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Abstract—This paper presents a new approach in the detection,
localization, and classification of short duration disturbances in the
power networks using a phase-corrected wavelet transform known
as S-transform (ST) and an extended Kalman filter (EKF). The
ST has excellent time-frequency resolution characteristics and pro-
vides detection, localization, and visual patterns suitable for auto-
matic recognition of power quality events. The EKF, on the other
hand, provides automatic classification and measurements of the
frequently occurring power frequency short duration disturbances
on the power networks. Thus, by combining both the ST and EKF,
it is possible to completely classify and measure the short duration
power quality disturbances. The proposed technique is applied to
both simulated and experimentally obtained short duration power
network disturbances in the presence of additive noise, and the re-
sults reveal significant accuracy in completely characterizing the
power quality events.

Index Terms—Extended complex Kalman filter (ECKF),
frequency estimation, noise rejection, S-transform (ST), short
duration disturbance (SDD), time-frequency localization.

I. INTRODUCTION

I N THIS PAPER, we propose a novel digital signal pro-
cessing technique for the detection, classification and

measurement of frequently occurring short duration distur-
bances (SDD) in the power networks, which are usually
contaminated with noise. The disturbance occurring in the
electric supply network is a major issue in manufacturing
industries and causes very expensive consequences. These
disturbances are primarily due to the use of nonlinear loads,
power electronics equipment, and unbalanced loads. A recent
survey attributes that 92% of power quality disturbances are
voltage sags [14]. It has been reported that an interruption in
the electric network or 30% voltage sag or swell for a very short
duration (three to four cycles) can reset programmable con-
trollers (PLC) for the entire assembly line. Such disturbances
should be detected and classified accurately so that control
action can be initiated. The proposed paper is an attempt in this
direction to improve power quality in distribution networks.

The past 20 years have heralded major improvements in
the field of signal analysis, along with the development of
mathematics and signal processing [1]. These new develop-
ments provide high-performance signal analysis because they

Manuscript received August 27, 2001; revised August 12, 2003.
P. K. Dash is with the Silicon Institute of Technology, Bhubaneswar, India.
M. V. Chilukuri is with the Multimedia University, Cyberjaya 63100,

Malaysia.
Digital Object Identifier 10.1109/TIM.2003.820486

employ more understandable signal representations than time
or frequency representation of signals. These potential tools
have been successfully applied in geophysics, acoustics, image
processing, data compression, and, recently, power quality
analysis [2]–[5]. Several techniques, leading to time-frequency
representation and applicable to SDD, are investigated here.

To analyze a distorted signal, a discrete short time Fourier
transform (STFT) is most often used. This transform performs
satisfactorily for stationary signals where properties of signals
do not change with time. For nonstationary signals, the STFT
does not track the signal dynamics properly. On the other
hand, the wavelet analysis provides a unified framework for
processing distorted signals. Wavelet analysis [6] is based on
the decomposition of a signal according to time-scale, rather
than frequency, using basis functions with adaptable scaling
properties; this is known as multiresolution analysis. A wavelet
transform (WT) expands a signal not in terms of a trigono-
metric polynomial but by wavelets, generated using transition
(shift in time) and dilation (compression in time) of a fixed
wavelet function called the “mother wavelet.” The wavelet
function is localized both in time and frequency, yielding
wavelet coefficients at different scales. This gives the WT much
greater compact support for analysis of signals with localized
transient components arising in power quality disturbances.
Several types of wavelets have been considered [7]–[9] for
detection, localization, and classification of power quality
problems as both time and frequency information is available
by multiresolution analysis. At first, the extraction of the
occurred disturbance requires its time duration estimation. This
information is vital as there is a need to obtain the sampling
frequency and the frequency subband containing most of the
spectral energy. However, this process is very much influenced
by the noise superimposed on the signal and the iterative nature
of the wavelet transform-based algorithms requiring different
sampling frequencies for different frequency subbands.

The S-transform (ST) [10], on the other hand, is an ex-
tension to the ideas of WT, and is based on a moving and
scalable localizing Gaussian window and has characteristics
superior to either of the transforms. The ST is fully convertible
from the time domain to two-dimensional (2-D) frequency
translation domain and then to familiar Fourier frequency
domain. The amplitude—frequency—time spectrum and the
phase—frequency—time spectrum are both useful in defining
local spectral characteristics. The superior properties of the ST
are due to the fact that the modulating sinusoids are fixed with
respect to the time axis, while the localizing scalable Gaussian
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Fig. 1. Hybrid ST Kalman filter.

window dilates and translates. As a result, the phase spectrum
is absolute in the sense that it always refers to the origin of the
time axis. The real and imaginary spectrum can be localized
independently with a resolution in time corresponding to the
basis function in question, and the changes in the absolute
phase of a constituent frequency can be followed along the
time axis. The phase information associated with the ST makes
it an ideal candidate for the detection and classification of
nonstationary signals.

Among the several numerical techniques, Kalman filtering
[11], [12] approaches have attracted widespread attention, as
they accurately estimate the amplitude, phase and frequency of
a signal contaminated with noise and harmonics. In this paper,
a variation of the nonlinear Kalman filter [13] is presented
which simplifies the modeling requirement for amplitude and
frequency estimation of a signal.

The ST matrix of the SDD signal is computed, and it is used to
detect, localize, and visually classify the SDD. Then, the short
duration distorted part of the signal is fed to a Kalman filter
to estimate the amplitude, frequency, and harmonic contents to

provide automatic recognition and measurement of the distur-
bance. Extensive computer simulation and laboratory tests are
performed to validate the efficacy of the proposed approach.

II. S-TRANSFORM (ST)

A. Basic Principles

The ST is an extension to the Gabor transform and WT and
falls within the broad range of multiresolution spectral analysis,
used with a translatable and scalable Gaussian window, where
the standard deviation is an inverse function of the frequency,
thus reducing the dimension of the transform. With the intro-
duction of a dilation parameter, the localizing Gaussian function

is defined as

(1)

where is the standard deviation. The Multiresolution ST is
defined by

(2)

This falls within the definition of the multiresolution Fourier
transform. The Gabor transform is a particular case of

with held constant. The primary purpose of the dila-
tion (or scaling) parameter is to increase the width of the window
function for lower frequency and vise versa, and is con-
trolled by selecting a specific functional dependency of with
the frequency . The ST performs multiresolution analysis on
the signal, because the width of its window varies inversely with
the frequency. This gives high time resolution at high frequen-
cies and high frequency resolutions at low frequencies. We have
chosen the width of the window to be proportional to the period
of the cosinusoid being localized

(3)

where T is the time period. The choice of unity for the constant
in (3) makes the Gaussian window in (1) the narrowest in the

time domain. The ST may be written as

(4)

One can see here that the zero frequency of the ST is identically
equal to zero for this definition of . This adds no informa-
tion. Therefore, is defined as independent of time and is
equal to the average of the function , i.e.

(5)

For the discrete ST, can be written in discrete form as
, where p varies from 0 to and is known as discrete
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Fig. 2. (a) Example of a 50-Hz signal with 16% of third harmonics. (b) S
Transform contour plot. (c) Estimated amplitude plot.

time series of the signal h(t). Discrete Fourier transform of the
time series can be expressed as

(6)

where and the inverse discrete Fourier
transform is

(7)

The ST in discrete case is the projection of the vector defined by
the time series onto a spanning set of vectors. Since span-
ning vectors are not orthogonal and the elements of S matrix
are not dependent, each basis vector is divided into localized
vectors by an element by element product with shifted Gaus-
sians, such that sum of these localized vectors is the original
basis vector. The ST of the discrete time series is given
by

(8)

Fig. 3. (a) Example of sudden frequency change. (b) ST contour plot.
(c) Estimated frequency plot.

For

(9)

where , and .

B. Implementation of ST

The computation of the ST is efficiently implemented using
the convolution theorem and FFT. The following steps are used
for the computation of ST.

i) Denote , and as , , , and ,
respectively, for the evaluation of ST.

ii) Compute the DFT of the signal using FFT software
routine and shift spectrum to .

iii) Compute the Gaussian window function
for the required frequency n.

iv) Compute the inverse Fourier transform of the product
of DFT and Gaussian window function to give the ST
matrix.

The output of the ST is an matrix, whose rows pertain
to frequency and columns indicate time. Each column thus
represents the “local spectrum” for that point in time. From the
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TABLE I
STANDARD DEVIATION AND HARMONIC FACTOR

TABLE II
STANDARD DEVIATION AND HARMONIC FACTOR

TABLE III
STANDARD DEVIATION AND HARMONIC FACTOR

ST matrix, we obtain the frequency-time contours having the
same amplitude spectrum and these contours can be used to
visually classify the nature of the disturbance event. However,

for automatic classification of the disturbances, the standard
deviation (SD) of the most significant contour having the largest
frequency amplitude versus time is calculated. Thus SD = std
(contour c1) and it can be considered as a measure of the
energy of the signal with zero mean. The standard deviation of
the disturbance signal is found to indicate whether the signal
belongs to normal class or the disturbed one. Further, it can be
used to distinguish between short duration power frequency
disturbances or high frequency oscillatory transients. Once
the signal is found to contain a disturbance the next step is
to compute its duration and use the extended Kalman filter
(EKF) for the estimation of amplitude, frequency, phase, and
the harmonic content during the distortion. The next section
describes an EKF for the computation of the above quantities,
which can be used for further classification of the nature of
the disturbance, that is, whether it is a voltage sag, or voltage
swell or interruption.
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(a)

(b)

Fig. 4 (a) Experimental setup. (b) Laboratory setup for simulation of sag, swell, and momentary interruption.

III. EXTENDED KALMAN FILTER

Detection, measurement, and classification are the three
important aspects for power quality analysis, where as ST
or WT can only detect and classify the distorted signals.
Several methods are already developed for the measurement
of percentage change in amplitude, frequency, and the har-
monic content of the distorted signal [11]–[13]. Out of all the
approaches, the Kalman filtering approach is the best one.
The important fact about the Kalman filtering approach is
that it can perfectly track the percentage change in amplitude,
frequency, and the harmonic content of the abnormal power
signal in the presence of noise [13]. Taking this advantage into
consideration, in this paper, we have implemented Kalman
filter approach for classification and measurement purpose. The
fundamental principle of Kalman Filter approach is described
below.

The discrete values of the voltage signals of a power network
are transformed into a complex vector using the well-known

-transform used in power system analysis. This complex
voltage vector is then modeled along with frequency in a non-
linear state-space form and the theory of extended Kalman filter
is used to obtain the state vectors iteratively. The computation
of Kalman gain and choice of initial covariance matrix are
crucial in determining the speed of convergence of the new
algorithm and its noise rejection property. The characteristic
of the model is that only two states are required to extract the
signal frequency with the extended complex Kalman filtering
(ECKF). A variety of simulated power network conditions are
used for the application of this new technique.

The discrete representation of three phase voltages of a power
network is obtained as

(10)

where is the peak value of the fundamental component,
, and are noise terms that can be any combina-

tion of white noise and harmonics, is the sampling interval,
is the sampling instant (iteration count), is the phase funda-

mental component, and is the angular frequency of the voltage
signal ( being the system frequency). The
components are obtained from the above discrete phase voltages
as

(11)

A complex voltage is obtained from (11) as

(12)

where is amplitude of the signal and is its noise com-
ponent.

The discrete observation signal can now be modeled in a
state-space form as

(13)
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The measurement model becomes

(14)

where the states and are

(15)

and sampling interval.
The above linear stochastic filter is also equivalent to the fol-

lowing nonlinear one

and (16)

where

and (17)

The observation matrix is obtained as

a nonlinear function

The ECKF is applied to the linear system described in (16). The
ECKF measurement update equations are

(18)

(19)

(20)

and the time update equations are

(21)

(22)

where

(23)

and Kalman gain matrix.
or Covariance matrix

measurement noise variance Observation vector
represent conjugate and transpose of a complex quantity,
respectively.

In the above formulation, the state-space representation given
in (13) can be expanded to include decaying dc and harmonic
components if necessary. For example, if there is a fifth har-
monic in the signal, the state-space model becomes

(24)

The decaying dc component, (where and are
decaying dc amplitude and decay rate, respectively) is modeled
as

and (25)

Fig. 5. (a) Example of 25% voltage swell. (b) ST contour plot. (c) Estimated
amplitude.

This nonlinear filter is quite stable regardless of the initial
conditions of the states and , provided the observation
signal is bounded, which is usually true in a practical system
like the power system. After the convergence of the state vector
is attained, the frequency is calculated as

(26)

where stands for the imaginary part of a quantity.
Further, the amplitude of the signal can be obtained from

(27)

IV. COMPUTATIONAL AND EXPERIMENTAL TEST RESULTS

Fig. 1 shows a Hybrid ST and Kalman filtering approach to
classify and measure the changes in amplitude and frequency
of the pure sinusoidal signal in distorted environment. Different
cases of sag, swell, momentary interruption, and frequency
change are tested using this approach. Test 1 analyzes different
types of major power quality problems, such as sudden fre-
quency change and harmonic distorted signal, using simulated
waveforms using MATLAB software package. Test 2 analyzes
distorted signal generated using experimental setup. The
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Fig. 6. (a) Example of 45% voltage swell. (b) ST contour plot. (c) Estimated
amplitude.

chosen sampling rate is 2.5 kHz, for Test 1 and 2.3 kHz for
Test 2, and the frequency (f) is normalized with respect to a
base frequency. The ST output shows the plot of the amplitude
contours of a given magnitude in the time-frequency coordinate
system. The SD of the contour number 1(having the largest
frequency amplitude variation with time) is computed and used
to detect the presence of disturbance and its duration is calcu-
lated from the change in frequency amplitude of the contour
number 1. Further SD indicates whether the disturbance is a
steady state short duration disturbance or other high frequency
phenomenon. The flow chart shown in Fig. 1 clearly indicates
that after detection and localization, the EKF is used to classify
and estimate the parameters of the disturbance signal. Fig. 1
shows the flow chart of the hybrid detection and estimation
algorithm. The following sections provide computational and
experimental results.

1) Test 1: Computational Results: To illustrate the appli-
cation of the hybrid approach, the following case studies are
presented.

a) Harmonic Distortion: A fundamental sine wave
voltage signal is superimposed with a 16% third harmonic

component and the ST contour is computed and plotted for this
distorted signal. Fig. 2 shows the original distorted signal and
the corresponding ST output contour. This figure also presents
the Kalman filter output where both the fundamental and
third harmonic components are shown. The standard deviation
of the distorted signal is found to be SD 0.0228 and the
harmonic factor (HF) is computed as HF 0.159. With the
logic presented in the flow chart (Fig. 1), the distorted signal
is identified to have third harmonic distortion of 15.9% in
comparison to the fundamental.

b) Sudden Frequency Change: Fig. 3(a) shows the wave-
form, when the frequency is suddenly reduced from 50 Hz
to 45 Hz. Such a distorted signal is analyzed by the present
approach and the results are plotted as in Figs. 6(b) and (c),
respectively. The frequency distortion is reflected in the mag-
nitude of the standard deviation SD which increases from
zero to 0.087, and the harmonic factor HF 0.0285. For
this frequency change, the time-frequency curve shows local-
ized contours, which provide an excellent visual classification.
However, with SD 0.05, the waveform is identified to belong
to a class other than voltage sag, voltage swell, or interrup-
tion. The Kalman filter accurately tracks the amplitude of the
frequency changes of the original 50-Hz signal.

c) Standard Deviation of Short Duration Distur-
bances: Several typical short duration power network
disturbances like voltage sag, voltage swell, harmonics, and
voltage interruption are simulated and the standard deviation
SD of the contour no. 1 is evaluated in each case. Tables I–III
show this value along with amplitude A, and harmonic factor
HF for different magnitudes of sag, swell, and interruption,
with or without noise. Here, the signal to noise ratio (SNR)
is taken as 30 dB, which is approximately 3.5% of the signal
amplitude. Further, the maximum amplitude of the third and
fifth harmonic components of the signal is limited to 20% of
the fundamental. The presence of sub harmonics and higher
frequency harmonics in the signal does not affect substantially
in the detection, localization, and classification of the distur-
bance as their amplitudes are usually very small and they can
be treated as noise components.

2) Test 2: Experimental Setup: Experimental test data
is generated using practical setup, as shown in Fig. 4(a).
Then, both the signal-processing techniques are applied to the
acquired signals. The sampling rate is chosen as 2.3 kHz. The
following case studies are presented in this paper to evaluate
the performance of the above approach. Different power
quality signals like sag, swell, and momentary interruption
are obtained from the experiment conducted in the laboratory.
Fig. 4(b) shows the practical setup to obtained sag, swell and
momentary interruption signals. The load is fed from a 3 kVA,
230:230 single-phase transformer. Sag, swell, and momentary
interruption signals are obtained by switching on and switching
off the load, respectively. The data samples are collected by
stepping down the load voltage to 12 V and then converted to
digital signal by data acquisition card (DAC) and collected in
the PC using the program written in C. The data acquisition
system is shown in Fig. 4(a).

Each of the figures contained following plots.

a) Original distorted signal.
b) ST contour plots.
c) Estimated amplitude or frequency.

Authorized licensed use limited to: VIT University. Downloaded on June 29,2024 at 11:43:23 UTC from IEEE Xplore.  Restrictions apply. 



DASH AND CHILUKURI: HYBRID S-TRANSFORM AND KALMAN FILTERING APPROACH 595

Fig. 7. (a) Example of voltage sag. (b) ST contour plot. (c) Estimated
amplitude.

3) Results From Laboratory Experiment:
a) Voltage Swell: The voltage swell describes the brief

increase in the magnitude of the rated system voltage as shown
in Figs. 5(a) and 6(a). The hybrid ST and Kalman filtering
(HSTKF) approach is applied to this sudden rise of the signal
for a short duration. It is observed from the results that the new
approach perfectly detects, localizes, classifies, and tracks the
amplitude of the signal in the presence of harmonics and noise.
Different cases of voltage swell (25% and 45%) are tested
here to show the efficacy of the proposed approach. The ST
contour plots and the Kalman filter amplitude tracking plots
are displayed in Figs. 5(b), 6(b), 5(c), and 6(c), respectively.
The tracking error is found to be less than 0.5%.

b) Voltage Sag: In the case of voltage sag, there is a drop
of 10 to 90% of the voltage lasting for 0.5 cycle to 1 min, and
the cause for the sag can be ascribed to the fault, switching of
heavy loads and starting of large motors. Figs. 7(b) and (c) de-
pict the results of the ST contour plot and the Kalman filter am-
plitude-tracking plot. From the graphs presented in Fig. 7, it is
noticed that the present approach clearly detects, localizes, clas-
sifies and measures the percentage of sag in the distorted signal.

Fig. 8. (a) Example of momentary interruption. (b) ST contour plot. (c)
Estimated amplitude.

The measurement error is less than 0.5% as observed in the case
of swell.

c) Momentary Interruption: A momentary interruption
may be seen as a momentary loss of voltage on a power system.
Such disturbances describe a drop of 90–100 % of the rated
system voltage for a duration of 0.5 cycle to 1 min. Fig. 8(a)
shows a waveform of momentary interruption. The ST is used
here for detection and classification of the distorted signal.
Fig. 8(c) shows the estimated amplitude plot, which indicates
that the above fault is a momentary interruption type and is
having zero amplitude. From the above results, it is evident that
by using an integrated ST and Kalman filter, we can accurately
detect, localize, classify, and measure the disturbances of power
quality event signals.

V. CONCLUSION

This paper introduces the use of the ST and Kalman filtering
approach as powerful analysis tools that can be used to clas-
sify and measure the system response to nonstationary signals.
Using the ST alone, one can detect, localize, and visually clas-
sify the short duration events in the signal. Then, the Kalman

Authorized licensed use limited to: VIT University. Downloaded on June 29,2024 at 11:43:23 UTC from IEEE Xplore.  Restrictions apply. 



596 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 53, NO. 2, APRIL 2004

filtering technique is used to extract important features from
the analyzed signal, and an integrated ST and EKF approach
can classify the nature of the disturbance present in the signal.
Further, the EKF accurately tracks the change in amplitude, fre-
quency, phase, and harmonic content of the distorted signal. The
method is applied on different sets of data obtained from com-
puter simulations and laboratory tests, and accurate results are
obtained in most of the case studies.
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