Key Performance Requirements for Windshield Nets:

The performance requirements for windshield nets are critical to ensure they effectively protect crops from high-speed winds. Here are the elaborated requirements:

1. Mass:

- Type 1: Minimum mass of 100 g/m².
- Type 2: Minimum mass of 150 g/m².
- This requirement ensures that the nets are sufficiently heavy to withstand wind forces while providing adequate coverage.

2. Breaking Strength:

• Type 1:

- Warpway: Minimum breaking strength of 350 N.
- Weftway: Minimum breaking strength of 350 N.

• Type 2:

- Warpway: Minimum breaking strength of 400 N.
- Weftway: Minimum breaking strength of 700 N.
- The breaking strength is crucial for the durability of the nets, ensuring they do not tear or fail under wind pressure.

3. UV Resistance:

• After exposure to UV light for 144 hours, the nets must retain at least 85% of their original breaking strength. This requirement is vital for ensuring the longevity of the nets when exposed to sunlight, which can degrade materials over time.

4. Colour Fastness:

• The nets must have a colour fastness rating of 4 or better when tested against artificial light. This ensures that the nets maintain their colour and do not fade significantly, which can affect their aesthetic and functional properties.

5. Bursting Pressure:

• The minimum bursting pressure is set at 10 kgf/cm² for Type 1 and 14 kgf/cm² for Type 2. This requirement assesses the net's ability to withstand internal pressure without rupturing, which is important for maintaining structural integrity.

6. Wind Blockage:

• The minimum wind blockage percentage is specified as 18% for Type 1 and 35% for Type 2. This characteristic quantifies how much wind the net can effectively block, which is essential for protecting crops from wind damage.

Measurement of Effectiveness in Terms of Wind Blockage:

The effectiveness of windshield nets is quantitatively assessed through a wind blockage test, which involves the following steps:

- **1. Setup:** The test involves using an anemometer to measure wind speed. The net sample is mounted on a sample holder.
- **2. Initial Measurement (w1):** The wind speed is first measured without the net in place. This reading is denoted as w1.
- **3. Sample Measurement (w2):** The net sample is then placed in the holder, and the wind speed is measured again. This reading is denoted as w2.
- **4. Calculation:** The wind blockage percentage is calculated using the formula: Wind blockage, percent=(w1-w2)/w1×100. This formula calculates the reduction in wind speed due to the presence of the net, providing a clear measure of its effectiveness in blocking wind .
- **5. Repetition:** The procedure is repeated for multiple samples to ensure accuracy and reliability of the results, with the average of all readings taken as the final wind blockage percentage