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Abstract

Model Order Reduction (MOR) has demonstrated its robustness and wide use in engineering and science for the simulation
of large-scale mathematical systems over the last few decades. MOR is currently being intensively optimized for dynamic
systems that are becoming increasingly complex. MOR broad applications have been identified not only in the modeling
but also for optimization and control engineering applications. In the present article, various methods related to MOR for
large-scale linear and nonlinear dynamic systems have been analyzed, mainly pertaining to electrical power systems, control
engineering, computational system theory, and design. The paper focuses on a detailed theoretic Perspective for MOR of
the large-scale dynamical system to address the key challenges to the approximation along with their application. Firstly,
a complete description of the literature search for various approximation techniques has been presented and the various
inferences have been mentioned as the outcome. One of the drawbacks that we have found out of the investigation, has been
taken as a sample problem. The key demerit of the balanced truncation approach is that the ROM steady-state values do not
correspond with the higher-order system (HOS). This drawback has been eliminated in the proposed approach, which leads
to the hybridization of balanced truncation and singular perturbation approximation (SPA) into a novel reduction method
without the loss of retaining its dynamic behavior. The reduced system has been so designed to preserve the complete
parameters of the original system with reasonable accuracy. The approach is based on the retention of the dominant states
or modes of the system and is comparatively less important once. The reduced system evolves from the preservation of the
dominant states or modes of the original system and thus retains stability intact. The methodology presented has been tested
on two typical numerical examples taken from the literature review, to examine the performance, precision, and comparison
with other available order reduction methods.

1 Introduction

The approximation of linear time-invariant large scale
dynamical (LSD) systems is important in many engineer-
ing problems, particularly in the design of control sys-
tems, where the engineer is confronted with the control
of a physical system whose analytical model is described
as a high order linear time-invariant (LTI) system. LSD
systems can be used to model a wide range of practical
systems. It is critical to investigate the control problem
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of LSD systems to enhance the control performance of
such systems [1, 2]. LSD systems, which have been made
up of a series of connected subsystems are widely used in
practical applications [3, 4]. The development of a math-
ematical model begins with the investigation of all physi-
cal systems, such as aircraft, chemical plants, refineries,
electrical grids, traffic congestion networks, digital com-
munication, and control systems, etc. In many practical
situations, a complex, HOS is derived from theoretical
considerations [5, 6]. Realistic systems have often been
observed to consist of many interactive subsystems with
their characteristics, and the resulting system size may be
too large to be conveniently handled when such subsys-
tems are interconnected. A typical example of this situa-
tion is the dynamic stability studies of modern intercon-
nected power systems. System equations are linear under
dynamic conditions, but the total number of differential
equations describing system performance increases rapidly
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as the number of interconnected machines increases. Spe-
cial numerical techniques for calculations are required for
a system of a high order. The analysis of such a HOS is not
only time-consuming but also not cost-effective for online
implementation.

The complexity of the system also makes it difficult to
gain a thorough understanding of its behavior. An uncom-
fortably HOS may present difficulties in its analysis, synthe-
sis, or identification. Preliminary design and optimization
of such systems can often be accomplished more easily if a
ROM is derived that provides a good approximation of the
system. It is thus preferable to replace a high order system
with a low order system while retaining the main qualitative
features of the original system, such as the constant time,
damping ratio, natural frequency, and stability ratio. Thus,
the MOR method contributes to a better understanding of
the system. The model must also be mathematically simple
so that it can be easily analyzed, and the results studied.
In short, the main goals of obtaining ROMs are to develop
a better understanding of the higher order of the original
system, to reduce computational complexity, to reduce hard-
ware complexity, to make designs feasible, and to obtain
simpler control legislation.

This paper is split into six parts. The first part provides
an overview and detailed summary of the literature review
for large-scale systems. Section 2 defines the Problem
Statement. Theoretical Perspective for MOR is described
in Sect. 3. Section 4 describes the application of the MOR
method for LTT large-scale dynamical systems to reduce,
followed by numerical experiments and results that are
compared to methods from the literature to determine the
validity of the proposed method in Sect. 5. Finally, Sect. 6
discusses the premise and future scope of the work.

2 Problem Statement

Let us consider an nth order SISO linear time-invariant
higher-order system represented by the following transfer
state-space representation by Eq. (1):

dx(t) _ A B
5| = A0+ Bu() (C__D} 0
y(t) = Cx(t) + Du(t) 5

where x € R", u € R?, y € R” with ‘p’ inputs and ‘q’ out-
puts and A ER™" BER™™, CERP" and D € RP*™ are
constant matrices of appropriate size. p=q=1, the original
system is referred to as the SISO system, otherwise, it will
be called the multi-dimensional system. The MOR problem
consists of finding an approximate system of order ‘r’ r(< n)
described by
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dx, (1) _ LB
s a Arx,<t)+B,u<r>©£C, ED,J o

Y, () = C.x,(t) + D,u(?)

Such a dimensional SISO Dynamic system and order model
are similar in the important aspects of their characteristics and
x,€R"u e R,y €eR’and AER™, BER™", CERP*" and
D € RP*™ are constant matrices of reduced-order model and
reduced output y, should be a close approximation of y for a
given set of inputs [7, 8]. The transfer function associated with
original system Eq. (1) representations may be expressed by

G(s) =D +C[sl, —A]"'B 3)
N(s ny +nys + nys® + - - ony,_y 5!

G(s) = () _Mmtms+m . | @
D(s) dy+dis+dys*+---+d,s"

or
m—1 )
2 ns

Gls) = 5 5)

n
Y dst
i=0

where G(s) is expressed as and n;, d; are scalar constants of
the HOS system.

The challenge is to design a ROM (5) that retains the impor-
tant properties of the original and approximates the output as
closely as possible [9, 10], The ROM is expressed as G,.(s) and
obtained is described as follows:where

G,.(s)=R.(s) =D, +C,(sI, —A,)"'B, (6)

_N(s) Aty iyst 4!

G,(s) = =0 - 7
D,(s)  dy+dis+dys?+--+d,s @
or
r—1
2 s
j=0
R(s) == ®)
S i
Jj=0

where suffix ‘r’ is denoted and m;, n; are a scalar constant of
the ROM [11].

3 Theoretical Perspective for MOR
Simplicity while preserving the features of interest will be

one of the most desirable features of such models. Since the
models can be developed with different goals and objectives
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or with different points of view, a given system can have
more than one model, each satisfying some predefined goals.
Dissimilar people progress different models for the same
system; if their perception or point of view changes over
time, the same individual may develop dissimilar models for
the same system. The model's usability is a crucial aspect,
especially in online controls. Simpler models commonly
give a better feel of the original system [12—14]. The approx-
imation method theoretical survey is provided in Tables 1
and 2. Several researchers have proposed a wide variety of
MOR methods over the past few decades. The goal of MOR
can be summarised as follows:

(i) The prominent points that should always be taken
care of while deriving the ROM, are as follows [15]

e Stability should be preserved.

e Passivity should also be maintained or preserved.

e The method should be reliable and effective in com-
putation.

e The method should be reliable and effective in com-
putation.

e The methods must adopt some specific requirements
for error tolerance.

e High fidelity representation of the original large-
scale system.

e A considerable difference between the size of the
ROM and the original system.

e Lesser approximation error and existence of global
error bound.

e Numerically stable and efficient procedure.

e Economize in terms of hardware while synthesizing
the system.

(i1)) Some of the reasons for MOR are as follows

e Fast and ease in the understanding of the system

Reduced computational burden.

Reduced computational burden

Reduced Controller synthesis

Controller procedure making reasonable designs.

Improving the computer-aided system design

approach.

e All of the above results in the best cost-effective
solution.

3.1 A Systematic Literature Review of Inference
Strategies for MOR

e Researchers are either developing new algorithms or
improving the existing algorithms for MOR.

e Control design can be done after the approximation of a
system or even approximation-based control design can
be achieved.

e Mixed methods (a combination of two existing methods)
are widely available in the literature.

e MOR for real-time systems such as the power system
model is the focus of many researchers.

e Much attention has been given to stability preserving
ROM.

e Structure and passivity preserving ROM is a new shift in
this research area.

e  Work on MOR for parametric systems, interval systems,
and hybrid systems can be found and still work on it is
going on.

e Researchers are also developing nonlinear balancing
methods, but so far these can only be used for systems of
very limited size (< 100).

3.2 MOR From Mathematics to Innovative
Applications

MOR was initially being developed in system theory and
control engineering, which studies the properties of dynamic
systems in application to reduce their complexity while pre-
serving as much of their input—output behavior as possible.
Numerical Mathematicians have also taken up the field, par-
ticularly after publishing methods such as PVL (Padé via
Lanczos). MOR is a multidisciplinary topic of great interest
over the past 40 years. This is because engineering problems
often involve large-scale systems or very complex processes
that have to be controlled using low-order controllers. The
ROMs are required to minimize the computational effort
during analysis, simulation and controller design of high
order practical systems [16—-18]. ROMs are valuable for
the following reasons: ROM are neither robust concerning
parameter changes nor cheap to generate. A scheme based
on a ROM database dramatically reduces the cost of comput-
ing aeroelastic forecasts while maintaining good accuracy.

e Analysis and synthesis of the system

e Predicting transient response sensitivities of high order
systems using ROMs

e Design of controllers and observers

e Advanced applications in the area of integrated circuits,
microfluidic devices, innovative materials, etc.

e Innovative methods to reliable MOR in networks.

e Development of online simulators of system

e They are predicting transient response sensitivities of
high-order systems using ROMs.

e The area of economic and financial systems.

e Control system design

e New mathematical tools for ROM

@ Springer
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Table2 A summary of general comparisons of approximation techniques

S. No. Techniques References Compu- Stability/pas-  Applicability to multi- Special attribute
tational sivity preserva- variables systems
efforts tion
Frequency-domain
1 Continued fraction [97] Low No Yes (but no. of inputs Gives good matching in the
expansion (CFE) must be equal to no. of low and high-frequency
method output) ranges
2 Moment matching [98] Low No No ROM depends on the
method (MMM) choice of the no of
moments to be matched
3 Padé approximation (PA) [68, 69, 99-101] Low No No Taylor series expansion
4 Routh Approximation [102] Medium Yes Yes Can handle full models’
(RA) expansions belong to
Padé expansion belong
to Padé expansions about
one or more points
5 Routh Hurwitz array [66, 103, 104] Low Yes Yes A matching Taylor series
(RHA), other mixed s = 0 can handle unstable
full models
6 Error minimization [105-107] High Yes yes Commonly involves
extended computa-
tions and often leads to
iterations solution of
nonlinear equations
7 Stability equation method [75, 76] Low Yes Yes The proposed method and
(SEM) the form of stability equa-
tion produce identical
results for low-frequency
systems
8 Differentiation method [108] Low No Yes
9 Truncation [109-111] High Yes Yes
10 Dominant pole retention  [112] Medium Yes No
11 Factor division [113-115] Low Yes Yes
12 Mihailov stability cri- [116-118] Low Yes No
terion
13 Induced norm minimiza- [119, 120] Low Yes No Effective for non-dominant
tion or all dominant full mod-
els when other methods
fail
14 Mixed Padé-Routh [66, 121] Low Yes Yes Routh expansion may fail
for the case of pole-zero
cancellation straight
Pade” would not fail
15 Mixed stability equation-  [74, 122, 123] Low Yes yes Used the benefit of each
Padé, other mixed method to avoid the
drawback of the method
Time-domain
17 Modal analysis [124, 125] High Yes Yes Computation of eigenval-
ues and eigenvectors is
necessary
18 Minimal realization [126-128] Medium Yes No Requires evaluation of

system moments and
Hankel values matrix
formulations

@ Springer
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Table 2 (continued)

S. No. Techniques References Compu- Stability/pas-  Applicability to multi- Special attribute
tational sivity preserva- variables systems
efforts tion
19 Aggregation [129-131] Medium  Yes Yes Also deriving state feed-
back suboptimal control,
preserved internal struc-
tural properties (eigen-
values)
20 Optimal reduction [132] Low Yes No
21 Balanced realization [101, 134] High Yes Yes
[133]
22 Hankel norm approxima-  [85, 90, 135, 136] High Yes Yes Priori upper and lower
tion (HNA) bound approximation
error, Guaranteed error
bound
23 Singular perturbation [137-139] High Yes Yes If the calculation has a
approximation global error, it can be
used entirely automati-
cally
24 Krylov [25, 26, 81, 140-142] High No Yes Improve the ill-condition-
ing

e Adaptive control design with the help of low order mod-
els.

e Suboptimal control derived by simplified models.

e Power system stability

e Providing that a guideline for online interactive modeling

3.3 Key Challenges of MOR

Rethinking about the linear/nonlinear MOR problem, a
few prominent and significant challenges in MOR has been
pointed out which are as follows:

e Modeling uncertain mechanical systems is challenging
and necessitates the careful analysis of an enormous
amount of data- Uncertain mechanical systems [19, 20].

e Multi-disciplinary optimization in MOR [14, 21]

e Stability preservation for large scale dynamical systems
[22-30]

e Passivity Preservation [31-36]

e MOR for nonlinear complex systems & dimensionality
reduction [12, 37-41]

e Challenges in MOR for industrial problems [21, 42—-44]

e VLSI devices and layout optimization [27, 45, 46]

e Optimization technology and device modeling in micro
and nano-electronics [47-52]

e Optimization of the electrical power system and smart

city [14, 53]

A Posteriori error estimation [54-57]

Projection-based ROM [58-60]

Aeroelasticity loads analysis [61]

The financial and economic system in MOR [62]
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4 MOR of LTI Large-Scale Dynamical System

The most important problem in the appearance of complex
activities of a higher dimension system is that it occurs in
many areas, including complicated transport, ecological sys-
tems, electrical equipment, aeronautics, hydraulics, etc. [5,
143-145].

All these complex and large systems with conventional
techniques are difficult to model. The combination of these
is also considered to be big (large) if it wishes to be detached
for each numerical measurement to many structured machin-
eries or small structures for practical purposes [16, 146,
147]. Then perhaps a system is complex and wide enough
to fail to generate the proper solutions with realistic compu-
tational efforts by conventional modeling, analysis, device
design, and approximation strategies [148, 149]. Studying
this physical system [17] starts with structuring the model,
which can be considered as an enthusiastic example of this
kind of structure, which is motivated by a task of control
in preparing and evaluating a model [149-151]. We are
presenting a high stage of negotiation on computing in this
first segment, which is important for detailed incident model
observations in perspective and industry implementation
[16, 152].

Several MOR solutions were mainly provided in two
ways, namely frequency and time domain [155]. Research-
ers' reduction techniques have both benefits and inconven-
iences. One common weakness in the methods is that even
if the HOS is stable, the reduced-order system is unstable
[5, 149, 153] and steady-state matching. The other draw-
backs are the low precision in average ranges as well as high



Investigation and Implementation of Model Order Reduction Technique for Large Scale Dynamical... 3095

frequency and the non-minimum phase characteristics [136,
154]. Based upon the dominant poles method, numerous
mixed methods have been suggested by [155, 156], the con-
tinued method and time matching fraction expansion can
produce stable systems models. In the literature search, there
are numerous approaches for reducing models of LSD sys-
tem, such as a ROM algorithm, which was presented with
a Pade” approximation [63, 157, 158] and MOR of state
linear time-invariant system based on the theory of balanced
realization was initially firstly suggested by [159] in which
the realization term balanced is selected for the system
state configuration and partitions of the modes [160]. If the
steady-state matches the balanced truncation of the steady-
state value and the steady-state error of the LSD system is
not kept, the BT reduction models obtained after truncation
would have a less controllable and less measurable status.
Addressed that the weak subsystem removed can be used to
maintain the steady-state BT gain using the SPA approach
[137, 161-166]. Preserving the ratio of steady-state output
to steady-state input of the BT model for the minimal sys-
tem using the SPA approach, which can be used to reduce
the system to stable, minimal, and internal balancing [137].

The contribution of the work is that, with the traditional
BT method, it is easy to derive a ROM that may fit well with
the original system, but in most cases, it may be possible to
observe a steady-state value mismatch. Although various
researchers have used SPA to prevent such demerits from
occurring. We, too, have successfully applied this concept in
one of our works. The interesting part of the present work is
that, with simple algorithmic modifications, it leads to a new
modified algorithm based on a hybrid approach with the BT
method and the SPA approach. It is referred to as a balanced
singular perturbation approximation (BSPA) method. The
advantage of the methodology lies not only in its steady-state
matching, but also in its applicability to LSD systems, as
shown by some of the examples derived from the published
work, and also in comparison with the existing methods
available in the literature to validate the effectiveness and
superiority of the proposed method.

4.1 Balanced Truncation Method

A systems realization is balanced if its observability and
controllability gramians are equal, meaning each state is
controllable and observable. When this is done, one finds
a reduced-order model by deleting those states that are
least controllable and observable (as measured by the size
of HSVs) provides a measure of energy for each state in a
system structure in control theory. They are the basis for
a balanced reduction of the system, which retains high
energy states while discarding low energy states. The ROM
obtained via this method has significant characteristics of
the original systems [92, 167, 168].

The main idea is that the singular values of the con-
trollability gramians correspond to the amount of energy
required to move the corresponding states in the system.
This balanced truncation process is a very interesting and
powerful generalization of minimal realization theory,
which only eliminates the completely unobservable and
uncontrollable states from a given system model to furnish
a minimal realization. This paper aims to construct a new
model order reduction strategy to simplify a large-scale
linear dynamical (LSLD) system.

In Table 3, the Balanced Realization (BR) Algorithm
to derive ROM from higher-dimensional systems has been
presented. In the BR process, a higher dimensional sta-
ble structure may be controllable and observable at once.
However, as reported in the literature, a transformation
still needs to be established in many situations [159].
Then, it is transformed into a unique form of controllabil-
ity and observability gramians, which are further equal.
This leads to a diagonal matrix Y, consisting of Hankel
singular values at its diagonal, ultimately ordered in their
dominance. Such kind of realization is called BR or inter-
nally balanced realization. This balancing of a given sys-
tem is the first step into a category of methods for MOR,
referred to as the BT method [159, 169].

4.2 Proposed Hybrid Method for Approximation

The proposed algorithm is the result of the hybridiza-
tion of the Balanced truncation and Singular perturba-
tion approximation approach. It consists of two steps as
follows:

Step 1 The ROM obtained using the balanced truncation
method [141, 148] algorithm has been discussed in Table 3
of Sect. 4.1.

The Steps of the order reduction algorithm using the Bal-
anced Truncation Method may be described as followed.

To understand the balanced truncation method, we need
to introduce two characteristics of a state: controllability
and observability.

The controllability gramian (G.) and observability gra-
mian of the system is defined as follows:

Ge= / " BB A ar )
0

Go = / " A CTCe'dr (10)
0

The matrix G, G, is a symmetric positive-semidefinite
matrix called controllability and observability gramian,
respectively. It is a solution of the following Lyapunov
equation
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Table 3 Balanced realization algorithm

Input System: Original System (A, B,C, D)

Output: Reduced Order Model (4.,B,,C,,D,)

1. Solve AF. + PCAT = —BBTfOI’ F.;
2. Solve A'P,+P,A=—CC" for P,
3. Compute Cholesky factors F. = LCLCT and P, = LOLOT;

2
4. Compute SVD of Cholesky factors U X V" =L, L =[U, ,UZ]{ : 5 IAAal
2

where Y is diagonal positive and U, V has orthonormal columns matrix; with
z1 = dlag(gl st ) é )’ 22 = diag(éurl 57T > gn )
5. Compute the balancing transformation matrices

1 1

wl=X22U"LS  W=LVY?;

6. From the balancing realization as: (1:1, E, é, D= D)=WA W WB,CW™, D)
7. Select number of dominant Hankel singular value (HSV) will be the order of reduction r and the

eigen values of the original system and partition (;1, B , é , D) conformally;

8. Truncate (4,B,C, D) to form the reduced realization (4,

Properties

e (A4,B.,C.,D,) is asymptotically stable

B.,C.D).

e Error bound: ”Gr (s)— G(S)”Hx <2(&,, +..+E)

AG, + G.AT = —BBT
C C } (11)

ATG,+GoA = —cCT

Assumption: The nth-order dimensional system is an
asymptotically stable system and also minimal. Moreover,
the state-space equation of the original system or the pair
(A, B,y states controllable if and only if the nXnm state
controllability matrix and pair (4, C;) is observable if the
np X n observability matrix [159].

By assumption, both gramians G and G, are a positive
definite and unique symmetric matrix explanation to the
couple of gramians. Since their implementation is minimal.

Both gramians satisfy the following linear Lyapunov
equations [170, 171].

In control philosophy, eigenvalues express system stabil-
ity, although HSV describes the “energy” of each state in
the system.

Again, G, eigenvectors (as well as eigenvalues) are com-
pletely dependent on the choice of basis. Therefore, one may
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speak of dominant controllable states only relative to a certain
basis.

Numerically we express as a stable state-space system
Eq. (1), its HSV are well-defined as the square roots of the
eigenvalues of P Q, ordered non increasingly, are called
Hankel Singular Values: 6; = 1/4,(G-G, respectively. For
simplicity, such singular values (SV) are generally ordered
downward to truncate states that match smaller Hankel sin-
gular values as follows.

0,20,203204,206,20,,,2>0,>0 (12)

The Hankel singular values are also the singular values of
the (infinite-dimensional, but finite rank) Hankel operator,
which maps past inputs to future system outputs.

This is also a significant action of the minimality of real-
ization of the original system is the diminishing positive
number such that

P.=P,= 2 = Diagonal{61,62,0'3,64 0',,} (13)
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The diagonal matrix (D) if such a matrix realization
exists [170, 172, 173].

o(@) = ||G, ()| (14)

Any symmetric positive definite matrix may be decom-
posed into a product.

Compute (Cholesky) factors (CF) of the gramians are
often obtained by this factorization according to [146, 174].
The lower triangular matrix (CF) Q. and Q, of both grami-
ans P_and P, is obtained as [146, 161].

P, =0,0! (15)

P,=0,0! (16)

Compute SVD, the QUQZ is singular value decomposi-
tion of gramians, also known as SVD of the system, found
as follows:

SVD(Q1Q.) =U Y, V* (17)

where U and V are a vector, define as left and right singular.
Also, unitary matrices (orthogonal).

This system matric may be transformed into the balanced
model by a similarity transformation matrices W, which may
be achieved as follows [146, 171, 175].

ROM is (WAW~L, WB, CW~1).where W is a transforma-
tion matrix

w=ovy " (s)

The original system has been completely balanced, which
is partitioned as:

wAwW™ | wB
Gy (8) = m : Balanced System (19)
_ AB : BB @z Zl O
Cp | Dy 0 X, (20)
Balanced System
where the singular value Z] =diag(o,,...,0,) and

>, =diag(o,,,, ..., 0,). It is seen that ), corresponds to
the “strong” sub-systems to be retained and ), the “weak”
sub-systems to be deleted.

AB - [All A12:|,BB - [Bl

7

Hence, the reduced-order model is defined as
A=Ay, B.=B,, C,=C,

where A, is part of a strong subsystem and ), are
r X r(r < n) matrixes. We call this ROM a balanced system
approximation of direct-truncation (DT). There are some
well-known results on approximation. There are some well-
known results on the approximation [137, 176].

Lemma 1 (Pernebo et al. 1982) The subsystem matrix
A;;, B;, C; is the minimal and internally balanced realiza-

tion through Grammian Y ,(i = 1,2) (i=1, 2).

Lemma 2 (Pernebo et al. 1982) The subsystem matrix
A; (i=1, 2) is asymptotically stable if Y, and Y., has no
common diagonal component. Furthermore, the subsystem
(A;;, By, C)) (i=1, 2) is both completely controllable and
observable [177].

Step 2 Now, let us focus on applying the SPA derived from
the ROM of an LTI system [177, 178].

In numerous engineering, the system's steady-state gain,
usually referred to as DC gain value (the system gains at an
infinitive time, equivalent to G(0), plays an essential role in
evaluating system performance. It is, therefore, restored to
preserve the DC gain value in the ROM, i.e., G,(0) = G(0),
The balanced truncation approach introduced in the preceding
subsection does not retain the DC gain value unchanged [179].

Suppose that (A, B, C, D) is compatible with minimal and
balanced truncation of the stable system and the partitioned
system as in the previous subsection. Then, it can be demon-
strated that stable is A,,.

In this section, we address the order reducing procedure
for higher-dimensional systems resulting in a hybrid approach
using BT and balanced SPA. In the BT method, all balanced
systems are separated into two parts as a slow and fast mode by
defining the lower Hankel singular values (HSV) as fast mode,
with the others defined as a slow mode. First, the derivative
of all states equal to zero in fast mode may be obtained by
defining a reduced system. The main aim of structure pres-
ervation in the ROM is to preserve the dominant frequencies
of the original system. Hence, to preserve dominant dynamic
modes in the reduced system. This work introduces a new
MOR algorithm applied for a linear large-scale dynamical
system, based on the idea of preserving the dominant poles
of the original system during the order reduction. The notion

B, ] e Strong Subsystem + Weak Subsystem < z (21

Cy=[C, C,].Dy=D ~ ~

(to be retained)

~-
(to be retained)
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of Hankel singular values is a superior criterion for decid-
ing the order of ROM verified and validated with various test
problems. The approach is based on retaining the dominant
eigenvalues or modes of the system and truncating the less
significant eigenvalues comparatively.

Equation (22) has been attained as a minimal realized
model containing strong and weak subsystems. Thus, SPA
may be effortlessly applied on subsystems of Eq. (3.39).
In the BT model, reduced (r) balanced states are retained,
which are completely controllable and observable, so bal-
anced states are preserved and remaining weakly control-
lable and observable states are truncated. SPA is used to
maintain the DC gain of the original system in the model
[139, 180]. The concerned researcher may refer to [177, 178]
for more indications of the method.

The portioned form as above may be used to construct a
singular perturbation approximation. As the balanced realized
system determine, it can be re-written in the form of given as

dx;

— A, A X B

| = |4 A 1 1
lﬁ] [A21 A122] [xz] * [32]“@

di : Balanced Model
- X1
y=1[C G| | +2u
(22)
Again, re-write is equation form
dx,
—- = Ay x| +Ax, + Biu (Slower) (23)
H— = Ay Xy + Ayyxy + Byu (Faster) (24

where, u is a positive small perturbational parameter of sin-
gular perturbation approximation approach [181, 182].
By comparing the derivative of the weakly subsystem to
zero below, the BSPA model may be achieved [138, 139].
Now the final system (A ggps, Bpspa» Cgspa» Dpsps) con-
formally as in (25).

G(8) psps = A

square error (RISE), integral time-weighted absolute error
(ITAE) [8, 145, 183, 184], in between the original system
and its reduced-order model will be calculated and these
are defined as

ISE = / [y, () = y,(O)]dt (26)
0

IAE = / [v1 () = y,(0)] dt X))
0

ITAE:/t|y1(t)—y2(t)|dt (28)
0

RISE = / (yl(f)—yz(t))zdt/ / (g()*dt 29
0 0

where y,(t) and y,(t) are the outputs of the original system
and ROM [63].

The reduced system's RISE values should be nearby
(close) the original system, and ISE should be as small
as possible. Respectively, y,(t) and y,(t) are system under
the consideration and the ROM step responses obtained
respectively from the proposed method. g(t) is the impulse
response of the system [5, 76, 185—187] To obtain a lower-
order model from the more complex model is an issue in
control systems like stability, realizability, and large-order
capability. Thus, there is significant interest in investigating
new algorithms that work faster and with greater precision.
To find out which results come from the proposed method,
which results are used, which ones are given, and which ones
are used in place of these, the ISE, IAE, and ITAE and RISE
known methods are different, are evaluated for accuracy.

ws | | A Ao A Ay B~ Ay An By
'BSPA C] - Cz A;zl A21 D _Cz A'gzl Bz 25)

Balanced SPA

In the preceding section, the technique will be verified,
and the proposed method will be successfully validated.

To compare the effectiveness and performance of the
proposed methodology with other existing reduced models
available in the literature review. The Accuracy and per-
formance of the proposed method are also validated by
calculating performance indices such as an integral square
error (ISE), integral absolute error (IAE), relative integral
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5 Numerical Experiments and Results

Example 1 Consider the following 4th order system [63].

s3 4+ 7.00s2 + 24.00s + 24.00
s* 4+ 10.00s3 + 35.00s2 + 50.00s + 24.00

Gy(s) = (30)
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The HSVs of the original system are calculated as ¢ is given
by

c =[0.5179,0.0309,0.0124, 0.0006] 31

The first—second singular values are important here
G, > 03, and the third singular values quickly decay, as can
be seen from the matrix, Eq. (31). As a result, the second-
order reduction order has been chosen.

The ROM matrices obtained by using BSPA, are given as

A _[-07417 07286 _ [-0.8765
BSPA = | _(.7286 —2.656 |" BSPA T | —0.4049 |’

Cispa = [ —0.8765 0.4049 |, Dgps = 0.02597
(32)

Finally, the ROM of representation in the form of the
transfer function is expressed as R,(s) of test system 2.

_0.02597s + 0.6925s + 2.501

R
2(5) 2 +3.98s + 2.501

(33)

The results of the simulation are shown in Fig. 1. The sec-
ond-order ROM obtained by the suggested method is very
close to the original system to the other methods available
in the literature review for the same step unit, respectively.
Also, the performance indices error values are calculated to
check the modeling error and the closeness of the original
system, as shown in Table 4. The proposed method shows
that the ISE value is much lower than the value obtained
from other literature. It has been seen that the ISE values are
calculated to be, for Example 2 is that 4.427e—05. whereas
the least value of ISE, using Moore (1981), Suman et al.
(2019), Pal (1980), and Pati et al. (2014), and others are
shown in the literature. Furthermore, in Table 5, a compari-
son analysis of the time-domain specifications between the
various second-order model and the original system with

Step Response

=+ Original System
=—o— 2nd Order by Proposed Method 1
= 2nd Order Method by B.C.Moore(1981) and S K Suman et al.,(2019)
2nd Order Method by Avadh Pati et a.,(2014)
== 2nd Order Method by A. Afzal Sikander et al., (2015)
2nd Order Method by S. R. Desai et al., (2013)
= 2nd Order Method by G. Parmar et al., (2007)
= 2nd Order Method by Sikander et al., (2015)
= 2nd Order Method by C B Vishwakarma et al., (2008) —
== 2nd Order Method by Shilpi Lavania et al.,(2017)

0.8 —
o
°
206
°
3 Step Response
< 1.0004
7 © 1.0002
0.4 °
2 1
2 0.9998

£
< 0.9996

0.2 0.9994 -
8.70325 8.7033 8.70335
Time (s)
0 | | 1 L | | |
0 1 2 3 4 5 6 7

Time (s)

Fig. 1 Qualitative comparison of the proposed method and original system with other ROM methods in terms of step response for Example 1

Table 4 Performance analysis of the proposed method and other existing ROM methods for Example 1

MOR method & References ROM ISE IAE ITAE RISE
Proposed method 002597 *+0.6925 s + 2501 4.427e-05 0.009887 0.01892  1.107e-05
524+3.98 5 + 2.501

Moore (1981) [159] and Suman (2019) [149] % 0.001448 0.09609 0.6479 0.000362
s=+1. s+ 0.

Jayanata pal [188] and Avadh Pati et al. (2014) [189] % 0.001112 0.06246 0.1317 0.000278
$=+27.01 s + 24.

Afzal Sikander et al. (2015) [190] and Narwal et al. (2016) [185] % 0.0001324  0.02732 0.09423  3.311e-05
s24+2.12s + 1.25

Desai et al. (2013) [191] _0.8058 5 +0.7944 0.0002839  0.0002839  0.1738 7.098e-05
$24+1.65 5 + 0.7944

Parmar et al. (2007) [192] 0.7442575 5 + 0.6991576 0.001698 0.1051 0.3954 0.0004245
$2+1.45771 s + 0.69997

Sikander et al. (2015) [8] __0.6997s +0.6997 0.00278 0.1315 04172 0.0006953
$2+1.45771 s + 0.6997

C B. Vishwakarma et al. (2008) [193] _=0.189762 s +4.5713 0.008021 0.1455 0.24 0.002006
$2+4.76187 s + 45713

Shilpi Lavania et al. (2017) [194] __ 09925 +24.09 0.001105 0.6223 0.1313 0.0002763

$2427.096 s + 24.096
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help of literature has been presented. The response is to
demonstrate the exact representation and effectiveness of
the proposed method. The results of the proposed method
were compared with existing ROM methods which show an
improvement in performance error indices, time response
characteristics, and time domain specifications with the
same DC gain as the original system. This response allows
an accurate approximation and confirms the efficacy of the
technique.

Example 2 Let us consider the eighth order system rep-
resented by the following transfer function, which many
researchers have previously considered [73, 195]

From the matrix o, it can be proved that 6, > &5. The first
and second singular values are extremely important, and the
third singular values quickly disappear away. As a result, the
reduction order has been chosen as the second order.

The ROM matrices obtained by using BSPA, are given as

A _[-6644 2201 _ [-4021
BSPA T | 2201 —0.0444 [ 7BPA T [ 02575 'L (56

Cpspa = | —4.021 —0.2575 |, Dggps = 0.0595

Finally, the ROM of representation in the form of the trans-
fer function is expressed as R, (s) of Example 2.

Gg(s) =

18s” + 514s% + 598253 + 36380s* + 122645 + 222088s% + 185760s + 40320 (34)
s8 4+ 3657 + 54686 + 453655 + 22449s* + 67284s3 + 11812452 + 109584s + 40320

The HSVs of the original system is calculated as ¢ is
given by

o =[1.216652465935050, 0.746403486833304, 0.027915998321307, 0.001940648946887,

(35)
0.000107069466391, 0.000001588964686, 0.000000145817410, 0.000000000050828]
Table5 A Comparison of time-domain specification with Other available ROM Methods according to literature for Example 1
The method used by Rise time (s) Settling time  Settling minimum  Settling maximum Overshoot Undershoot Peak  Peak time
Author (s) (s) (s) (s) (s) (s) s
Four order original 2.2603 3.9308 0.9019 0.9990 0 0 0.9990 6.8847
System
Second Order Model by 2.2583 3.9178 0.9034 0.9990 0 0 0.9990 6.7109
Proposed Method
Second Order Model by 2.0892 5.3643 0.8819 0.9941 2.0631 0 0.9941 4.9396
Moore (1981) and
Suman et al. (2019)
Second Order Model by 2.3872 4.2476 0.9003 1.0000 0 0 1.0000 11.4593
Jayanata pal (1980)
and Avadh Pati et al.
(2014)
Second Order Model by 2.2409 3.6722 0.9017 1.0002 0.0248 0 1.0002  6.9078
Afzal Sikander et al.
(2015) and Narwal
et al. (2016)
Second Order Model by 2.2785 3.6199 0.9054 1.0027 0.2738 0 1.0027  5.9728
Desai et al. (2013)
Second Order Model by 2.1870 3.2168 0.9005 1.0119 1.3061 0 1.0119 49915
Parmar et al. (2007)
Second Order Model by 2.3011 3.4104 0.9019 1.0107 1.0722 0 1.0107  5.2442
Sikander et al. (2015)
Second Order Model by 1.8368 3.3413 0.9021 0.9999 0 0.3202 0.9999  7.2263
Vishwakarma et al.
(2008)
Second-Order Model by 2.3865 4.2467 0.9003 1.0000 0 0 1.0000 11.4559

Shilpi Lavania et al.
(2017)
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0.0595s% + 16.5s + 5.141
s?2 + 6.688s + 5.141

R,(s) = (37

It is shown in Fig. 2 that The ROM obtained by the pro-
posed method is very close to the original system, com-
pared with other methods also available in the literature. As
well, the comparative analyses of ROMs in terms of ISE,
IAE, ITAE, and RISE, are given in Table 6 for illustration.
From this comparison, it can be observed that the proposed
method obtained a good result and gives the closest approxi-
mation to the original system with less error than other ROM
models. It has been seen that the ISE values are calculated
to be, for example, 2, 0.0005563, whereas the least value
of ISE, by other methods and recently published work by
Moore (1981), Suman et al. (2019), Afzal Sikander et al.

(2015) and Narwal et al. (2016) and others are depicted in
Table 6. Furthermore, in Table 7, the comparison of time-
domain specifications between different 2nd order models
and the original system has been presented. The response is
to illustrate the exact representation and effectiveness of the
proposed method. The results of the proposed method have
been compared with existing ROM methods which show an
improvement in performance error indices, time response
characteristics, and time-domain specifications with the
same DC gain or steady-state value as the original system.
This response allows for an accurate approximation and con-
firms the efficacy of the technique. Hence, it is clear that the
proposed method is much better than the other well-known
methods available in the literature review.

Step Response
I

Step Response

5.408 5.41 5.412
Time (s)

=+ Original System |
== 2nd Order Method by Proposed Method

$ 1.022 == 2nd Order Method by B.C.Moore (1981) & S K Suman et al., (2019)
2 110-‘13% — 2nd Order Method by A. Afzal Sikander et al., (2015) & A. Narwal et al., (2016)
2 1016 = 2nd Order Method by S. R. Desai et al., (2013) —
E 1.014 2nd Order Method by D.A. Ali Nadi et al., (2011)
1.012 —— 2nd Order Method by C B Vishwakarma et al., (2011)

= 2nd Order Method by G. Parmar et al., (2007)
=== 2nd Order Method by S. Mukherjee et al., (2005) .
= 2nd Order Method by T. N. Lucas, (1983)

2nd Order Method by S. Mukherjee, et al., (1987)

Amplitude

L | 1 |

5 6 7 8
Time (s)

10

Fig.2 Qualitative comparison of the proposed method and original system with other ROM methods in terms of step response for Example 2

Table 6 Performance analysis
of the proposed method and

other existing ROM methods for
Example 2

MOR method & References ROM ISE IAE ITAE RISE
Proposed method 005958 +16.55+5.141  (0.0005563  0.05262 0.1476  0.000139
$24+6.6885+5.141

Moore (1981) and Suman et al. (2019) % 0.01398 0.3164 2.112 0.003492
s2+7. s+4.

Afzal Sikander et al. (2015) 16.975?+5.262 0.006967 0.6077 0.1769 0.01741
52+6.893s+5.262

Desai et al. (2013) [196] 16.915>+5.255 0.006923 0.05965 0.17 0.0001729
2+6.875+5.26

Ali Nadi et al. (2011) [197] 175+5.074 0.001223 0.09536  0.5199 0.0003056
$24+6.9725+5.151

Vishwakarma et al. (2011) [198] 16.511375+5.45971  (0.01406 0.1972 0.3471 0.003512
$246.196425+5.45971

Parmar et al. (2007) [63] % 0.04809 0.3007 0.3891 0.01201

8$-+9s+

Mukherjee et al. (2005) [199] _11.39095+4.4357 0.05692 0.4575 0.9475 0.01422
$2+4.21225+4.4357

Lucas (1983) [113] 0.7786s+2 0.2792 0.7628 1.02 0.06976
S2+3s+2

Mukherjee, et al. (1987) [157] W 0.269 0.8098 1.209 0.06719

§5°+3s+]
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Table 7 A Comparison of time-domain specification with Other available ROM Methods according to literature for Example 2

The method used by Rise time Settling time  Settling minimum  Settling maximum Overshoot Undershoot Peak  Peak time
Author (s) (s) (®) (s) (©) (©) (s) (©)
8th order original System  0.0569 4.8201 0.9712 2.2035 1203496 O 2.2035 0.4490
Second Order Model by 0.0581 5.0580 1.0017 2.2250 122.4975 0O 2.2250 0.4603
Proposed Method
Second Order Model by 0.0528 5.9713 0.9436 2.2010 134.0255 0 22010 0.4441
Moore (1981) and Suman
etal. (2019)
Second Order Model by 0.0594 5.1041 1.0004 2.22717 1227736 0O 22277 0.4438
Afzal Sikander et al.
(2015) and Narwal et al.
(2016)
Second Order Model by 0.0596 5.0928 1.0003 2.2267 122.6722 0O 22267 0.4457
Desai et al. (2013)
Second Order Model by 0.0583 5.2816 0.9859 2.2106 124.4157 0 22106 0.4506
Ali Nadi et al. (2011)
Second Order Model by 0.0597 4.3581 0.9644 2.3562 135.6204 O 2.3562 0.4666
Vishwakarma et al. (2011)
Second-Order Model by 0.0409 4.3942 0.9140 2.4214 142.1376 0 24214 0.3454
Parmar et al. (2007)
Second-Order Model by 0.0856 3.3527 1.0003 2.2925 129.2490 0 22925 0.5904
Mukherjee et al. (2005)
Second-Order Model by 0.1507 5.4712 0.9769 1.9878 98.7846 0 1.9878 0.8750
Lucas (1983)Lucas (1983)
Second-Order Model by 0.1416 5.4717 0.9954 2.0620 107.1669 2.0620 0.8750

Mukherjee et al. (1987)

6 Conclusion and Future Scope

In this contribution, the various MOR methods for the
LSD system have been thoroughly and comprehensively
reviewed. It has been focused on methods with their detailed
theoretical background as applied to the system. We have
also discussed similarities and differences between several
approaches along with their merits and demerits which may
be useful to the research community. Two numerical com-
parisons show the advantages and disadvantages of these
approaches. There are a few new viewpoints to this area
which has been elaborated. We have also, highlighted the
impressive improvements made over the last few years with
respect to MOR applied to linear systems, although several
key challenges remain to be investigated and further devel-
opments in numerical methods are, yet to be addressed. In
addition, an application to my previous work for reducing
the order of the large-scale dynamic LTI system has been
further investigated in this paper. The hybrid technique
applied was found to be superior to the conventional method
(BT) or other existing methods. This hybridization approach
using BT and SPA Approach has been found to effectively
compensate for the demerits of each other. Furthermore, the
same technique has been illustrated with a couple of very
promising examples of a continuous LTI system. The step
response comparison shows that the ROM obtained by the

@ Springer

method applied provides a close approximation to the HOS.
In addition, the accuracy, validation, and superior perfor-
mance of the presented method have been demonstrated by
comparing the performance indices with various similar out-
comes existing in the literature. Applicability to large-scale
systems may increase the benefits of the method however
it which is a matter of further investigation. Some of them
are currently ongoing at the present. This procedure can be
extended to the design of the state feedback controller, opti-
mum, H-infinity controller, etc.

Data Availability My manuscript has no associated data.

References

1. Li S, Xiang Z (2020) Sampled-data decentralized output feed-
back control for a class of switched large-scale stochastic non-
linear systems. IEEE Syst J 14(2):1602-1610. https://doi.org/10.
1109/JSYST.2019.2934512

2. Patalano S, Mango Furnari A, Vitolo F, Dion JL, Plateaux R,
Renaud F (2021) A critical exposition of model order reduction
techniques: application to a slewing flexible beam. Arch Comput
Methods Eng. https://doi.org/10.1007/s11831-019-09369-1

3. He W, Li S, Ahn CK, Guo J, Xiang Z (2020) Global decentral-
ized control of p-normal large-scale nonlinear systems based on


https://doi.org/10.1109/JSYST.2019.2934512
https://doi.org/10.1109/JSYST.2019.2934512
https://doi.org/10.1007/s11831-019-09369-1

Investigation and Implementation of Model Order Reduction Technique for Large Scale Dynamical...

3103

10.

12.

13.

14.

16.

17.

18.

19.

20.

21.

22.

sampled-data output feedback. IEEE Syst J. https://doi.org/10.
1109/jsyst.2020.2997029

Chan SC, Wu HC, Ho CH, Zhang L (2019) An augmented
Lagrangian approach for distributed robust estimation in large-
scale systems. IEEE Syst J 13(3):2986-2997. https://doi.org/10.
1109/JSYST.2019.2897788

Sikander A, Prasad R (2015) Soft computing approach for
model order reduction of linear time invariant systems. Cir-
cuits Syst Signal Process 34(11):3471-3487. https://doi.org/
10.1007/s00034-015-0018-4

Kumar J, Sikander A, Mehrotra M, Parmar G (2020) A new
soft computing approach for order diminution of interval sys-
tem. Int J Syst Assur Eng Manag 11:366-373. https://doi.org/
10.1007/513198-019-00865-y

Antoulas AC, Benner P, Feng L (2018) Model reduction by
iterative error system approximation. Math Comput Model Dyn
Syst 42(2):103-118. https://doi.org/10.1080/13873954.2018.
1427116

Sikander A, Prasad R (2015) Linear time-invariant system
reduction using a mixed methods approach. Appl Math Model
39(16):4848-4858. https://doi.org/10.1016/j.apm.2015.04.014
Sikander A, Prasad R (2019) Reduced order modelling based
control of two wheeled mobile robot. J Intell Manuf 30(3):1057—
1067. https://doi.org/10.1007/s10845-017-1309-3

Uniyal I, Sikander A (2018) A comparative analysis of PID
controller design for AVR based on optimization techniques. In:
Advances in intelligent systems and computing, pp 1315-1323.
https://doi.org/10.1007/978-981-10-5903-2_138

. Prajapati AK, Prasad R (2019) Reduced-order modelling of LTI

systems by using Routh approximation and factor division meth-
ods. Circuits Syst Signal Process 38(7):3340-3355. https://doi.
org/10.1007/s00034-018-1010-6

Baur U, Benner P, Feng L (2014) Model order reduction for lin-
ear and nonlinear systems: a system-theoretic perspective. Arch
Comput Methods Eng 21(4):331-358. https://doi.org/10.1007/
s11831-014-9111-2

Rowley CW (2005) Model reduction for fluids, using bal-
anced proper orthogonal decomposition. Int J Bifurcat Chaos
15(3):997-1013. https://doi.org/10.1142/S0218127405012429
Schilders WHA, Van Der Vorst HA, Rommes J (2008) Model
order reduction: theory, research aspects and applications, vol
13. Springer, Berlin

. Sundstrom D (1985) Mathematics in industry. Int J Math Educ

Sci Technol. https://doi.org/10.1080/0020739850160226
Mohamed KS (2018) Machine learning for model order reduc-
tion. Springer, Berlin

Schilders WHA, van der Vorst HA, Rommes J (2008) Model
order reduction: theory, research aspects and applications.
Springer, Berlin

Chaturvedi DK (2017) Model order reduction. In: Modeling and
simulation of systems using MATLAB® and Simulink®. CRC
Press, Boca Raton

Pivovarov D et al (2019) Challenges of order reduction tech-
niques for problems involving polymorphic uncertainty. GAMM
Mitteilungen. https://doi.org/10.1002/gamm.201900011
Bui-Thanh T, Willcox K, Ghattas O (2008) Parametric reduced-
order models for probabilistic analysis of unsteady aerodynamic
applications. AIAA J 46(10):2520-2529. https://doi.org/10.
2514/1.35850

Mendonca G, Afonso F, Lau F (2019) Model order reduction in
aerodynamics: review and applications. Proc Inst Mech Eng Part
G J Aerosp Eng 233(15):5816-5836. https://doi.org/10.1177/
0954410019853472

Baur U, Benner P, Greiner A, Korvink JG, Lienemann J, Moos-
mann C (2011) Parameter preserving model order reduction for

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

MEMS applications. Math Comput Model Dyn Syst 17(4):297—
317. https://doi.org/10.1080/13873954.2011.547658

Anand S, Fernandes BG (2013) Reduced-order model and stabil-
ity analysis of low-voltage dc microgrid. IEEE Trans Ind Elec-
tron. https://doi.org/10.1109/TIE.2012.2227902

Mariani V, Vasca F, Vasquez JC, Guerrero JM (2015) Model
order reductions for stability analysis of islanded microgrids
with droop control. IEEE Trans Ind Electron 62(7):4344-4354.
https://doi.org/10.1109/TIE.2014.2381151

Bai Z (2002) Krylov subspace techniques for reduced-order
modeling of large-scale dynamical systems. Appl Numer Math
43(1-2):9-44. https://doi.org/10.1016/S0168-9274(02)00116-2
Freund RW (2000) Krylov-subspace methods for reduced-order
modeling in circuit simulation. J] Comput Appl Math 123(1-
2):395-421. https://doi.org/10.1016/S0377-0427(00)00396-4
Freund RW (2004) SPRIM: structure-preserving reduced-order
interconnect macromodeling. In: IEEE/ACM international con-
ference on computer-aided design, Digest of Technical Papers,
ICCAD, pp 80-87. https://doi.org/10.1109/iccad.2004.1382547
Wang X, Yu M, Wang C (2018) Structure-preserving-based
model-order reduction of parameterized interconnect systems.
Circuits Syst Signal Process 37(1):19-48. https://doi.org/10.
1007/s00034-017-0561-2

Freund RW (2011) The SPRIM algorithm for structure-preserv-
ing order reduction of general RCL circuits. In: Lecture notes
in electrical engineering, pp 25-52. https://doi.org/10.1007/
978-94-007-0089-5_2

Beattie C, Gugercin S (2009) Interpolatory projection meth-
ods for structure-preserving model reduction. Syst Control Lett
58(2):225-232. https://doi.org/10.1016/j.sysconle.2008.10.016
Odabasioglu A, Celik M, Pileggi LT (1997) PRIMA: Passive
reduced-order interconnect macromodeling algorithm. In: IEEE/
ACM international conference on computer-aided design, Digest
of Technical Papers, pp 433-450. https://doi.org/10.1007/978-1-
4615-0292-0_34

Odabasioglu A, Celik M, Pileggi LT (1998) PRIMA: Passive
reduced-order interconnect macromodeling algorithm. IEEE
Trans Comput Des Integr Circuits Syst 17(8):645-654. https://
doi.org/10.1109/43.712097

Ionutiu R, Rommes J, Antoulas AC (2008) Passivity-preserving
model reduction using dominant spectral-zero interpolation.
IEEE Trans Comput Des Integr Circuits Syst 27(12):2250-2263.
https://doi.org/10.1109/TCAD.2008.2006160

Fanizza G, Karlsson J, Lindquist A, Nagamune R (2006) A global
analysis approach to passivity preserving model reduction. In:
Proceedings of the IEEE conference on decision and control, pp
3399-3404. https://doi.org/10.1109/cdc.2006.376706

Antoulas AC (2005) A new result on passivity preserving model
reduction. Syst Control Lett 54(4):361-374. https://doi.org/10.
1016/j.sysconle.2004.07.007

Farle O, Burgard S, Dyczij-Edlinger R (2011) Passivity preserv-
ing parametric model-order reduction for non-affine parameters.
Math Comput Model Dyn Syst 17(3):279-294. https://doi.org/
10.1080/13873954.2011.562901

Fuchs A (2013) Nonlinear dynamics in complex systems.
Springer, Berlin, p 2008

Burkardt J, Du Q, Gunzburger M, Lee H-C (2003) Reduced order
modeling of complex systems. NAO3 Dundee

Sargsyan S, Brunton SL, Kutz JN (2015) Nonlinear model reduc-
tion for dynamical systems using sparse sensor locations from
learned libraries. Phys Rev E Stat Nonlinear Soft Matter Phys.
https://doi.org/10.1103/PhysRevE.92.033304

Rafiq D, Bazaz MA (2021) Nonlinear model order reduction via
nonlinear moment matching with dynamic mode decomposition.

@ Springer


https://doi.org/10.1109/jsyst.2020.2997029
https://doi.org/10.1109/jsyst.2020.2997029
https://doi.org/10.1109/JSYST.2019.2897788
https://doi.org/10.1109/JSYST.2019.2897788
https://doi.org/10.1007/s00034-015-0018-4
https://doi.org/10.1007/s00034-015-0018-4
https://doi.org/10.1007/s13198-019-00865-y
https://doi.org/10.1007/s13198-019-00865-y
https://doi.org/10.1080/13873954.2018.1427116
https://doi.org/10.1080/13873954.2018.1427116
https://doi.org/10.1016/j.apm.2015.04.014
https://doi.org/10.1007/s10845-017-1309-3
https://doi.org/10.1007/978-981-10-5903-2_138
https://doi.org/10.1007/s00034-018-1010-6
https://doi.org/10.1007/s00034-018-1010-6
https://doi.org/10.1007/s11831-014-9111-2
https://doi.org/10.1007/s11831-014-9111-2
https://doi.org/10.1142/S0218127405012429
https://doi.org/10.1080/0020739850160226
https://doi.org/10.1002/gamm.201900011
https://doi.org/10.2514/1.35850
https://doi.org/10.2514/1.35850
https://doi.org/10.1177/0954410019853472
https://doi.org/10.1177/0954410019853472
https://doi.org/10.1080/13873954.2011.547658
https://doi.org/10.1109/TIE.2012.2227902
https://doi.org/10.1109/TIE.2014.2381151
https://doi.org/10.1016/S0168-9274(02)00116-2
https://doi.org/10.1016/S0377-0427(00)00396-4
https://doi.org/10.1109/iccad.2004.1382547
https://doi.org/10.1007/s00034-017-0561-2
https://doi.org/10.1007/s00034-017-0561-2
https://doi.org/10.1007/978-94-007-0089-5_2
https://doi.org/10.1007/978-94-007-0089-5_2
https://doi.org/10.1016/j.sysconle.2008.10.016
https://doi.org/10.1007/978-1-4615-0292-0_34
https://doi.org/10.1007/978-1-4615-0292-0_34
https://doi.org/10.1109/43.712097
https://doi.org/10.1109/43.712097
https://doi.org/10.1109/TCAD.2008.2006160
https://doi.org/10.1109/cdc.2006.376706
https://doi.org/10.1016/j.sysconle.2004.07.007
https://doi.org/10.1016/j.sysconle.2004.07.007
https://doi.org/10.1080/13873954.2011.562901
https://doi.org/10.1080/13873954.2011.562901
https://doi.org/10.1103/PhysRevE.92.033304

3104

S. K. Suman, A. Kumar

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

Int J Non Linear Mech. https://doi.org/10.1016/j.ijnonlinmec.
2020.103625

Venna J, Kaski S, Aidos H, Nybo K, Peltonen J (2010) Informa-
tion retrieval perspective to nonlinear dimensionality reduction
for data visualization. J] Mach Learn Res 11(2):451-490
Lassila T, Manzoni A, Quarteroni A, Rozza G (2014) Model
order reduction in fluid dynamics: challenges and perspectives.
In: Reduced order methods for modeling and computational
reduction

Preisner T, Mathis W (2010) Scientific computing in electrical
engineering SCEE 2008. Springer, Berlin

Rudnyi E, Korvink J (2006) Modern model order reduction for
industrial applications. Report, Germany

Gray PR, Meyer RG (2009) Analysis and design of analog inte-
grated circuits. Wiley, Hoboken

Tan S, He L (2007) Advanced model order reduction techniques
in VLSI design. Cambridge University Press, New York
Kerschen G, Golinval JC, Vakakis AF, Bergman LA (2005)
The method of proper orthogonal decomposition for dynami-
cal characterization and order reduction of mechanical systems:
an overview. Nonlinear Dyn 41(1):147-169. https://doi.org/10.
1007/s11071-005-2803-2

Bond B, Daniel L (2005) Parameterized model order reduction of
nonlinear dynamical systems. In: IEEE/ACM international con-
ference on computer-aided design, Digest of Technical Papers,
ICCAD, pp 487-494. https://doi.org/10.1109/ICCAD.2005.
1560117

Qu Z-Q (2004) Model order reduction techniques with applica-
tions in finite element analysis. Springer, London

Brozek T, Iniewski KK (2017) Micro-and nanoelectronics:
emerging device challenges and solutions. CRC Press, Boca
Raton

Lienemann J, Billger D, Rudnyi EB, Greiner A, Korvink JG
(2004) MEMS compact modeling meets model order reduction:
examples of the application of Arnoldi methods to microsystem
devices

Rudnyi EB, Korvink JG (2006) Model order reduction for large
scale engineering models developed in ANSYS. In: International
workshop on applied parallel computing. Springer, Berlin, Hei-
delberg, pp 349-356. https://doi.org/10.1007/11558958_41
Djukic S, Saric A (2012) Dynamic model reduction: an over-
view of available techniques with application to power systems.
Serbian J Electr Eng 9(2):131-169. https://doi.org/10.2298/sjee 1
202131d

Veroy K, Prud’Homme C, Rovas DV, Patera AT (2003) A pos-
teriori error bounds for reduced-basis approximation of para-
metrized noncoercive and nonlinear elliptic partial differential
equations. In: 16th AIAA computational fluid dynamics confer-
ence, p. 3847. https://doi.org/10.2514/6.2003-3847

Rozza G, Huynh DBP, Patera AT (2008) Reduced basis approxi-
mation and a posteriori error estimation for affinely parametrized
elliptic coercive partial differential equations: application to
transport and continuum mechanics. Arch Comput Methods Eng
15(3):229-275. https://doi.org/10.1007/s11831-008-9019-9
Jung N, Patera AT, Haasdonk B, Lohmann B (2011) Model order
reduction and error estimation with an application to the param-
eter-dependent eddy current equation. Math Comput Model Dyn
Syst. https://doi.org/10.1080/13873954.2011.582120
Haasdonk B, Ohlberger M (2011) Efficient reduced models and
a posteriori error estimation for parametrized dynamical systems
by offline/online decomposition. Math Comput Model Dyn Syst.
https://doi.org/10.1080/13873954.2010.514703

Lorenzi S, Cammi A, Luzzi L, Rozza G (2016) POD-Galerkin
method for finite volume approximation of Navier—Stokes and
RANS equations. Comput Methods Appl Mech Eng 311:151—
179. https://doi.org/10.1016/j.cma.2016.08.006

@ Springer

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

Star K, Stabile G, Georgaka S, Belloni F, Rozza G, Degroote
J (2019) Pod-Galerkin reduced order model of the Boussinesq
approximation for buoyancy-driven enclosed flows. In: Interna-
tional conference on mathematics and computational methods
applied to nuclear science and engineering, M and C 2019, pp.
2452-2461

Bui-Thanh T, Damodaran M, Willcox K (2003) Proper orthogo-
nal decomposition extensions for parametric applications in com-
pressible aerodynamics. In: 21st AIAA applied aerodynamics
conference, p. 4213. https://doi.org/10.2514/6.2003-4213
Thomas PV, ElSayed MSA, Walch D (2019) Review of model
order reduction methods and their applications in aeroelasticity
loads analysis for design optimization of complex airframes. J
Aerosp Eng. https://doi.org/10.1061/(asce)as.1943-5525.00009
72

Binder A, Jadhav O, Mehrmann V (2020) Model order reduc-
tion for parametric high dimensional interest rate models in the
analysis of financial risk. arXiv

Parmar G, Mukherjee S, Prasad R (2007) System reduction
using factor division algorithm and Eigen spectrum analy-
sis. Appl Math Model 31(11):2542-2552. https://doi.org/10.
1016/j.apm.2006.10.004

Hwang C, Chen MY (1987) Stable linear system reduction
via a multipoint tangent phase continued-fraction expansion.
J Chin Inst Eng Trans Chin Inst Eng A/Chung-kuo K Ch’eng
Hsuch K’an. https://doi.org/10.1080/02533839.1987.9676990
Antoulas AC (2005) An overview of approximation methods
for large-scale dynamical systems. Annu Rev Control. https://
doi.org/10.1016/j.arcontrol.2005.08.002

Pal J (1979) Stable reduced-order padé approximants using the
Routh-Hurwitz array. Electron Lett 15(8):225-226. https://doi.
org/10.1049/el:19790159

Pindor M (2006) Padé approximants. Lect Notes Control Inf
Sci. https://doi.org/10.1007/11601609_4

Guillaume P, Huard A (2000) Multivariate Pade approxima-
tion. J Comput Appl Math. https://doi.org/10.1016/S0377-
0427(00)00337-X

Shamash Y (1975) Linear system reduction using pade approx-
imation to allow retention of dominant modes. Int J Control
21(2):257-272. https://doi.org/10.1080/00207177508921985
Shamash Y (1975) Multivariable system reduction via modal
methods and Padé approximation. IEEE Trans Autom Control
20(6):815-817. https://doi.org/10.1109/TAC.1975.1101090
Verma P, Juneja PK, Chaturvedi M (2017) Various mixed
approaches of model order reduction. In: Proceedings - 2016
8th international conference on computational intelligence and
communication networks, CICN 2016, pp 673—-676. https://doi.
org/10.1109/CICN.2016.138

Adamou-Mitiche ABH, Mitiche L, Larbi S (2013) Time and
frequency approaches in the approximation problem: a com-
parative study. https://doi.org/10.1109/ICoSC.2013.6750916
Shamash Y (1975) Model reduction using the routh stability
criterion and the Pade approximation technique. Int J Control
21(3):475-484. https://doi.org/10.1080/00207177508922004
Chen TC, Chang CY, Han KW (1980) Model reduction using
the stability-equation method and the Padé approximation
method. J Frankl Inst 309(6):473—490. https://doi.org/10.1016/
0016-0032(80)90096-4

Chen TC, Chang CY, Han KW (1979) Reduction of trans-
fer functions by the stability-equation method. J Frankl Inst
308(4):389-404. https://doi.org/10.1016/0016-0032(79)
90066-8

Sikander A, Thakur P, Uniyal I (2017) Hybrid method of
reduced order modelling for LTI system using evolution-
ary algorithm. In: Proceedings on 2016 2nd international


https://doi.org/10.1016/j.ijnonlinmec.2020.103625
https://doi.org/10.1016/j.ijnonlinmec.2020.103625
https://doi.org/10.1007/s11071-005-2803-2
https://doi.org/10.1007/s11071-005-2803-2
https://doi.org/10.1109/ICCAD.2005.1560117
https://doi.org/10.1109/ICCAD.2005.1560117
https://doi.org/10.1007/11558958_41
https://doi.org/10.2298/sjee1202131d
https://doi.org/10.2298/sjee1202131d
https://doi.org/10.2514/6.2003-3847
https://doi.org/10.1007/s11831-008-9019-9
https://doi.org/10.1080/13873954.2011.582120
https://doi.org/10.1080/13873954.2010.514703
https://doi.org/10.1016/j.cma.2016.08.006
https://doi.org/10.2514/6.2003-4213
https://doi.org/10.1061/(asce)as.1943-5525.0000972
https://doi.org/10.1061/(asce)as.1943-5525.0000972
https://doi.org/10.1016/j.apm.2006.10.004
https://doi.org/10.1016/j.apm.2006.10.004
https://doi.org/10.1080/02533839.1987.9676990
https://doi.org/10.1016/j.arcontrol.2005.08.002
https://doi.org/10.1016/j.arcontrol.2005.08.002
https://doi.org/10.1049/el:19790159
https://doi.org/10.1049/el:19790159
https://doi.org/10.1007/11601609_4
https://doi.org/10.1016/S0377-0427(00)00337-X
https://doi.org/10.1016/S0377-0427(00)00337-X
https://doi.org/10.1080/00207177508921985
https://doi.org/10.1109/TAC.1975.1101090
https://doi.org/10.1109/CICN.2016.138
https://doi.org/10.1109/CICN.2016.138
https://doi.org/10.1109/ICoSC.2013.6750916
https://doi.org/10.1080/00207177508922004
https://doi.org/10.1016/0016-0032(80)90096-4
https://doi.org/10.1016/0016-0032(80)90096-4
https://doi.org/10.1016/0016-0032(79)90066-8
https://doi.org/10.1016/0016-0032(79)90066-8

Investigation and Implementation of Model Order Reduction Technique for Large Scale Dynamical...

3105

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

conference on next generation computing technologies, NGCT
2016, pp 84-88. https://doi.org/10.1109/NGCT.2016.7877394
Lucas TN (1992) A tabular approach to the stability equation
method. J Frankl Inst 329(1):171-180. https://doi.org/10.1016/
0016-0032(92)90106-Q

Mohammadpour J, Grigoriadis KM (2010) Efficient modeling
and control of large-scale systems. Springer, Berlin

Grimme EJ (1997) Krylov projection methods for model reduc-
tion. University of Illinois at Urbana-Champaign

Antoulas AC (2005) Approximation of large-scale dynami-
cal systems. Society for Industrial and Applied Mathematics,
Philadelphia

Hochbruck M, Lubich C (1997) On Krylov subspace approxima-
tions to the matrix exponential operator. SIAM J Numer Anal.
https://doi.org/10.1137/S0036142995280572

Bruaset AM (2019) Krylov subspace methods. In: A survey of
preconditioned iterative methods. Routledge, Boca Raton
Kumar D, Nagar SK (2014) Model reduction by extended mini-
mal degree optimal Hankel norm approximation. Appl Math
Model 38(11-12):2922-2933. https://doi.org/10.1016/j.apm.
2013.11.012

Adamjan VM, Arov DZ, Krein MG (1971) Analytic properties of
Schmidt pairs for a Hankel operator and the generalized Schur—
Takagi problem. Math USSR Sb 15(1):31. https://doi.org/10.
1070/SM1971v015n01ABEH001531

Kung SY, Lin DW (1981) Optimal Hankel-norm model reduc-
tions: multivariable systems. IEEE Trans Autom Control
26(4):832-852. https://doi.org/10.1109/TAC.1981.1102736
Latham GA, Anderson BDO (1985) Frequency-weighted optimal
Hankel-norm approximation of stable transfer functions. Syst
Control Lett 5(4):229-236

Hung YS, Glover K (1986) Optimal Hankel-norm approxima-
tion of stable systems with first-order stable weighting functions.
Syst Control Lett 7(3):165—172. https://doi.org/10.1016/0167-
6911(86)90110-6

Antoulas AC, Beattie CA, Gugercin S (2010) Interpolatory
model reduction of large-scale dynamical systems. In: Efficient
modeling and control of large-scale systems

Korvink JG, Rudnyi EB, Greiner A, Liu Z (2006) MEMS and
NEMS simulation. In: MEMS: a practical guide of design, analy-
sis, and applications

Zhou K (1995) Frequency-weighted Loo norm and optimal Han-
kel norm model reduction. IEEE Trans Autom Control. https://
doi.org/10.1109/9.467681

Benner P, Quintana-Orti ES, Quintana-Orti G (2000) Balanced
truncation model reduction of large-scale dense systems on paral-
lel computers. Math Comput Model Dyn Syst. https://doi.org/10.
1076/mcmd.6.4.383.3658

Antoulas AC, Sorensen DC, Zhou Y (2002) On the decay rate
of Hankel singular values and related issues. Syst Control Lett
46(5):323-342. https://doi.org/10.1016/S0167-6911(02)00147-0
Powel ND, Morgansen KA (2015, December) Empirical observ-
ability Gramian rank condition for weak observability of non-
linear systems with control. In 2015 54th IEEE conference on
decision and control (CDC). IEEE, pp 6342-6348. https://doi.
org/10.1109/CDC.2015.7403218

Grippo L, Palagi L, Piccialli V (2011) An unconstrained mini-
mization method for solving low-rank SDP relaxations of the
maxcut problem. Math Program. https://doi.org/10.1007/
s10107-009-0275-8

Freitas FD, Rommes J, Martins N (2011, March). Low-rank gra-
mian applications in dynamics and control. In 2011 international
conference on communications, computing and control appli-
cations (CCCA). IEEE, pp 1-6. https://doi.org/10.1109/CCCA.
2011.6031400

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

Markovsky I (2008) Structured low-rank approximation and its
applications. Automatica. https://doi.org/10.1016/j.automatica.
2007.09.011

Pal J, Prasad R (1986) Stable low order approximants using con-
tinued fraction expansions. In MSE international conference on
modelling simulation

Bastug M, Petreczky M, Wisniewski R, Leth J (2014, June)
Model reduction by moment matching for linear switched sys-
tems. In 2014 american control conference. IEEE, pp 3942-3947.
https://doi.org/10.1109/ACC.2014.6858983

Bultheel A, Van Barel M (1986) Padé techniques for model
reduction in linear system theory: a survey. J Comput Appl Math
14(3):401-438. https://doi.org/10.1016/0377-0427(86)90076-2
Parmar G, Mukherjee S, Prasad R (2007) System reduction using
Eigen spectrum analysis and Padé approximation technique. Int
J Comput Math. https://doi.org/10.1080/00207160701345566
Prajapati AK, Prasad R (2019) Order reduction in linear dynami-
cal systems by using improved balanced realization technique.
Circuits Syst Signal Process 38(11):5289-5303. https://doi.org/
10.1007/s00034-019-01109-x

Hutton MF, Friedland B (1975) Routh approximations for reduc-
ing order of linear, time-invariant systems. IEEE Trans Autom
Control 20(3):329-337. https://doi.org/10.1109/TAC.1975.11009
53

Pal J (1980) System reduction by a mixed method. IEEE Trans
Autom Control 25(5):973-976. https://doi.org/10.1109/TAC.
1980.1102485

Rao AS, Lamba SS, Rao SV (1979) Comments on ‘model reduc-
tion using the Routh stability criterion.” IEEE Trans Autom Con-
trol 24(3):518-518. https://doi.org/10.1109/TAC.1979.1102069
Mishra RN, Wilson DA (1980) A new algorithm for optimal
reduction of multivariable systems. Int J Control. https://doi.org/
10.1080/00207178008961054

Hwang C, Wang KY (1984) Optimal Routh approximations for
continuous-time systems. Int J Syst Sci 15(3):249-259. https://
doi.org/10.1080/00207728408926558

Goyal R, Parmar G, Sikander A (2019) A new approach for sim-
plification and control of linear time invariant systems. Microsyst
Technol. https://doi.org/10.1007/s00542-018-4004-1

Gutman P, Mannerfelt CF, Molander P (1982) Contributions
to the model reduction problem. IEEE Trans Autom Control
27(2):454-455. https://doi.org/10.1109/TAC.1982.1102930
Gustafson RD (1966) A paper and pencil control system design.
J Fluids Eng Trans ASME 88(2):329-336. https://doi.org/10.
1115/1.3645858

Shamash Y, Smamash Y (1981) Truncation method of reduction:
a viable alternative. Electron Lett 17(2):97-99. https://doi.org/
10.1049/e1:19810070

Prajapati AK, Prasad R (2019) Model order reduction by using
the balanced truncation and factor division methods. IETE J Res
65(6):827-842. https://doi.org/10.1080/03772063.2018.1464971
Davison EJ (1966) A method for simplifying linear dynamic sys-
tems. IEEE Trans Autom Control 11(1):93-101. https://doi.org/
10.1109/TAC.1966.1098264

Lucas TN (1983) Factor division: a useful algorithm in model
reduction. IEE Proc D Control Theory Appl 130(6):362-364.
https://doi.org/10.1049/ip-d.1983.0060

Prajapati AK, Prasad R (2019) Reduced order modelling of linear
time invariant systems using the factor division method to allow
retention of dominant modes. IETE Tech Rev (Inst Electron Tel-
ecommun Eng, India) 36(5):449-462. https://doi.org/10.1080/
02564602.2018.1503567

Sikander A, Prasad R (2017) A new technique for reduced-
order modelling of linear time-invariant system. IETE J Res
63(3):316-324. https://doi.org/10.1080/03772063.2016.1272436

@ Springer


https://doi.org/10.1109/NGCT.2016.7877394
https://doi.org/10.1016/0016-0032(92)90106-Q
https://doi.org/10.1016/0016-0032(92)90106-Q
https://doi.org/10.1137/S0036142995280572
https://doi.org/10.1016/j.apm.2013.11.012
https://doi.org/10.1016/j.apm.2013.11.012
https://doi.org/10.1070/SM1971v015n01ABEH001531
https://doi.org/10.1070/SM1971v015n01ABEH001531
https://doi.org/10.1109/TAC.1981.1102736
https://doi.org/10.1016/0167-6911(86)90110-6
https://doi.org/10.1016/0167-6911(86)90110-6
https://doi.org/10.1109/9.467681
https://doi.org/10.1109/9.467681
https://doi.org/10.1076/mcmd.6.4.383.3658
https://doi.org/10.1076/mcmd.6.4.383.3658
https://doi.org/10.1016/S0167-6911(02)00147-0
https://doi.org/10.1109/CDC.2015.7403218
https://doi.org/10.1109/CDC.2015.7403218
https://doi.org/10.1007/s10107-009-0275-8
https://doi.org/10.1007/s10107-009-0275-8
https://doi.org/10.1109/CCCA.2011.6031400
https://doi.org/10.1109/CCCA.2011.6031400
https://doi.org/10.1016/j.automatica.2007.09.011
https://doi.org/10.1016/j.automatica.2007.09.011
https://doi.org/10.1109/ACC.2014.6858983
https://doi.org/10.1016/0377-0427(86)90076-2
https://doi.org/10.1080/00207160701345566
https://doi.org/10.1007/s00034-019-01109-x
https://doi.org/10.1007/s00034-019-01109-x
https://doi.org/10.1109/TAC.1975.1100953
https://doi.org/10.1109/TAC.1975.1100953
https://doi.org/10.1109/TAC.1980.1102485
https://doi.org/10.1109/TAC.1980.1102485
https://doi.org/10.1109/TAC.1979.1102069
https://doi.org/10.1080/00207178008961054
https://doi.org/10.1080/00207178008961054
https://doi.org/10.1080/00207728408926558
https://doi.org/10.1080/00207728408926558
https://doi.org/10.1007/s00542-018-4004-1
https://doi.org/10.1109/TAC.1982.1102930
https://doi.org/10.1115/1.3645858
https://doi.org/10.1115/1.3645858
https://doi.org/10.1049/el:19810070
https://doi.org/10.1049/el:19810070
https://doi.org/10.1080/03772063.2018.1464971
https://doi.org/10.1109/TAC.1966.1098264
https://doi.org/10.1109/TAC.1966.1098264
https://doi.org/10.1049/ip-d.1983.0060
https://doi.org/10.1080/02564602.2018.1503567
https://doi.org/10.1080/02564602.2018.1503567
https://doi.org/10.1080/03772063.2016.1272436

3106

S. K. Suman, A. Kumar

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

Wan BW (1981) Linear model reduction using Mihailov criterion
and Pade approximation technique. Int J Control 33(6):1073—
1089. https://doi.org/10.1080/00207178108922977

RanaJ (2013) Order reduction using Mihailov criterion and Pade
approximations. Int J Innov Eng Technol 2:19-24

Tomar SK, Prasad R (2008) Linear model reduction using
Mihailov stability criterion and continued fraction expansions. J
Inst Eng India 84:7-10

El-Attar RA, Vidyasagar M (1978) System order reduction using
the induced operator norm and its applications to linear regula-
tors. J Frankl Inst 306(6):457—474. https://doi.org/10.1016/0016-
0032(78)90053-4

Khademi G, Mohammadi H, Dehghani M (2013) LMI based
model order reduction considering the minimum phase character-
istic of the system. In: 2013 9th Asian control conference, ASCC
2013, pp 1-6. https://doi.org/10.1109/ASCC.2013.6606180

Pal J, Ray LM (1980) Stable Padé approximants to multivari-
able systems using a mixed method. Proc IEEE 68(1):176-178.
https://doi.org/10.1109/PROC.1980.11603

Chen TC, Chang CY, Han KW (1980) Model reduction using
the stability-equation method and the continued-fraction
method. Int J Control 32(1):81-94. https://doi.org/10.1080/
00207178008922845

Parthasarathy R (1982) System reduction using stability-equa-
tion method and modified cauer continued fraction. Proc IEEE
70(10):1234-1236. https://doi.org/10.1109/PROC.1982.12453
Wittmuess P, Tarin C, Sawodny O (2015, December) Paramet-
ric modal analysis and model order reduction of systems with
second order structure and non-vanishing first order term. In
2015 54th IEEE conference on decision and control (CDC).
IEEE, pp 5352-5357. https://doi.org/10.1109/CDC.2015.
7403057

Rahrovani S, Vakilzadeh MK, Abrahamsson T (2014) A met-
ric for modal truncation in model reduction problems part 1:
performance and error analysis. In: Conference proceedings
of the society for experimental mechanics series, pp 781-788.
https://doi.org/10.1007/978-1-4614-6585-0_73

Rézsa P, Sinha NK (1975) Minimal realization of a transfer
function matrix in canonical forms. Int J Control. https://doi.
org/10.1080/00207177508921986

De Schutter B, De Moor B (1995) Minimal realization in the
max algebra is an extended linear complementarity problem.
Syst Control Lett. https://doi.org/10.1016/0167-6911(94)
00062-Z

Senkal D, Efimovskaya A, Shkel AM (2015, March) Minimal
realization of dynamically balanced lumped mass WA gyro-
scope: dual foucault pendulum. In 2015 IEEE international
symposium on inertial sensors and systems (ISISS) proceed-
ings. IEEE, pp 1-2. https://doi.org/10.1109/ISISS.2015.71023
94

Aoki M (1968) Control of large-scale dynamic systems by aggre-
gation. IEEE Trans Autom Control. https://doi.org/10.1109/TAC.
1968.1098900

Hickin J, Sinha NK (1975) Aggregation matrices for a class of
low-order models for large-scale systems. Electron Lett. https://
doi.org/10.1049/e1:19750142

Hwang C (1984) Aggregation matrix for the reduced-order modi-
fied Cauer CFE model. Electron Lett 20(4):150-151. https://doi.
org/10.1049/e1:19840100

Bandler JW, Markettos ND, Sinha NK (1973) Optimum system
modelling using recent gradient methods. Int J Syst Sci. https://
doi.org/10.1080/00207727308919993

Maurya MK, Kumar A (2017, April) Dimension reduction and
controller design for large scale systems using balanced trun-
cation. In 2017 1st international conference on electronics,

@ Springer

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

materials engineering and nano-technology (IEMENTech).
IEEE, pp 1-4. https://doi.org/10.1109/IEMENTECH.2017.80769
72

Zhou K, Salomon G, Wu E (1999) Balanced realization and
model reduction for unstable systems. Int J Robust Nonlinear
Control 9(3):183-198

Antoulas AC (2011) 8. Hankel-Norm approximation. In: Approx-
imation of large-scale dynamical systems, society for industrial
and applied mathematics (SIAM, 3600 Market Street, Floor 6,
Philadelphia, PA 19104)

Cao X, Saltik MB, Weiland S (2019) Optimal Hankel norm
model reduction for discrete-time descriptor systems. J Frankl
Inst 356(7):4124-4143. https://doi.org/10.1016/j.jfranklin.2018.
11.047

Liu 'Y, Anderson BDO (1989) Singular perturbation approxima-
tion of balanced systems. Int J Control 50(4):1379-1405. https://
doi.org/10.1109/cdc.1989.70360

Guiver C (2019) The generalised singular perturbation approxi-
mation for bounded real and positive real control systems. Math
Control Relat Fields 9(2):313-350. https://doi.org/10.3934/
MCREF.2019016

Kumar D, Tiwari JP, Nagar SK (2012) Reducing order of
large-scale systems by extended balanced singular perturbation
approximation. Int J Autom Control 6(1):21-38. https://doi.org/
10.1504/1JAAC.2012.045438

Van Der Vorst HA (2000) Krylov subspace iteration. Comput Sci
Eng. https://doi.org/10.1109/5992.814655

Sorensen DC (2002) Numerical methods for large eigenvalue
problems. Acta Numer. https://doi.org/10.1017/s096249290
2000089

Grimme EJ (1997) Krylov projection methods for model reduc-
tion. University of Illinois at Urbana-Champaign

Sambariya DK, Sharma O (2016) Routh approximation: an
approach of model order reduction in SISO and MIMO sys-
tems. Indones J Electr Eng Comput Sci 2(3):486-500. https://
doi.org/10.11591/ijeecs.v2.i3.pp486-500

Antoulas AC, Sorensen DC, Gugercin S (2012) A survey of
model reduction methods for large-scale systems

Suman SK, Kumar A (2020) Higher-order reduction of lin-
ear system and design of controller. Sci J King Faisal Univ
2020(3):1-16

Boley D, Datta BN (1997) Numerical methods for linear con-
trol systems. In: Systems and control in the Twenty-First Cen-
tury, Birkhéduser, Boston, MA, pp 51-74

Suman SK, Kumar A (2020) Model order reduction of trans-
mission line model. WSEAS Trans Circuits Syst 19:62-68.
https://doi.org/10.37394/23201.2020.19.7

Willcox KE, Peraire J (2002) Balanced model reduction via the
proper introduction. AIAA J. https://doi.org/10.2514/2.1570
Suman SK, Kumar A (2019) Investigation and reduction of
large-scale dynamical systems. WSEAS Trans Syst 18:175-180
Dax A (2013) From Eigenvalues to singular values: a review.
Adv Pure Math. https://doi.org/10.4236/apm.2013.39a2002
Suman SK (2019) Approximation of large-scale dynamical sys-
tems for bench-mark collection. J Mech Continua Math Sci
14(3):196-215

Gugercin S, Antoulas AC (2006) Model reduction of large-
scale systems by least squares. Linear Algebra Appl. https://
doi.org/10.1016/j.1aa.2004.12.022

Gupta AK, Samuel P, Kumar D (2019) A mixed-method for
order reduction of linear time invariant systems using big
bang-big crunch and Eigen spectrum algorithm. Int J Autom
Control 13(2):158-175. https://doi.org/10.1504/ijaac.2019.
10018127


https://doi.org/10.1080/00207178108922977
https://doi.org/10.1016/0016-0032(78)90053-4
https://doi.org/10.1016/0016-0032(78)90053-4
https://doi.org/10.1109/ASCC.2013.6606180
https://doi.org/10.1109/PROC.1980.11603
https://doi.org/10.1080/00207178008922845
https://doi.org/10.1080/00207178008922845
https://doi.org/10.1109/PROC.1982.12453
https://doi.org/10.1109/CDC.2015.7403057
https://doi.org/10.1109/CDC.2015.7403057
https://doi.org/10.1007/978-1-4614-6585-0_73
https://doi.org/10.1080/00207177508921986
https://doi.org/10.1080/00207177508921986
https://doi.org/10.1016/0167-6911(94)00062-Z
https://doi.org/10.1016/0167-6911(94)00062-Z
https://doi.org/10.1109/ISISS.2015.7102394
https://doi.org/10.1109/ISISS.2015.7102394
https://doi.org/10.1109/TAC.1968.1098900
https://doi.org/10.1109/TAC.1968.1098900
https://doi.org/10.1049/el:19750142
https://doi.org/10.1049/el:19750142
https://doi.org/10.1049/el:19840100
https://doi.org/10.1049/el:19840100
https://doi.org/10.1080/00207727308919993
https://doi.org/10.1080/00207727308919993
https://doi.org/10.1109/IEMENTECH.2017.8076972
https://doi.org/10.1109/IEMENTECH.2017.8076972
https://doi.org/10.1016/j.jfranklin.2018.11.047
https://doi.org/10.1016/j.jfranklin.2018.11.047
https://doi.org/10.1109/cdc.1989.70360
https://doi.org/10.1109/cdc.1989.70360
https://doi.org/10.3934/MCRF.2019016
https://doi.org/10.3934/MCRF.2019016
https://doi.org/10.1504/IJAAC.2012.045438
https://doi.org/10.1504/IJAAC.2012.045438
https://doi.org/10.1109/5992.814655
https://doi.org/10.1017/s0962492902000089
https://doi.org/10.1017/s0962492902000089
https://doi.org/10.11591/ijeecs.v2.i3.pp486-500
https://doi.org/10.11591/ijeecs.v2.i3.pp486-500
https://doi.org/10.37394/23201.2020.19.7
https://doi.org/10.2514/2.1570
https://doi.org/10.4236/apm.2013.39a2002
https://doi.org/10.1016/j.laa.2004.12.022
https://doi.org/10.1016/j.laa.2004.12.022
https://doi.org/10.1504/ijaac.2019.10018127
https://doi.org/10.1504/ijaac.2019.10018127

Investigation and Implementation of Model Order Reduction Technique for Large Scale Dynamical...

3107

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.

Benner P, Gugercin S, Willcox K (2013) A survey of model
reduction methods for parametric systems. In: SIAM Review,
Max Planck Institute for dynamics of complex technical systems,
pp 1-36

Singh J, Vishwakarma CB, Chattterjee K (2016) Biased reduc-
tion method by combining improved modified pole clustering and
improved Pade approximations. Appl Math Model 40(2):1418-
1426. https://doi.org/10.1016/j.apm.2015.07.014

Sandberg H, Rantzer A (2004) Balanced truncation of linear
time-varying systems. IEEE Trans Autom Control 49(2):217-
229. https://doi.org/10.1109/TAC.2003.822862

Mukherjee S, Mishra RN (1987) Order reduction of linear sys-
tems using an error minimization technique. J Frankl Inst. https://
doi.org/10.1016/0016-0032(87)90037-8

Mittal AK, Prasad R, Sharma SP (2004) Reduction of linear
dynamic systems using an error minimization technique. J Inst
Eng Electr Eng Div 84:201-206

Moore BC (1981) Principal component analysis in linear sys-
tems: controllability, observability, and model reduction. IEEE
Trans Autom Control 26(1):17-32. https://doi.org/10.1109/TAC.
1981.1102568

Fernando KV, Nicholson H (1983) On the structure of balanced
and other principal representations of SISO systems. IEEE Trans
Autom Control 28(2):228-231. https://doi.org/10.1109/TAC.
1983.1103195

Al-Saggaf UM, Franklin GF (1988) Model reduction via bal-
anced realizations: an extension and frequency weighting tech-
niques. IEEE Trans Autom Control 37(3):687-692. https://doi.
org/10.1109/9.1280

Samar R, Postlethwaite I, Gu DW (1995) Model reduction with
balanced realizations. Int J Control 62(1):33-64. https://doi.
org/10.1080/00207179508921533

Clapperton B, Crusca F, Aldeen M (1996) Bilinear transforma-
tion and generalized singular perturbation model reduction.
IEEE Trans Autom Control. https://doi.org/10.1109/9.489281
Glover K (1984) All optimal Hankel-norm approximations of
linear multivariable systems and their L,co-error bounds¥. Int J
Control 39(6):1115-1193. https://doi.org/10.1080/0020717840
8933239

Skatarié D, Kovacevi¢ NR (2010) The system order reduction
via balancing in view of the method of singular perturbation.
FME Trans 38(4):181-187

Benner P, Schneider A (2010) Balanced truncation model order
reduction for LTI systems with many inputs or outputs. In: Pro-
ceedings of the 19th international symposium on mathemati-
cal theory of networks and systems—MTNS, pp 1971-1974,
[Online]. Available: http://www.tu-chemnitz.de/mathematik/
syrene/papers/BenS_2010_MTNS.pdf

Yasuda M (2004) Spectral characterizations for hermitian cen-
trosymmetric K-matrices and hermitian skew-centrosymmetric
K-matrices. SIAM J Matrix Anal Appl 25(3):601-605. https://
doi.org/10.1137/S0895479802418835

Prajapati AK, Prasad R (2020) Model reduction using the bal-
anced truncation method and the Padé approximation method.
IETE Tech Rev (Inst Electron Telecommun Eng, India). https://
doi.org/10.1080/02564602.2020.1842257

Ferranti F, Deschrijver D, Knockaert L, Dhaene T (2011) Data-
driven parameterized model order reduction using z-domain
multivariate orthonormal vector fitting technique. In: Lecture
notes in electrical engineering, pp 141-148. https://doi.org/10.
1007/978-94-007-0089-5_7

Gugercin S, Antoulas AC (2004) A survey of model reduction
by balanced truncation and some new results. Int J Control
77(8):748-766. https://doi.org/10.1080/002071704100017
13448

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

Imran M, Ghafoor A, Sreeram V (2014) A frequency weighted
model order reduction technique and error bounds. Automatica
50(12):3304-3309. https://doi.org/10.1016/j.automatica.2014.
10.062

Lall S, Marsden JE, Glavaski S (2002) A subspace approach
to balanced truncation for model reduction of nonlinear con-
trol systems. Int J Robust Nonlinear Control 12(6):519-535.
https://doi.org/10.1002/rnc.657

Segalman DJ (2007) Model reduction of systems with localized
nonlinearities. ] Comput Nonlinear Dyn 2(3):249-266. https://
doi.org/10.1115/1.2727495

Pernebo L, Silverman LM (1982) Model reduction via bal-
anced state space representations. IEEE Trans Autom Control
27(2):382-387. https://doi.org/10.1109/TAC.1982.1102945
Gugercin S (2008) An iterative SVD-Krylov based method
for model reduction of large-scale dynamical systems. Linear
Algebra Appl 428(9):1964-1986. https://doi.org/10.1016/j.1aa.
2007.10.041

Fernando KV, Nicholson H (1982) Singular perturbational
model reduction of balanced systems. IEEE Trans Autom Con-
trol 27(2):466-468. https://doi.org/10.1109/TAC.1982.11029
32

Fernando KV, Nicholson H (1982) Singular perturbational
model reduction in the frequency domain. IEEE Trans Autom
Control 27(4):969-970. https://doi.org/10.1109/TAC.1982.
1103037

Kokotovic PV, O’Malley RE, Sannuti P (1976) Singular per-
turbations and order reduction in control theory—an overview.
Automatica 12(2):123-132. https://doi.org/10.1016/0005-
1098(76)90076-5

Gu DW, Petkov PH, Konstantinov MM (2013) Lower-order
controllers. In: Advanced textbooks in control and signal pro-
cessing, pp 73-91. Springer, London

Safonov MG, Chiang RY (1989) A Schur method for bal-
anced-truncation model reduction. IEEE Trans Autom Control
34(7):729-733. https://doi.org/10.1109/9.29399

Fernando KV, Nicholson H (1983) Singular perturbational
approximations for discrete-time balanced systems. IEEE
Trans Autom Control 28(2):240-242. https://doi.org/10.1109/
TAC.1983.1103202

Gajic Z, Lelic M (2001) Improvement of system order reduc-
tion via balancing using the method of singular perturbations.
Automatica 37(11):1859-1865. https://doi.org/10.1016/S0005-
1098(01)00139-X

Vishwakarma CB, Prasad R (2009) MIMO system reduction
using modified pole clustering and genetic algorithm. Model
Simul Eng 2009:1-5. https://doi.org/10.1155/2009/540895
Singh V, Chandra D, Kar H (2004) Improved Routh-Padé
approximants: a computer-aided approach. IEEE Trans Autom
Control 49(2):292-296. https://doi.org/10.1109/TAC.2003.
822878

Narwal A, Prasad BR (2016) A novel order reduction approach
for LTI systems using cuckoo search optimization and stability
equation. IETE J Res 62(2):154—163. https://doi.org/10.1080/
03772063.2015.1075915

Sikander A, Thakur P (2018) Reduced order modelling of
linear time-invariant system using modified cuckoo search
algorithm. Soft Comput 22(10):3449-3459. https://doi.org/
10.1007/s00500-017-2589-4

Sikander A, Thakur P, Bansal RC, Rajasekar S (2018) A novel
technique to design cuckoo search based FOPID controller for
AVR in power systems. Comput Electr Eng 70:261-274

Pal J (1980) Suboptimal control using Pade approximation
techniques. IEEE Trans Autom Control 25(5):1007-1008.
https://doi.org/10.1109/TAC.1980.1102490

@ Springer


https://doi.org/10.1016/j.apm.2015.07.014
https://doi.org/10.1109/TAC.2003.822862
https://doi.org/10.1016/0016-0032(87)90037-8
https://doi.org/10.1016/0016-0032(87)90037-8
https://doi.org/10.1109/TAC.1981.1102568
https://doi.org/10.1109/TAC.1981.1102568
https://doi.org/10.1109/TAC.1983.1103195
https://doi.org/10.1109/TAC.1983.1103195
https://doi.org/10.1109/9.1280
https://doi.org/10.1109/9.1280
https://doi.org/10.1080/00207179508921533
https://doi.org/10.1080/00207179508921533
https://doi.org/10.1109/9.489281
https://doi.org/10.1080/00207178408933239
https://doi.org/10.1080/00207178408933239
http://www.tu-chemnitz.de/mathematik/syrene/papers/BenS_2010_MTNS.pdf
http://www.tu-chemnitz.de/mathematik/syrene/papers/BenS_2010_MTNS.pdf
https://doi.org/10.1137/S0895479802418835
https://doi.org/10.1137/S0895479802418835
https://doi.org/10.1080/02564602.2020.1842257
https://doi.org/10.1080/02564602.2020.1842257
https://doi.org/10.1007/978-94-007-0089-5_7
https://doi.org/10.1007/978-94-007-0089-5_7
https://doi.org/10.1080/00207170410001713448
https://doi.org/10.1080/00207170410001713448
https://doi.org/10.1016/j.automatica.2014.10.062
https://doi.org/10.1016/j.automatica.2014.10.062
https://doi.org/10.1002/rnc.657
https://doi.org/10.1115/1.2727495
https://doi.org/10.1115/1.2727495
https://doi.org/10.1109/TAC.1982.1102945
https://doi.org/10.1016/j.laa.2007.10.041
https://doi.org/10.1016/j.laa.2007.10.041
https://doi.org/10.1109/TAC.1982.1102932
https://doi.org/10.1109/TAC.1982.1102932
https://doi.org/10.1109/TAC.1982.1103037
https://doi.org/10.1109/TAC.1982.1103037
https://doi.org/10.1016/0005-1098(76)90076-5
https://doi.org/10.1016/0005-1098(76)90076-5
https://doi.org/10.1109/9.29399
https://doi.org/10.1109/TAC.1983.1103202
https://doi.org/10.1109/TAC.1983.1103202
https://doi.org/10.1016/S0005-1098(01)00139-X
https://doi.org/10.1016/S0005-1098(01)00139-X
https://doi.org/10.1155/2009/540895
https://doi.org/10.1109/TAC.2003.822878
https://doi.org/10.1109/TAC.2003.822878
https://doi.org/10.1080/03772063.2015.1075915
https://doi.org/10.1080/03772063.2015.1075915
https://doi.org/10.1007/s00500-017-2589-4
https://doi.org/10.1007/s00500-017-2589-4
https://doi.org/10.1109/TAC.1980.1102490

3108 S. K. Suman, A. Kumar
189. Pati A, Kumar A, Chandra D (2014) Suboptimal control using 195. Komarasamy R, Albhonso N, Gurusamy G (2012) Order reduc-

model order reduction. Chin J Eng 2014(2):1-5. https://doi. tion of linear systems with an improved pole clustering. J Vib

org/10.1155/2014/797581 Control 18(12):1876-1885. https://doi.org/10.1177/10775
190. Sikander A, Rajendra Prasad B (2015) A novel order reduction 46311426592

method using cuckoo search algorithm. IETE J Res. https://doi. 196. Desai SR, Prasad R (2013) A new approach to order reduction

org/10.1080/03772063.2015.1009396 using stability equation and big bang big crunch optimiza-
191. Desai SR, Prasad R (2013) A novel order diminution of LTI tion. Syst Sci Control Eng 1(1):20-27. https://doi.org/10.1080/

systems using big bang big crunch optimization and Routh 21642583.2013.804463

approximation. Appl Math Model 37(16-17):8016-8028. 197. Abu-Al-Nadi D (2011) Reduced order modeling of linear

https://doi.org/10.1016/j.apm.2013.02.052 MIMO systems using particle swarm optimization. In: Seventh
192. Parmar G, Ssi LM, Prasad R, Mukherjee S (2007) Order reduc- international conference on autonomous systems

tion of linear dynamic systems using stability equation method 198. Vishwakarma CB (2011) Order reduction using modified pole

and GA. Int J Electr Robot Electron Commun Eng 1(1):26-32 clustering and Pade approximations. World Acad Sci Eng
193. Vishwakarma CBCB, Prasad R (2009) Clustering method for Technol 56:787-791

reducing order of linear system using Pade approximation. 199. Mukherjee S, Mittal RC (2005) Model order reduction using

194.

IETE J Res 54(5):326-330. https://doi.org/10.4103/0377-2063.
48531

Lavania S (2017) Hybrid techniques for reduction of linear
time-invariant systems. J Simul Syst Sci Technol Int. https://
doi.org/10.5013/ijssst.a.18.04.03

@ Springer

response-matching technique. J Frankl Inst. https://doi.org/10.
1016/j.jfranklin.2005.01.008

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.


https://doi.org/10.1155/2014/797581
https://doi.org/10.1155/2014/797581
https://doi.org/10.1080/03772063.2015.1009396
https://doi.org/10.1080/03772063.2015.1009396
https://doi.org/10.1016/j.apm.2013.02.052
https://doi.org/10.4103/0377-2063.48531
https://doi.org/10.4103/0377-2063.48531
https://doi.org/10.5013/ijssst.a.18.04.03
https://doi.org/10.5013/ijssst.a.18.04.03
https://doi.org/10.1177/1077546311426592
https://doi.org/10.1177/1077546311426592
https://doi.org/10.1080/21642583.2013.804463
https://doi.org/10.1080/21642583.2013.804463
https://doi.org/10.1016/j.jfranklin.2005.01.008
https://doi.org/10.1016/j.jfranklin.2005.01.008

	Investigation and Implementation of Model Order Reduction Technique for Large Scale Dynamical Systems
	Abstract
	1 Introduction
	2 Problem Statement
	3 Theoretical Perspective for MOR
	3.1 A Systematic Literature Review of Inference Strategies for MOR
	3.2 MOR From Mathematics to Innovative Applications
	3.3 Key Challenges of MOR

	4 MOR of LTI Large-Scale Dynamical System
	4.1 Balanced Truncation Method
	4.2 Proposed Hybrid Method for Approximation

	5 Numerical Experiments and Results
	6 Conclusion and Future Scope
	References




