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Effect of adaptation gain and reference
model in MITand Lyapunov rule–based
model reference adaptive control for
first- and second-order systems
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Abstract
An adaptive control law encompasses a regulating control rule compensating for system dynamics variations by adjusting the controller characteristics

to maintain the overall system performance. Recently, some techniques have been developed based on fundamental aspects of the adaptability of living

organisms. The adaptive control method is a technique that measures the dynamic characteristics of the plant automatically and continuously to make a

comparison with its required output. It utilizes the difference between these two to commute adaptable system parameters to maintain optimal perfor-

mance regardless of the system variations. The behavior of the adaptation rule is significantly affected by the adaptation gain value. Here, it has also

been investigated that the adaptation gain range is wide for the systems with the lower order. The appropriate range of adaptation gain decreases as

the order of the system increases. In the present work, the model reference adaptive control (MRAC) for first- and second-order systems has been

designed and investigated using a wide range of values for the adaptation gain and variations in the reference model parameters. The MIT

(Massachusetts Institute of Technology) and Lyapunov rules are applied for the analyses of systems. On the MATLAB/Simulink platform, all the adapta-

tion process comparisons, variations, and investigations have been carried out by altering the adaptation gain and the reference model parameters. The

obtained results present encouraging outcomes.
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Introduction

A control system is an interconnection of the physical compo-

nents to produce a needed action while including the relevant

control function. This definition applies to a control system

in its broadest sense. Because engineering experiments require

the correct operation of control systems, the practical imple-

mentation of modern control theory has been the subject of

extensive research, precisely adaptive control (Dinakin and

Oluseyi, 2021). Adaptive control is still developing in the cur-

rent control methods, even though studies and development

in this field go back a long time. In the 1950s, it was inspired

by the issue of modeling an autopilot to operate an aircraft

for an extended range of speeds and altitudes. The result was

improved gain scaling based on supporting airspeed measure-

ments. Kalman (Simon, 2010) developed a universal self-

tuning regulator concept with a clear identity of the para-

meters of a single-input single-output (SISO) linear system.

He has applied estimation of the parameter to bring up to

date an optimal linear quadratic controller. The concept is

further advanced by other investigators like Lyapunov

(Banerjee et al., 2018) and Parks. Adaptive control concepts

are currently present in areas where standard control systems

may not effectively provide comfort due to the nature of the

circumstance. These areas include things like (Swarnkar et al.,

2010): inertia, loads, and other forces acting on the system

vary severely; probability of unanticipated or regular distur-

bances; and probability of unexpected and random faults.
The traditional controllers with static gain value may not

cope with the difficulties dissertated previously. For absolute

adaptive behavior, exclusive adaptive control methods are

required (Jain and Nigam, 2013; Neogi et al., 2018; Pankaj

et al., 2011). Real-time updates to the control process coeffi-

cients are made using adaptive control for accounting for

environmental and system changes. Along with the changes

in the circumstances, it also affects the system’s transfer func-

tion. Because of the complexity of the controller, a model ref-

erence adaptive control (MRAC) system may nearly always

be deployed most effectively when using a digital computer.

Among different types of adaptive control methods, this

paper mainly discusses the MIT and Lyapunov rules of the
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MRAC scheme separately for first- and second-order sys-

tems. In MRAC (Mukherjee et al., 2018a; Patra, 2020; Sethi

et al., 2017; Stellet, 2011), the output response is made to

roughly trace the response of a reference model despite

changes in the plant’s parameters. This process is accom-

plished by forcing the output response to resemble the

response of the reference model. The controller’s parameters

are changed to get the desired level of closed-loop perfor-

mance. This process involves parameter estimation for the

controller, which appropriately modifies the plant’s transfer

function. This estimation is done so that the plant’s perfor-

mance is the same as the reference models. The theory of aug-

mented error (Aydin and Gurleyen, 2018; Mirkin, 2005;

Monopoli, 1974) is one of the design strategies that may be

implemented in an MRAC system, in addition to the MIT

rule and the Lyapunov rule. In this paper, investigations of
first- and second-order systems are carried out with the MIT

rule and Lyapunov rule for designing a novel MRAC law.

The system response has been figured out for various values

of adaptation gain and also for different reference models.

Finally, the significant contribution of the work may be listed

as follows:

� MIT and Lyapunov-based MRAC controllers have

been designed to trace the reference model for first-

and second-order systems. How the adaptation gain

affects the system’s response and stability has also

been investigated.
� In order to match the response with the reference

model, a suitable range of adaptation gain for first-

and second-order systems has been found.
� The effect of the reference model’s parameters on the

system response and the best way to pick a reference

model for first- and second-order systems have been

evaluated.
� It has been noted that for first-order system (46), the

adaptation gain should be in the range of 1–1000, and

the reference model’s time constant should be greater

than the time constant of first-order system

(i:e: am . a).
� It has been observed for the second-order system (47)

that, as the natural frequency of the reference model is

increased, the settling time and overshoot of the sys-

tem are decreased for the range of a = 1–3 in both

MIT and Lyapunov rules. But the system becomes

unstable for a = 4 and 5 with the MIT rule; with the

Lyapunov rule for the same values of a, the system is
stable with some oscillations.

� All the investigations are done for both the MIT rule

and the Lyapunov rule separately, and comparative

analysis suggests that the design using the Lyapunov

rule performs superior to the MIT rule.

MRAC

MRAC is a form of adaptive control that belongs to the

broader category of non-dual adaptive control (Král and

Šimandl, 2008). A reference model may define the perfor-

mance of the system. After comparing the actual output to

the modeled output, the feedback controller settings are mod-

ified using a different approach. The MRAC is modeled to

manipulate the plant or system output to track the reference

model. The model reference adaptive system has two types of

loops. First is an inner loop, also known as a regulator loop.

It is a standard control loop that consists of a regulator and

the plant to update the plant parameter through an adapta-

tion mechanism. The second is the outer loop, also known as

the adaptation loop. This loop coordinates the regulator

parameters to manage the steady-state error between the sys-

tem output and modeled output down to zero. The block dia-

gram for MRAC is shown in Figure 1.

Components of model reference adaptive
controller

Reference model

The ideality of the response of the adaptive control system to

the external commands is specified by the reference model. It

reflects the performance specifications based on the control

objectives. The ideality shown by the reference model should

be such that it may be accessible to the MRAC system.

Controller

Commonly, the controller is designed taking account of vari-

ous adaptable parameters. The controller rule is clearly

described in this work by two parameters u1 and u2.

Regarding the adjustable constraints, the controller design is

linear (i.e. linear parameterization). Usually, to get an adapta-

tion mechanism, linear parameterization requires an adaptive

controller design with definite stability and tracking (Hosseini

et al., 2021). The adaptation gain modifies the adaptation

mechanism/control algorithm and largely determines the size

of these control parameters. This modification occurs because

the adaptation process is changed by adaptation gain.

Figure 1. Block diagram of model reference adaptive controller.
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Adaptation mechanism

This mechanism finds use in fine-tuning the control algo-

rithm’s settings. Adaptation rules obtain the parameters for

the same system response as the reference model. It is planned

so that the stability of the control system is guaranteed and

converges to zero steady-state error. To generate the adapta-

tion mechanism, different types of mathematical methods

may be used like augmented error theory (Aydin and

Gurleyen, 2018; Mirkin, 2005; Monopoli, 1974), Lyapunov

theory (Cui et al., 2022), and MIT rule (Sethi et al., 2017).

The adaptation mechanism developed in this research uses

both the Lyapunov rule and the MIT rule.

Mathematical modeling

This work uses the MIT, and Lyapunov approaches to build

the MRAC scheme for the first- and second-order systems.

Theoretically, an under-damped second-order system may be

described as oscillatory in its physical behavior. In the event,

the oscillations are not reduced throughout the given time.

The system may be unstable. Hence, maximum overshoot

should be as minimum as possible (ideally zero) for stable

operation. It may automatically reduce the system’s transient

period and improve its performance. Like the characteristics

of the first-order system, oscillations are absent in the criti-

cally damped second-order system’s characteristics. This

research uses an under-damped first- and second-order sys-

tem with high maximum overshoot, considerable settling

time, and insufferable dynamic error.
Furthermore, utilizing the MRAC as a mechanism to

effect performance improvements throughout the system is

the primary focus. A critically damped system has been con-

sidered a reference model for comparison since it is appropri-

ate for the objective. Let the equations (1) and (2) given

below characterize the first-order and second-order system,

respectively

dy1(t)

dt
=� a1y1(t)+ b1u(t) ð1Þ

d2y2(t)

dt2
=� a2

dy2(t)

dt
� b2y2(t)+ b2u(t) ð2Þ

Reference models are given by equations (3) and (4) for the

first- and second-order systems, respectively

dy1m(t)

dt
=� a1my1m(t)+ b1muc(t) ð3Þ

d2y2m(t)

dt2
=� a2m

dy2m(t)

dt
� b2my2m(t)+ b2muc(t) ð4Þ

here, a1, b1, a2, b2, a1m, b1m, a2m, and b2m are the constants.

The equation that describes the control law is shown below by
equation (5)

u= u1uc(t)� u2y(t) ð5Þ

here, y(t)= y1(t) and ym(t)= y1m(t) for first-order system and

y(t)= y2(t) and ym(t)= y2m(t) for the second-order system.
The difference between the output of the reference model,

ym, and the plant output, y, is defined as the term ‘‘error func-
tion.’’ It may be represented as follows by equation (6)

e= y� ym ð6Þ

MITrule

This rule was devised by the Massachusetts Institute of

Technology (MIT); therefore, it is commonly known as the
MIT rule. It applies the MRAC scheme (Mukherjee et al.,

2018b; Sethi et al., 2017) to real-world systems. For the stabi-

lity analysis of the system by MIT rule, we needed a loss func-
tion J, often known as the cost function, which may be

illustrated using (Fan and Kobayashi, 1998; Karthikeyan

et al., 2012; Mfoumboulou 2021; Rothe et al., 2020; Zareh
and Soheili 2011)

J (u)=
1

2
e2 ð7Þ

∂J

∂e
= e ð8Þ

Figure 2. Block diagram model for MRAC using MIT rule.
Figure 3. Block diagram model for Lyapunov rule.
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where e is the output error, which may be considered as the

difference between the output of the plant and the output of

the reference model, and u (i.e. u1 and u2) is the regulating

parameter that is generally recognized as the control para-

meter. In this case, the loss function is reduced by adjusting a

parameter denoted by u (i.e. u1 and u2). Therefore, adjusting

the parameter so that it moves in the opposite direction as J’s

gradient would be appropriate, that is

du

dt
=� g

∂J (u)

∂u
ð9Þ

=� ge
∂e(u)

∂u
ð10Þ

where ∂e/∂u is known as the sensitivity derivative of the plant.

This term depicts how the error is affected by modification

made in the parameter, denoted by the symbol u. When select-

ing the loss function J, one has numerous options. As an illus-

tration, it may also play a role in producing errors. Likewise,

du/dt may have various relationships according to usage. g is

the adaptation gain (Dinakin and Oluseyi, 2021). Adaptation

gain refers to a tuning parameter used to adjust the adapta-

tion rate of the controller. The adaptation gain aims to strike

a balance between fast convergence and stability. A high

adaptation gain can lead to quick parameter updates and

quicker convergence, but it may also introduce instability and

overshoot in the control system. On the contrary, a low adap-

tation gain can improve stability but may result in slower con-

vergence and reduced tracking performance. The selection of

the adaptation gain depends on the characteristics of the con-

trolled system and the desired performance specifications.

The best adaptation gain can be determined using a systema-

tic strategy, such as trial-and-error, optimization algorithms,

or advanced control design methods. In this paper, we have

utilized the trial-and-error method to find a suitable range of

adaption gain.
Sign-sign algorithm

du

dt
=� gsign

∂e

∂u

� �
sign(e) ð11Þ

Alternatively, it could select

du

dt
=� g

∂e

∂u

� �
sign(e) ð12Þ

where sign(e) = 21; for e < 0, sign(e) = 0; for e = 0, and

sign(e) = 1; for e . 0.
It is possible to get that the selection of adaptation gain is

a delicate process and the degree of its dependence on the sig-

nal points. Therefore, it could enhance the MIT rule in the fol-

lowing ways

du

dt
=� gfe ð13Þ

Here, f= de
du

Also

du

dt
=� gfe

(b+fT f)
ð14Þ

here, FT F is small, and b . 0 is taken to evade the zero
division.

Since the error is specified by equation (6), hence the modi-
fication in error w.r.t. time may be written as

_e=� a1me(t)� (b1u2 + a1 � a1m)y1(t)+ (b1u1 � b1m)uc(t)

ð15Þ

The aim of an adaptive controller is that the y1 should be
the asymptotic trace of y1m and stable, hence from equation
(15)

b1u1 � b1m = 0) u1 =
b1m

b1

ð16Þ

b1u2 + a1 � a1m = 0) u2 =
a1m � a1

b1

ð17Þ

Now, _e=� a1me(t) is the negative definite and e! 0 as

t! ‘, hence system will be stable.
From equation (10)

du1

dt
=� ge

∂e(u)

∂u1

ð18Þ

du2

dt
=� ge

∂e(u)

∂u2

ð19Þ

Putting equation (5) into equation (1) and using the
Laplace transform, we get the following

y1(s)=
b1u1

s+ a1 + b1u2

uc ð20Þ

Taking Laplace transform of equation (3)

y1m(s)=
b1m

s+ a1m

uc ð21Þ

Taking Laplace transform of equation (6) and putting
equations (20) and (21) in equation (6)

e(s)=
b1u1

s+ a1 + b1u2

uc �
b1m

s+ a1m

uc ð22Þ

∂e

∂u1

=
b1

s+ a1 + b1u2

uc ð23Þ

By substituting equation (17) in equation (23)

∂e

∂u1

=
b1

s+ a1m

uc ð24Þ

Similarly

∂e

∂u2

=� b2
1u1

(s+ a1 + b1u2)
2

uc ð25Þ

By substituting u2 from equation (17) and y1 from equa-
tion (20)

4 Transactions of the Institute of Measurement and Control 00(0)



∂e

∂u2

=� b1

s+ a1m

y1 ð26Þ

After making the necessary changes to equations (18) and
(23) by inserting equations (24) and (26), respectively, (Nguyen,
2018) the new form of the MIT adaption law is as follows

du1

dt
=� ge

b1

s+ a1m

uc ð27Þ

du2

dt
=ge

b1

s+ a1m

y1 ð28Þ

here, b1 is the system’s parameter, which may be absorbed by
the equation: a=gb1=a1m. And hence equations (27) and (28)

become equations (29) and (30), respectively

du1

dt
=� ae

a1m

s+ a1m

uc ð29Þ

du2

dt
=ae

a1m

s+ a1m

y1 ð30Þ

The adaptation law for a second-order system utilizing the
MIT rule by following the above approach is described as
follows.

By differentiating equation (6) and substituting the values
of _y and _ym, and rearranging the equation, we get

_e=� 1

a2

ð €y2 � €y2mð Þ � b2me� b2u2 + b2 � b2mð Þy2

+ b2u1 � b2mð ÞucÞ
ð31Þ

The aim of an adaptive controller is that the y2 should be
the asymptotic trace of y2m and hence from equation (30)

u1 =
b2m

b2

and u2 =
b2m � b2

b2

ð32Þ

By putting equation (5) in equation (2) and taking Laplace
transform

y2 sð Þ= b2u1

s2 + a2s+ b2u2 + b2

uc ð33Þ

Taking Laplace transform of equation (4)

y2m sð Þ= b2m

s2 + a2ms+ b2m

uc ð34Þ

By putting the values of y2 sð Þ and y2m sð Þ in Laplace trans-
form of equation (6)

e sð Þ= b2u1

s2 + a2s+ b2u2 + b2

uc �
b2m

s2 + a2ms+ b2m

uc

de

du1

=
b2

s2 + a2s+ b2u2 + b2

uc ð35Þ

By substituting the value of u2

de

du1

=
b2

s2 + a2s+ b2m

uc ð36Þ

de

du2

=� b2
2u1

s2 + a2s+ b2u2 + b2ð Þ2
uc

de

du2

=
b2u1

s2 + a2s+ b2u2 + b2

uc

� �
� b2

s2 + a2s+ b2u2 + b2

� �

de

du2

=� b2

s2 + a2s+ b2u2 + b2

y2

� �
ð37Þ

Now substituting de
du1

and de
du2

in equations (18) and (19),
respectively

du1

dt
=� ae

b2m

s2 + a2s+ b2m

uc ð38Þ

du2

dt
=ae

b2m

s2 + a2s+ b2m

y2 ð39Þ

where a=gb2=b2m. Equations (38) and (39) may also be writ-
ten as

du1

dt
=� ae

v2
n

s2 + 2zvns+v2
n

uc

du2

dt
=ae

v2
n

s2 + 2zvns+v2
n

y2

where vn is the natural frequency, z is the damping ratio, and
b2m =v2

n and a2 = 2zvn.
A filter, which represents the transfer function of the first-

order and second-order reference model, is adopted by the
adaptation law for first-order and second-order systems that

use the MIT rule. Figure 2 shows the block diagram of
MRAC using MIT rule.

Lyapunov rule

The Lyapunov stability theory (Ma et al., 2022) may be used
to describe the algorithms for adjusting parameters in the

MRAC system. For the systems mentioned above (equations
(1) and (2)), the controller law is defined by equation (5), and

the error is given by equation (6).
Now, we may write the change in error w.r.t. time as

_e=� ame� (bu2 + a� am)y+(bu1 � bm)uc ð40Þ

The Lyapunov function is described by

V (e, u1, u2)=
1

2
e2 +

1

bg
(bu2 + a� am)

2 +
1

bg
(bu1 � bm)

2

� �

ð41Þ

The Lyapunov function V to be positive-definite b should

be positive (i.e. b . 0).
where

e= y� ym and g =Adaptation gain of the controller

u1 =
bm

b
and u2 =

am � a

b

Gupta et al. 5



a=
a1, (for first � order system)

a2, (for second � order system)

�
and

am =
a1m, (for first � order system)

a2m, (for second � order system)

�

b=
b1, (for first � order system)

b2, (for second � order system)

�
and

bm =
b1m, (for first � order system)

b2m, (for second � order system)

�

By differentiating equation (41) and subsuming equation

(40)

_V =� ame2 +
1

g
(bu2 + a� am)( _u2 � gye)+

1

g
(bu1 � bm)

( _u1 +guce)

ð42Þ

To ensure that _V is negative definite

1

g
(bmu2 + a+ am)( _u2 � gye)+

1

g
(bu1 � bm)( _u1 +guce)= 0

ð43Þ

Therefore, equations (44) and (45) define adaptation laws

using the Lyapunov rule, where a=gb=am for both first-

order system and second-order system. Figure 3 shows the

block diagram of MRAC using Lyapunov rule.

du1

dt
=� aeuc ð44Þ

du2

dt
=� aey ð45Þ

Performance evaluation and simulation
results

In this paper, the MRAC model has been simulated in

MATLAB and Simulink. The MIT and Lyapunov rules are

applied separately to the first- and second-order systems. This

section details an experimental performance evaluation of the

adaptive controller. It investigated how different adaptation

gain values affect the system behavior, both for the MIT rule

and the Lyapunov adaptation strategy. Second, changes in

the desired system response as defined by the reference mod-

el’s parameters am and bm have also been investigated.
The adaptive controllers are analyzed using a step input

signal by taking a first-order system as a1 = 3 and b1 = 2

(Swarnkar et al., 2010) and a second-order system as a2 = 8

and b2 = 600 (Swarnkar et al., 2011) which is represented by

equations (46) and (47), respectively

y1(s)=
2

s+ 3
ð46Þ

y2(s)=
600

s2 + 8s+ 600
ð47Þ

In MRAC, the first step is to select the reference model

depending on the requirement. After that, the control algo-

rithm’s design is done to update the controller’s adjustable

parameters. The reference model regarding the transfer func-

tion obtained from the desired performance specifications (i.e.

rise time, settling time, overshoot, and steady-state error) is

given. In the present work, for the analysis, the reference

model of the first-order and second-order system is taken from

Dinakin and Oluseyi (2021) and Simon (2010), respectively.

Influence of adaptation gain using MIT rule and
Lyapunov rule on first-order system

At first, the adaptation gain a is varied, and the resulting

influence on the first-order system’s (46) time response is ana-

lyzed. The results of an experiment with gain values 0.1, 1, 5,

10, 20, 50, 100, 200, 500, 1000, 10,000, and 11,000 have been

shown in Figure 4 with MIT rule and in Figure 6 with the

Lyapunov method for the reference model am = 4 and bm = 4

(Swarnkar et al., 2010).
After thorough observations from Figures 4–11 and Table

1, the following inference has been made:

� Figure 4 shows the step response of the first-order sys-

tem (46) for the range of adaptation gain from 0.1 to

11,000 with the MIT rule. It may be observed that as

the adaptation gain increases, the settling time and

overshoot decrease.
� At the same time, oscillation and overshoot occurred

for higher adaptation gain values which are seen by

the output error signal as depicted in Figure 5.
� Figures 8 and 9 show the comparative representation

of the effect of adaptation gain with the MIT rule.
� Figure 6 shows the step response of the first-order sys-

tem (46) for the range of adaptation gain from 0.1 to

11,000 with the Lyapunov rule. It may be observed that

as the adaptation gain increases, the settling time and

overshoot decrease sharply compared to the MIT rule.
� At the same time, oscillation and overshoot occurred

for higher adaptation gain values but less as compared

to the MIT rule, which is seen by the output error sig-

nal, as shown in Figure 7.
� Figures 10 and 11 show the comparative representa-

tion of the effect of adaptation gain with the

Lyapunov rule.
� From the above observations, it has been concluded

that the response obtained with the Lyapunov rule is

far superior compared to the MIT rule in terms of

overshoot, peak time, rise time, and settling time.

Influence of changing reference model parameters
using MIT and Lyapunov on first-order system

After analyzing the effect of adaptation gain on the first-

order system, some critical adaption gain is selected for fur-

ther investigation based on the change in the reference model.

The influence of changing the reference model’s parameters

6 Transactions of the Institute of Measurement and Control 00(0)



Figure 5. Output error of MRAC with MITrule for various values of adaptation gain (a).

Figure 4. Simulation results of MRAC with MIT rule for various values of adaptation gain (a).

Figure 6. Simulation results of MRAC with Lyapunov rule for various values of adaptation gain (a).

Gupta et al. 7



Figure 7. Output error of MRAC with Lyapunov rule for various values of adaptation gain (a).

Figure 8. Simulation results of MRAC with MIT rule for various values of adaptation gain (a).

Table 1. Effect of adaptation gain on first-order system with MIT rule and Lyapunov rule.

Adaptation law MIT rule Lyapunov rule

Adaptation gain Overshoot Peak time Settling time Rise time Overshoot Peak time Settling time Rise time

0.1 0 10 9.7801 7.4521 0 10 9.7773 7.5481

1 2.5761 3.7692 4.1612 1.9447 3.7680 3.4084 4.0360 1.8056

5 16.4387 1.3732 2.4198 0.6140 19.6282 1.19445 2.8109 0.5593

10 19.5190 1.0088 2.2097 0.4359 20.2399 0.8536 2.4142 0.3945

20 18.6801 0.7662 1.9600 0.3272 14.9875 0.6241 1.8064 0.2953

50 11.8677 0.5433 1.7508 0.2392 5.2183 0.8777 1.5874 0.2215

100 5.8598 0.7856 1.6160 0.1982 2.2578 0.9661 1.1834 0.4653

200 3.2669 0.8502 1.4432 0.1772 0.8862 1.1572 1.2777 0.3683

500 1.6151 1.0554 1.2876 0.3158 0.2611 1.4729 1.1344 0.5231

1000 1.0081 1.2190 1.2776 0.3730 0.1112 1.6668 1.0377 0.4968

10,000 2.6092 1.5614 3.0086 0.4630 0.4221 1.5639 1.0459 0.5242

11,000 5.3758 2.7298 9.9978 0.4792 0.7134 1.5833 1.0882 0.5292
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Figure 10. Simulation results of MRAC with Lyapunov rule for various values of adaptation gain (a).

Figure 9. Simulation results of MRAC with MIT rule for 10,000 and 11,000 values of adaptation gain (a).

Figure 11. Simulation results of MRAC with Lyapunov rule for 10,000 and 11,000 values of adaptation gain (a).
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am and bm has also been examined. As before, the plant pro-

cess parameters are set to a = 3, b = 2, and the adapta-

tion gain is now chosen as a = 5, 10,100, 500, 1000, and

10,000.
From Figures 12–21 and Table 2, the following conclu-

sions have been drawn:

� Figures 12–16 show the step response of the first-order

system with MIT rule, and from Figures 17–21 show

the step response of the first-order system with

Lyapunov rule for the reference model am = bm = 1,

am = bm = 4, am = bm = 10, and am = bm = 100,

respectively, for the a = 5, 10, 100, 500, 1000, and

10,000.
� From the above results, it may be observed that for

the lower value of the time constant of the reference

model, system response has been tracked well to the

reference model for the selected range of adaptation

gain.
� As the reference model’s time constant increases, the

overshoot also increases, but the system’s response

approaches the steady-state value faster for a higher

adaptation gain.

Influence of changing reference model parameters
using MIT and Lyapunov on second-order system

Here, the effect of changing the reference model’s parameters

am and bm is examined. The plant process parameters are set

to a = 8 and b = 600 (Swarnkar et al., 2011), and the adap-

tation gain is now chosen as a = 1, 2, 3, 4, and 5.
The step response of the second-order system (47) for the

four deferent references (am = 1, 2, 3, and 4 and bm = 1, 4,

9, and 16, respectively) and adaptation gain 1, 2, 3, 4 and 5

are shown from Figures 22–25 using the MIT rule and from

Figures 26–29 using the Lyapunov rule. From these results,

the following observations may be drawn:

� Figures 22 and 23 show the system’s step response (47)

for the reference am = 2 and bm = 1 for a range of

adaptation gain from 1 to 5 and 1 to 4, respectively,

using the MIT rule. Here, it may be observed that the

system’s response is a stable and asymptotic trace of

the reference model for the range of adaptation gain

from 1 to 3, and the system became unstable at a = 4

and 5.
� Figures 24 and 25 show the system’s step response (47)

for the reference am = 4 and bm = 4, the range of

adaptation gain from 1 to 5 and from 1 to 4, respec-

tively, using the MIT rule. This result shows that the

system’s response is a stable and asymptotic trace of

the reference model for the adaptation gain from 1 to

3, and the system became unstable at a = 4 and 5.
� Figure 26 shows the system’s step response (47) for

the reference model am = 6 and bm = 9 for the range

of adaptation gain from 1 to 5 using the MIT rule.

This result shows that the system’s response is a stable

and asymptotic trace of the reference model for the

range of adaptation gain from 1 to 3. Still, the system

became unstable at a = 4, and a = 5 system is a sta-

ble and asymptotic trace of reference model with 5%

tolerance.
� Figures 27 and 28 show the system’s step response (47)

for the reference am = 8 and bm = 16 for the range of

adaptation gain from 1 to 5 and from 1 to 4, respec-

tively, using the MIT rule. This result shows that the

system’s response is a stable and asymptotic trace of

the reference model for the adaptation gain from 1 to

3, and the system became unstable at a = 4 and 5.
� Figures 29–31 show the step response of system (47)

for the reference model am = 2 and bm = 1; am = 4;

and bm = 4 and am = 6 and bm = 9, respectively, for

Figure 12. Simulation results of MRAC with MIT rule for various values of adaptation gain (a) for reference model am = bm = 1.
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the range of adaptation gain from 1 to 5 using the

Lyapunov rule. This result shows that the system’s

response is a stable and asymptotic trace of the refer-

ence model for the range of a = 1 to a = 5, but at

a = 4 and 5, the system oscillates for some time.
� Figure 32 shows the system’s step response (47) for the

reference am = 8 and bm = 16 for the range of a from

1 to 5 through the Lyapunov rule. These results show

the system is stable only for a = 1 to 4. At a = 4, the

system oscillates to converge to a steady value, but at

a = 5, the system becomes unstable.

From the above observations, it may be concluded that

for the second-order system, the range of adaptation gain will

decrease as vn of the reference model increases. For the

second-order system, the best suitable range of the adaptation

gain is from 1 to 3 for MIT and Lyapunov, both separately,

as shown in Figures 31 and 32, respectively. For the

Lyapunov rule, the second-order system is stable for a = 4

and 5, with some oscillation.
Hence, it may be concluded that the second-order system

worked very well for the range of adaptation gain of 1 to 3

for all critically damped second-order systems for both the

adaptation law MIT and Lyapunov as shown in Figure 33(a)

and (b), respectively. From these results, it may be seen that

there is no overshoot present in the response, and as the natu-

ral frequency of the reference model is increased, the system

response is faster. Figure 34(a) and (b) show the output error

of system response at a = 3 for the reference model of natu-

ral frequency from 1 to 5 with the MIT and Lyapunov adap-

tation algorithms, respectively.
From Table 3, we may observe that the system’s response

is speedy for the lower values of adaptation gain and becomes

slower with some overshoot as the adaptation gain increases.

But it may also be observed that if the natural frequency of

the reference model is increasing, keeping the damping ratio

equal to 1, the system’s response becomes very fast, and over-

shoot is also reduced.

Stability analysis

The step response of the reference and proposed models

with and without a controller is shown below from

Figure 35(a)–(d).

� From Figures 35(a)–(d), it may be observed that the

response of the systems with the controller became

Table 2. Effect of change of parameters of reference model on first-order system with MIT and Lyapunov rules.

Adaptation law MIT rule Lyapunov rule

Reference model Adaptation gain Overshoot Peak time Settling time Rise time Overshoot Peak time Settling time Rise time

1
s+ 1 5 0 10 3.8178 1.3725 0 10 4.0998 2.0845

10 0 10 3.8710 1.8908 0 10 3.9916 1.8710

100 0 10 3.9425 1.9915 0 10 3.9290 2.1672

500 0 10 3.8959 2.1194 0 10 3.9068 2.1863

1000 0 10 3.9141 2.1322 0 10 3.9149 2.2117

10,000 0.0735 9.8213 3.9221 2.1935 0.3042 9.8275 3.8976 2.1823
4

s+ 4 5 16.4388 1.3740 2.4198 0.6140 19.6281 1.1966 2.8109 0.5593

10 19.5189 1.0087 2.2097 0.4359 20.2412 0.8514 2.4142 0.3944

100 5.5869 0.7846 1.6160 0.1982 2.2586 0.9656 1.1834 0.4652

500 1.6155 1.0546 1.2876 0.3157 0.2612 1.4727 1.1345 0.5231

1000 1.0096 1.2200 1.2776 0.3729 0.1117 1.6681 1.0377 0.4968

10,000 2.9042 1.5026 3.1361 0.4644 0.5234 1.4765 1.0842 0.5293
10

s+ 10 5 22.3546 1.1113 2.6894 0.4948 25.7923 1.0295 2.6866 0.4692

10 30.2657 0.7846 2.0033 0.3303 34.1155 0.7127 2.3109 0.3105

100 32.9166 0.3101 0.7738 1.2923 27.3103 0.2526 1.0826 0.1118

500 13.7330 0.3340 0.9863 0.0762 6.8880 0.2801 0.7102 0.0737

1000 9.3306 0.2599 0.9237 0.0659 3.2652 0.4100 0.5729 0.1537

10,000 3.1477 0.5314 1.4748 0.1624 0.4168 0.5968 0.4585 0.1950
50

s+ 50 5 22.7531 0.9884 2.5457 0.4633 25.7923 1.0295 2.6866 0.4692

10 32.1344 0.6638 1.8825 0.2930 34.1155 0.7127 2.3109 0.3105

100 55.7380 0.2213 1.0525 0.0832 27.3103 0.2526 1.0826 0.1118

500 60.9021 0.1153 0.7725 0.0412 6.8880 0.2801 0.7102 0.0737

1000 58.0956 0.0884 0.7092 0.0317 3.2652 0.4100 0.5729 0.1537

10,000 28.8239 0.0797 0.6887 0.0156 0.4168 0.5968 0.4585 0.1950
100

s+ 100 5 25.9475 0.9432 2.5876 0.4444 26.4742 0.9339 2.5879 0.4415

10 35.9378 0.6270 1.8564 0.2800 36.7563 0.6169 2.1791 0.2777

100 56.1026 0.1903 0.8598 0.0763 58.1064 0.1829 0.8574 0.0748

500 60.5646 0.0921 0.4009 0.0352 62.7349 0.0849 0.3936 0.0339

1000 60.2911 0.0694 0.3287 0.0262 61.6658 0.0625 0.2820 0.0248

10,000 43.7446 0.0295 0.1747 0.0113 34.6103 0.0247 0.1231 0.0103
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Figure 13. Simulation results of MRAC with MIT rule for various values of adaptation gain (a) for reference model am = bm = 4.

Figure 14. Simulation results of MRAC with MIT rule for various values of adaptation gain (a) for reference model am = bm = 10.

Figure 15. Simulation results of MRAC with MIT rule for various values of adaptation gain (a) for reference model am = bm = 50.
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Figure 16. Simulation results of MRAC with MIT rule for various values of adaptation gain (a) for reference model am = bm = 100.

Figure 17. Simulation results of MRAC with Lyapunov rule for various values of adaptation gain (a) for reference model am = bm = 1.

Figure 18. Simulation results of MRAC with Lyapunov rule for various values of adaptation gain (a) for reference model am = bm = 4.
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Figure 20. Simulation results of MRAC with Lyapunov rule for multiple values of adaptation gain (a) for reference model am = bm = 50.

Figure 19. Simulation results of MRAC with Lyapunov rule for various values of adaptation gain (a) for reference model am = bm = 10.

Figure 21. Simulation results of MRAC with Lyapunov rule for various values of adaptation gain (a) for reference model am = bm = 100.
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fast, reached the desired goal, and is evidence of the

system’s stability.

Conclusion

The present work investigates the effect of varying adapta-

tion gains and reference models for the first-order and

second-order systems. It has been observed that with the

increase in the values of adaptation gain, the system’s

performance is improving in terms of fast response, lesser

settling time, and a drop in overshoot. It has also been

observed that there are oscillations in the response after a

specific gain value. All the investigations have been done

using MATLAB/Simulink. After incorporating the varia-

tions of the adaptation gain and reference model for the

first-order and second-order systems with the MIT rule and

Lyapunov rule separately, it is worth mentioning the fol-

lowing salient conclusions:

Figure 24. Simulation results of MRAC with MIT rule for reference

model am = 4 and bm = 4 at adaptation gain 1, 2, 3, 4, and 5.

Figure 25. Simulation results of MRAC with MIT rule for reference

model am = 4 and bm = 4 at adaptation gain 1, 2, 3, and 4.

Figure 22. Simulation results of MRAC with MIT rule for reference

model am = 2 and bm = 1 at adaptation gain 1, 2, 3, 4, and 5.

Figure 23. Simulation results of MRAC with MIT rule for reference

model am = 2 and bm = 1 at adaptation gain 1, 2, 3, and 4. Figure 26. Simulation results of MRAC with MIT rule for reference

model am = 6 and bm = 9 at adaptation gain 1, 2, 3, 4, and 5.

Figure 27. Simulation results of MRAC with MIT rule for reference

model am = 8 and bm = 16 at adaptation gain 1, 2, 3, 4, and 5.
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For first-order systems

� First, the investigations are done for adaptation gain

by varying the value of a from 1 to 11,000 for a refer-

ence model am = bm = 4. From the observation of

results depicted in Figures 4–11 and Table 1, it may be

observed that as the adaptation gain increases, the set-

tling time and overshoot are reduced.

� From Figures 4 and 6, it is seen that system shows a

good response till a = 100, but from a = 100 to

1000, some oscillations are introduced in the system

for some time, but finally, it is settled with the refer-

ence model. After a = 1000, oscillations start increas-

ing and are not agreeing with the reference model.
� After this, the investigation of the performance con-

cerning the change in the reference model is carried

out. Optimal values of a have been selected for further

analysis of change in reference model parameters, as

shown in Figures 12–21 and Table 2. From these

observations, it may be concluded that as the time

constant of the reference model is increased, the sys-

tem response is narrowed, and settling time is

decreased with some overshoot values till a = 1000

for the value of am . a, but for am\a, system’s

response is tracking to the reference model, but the

settling time is increased with the increased value of a.
� Hence, it may be concluded that for the fist-order sys-

tem, the adaptation gain should be in the range of 1–

1000, and the reference model’s time constant should

be greater than the time constant of the first-order

system.
� All the investigations are done for both MIT and

Lyapunov rule separately, and comparative analysis

Figure 28. Simulation results of MRAC with MIT rule for reference

model am = 8 and bm = 16 at adaptation gain 1, 2, 3, and 4.

Figure 29. Simulation results of MRAC with Lyapunov rule for

reference model am = 2 and bm = 1 at adaptation gain 1, 2, 3, 4, and 5.

Figure 30. Simulation results of MRAC with Lyapunov rule for

reference model am = 4 and bm = 4 at adaptation gain 1, 2, 3, 4, and 5.

Figure 31. Simulation results of MRAC with Lyapunov rule for

reference model am = 6 and bm = 9 at adaptation gain 1, 2, 3, 4, and 5.

Figure 32. Simulation results of MRAC with Lyapunov rule for

reference model am = 8 and bm = 16 at adaptation gain 1, 2, 3, 4, and 5.
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Figure 33. Step response of the second-order system for deferent references at a = 3 using (a) MIT rule and (b) Lyapunov rule.

Table 3. Effect of change of parameters of reference model on second-order system with MIT rule and Lyapunov rule.

Adaptation law MIT rule Lyapunov rule

Reference

model

Adaptation

gain

Overshoot Peak

time

Settling

time

Rise time Overshoot Peak time Settling time Rise time

1
s2 + 2s+ 1

1 2.2204e214 39.5939 6.6308 3.4372 0 25 6.2746 3.3573

2 2.2204e214 40.3386 6.1194 2.9700 0 25 6.0305 3.2267

3 4.0424e205 22.1758 6.0121 2.9044 0.0175 24.7899 5.9591 3.2372

4 0 27.1262 27.1262 7.4607e214 40.9613 12.1083 18.1199 3.2301

5 0 14.0713 14.0713 3.9080e214 52.2574 7.5366 12.6483 3.2413
4

s2 + 4s+ 4
1 2.2204e214 21.2969 4.1963 2.2972 2.2204e214 20.3499 3.5964 2.0492

2 3.4195e212 16.9115 3.3111 1.7084 3.1308e212 17.6792 3.1355 1.6721

3 3.0037e204 10.7617 3.1256 1.5411 0.0363 24.9530 3.1078 1.6264

4 0 23.5345 23.5345 7.1054e214 40.0135 9.2487 15.0174 1.6007

5 0 12.6046 12.6046 3.5527e214 57.9158 5.3611 10.9710 1.5890
9

s2 + 6s+ 9
1 4.4409e214 17.4461 3.4693 1.9394 2.2204e214 15.0509 2.9018 1.6921

2 1.0567e210 10.7740 2.4793 1.3253 1.5219e206 7.5762 2.2098 1.2161

3 0.0013 13.7008 2.2083 1.1339 0.7768 19.8781 2.0266 1.0987

4 0 19.2199 19.2199 5.3291e214 39.7592 7.5318 13.7827 1.0707

5 0 21.0657 4.5397 1.3253 52.8847 4.5322 9.5964 1.0592
16

s2 + 8s+ 16
1 2.2204e214 16.6686 3.1229 1.7682 2.2204e214 14.3965 2.6221 1.5392

2 2.1820e205 5.1239 2.0944 1.1403 7.7983e205 4.8487 1.7922 1.0127

3 0.0086 11.8356 1.7853 0.9407 0.1771 14.7420 1.6471 0.8834

4 0 16.9825 16.9825 4.6185e214 37.6409 6.6590 13.0336 0.8447

5 0 8.5337 8.5337 2.3093e214 51.7270 3.6786 8.9262 0.8134

Figure 34. Output error of the second-order system for deferent references at a = 3 using (a) MIT rule and (b) Lyapunov rule.
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Figure 35 (a) Step response of the first-order system with and without controller (MIT rule-based). (b) Step response of the first-order system with

and without controller (Lyapunov rule-based). (c) Step response of the second-order system with and without controller (MIT rule-based). (d) Step

response of the second-order system with and without controller (Lyapunov rule-based).
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suggests that design via the Lyapunov law performs

superior to the MIT rule.

For second-order system

� For the second-order system, the investigations are

done for adaptation gain and change in reference

model parameters with the MIT and Lyapunov rule

separately, shown in the results depicted in Figures

22–33 and Table 3.
� The settling time and overshoot of the system reduced

with increasing natural frequency of the reference

model for the range a = 1–3 in both MIT and

Lyapunov rules. However, the system became unstable

for a = 4 and 5 in the MIT rule and stable with

minor oscillations in Lyapunov law for a = 4 and 5.

Hence, it is concluded that a should be 1 to 3 for any second-

order critically damped reference model.
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