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Model Description 

The slate.125m.english.rtrvr-v2 model is a standard sentence transformers model 
based on bi-encoders. The model produces an embedding for a given input e.g. query, 
passage, document etc. At a high level, our model is trained to maximize the cosine 
similarity between two input pieces of text e.g. text A (query text) and text B (passage 
text), which result in the sentence embeddings q and p. These sentence embeddings 
can then be compared using cosine similarity. 

 

Figure 1. Bi-encoder Embeddings Model for Retrieval 

Base Language Model 

The underlying Language Model (LM) for our embeddings is “slate.125m.english”. It has 
the same architecture as a RoBERTa-base transformer model (12 layers) and has ~125 
million parameters and an embedding dimension of 768. Specifically, 
slate.125m.english was fine tuned from “slate.125m.english” (formerly, WatBERT). Our 
final model is called slate.125m.english.rtrvr. The su\ix denotes that the underlying 
model architecture was fine tuned for retrieval-based tasks. 

https://www.sbert.net/


Training Algorithm 

Most embedding models that are either state-of-the-art or at the top of the MTEB 
leaderboard are typically trained in 3 stages: 

1. Task Specific (retrieval-based) pre-training 

2. Task specific fine-tuning on mined pairs 

3. Fine-tuning on supervised pairs. 

We follow the same approach and finally perform a model fusion by averaging the 
weights of di\erent trained models. 

slate.125m.english.rtrvr is produced by performing “model fusion” - averaging the 
weights of the following models, both trained in stages but having the following 
variations: 

• Model 1 fine-tuned on all three stages mentioned above 

• Model 2 distilled from a model fine-tuned on all stages above. 

Task-specific pre-training 

This stage uses the RetroMAE framework, to make our underlying LM more retrieval 
oriented. We initialize our base LM with slate.125m.english and continue with RetroMAE 
pre-training, using the data in Table 1. Our hyper-parameters are: learning rate: 2e-5, 
number of steps: 190000, GPUs: 24 A100 40GB. 

Note: this is our base LM for the following 2 stages. 

Fine-tuning with large scale unsupervised data 

This model is initialized with the RetroMAE pre-trained model and is trained as follows. 

We use a bi-encoder framework for training an embedding model, as in Figure 1. The 
RetroMAE pre-trained LM is fine-tuned with <query, passage> text pairs using a 
contrastive loss objective. We mine large scale pairs from various domains, as indicated 
in Table 2. The model is trained with diverse pairs, including classification tasks such as 
NLI (Natural Language Inference) which consists of matching a premise to the 
corresponding hypothesis. Our hyper-parameters are: learning rate: 2e-4; number of 
steps: 35000; GPUs: 8 A100_80GB, e\ective batch size: 16k pairs 

Fine-tuning with small scale supervised data with hard negatives 

Finally, the model is fine-tuned with high-quality supervised training pairs, with 
supervision coming from hard negative mining, for the retrieval task. The intermediate 
model checkpoints are iteratively used to mine dataset specific hard negatives, which 
are then used for supervised finetuning. This process aims to make the model more 

https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard


robust by letting it learn from its own mistakes and helps in stabilizing with much 
smaller data. 

We fine-tune the model by using a subset of datasets (as found via performing 
validation experiments on a held-out dataset) mentioned in Training Data section which 
are as follows: AllNLI, Squad, Stackexchange, NQ, HotpotQA, Fever and 5M subset from 
each of Specter, S2orc, WikiAnswers. Moreover, we also synthetically generate triples to 
create good quality pairs of question-answers, factual verification, etc using Mixtral-
8x7B-Instruct-v0.1. To provide better performance for IBM-specific use cases, we also 
include pairs created from IBM Software Support data and IBM Docs. 

Training hyper-parameters are learning rate: 2e-5; max query length: 64; max passage 
length: 512; max steps: 5000; e\ective batch size: 512; GPUs: 1A100_80GB 

Training Data 

Table 1. Pre-Training Data 

Dataset Passages 

Wikipedia 36396918 

Books Corpus 3401308 

Stack Exchange 15999837 

Table 2. Unsupervised and Supervised Fine-Tuning Data 

Dataset Pairs 

SPECTER citation triplets 684100 

Stack Exchange Duplicate questions (titles) 304525 

Stack Exchange Duplicate questions (bodies) 250519 

Stack Exchange Duplicate questions (titles+bodies) 250460 

Natural Questions (NQ) 100231 

SQuAD2.0 87599 

PAQ (Question, Answer) pairs 64371441 

Stack Exchange (Title, Answer) pairs 4067139 

Stack Exchange (Title, Body) pairs 23978013 



Table 2. Unsupervised and Supervised Fine-Tuning Data 

Dataset Pairs 

Stack Exchange (Title+Body, Answer) pairs 187195 

S2ORC Citation pairs (Titles) 52603982 

S2ORC (Title, Abstract) 41769185 

S2ORC_citations_abstracts 52603982 

WikiAnswers Duplicate question pairs 77427422 

SearchQA 582261 

HotpotQA 85000 

Fever 109810 

Arxiv 2358545 

Wikipedia 20745403 

PubMed 20000000 

Miracl En Pairs 9016 

DBPedia Title-Body Pairs 4635922 

Synthetic: Query-Wikipedia Passage 1879093 

Synthetic: Fact Verification 9888 

IBM: IBM Docs (Title-Body) 474637 

IBM: IBM Support (Title-Body) 1049949 

Usage 

# make sure you’ve sentence transformers installed 

 

pip install -U sentence-transformers 

 

from sentence_transformers import SentenceTransformer, util 

 



model = SentenceTransformer('path_to_slate_model') 

 

input_queries = [ 

' Who made the song My achy breaky heart? ', 

'summit define'] 

 

input_passages = [ 

" Achy Breaky Heart is a country song written by Don Von Tress. Originally titled Don't 
Tell My Heart and performed by The Marcy Brothers in 1991. ", 

"Definition of summit for English Language Learners. : 1 the highest point of a mountain 
: the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between 
the leaders of two or more governments."] 

 

query_embeddings = model.encode(input_queries) 

 

passage_embeddings = model.encode(input_passages) 

 

print(util.cos_sim(query_embeddings, passage_embeddings) 

The maximum sequence length of this model is 512 tokens. 

Evaluation 

Baselines 

For a fair comparison, we compare with the following baselines: 

1. BM25 (a traditional model based on tf-idf) 

2. ELSER (a commercial search algorithm provided by Elastic) 

3. all-MiniLM-l6-v2: a popular open-source sentence transformers model. This 
model shares the same architecture as slate.30m.english.rtrvr, has been trained 
on more data without commercial-friendly licenses. Please see the huggingface 
model card for more details 

4. E5-base: a recent open-source transformer model with very good performance 
on the BEIR benchmark. This is a base-sized model, which has the same 

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2


architecture as slate.125m.english.rtrvr. [Reference: Wang et.al., 2022: Text 
Embeddings by Weakly-Supervised Contrastive Pre-training]. Huggingface model 
card 

5. E5-small: a smaller model within the open source E5 family. The embedding 
dimension of this model matches that of slate.30m.rtrvr (384) however it has 12 
layers, and thus is larger and slightly slower. [Reference: Wang et.al., 2022: Text 
Embeddings by Weakly-Supervised Contrastive Pre-training]. Huggingface model 
card 

6. BGE-base: a recent open-source transformer model with one of the best 
performances on the BEIR benchmark for the 768 embedding size. Huggingface 
model card 

7. BGE-small: a recent open-source transformer model with one of the best 
performances on the BEIR benchmark for the 384 embedding size. Huggingface 
model card 

We also compare the performance of these models with the older versions of the slate 
models, slate.125m.english.rtrvr-012024 and slate.30m.english.rtrvr-012024. 

Our Evaluation benchmark: BEIR (MTEB’s retrieval tab) 

The BEIR benchmark contains of 15 open-source retrieval tasks evaluated under a zero-
shot setting. BEIR focused on Diversity, including nine di\erent retrieval tasks: Fact 
checking, citation prediction, duplicate question retrieval, argument retrieval, news 
retrieval, question answering, tweet retrieval, bio-medical IR, and entity retrieval. 
Further, it includes datasets from diverse text domains, datasets that cover broad topics 
(like Wikipedia) and specialized topics (like COVID-19 publications), di\erent text types 
(news articles vs. Tweets), datasets of various sizes (3.6k - 15M documents), and 
datasets with di\erent query lengths (average query length between 3 and 192 words) 
and document lengths (average document length between 11 and 635 words). BEIR 
uses the Normalized Cumulative Discount Gain (specifically, nDCG@10) metric for 
evaluation. 

Long NQ 

Long NQ is an IBM dataset designed for evaluating the full RAG pipeline, based on a 
subset of the NaturalQuestions dataset. The dev set has 300 answerable questions with 
a corpus of 178,891 passages from 2,345 Wikipedia documents. Long NQ also provides 
gold Wikipedia passages that are relevant for each question. During retrieval, the task is 
to obtain the relevant gold passage from the corpus for every question. 

Results 

https://huggingface.co/intfloat/e5-base-v2
https://huggingface.co/intfloat/e5-base-v2
https://huggingface.co/intfloat/e5-small-v2
https://huggingface.co/intfloat/e5-small-v2
https://huggingface.co/BAAI/bge-base-en-v1.5
https://huggingface.co/BAAI/bge-small-en-v1.5
https://huggingface.co/spaces/mteb/leaderboard


Table 3. Performance comparison on the BEIR benchmark (MTEB retrieval tab) 

Model BEIR-15 (NDCG@10) 

BM25 42.02 

ELSER 49.01 

all-miniLM-L6-v2 41.95 

ES-small-v2 49.04 

ES-base-v2 50.29 

BGE-small 51.68 

BGE-base 53.25 

slate.30m.english.rtrvr 01.20.2024 46.91 

slate.125m.english.rtrvr-01.20.2024 49.37 

slate.30m.english.rtrvr 06.30.2024 49.06 

slate.125m.english.rtrvr-06.30.2024 51.26 

 

Figure 2. Performance comparison on the BEIR benchmark (MTEB retrieval tab) 



Table 4. Performance comparison on the Long NQ dataset 

Model LONGNQ (NDCG@10) 

all-miniLM-L6-v2 58.10 

BGE-small 59.33 

BGE-base 61.29 

ES-small-v2 61.88 

ES-base-v2 63.80 

slate.30m.english.rtrvr 01.20.2024 59.94 

slate.125m.english.rtrvr-01.20.2024 65.01 

slate.30m.english.rtrvr 06.30.2024 62.07 

slate.125m.english.rtrvr-06.30.2024 66.80 

 

Figure 3. Performance comparison on the Long NQ dataset 

Runtime Performance 

The performance runtime is measured on a re-ranking task with 466 queries. For each 
query we re-rank the top-100 passages obtained by BM25 and we report the average 
time over all queries. The re-ranking was performed on a A100_40GB GPU. 



Table 5. Run-time performance on re-ranking 

Model Time/query 

all-miniLM-L6-v2 0.18 sec 

E5-small 0.33 sec 

E5-base 0.75 sec 

BGE-small 0.34 sec 

BGE-base 0.75 sec 

slate.125m.english.rtrvr 0.71 sec 

slate.30m.english.rtrvr 0.20 sec 

 


