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ABSTRACT
Recent advances in natural language understanding and pro-
cessing resulted in renewed interest in natural language
based interfaces to data, which provide an easy mechanism
for non-technical users to access and query the data. While
early systems only allowed simple selection queries over a
single table, some recent work supports complex BI queries,
with many joins and aggregation, and even nested queries.
There are various approaches in the literature for interpret-
ing user’s natural language query. Rule-based systems try
to identify the entities in the query, and understand the in-
tended relationships between those entities. Recent years
have seen the emergence and popularity of neural network
based approaches which try to interpret the query holisti-
cally, by learning the patterns. In this tutorial, we will review
these natural language interface solutions in terms of their
interpretation approach, as well as the complexity of the
queries they can generate. We will also discuss open research
challenges.
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1 INTRODUCTION
Many business users and line of business owners rely on tech-
nical people to query and gain insights from their business
data. These technical people are experts on using complex
query languages such as SQL or SPARQL. Today, it is vital for
non-technical business owners to derive insights from their
data as quickly as possible to make effective business deci-
sions. Natural language interfaces enable such non-technical
users to explore their business data in a more natural way
and without relying on technical users’ help.

There are several challenges in building natural language
interfaces to data [2]. Ambiguity in natural language is a big
challenge, making it difficult to understand the semantics
of the query and hence the user intent. The complexity of
queries that one can ask over the data has been increasing
over time. Some systems [1, 51] only allowed a set of key-
words, with very limited expressive power. Some of the early
work [15, 66] on natural language interfaces (NLI) to data
mostly focused on simple queries that access a single table
using some selection criteria. Later works allow a full-blown
English statement and try to disambiguate among the mul-
tiple meanings of the words and their relationships. With
the recent advances in NLP [61], both the complexity of in-
put natural language statements, as well as the generated
SQL and SPARQL queries have increased over time, and re-
newed the interest in NLI to data (NLID). To interpret the
user’s natural language query, many systems try to iden-
tify the entities in the query, and understand the intended
relationships between those entities. These entity-based in-
terpretation techniques [15, 29–32, 44, 46, 49] vary widely
in terms of the complexity of the queries that they generate.
Some of the recent works are also using machine learning
and deep learning based [9, 22, 56, 59, 62, 67, 69] techniques,
and require good training sets, which are hard to obtain.
Others require user feedback [27, 31, 34] to disambiguate.
One natural extension to one-shot NLQ approaches is the
extension to dialogue, allowing continuous context and a
well-defined user feedback.
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In this tutorial, we will review these natural language in-
terface solutions in terms of their interpretation approach,
as well as the complexity of the queries they can generate.
We will also discuss how to extend the one-shot query ap-
proaches to dialogue, taking advantage of the context for
disambiguation. Finally, we will conclude with a discussion
on challenges that need to be addressed before these systems
can be widely adapted.

2 TARGET AUDIENCE AND OUTLINE
Target Audience. The target audience groups of this tuto-
rial are the following:

• Researchers and developers who would like to learn
the challenges that natural language interfaces pose
while building systems, as well as the recent industry
trends and offerings in the NLID,

• PhD students who are seeking a high-impact research
topic in this area.

Prerequisites. No prior knowledge is required to under-
stand the concepts in the tutorial, but we assume some fa-
miliarity with databases and basic machine learning termi-
nology.

Outline. The 1.5-hour tutorial is tentatively structured as
follows:
(1) Introduction and overview
(2) Complexity of generated queries

• Simple queries (simple selection on a single table)
• Moderate queries (join across multiple tables)
• Complex (BI) queries (nested sub-queries)

(3) Natural language query interpretation
• Entity-based approaches
• Machine learning-based approaches
• Hybrid approaches

(4) Extension to dialogue
(5) Open challenges
There was a tutorial on natural language interfaces at SIG-

MOD 2017 [33]. In our tutorial, we cover a wider scope of
topics (i.e., query complexity and extension to dialogue) and
more recent approaches, especially machine learning and
deep learning based methods. We also focus more on build-
ing natural language querying systems, rather than manag-
ing natural language text data, with particular emphasis on
the wide spectrum of query complexity and conversational
NLID.

3 COMPLEXITY OF GENERATED QUERY
The query complexity can be categorized into 4 groups:

• simple selection queries on a single table
• aggregation queries on a single table involving GROUP
BY and ORDER BY

• queries involving multiple tables (JOIN), and
• complex Business Intelligence (BI) or analytic queries
with nested sub-queries.

We will classify the existing NLID systems and their asso-
ciated methodologies based on these categories.

Selection Queries on Single Table. Early NLID systems
[15, 66] mostly provide keyword-based entity extraction.
They only consider each individual word for a possible match
in meta data or data instances. Such systems can only han-
dle simple filter queries but cannot detect other clauses
like GROUP BY and ORDER BY in natural language queries.
Seq2SQL [69] uses reinforcement learning to train end-to-
end translation model from NLQ to SQL on single table based
on WikiSQL data [69]. SQLNet [59] extends from Seq2SQL
by avoiding the sequence-to-sequence structure when order-
ing does not matter in SQL query conditions. It also targets
single table queries from WikiSQL.

Aggregation Queries on Single Table. Pattern-based
NLID systems [16, 51, 68] introduce the use of natural lan-
guage patterns for detecting more SQL clauses like aggre-
gation, GROUP BY, ORDER BY, etc. Exploiting fixed patterns
in natural language enables such systems to overcome the
limitations of keyword-based systems, but they are limited
to those fixed patterns. For example, simple natural language
patterns like “by”, “total/average” enable such systems to
detect GROUP BY and aggregation, respectively.

Queries involving Multiple Tables. To generate SQL
queries with joins across multiple tables, NLID systems [9,
31, 44] evolve towards using natural language parsing with
additional information from the backend schema to detect
relationships. The parse tree is mainly used to analyze the de-
pendency among tokens, and to infer the join paths between
matched database elements. ATHENA [44] further utilizes
domain ontologies as an abstraction of the backend data-
base to facilitate intelligent domain reasoning. TEMPLAR [7]
leverages information from the SQL query log to improve
keyword mapping and join path inference. DBPal [9] aims to
generate join queries based on the information learnt from
domain-specific training data, and requires many training
examples with different join paths.

BI Queries with Nested Sub-queries. Recently, there
has been a trend to deploy NLID in commercial systems [23,
38, 45, 48, 50, 57] for business intelligence (BI) use cases.
Typical BI queries often involve nested sub-queries with all
other query clauses. However, none of the NLID systems so
far has the capability of generating such complex BI queries.
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Instead, they heavily rely on explicit user actions via in-
teractive tools and visualizations in combination of natural
language queries for creating analytic dashboards. Some pre-
liminary systems [9, 31, 46] handle a collection of BI queries
with nesting, but a full-fledged solution remains an open
challenge.

4 NATURAL LANGUAGE QUERY
INTERPRETATION

At the core of a NLID system lies its ability to understand/in-
terpret a user query expressed in natural language. In this
section, we classify works according to their interpretation
method: (1) works that follow an entity-based approach,
recognizing the different entities involved in a query, (2) ma-
chine learning-based approaches, classifying a user query
into one of the possible query templates, and (3) hybrid
approaches that combine entity-based and machine learning-
based approaches.

4.1 Entity-Based Approaches
Entity-based approaches recognize the constituent entities
mentioned in a query, as well as their relationships, based
on an internal representation of the underlying data, e.g., an
index structure, a taxonomy, or an ontology.

Earlier works (e.g., BELA [53], QUICK [66], Précis [26, 47])
first perform some parsing of the natural language query to
transform it to a machine-readable format, and later look
up the slots that correspond to entities using a simple in-
dex structure. For example, Précis [26, 47] first transforms
a given query to disjunctive normal form (DNF) using well-
studied DNF transformation algorithms [36], and then con-
sults an inverted index over the contents of the underlying
database to retrieve candidate interpretations for each dis-
junct. BELA [53] uses a lexical tree adjoining grammar [52]
to parse the input queries based on part-of-speech tags. This
parsing results in a set of SPARQL query templates, each
corresponding to a possible interpretation of the given query.
For filling the unknown slots in the SPARQL queries, an
inverted index, built from DBpedia [6] entity names, is con-
sulted. Similarly, QUICK [66] binds a keyword-based query
to the lookup results from an inverted index that is built
on the instances, concepts, and properties of the underly-
ing data. In addition to the steps described before, QUICK
employs an additional step in which users can interactively
select one of the suggested query interpretations that best
fits their query.
Later works extend the query interpretation capability

by further employing taxonomies to capture the semantics
of the underlying data. NaLIR [30–32] uses Stanford NLP
Parser [17] to obtain a linguistic understanding of the input

query in the form of a parse tree. Tree nodes corresponding to
entities are mapped to the underlying data using a WordNet-
based similarity function [58]. This may provide multiple
mappings per tree node, which are then clarified by users.
Recently, Duoqest [8] leverages guided partial query enu-
meration to efficiently explore the space of possible queries
for a given NL query.
SODA [15] is one of the earliest works to employ ontolo-

gies for query interpretation. It looks up each query keyword
in two different indices: one for the data in a database, and
one for the meta-data in ontologies. This leads to multiple
interpretations per query, which are ranked based on an ag-
gregation of the scores associated with each lookup result.
Query interpretations are extended using ontologies, e.g.,
super-classes of the lookup results add new interpretations.

USI Answers [54] employs syntactic rules to identify query
parts that refer to entities. In a lookup step, it produces the
candidate entities mentioned in the query, generating differ-
ent query interpretations. An ontology models the underly-
ing data and is used to determine if there is a relationship
between the identified entities mentioned in the query.

TR Discover [49] uses a feature-based context-free gram-
mar for parsing natural language queries, also providing
query auto-completion. When a user starts typing a query
segment and selects one of the suggested lexical entries (i.e.,
an entity, an object, or a property) for this segment, TR Dis-
cover suggests the next lexical entries that are reachable from
the selected query part, based on the rules of the context-
free grammar. The ranking of these suggestions is based on
the nodes centrality in an RDF graph, in which each node
represents a different lexical entry.
ATHENA [29, 44, 46] maps parts of the natural language

query to concepts and relationships in an ontology that cap-
tures the semantics of a relational database. The ontology
and the mappings to the underlying data can be either pro-
vided manually, or generated automatically from the data-
base information [24]. ATHENA uses an intermediate query
language before translating the input query into SQL. Lei et
al. [28] introduce a query relaxation technique to improve
the query understanding capability of ATHENA by lever-
aging external knowledge sources, with a focus on medical
KBs. The proposed technique fills the gap between the terms
stored in the KBs and the colloquial and imprecise termi-
nology used in user queries. Recently, Quamar et al. [42]
adopt ATHENA’s ontology-driven approach to further build
a conversation system for domain-specific knowledge bases.

Since entity-based approaches try to understand the rela-
tionship between different entities in the user query, they can
handle complex input queries and generate complex struc-
tured queries. Moreover, it is easier to incorporate domain
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knowledge, as these systems use semantics rich domain tax-
onomies and ontologies. However, they are highly sensitive
to variations and paraphrasing of the user query.

4.2 Machine Learning-Based Approaches
The recent success of artificial intelligence and in particular
deep learning triggered a new trend of building NLID sys-
tems. The basic idea is to apply supervised machine learning
techniques on a set of question/answer pairs where the ques-
tions are the natural language queries and the answers are
the respective SQL or SPARQL statements. These questions
and answers are first transformed into a vector by apply-
ing word embedding techniques. Then, these vectors are
consumed by a deep neural network [69].
Seq2SQL [69] uses a deep neural network architecture

with reinforcement learning to translate natural language
to SQL. This approach was demonstrated to work on sim-
ple single-table queries without joins. DBPal [9, 56] avoids
manually labeling large training data sets by synthetically
generating a training set that only requires minimal annota-
tions in the database. DBPal uses the database schema and
query templates to describe NL/SQL-pairs. The results show
that on a single-table data set DBPal performs better than the
semantic parsing approach. SQLNet [59] uses column atten-
tion and employs a sketch-based method and generates SQL
as a slot-filling task. This fundamentally avoids the sequence-
to-sequence structure when ordering does not matter in SQL
query conditions. TypeSQL [62] improves upon SQLNet by
proposing a different training procedure and utilizing types
extracted from either knowledge graph or table content to
help model better understand entities and numbers in the
question. DialSQL [22] is a dialogue-based structured query
generation framework that leverages human intelligence
to boost the performance of existing algorithms via user
interaction. DialSQL is capable of identifying potential er-
rors in a generated SQL query and asking users for vali-
dation via simple multi-choice questions. User feedback is
then leveraged to revise the query. Zhang et al. [67] propose
SQL query generation by editing the query in the previous
turn. The previous query is first encoded as a sequence of
tokens, and the decoder computes a switch to change it at
the token level. This sequence editing mechanism models
token-level changes and is thus robust to error propagation.
Furthermore, to capture the user utterance and the complex
database schemas in different domains, an utterance-table
encoder is used based on BERT [18] to jointly encode the
user utterance and column headers with co-attention, and a
table-aware decoder is adopted to perform SQL generation
with attentions over both the user utterance and column
headers. Most recently, Wang et al. [55] introduce a gen-
eral purpose transfer-learnable NLID system. The proposed

system adopts the data management principle of separating
data and its schema, but with the additional support for the
idiosyncrasy and complexity of natural languages.
Machine learning-based approaches have shown promis-

ing results in terms of robustness to NL variations. However,
these systems still have limited capability of handling com-
plex queries involving multiple tables with aggregations, and
nested queries. In addition, they require large amounts of
training data, which makes the domain adaption challenging.

4.3 Hybrid Approaches
Hybrid approaches [10–12] combine entity- and learning-
based query understanding in a multi-step strategy, using
one of the two approaches as a filtering mechanism. For
example, QUEST [12] first chooses the entities that are rele-
vant to the keywords in the query based on Hidden Markov
Models (HMM), trained on a data set of previous searches,
validated by the user. The relationships between the entities
extracted from the query are then computed based on heuris-
tic rules that consider the relationships of those entities in
the database. The candidate interpretations are ranked based
on the aggregate confidence scores returned by the HMM.
However, these systems are still not capable of covering a
full spectrum of the complexity of generated queries. Hence,
more research is needed on hybrid approach that leverages
the best from both worlds.

5 EXTENSION TO DIALOGUE
Dialogue is an extension of natural language querying to
a two-way conversation between the user and the system
(or service). Conversational interfaces, which provide the
ability to interact with business applications and data using
a two-way dialogue, are rapidly gaining popularity [20] be-
cause of their ability to (1) understand, respond and clarify
ambiguity in natural language, and (2) persist the context of
conversation across multiple turns. One possible solution to
handling complex queries is to express them as a sequence
of simpler questions. This is in line with machine learning-
based approaches for query translation which allow for a
richer linguistic variability in query expressions and user
flexibility while restricting their applicability to simpler indi-
vidual queries [2]. However, some of the complex BI queries
cannot be easily broken down into simpler questions, and
even some simple BI queries require complex nested SQL.
Today’s chatbot platforms (e.g., Google Dialogflow, Face-

book Wit.ai, Microsoft Bot Framework, IBM Watson Assis-
tant, etc.) allow users to interact through natural language
(e.g., English, Spanish, Mandarin, etc.) speech or text. Using
these platforms, developers can create many kinds of natural
language interfaces for any kind of domain (e.g., weather,
music, finance, travel, healthcare, etc.). In this tutorial, our
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focus is on chatbots for data exploration. This is different
from social chatbots and task-oriented chatbots supported by
open-domain agents, such as Microsoft Cortana [39], Apple
Siri [4], Amazon Alexa [3], which are useful for accomplish-
ing day-to-day tasks, such as checking weather forecasts,
playing music, setting device timers, etc.
The set of all possible interactions with a conversational

interface is defined in terms of three main components that
enable its natural language understanding and ability to in-
teract with users: intents, entities, and dialogue [20]. Intents
are goals/actions that are expressed in the user utterances,
while entities represent information that is relevant to the
user’s purpose. These entities would typically consist of ele-
ments from the domain schema well as actual data instances
that are relevant to conversation. The dialogue provides a re-
sponse to a user conditioned on the identified intents, entities
in the user’s input and the current context of the conversa-
tion. The dialogue structure is therefore especially relevant
as it defines the space of all possible natural language in-
teractions that the conversational interface is required to
support.

Recent advances in machine learning, particularly in neu-
ral networks, have allowed for complex dialogue manage-
ment methods and conversation flexibility for conversational
interfaces. Three approaches are commonly used in building
the dialogue structure for a conversational interface. Rule-
based approaches [35, 37] used in finite-state dialogue man-
agement systems are simple to construct for tasks that are
straightforward and well-structured, but have the disadvan-
tage of restricting user input to predetermined words and
phrases. Frame-based systems [13, 19, 21] address some of
the limitations of finite state dialogue management by en-
abling a more flexible dialogue. Frame-based systems enable
the user to provide more information than required by the
system’s question, while the conversation system keeps track
of what information is required and asks questions accord-
ingly. Unlike finite-state and frame-based systems, agent-
based systems [14, 40, 43, 60] are able to manage complex
dialogues, where the user can initiate and lead the conver-
sation. Agent-based methods for dialogue management are
typically statistical models trained on corpora of real human
computer dialogue, offering more robust speech recognition
and performance, as well as better scalability, and greater
scope for adaptation. Among the different approaches, agent
based systems are the most flexible form of dialogue man-
agement, and hence suitable for iterative data exploration
driven by the user.

In addition to dialogue design, there are many other chal-
lenges in building effective conversation services to explore
data. First, building these systems requires a lot of domain
knowledge and manual setup. Specifically, designing effec-
tive conversational interfaces for iterative data exploration

for supporting enterprise applications requires deep domain
understanding. This includes semantic understanding of the
underlying data in terms of the entities and relationships it
represents as well as the expected workload against the data.
Together, such deep domain knowledge understanding facil-
itates designing for possible user intents and the required
dialogue interactions. Ontologies provide a powerful abstrac-
tion for representing domain knowledge in terms of relevant
entities, data properties and relationships. This can be used
to bootstrap conversation systems to minimize the required
manual labor and expediting their instantiation across differ-
ent domains. Quamar et. al [42] follow this ontology-driven
approach for building a conversational interface to domain-
specific knowledge bases (KBs). They demonstrate the ef-
fectiveness of capturing patterns in the expected workload,
mapping these patterns against the domain ontology to gen-
erate artifacts (i.e., intents, training examples, entities), and
supporting dialogue for building a conversational interface.
Another challenge is the infusion of semantic domain

knowledge into the intent classification. Ontologies can help
in this regard as well. In particular, ontologies can augment
the intent classifiers with greater linguistic variability and en-
tity recognition capabilities through the provision of domain-
specific synonyms and relaxation techniques [28].

6 OPEN CHALLENGES
Despite the recent increase in the number of research efforts
focusing on this area, there are still many open challenges.
In the following, we identify and briefly discuss the ones that
we consider to be the most important.

Sub-queries. Handling natural language queries com-
posed of one and multiple sub-queries is still one of the most
challenging problems for NLIs. First, detecting whether a nat-
ural language query requires a nested query is non-trivial due
to non-obvious linguistic patterns from the natural language
queries. Second, building a nested query requires identifying
proper sub-queries and figuring out the correct conditions
to join the sub-queries to produce the correct query results.

Hybrid Approach. Neither the entity-based approaches
nor the machine learning-based approaches can tackle all
challenges in natural language querying. In general, the
entity-based approaches provide better accuracy while the
machine learning-based approaches offer greater flexibility
(recall) in terms of the natural language queries, as they are
more robust to variations in linguistic patterns. Therefore,
more research is needed on hybrid approach that leverages
the best from both worlds.
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Conversation. There are many challenges for developing
domain-specific conversational interfaces. Capturing the do-
main semantics and incorporating that into the conversation
is non-trivial. This includes understanding the entities of the
domain and their relationships, as well as the domain vo-
cabularies and their synonyms. Providing sufficient training
samples is yet another challenge.

Benchmarks. Evaluating NLID is a non-trivial task [5,
25]. With the current abundance of solutions that target this
problem, a systematic evaluation of existing approaches be-
comes more and more a necessity. The first steps towards
this goal (WikiSQL [69] and Spider [64]) have been very
well-received by the community, focusing mostly on the
learning-based approaches that target queries of lower com-
plexity (Section 3). WikiSQL contains 80,654 pairs of NL
questions and SQL queries which are manually annotated
and distributed across 24, 241 tables from Wikipedia. The
large volume of data enables machine learning based systems
to train their model.
Similar to WikiSQL, WikiTableQuestions [41] is a popu-

lar benchmark for question answering on semi-structured
HTML tables. The data set contains 2, 108 tables from a large
variety of topics (more breadth) and 22, 033 NL questions
with different complexity (more depth). Each question comes
with a table fromWikipedia. Given the question and the table,
the task is to answer the question based on the table.

Recent efforts also focus on providing data sets for evaluat-
ing multi-turn and conversational NLID [63, 65]. SParC [65]
is a context-dependent/multi-turn version of the Spider data
set. It consists of over 4,000 coherent question sequences,
obtained from user interactions with 200 complex databases
over 138 domains. CoSQL [63] is a dialogue version of the
Spider and SParC data sets. It consists of 30k+ turns plus 10k+
annotated SQL queries, obtained from the same databases
used in the Spider and SParC.

We believe that the next step to follow up on these bench-
marking efforts is the inclusion of more complex analytical
queries that will include more of the entity-based approaches
and further push the state of the art.

Enterprise Adaption Natural language interfaces can
democratize access to data within an enterprise by enabling
non-technical users to explore the data easily. However,
many enterprise applications require high accuracy, and
the current state-of-the-art approaches still cannot achieved
desirable levels. For natural interfaces to become widely
adapted in the enterprise more research is needed to increase
the precision while maintaining high recall for both simple
and complex queries.
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