
Vol.:(0123456789)1 3

Archives of Computational Methods in Engineering (2022) 29:3087–3108 
https://doi.org/10.1007/s11831-021-09690-8

REVIEW ARTICLE

Investigation and Implementation of Model Order Reduction 
Technique for Large Scale Dynamical Systems

Santosh Kumar Suman1   · Awadhesh Kumar1

Received: 8 April 2021 / Accepted: 26 November 2021 / Published online: 14 January 2022 
© The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2021

Abstract
Model Order Reduction (MOR) has demonstrated its robustness and wide use in engineering and science for the simulation 
of large-scale mathematical systems over the last few decades. MOR is currently being intensively optimized for dynamic 
systems that are becoming increasingly complex. MOR broad applications have been identified not only in the modeling 
but also for optimization and control engineering applications. In the present article, various methods related to MOR for 
large-scale linear and nonlinear dynamic systems have been analyzed, mainly pertaining to electrical power systems, control 
engineering, computational system theory, and design. The paper focuses on a detailed theoretic Perspective for MOR of 
the large-scale dynamical system to address the key challenges to the approximation along with their application. Firstly, 
a complete description of the literature search for various approximation techniques has been presented and the various 
inferences have been mentioned as the outcome. One of the drawbacks that we have found out of the investigation, has been 
taken as a sample problem. The key demerit of the balanced truncation approach is that the ROM steady-state values do not 
correspond with the higher-order system (HOS). This drawback has been eliminated in the proposed approach, which leads 
to the hybridization of balanced truncation and singular perturbation approximation (SPA) into a novel reduction method 
without the loss of retaining its dynamic behavior. The reduced system has been so designed to preserve the complete 
parameters of the original system with reasonable accuracy. The approach is based on the retention of the dominant states 
or modes of the system and is comparatively less important once. The reduced system evolves from the preservation of the 
dominant states or modes of the original system and thus retains stability intact. The methodology presented has been tested 
on two typical numerical examples taken from the literature review, to examine the performance, precision, and comparison 
with other available order reduction methods.

1  Introduction

The approximation of linear time-invariant large scale 
dynamical (LSD) systems is important in many engineer-
ing problems, particularly in the design of control sys-
tems, where the engineer is confronted with the control 
of a physical system whose analytical model is described 
as a high order linear time-invariant (LTI) system. LSD 
systems can be used to model a wide range of practical 
systems. It is critical to investigate the control problem 

of LSD systems to enhance the control performance of 
such systems [1, 2]. LSD systems, which have been made 
up of a series of connected subsystems are widely used in 
practical applications [3, 4]. The development of a math-
ematical model begins with the investigation of all physi-
cal systems, such as aircraft, chemical plants, refineries, 
electrical grids, traffic congestion networks, digital com-
munication, and control systems, etc. In many practical 
situations, a complex, HOS is derived from theoretical 
considerations [5, 6]. Realistic systems have often been 
observed to consist of many interactive subsystems with 
their characteristics, and the resulting system size may be 
too large to be conveniently handled when such subsys-
tems are interconnected. A typical example of this situa-
tion is the dynamic stability studies of modern intercon-
nected power systems. System equations are linear under 
dynamic conditions, but the total number of differential 
equations describing system performance increases rapidly 
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as the number of interconnected machines increases. Spe-
cial numerical techniques for calculations are required for 
a system of a high order. The analysis of such a HOS is not 
only time-consuming but also not cost-effective for online 
implementation.

The complexity of the system also makes it difficult to 
gain a thorough understanding of its behavior. An uncom-
fortably HOS may present difficulties in its analysis, synthe-
sis, or identification. Preliminary design and optimization 
of such systems can often be accomplished more easily if a 
ROM is derived that provides a good approximation of the 
system. It is thus preferable to replace a high order system 
with a low order system while retaining the main qualitative 
features of the original system, such as the constant time, 
damping ratio, natural frequency, and stability ratio. Thus, 
the MOR method contributes to a better understanding of 
the system. The model must also be mathematically simple 
so that it can be easily analyzed, and the results studied. 
In short, the main goals of obtaining ROMs are to develop 
a better understanding of the higher order of the original 
system, to reduce computational complexity, to reduce hard-
ware complexity, to make designs feasible, and to obtain 
simpler control legislation.

This paper is split into six parts. The first part provides 
an overview and detailed summary of the literature review 
for large-scale systems. Section  2 defines the Problem 
Statement. Theoretical Perspective for MOR is described 
in Sect. 3. Section 4 describes the application of the MOR 
method for LTI large-scale dynamical systems to reduce, 
followed by numerical experiments and results that are 
compared to methods from the literature to determine the 
validity of the proposed method in Sect. 5. Finally, Sect. 6 
discusses the premise and future scope of the work.

2 � Problem Statement

Let us consider an nth order SISO linear time-invariant 
higher-order system represented by the following transfer 
state-space representation by Eq. (1):

where x ∈ ℝn , u ∈ ℝ
p , y ∈ ℝp with ‘p’ inputs and ‘q’ out-

puts and A ∈ ℝn×n , B ∈ ℝn×m , C ∈ ℝp×n and D ∈ ℝ
p×m are 

constant matrices of appropriate size. p = q = 1, the original 
system is referred to as the SISO system, otherwise, it will 
be called the multi-dimensional system. The MOR problem 
consists of finding an approximate system of order ‘r’ r(≪ n) 
described by

(1)

Such a dimensional SISO Dynamic system and order model 
are similar in the important aspects of their characteristics and 
xr ∈ ℝr , u ∈ ℝ

p , yr ∈ ℝp and A ∈ ℝr×r , B ∈ ℝr×m , C ∈ ℝp×r and 
D ∈ ℝ

p×m are constant matrices of reduced-order model and 
reduced output yr should be a close approximation of y for a 
given set of inputs [7, 8]. The transfer function associated with 
original system Eq. (1) representations may be expressed by

or

where G(s) is expressed as and ni, di are scalar constants of 
the HOS system.

The challenge is to design a ROM (5) that retains the impor-
tant properties of the original and approximates the output as 
closely as possible [9, 10], The ROM is expressed as Gr(s) and 
obtained is described as follows:where

or

where suffix ‘r’ is denoted and mj, nj are a scalar constant of 
the ROM [11].

3 � Theoretical Perspective for MOR

Simplicity while preserving the features of interest will be 
one of the most desirable features of such models. Since the 
models can be developed with different goals and objectives 

(2)

(3)G(s) = D + C
[
sIn − A

]−1
B

(4)G(s) =
N(s)

D(s)
=

n0 + n1s + n2s
2 + ⋅ ⋅ ⋅nm−1s

m−1

d0 + d1s + d2s
2 + ⋅ ⋅ ⋅ + dns

n

(5)G(s) =

m−1∑
i=0

nis
i

n∑
i=0

dis
i

(6)Gr(s) = Rr(s) = Dr + Cr(sIr − Ar)
−1Br

(7)Gr(s) =
Nr(s)

Dr(s)
=

n̂0 + n̂1s + n̂2s
2 + ⋅ ⋅ ⋅n̂r−1s

r−1

d̂0 + d̂1s + d̂2s
2 + ⋅ ⋅ ⋅ + d̂rs

r

(8)Rr(s) =

r−1∑
j=0

n̂js
j

r∑
j=0

d̂js
j
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or with different points of view, a given system can have 
more than one model, each satisfying some predefined goals. 
Dissimilar people progress different models for the same 
system; if their perception or point of view changes over 
time, the same individual may develop dissimilar models for 
the same system. The model's usability is a crucial aspect, 
especially in online controls. Simpler models commonly 
give a better feel of the original system [12–14]. The approx-
imation method theoretical survey is provided in Tables 1 
and 2. Several researchers have proposed a wide variety of 
MOR methods over the past few decades. The goal of MOR 
can be summarised as follows:

	 (i)	 The prominent points that should always be taken 
care of while deriving the ROM, are as follows [15]

•	 Stability should be preserved.
•	 Passivity should also be maintained or preserved.
•	 The method should be reliable and effective in com-

putation.
•	 The method should be reliable and effective in com-

putation.
•	 The methods must adopt some specific requirements 

for error tolerance.
•	 High fidelity representation of the original large-

scale system.
•	 A considerable difference between the size of the 

ROM and the original system.
•	 Lesser approximation error and existence of global 

error bound.
•	 Numerically stable and efficient procedure.
•	 Economize in terms of hardware while synthesizing 

the system.

	 (ii)	 Some of the reasons for MOR are as follows

•	 Fast and ease in the understanding of the system 
Reduced computational burden.

•	 Reduced computational burden
•	 Reduced Controller synthesis
•	 Controller procedure making reasonable designs.
•	 Improving the computer-aided system design 

approach.
•	 All of the above results in the best cost-effective 

solution.

 

3.1 � A Systematic Literature Review of Inference 
Strategies for MOR

•	 Researchers are either developing new algorithms or 
improving the existing algorithms for MOR.

•	 Control design can be done after the approximation of a 
system or even approximation-based control design can 
be achieved.

•	 Mixed methods (a combination of two existing methods) 
are widely available in the literature.

•	 MOR for real-time systems such as the power system 
model is the focus of many researchers.

•	 Much attention has been given to stability preserving 
ROM.

•	 Structure and passivity preserving ROM is a new shift in 
this research area.

•	 Work on MOR for parametric systems, interval systems, 
and hybrid systems can be found and still work on it is 
going on.

•	 Researchers are also developing nonlinear balancing 
methods, but so far these can only be used for systems of 
very limited size (< 100).

3.2 � MOR From Mathematics to Innovative 
Applications

MOR was initially being developed in system theory and 
control engineering, which studies the properties of dynamic 
systems in application to reduce their complexity while pre-
serving as much of their input–output behavior as possible. 
Numerical Mathematicians have also taken up the field, par-
ticularly after publishing methods such as PVL (Padé via 
Lanczos). MOR is a multidisciplinary topic of great interest 
over the past 40 years. This is because engineering problems 
often involve large-scale systems or very complex processes 
that have to be controlled using low-order controllers. The 
ROMs are required to minimize the computational effort 
during analysis, simulation and controller design of high 
order practical systems [16–18]. ROMs are valuable for 
the following reasons: ROM are neither robust concerning 
parameter changes nor cheap to generate. A scheme based 
on a ROM database dramatically reduces the cost of comput-
ing aeroelastic forecasts while maintaining good accuracy.

•	 Analysis and synthesis of the system
•	 Predicting transient response sensitivities of high order 

systems using ROMs
•	 Design of controllers and observers
•	 Advanced applications in the area of integrated circuits, 

microfluidic devices, innovative materials, etc.
•	 Innovative methods to reliable MOR in networks.
•	 Development of online simulators of system
•	 They are predicting transient response sensitivities of 

high-order systems using ROMs.
•	 The area of economic and financial systems.
•	 Control system design
•	 New mathematical tools for ROM
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Table 2   A summary of general comparisons of approximation techniques

S. No. Techniques References Compu-
tational 
efforts

Stability/pas-
sivity preserva-
tion

Applicability to multi-
variables systems

Special attribute

Frequency-domain
1 Continued fraction 

expansion (CFE) 
method

[97] Low No Yes (but no. of inputs 
must be equal to no. of 
output)

Gives good matching in the 
low and high-frequency 
ranges

2 Moment matching 
method (MMM)

[98] Low No No ROM depends on the 
choice of the no of 
moments to be matched

3 Padé approximation (PA) [68, 69, 99–101] Low No No Taylor series expansion
4 Routh Approximation 

(RA)
[102] Medium Yes Yes Can handle full models’ 

expansions belong to 
Padé expansion belong 
to Padé expansions about 
one or more points

5 Routh Hurwitz array 
(RHA), other mixed

[66, 103, 104] Low Yes Yes A matching Taylor series 
s = 0 can handle unstable 
full models

6 Error minimization [105–107] High Yes yes Commonly involves 
extended computa-
tions and often leads to 
iterations solution of 
nonlinear equations

7 Stability equation method 
(SEM)

[75, 76] Low Yes Yes The proposed method and 
the form of stability equa-
tion produce identical 
results for low-frequency 
systems

8 Differentiation method [108] Low No Yes
9 Truncation [109–111] High Yes Yes
10 Dominant pole retention [112] Medium Yes No
11 Factor division [113–115] Low Yes Yes
12 Mihailov stability cri-

terion
[116–118] Low Yes No

13 Induced norm minimiza-
tion

[119, 120] Low Yes No Effective for non-dominant 
or all dominant full mod-
els when other methods 
fail

14 Mixed Padé-Routh [66, 121] Low Yes Yes Routh expansion may fail 
for the case of pole-zero 
cancellation straight 
Pade´ would not fail

15 Mixed stability equation-
Padé, other mixed

[74, 122, 123] Low Yes yes Used the benefit of each 
method to avoid the 
drawback of the method

Time-domain
17 Modal analysis [124, 125] High Yes Yes Computation of eigenval-

ues and eigenvectors is 
necessary

18 Minimal realization [126–128] Medium Yes No Requires evaluation of 
system moments and 
Hankel values matrix 
formulations
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•	 Adaptive control design with the help of low order mod-
els.

•	 Suboptimal control derived by simplified models.
•	 Power system stability
•	 Providing that a guideline for online interactive modeling

3.3 � Key Challenges of MOR

Rethinking about the linear/nonlinear MOR problem, a 
few prominent and significant challenges in MOR has been 
pointed out which are as follows:

•	 Modeling uncertain mechanical systems is challenging 
and necessitates the careful analysis of an enormous 
amount of data- Uncertain mechanical systems [19, 20].

•	 Multi-disciplinary optimization in MOR [14, 21]
•	 Stability preservation for large scale dynamical systems 

[22–30]
•	 Passivity Preservation [31–36]
•	 MOR for nonlinear complex systems & dimensionality 

reduction [12, 37–41]
•	 Challenges in MOR for industrial problems [21, 42–44]
•	 VLSI devices and layout optimization [27, 45, 46]
•	 Optimization technology and device modeling in micro 

and nano-electronics [47–52]
•	 Optimization of the electrical power system and smart 

city [14, 53]
•	 A Posteriori error estimation [54–57]
•	 Projection-based ROM [58–60]
•	 Aeroelasticity loads analysis [61]
•	 The financial and economic system in MOR [62]

4 � MOR of LTI Large‑Scale Dynamical System

The most important problem in the appearance of complex 
activities of a higher dimension system is that it occurs in 
many areas, including complicated transport, ecological sys-
tems, electrical equipment, aeronautics, hydraulics, etc. [5, 
143–145].

All these complex and large systems with conventional 
techniques are difficult to model. The combination of these 
is also considered to be big (large) if it wishes to be detached 
for each numerical measurement to many structured machin-
eries or small structures for practical purposes [16, 146, 
147]. Then perhaps a system is complex and wide enough 
to fail to generate the proper solutions with realistic compu-
tational efforts by conventional modeling, analysis, device 
design, and approximation strategies [148, 149]. Studying 
this physical system [17] starts with structuring the model, 
which can be considered as an enthusiastic example of this 
kind of structure, which is motivated by a task of control 
in preparing and evaluating a model [149–151]. We are 
presenting a high stage of negotiation on computing in this 
first segment, which is important for detailed incident model 
observations in perspective and industry implementation 
[16, 152].

Several MOR solutions were mainly provided in two 
ways, namely frequency and time domain [155]. Research-
ers' reduction techniques have both benefits and inconven-
iences. One common weakness in the methods is that even 
if the HOS is stable, the reduced-order system is unstable 
[5, 149, 153] and steady-state matching. The other draw-
backs are the low precision in average ranges as well as high 

Table 2   (continued)

S. No. Techniques References Compu-
tational 
efforts

Stability/pas-
sivity preserva-
tion

Applicability to multi-
variables systems

Special attribute

19 Aggregation [129–131] Medium Yes Yes Also deriving state feed-
back suboptimal control, 
preserved internal struc-
tural properties (eigen-
values)

20 Optimal reduction [132] Low Yes No
21 Balanced realization 

[133]
[101, 134] High Yes Yes

22 Hankel norm approxima-
tion (HNA)

[85, 90, 135, 136] High Yes Yes Priori upper and lower 
bound approximation 
error, Guaranteed error 
bound

23 Singular perturbation 
approximation

[137–139] High Yes Yes If the calculation has a 
global error, it can be 
used entirely automati-
cally

24 Krylov [25, 26, 81, 140–142] High No Yes Improve the ill-condition-
ing
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frequency and the non-minimum phase characteristics [136, 
154]. Based upon the dominant poles method, numerous 
mixed methods have been suggested by [155, 156], the con-
tinued method and time matching fraction expansion can 
produce stable systems models. In the literature search, there 
are numerous approaches for reducing models of LSD sys-
tem, such as a ROM algorithm, which was presented with 
a Pade´ approximation [63, 157, 158] and MOR of state 
linear time-invariant system based on the theory of balanced 
realization was initially firstly suggested by [159] in which 
the realization term balanced is selected for the system 
state configuration and partitions of the modes [160]. If the 
steady-state matches the balanced truncation of the steady-
state value and the steady-state error of the LSD system is 
not kept, the BT reduction models obtained after truncation 
would have a less controllable and less measurable status. 
Addressed that the weak subsystem removed can be used to 
maintain the steady-state BT gain using the SPA approach 
[137, 161–166]. Preserving the ratio of steady-state output 
to steady-state input of the BT model for the minimal sys-
tem using the SPA approach, which can be used to reduce 
the system to stable, minimal, and internal balancing [137].

The contribution of the work is that, with the traditional 
BT method, it is easy to derive a ROM that may fit well with 
the original system, but in most cases, it may be possible to 
observe a steady-state value mismatch. Although various 
researchers have used SPA to prevent such demerits from 
occurring. We, too, have successfully applied this concept in 
one of our works. The interesting part of the present work is 
that, with simple algorithmic modifications, it leads to a new 
modified algorithm based on a hybrid approach with the BT 
method and the SPA approach. It is referred to as a balanced 
singular perturbation approximation (BSPA) method. The 
advantage of the methodology lies not only in its steady-state 
matching, but also in its applicability to LSD systems, as 
shown by some of the examples derived from the published 
work, and also in comparison with the existing methods 
available in the literature to validate the effectiveness and 
superiority of the proposed method.

4.1 � Balanced Truncation Method

A systems realization is balanced if its observability and 
controllability gramians are equal, meaning each state is 
controllable and observable. When this is done, one finds 
a reduced-order model by deleting those states that are 
least controllable and observable (as measured by the size 
of HSVs) provides a measure of energy for each state in a 
system structure in control theory. They are the basis for 
a balanced reduction of the system, which retains high 
energy states while discarding low energy states. The ROM 
obtained via this method has significant characteristics of 
the original systems [92, 167, 168].

The main idea is that the singular values of the con-
trollability gramians correspond to the amount of energy 
required to move the corresponding states in the system. 
This balanced truncation process is a very interesting and 
powerful generalization of minimal realization theory, 
which only eliminates the completely unobservable and 
uncontrollable states from a given system model to furnish 
a minimal realization. This paper aims to construct a new 
model order reduction strategy to simplify a large-scale 
linear dynamical (LSLD) system.

In Table 3, the Balanced Realization (BR) Algorithm 
to derive ROM from higher-dimensional systems has been 
presented. In the BR process, a higher dimensional sta-
ble structure may be controllable and observable at once. 
However, as reported in the literature, a transformation 
still needs to be established in many situations [159]. 
Then, it is transformed into a unique form of controllabil-
ity and observability gramians, which are further equal. 
This leads to a diagonal matrix 

∑
 , consisting of Hankel 

singular values at its diagonal, ultimately ordered in their 
dominance. Such kind of realization is called BR or inter-
nally balanced realization. This balancing of a given sys-
tem is the first step into a category of methods for MOR, 
referred to as the BT method [159, 169].

4.2 � Proposed Hybrid Method for Approximation

The proposed algorithm is the result of the hybridiza-
tion of the Balanced truncation and Singular perturba-
tion approximation approach. It consists of two steps as 
follows:

Step 1 The ROM obtained using the balanced truncation 
method [141, 148] algorithm has been discussed in Table 3 
of Sect. 4.1.

The Steps of the order reduction algorithm using the Bal-
anced Truncation Method may be described as followed.

To understand the balanced truncation method, we need 
to introduce two characteristics of a state: controllability 
and observability.

The controllability gramian ( GC ) and observability gra-
mian of the system is defined as follows:

The matrix Gc,Go is a symmetric positive-semidefinite 
matrix called controllability and observability gramian, 
respectively. It is a solution of the following Lyapunov 
equation

(9)GC =
∫

∞

0

eA�BBTeA
T�d�

(10)GO =
∫

∞

0

eA�CTCeA�d�
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Assumption: The nth-order dimensional system is an 
asymptotically stable system and also minimal. Moreover, 
the state-space equation of the original system or the pair 
(A0, B0) states controllable if and only if the n × nm state 
controllability matrix and pair (A0, C0) is observable if the 
np × n observability matrix [159].

By assumption, both gramians GC and GO are a positive 
definite and unique symmetric matrix explanation to the 
couple of gramians. Since their implementation is minimal.

Both gramians satisfy the following linear Lyapunov 
equations [170, 171].

In control philosophy, eigenvalues express system stabil-
ity, although HSV describes the “energy” of each state in 
the system.

Again, G, eigenvectors (as well as eigenvalues) are com-
pletely dependent on the choice of basis. Therefore, one may 

(11)
AGC + GCA

T = −BBT

ATGO + GOA = −CCT

} speak of dominant controllable states only relative to a certain 
basis.

Numerically we express as a stable state-space system 
Eq. (1), its HSV are well-defined as the square roots of the 
eigenvalues of P Q, ordered non increasingly, are called 
Hankel Singular Values: �i =

√
�i(GCGC , respectively. For 

simplicity, such singular values (SV) are generally ordered 
downward to truncate states that match smaller Hankel sin-
gular values as follows.

The Hankel singular values are also the singular values of 
the (infinite-dimensional, but finite rank) Hankel operator, 
which maps past inputs to future system outputs.

This is also a significant action of the minimality of real-
ization of the original system is the diminishing positive 
number such that

(12)𝜎1 ≥ 𝜎2 ≥ 𝜎3 ≥ 𝜎4 ≥ 𝜎r ≥ 𝜎r+1 ≥ ⋯ 𝜎n > 0

(13)Pc = P0 =
∑

= Diagonal
{
�1, �2, �3, �4 … �n

}

Table 3   Balanced realization algorithm
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The diagonal matrix ( 
∑

 ) if such a matrix realization 
exists [170, 172, 173].

Any symmetric positive definite matrix may be decom-
posed into a product.

Compute (Cholesky) factors (CF) of the gramians are 
often obtained by this factorization according to [146, 174]. 
The lower triangular matrix (CF) Qc and Qo of both grami-
ans Pc and Po is obtained as [146, 161].

Compute SVD, the QoQ
T
c
 is singular value decomposi-

tion of gramians, also known as SVD of the system, found 
as follows:

where U and V are a vector, define as left and right singular. 
Also, unitary matrices (orthogonal).

This system matric may be transformed into the balanced 
model by a similarity transformation matrices W, which may 
be achieved as follows [146, 171, 175].

ROM is ( WAW−1 , WB , CW−1).where W is a transforma-
tion matrix

The original system has been completely balanced, which 
is partitioned as:

where the singular value 
∑

1 = diag(�1,… , �r) and ∑
2 = diag(�r+1,… , �n) . It is seen that 

∑
1 corresponds to 

the “strong” sub-systems to be retained and 
∑

2 the “weak” 
sub-systems to be deleted.

(14)�(�) = ‖‖Go(j�)
‖‖2

(15)Pc = QcQ
T
c

(16)Po = QoQ
T
o

(17)SVD
(
QT

o
Qc

)
= U

∑
V∗

(18)W = QcV
∑−

1

2

(19)

(20)

(21)
AB =

�
A11 A12

A21 A22

�
,BB =

�
B1

B2

�
,

CB =
�
C1 C2

�
,DB = D

⎫⎪⎬⎪⎭
∶ Strong Subsystem
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(to be retained)

+Weak Subsystem
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

(to be retained)

⇔

�

Hence, the reduced-order model is defined as

where A11 is part of a strong subsystem and 
∑

1 are 
r × r(r < n) matrixes. We call this ROM a balanced system 
approximation of direct-truncation (DT). There are some 
well-known results on approximation. There are some well-
known results on the approximation [137, 176].

Lemma 1  (Pernebo et  al. 1982) The subsystem matrix 
Aii,Bi,Ci is the minimal and internally balanced realiza-
tion through Grammian 

∑
i(i = 1, 2) (i = 1, 2).

Lemma 2  (Pernebo et al. 1982) The subsystem matrix 
Aii (i = 1, 2) is asymptotically stable if 

∑
1 and 

∑
2 has no 

common diagonal component. Furthermore, the subsystem 
(A11, B1, C1) (i = 1, 2) is both completely controllable and 
observable [177].

Step 2 Now, let us focus on applying the SPA derived from 
the ROM of an LTI system [177, 178].

In numerous engineering, the system's steady-state gain, 
usually referred to as DC gain value (the system gains at an 
infinitive time, equivalent to G(0) , plays an essential role in 
evaluating system performance. It is, therefore, restored to 
preserve the DC gain value in the ROM, i.e., Gr(0) = G(0) , 
The balanced truncation approach introduced in the preceding 
subsection does not retain the DC gain value unchanged [179].

Suppose that (A,B,C,D) is compatible with minimal and 
balanced truncation of the stable system and the partitioned 
system as in the previous subsection. Then, it can be demon-
strated that stable is A22.

In this section, we address the order reducing procedure 
for higher-dimensional systems resulting in a hybrid approach 
using BT and balanced SPA. In the BT method, all balanced 
systems are separated into two parts as a slow and fast mode by 
defining the lower Hankel singular values (HSV) as fast mode, 
with the others defined as a slow mode. First, the derivative 
of all states equal to zero in fast mode may be obtained by 
defining a reduced system. The main aim of structure pres-
ervation in the ROM is to preserve the dominant frequencies 
of the original system. Hence, to preserve dominant dynamic 
modes in the reduced system. This work introduces a new 
MOR algorithm applied for a linear large-scale dynamical 
system, based on the idea of preserving the dominant poles 
of the original system during the order reduction. The notion 

Ar = A11, Br = B1, Cr = C1
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of Hankel singular values is a superior criterion for decid-
ing the order of ROM verified and validated with various test 
problems. The approach is based on retaining the dominant 
eigenvalues or modes of the system and truncating the less 
significant eigenvalues comparatively.

Equation (22) has been attained as a minimal realized 
model containing strong and weak subsystems. Thus, SPA 
may be effortlessly applied on subsystems of Eq. (3.39). 
In the BT model, reduced (r) balanced states are retained, 
which are completely controllable and observable, so bal-
anced states are preserved and remaining weakly control-
lable and observable states are truncated. SPA is used to 
maintain the DC gain of the original system in the model 
[139, 180]. The concerned researcher may refer to [177, 178] 
for more indications of the method.

The portioned form as above may be used to construct a 
singular perturbation approximation. As the balanced realized 
system determine, it can be re-written in the form of given as

Again, re-write is equation form

where, � is a positive small perturbational parameter of sin-
gular perturbation approximation approach [181, 182].

By comparing the derivative of the weakly subsystem to 
zero below, the BSPA model may be achieved [138, 139].

Now the final system ( ÂBSPA, B̂BSPA, ĈBSPA, D̂BSPA ) con-
formally as in (25).

In the preceding section, the technique will be verified, 
and the proposed method will be successfully validated.

To compare the effectiveness and performance of the 
proposed methodology with other existing reduced models 
available in the literature review. The Accuracy and per-
formance of the proposed method are also validated by 
calculating performance indices such as an integral square 
error (ISE), integral absolute error (IAE), relative integral 

(22)

�
dx1

dt
dx2

dt

�
=

�
A11 A12

A21 A122

��
x1
x2

�
+

�
B1

B2

�
u(t)

y =
�
C1 C2

�� x1
x2

�
+ Du(t)

⎫
⎪⎪⎬⎪⎪⎭

∶ Balanced Model

(23)
dẋ1

dt
= A11x1 + A12x2 + B1u (Slower)

(24)𝜇
dẋ2

dt
= A21x1 + A22x2 + B2u (Faster)

(25)

square error (RISE), integral time-weighted absolute error 
(ITAE) [8, 145, 183, 184], in between the original system 
and its reduced-order model will be calculated and these 
are defined as

where y1(t) and y2(t) are the outputs of the original system 
and ROM [63].

The reduced system's RISE values should be nearby 
(close) the original system, and ISE should be as small 
as possible. Respectively, y1(t) and y2(t) are system under 
the consideration and the ROM step responses obtained 
respectively from the proposed method. g(t) is the impulse 
response of the system [5, 76, 185–187] To obtain a lower-
order model from the more complex model is an issue in 
control systems like stability, realizability, and large-order 
capability. Thus, there is significant interest in investigating 
new algorithms that work faster and with greater precision. 
To find out which results come from the proposed method, 
which results are used, which ones are given, and which ones 
are used in place of these, the ISE, IAE, and ITAE and RISE 
known methods are different, are evaluated for accuracy.

5 � Numerical Experiments and Results

Example 1  Consider the following 4th order system [63].

(26)ISE =

∞

∫
0

[y1(t) − y2(t)]
2dt

(27)IAE =

∞

∫
0

||y1(t) − y2(t)
|| dt

(28)ITAE =

∞

∫
0

t||y1(t) − y2(t)
|| dt

(29)RISE =

∞

∫
0

(
y1(t) − y2(t)

)2
dt∕

∞

∫
0

(g(t))2dt

(30)G4(s) =
s3 + 7.00s2 + 24.00s + 24.00

s4 + 10.00s3 + 35.00s2 + 50.00s + 24.00
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The HSVs of the original system are calculated as σ is given 
by

The first–second singular values are important here 
σ2 ≫ σ3 , and the third singular values quickly decay, as can 
be seen from the matrix, Eq. (31). As a result, the second-
order reduction order has been chosen.

The ROM matrices obtained by using BSPA, are given as

Finally, the ROM of representation in the form of the 
transfer function is expressed as R2(s) of test system 2.

(31)σ = [0.5179, 0.0309, 0.0124, 0.0006]

(32)

ABSPA =

�
−0.7417 0.7286

−0.7286 −2.656

�
, BBSPA =

�
−0.8765

−0.4049

�
,

CBSPA =
�
−0.8765 0.4049

�
, DBSPA = 0.02597

⎫
⎪⎬⎪⎭

The results of the simulation are shown in Fig. 1. The sec-
ond-order ROM obtained by the suggested method is very 
close to the original system to the other methods available 
in the literature review for the same step unit, respectively. 
Also, the performance indices error values are calculated to 
check the modeling error and the closeness of the original 
system, as shown in Table 4. The proposed method shows 
that the ISE value is much lower than the value obtained 
from other literature. It has been seen that the ISE values are 
calculated to be, for Example 2 is that 4.427e–05. whereas 
the least value of ISE, using Moore (1981), Suman et al. 
(2019), Pal (1980), and Pati et al. (2014), and others are 
shown in the literature. Furthermore, in Table 5, a compari-
son analysis of the time-domain specifications between the 
various second-order model and the original system with 

(33)R2(s) =
0.02597s2 + 0.6925s + 2.501

s2 + 3.98s + 2.501

Fig. 1   Qualitative comparison of the proposed method and original system with other ROM methods in terms of step response for Example 1

Table 4   Performance analysis of the proposed method and other existing ROM methods for Example 1

MOR method & References ROM ISE IAE ITAE RISE

Proposed method 0.02597 s
2+0.6925 s + 2.501

s2+3.98 s + 2.501

4.427e–05 0.009887 0.01892 1.107e–05

Moore (1981) [159] and Suman (2019) [149] 0.8216 s + 0.4542

s2+1.268 s + 0.4663
0.001448 0.09609 0.6479 0.000362

Jayanata pal [188] and Avadh Pati et al. (2014) [189] s + 24.01

s2+27.01 s + 24.01
0.001112 0.06246 0.1317 0.000278

Afzal Sikander et al. (2015) [190] and Narwal et al. (2016) [185] 0.7751 s + 1.258

s2+2.12 s + 1.258
0.0001324 0.02732 0.09423 3.311e–05

Desai et al. (2013) [191] 0.8058 s + 0.7944

s2+1.65 s + 0.7944
0.0002839 0.0002839 0.1738 7.098e–05

Parmar et al. (2007) [192] 0.7442575 s + 0.6991576

s2+1.45771 s + 0.69997
0.001698 0.1051 0.3954 0.0004245

Sikander et al. (2015) [8] 0.6997 s + 0.6997

s2+1.45771 s + 0.6997
0.00278 0.1315 0.4172 0.0006953

C B. Vishwakarma et al. (2008) [193] −0.189762 s + 4.5713

s2+4.76187 s + 4.5713
0.008021 0.1455 0.24 0.002006

Shilpi Lavania et al. (2017) [194] 0.992 s + 24.096

s2+27.096 s + 24.096
0.001105 0.6223 0.1313 0.0002763
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help of literature has been presented. The response is to 
demonstrate the exact representation and effectiveness of 
the proposed method. The results of the proposed method 
were compared with existing ROM methods which show an 
improvement in performance error indices, time response 
characteristics, and time domain specifications with the 
same DC gain as the original system. This response allows 
an accurate approximation and confirms the efficacy of the 
technique.

Example 2  Let us consider the eighth order system rep-
resented by the following transfer function, which many 
researchers have previously considered [73, 195]

The HSVs of the original system is calculated as σ is 
given by

(34)G8(s) =
18s7 + 514s6 + 5982s5 + 36380s4 + 12264s3 + 222088s2 + 185760s + 40320

s8 + 36s7 + 546s6 + 4536s5 + 22449s4 + 67284s3 + 118124s2 + 109584s + 40320

(35)σ = [1.216652465935050, 0.746403486833304, 0.027915998321307, 0.001940648946887,

0.000107069466391, 0.000001588964686, 0.000000145817410, 0.000000000050828]

From the matrix σ , it can be proved that σ2 ≫ σ3 . The first 
and second singular values are extremely important, and the 
third singular values quickly disappear away. As a result, the 
reduction order has been chosen as the second order.

The ROM matrices obtained by using BSPA, are given as

Finally, the ROM of representation in the form of the trans-
fer function is expressed as R2(s) of Example 2.

(36)
ABSPA =

�
−6.644 −2.201

2.201 −0.0444

�
, BBSPA =

�
−4.021

0.2575

�
,

CBSPA =
�
−4.021 −0.2575

�
, DBSPA = 0.0595

⎫
⎪⎬⎪⎭

Table 5   A Comparison of time-domain specification with Other available ROM Methods according to literature for Example 1

The method used by 
Author

Rise time (s) Settling time
(s)

Settling minimum
(s)

Settling maximum
(s)

Overshoot
(s)

Undershoot
(s)

Peak
(s)

Peak time
(s)

Four order original 
System

2.2603 3.9308 0.9019 0.9990 0 0 0.9990 6.8847

Second Order Model by 
Proposed Method

2.2583 3.9178 0.9034 0.9990 0 0 0.9990 6.7109

Second Order Model by
Moore (1981) and 

Suman et al. (2019)

2.0892 5.3643 0.8819 0.9941 2.0631 0 0.9941 4.9396

Second Order Model by
Jayanata pal (1980) 

and Avadh Pati et al. 
(2014)

2.3872 4.2476 0.9003 1.0000 0 0 1.0000 11.4593

Second Order Model by
Afzal Sikander et al. 

(2015) and Narwal 
et al. (2016)

2.2409 3.6722 0.9017 1.0002 0.0248 0 1.0002 6.9078

Second Order Model by
Desai et al. (2013)

2.2785 3.6199 0.9054 1.0027 0.2738 0 1.0027 5.9728

Second Order Model by
Parmar et al. (2007)

2.1870 3.2168 0.9005 1.0119 1.3061 0 1.0119 4.9915

Second Order Model by
Sikander et al. (2015)

2.3011 3.4104 0.9019 1.0107 1.0722 0 1.0107 5.2442

Second Order Model by
Vishwakarma et al. 

(2008)

1.8368 3.3413 0.9021 0.9999 0 0.3202 0.9999 7.2263

Second-Order Model by
Shilpi Lavania et al. 

(2017)

2.3865 4.2467 0.9003 1.0000 0 0 1.0000 11.4559
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It is shown in Fig. 2 that The ROM obtained by the pro-
posed method is very close to the original system, com-
pared with other methods also available in the literature. As 
well, the comparative analyses of ROMs in terms of ISE, 
IAE, ITAE, and RISE, are given in Table 6 for illustration. 
From this comparison, it can be observed that the proposed 
method obtained a good result and gives the closest approxi-
mation to the original system with less error than other ROM 
models. It has been seen that the ISE values are calculated 
to be, for example, 2, 0.0005563, whereas the least value 
of ISE, by other methods and recently published work by 
Moore (1981), Suman et al. (2019), Afzal Sikander et al. 

(37)R2(s) =
0.0595s2 + 16.5s + 5.141

s2 + 6.688s + 5.141

(2015) and Narwal et al. (2016) and others are depicted in 
Table 6. Furthermore, in Table 7, the comparison of time-
domain specifications between different 2nd order models 
and the original system has been presented. The response is 
to illustrate the exact representation and effectiveness of the 
proposed method. The results of the proposed method have 
been compared with existing ROM methods which show an 
improvement in performance error indices, time response 
characteristics, and time-domain specifications with the 
same DC gain or steady-state value as the original system. 
This response allows for an accurate approximation and con-
firms the efficacy of the technique. Hence, it is clear that the 
proposed method is much better than the other well-known 
methods available in the literature review.

Fig. 2   Qualitative comparison of the proposed method and original system with other ROM methods in terms of step response for Example 2

Table 6   Performance analysis 
of the proposed method and 
other existing ROM methods for 
Example 2

MOR method & References ROM ISE IAE ITAE RISE

Proposed method 0.0595s2+16.5s+5.141

s2+6.688s+5.141
0.0005563 0.05262 0.1476 0.000139

Moore (1981) and Suman et al. (2019) 17.77s+4.546

s2+7.365s+4.834
0.01398 0.3164 2.112 0.003492

Afzal Sikander et al. (2015) 16.97s2+5.262

s2+6.893s+5.262
0.006967 0.6077 0.1769 0.01741

Desai et al. (2013) [196] 16.91s2+5.255

s2+6.87s+5.26
0.006923 0.05965 0.17 0.0001729

Ali Nadi et al. (2011) [197] 17s2+5.074

s2+6.972s+5.151
0.001223 0.09536 0.5199 0.0003056

Vishwakarma et al. (2011) [198] 16.51137s2+5.45971

s2+6.19642s+5.45971
0.01406 0.1972 0.3471 0.003512

Parmar et al. (2007) [63] 24.11429s+8

s2+9s+8
0.04809 0.3007 0.3891 0.01201

Mukherjee et al. (2005) [199] 11.3909s+4.4357

s2+4.2122s+4.4357
0.05692 0.4575 0.9475 0.01422

Lucas (1983) [113] 6.7786s+2

s2+3s+2
0.2792 0.7628 1.02 0.06976

Mukherjee, et al. (1987) [157] 7.0903s+1.9907

s2+3s+2
0.269 0.8098 1.209 0.06719
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6 � Conclusion and Future Scope

In this contribution, the various MOR methods for the 
LSD system have been thoroughly and comprehensively 
reviewed. It has been focused on methods with their detailed 
theoretical background as applied to the system. We have 
also discussed similarities and differences between several 
approaches along with their merits and demerits which may 
be useful to the research community. Two numerical com-
parisons show the advantages and disadvantages of these 
approaches. There are a few new viewpoints to this area 
which has been elaborated. We have also, highlighted the 
impressive improvements made over the last few years with 
respect to MOR applied to linear systems, although several 
key challenges remain to be investigated and further devel-
opments in numerical methods are, yet to be addressed. In 
addition, an application to my previous work for reducing 
the order of the large-scale dynamic LTI system has been 
further investigated in this paper. The hybrid technique 
applied was found to be superior to the conventional method 
(BT) or other existing methods. This hybridization approach 
using BT and SPA Approach has been found to effectively 
compensate for the demerits of each other. Furthermore, the 
same technique has been illustrated with a couple of very 
promising examples of a continuous LTI system. The step 
response comparison shows that the ROM obtained by the 

method applied provides a close approximation to the HOS. 
In addition, the accuracy, validation, and superior perfor-
mance of the presented method have been demonstrated by 
comparing the performance indices with various similar out-
comes existing in the literature. Applicability to large-scale 
systems may increase the benefits of the method however 
it which is a matter of further investigation. Some of them 
are currently ongoing at the present. This procedure can be 
extended to the design of the state feedback controller, opti-
mum, H-infinity controller, etc.

Data Availability  My manuscript has no associated data.
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