
IBM Slate.rtvr.125m_v2 model for Retrieval
Documentation copied from
https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/fm-slate-125m-
english-rtrvr-v2-model-card.html?context=wx&audience=wdp

Model Description

The slate.125m.english.rtrvr-v2 model is a standard sentence transformers model
based on bi-encoders. The model produces an embedding for a given input e.g. query,
passage, document etc. At a high level, our model is trained to maximize the cosine
similarity between two input pieces of text e.g. text A (query text) and text B (passage
text), which result in the sentence embeddings q and p. These sentence embeddings
can then be compared using cosine similarity.

Figure 1. Bi-encoder Embeddings Model for Retrieval

Base Language Model

The underlying Language Model (LM) for our embeddings is “slate.125m.english”. It has
the same architecture as a RoBERTa-base transformer model (12 layers) and has ~125
million parameters and an embedding dimension of 768. Specifically,
slate.125m.english was fine tuned from “slate.125m.english” (formerly, WatBERT). Our
final model is called slate.125m.english.rtrvr. The su\ix denotes that the underlying
model architecture was fine tuned for retrieval-based tasks.

https://www.sbert.net/

Training Algorithm

Most embedding models that are either state-of-the-art or at the top of the MTEB
leaderboard are typically trained in 3 stages:

1. Task Specific (retrieval-based) pre-training

2. Task specific fine-tuning on mined pairs

3. Fine-tuning on supervised pairs.

We follow the same approach and finally perform a model fusion by averaging the
weights of di\erent trained models.

slate.125m.english.rtrvr is produced by performing “model fusion” - averaging the
weights of the following models, both trained in stages but having the following
variations:

• Model 1 fine-tuned on all three stages mentioned above

• Model 2 distilled from a model fine-tuned on all stages above.

Task-specific pre-training

This stage uses the RetroMAE framework, to make our underlying LM more retrieval
oriented. We initialize our base LM with slate.125m.english and continue with RetroMAE
pre-training, using the data in Table 1. Our hyper-parameters are: learning rate: 2e-5,
number of steps: 190000, GPUs: 24 A100 40GB.

Note: this is our base LM for the following 2 stages.

Fine-tuning with large scale unsupervised data

This model is initialized with the RetroMAE pre-trained model and is trained as follows.

We use a bi-encoder framework for training an embedding model, as in Figure 1. The
RetroMAE pre-trained LM is fine-tuned with <query, passage> text pairs using a
contrastive loss objective. We mine large scale pairs from various domains, as indicated
in Table 2. The model is trained with diverse pairs, including classification tasks such as
NLI (Natural Language Inference) which consists of matching a premise to the
corresponding hypothesis. Our hyper-parameters are: learning rate: 2e-4; number of
steps: 35000; GPUs: 8 A100_80GB, e\ective batch size: 16k pairs

Fine-tuning with small scale supervised data with hard negatives

Finally, the model is fine-tuned with high-quality supervised training pairs, with
supervision coming from hard negative mining, for the retrieval task. The intermediate
model checkpoints are iteratively used to mine dataset specific hard negatives, which
are then used for supervised finetuning. This process aims to make the model more

https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard

robust by letting it learn from its own mistakes and helps in stabilizing with much
smaller data.

We fine-tune the model by using a subset of datasets (as found via performing
validation experiments on a held-out dataset) mentioned in Training Data section which
are as follows: AllNLI, Squad, Stackexchange, NQ, HotpotQA, Fever and 5M subset from
each of Specter, S2orc, WikiAnswers. Moreover, we also synthetically generate triples to
create good quality pairs of question-answers, factual verification, etc using Mixtral-
8x7B-Instruct-v0.1. To provide better performance for IBM-specific use cases, we also
include pairs created from IBM Software Support data and IBM Docs.

Training hyper-parameters are learning rate: 2e-5; max query length: 64; max passage
length: 512; max steps: 5000; e\ective batch size: 512; GPUs: 1A100_80GB

Training Data

Table 1. Pre-Training Data

Dataset Passages

Wikipedia 36396918

Books Corpus 3401308

Stack Exchange 15999837

Table 2. Unsupervised and Supervised Fine-Tuning Data

Dataset Pairs

SPECTER citation triplets 684100

Stack Exchange Duplicate questions (titles) 304525

Stack Exchange Duplicate questions (bodies) 250519

Stack Exchange Duplicate questions (titles+bodies) 250460

Natural Questions (NQ) 100231

SQuAD2.0 87599

PAQ (Question, Answer) pairs 64371441

Stack Exchange (Title, Answer) pairs 4067139

Stack Exchange (Title, Body) pairs 23978013

Table 2. Unsupervised and Supervised Fine-Tuning Data

Dataset Pairs

Stack Exchange (Title+Body, Answer) pairs 187195

S2ORC Citation pairs (Titles) 52603982

S2ORC (Title, Abstract) 41769185

S2ORC_citations_abstracts 52603982

WikiAnswers Duplicate question pairs 77427422

SearchQA 582261

HotpotQA 85000

Fever 109810

Arxiv 2358545

Wikipedia 20745403

PubMed 20000000

Miracl En Pairs 9016

DBPedia Title-Body Pairs 4635922

Synthetic: Query-Wikipedia Passage 1879093

Synthetic: Fact Verification 9888

IBM: IBM Docs (Title-Body) 474637

IBM: IBM Support (Title-Body) 1049949

Usage

make sure you’ve sentence transformers installed

pip install -U sentence-transformers

from sentence_transformers import SentenceTransformer, util

model = SentenceTransformer('path_to_slate_model')

input_queries = [

' Who made the song My achy breaky heart? ',

'summit define']

input_passages = [

" Achy Breaky Heart is a country song written by Don Von Tress. Originally titled Don't
Tell My Heart and performed by The Marcy Brothers in 1991. ",

"Definition of summit for English Language Learners. : 1 the highest point of a mountain
: the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between
the leaders of two or more governments."]

query_embeddings = model.encode(input_queries)

passage_embeddings = model.encode(input_passages)

print(util.cos_sim(query_embeddings, passage_embeddings)

The maximum sequence length of this model is 512 tokens.

Evaluation

Baselines

For a fair comparison, we compare with the following baselines:

1. BM25 (a traditional model based on tf-idf)

2. ELSER (a commercial search algorithm provided by Elastic)

3. all-MiniLM-l6-v2: a popular open-source sentence transformers model. This
model shares the same architecture as slate.30m.english.rtrvr, has been trained
on more data without commercial-friendly licenses. Please see the huggingface
model card for more details

4. E5-base: a recent open-source transformer model with very good performance
on the BEIR benchmark. This is a base-sized model, which has the same

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

architecture as slate.125m.english.rtrvr. [Reference: Wang et.al., 2022: Text
Embeddings by Weakly-Supervised Contrastive Pre-training]. Huggingface model
card

5. E5-small: a smaller model within the open source E5 family. The embedding
dimension of this model matches that of slate.30m.rtrvr (384) however it has 12
layers, and thus is larger and slightly slower. [Reference: Wang et.al., 2022: Text
Embeddings by Weakly-Supervised Contrastive Pre-training]. Huggingface model
card

6. BGE-base: a recent open-source transformer model with one of the best
performances on the BEIR benchmark for the 768 embedding size. Huggingface
model card

7. BGE-small: a recent open-source transformer model with one of the best
performances on the BEIR benchmark for the 384 embedding size. Huggingface
model card

We also compare the performance of these models with the older versions of the slate
models, slate.125m.english.rtrvr-012024 and slate.30m.english.rtrvr-012024.

Our Evaluation benchmark: BEIR (MTEB’s retrieval tab)

The BEIR benchmark contains of 15 open-source retrieval tasks evaluated under a zero-
shot setting. BEIR focused on Diversity, including nine di\erent retrieval tasks: Fact
checking, citation prediction, duplicate question retrieval, argument retrieval, news
retrieval, question answering, tweet retrieval, bio-medical IR, and entity retrieval.
Further, it includes datasets from diverse text domains, datasets that cover broad topics
(like Wikipedia) and specialized topics (like COVID-19 publications), di\erent text types
(news articles vs. Tweets), datasets of various sizes (3.6k - 15M documents), and
datasets with di\erent query lengths (average query length between 3 and 192 words)
and document lengths (average document length between 11 and 635 words). BEIR
uses the Normalized Cumulative Discount Gain (specifically, nDCG@10) metric for
evaluation.

Long NQ

Long NQ is an IBM dataset designed for evaluating the full RAG pipeline, based on a
subset of the NaturalQuestions dataset. The dev set has 300 answerable questions with
a corpus of 178,891 passages from 2,345 Wikipedia documents. Long NQ also provides
gold Wikipedia passages that are relevant for each question. During retrieval, the task is
to obtain the relevant gold passage from the corpus for every question.

Results

https://huggingface.co/intfloat/e5-base-v2
https://huggingface.co/intfloat/e5-base-v2
https://huggingface.co/intfloat/e5-small-v2
https://huggingface.co/intfloat/e5-small-v2
https://huggingface.co/BAAI/bge-base-en-v1.5
https://huggingface.co/BAAI/bge-small-en-v1.5
https://huggingface.co/spaces/mteb/leaderboard

Table 3. Performance comparison on the BEIR benchmark (MTEB retrieval tab)

Model BEIR-15 (NDCG@10)

BM25 42.02

ELSER 49.01

all-miniLM-L6-v2 41.95

ES-small-v2 49.04

ES-base-v2 50.29

BGE-small 51.68

BGE-base 53.25

slate.30m.english.rtrvr 01.20.2024 46.91

slate.125m.english.rtrvr-01.20.2024 49.37

slate.30m.english.rtrvr 06.30.2024 49.06

slate.125m.english.rtrvr-06.30.2024 51.26

Figure 2. Performance comparison on the BEIR benchmark (MTEB retrieval tab)

Table 4. Performance comparison on the Long NQ dataset

Model LONGNQ (NDCG@10)

all-miniLM-L6-v2 58.10

BGE-small 59.33

BGE-base 61.29

ES-small-v2 61.88

ES-base-v2 63.80

slate.30m.english.rtrvr 01.20.2024 59.94

slate.125m.english.rtrvr-01.20.2024 65.01

slate.30m.english.rtrvr 06.30.2024 62.07

slate.125m.english.rtrvr-06.30.2024 66.80

Figure 3. Performance comparison on the Long NQ dataset

Runtime Performance

The performance runtime is measured on a re-ranking task with 466 queries. For each
query we re-rank the top-100 passages obtained by BM25 and we report the average
time over all queries. The re-ranking was performed on a A100_40GB GPU.

Table 5. Run-time performance on re-ranking

Model Time/query

all-miniLM-L6-v2 0.18 sec

E5-small 0.33 sec

E5-base 0.75 sec

BGE-small 0.34 sec

BGE-base 0.75 sec

slate.125m.english.rtrvr 0.71 sec

slate.30m.english.rtrvr 0.20 sec

