach by utilizing an adaptive standardization and
normalization network. The adaptive standardization network corrects
the distorted distribution of the input features, whereas the adaptive
normalization network enhances the contrast, removes haze, and re-
stores the mean brightness. Li et al. [33] implemented an adaptive
enhancement technique to address the challenges of color distortion and
haze in underwater imaging. This method first trains a U-Net network
using hue channel statistics for adaptive color correction. Subsequently,
a transformer network is trained on hazy terrestrial images to remove
haze from the color-corrected underwater images.

An et al. [34] proposed a Hybrid Fusion Method (HFM) to improve
the white balance distortion and visibility issues of the underwater im-
ages. Type-II fuzzy sets are incorporated to recover the natural visibility
and color of the underwater scene. Shen et al. [39] developed a multi-
level attention module to improve underwater object detection in
complex aquatic environments. This approach includes cross-splitting
and cross-linking in the preprocessing and postprocessing stages and
adaptive fusion in the attention calibration stage. Shen et al. [40] pro-
posed a multiple information perception-based attention module to
enhance underwater object detection in poorly illuminated underwater
images. The presented algorithm is integrated into YOLO detectors to
improve the detection accuracy significantly. Wang et al. [41] devel-
oped an unsupervised hashing algorithm using a graph-collaborated
auto-encoder, which effectively learns a unified binary code by collab-
oratively leveraging low-rank constrained affinity graphs and auto-
encoders. The presented method significantly improves the clustering
performance on large-scale multiview data. Wang et al. [42] introduced

multiview clustering via bi-consistency to address the challenge of
clustering unlabeled data with missing instances across multiple views.
The system employs bi-consistency guidance with reverse regularization
to examine the latent consensus representation and uses manifold
embedding to explore hidden structures in the recovered data. The
existing methods often lack interpretability and struggle with data de-
pendency and parameter accuracy, making them unsuitable for varied
underwater conditions. However, the visual appearance of images
captured underwater is always inadequate. They often suffer from se-
vere degradations such as poor contrast, blurred details, and severe color
casts due to scattering and light absorption. This imposes several con-
straints on exploring the underwater environment and subsequent visual
perception analysis. Therefore, an efficient technique which can
improve underwater images with higher contrast, better clarity, more
detail, and extensive colors for both display and analysis is meaningful
and thus desired. Besides, state-of-the-art underwater enhancement
methods usually fail to restore true colors and lost details simulta-
neously while enhancing the contrast. Therefore, an effective under-
water enhancement method has been developed to address color and
white balance degradation, poor perceptibility, and contrast distortion
in underwater images. This research aims to improve the underwater
image quality, which is often affected by low visibility, serious color
cast, and loss of details due to light absorption, scattering, and turbidity.
The contributions of this article are summarized as follows: An effective
underwater image enhancement method based on color correction and
pixel intensity optimization is proposed to reduce color distortion,
highlight image details, and improve image visibility. The proposed
system method employs Gaussian pyramid transformation to restore
blurred details and reveal hidden information in the images. Contextual
contrast enhancement is used to improve the contrast in localized re-
gions of the image while restoring their true colors. The proposed
method has been extensively evaluated on various underwater datasets,
demonstrating superior performance in terms of naturalness, visibility,
and contrast enhancement compared to state-of-the-art methods.

The rest of the paper is organized as follows. Section II presents a
detailed description of pixel intensity optimization for removing the
uneven color cast, Gaussian pyramid transformation to restore blurred
details and reveal hidden information, and contextual contrast
enhancement to enhance the clarity and sharpness of an underwater
image. In Section III, we compare the proposed method with various
existing image enhancement techniques, highlighting the strengths and
limitations of each approach in addressing color correction, contrast
improvement, and detail restoration in underwater images. In section
IV, the conclusion will summarize the key findings of the proposed
method in enhancing the quality of underwater images.

Fig. 1. Process flow diagram of the proposed system.
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2. Proposed method

The proposed system is developed to enhance underwater images by
addressing the limitations of existing techniques, such as color distor-
tion, low contrast, and detail loss. The process flow diagram of the
proposed underwater image enhancement system is depicted in Fig. 1.
The proposed system focuses on optimizing pixel intensity and
enhancing image texture to improve the quality of underwater images.
The proposed method involves statistical analysis of the input image,
color channel adjustments based on the dominant channel, and applying
the gray world transformation for color balancing. Additionally,
Gaussian pyramid transformation is implemented to restore blurred
details and enhance visibility. Finally, contextual contrast enhancement
is employed to improve the contrast of the underwater image by
enhancing it in localized regions. The proposed method mainly focuses
on producing color-balanced and detail-rich underwater images, over-
coming challenges like color and contrast distortion.

2.1. Pixel intensity optimization

The input image is analyzed statistically to determine the average
pixel intensity for each color channel. Let F(x) represent the original
image in red, green, and blue (RGB) space with dimensions (i, j) and x
corresponds to the spatial location (v, z) in a two-dimensional plane. The
input image is defined by,

F(x) =
{
FR(x), FG(x), FB(x)

}
(1)

where FR(x) represents the red plane, FG(x) represents the green plane
and FB(x) represents the blue plane. The average pixel intensity for each
color channel is calculated as,

Fa
R =

1
i × j

∑i

v=1

∑j

z=1
FR(v, z) (2)

Fa
G =

1
i × j

∑i

v=1

∑j

z=1
FG(v, z) (3)

Fa
B =

1
i × j

∑i

v=1

∑j

z=1
FB(v, z) (4)

where Fa
R, Fa

G and Fa
B denote the average intensity levels of pixels

within the RGB color channels. The channel exhibiting higher average
pixel intensity is identified as the dominant channel, while the other two
are classified as weaker color channels. The gray world transformation
(GWT) [5] is a color-balancing technique that mitigates image color
dominance. According to GWT, the average intensity of color channels
should appear gray for an image captured in an RGB space under ho-
mogeneous lighting conditions. However, in a non-homogeneous envi-
ronment, the illumination varies, and the images are affected by light
scattering and absorption, which leads to color distortion and poor
image quality. The GWA often fails to balance images taken in non-
homogeneous environments, such as aquatic scenes. Therefore, a pre-
processing technique is necessary to adjust the pixel intensity of
weaker color channels based on the dominant channel, ensuring a more
even distribution of intensity levels. Then, the color correction process is
implemented to enhance the pixel intensity of the weaker channels for
effective color balancing. The color-balanced image, denoted as FP(x),
and it is expressed as,

FP(x) =
(
FPR(x), FPG(x), FPB(x)

)
(5)

where, FPR(x), FPG(x) and FPB(x) represents the modified channels of red,
green, and blue, respectively. If FaG > FaR and FaG > FaB and
min

(
FG(x)

)
> min

(
FR(x)

)
> min

(
FB(x)

)
, then the gain factors for the

red δ and blue color λ are calculated as follows,

δ =
Fa

G

Fa
R and λ =

Fa
G

Fa
B (6)

The weaker color channels are modified as,

FPR(x) = FR(x)+
λ
δ
×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
Fa

G − Fa
R).δ +

( (
Fa

G − Fa
B) )

√

(7)

FPB(x) = FB(x)+
λ
δ
×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
Fa

G − Fa
B).λ +

( (
Fa

G − Fa
R) )

√

(8)

If the min
(
FB(x)

)
> min

(
FR(x)

)
, then only the red channel needs to

be optimized, and there is no need for the blue channel adjustment. The
square root term in the Eqs. (7) and (8) are color dominance reduction
factors. When Fa

B > Fa
R and Fa

B > Fa
G, and min

(
FB(x)

)
> min

(
FG(x)

)
,

then the gain factors for the red δʹ and blue color λ ʹ are calculated as

Fig. 2. Schematic workflow diagram of the proposed model.
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follows,

δʹ =
Fa

B

Fa
R and λʹ =

Fa
B

Fa
G (9)

The inferior color channels are modified as,

FPR(x) = FR(x)+
λʹ

δʹ ×
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
Fa

B − Fa
R).δʹ +

( (
Fa

B − Fa
G) )

√

(10)

FPG(x) = FG(x)+
λʹ

δʹ ×
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
Fa

B − Fa
G).λʹ +

( (
Fa

B − Fa
R) )

√

(11)

If Fa
G > Fa

B, and max
(
FG(x)

)
> max

(
FB(x)

)
, then

FPR(x) = FR(x)+
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
Fa

G − Fa
R).δ +

( (
Fa

G − Fa
B) )

√

(12)

FPB(x) = λ × FB(x) (14)

If Fa
B > Fa

G, and max
(
FB(x)

)
> max

(
FG(x)

)
, then

FPR(x) = FR(x)+ δ ×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
Fa

B − Fa
R).δʹ +

( (
Fa

B − Fa
G) )

√

(15)

FPG(x) = λʹ × FG(x) (16)

The lower-intensity pixels of the inferior color channels are adjusted

to higher levels, and to preserve the gray-level information, the GWT is
applied to the color-balanced version. However, the color-balanced
image may exhibit a hazy appearance caused by varying pixel in-
tensities in the foreground and background regions. To mitigate the haze
effect, the pixels corresponding to the top and bottom one percent of the
intensity levels are saturated across all three color channels.

2.2. Image texture enhancement

The proposed pixel intensity optimization process performs well in
color correction but fails to generate an enhanced image with optimized
visibility. The Gaussian pyramid transformation is utilized to restore
blurred details and reveal hidden information in the color-balanced
underwater images. The Gaussian kernel hl is defined with l different
scales and varying window sizes. Then the hl is convoluted with the
color-balanced image FP to generate l images of the same dimension K0.
Here K0 signifies the 0th layer of the Gaussian pyramid for lth iteration.
Similarly, to construct the image Kl

n at the nth layer of the Gaussian
pyramid for the lth iteration, we convolve the image Kl

n− 1 from the
n − 1th layer with the Gaussian kernel hl. Then, the resulting convolu-
tion is subjected to binary extraction in both row and column directions.
Mathematically, Kl

n is defined as follows:

Fig. 3. Assessment of the visual quality and perceptual improvement achieved by various image enhancement techniques on underwater image 1. (a) Original, (b)
CLAHE (1987) [3], (c) CBF (2018) [5], (d) CGA (2019) [6], (e) CBM (7) [2021], (f) PCA (9) [2021], (g) TEBCF (2022) [11], (h) FCENII (2022) [12], (i) ACT (2022)
[13], (j) MWMG (2022) [14], (k) LACE (2022) [15], (l) ACDC (2022) [16], (m) HLRP (2022) [17], (n) ROP (2023) [27], (o) HFM (2024) [34] and (p) Pro-
posed method.
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Kl
n(x, y) =

∑2

pl=− 2

∑2

ql=− 2

hl(pl, ql, σl)Kl
n− 1(2i+ pl,2j+ ql) (17)

where (1 ≤ n ≤ N,0 ≤ x ≤ R, 0 ≤ y ≤ C ), a Gaussian pyramid with a
maximum of N layers, R and C represents the number of rows and col-
umns in the images at the same layer. The size of the image Kl

n in the nth

layer of the Gaussian pyramid is reduced by a factor of four compared to
Kl
n− 1. The two Gaussian pyramids K1

n and K2
n are generated when l = 2.

Here h1 denotes the Gaussian kernel with a scale and radius of 3 and h2
represents the Gaussian kernel with a scale and radius of 5.

The two Gaussian pyramids are denoted as K1
n and K2

n are obtained
through Eq. (17), which has equal layers. The decomposition output
yields a high-quality, small-scale image enriched with intricate details.
Conversely, the large-scale image enhances contour information signif-
icantly while retaining better noise immunity. Integrating the strengths
of both scales proves advantageous for preserving detailed features and

contour information effectively. Furthermore, the Gaussian differential
pyramid is obtained by computing the disparities between consecutive
images within each layer of the Gaussian pyramid. The up-sampling
process is expressed as,

Cn(x, y) = K1
n(x, y) − K2

n(x, y) (18)

The double up-sampling process from the nth layer to the first layer is
computed using Eq. (18). Then, the upsampled images from this layer
are added to the layer above, and this process continues until it reaches
the 0th layer. The reconstructed image with better details is expressed as,

FR(x, y) =
∑

n− 1
{Cn− 1(x, y)+

⋃
(Cn− 1(x, y) ) } (19)

where the operation
⋃
(Cn− 1(x, y) ) corresponds to double up-sampling

on the image from the nth layer. Finally, the reconstructed image
FR(x, y) is fused with the color-balanced image FP(x, y) to obtain the

Fig. 4. Assessment of the visual quality and perceptual improvement achieved by various image enhancement techniques on underwater image 2. (a) Original, (b)
CLAHE (1987) [3], (c) CBF (2018) [5], (d) CGA (2019) [6], (e) CBM (7) [2021], (f) PCA (9) [2021], (g) TEBCF (2022) [11], (h) FCENII (2022) [12], (i) ACT (2022)
[13], (j) MWMG (2022) [14], (k) LACE (2022) [15], (l) ACDC (2022) [16], (m) HLRP (2022) [17], (n) ROP (2023) [27], (o) HFM (2024) [34] and (p) Pro-
posed method.
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detail-enhanced underwater image FE(x, y).

FE(x, y) = FR(x, y)+ FP(x, y) (20)

2.3. Contextual contrast enhancement

The proposed texture enhancement aims to enhance the clarity and
sharpness of an image. Conversely, contextual contrast enhancement
(CCE) is employed to improve the visual quality of the underwater
image by enhancing the contrast in localized regions. CCE operates on
new pixel intensities within local areas of the image to achieve a more
balanced and visually appealing result. First, the input image is divided
into non-overlapping sub-blocks of size M*N. Let B represent the number
of sub-blocks. Second, the histogram of each sub-block is calculated,
where each histogram represents the distribution of pixel intensities
within that sub-block. Let hmn(g) denote the histogram function for the
mth and nth sub-block, where g is the gray level. Next, the average pixel
count AP per gray level across all sub-blocks is determined. Then, a clip
limit value CL to restrict the maximum percentage of pixels allowed for
each gray level is computed as follows,

CL = AP*β (21)

where β is the clip coefficient and lies in the range 0 to 1. Next, the gray

histogram of each sub-block is clipped, and the clipped pixel counts to
each gray level of the histogram are redistributed. Then, Rayleigh dis-
tribution is introduced to enhance each clipped histogram, and it is
given as,

R(x) = Rmin +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2β2ln
(

1
1 − Pi(x)

)√

(22)

where Rmin represents the lower limit of the pixel value, and β is a scale
parameter. Next, the output of the transformation function is adjusted to
reduce abrupt changes in pixel values. Then, local contrast is linearly
enhanced based on the transformed values, and it is expressed as,

PO(i) =
T(x) − Tmin

Tmax − Tmin
(23)

where the input parameters for the transformation function are denoted
as T(x), Tmax and Tmin represents the minimum and maximum values
associated with the transformation function. Finally, bilinear interpo-
lation is performed to smooth out pixel values near sub-block bound-
aries. Interpolated gray value based on neighboring sample points is
computed as,

IP(x) = C[dIP− (x)+ (1 − d)IP+− (x) ] + (1 − C)[dIP− +(x)+ (1 − d)IP++(x) ]
(24)

Fig. 5. Assessment of the visual quality and perceptual improvement achieved by various image enhancement techniques on underwater image 3. (a) Original, (b)
CLAHE (1987) [3], (c) CBF (2018) [5], (d) CGA (2019) [6], (e) CBM (7) [2021], (f) PCA (9) [2021], (g) TEBCF (2022) [11], (h) FCENII (2022) [12], (i) ACT (2022)
[13], (j) MWMG (2022) [14], (k) LACE (2022) [15], (l) ACDC (2022) [16], (m) HLRP (2022) [17], (n) ROP (2023) [27], (o) HFM (2024) [34] and (p) Pro-
posed method.
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where IP− , IP+− , IP− +, IP++ are the gray level values corresponding to the
four different sample points. C and d are the interpolation coefficients
that blend the gray values of four sample points around a pixel, resulting
in a smoother transition. Fig. 2. represents a schematic workflow dia-
gram of the proposed model. Our proposed method integrates pixel in-
tensity optimization with detail reconstruction and contextual contrast
enhancement to comprehensively enhance underwater images. The
pixel intensity optimization effectively restores the natural colors of the
underwater images. This process adjusts pixel intensities to correct these
deviations, ensuring more accurate color representation. The detail
reconstruction process is incorporated to address the blurring and loss of
detail due to light scattering. The proposed method preserves the tex-
tures and fine features of underwater scenes and restores the clarity of
fine details often lost in underwater images. Contextual contrast
enhancement mainly focuses on improving the contrast of underwater
images in localized regions. The CCE targets specific areas of the image
that require improvement. The proposed approach effectively enhances
the clarity and sharpness of the image while maintaining natural color

and avoiding excessive enhancement.

3. Experimental results and discussion

The performance analysis of the different enhancement methods is
conducted on the standard benchmark underwater datasets such as
Enhancing Underwater Visual Perception (EUVP) [16], Synthetic Un-
derwater Image Dataset (SUID) [27], Underwater Image Dataset (UID)
[37], and Underwater Image Enhancement Benchmark (UIEB) [11]. A
comprehensive and fair qualitative and quantitative evaluation is con-
ducted using the proposed and recent state-of-the-art methods to assess
the enhancement quality of the underwater images. The existing
methods used for comparison include CLAHE [3], CBF (2018) [5], CGA
(2019) [6], CBM (2021) [7], PCA (2021) [9], TEBCF (2022) [11],
FCENII (2022) [12], ACT (2022) [13], MWMG (2022) [14], LACE
(2022) [15], ACDC (2022) [16], HLRP (2022) [17], ROP (2023) [27],
and HFM (2024) [34].

Fig. 6. Assessment of the visual quality and perceptual improvement achieved by various image enhancement techniques on underwater image 4. (a) Original, (b)
CLAHE (1987) [3], (c) CBF (2018) [5], (d) CGA (2019) [6], (e) CBM (7) [2021], (f) PCA (9) [2021], (g) TEBCF (2022) [11], (h) FCENII (2022) [12], (i) ACT (2022)
[13], (j) MWMG (2022) [14], (k) LACE (2022) [15], (l) ACDC (2022) [16], (m) HLRP (2022) [17], (n) ROP (2023) [27], (o) HFM (2024) [34] and (p) Pro-
posed method.
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3.1. Visual quality assessment

The visual quality assessment results on different underwater images
are displayed in Figs. 3–11. From Fig. 3, the CLAHE, CGA, PCA, FECNII,
ACT, and MWMG methods fail to address the color bias issue, and
enhanced images still exhibit unnatural color tones. The CBF method
fails to control the brightness during the enhancement process, leading
to loss of detail and an unnatural appearance. The CBM method shows
insignificant improvement in addressing color deviation and contrast
enhancement. The TEBCF approach mainly focuses on enhancing
contrast and saturation, which may lead to overexposure and introduce
undesirable artifacts in the enhanced images. The LACE method in-
troduces unwanted color distortions and haze-like appearances, making
the enhanced image unpleasant. From the results, it is clear that color
correction capability of the ACDC method is unsatisfactory, and the
enhanced image suffers from a severe over-enhancement problem. The
HLRP method fails to restore the actual colors and produces excessive
enhancement. The ROP approach enhances the suppressed details but
fails to recover the natural color, causing the underwater scene to be
over-exposed. The HFM approach shows inconsistencies in color and
white balance correction, leading to non-uniform color shifts with detail
loss. In contrast, the proposed system achieves accurate and effective
color and white balance correction and generates an enhanced image
with rich details.

Fig. 4 displays the enhancement results of different methods on

underwater image 2. The CLAHE method fails to eliminate the uneven
color cast. The CBF method is insignificant in removing the haze effect,
and the restored colors are unnatural. The CGA approach generates false
textures and also suffers from severe color distortion. The CBM method
fails to handle the illumination variation of the underwater scene and
yields an image with poor perceptual quality. The actual color of the
underwater scene is not reflected in the output of the PCA method. The
enhanced image from the TEBCF approach loses its natural appearance
while improving the structural information. The FCENII algorithm fails
to restore the natural color, edges, and textures of the underwater
scenes. The blue bias of the underwater scene is not effectively removed
by the ACT method. The performance of the MWMG method in
removing color distortion is unsatisfactory. Although the LACE and
ACDC approaches can efficiently remove the blue deviation of under-
water images, the output images have excessive local enhancement. The
enhanced image by the HLRP method lacks sharpness and fails to reveal
all structural features. The background of the ROP-enhanced image is
dark and indistinct, making it difficult to understand the hidden struc-
tural details. The HFM method introduces artifacts and noise that
degrade the image quality and distort the natural appearance of the
underwater scene. In contrast, the proposed approach achieves better
visual sensory results by eliminating color shifts compared to the other
existing methods.

Fig. 5 displays the enhancement results of different methods on un-
derwater image 3. The CLAHEmethod introduces artifacts and noise due

Fig. 7. Assessment of the visual quality and perceptual improvement achieved by various image enhancement techniques on underwater image 5. (a) Original, (b)
CLAHE (1987) [3], (c) CBF (2018) [5], (d) CGA (2019) [6], (e) CBM (7) [2021], (f) PCA (9) [2021], (g) TEBCF (2022) [11], (h) FCENII (2022) [12], (i) ACT (2022)
[13], (j) MWMG (2022) [14], (k) LACE (2022) [15], (l) ACDC (2022) [16], (m) HLRP (2022) [17], (n) ROP (2023) [27], (o) HFM (2024) [34] and (p) Pro-
posed method.
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to aggressive contrast enhancement. The enhanced image by the CBF
method has an oversaturation effect and fails to handle all color casts
effectively. The CGA method misses subtle details, and the result may
not be optimal for all underwater scenes. The enhancement by the CBM
method based on context is not accurate. The processed image by the
PCA method loses the texture information. The TEBCF method fails to
restore the natural color casts. The edge enhancement by the FCENII
method is ineffective and contains unnatural sharpness. The ACT
method fails to retain the actual colors. Balancing multiple weights by
the MWMG method leads to inconsistent results. The LACE method
creates uneven exposure on the enhanced image. The color compensa-
tion by the ACDC method does not work well in underwater image 3.
High-level processing by the HLRP method ignores important low-level
details. The ROP method overly processes the input image and loses
naturalness. The HFM method results in hyper-realistic images, and it
loses its authenticity. In contrast, the proposed method potentially re-
stores natural hues, enhances local contrast and effectively reveals the
hidden details without overexposing the image.

Figs. 6–9 illustrate the simulation results of the different methods on
four degraded underwater images. The CLAHE method causes over-
enhancement, leading to unnatural contrast and noise amplification.
The CBF method overcompensates the underwater color cast and pro-
duces an image with an unnatural look. The CGA method fails to
enhance the local contrast and detail. The CBM method struggles to

correct color casts across the entire image in which some areas appear
properly balanced while others retain a color tint. The results from the
PCA method lead to severe color distortion since it prioritizes variance
over color fidelity, which is desirable for accurate color reproduction.
The TEBCF method overemphasizes the texture of the input image,
which may lead to an unnatural appearance with severe color distor-
tions. The FCENII method enhances contrast but results in over-
enhancement and loss of natural appearance. The ACT method strug-
gles to reproduce the original colors accurately. The MWMG method
introduces halo artifacts, particularly around the high-contrast edges
and complex textures. The LACE method results in uneven illumination,
with some areas appearing over-enhanced while others remain under-
enhanced. The ACDC method fails to maintain true color fidelity and
loses finer details, especially in areas with subtle textures. The HLRP
method prioritizes the reflectance over fine details, which leads to a loss
of texture and subtle features. The ROP method inadvertently enhances
the contrast and details and appears unnatural. The HFM method
struggles to maintain consistent image quality. In contrast, the proposed
method achieves more natural color tones, better detail preservation,
and improved overall image quality.

Fig. 10 illustrates the simulation results of the different methods with
the corresponding histogram distribution. The histogram distribution of
the original image is positively skewed, with most of the pixel values
concentrated on the right side of the histogram. The histogram

Fig. 8. Assessment of the visual quality and perceptual improvement achieved by various image enhancement techniques on underwater image 6. (a) Original, (b)
CLAHE (1987) [3], (c) CBF (2018) [5], (d) CGA (2019) [6], (e) CBM (7) [2021], (f) PCA (9) [2021], (g) TEBCF (2022) [11], (h) FCENII (2022) [12], (i) ACT (2022)
[13], (j) MWMG (2022) [14], (k) LACE (2022) [15], (l) ACDC (2022) [16], (m) HLRP (2022) [17], (n) ROP (2023) [27], (o) HFM (2024) [34] and (p) Pro-
posed method.
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distribution of the most existing methods is narrow and centered around
a low value. Hence, the enhanced images are underexposed and have
unclear details and uneven color cast. Meanwhile, the proposed method
has a histogram distribution with an expanded dynamic range, which
reveals better details and natural colors of the underwater scene. The
proposed method is visually compared with other existing methods on
five low-quality underwater images with different degradation, as
illustrated in Fig. 11. The existing enhancement methods are unsuc-
cessful in color correction and suffer from blur, low contrast, noise, and
unclear details. Conversely, the subjective evaluation demonstrates that
the proposed method can adjust the color bias of the degraded under-
water images and improve the quality of underwater images in chal-
lenging environments. Our proposed algorithm significantly addresses
the underwater imaging challenges by optimizing pixel intensity for
improved visibility, restoring natural colors, enhancing textures to
reveal hidden details, and adjusting local pixel intensities for a balanced,
visually appealing result. The processed images generated by the pro-
posed algorithm have significant potential for scientific research and
monitoring of marine life and environmental changes, analysis of sub-
merged historical sites, and underwater infrastructure inspection,
leading to more accurate assessments and timely maintenance.

3.2. Objective assessment

Objective evaluation metrics such as entropy [35,36], underwater
image contrast measure (UIConM) [38], underwater color image quality
evaluation (UCIQE) [5], underwater image quality measure (UIQM) [5],
patch-based contrast quality index (PCQI) [5], and blind/referenceless
image spatial quality evaluator (BRISQUE) [13] are employed to mea-
sure the quality of enhanced underwater images. Entropy (H) measures
the amount of information, clarity, sharpness, and overall fidelity of an
image by quantifying the distribution of pixel intensities. Enhanced
images with higher entropy values appear visually pleasing due to the
richness of detail. Conversely, enhanced images with low entropy values
lack visual interest and appear over-smooth. Mathematically, the en-
tropy measure is expressed using Shannon’s entropy formula.

H(X) = −
∑n

i=1
p(xi)log2(p(xi) ) (25)

where H(X) is the entropy of the image, p(xi) is the probability of
occurrence of pixel intensity xi, n is the total number of possible pixel
intensity values in the image. Table 1 shows that our proposed system
demonstrates superior performance in terms of entropy scores compared
to other methods. This outcome underscores the effectiveness of our
approach in preserving a greater amount of information within the

Fig. 9. Assessment of the visual quality and perceptual improvement achieved by various image enhancement techniques on underwater image 7. (a) Original, (b)
CLAHE (1987) [3], (c) CBF (2018) [5], (d) CGA (2019) [6], (e) CBM (7) [2021], (f) PCA (9) [2021], (g) TEBCF (2022) [11], (h) FCENII (2022) [12], (i) ACT (2022)
[13], (j) MWMG (2022) [14], (k) LACE (2022) [15], (l) ACDC (2022) [16], (m) HLRP (2022) [17], (n) ROP (2023) [27], (o) HFM (2024) [34] and (p) Pro-
posed method.
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processed images.
The UIConM metric is computed using logAMEE (logarithmic

average Michelson contrast entropy enhancement) operation. This
metric introduces the relative contrast ratio within each image block and
the average Michelson contrast in local regions. A higher UIConM value
indicates a greater contrast, showing clear distinctions between different
features in the image. Conversely, a lower UIConM value implies
reduced contrast, which may result in poorer image quality. The
mathematical expression for UIConM is defined as follows.

UIConM = logAMEE(Intensity) (26)

logAMEE =
1

k1k2

∑k1

l=1

∑k2

k=1

Imax,k,l ⊖ Imin,k,l

Imax,k,l ⊕ Imin,k,l
× log

(
Imax,k,l ⊖ Imin,k,l

Imax,k,l ⊕ Imin,k,l

)

(27)

where Imax,k,l and Imin,k,l are the maximum andminimum intensity values
in each image block, and k1 and k2 are the number of blocks in hori-
zontal and vertical directions, respectively.

Table 2 illustrates that the proposed method achieves a higher
UIConM value and effectively improves the contrast information of
underwater images in global and local regions compared to the other
existing methods.

The UCIQE measure quantifies various aspects of image quality,
including color fidelity, sharpness, and contrast, which are essential for
evaluating the effectiveness of underwater imaging systems. The UCIQE
considers the effects of blurring, low contrast, and non-uniform color
cast on underwater images. A higher UCIQE value indicates better image
quality and reveals accurate color reproduction, sharp details, and
adequate contrast in the enhanced underwater image. Conversely, a
lower UCIQE value has poor contrast and color distortion. UCIQE of an
image is calculated as follows.

UCIQE = c1⋅σsat + c2⋅conl + c3⋅consat (28)

where σsat is the standard deviation of the saturation channel, conl is the
contrast of the luminance channel, consat is the contrast of the saturation
channel and c1, c2, and c3 are weighting coefficients. According to
Table 3, the proposed method attains the highest UCIQE value among all
the compared methods. Hence, the proposed system performs best in
enhancing the chroma, contrast, and saturation of underwater images.

The UIQM is a no-reference image quality assessment metric used to

evaluate the quality of underwater images based on colorfulness,
sharpness, and contrast. A higher UIQM value corresponds to a better
image quality with vivid colors, clearer edges, and higher contrast. The
UIQM score of an image is computed as,

UIQM = wc × UICM+ws × UISM+wr × UIConM (29)

where wc, ws, and wr are the corresponding weights assigned to balance
the overall UIQM score. From the values listed in Table 4, it is under-
stood that the proposed method attains greater UIQM values, and the
enhanced images appear more vivid and have more distinguishable
bright and dark regions with better contrast.

The PCQI evaluates perceptual distortions in contrast-changed im-
ages. PCQI decomposes each image patch into mean intensity, signal
strength, and signal structure components and predicts the perceptual
quality of contrast variations. Higher PCQI scores indicate better
structural preservation and enhancement of contrast. The PCQI is
expressed as,

PCQI = qi.qc.qs (30)

where, qi denotes the mean intensity difference calculated from the
reference and distorted patches, qc quantifies the contrast change and qs
represents the structural distortion. The test results from Table 5 illus-
trate that the proposed system gains higher PCQI values than other
methods. This higher PCQI value indicates that the proposed system
strikes a better balance between enhancing image contrast and mini-
mizing distortions in image structure.

BRISQUE extracts a set of statistical features from the spatial domain
of the image and assesses the perceived quality. The statistical properties
of the image are distorted by various types of degradation, such as noise,
blur, or compression. Smaller BRISQUE scores typically indicate better
perceptual quality. The BRISQUE is defined by considering the statistical
properties of the mean subtracted contrast normalized (MSCN) co-
efficients and their pairwise products, and it is modeled using general-
ized Gaussian distribution (GCD) and asymmetric generalized Gaussian
distributions (AGCD).

BRISQUE =
∑M

i=1

∑N

j=1

[

f
( ̂I(i, j)

α , σ2
)

+
∑

orientation
f
(

H(i, j)
ρ , σl

2, στ
2
)]

(31)

Fig. 10. Assessment of the visual quality and perceptual improvement achieved by various image enhancement techniques on underwater image 8 with its histogram
distribution. (a) Original, (b) CLAHE (1987) [3], (c) CBF (2018) [5], (d) CGA (2019) [6], (e) CBM (7) [2021], (f) PCA (9) [2021], (g) TEBCF (2022) [11], (h) FCENII
(2022) [12], (i) ACT (2022) [13], (j) MWMG (2022) [14], (k) LACE (2022) [15], (l) ACDC (2022) [16], (m) HLRP (2022) [17], (n) ROP (2023) [27], (o) HFM (2024)
[34] and (p) Proposed method.
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Fig. 11. Assessment of the visual quality and perceptual improvement achieved by various image enhancement techniques on five underwater images. From left to
right are the Original, CLAHE (1987) [3], CBF (2018) [5], CGA (2019) [6], CBM (7) [2021], PCA (9) [2021], TEBCF (2022) [11], FCENII (2022) [12], ACT (2022)
[13], MWMG (2022) [14], LACE (2022) [15], ACDC (2022) [16], HLRP (2022) [17], ROP (2023) [27], HFM (2024) [34] and the Proposed method.
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where ̂I(i, j) is the MSCN coefficient at the pixel (i, j), H(i, j) represents
the pairwise product of neighboring MSCN coefficients along different
orientations, f

(
x, α, σ2) denotes the probability density function of the

GGD with parameters α and σ2, f
(
x, ρ, σl

2,στ
2) represents the proba-

bility density function of the AGGD with parameters ρ, σl
2 and στ

2, M,N
are the height and width of the image, respectively. Table 6 shows that
the proposed system exhibits smaller BRISQUE values compared to other
existing methods. It indicates that the proposed system is more effective
in improving images’ fidelity and perceptual quality and is more

sensitive to subtle distortions and artifacts in images.
Table 7 reports the objective measurement scores of different

enhancement methods for an average of 550 underwater images. The
results of these comparisons are illustrated as a line plot and displayed in
Fig. 12. Overall, the supremacy of the proposed method has been thor-
oughly verified through various objective measurement metrics. Our
method consistently achieves superior values compared to other existing
methods. The Proposed and the existing enhancement method was
implemented and executed on the personal laptop equipped with the

Table 1
Entropy measurements between the proposed method and the other existing methods.

Methods/Images 1 2 3 4 5 6 7 8 9 10

Original 7.285 7.599 7.741 7.558 7.266 7.637 7.323 7.375 7.528 7.148
CLAHE [3] 7.367 7.622 7.645 7.551 7.711 7.558 7.465 7.472 7.228 6.953
CBF [5] 7.030 6.518 6.949 6.400 6.102 7.357 6.411 6.369 7.120 6.727
CGA [6] 6.229 6.928 7.255 6.353 6.679 6.894 6.358 6.373 5.703 5.585
CBM [7] 7.319 7.502 7.820 7.537 7.047 7.720 7.569 7.484 7.665 7.403
PCA [9] 7.481 7.673 7.772 7.748 7.617 7.926 7.816 7.656 7.691 7.500
TEBCF [11] 7.188 7.836 7.779 7.678 7.762 7.766 7.684 7.644 7.560 7.475
FCENII [12] 6.642 7.180 7.474 7.235 6.863 7.296 7.270 7.220 7.244 7.231
ACT [13] 7.449 7.290 7.553 7.508 7.295 7.441 7.299 7.381 7.190 7.214
MWMG [14] 7.439 7.694 7.561 7.704 7.465 7.603 7.754 7.663 7.608 7.401
LACE [15] 7.533 7.877 7.427 7.804 7.880 7.420 7.666 7.757 7.694 7.338
ACDC [16] 7.625 7.911 7.713 7.801 7.799 7.812 7.800 7.757 7.701 7.657
HLRP [17] 6.961 6.557 5.879 5.574 7.072 7.694 6.395 4.914 3.932 7.423
ROP [27] 7.454 7.716 7.412 7.568 7.596 7.631 7.700 7.626 7.621 7.567
HFM [34] 7.601 7.784 7.796 7.857 7.849 7.631 7.822 7.794 7.759 7.687
Proposed 7.737 7.916 7.920 7.926 7.907 7.937 7.956 7.869 7.848 7.901

Table 2
UIConM Measurements Between the Proposed Method and the Other Existing Methods.

Methods/Images 1 2 3 4 5 6 7 8 9 10

Original 0.657 0.485 0.628 0.391 0.557 0.810 0.573 0.531 0.547 0.604
CLAHE [3] 0.432 0.377 0.160 0.289 0.601 0.599 0.467 0.499 0.687 0.792
CBF [5] 0.509 0.274 0.432 0.212 0.223 0.776 0.326 0.261 0.300 0.439
CGA [6] 0.702 0.736 0.629 0.670 0.696 0.847 0.858 0.841 0.778 0.679
CBM [7] 0.691 0.734 0.688 0.695 0.804 0.785 0.798 0.808 0.696 0.762
PCA [9] 0.695 0.717 0.663 0.651 0.798 0.749 0.722 0.807 0.672 0.730
TEBCF [11] 0.746 0.896 0.714 0.770 0.860 0.863 0.856 0.877 0.799 0.868
FCENII [12] 0.638 0.688 0.627 0.576 0.770 0.659 0.738 0.724 0.617 0.735
ACT [13] 0.666 0.693 0.345 0.847 0.332 0.901 0.858 0.447 0.891 0.800
MWMG [14] 0.803 0.770 0.743 0.664 0.737 0.654 0.808 0.808 0.741 0.851
LACE [15] 0.636 0.715 0.483 0.868 0.676 0.709 0.699 0.851 0.659 0.793
ACDC [16] 0.807 0.734 0.714 0.710 0.793 0.823 0.807 0.821 0.685 0.857
HLRP [17] 0.693 0.545 0.357 0.360 0.695 0.978 0.555 0.390 0.290 0.800
ROP [27] 0.809 0.746 0.673 0.709 0.746 0.931 0.788 0.810 0.607 0.767
HFM [34] 0.579 0.652 0.534 0.636 0.683 0.876 0.590 0.754 0.617 0.802
Proposed 0.924 0.900 0.889 0.910 0.890 0.942 0.912 0.886 0.901 0.913

Table 3
UCIQE Measurements Between the Proposed Method and the Other Existing Methods.

Methods/Images 1 2 3 4 5 6 7 8 9 10

Original 0.591 0.423 0.574 0.430 0.393 0.605 0.502 0.436 0.565 0.508
CLAHE [3] 0.381 0.482 0.483 0.442 0.460 0.304 0.338 0.490 0.125 0.164
CBF [5] 0.466 0.332 0.432 0.342 0.317 0.503 0.397 0.350 0.450 0.420
CGA [6] 0.357 0.458 0.437 0.477 0.452 0.370 0.321 0.176 0.315 0.370
CBM [7] 0.617 0.628 0.643 0.636 0.672 0.648 0.653 0.644 0.591 0.553
PCA [9] 0.601 0.531 0.609 0.572 0.560 0.630 0.601 0.574 0.581 0.548
TEBCF [11] 0.616 0.617 0.625 0.623 0.662 0.611 0.651 0.629 0.593 0.578
FCENII [12] 0.606 0.576 0.651 0.608 0.574 0.663 0.670 0.593 0.615 0.639
ACT [13] 0.502 0.497 0.574 0.525 0.526 0.501 0.498 0.437 0.512 0.478
MWMG [14] 0.600 0.453 0.605 0.494 0.450 0.652 0.578 0.499 0.595 0.576
LACE [15] 0.601 0.579 0.624 0.605 0.645 0.644 0.638 0.596 0.590 0.556
ACDC [16] 0.625 0.530 0.625 0.541 0.556 0.612 0.601 0.565 0.559 0.555
HLRP [17] 0.669 0.644 0.706 0.679 0.601 0.610 0.610 0.660 0.601 0.599
ROP [27] 0.626 0.638 0.646 0.657 0.669 0.625 0.658 0.639 0.588 0.569
HFM [34] 0.613 0.624 0.679 0.651 0.662 0.680 0.667 0.642 0.602 0.601
Proposed 0.655 0.690 0.699 0.675 0.697 0.687 0.697 0.652 0.643 0.652
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12th Gen Intel(R) Core(TM) i7-1260P processor running at 2.10 GHz,
16 GB of memory, and MATLAB 2021b. The processing times of various
underwater image enhancement methods are assessed, and the runtime
results are summarized in Table 7. The proposed method generally ex-
hibits faster processing speeds compared to recent methods. The pro-
posed system optimizes the pixel intensity and enhances the texture to
improve underwater image quality using statistical analysis, color
channel adjustments, gray world transformation, Gaussian pyramid
transformation, and contextual contrast enhancement. The proposed
method aims to produce color-balanced, detail-rich images by

addressing color and contrast distortion issues. The proposed method
shows promising results in enhancing underwater images. However, the
current implementation may not be optimized for real-time processing.

To provide a fair and comprehensive assessment of our method, we
have conducted an objective evaluation on the entire EUVP (613 un-
derwater images), SUID (900 synthetic underwater images), UID (60
multiply degraded underwater images), and UIEB (890 degraded un-
derwater images) datasets. Table 8 shows that the proposed method
attains an optimal image quality assessment score compared to existing
approaches. The entropy measurements on all four datasets indicate that

Table 4
UIQM measurements between the proposed method and the other existing methods.

Methods/Images 1 2 3 4 5 6 7 8 9 10

Original 2.654 0.786 2.134 0.716 0.198 4.181 2.158 1.569 1.814 2.681
CLAHE [3] 4.273 2.225 4.613 4.562 1.775 5.196 7.184 5.887 4.938 5.362
CBF [5] 4.272 3.174 3.788 2.882 2.967 5.268 3.521 3.198 1.497 2.187
CGA [6] 4.502 4.619 4.216 4.337 4.484 5.065 4.998 4.943 5.054 4.890
CBM [7] 3.071 4.216 3.382 3.544 4.313 4.213 3.686 4.597 2.845 3.759
PCA [9] 1.983 2.340 2.796 2.335 2.075 3.576 2.759 3.056 2.201 3.530
TEBCF [11] 4.182 5.041 4.044 4.547 5.226 4.889 4.299 4.871 3.859 4.634
FCENII [12] 3.037 2.709 2.481 2.288 2.679 3.634 3.070 2.966 2.223 3.324
ACT [13] 4.358 4.098 4.534 4.986 6.520 3.158 7.803 4.687 4.333 3.028
MWMG [14] 3.259 1.755 2.627 1.746 0.907 3.804 3.081 2.585 2.867 4.147
LACE [15] 4.576 4.756 2.810 4.803 4.272 4.916 4.182 4.914 3.340 4.300
ACDC [16] 4.255 4.497 4.469 4.470 4.671 4.928 4.308 4.742 3.251 4.437
HLRP [17] 3.362 2.646 1.610 1.830 3.588 5.387 2.493 1.862 1.235 4.160
ROP [27] 4.808 4.504 3.599 3.905 4.467 5.184 3.614 4.541 2.898 3.893
HFM [34] 4.168 4.335 13.971 4.308 4.425 6.010 6.137 4.666 4.744 6.655
Proposed 5.374 5.125 5.157 4.881 7.124 6.885 7.779 7.126 6.897 7.251

Table 5
PCQI Measurements between the proposed method and the other existing methods.

Methods/Images 1 2 3 4 5 6 7 8 9 10

CLAHE [3] 0.773 0.612 0.653 0.574 0.603 0.778 0.625 0.690 0.738 0.719
CBF [5] 0.599 0.535 0.779 0.801 0.608 0.760 0.712 0.701 0.718 0.631
CGA [6] 0.267 0.341 0.173 0.265 0.359 0.043 0.248 0.322 0.436 0.276
CBM [7] 1.197 1.252 1.158 1.191 1.195 1.185 1.212 1.297 1.108 1.163
PCA [9] 1.215 1.227 1.043 1.196 1.152 1.100 1.072 1.289 1.011 0.992
TEBCF [11] 1.195 1.429 1.189 1.333 1.247 1.182 1.387 1.263 1.279 1.447
FCENII [12] 0.896 0.991 0.999 1.068 1.012 0.998 1.012 1.050 0.965 1.064
ACT [13] 0.266 0.343 0.170 0.269 0.358 0.043 0.248 0.323 0.437 0.282
MWMG [14] 1.262 1.242 1.146 1.252 1.093 1.237 1.216 1.309 1.158 1.307
LACE [15] 1.151 1.291 1.151 1.268 1.212 1.150 1.259 1.329 1.129 1.292
ACDC [16] 1.140 1.112 1.140 1.130 1.000 1.070 1.035 1.181 1.025 1.178
HLRP [17] 1.122 1.022 1.056 1.153 1.130 1.179 1.005 1.190 1.066 1.163
ROP [27] 1.136 1.240 1.062 1.294 1.169 1.011 1.260 1.320 1.021 1.049
HFM [34] 0.495 0.338 0.495 0.266 0.359 0.040 0.246 0.317 0.434 0.272
Proposed 1.284 1.357 1.256 1.416 1.357 1.306 1.416 1.399 1.301 1.470

Table 6
BRISQUE Measurements between the proposed method and the other existing methods.

Methods/Images 1 2 3 4 5 6 7 8 9 10

Original 9.36 17.60 27.72 35.30 20.82 22.38 39.11 41.02 28.22 15.34
CLAHE [3] 9.10 20.88 14.65 26.89 22.85 35.99 35.39 28.02 27.71 21.64
CBF [5] 35.60 40.55 24.47 38.02 25.23 43.46 31.26 38.05 29.02 31.05
CGA [6] 21.59 31.69 23.98 13.36 9.04 33.32 35.47 31.46 23.42 17.10
CBM [7] 31.04 32.85 28.82 9.19 26.49 43.46 31.91 32.82 20.34 14.98
PCA [9] 17.59 19.42 16.09 28.14 11.16 35.45 31.67 24.70 18.83 11.12
TEBCF [11] 24.23 39.26 26.21 40.45 28.77 33.01 35.39 42.20 24.09 19.30
FCENII [12] 24.01 20.91 28.20 25.52 24.35 17.48 30.97 30.21 26.29 17.14
ACT [13] 31.50 25.76 6.92 23.31 13.34 25.51 33.28 38.98 21.20 7.00
MWMG [14] 19.29 30.90 28.03 8.97 26.52 43.41 38.92 23.69 22.29 20.37
LACE [15] 15.69 40.14 15.69 25.67 34.39 22.19 18.49 13.63 24.43 29.00
ACDC [16] 32.53 14.14 32.53 14.46 9.29 33.17 35.54 29.70 31.24 24.74
HLRP [17] 19.65 35.89 19.65 30.42 22.89 43.46 28.23 42.54 41.19 31.88
ROP [27] 25.91 25.48 12.60 21.79 23.67 33.51 33.99 30.47 32.93 14.65
HFM [34] 27.71 16.89 27.71 27.41 4.26 29.08 30.81 34.73 19.56 16.02
Proposed 8.59 14.25 10.23 12.53 8.24 14.24 18.26 19.27 16.60 5.70
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the proposed method preserves more information and effectively en-
hances the clarity, sharpness, and overall fidelity of underwater images.
The UIConMmetric assesses the enhancement of contrast information in
global and local regions. The higher UIConM values achieved by the
proposed method on all four databases demonstrate its effectiveness in
improving the contrast of underwater images. The proposed method’s
superior UCIQE scores indicate that the processed image contains ac-
curate color reproduction, sharp details, and adequate contrast. The
higher UIQM values in Table 7 show that the proposedmethod generates
enhanced images with more vivid colors and better-defined bright and
dark regions, contributing to a more pleasant visual experience. The
proposed method attains a higher PCQI score and strikes a perfect bal-
ance between enhancing contrast and maintaining the structural integ-
rity of the image. The BRISQUE scores of the proposed method are lower
when compared to other approaches and indicate that it is more effec-
tive in improving the perceptual quality of images and is sensitive to
subtle distortions.

3.3. Ablation study

To validate the effectiveness of the presented method, an ablation
study was conducted on the four degraded underwater images, and the
results are presented in Fig. 13 and Table 7. The contribution of each
component in our underwater image enhancement framework is vali-
dated. The presented underwater image enhancement framework in-
cludes five key elements such as color dominancy optimization (CDO),
gray world theory (GWT), pixel intensity saturation (PIS), Gaussian

pyramid transformation (GPT), and contextual contrast enhancement
(CCE). On visual assessment, it is observed that the proposed CDO fails
to achieve a balance between contrast, color, and detail enhancement.
The proposed CDO+GWT struggles to correct color casts, leading to an
unnatural look. The enhanced image by the proposed CDO+GWT+PIS
has a potential loss in fine details and contrast. Detail boosting by the
proposed CDO+GWT+PIS+GPT leads to an unnatural contrast and edge
definition. In comparison, the proposed CDO+GWT+PIS+GPT+CCE
balances color correction and contrast enhancement and generates an
enhanced image with rich details.

Table 9 reports the objective measurements of different components
of the proposed method on four underwater images. The best results are
indicated in bold. After incorporating each component, the objective
scores of the test image increase to varying degrees. The + CDO method
has a significant impact on improving UIQM and BRISQUE scores. The
+ GWT potentially increases the UCIQE score. The BRISQUE score of
the + PIS method drops slightly and obtains good quality. The + CDO,
+GWT, and + PIS methods have little impact on the increasing entropy
score. The + GPT significantly improves overall objective scores. How-
ever, the enhanced image appears to have poor contrast. The + CCE
approach obtains a higher objective score when compared to all
methods and generates an image with improved detail preservation and
enhanced textures.

4. Conclusion

This paper presents an effective method based on color correction

Table 7
Objective measurements between the proposed method and the other existing methods on an average of 550 underwater images.

Methods/Measures ENT UIConM UIQM UCIQE PCQI BRISQUE Time Cost (s)

Original 7.236 0.547 1.798 0.517 − 24.714 −

CLAHE [3] 7.457 0.490 4.901 0.367 0.684 24.117 0.5772
CBF [5] 6.325 0.287 3.541 0.412 0.675 32.530 9.247
CGA [6] 6.1332 0.618 4.972 0.328 0.262 23.07 41.271
CBM [7] 7.186 0.613 3.762 0.658 1.172 26.878 2.791
PCA [9] 7.451 0.632 2.682 0.5733 1.173 20.451 1.2743
TEBCF [11] 7.238 0.702 4.5017 0.629 1.227 31.547 14.537
FCENII [12] 6.922 0.573 2.103 0.626 1.042 24.537 0.2125
ACT [13] 7.108 0.575 4.762 0.525 0.343 21.647 2.941
MWMG [14] 7.136 0.673 2.781 0.558 1.234 25.125 2.7782
LACE [15] 7.341 0.712 4.635 0.671 1.258 22.478 1.2144
ACDC [16] 7.554 0.7854 4.453 0.561 1.152 24.767 3.154
HLRP [17] 6.042 0.548 2.767 0.643 1.172 30.587 0.0447
ROP [27] 7.054 0.779 4.152 0.641 1.212 24.812 4.989
HFM [34] 7.729 0.668 5.782 0.645 0.334 22.478 4.998
Proposed 7.805 0.902 6.452 0.684 1.371 12.744 1.1015

Fig. 12. Line plot representing the objective measurement values by the various underwater enhancement methods.
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and contextual contrast enhancement for underwater image enhance-
ment. The proposed texture enhancement method can effectively
improve the quality of underwater images with more realistic textures. A
contextual contrast enhancement is formulated for natural color and
contrast enhancement without excessive enhancement. Experimental
evaluations reveal that the proposed algorithm significantly improves

the visibility and perception of underwater scenes and nearly recovers
natural colors. In comparison with existing underwater enhancement,
our algorithm achieves excellent performance in improving the color
and quality of underwater scenes. Extensive experiments on different
benchmark data sets show that the proposed method outperforms both
qualitative and quantitative metrics. Our future work could mainly focus

Table 8
Objective measurements between the proposed method and the other existing methods on four datasets.

EUVP Dataset SUID Dataset

Methods/
Measures

ENT UIConM UIQM UCIQE PCQI BRISQUE Time (s) ENT UIConM UIQM UCIQE PCQI BRISQUE Time (s)

Input 7.3823 0.8240 3.9137 0.5931 − 42.3610 − 7.4147 0.6341 2.3073 0.5238 − 28.6643 −

CLAHE 7.3388 3.1958 3.3481 0.5740 0.8505 42.5722 0.1558 7.5810 0.8122 5.4703 0.6358 0.8002 19.3683 0.2074
CBF 7.0679 0.6145 4.2772 0.4767 0.6907 32.9897 1.3932 6.4655 0.5494 4.1173 0.3861 0.7329 30.5544 2.6720
CGA 6.9596 0.8251 4.8673 0.3846 0.2275 45.1570 3.1487 6.9465 0.8947 5.4720 0.3979 0.1652 20.6500 8.4826
CBM 7.5108 0.8255 4.6574 0.6365 1.1325 44.3125 0.4241 7.5025 0.6035 4.3956 0.6257 1.2218 16.5201 0.7389
PCA 7.7852 0.8264 3.9098 0.6117 1.1099 45.9284 0.3919 7.7436 0.5396 2.0177 0.5666 1.1383 19.6596 0.6176
TEBCF 7.4261 0.7449 4.6127 0.6107 1.0719 40.3818 0.9741 7.6884 0.6893 4.6014 0.5846 1.2365 20.1923 2.9321
FCENII 6.9580 0.7364 3.8498 0.6596 1.0348 34.6235 0.0446 7.2961 0.5146 2.0754 0.6282 1.0742 32.1390 0.0786
ACT 7.4194 0.8213 4.0071 0.5875 0.2274 42.2414 0.2653 7.3642 0.4998 4.0582 0.5749 0.1635 20.2211 0.7415
MWMG 6.1881 1.3165 5.7955 0.6541 0.9319 51.1336 0.3600 7.5330 0.5996 2.2526 0.5941 1.1067 24.1908 0.6709
LACE 7.1125 0.8428 5.3333 0.5913 1.0938 38.3695 0.1166 7.5789 0.4419 3.3333 0.5729 1.2458 21.5885 0.2707
ACDC 7.7795 0.8582 4.9188 0.5798 0.9977 45.6223 0.2872 7.5267 0.6132 3.8114 0.5781 1.0902 23.9388 0.8137
HLRP 5.9104 0.5197 2.7077 0.6374 1.1478 36.5192 0.0048 7.6242 0.6625 3.8749 0.5881 1.1087 31.3428 0.0121
ROP 7.5848 0.8233 5.1219 0.6322 1.0082 46.6677 0.4677 7.6330 0.7030 4.3399 0.6001 1.0628 33.8262 1.2267
HFM 7.5116 0.8230 4.8239 0.4979 0.2262 44.6018 0.7550 7.7318 0.4498 3.6652 0.4880 0.1617 31.1015 1.4640
Ours 7.8123 0.9197 6.4578 0.6759 1.2058 30.1479 1.0216 7.8012 0.9015 6.2476 0.6687 1.2569 15.2479 1.1562
UID Dataset UIEB Dataset
Input 7.7905 0.6742 2.7441 0.5043 − 18.0486 − 6.7010 0.2966 1.0561 0.4532 − 40.6348 −

CLAHE 7.5988 0.4123 3.4398 0.5801 0.7214 31.6239 0.1872 7.6814 0.5756 3.1397 0.6044 0.6798 26.5885 0.2644
CBF 6.8528 0.4847 3.9625 0.4198 0.6557 43.4581 2.5549 6.5679 0.1846 2.7595 0.3421 0.7261 48.7224 4.2255
CGA 6.8820 0.6323 4.3346 0.4889 0.1859 28.7578 8.6466 6.5945 0.5069 5.5864 0.3183 0.4136 15.6467 40.6874
CBM 7.6803 0.7870 4.4916 0.6465 1.2501 41.5317 3.5393 6.5422 0.5624 3.9146 0.6364 0.9964 43.4582 6.3342
PCA 7.9129 0.7574 3.5454 0.6097 1.2440 32.4155 2.3562 7.2869 0.5019 4.4206 0.5517 1.2058 19.1122 3.6823
TEBCF 7.5032 0.8207 4.5999 0.6261 1.2665 25.2503 9.0764 7.7837 0.6245 3.4940 0.6179 1.1270 28.5947 17.1978
FCENII 7.4266 0.7156 3.4520 0.6500 0.9891 19.0382 0.2699 6.2846 0.5964 0.1567 0.5971 0.9967 33.6197 0.3779
ACT 7.5280 8.3391 3.9020 0.6071 0.1792 22.5807 0.6525 7.4061 0.5063 5.5152 0.5306 0.4166 28.7819 3.0723
MWMG 7.5426 0.8213 3.2625 0.6080 1.1810 30.6276 2.0652 7.3284 0.6261 3.1033 0.5543 1.1010 29.6264 2.7073
LACE 7.7552 0.8436 4.9289 0.5946 1.2729 28.7476 0.7392 7.7713 0.6142 4.3566 0.5803 1.1478 26.6684 1.0935
ACDC 7.7309 0.8277 4.9606 0.5606 1.1416 20.7540 0.7572 7.7343 0.6762 4.1470 0.5312 1.0959 31.1176 3.8185
HLRP 7.4865 0.7151 3.9819 0.6516 1.1069 43.4189 0.0259 5.9793 0.5280 2.3282 0.7157 1.1279 27.8087 0.0453
ROP 7.5683 0.8594 4.9333 0.6501 1.3138 29.1254 2.6806 7.6337 0.6783 2.9430 0.6548 1.0585 43.4582 4.7750
HFM 7.8058 0.8609 5.3086 0.6418 0.1817 16.7749 1.4322 7.4865 0.6362 4.2705 0.6507 0.4143 34.9561 6.2950
Ours 7.8296 0.8976 5.9987 0.6748 1.3254 15.4789 1.1326 7.7985 0.8906 5.5998 0.6851 1.3058 15.0697 1.5479

Fig. 13. Subjective comparison of different components of the proposed method on four underwater images. (a) Input image, (b) Proposed CDO, (c) Proposed
CDO+GWT, (d) Proposed CDO+GWT+PIS, (e) Proposed CDO+GWT+PIS+GPT, and (f) Proposed CDO+GWT+PIS+GPT+CCE.
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on developing a more streamlined implementation for real-time pro-
cessing and reducing computational time without compromising image
quality.
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