s
e

PREFACE

Software testing is not merely a technical activity; it is a critical discipline that impacts
the efficacy, security, and usability of software products. In a country as diverse and
technologically dynamic as India, where software solutions cater to a multitude of sectors
ranging from finance and healthcare to education and e-commerce, the importance of
rigorous and standardized testing cannot be overstated. The Indian software industry
has made significant strides in establishing a robust framework for software quality
with in which software testing has become a cornerstone of delivering high-quality,
reliable software solutions.

It is for this reason, we see that Software Testing is an integral part of course curriculum
for Computer Engineering and related courses. However, studying software testing should
involve not just mastering the subject itself, but also understanding the standards that
shape the industry. Engaging with these standards enriches a student’s academic
experience, providing a structured framework that complements their theoretical
knowledge. By exploring these standards, students will gain insights into industry
expectations and best practices, which are vital for bridging the gap between theory and
real-world application.

One of the fundamental goals of this handbook is to serve as a guide, relating the
existing Indian and International standards with software testing concepts and
methodologies being taught as part of course curriculum. This handbook’s primary goal
is to raise awareness about Indian standards that govern various aspects of software
testing, ensuring that students grasp both theoretical frameworks and practical
applications.

In the introductory section, the handbook delves into the software development process,
exploring different lifecycle models such as Big-Bang, Code-and-Fix, Waterfall, and Spiral.
Each model’s characteristics are outlined, accompanied by guidance on their practical
application, and supported by relevant standards that ensure adherence to quality and
process guidelines.

Subsequent sections cover key terminology in software testing, including verification
and validation, quality and reliability, and the definitions of faults, errors, bugs, and
failures. By aligning these concepts with BIS standards, the handbook aims to clarify
their meanings and applications, providing a solid foundation for effective testing practices.

The handbook further examines various testing methodologies such as black-box and
white-box testing, static and dynamic testing, and the intricate processes of specification
and code examination. The handbook also discusses critical aspects of configuration and
compatibility testing, usability considerations, and the evaluation of software
documentation, all in conjunction with applicable Indian Standards.

As we continue to innovate and develop new software solutions, adherence to rigorous
testing standards will remain essential in delivering reliable, secure, and high-quality
software products. We hope that this handbook proves to be a valuable resource, enhancing
your understanding and application of software testing principles aligned with Indian
Standards. May it serve as a catalyst for improved testing practices and contribute to the
ongoing advancement of quality assurance in software development.

In conclusion, this handbook is intended to be a valuable resource for students, software
engineers, quality assurance professionals, and industry practitioners in India. By
providing a brief overview of software testing concepts and aligning these with Indian
standards, this handbook aims to fostering a culture of excellence and continuous
improvement in the Indian software industry

.
o

Acknowledgement

Writing this handbook on software testing has been a rewarding journey, and [am
deeply grateful to all who contributed to its successful completion.

I would like to acknowledge the extensive range of internet resources, text books, and
papers on software testing that provided foundational knowledge and current practices
on software testing. My appreciation also extends to the Indian Standards, which
elucidate various facets of software testing. I thank the authors of these invaluable
resources and all experts involved in the development of Indian Standards.

I would like to extend my sincere gratitude to Shri Pramod Kumar Tiwari, Director
General BIS, who has been the motivating factor behind writing of this handbook. His
constant encouragement was instrumental in believing that I could take up and complete
this project.

Special thanks go to my colleague Shri Ashish Tiwari, for his expertise and meticulous
suggestions that have influenced the content and structure of this handbook. This
has ensured the accuracy and relevance of the information presented.

Every effort has been made to ensure the comprehensiveness of this handbook, however,
any suggestions for improvement are most welcome.

Thank you all for your invaluable contributions and support.

s
e

Contents

S.No. | Topic Page
INTRODUCTION 10

1. The Software Development Process 11
1.1 Software Development Lifecycle Models 11
1.1.1 Big-Bang Model 11
1.1.2 Code-and-Fix Model 12
1.1.3 Waterfall Model 12
1.1.4 Spiral Model 13
a) Determine objectives, alternatives, and constraints. 13
b) Identify and resolve risks. 13
C) Evaluate alternatives. 13
d) Develop and test the current level. 13
e) Plan the next level. 13
f) Decide on the approach for the next level. 13
1.2 Relevant Standards 14

2. Software Testing Terms and Definitions 17
2.1 Relevant Standards : 17
2.1.1 Verification and Validation 17
2.1.1.1 Verification 17
2.1.1.2 Validation 18
2.1.2 Quality and Reliability 18
2.1.3 Testing and Quality Assurance (QA) 19
2.1.4 Program and Software 21
Key Points Summarized 23
Conclusion 23
2.1.5 Fault, Error, Bug and Failure 24
2.1.5.1 Fault 24
2.1.5.2 Error 24
2.1.5.3Bug 25
2.1.5.4 Failure 25
Relationships Between Fault, Error, Bug, and Failure in Testing 25
Summary: 25
Standards related to Fault, Error, Bug and Failure : 25
Summary 26
2.1.6 Test, Test Case and Test Suite 27
2.1.6.1 Test 27
2.1.6.2 Test Case 27
2.1.6.3 Test Suite 27
Relationships Between Test, Test Case, and Test Suite in Testing 28

.
o

Summary: 28
Summary 29
2.1.7 Alpha, Beta and Acceptance Testing 29
2.1.7.1 Alpha Testing 29
2.1.7.2 Beta Testing 29
2.1.7.3 Acceptance Testing 30
Summary of Alpha, Beta, and Acceptance Testing 30
Relevant Indian Standards related to the terminologies Alpha, 31
Beta and Acceptance Testing :

Examining the Specification 32
3.1 Black-Box and White-Box Testing 32
3.2 Static and Dynamic Testing 32
3.3 Static Black-Box Testing: Testing the Specification 33
Key Points 33
3.3.1 Relevant Indian Standard 34
3.4 High-Level Specification Test Techniques 35
Key Techniques: 35
Benefits: 36
3.5 Low-Level Specification Test Techniques 36
a) Completeness 36
b) Accuracy 36
c) Precision, Unambiguity, and Clarity 37
d) Consistency 37
e) Relevance 37
f) Feasibility 37
g) Code-Free 37
h) Testability 37
3.6 Relevant Standards to High and Low Level Specification Techniques37
a) High-Level Specification Testing Techniques: 37
b) Low-Level Specification Testing Techniques: 38
Testing the Software with Blinders On 38

4.1 Dynamic Black-Box Testing: Testing the Software While Blindfolded 38

4.1.1 Relevant Standards : 38
4.2 Data Flow Testing 38
Examining the Code 39
5.1 Static White-Box Testing: Examining the Design and Code 39
5.2 Coding Standards and Guidelines 39
a) Reliability 40
b) Readability /Maintainability 40
c) Portability 40

s
e

6. Testing the Software with X-Ray Glasses 41
6.1 Dynamic White-Box Testing 41
a) Understanding the Code 41
b) Direct Testing of Low-Level Functions 41
C) Testing at the Top Level 41
d) Accessing Variables and State Information 41
e) Measuring Code Coverage 41
6.2 Dynamic White-Box Testing Versus Debugging 41
6.2.1 Goal: 41
6.2.2 Focus: 42
6.2.3 Overlap: 42
6.3 Data Coverage 43
6.3.1 Dividing the Code: 43
6.3.2 Mapping to Black-box Cases: 43
6.4 Code Coverage 44
6.4.1 Code Coverage Testing: 44
6.4.2 Methods for Code Coverage: 44
6.4.3 Benefits of Code Coverage Analysis 44
Relevant Indian Standard : 44

7. Configuration Testing 45
7.1 Obtaining the Hardware 45
7.1.1 Hardware Configuration Testing: 45
7.1.2 Strategies for Obtaining Hardware: 45
a) I[SO/IEC 25051:2014(E) 45
7.2 Identifying Hardware Standards 45

8. Compatibility Testing 46
8.1 Scope of Compatibility 46
8.2 Examples of Compatibility 46
8.3 Determining Compatibility Requirements 46
8.3 Key Questions for Compatibility Testing 46
8.4 Static Testing for Compatibility 46
8.5 Standards and Guidelines 47
8.5.1 High-Level Standards: 47
a) General Operation 47
b) Look and Feel 47
C) Supported Features: 47
8.5.2 Low-Level Standards: 47
a) File Formats 47
b) Network Communication Protocols 47
c) Data Exchange Formats 47
Relevant Indian Standards : 47

.
o

9. Usability Testing 48
9.1 User Interface Testing 48
a) Toggle Switches and Lights 48
b) Paper Tape and Punch Cards 48
c) Teletypes 48
d) MS-DOS 48
9.2 Current Trends: 48
a) Voice Interfaces: 48
b) Gesture Interfaces 48
9.3 Importance of User Interface Testing and Key Ul Traits 48
9.3.1 Ul Testing Importance: 49
9.3.2 Key Ul Traits: 49
a) Follows Standards and Guidelines 49
b) Intuitive: 49
c) Consistent: 49
d) Flexible 49
e) Comfortable 49
f) Correct 49
g) Useful 49
Key Points: 49

10. Testing the Documentation 50
10.1 Types of Software Documentation 50
10.1.1 Packaging Text and Graphics: 50
10.1.2 Marketing Material: 50
10.1.3 Warranty/Registration: S0
10.1.4 Labels and Stickers: 50
10.1.5 Installation and Setup Instructions: 51
10.1.6 User’s Manual: 51
10.1.7 Online Help: 51
10.1.8 Tutorials, Wizards, and CBT: S1
10.1.9 Samples, Examples, and Templates: 51
10.1.10 Error Messages: 51
10.2 Relevant Indian Standard : 51
10.2.1 Testing the Documentation according to standard : 51
10.2.2 Types of Software Documentation according to Standard : 52

BIBLIOGRAPHY :

53

INTRODUCTION

.
o

INTRODUCTION

In a world where headlines are dominated by tales of software glitches and security
breaches, it’s natural to question why these issues continue to persist. Despite the
expertise and dedication of software developers, the inherent complexity and
interconnectedness of modern software systems make absolute perfection an elusive
goal. Enter the realm of software testing—a crucial process dedicated to ensuring the
functionality and reliability of software systems.

Understanding software testing is essential, not just from a theoretical perspective
but also in terms of practical application. While mastering the core concepts of software
testing as outlined in educational curricula is important, it’s equally vital to be familiar
with both Indian and international standards in this field. Standards play a pivotal role
in software testing by providing a structured framework for quality assurance,
consistency, and best practices. Here are some key roles they fulfill:

a) Standardization: One of the primary roles of standards in software testing
is to establish a common ground across different organizations. By
standardizing processes and practices, standards ensure that there is a
uniform understanding and approach to software testing. This uniformity
helps streamline testing processes and facilitates better communication
among stakeholders.

b) Quality Assurance: Standards provide benchmarks for quality, which is
essential for ensuring that software products meet specific performance,
reliability, and usability criteria. By adhering to established quality
benchmarks, organizations can better guarantee that their software will
perform as expected under various conditions. These benchmarks serve
as a guideline for evaluating software quality and ensuring that it meets
or exceeds industry expectations.

c) Process Improvement: Standards are instrumental in fostering continuous
improvement within testing processes. They encourage teams to adopt
better methodologies and tools, promoting an environment of ongoing
enhancement. By following these standards, organizations can
systematically refine their testing processes, leading to more effective
and efficient software development cycles.

d) Risk Management: Effective risk management is another critical area
where standards play a significant role. They offer guidelines for identifying,
assessing, and managing risks associated with software development and
testing. By adhering to these guidelines, teams can proactively address
potential issues, reducing the likelihood of problems arising during the
development and deployment phases.

e) Documentation and Traceability: Proper documentation and traceability
are essential components of effective software testing. Standards
emphasize the importance of maintaining detailed records throughout
the testing process, which facilitates easier audits and reviews.
Comprehensive documentation ensures that testing activities are
transparent and that all relevant information is available for future
reference or scrutiny.

s
e

f) Compliance and Certification: Adhering to established standards can
also help organizations achieve certification, which demonstrates a
commitment to quality and can enhance trust among clients and
stakeholders. Certification serves as an external validation of an
organization’s adherence to best practices and industry standards, providing
assurance to clients that the software has been developed and tested to
high standards.

g) Framework for Communication: Finally, standards create a common
language and framework for communication among different teams and
stakeholders. This common framework improves collaboration and ensures
that all parties involved have a clear understanding of testing processes
and requirements. Effective communication is crucial for aligning goals
and expectations, leading to more successful software development
outcomes.

The following sections of this handbook are designed to guide you through this essential
domain of software testing, with a focus on relevant standards. Efforts have been made
to include summaries of pertinent standards related to various concepts discussed,
aiming to provide a concise yet comprehensive overview. While we have not reproduced
the full text of each standard to keep the document manageable, detailed guidance on
any specific topic can be obtained by referring to the individual standards.

CHAPTER 1

THE SOFTWARE DEVELOPMENT
PROCESS

—
»
CHAPTER 1

The Software Development Process

1.1 Software Development Lifecycle Models

In the computer industry, there’s a humorous saying that laws, sausage, and software
shouldn’t be seen in the process of creation due to their messy nature. While this may
not be entirely true, there’s some truth to it. Software development processes vary
widely, ranging from disciplined craftsmanship to chaotic assembly. The method used
to create software, from conception to release, is known as the software development
lifecycle model.

There are four frequently used models, with most others just variations of these:
a) Big-Bang
b) Code-and-Fix
c) Waterfall
d) Spiral

Each model has its advantages and disadvantages. As a tester, you’ll encounter these
models and need to adapt your approach accordingly. Understanding these models will
help you apply testing techniques effectively in different project scenarios.

1.1.1 Big-Bang Model

The Big Bang model in software development is characterized by a lack of a defined
process or structure. Instead, development begins with a broad concept and progresses
rapidly without formal planning or documentation. This approach is often used for
small projects or prototypes where flexibility and speed are prioritized over formal
processes.

The Big Bang model of software development operates on a principle similar to the
cosmological theory. It involves assembling resources, expending energy, and hoping
for the emergence of a perfect software product, akin to the universe emerging from a
single explosion. This approach is characterized by minimal planning, scheduling, or
formal processes, with all focus directed towards development and coding. Testing is
often neglected or squeezed in just before release, with little formal testing conducted.
Testers in this model have the challenging task of reporting issues without the
opportunity for fixes, as the product is considered complete. While having the advantage
of simplicity, this model can lead to contentious situations as delays in testing may be
perceived as hindering product delivery.

Big Bang

FIGURE 2.4 The big-bang model is by far the simplest method of software
development.

Reference : Software Testing (2nd Edition), Ron Patton
1.1.2 Code-and-Fix Model

The Code-and-Fix model is one of the simplest and most informal methods of software
development. This model is characterized by a lack of formal planning and
documentation. In this approach, developers immediately start writing code without
any formal planning or design phase. They start with a rough idea, do minimal design,
and then enter into a cycle of coding, testing, and bug fixing until they decide to
release the product. This model works well for small projects or prototypes intended
for quick creation and eventual disposal. Testing is not explicitly emphasized, but it
plays a significant role between coding and bug fixing. This model provides a good
introduction to software development but may lack the rigor of more formal methods.

Code, Fix,

Typically informal
ypicaly Repeat Until?

Product Specification

FIGURE 2.5 The code-and-fix model repeats until someone gives up.

Reference : Software Testing (Second Edition), Ron Patton
1.1.3 Waterfall Model

The waterfall model is a sequential software development process where each phase
flows from one step to the next, without overlap. It begins with an initial idea and
progresses through analysis, design, development, and testing, culminating in a final
product. Reviews are conducted at the end of each phase to assess readiness for the
next step. This method emphasizes thorough specification before coding begins, making
it suitable for projects with well-defined requirements and disciplined development
teams. However, it may be less adaptable to fast-paced environments where product
requirements evolve rapidly.

s
e

Key points:
a) Emphasis on specifying the product upfront.
b) Discrete steps with no overlap.
c) Limited ability to backtrack once a phase is complete.

Vi

)77
).

FIGURE 2.6 The software development process flows from one step to the next in the
waterfall model.

Reference : Software Testing (Second Edition), Ron Patton
1.1.4 Spiral Model

The Spiral model, introduced by Barry Boehm in 1986, offers a flexible and iterative
approach to software development. It begins with a small, defined set of features and
gradually expands through multiple iterations, each involving six steps:

a) Determine objectives, alternatives, and constraints.
b) Identify and resolve risks.

C) Evaluate alternatives.

d) Develop and test the current level.

e) Plan the next level.

f) Decide on the approach for the next level.

This model combines elements of waterfall (analysis, design, develop, test), code-and-
fix (iteration), and big-bang (holistic view). It emphasizes early identification and
resolution of risks, leading to lower costs of problem discovery.

Key points:
a) Iterative approach with continuous refinement.
b) Emphasis on identifying and mitigating risks early.

c) Combines elements of other development models for a comprehensive approach.

.
o

Incorporating elements from various development models into a cohesive approach is
pivotal for achieving robust software solutions. The following section highlights key
Indian standards that contribute to software quality and development processes across
different methodologies.

Cumulative Cost
A

»

Identify and
Resolve Risks

Determine Objectives,
Alternatives, and
Constraints

. Evaluate Alternatives
Decide on the

Approach for the
Next Level

| !

Plan the
Next-Level

Final
Product ‘

FIGURE 2.7 The spiral model starts small and gradually expands as the project becomes
better defined and gains stability.

Develop and Test
the Current Level

Reference : Software Testing (Second Edition), Ron Patton

1.2 Relevant Standards - Standards related to the above models include:

1.2.1. Clause 3.3 in the standard IS 16443:2016 (ISO/IEC 25010:2011) introduces
the Product Quality Model, which categorizes the quality properties of a system or
software product into eight primary characteristics :

a) Functional Suitability: How well the software provides functions that
meet stated and implied needs when used under specified conditions.

b) Performance Efficiency: The performance relative to the amount of
resources used under stated conditions.

c) Compatibility: The ability of the software to interact with other systems

or products.

d) Usability: The effort needed for use and the individual’s assessment of
such use.

e) Reliability: The capability to maintain a specified level of performance

when used under specified conditions.

f) Security: The protection of information and data to ensure that
unauthorized persons or systems cannot read or modify them and
authorized persons or systems are not denied access.

s
e

g) Maintainability: The ease with which the software can be modified to
correct faults, improve performance or other attributes, or adapt to a
changed environment.

h) Portability: The ability of the software to be transferred from one
environment to another.

Key Points

a) Sub-characteristics: Each of these eight characteristics is composed of
related sub-characteristics, which provide further detail and granularity.

b) Scope: The quality model applies to both software products and computer
systems that include software, as most sub-characteristics are relevant
to both.

c) Compliance: Compliance with standards or regulations can be considered
part of the system requirements, but is outside the scope of the quality
model itself.

Application

a) The model can be used to evaluate the quality of a software product or a
computer system that includes software.

b) Definitions and explanations of each quality characteristic and their sub-
characteristics are provided to give a clear understanding of what each
entails.

1.2.2. Clause 5.2.4 of IS 16124 : 2020 / ISO/IEC/IEEE 12207 : 2017 - Life Cycle
Model for the Software System :

Clause 5.4.2 in the standard ISO/IEC/IEEE 12207:2017 (IS 16124:2020) explains the
concept of a life cycle model for software systems. Here’s a brief overview:

Key Points:
a) Life Cycle Description:

Every software system has a life cycle, which can be described using an
abstract functional model. This model represents the system’s journey
from conceptualization, through realization, utilization, evolution, and
ultimately, disposal.

b) Actions and Processes:

The software system progresses through its life cycle as a result of actions
performed and managed by people in organizations. These actions are
executed using processes that detail outcomes, relationships, and
sequences.

c) Flexibility in Life Cycle Models:

The document does not prescribe a specific life cycle model. Instead, it
defines a set of life cycle processes that can be used to define the system’s

.
o

life cycle. The sequence of these processes is determined by project
objectives and the chosen life cycle model.

d) Application:

The life cycle model is adaptable and can incorporate different
methodologies to suit project needs. It emphasizes the importance of
selecting a model that includes stages with defined purposes and outcomes.

1.2.3 IS 16457 : 2020 / ISO/IEC/IEEE 15288 : 2015 - Systems and Software
Engineering:

This standard provides a common framework for the life cycle of systems, including
software development. It outlines the software development life cycle (SDLC) stages,
which include concept, development, production, utilization, support, and retirement.

Key points:

a) Scope and Purpose:

i. Provides a comprehensive framework for system life cycle processes.
ii. Ensures consistency, repeatability, and quality in software
development.

b) Life Cycle Stages:
i. Concept: Identifying needs and feasibility studies.

ii. Development: Requirements analysis, design, implementation,
integration, verification, and validation.

iii. Production: Deployment and operation.
iv. Utilization: Active use and maintenance.
V. Support: Ongoing support and maintenance.
Vi. Retirement: Decommissioning and disposal.
c) Processes and Activities:
i. Covers technical processes (requirements analysis, design,

implementation, etc.), project processes (planning, risk management,
etc.), and enterprise processes (investment management, human
resource management, etc.).

d) Application :

IS 16457:2020 / ISO/IEC/IEEE 15288:2015 provides a structured framework
for managing the systems and software engineering lifecycle, focusing on
the entire development process from conception to disposal. This standard
outlines best practices and guidelines for lifecycle management, ensuring
that systems and software are developed systematically and efficiently. It
emphasizes defining and managing the processes, requirements, and
quality assurance throughout various stages of the software development

s
e

lifecycle (SDLC). By integrating lifecycle models such as Waterfall, Agile,
and V-Model, it helps organizations to apply tailored approaches that suit
their specific needs, ensuring project success and alignment with
stakeholder requirements.

These standards offer frameworks and guidelines for assessing and
improving software quality, which can be valuable in any software
development approach, including the informal Code-and-Fix model,
structured waterfall model or the iterative models like the Spiral, ensuring
systematic and effective development and maintenance of software
products.

By integrating these practical approaches into everyday software
development practices, organizations can effectively leverage standards
to enhance product quality, streamline processes, and achieve sustainable
business growth.

CHAPTER 11

SOFTWARE TESTING TERMS
AND DEFINITIONS

»
CHAPTER 11
SOFTWARE TESTING TERMS AND DEFINITIONS

Software Testing Terms and Definitions serve as the foundation for understanding and
executing effective software testing practices. These terms provide a common language
for professionals in the field to communicate clearly and consistently about testing
processes, techniques, and results. Key definitions include concepts such as test cases,
test plans, test scripts, and defect tracking, among others. Understanding these terms
is crucial for developing a coherent testing strategy, ensuring accurate communication
between team members, and maintaining high-quality standards throughout the
software development lifecycle. By mastering these definitions, stakeholders can better
navigate the complexities of testing, leading to more reliable and effective software
solutions.

2.1 Relevant Standards:

Standards related to this aspect of software testing include:

a) Clause 4 of IS 11291 (Part 1) : 2023 - In Clause 4 of IS 11291 (Part 1):
2023, software testing terms and definitions are crucial for establishing a
unified understanding of software testing within the industry :

Overview: This section from the standard underscores the importance of having a
standardized set of terms and definitions to facilitate clear communication about
software testing practices. By aligning with the ISO/IEC/IEEE 29119 series, the clause
ensures that fundamental testing concepts are universally understood, which helps in
applying these concepts consistently across various projects and organizations.

Overall, this clause highlights how a clear grasp of testing terms and definitions is
essential for integrating testing processes into quality management effectively.

2.1.1 Verification and Validation

Verification and Validation are key concepts in software testing, often used to ensure
that a software product meets its requirements and quality standards.

2.1.1.1 Verification: Verification is the process of evaluating software during
development to ensure it meets the specified requirements and design specifications.
It answers the question, “Are we building the product right?”

a) Purpose: The goal of verification is to ensure that the software conforms
to its design and specifications at various stages of development. It involves
checking and reviewing work products like requirements, design
documents, and code to catch defects early in the development cycle.

b) Techniques: Verification activities include reviews, inspections, and static
analysis. For instance, code reviews and design inspections are common
methods used to verify that the software adheres to predefined standards
and specifications.

\ o

2.1.1.2 Validation: Validation is the process of evaluating the software after development
to ensure it meets the end-user requirements and fulfills its intended purpose. It
answers the question, “Are we building the right product?”

a) Purpose: The goal of validation is to confirm that the software meets the
actual needs and expectations of users. This involves testing the software
in real-world scenarios or simulations to ensure it performs as expected.

b) Techniques: Validation typically involves dynamic testing, such as
functional testing, system testing, and user acceptance testing. These
techniques ensure that the software behaves correctly under various
conditions and aligns with user requirements.

In summary, verification focuses on whether the software is being built correctly
according to specifications, while validation ensures that the software meets the needs
of its users and performs its intended functions. Both processes are essential for
delivering high-quality software.

Indian standards related to verification and validation in software testing include:

a) Clause 4.1.3 of IS 11291 (Part 1) : 2023 highlights that verification and
validation are distinct processes, each using testing as a key practice:

i Verification: Ensures that the software conforms to specifications,
requirements, or other documentation. It assesses whether the software
is built according to the defined criteria.

ii. Validation: Focuses on whether the software meets stakeholder needs
and performs as expected in real-world scenarios. It evaluates the
acceptability of the software for its intended use.

Both processes utilize testing—both static (e.g., code reviews) and dynamic (e.g.,
functional testing)—to achieve their goals.

2.1.2 Quality and Reliability

Quuality in software refers to the degree of excellence or superiority in meeting customer
needs. While reliability is important, it’s just one aspect of quality. Customers may
also value features, compatibility, support, and price. Software testers sometimes conflate
quality with reliability, assuming that ensuring stability and dependability guarantees
a high-quality product, but this isn’t necessarily true. To ensure high quality and
reliability, testers must both verify (confirming the software meets specifications) and
validate (confirming it meets user needs) throughout the development process.

Key points:
a) Quality in software refers to excellence or superiority in meeting customer
needs.
b) Reliability is important but only one aspect of quality.
C) Customers consider factors like features, compatibility, support, and price
in assessing quality.
d) Testers must both verify and validate throughout the development process

to ensure high quality and reliability.

s
e

Indian standards related to software quality and reliability include:

a) Clause 4.1 of IS 16443:2016 addresses quality and reliability within the context
of systems and software engineering. Here’s a summary of its key points:

a) Overview of Quality and Reliability:

i. Quality: Refers to the degree to which a system or software meets specified
requirements and customer expectations. It encompasses aspects such
as functionality, performance, and usability. Quality assurance processes
are designed to ensure that these aspects are achieved and maintained
throughout the lifecycle of the system or software.

ii. Reliability: Focuses on the ability of the system or software to perform its
required functions under stated conditions for a specified period of time.
It is concerned with the consistency of performance and the likelihood of
failure-free operation.

b) Quality Management:

i Definition and Importance: Quality management involves establishing
and maintaining processes to achieve and improve quality. It includes
defining quality objectives, implementing quality control measures, and
performing regular assessments to ensure that quality standards are met.

ii. Key Components: This includes developing quality plans, conducting quality
reviews, and using metrics to measure and improve quality. Effective quality
management ensures that the final product aligns with stakeholder
requirements and expectations.

c) Reliability Engineering:

i. Definition and Importance: Reliability engineering focuses on designing
systems and software to be dependable and resilient. It involves identifying
potential failure points, implementing redundancy, and performing rigorous
testing to ensure that the system can handle expected conditions without
failure.

ii. Key Components: This includes reliability testing, fault tolerance analysis,
and lifecycle reliability assessment. By addressing these aspects, reliability
engineering aims to minimize the risk of failures and ensure that the
system performs reliably over its intended lifespan.

In essence, Clause 4.1 emphasizes that both quality and reliability are critical to the
successful development and deployment of systems and software. Quality management
ensures the product meets required standards and stakeholder needs, while reliability
engineering ensures it performs consistently and dependably under expected conditions.

2.1.3 Testing and Quality Assurance (QA)

Testing involves finding and reporting bugs in software, aiming to identify issues as
early as possible for prompt resolution. Quality assurance (QA) focuses on establishing
and enforcing standards and methods to improve the development process and prevent
bugs from occurring in the first place. While there is overlap between testing and QA,

.
o

with some testers performing QA tasks and vice versa, it’s crucial for team members to
understand their primary responsibilities and communicate them effectively to avoid
confusion and ensure a smooth development process.

Key points:
a) Testing involves finding and reporting bugs in software.
b) Quality assurance focuses on establishing standards and methods to
prevent bugs.
c) There is overlap between testing and QA, but it’s important for team
members to understand their primary responsibilities.
d) Clear communication about roles helps prevent process pain in projects.

Indian standards related to testing and software quality assurance include:

a) Clause 6.3.8 of IS 16124:2020 provides detailed guidance on the Quality
Assurance (QA) process within software projects. Here’s an explanation with a
focus on how it relates to testing and QA:

Objective: The primary purpose of the QA process is to ensure the effective application
of the organization’s Quality Management processes to the project. It aims to provide
confidence that quality requirements will be met by proactively analyzing the project’s
lifecycle processes and outputs.

Focus: QA focuses on validating that the product will achieve the desired quality and
that the organization’s policies and procedures are adhered to. This involves continuous
review and assessment throughout the development process.

The successful implementation of the QA process leads to several key outcomes:

a) Defined QA Procedures: Establishment and implementation of project-
specific quality assurance procedures.

b) Defined Evaluation Criteria: Clear criteria and methods for assessing
the quality of processes, products, and services.

c) Evaluations Performed: Consistent evaluations of the project’s outputs

according to established quality management policies and requirements.
d) Results Reporting: Providing evaluation results to relevant stakeholders.
e) Incident Resolution: Addressing and resolving quality-related incidents.
f) Problem Treatment: Prioritizing and treating identified problems.

These outcomes ensure alignment with the Quality Management process and help
maintain high standards of quality throughout the project lifecycle.

To implement the QA process effectively, the following activities and tasks should be
carried out:

Prepare for Quality Assurance :

a) Define QA Strategy: Develop a QA strategy that aligns with organizational policies
and objectives. This strategy includes:

s
e

i Resource Prioritization: Focus on processes and tasks with the greatest
impact on product quality.

ii. Roles and Responsibilities: Clearly define roles, responsibilities, and
authorities for QA activities.

ii. Evaluation Criteria: Set criteria and methods for evaluating processes,
products, and services, including acceptance criteria.

iv. Supplier Activities: Define QA activities specific to suppliers and

subcontractors.

V. Verification and Validation: Specify required activities for verification,
validation, monitoring, measurement, review, inspection, audit, and
testing.

vi. Problem Resolution: Outline procedures for resolving issues and improving
processes and products.

b) Establish Independence: Ensure that QA activities are independent from other
lifecycle processes to maintain objectivity and effectiveness. This often involves
assigning QA resources from separate organizations to avoid conflicts of interest.

Relation to Testing and QA

i Testing as Part of QA: Testing is a core component of the QA process,
helping to ensure that software meets quality requirements. It includes
activities such as verification and validation, which are crucial for
confirming that the product conforms to specifications and fulfills
stakeholder needs.

ii. Integration with QA Strategy: Testing activities are integrated into the
overall QA strategy, with defined priorities, roles, and criteria for
evaluating software quality. This integration helps ensure that testing is
systematic and aligned with broader quality goals.

In summary, Clause 6.3.8 of IS 16124:2020 provides a comprehensive approach to
managing quality assurance in software projects. It emphasizes defining QA strategies,
performing evaluations, and ensuring that testing and QA activities are well-structured
and independent. This approach helps maintain high quality throughout the software
development lifecycle.

2.1.4 Program and Software
Program

A program is a set of instructions written in a programming language that is executed
by a computer to perform a specific task or solve a particular problem. Programs are the
fundamental building blocks of software and can range from simple scripts to complex
applications.

Key Points:

a) Code Execution: A program is designed to be executed by a computer’s

processor, following the specific sequence of instructions provided by the
programmer.

.
o

b) Purpose-Specific: Each program is created with a specific purpose or
function in mind, whether it is to perform calculations, manage data, or
interact with users.

c) Development: Programs are written in various programming languages
(e.g., Java, C++, Python) depending on the requirements and the platform
they are intended to run on.

d) Testing: Programs undergo rigorous testing to ensure they perform their
intended functions correctly and efficiently. This includes unit testing,
integration testing, and system testing.

Software

Software is a comprehensive term that encompasses one or more programs, along with
the associated data, documentation, and procedures necessary for operating a computer
system. Software can be divided into system software and application software.

Key Points:

a) System Software: This includes operating systems (e.g., Windows, Linux),
device drivers, and utilities that manage and support the computer
hardware.

b) Application Software: These are programs designed to perform specific
tasks for users, such as word processors, database management systems,
and web browsers.

c) Components: Software is not just the code (programs) but also includes
data files, configuration files, libraries, documentation, and user manuals.

d) Lifecycle: Software development follows a lifecycle that includes
requirements gathering, design, coding, testing, deployment, and
maintenance.

e) Quality Assurance: Software quality assurance (SQA) involves processes

and standards to ensure that the software meets specified requirements
and is reliable, maintainable, and efficient. Standards like ISO/IEC 25000
series provide guidelines for software quality.

Relationship Between Program and Software

a) Building Block: A program is a building block of software. Multiple programs
can work together within a software system to provide a comprehensive
solution.

b) Integration: Software often integrates several programs to achieve a
higher-level functionality that a single program cannot provide alone.

c) Testing and Quality Assurance: Both programs and software systems
undergo extensive testing. However, software testing also considers the
interaction between different programs, user interfaces, performance, and
security.

Understanding Program and Software in Software Testing

a) Program: A sequence of instructions written to perform a specific task.

s
e

Programs are the fundamental units tested for correctness through
methods like unit testing.

b) Software: A collection of programs and associated components designed
to operate a computer system or perform user-defined tasks. Software
testing involves ensuring all components work together seamlessly through
integration testing, system testing, and acceptance testing.

This distinction helps in structuring all aspects of software testing, from the smallest
units (programs) to the complete system (software), providing a comprehensive guide.

Indian Standards that are related to these terminologies are :

a) Clause 5.2.1 of IS 16124 : 2020 addresses software systems and provides an
in-depth understanding of their characteristics and significance. Here’s an
explanation of how this clause discusses software:

Software systems are human-made constructs designed to deliver products or services
in specific environments for the benefit of users and other stakeholders. These systems
are not isolated and typically encompass various elements including:

a) Hardware

b) Software

c) Data

d) Humans

e) Processes (such as service delivery processes)
f) Procedures (such as operator instructions)

g) Facilities

h) Services

i) Materials

j) Naturally occurring entities

The document emphasizes that from a user perspective, these systems are perceived
as products or services.

Key Points Summarized

1. Software Systems: Created by humans to provide products or services,
integrating various system elements.

2. Stakeholder Significance: Systems where software is vital to stakeholders,
always part of a broader system including necessary hardware.

3. Contextual View: Systems are defined by stakeholder perspectives, with
hierarchical relationships and integrated elements.

4. Human Integration: Humans are both external users and internal
operators within systems.

5. Generic Adaptability: The document’s principles are flexible, allowing
application across diverse systems and life cycles.

.
o

Conclusion

Clause 5.2.1 highlights the interconnected nature of software systems, their integration
with hardware and other elements, and the importance of stakeholder perspectives in
defining and understanding these systems. It underscores the necessity of viewing
software within the larger system context and the adaptability of the outlined principles
to various scenarios and life cycles.

b) IS 11291 (Part 1) : 2023 provides a comprehensive framework for software
testing, including definitions and concepts that clarify the scope and nature of
what is being tested. The terms “program” and “software” are integral to
understanding this scope.

Relevance of “Program” in the Standard:

a) Unit Testing: The standard emphasizes testing individual programs or
components (unit testing) to ensure they perform as intended.

b) Integration Testing: Programs often need to work together; integration
testing checks the interactions between programs within a software system.

Relevance of “Software” in the Standard:

a) System Testing: The standard outlines the need for system testing, which
evaluates the behaviour of the complete software system, including all
integrated programs, to ensure it meets specified requirements.

b) Software Lifecycle: It addresses testing throughout the software lifecycle,
from initial development (where individual programs are created and tested)
to maintenance and updates of the complete software system.

c) Quality Attributes: The standard highlights the importance of various
quality attributes (e.g., functionality, performance, security) in testing,
which apply to both individual programs and the overall software system.

Summary

IS 11291 (Part 1) : 2023 uses the terms “program” and “software” to differentiate
between individual components and the broader systems they comprise. Testing
strategies in the standard are designed to address both levels, ensuring that each
program works correctly on its own and that the complete software system functions
as intended when all components are integrated.

2.1.5 Fault, Error, Bug and Failure

2.1.5.1 Fault : In software testing, a fault is an incorrect step, process, or data definition
in a software program. It is the underlying cause that leads to the occurrence of bugs.

Role in Testing: Testers aim to identify faults by executing test cases that expose
incorrect behaviour in the software. Faults are the root causes that need to be fixed to
ensure software correctness.

Example: A miscalculation in an algorithm that computes tax amounts, which can be
uncovered by a test case that verifies tax calculations.

s
e

2.1.5.2 Error: An error is a mistake made by a human, such as a developer or a tester,
which results in incorrect software behavior. It is often the action or inaction that
introduces a fault into the software.

Role in Testing: Errors lead to the introduction of faults and bugs. During the testing
process, errors are identified through reviews, inspections, and executing test cases.

Example: A developer incorrectly implementing a sorting algorithm due to a
misunderstanding of the requirements.

2.1.5.3 Bug : A bug is a flaw or imperfection in the software that causes it to produce
an incorrect or unexpected result, or to behave in unintended ways. Bugs are typically
identified during the testing process.

Role in Testing: The primary goal of software testing is to find and report bugs. Testers
create and execute test cases to detect bugs so that they can be documented and
fixed.

Example: A user interface bug where clicking a button does not trigger the expected
action, identified during functional testing.

2.1.5.4 Failure : A failure occurs when the software does not perform as expected due
to the presence of one or more bugs. Failures are the actual incorrect behaviors observed
during testing.

Role in Testing: Failures are critical findings in the testing process. When a failure is
observed, it indicates that there is a bug in the system that needs to be addressed.

Example: An application crash when a specific feature is used, detected during system
testing.

Relationships Between Fault, Error, Bug, and Failure in Testing

a) Errors in the development phase introduce faults in the code.
b) Faults manifest as bugs during the execution of the software.
c) Bugs are detected during testing and can cause failures when the software

does not meet its requirements or expected behavior.

Summary:
a) Error: Human mistake during development or testing.
b) Fault: Incorrect logic or data caused by an error.
c) Bug: Flaw in the software detected during testing.
d) Failure: Observable incorrect behaviour or crash during testing due to a

bug.

Understanding these concepts helps testers effectively identify and report issues, leading
to higher-quality software and successful project outcomes.

Standards related to Fault, Error, Bug and Failure :

IS 16443 : 2016 , part of the SQuaRE (System and Software Quality Requirements
and Evaluation) series, provides a quality model for software and systems. It defines

.
o

various quality characteristics and sub-characteristics, which are critical for evaluating
the quality of software. Within this context, the standard addresses key terminologies
such as fault, error, bug, and failure, primarily under the quality characteristics of
reliability and functionality.

Note : The Quality Characteristics mentioned below are taken from the Standard IS
16443 : 2016 itself to which the parameters Fault, Error, Bug and Failure are related.

Relevance of “Fault” in Standard : Faults are critical to the evaluation of software
reliability. The presence of faults directly impacts the reliability characteristic, as
they can lead to failures when the software is executed.

Quality Characteristics:

a) Reliability: The presence of faults affects the software’s ability to perform
its required functions under stated conditions for a specified period.
Reliability measures include fault tolerance and recoverability.

b) Maintainability: Faults also affect maintainability, particularly sub-
characteristics like analyzability and modifiability, which deal with the
ease of identifying and fixing faults.

Relevance of “Error” in Standard : Errors are the root causes of faults. Understanding
the nature and frequency of errors can help improve the development process to reduce
the occurrence of faults.

Quality Characteristics:

a) Functionality: Errors in requirements, design, or coding can lead to
functionality issues, where the software does not perform as intended.

b) Usability: Errors in the user interface design can impact the usability
sub-characteristics such as operability and user error protection.

Relevance of “Bug” in Standard : Bugs are indicators of faults within the software.
Managing and tracking bugs is essential for maintaining the software’s quality and
reliability.

Quality Characteristics:

a) Reliability: The presence of bugs impacts the software’s reliability.
b) Security: Bugs can also affect the security characteristic by introducing
vulnerabilities.

Relevance of “Failure” in Standard: Failures are the manifestations of faults when
the software is executed. They are critical for evaluating the reliability and performance
of the software.

Quality Characteristics:

a) Reliability: Failures are directly related to the reliability sub-
characteristics, including maturity (frequency of failure) and fault tolerance

(the system’s ability to continue operation despite failures).

s
e

b) Performance Efficiency: Failures can also impact performance efficiency,
affecting the software’s ability to provide appropriate performance relative
to the amount of resources used.

Summary

IS 16443 : 2016 addresses the terminologies of fault, error, bug, and failure within
the context of its quality model. These terms are primarily associated with the reliability
and functionality characteristics of software quality. By defining and categorizing these
terms, the standard provides a framework for evaluating and improving software quality,
ensuring that software systems meet their required functions under specified conditions
and maintain a high level of performance and reliability.

2.1.6 Test, Test Case and Test Suite

2.1.6.1 Test : A test is a procedure or action carried out to determine if a software
application or system performs as expected. It involves executing the software with the
intent of finding bugs or verifying that it meets specified requirements.

Role in Testing: Tests are the fundamental activities in the software testing process,
aimed at validating the functionality, performance, security, and other attributes of
the software. c)

Example: Running a test to check if a login form correctly authenticates users based
on valid credentials.

Test Case

2.1.6.2 Test Case : A test case is a set of conditions or variables under which a tester
determines whether a software application or system is working correctly. It includes
inputs, execution conditions, and expected results.

Role in Testing: Test cases are the detailed instructions that guide the execution of
tests. They help ensure that specific scenarios are tested consistently and
comprehensively.

Components of a Test Case:

a) Test Case ID: A unique identifier for the test case.
b) Description: A brief explanation of the test case objective.
c) Preconditions: Conditions that must be met before executing the test.

d) Test Steps: Detailed steps to execute the test.
e) Test Data: Input data required for the test.

f) Expected Result: The anticipated outcome if the software functions
correctly.

g) Actual Result: The actual outcome observed during testing (recorded after
execution).

h) Pass/Fail Criteria: Determines whether the test has passed or failed

based on the expected vs. actual result.

Example: A test case for a login feature might include steps like entering a valid

.
o

username and password, clicking the login button, and verifying that the user is
redirected to the dashboard.

2.1.6.3 Test Suite : A test suite is a collection of test cases that are grouped together
for testing purposes. Test suites often focus on a specific aspect of the software, such
as a particular feature or functionality.

Role in Testing: Test suites help organize and manage multiple test cases, making it
easier to execute and track testing efforts. They can be used to run tests systematically
and ensure comprehensive coverage.

Types of Test Suites:

a) Feature-Based Test Suite: Grouping of test cases related to a specific
feature.
b) Regression Test Suite: Collection of test cases to verify that recent

changes haven’t negatively impacted existing functionality.

c) Smoke Test Suite: A set of basic test cases to verify that the critical
functionalities of the application are working.

Example: A test suite for an e-commerce application might include test cases for user
registration, product search, adding items to the cart, and checkout process.

Relationships Between Test, Test Case, and Test Suite in Testing

a) Test Case: The fundamental building block, describing specific conditions
and expected outcomes.

b) Test: The act of executing one or more test cases to verify software
behavior.

c) Test Suite: An organized collection of test cases, grouped together to

facilitate systematic testing.

Summary:
a) Test: The process of evaluating the software by executing test cases.
b) Test Case: Detailed instructions defining how to test specific conditions
and the expected results.
c) Test Suite: A group of related test cases organized for systematic testing

of a particular aspect of the software.

Understanding these concepts ensures structured and effective testing processes,
leading to more reliable and high-quality software.

Relevant Indian Standards :

Clause 8.3.3 of IS 11291 (Part 3) : 2023 provides detailed guidelines for defining test
cases to ensure thorough testing of the software. Here’s a brief summary of the same:

a) 8.3.3.1 Overview: Test cases are derived from test coverage items to
determine if the software is implemented correctly. The number of test
cases depends on the required test coverage and the risk level of the
coverage items.

s
e

b) 8.3.3.2 Unique Identifier: Each test case is assigned a unique identifier
for traceability and differentiation from other test cases.

c) 8.3.3.3 Objective: Describes the purpose or focus of the test case, usually
summarized in a title.

d) 8.3.3.4 Priority: Specifies the importance of the test case. Higher-priority
cases are executed before lower-priority ones.

e) 8.3.3.5 Traceability: Links the test case to the test coverage items it
addresses, often documented in a test traceability matrix.

f) 8.3.3.6 Preconditions: Details the required setup, including test
environment, data, and any constraints necessary before executing the
test case.

g) 8.3.3.7 Inputs: Lists the actions and data needed to prepare the test
item for comparison of expected versus actual results, including
relationships between input events.

h) 8.3.3.8 Expected Results: Defines the anticipated outputs and behaviors
in response to inputs when the test item is in the precondition state. It
also outlines methods to compare actual results with expected outcomes.

This clause ensures that test cases are well-defined, traceable, and executable, helping
to achieve comprehensive testing coverage.

Summary

IS 11291 (Part 3) : 2023 establishes a structured methodology for documenting tests,
test cases, and test suites, ensuring that the testing process is thorough, repeatable,
and traceable. The standard emphasizes the importance of detailed documentation to
enhance the quality and reliability of software testing, facilitating better communication,
planning, and execution of tests within software projects. Clause 8.3.3 specifically
details the components and requirements for creating comprehensive and effective
test cases, emphasizing their critical role in the overall testing process.

2.1.7 Alpha, Beta and Acceptance Testing

2.1.7.1 Alpha Testing : Alpha testing is a type of acceptance testing performed to
identify all possible issues and bugs before releasing the product to real users or the
public. It is usually carried out by the internal staff at the developer’s site.

Key Characteristics:

a) Performed by: Internal employees of the organization.

b) Environment: Controlled, simulated environment.

c) Objective: Identify bugs that were not found during earlier testing phases.
d) Stages:

i Alpha Phase 1: Conducted by the developers themselves, usually
involving white-box testing.

ii. Alpha Phase 2: Involves the quality assurance team performing
black-box testing.

.
o

Example: An internal team at a software company testing a new version of their
application before releasing it to beta testers.

2.1.7.2 Beta Testing - Beta testing is a type of acceptance testing conducted by real
users in a real environment to validate the product’s functionality, usability, and
reliability before the final release.

Key Characteristics:

a) Performed by: Real users or customers.

b) Environment: Real-world environment.

c) Objective: Obtain feedback from actual users to make any necessary
improvements before the official launch.

d) Stages:
i Closed Beta: A limited group of users, typically by invitation only.
ii. Open Beta: Available to a larger, often public, group of users.

Example: A software company releasing a beta version of their app to select users to
gather feedback and identify any remaining issues.

2.1.7.3 Acceptance Testing : Acceptance testing is a type of testing conducted to
determine if the requirements of a specification or contract are met. It is the final
level of testing performed before the software is released to production.

Key Characteristics:

a) Performed by: End-users, customers, or stakeholders.

b) Environment: Real or simulated operational environment.

c) Objective: Validate that the software meets business needs and
requirements.

d) Types:
i. User Acceptance Testing (UAT): Ensures the software can handle

required tasks in real-world scenarios, according to specifications.

ii. Operational Acceptance Testing (OAT): Ensures the software is
ready for operational use, including checks on recovery,
maintenance, and other operational aspects.

Example: End-users testing a new system to ensure it meets their needs and
requirements before full deployment in their organization.

Summary of Alpha, Beta, and Acceptance Testing

Alpha Testing:
a) Conducted by internal staff.
b) In a controlled environment.

c) Aims to identify bugs not found in previous tests.

s
e

Beta Testing:

a) Conducted by real users.
b) In a real-world environment.
c) Aims to gather user feedback for final improvements.

Acceptance Testing:

a) Conducted by end-users or stakeholders.
b) In a real or simulated operational environment.
c) Aims to ensure the software meets business and operational requirements.

These stages ensure that the software is thoroughly tested and validated, reducing
the likelihood of issues post-release and ensuring a smooth user experience.

Relevant Indian Standards related to the terminologies Alpha, Beta and Acceptance
Testing :

IS 11291 (Part 1): 2023 covers software testing processes and indirectly addresses
Alpha, Beta, and Acceptance Testing as follows:

a) Internal Testing Processes: The standard emphasizes rigorous internal
testing, including verification and validation within the development team.
This aligns with Alpha Testing, where internal teams test the software
to identify and fix defects before external release.

b) External Testing Considerations: While not explicitly named, the standard
covers principles relevant to Beta Testing, such as testing by external
users to gather feedback on software performance and usability. It implies
the need for managing external feedback to refine the software.

c) Test Planning and Criteria: The standard provides guidelines for planning
and executing Acceptance Testing, focusing on verifying that the software
meets specified requirements and is ready for deployment. It includes
defining acceptance criteria and documenting test results to ensure the
software meets the client’s needs.

In summary, IS 11291 (Part 1): 2023 supports structured testing processes for internal
and external phases, including final acceptance, to ensure comprehensive evaluation
and validation of the software.

CHAPTER III
EXAMINING THE SPECIFICATION

»
CHAPTER II1
EXAMINING THE SPECIFICATION

3.1 Black-Box and White-Box Testing

Black-box testing involves testing the software based solely on its external behavior,
without knowledge of its internal workings. Testers focus on inputs and outputs, verifying
that the software functions correctly according to its specifications. White-box testing,
on the other hand, allows testers access to the program’s code, enabling them to
examine its internal structure and logic. Testers can use this knowledge to tailor their
testing strategies and identify areas more likely to fail.

Key points:
a) Black-box testing focuses on external behavior without knowledge of
internal workings.
b) Testers verify software functionality based on inputs and outputs.
c) White-box testing provides access to the program’s code, allowing testers
to examine its internal structure and logic.
d) Testers can tailor testing strategies based on code examination in white-

box testing.

Indian standards related to software testing, including black-box and white-box
testing techniques, include:

IS 11291 (Part 1) : 2023- This standard offers guidelines for software testing processes,
covering various testing techniques and activities, including black-box and white-box
testing. For more details feel free to explore the standard !

3.2 Static and Dynamic Testing

Static testing involves examining and reviewing software without executing it, while
dynamic testing involves running and using the software. Analogously, static testing is
akin to inspecting a used car without starting the engine, such as checking the tires,
paint, and under the hood. Dynamic testing, on the other hand, is comparable to
starting the car, listening to the engine, and driving it down the road to assess its
performance.

Key points:
a) Static testing involves examining and reviewing software without execution.

b) Dynamic testing involves running and using the software to assess its
behavior.

c) Analogous to inspecting a used car without starting the engine (static
testing) versus starting the car and driving it (dynamic testing).

.
o

Indian standards related to software testing techniques, including static and dynamic
testing, include:

Clause 4.1.5 of IS 11291 (Part 1) : 2023 describes two key approaches to software
testing:

a) Static Testing: Involves evaluating test items without executing the code.
This can be done manually (e.g., reviews) or using tools (e.g., static
analysis). Static testing can be applied to documentation or source code
at any stage of the lifecycle. Common methods include:

i. Reviews: Inspections, technical reviews, walkthroughs, and informal
reviews.

ii. Static Analysis: Tools that detect code anomalies or document issues
without running the code, such as compilers, cyclomatic complexity
analysers, or security analysers.

b) Dynamic Testing: Involves executing the code and running test cases to
evaluate its behaviour during runtime. This type of testing can only be
conducted when executable code is available and is performed during
phases of the lifecycle where the code can be executed.

3.3 Static Black-Box Testing: Testing the Specification

It involves evaluating a software system based on its specifications without executing
the code. This approach focuses on analysing the software’s requirements, design, and
documentation to ensure they meet the specified criteria and function correctly.

Key Points:

a) Objective: The goal is to verify that the specifications accurately reflect
the intended functionality and that the requirements are complete,
consistent, and unambiguous. It helps in identifying issues related to the
specification itself, such as missing or incorrect requirements.

b) Techniques:

i. Reviews: Systematic examination of requirements and design
documents to find discrepancies or issues.

ii. Inspections: Formal evaluations of specifications and design
documents by a team of reviewers.

c) Static Analysis: Using tools to analyze specifications and designs for errors,
inconsistencies, or deviations from standards.

d) Benefits:

i. Early Detection: Identifies issues in the specifications before
development or execution begins, reducing the risk of costly errors
later.

ii. Improved Quality: Ensures that the requirements are well-defined

and meet stakeholder needs, leading to better software quality.

s
e

In summary, Static Black-Box Testing focuses on verifying the correctness and
completeness of software specifications and requirements without executing the
software, helping ensure that the final product aligns with the intended functionality.

3.3.1 Relevant Indian Standard :

IS 11291 (Part 2) : 2023 (Software Testing — Part 2: Test Processes) provides a
comprehensive framework for software testing processes, including aspects relevant
to Static Black-Box Testing. Here’s how it covers Static Black-Box Testing:

a) Test Planning:
i. Define Objectives: Establish what needs to be tested based on
specifications.

ii. Develop Test Strategy: Plan how to approach testing, including methods
for deriving test cases from requirements.

ii. Allocate Resources: Identify and allocate resources needed for testing.
b) Test Design:

i Create Test Conditions: Identify what needs to be tested based on the
functional specifications.

ii. Design Test Cases: Develop test cases that are based on these conditions,
ensuring they cover all specified requirements.

iii. Prepare Test Data: Determine and prepare any data needed for testing
based on specifications.

c) Test Execution:

i. Perform Reviews: Execute reviews of the specifications and test cases,
ensuring they align with the requirements.

ii. Document Results: Record the outcomes of the test reviews or any analysis
performed based on the specifications.

d) Test Reporting:

i Compile Reports: Create reports on the results of the tests, including
any issues or discrepancies found in the specifications.

ii. Communicate Findings: Share test results and findings with stakeholders.
e) Test Monitoring and Control:
i Track Progress: Monitor the progress of testing activities and ensure

that test cases are being reviewed effectively.

ii. Adjust as Needed: Make adjustments to the test plan or strategy based on
findings from the specification reviews.

f). Test Improvement:

.
o

Review and Improve: Analyze feedback and results to refine and improve the testing
processes and practices.

In summary, IS 11291 (Part 2) : 2023 provides a structured approach to integrating
Static Black-Box Testing within the overall test process framework, emphasizing the
importance of planning, designing, and documenting tests based on specifications.

3.4 High-Level Specification Test Techniques

It involve evaluating a software system’s requirements and design at a high level to
ensure that it meets specified criteria and functions correctly. These techniques are
used to verify and validate the software based on its high-level specifications, which
outline the overall functionality, architecture, and interactions of the system.

Key Techniques:
a) Requirement Reviews:
i. Purpose: To systematically examine and assess requirements

documentation for completeness, clarity, and correctness.

ii. Process: Involves stakeholders, including developers, testers, and business
analysts, to review requirements for any discrepancies, ambiguities, or
omissions.

b) Design Inspections:

i. Purpose: To evaluate the high-level design and architecture of the
software.

ii. Process: A formal review process where design documents are inspected

by a team of experts to ensure that the design aligns with the requirements
and adheres to best practices.

c) Use Case Testing:

i. Purpose: To verify that the system meets user requirements as described
in use cases.

ii. Process: Test cases are derived from use cases that outline user
interactions and system responses. This ensures that all scenarios,
including normal and edge cases, are covered.

d) Scenario Testing:

i. Purpose: To assess the system’s ability to handle real-world scenarios
and workflows.

ii. Process: High-level scenarios or user journeys are created to simulate
how users interact with the system. The system’s responses are then
evaluated against expected outcomes.

e) Functional Testing:

i. Purpose: To ensure that the system’s functionality meets the high-level

requirements and specifications.

s
e

ii. Process: Test cases are designed to validate each functional requirement,
verifying that the system behaves as expected in various situations.

f) Traceability Analysis:

i. Purpose: To confirm that all requirements are covered by the design and
implementation.
ii. Process: A traceability matrix is used to map requirements to corresponding

design elements and test cases, ensuring that all specified requirements
are addressed.

g) Architecture Evaluation:

i Purpose: To assess the system’s architecture for scalability, performance,
and adherence to architectural standards.

ii. Process: High-level architectural documents are reviewed to ensure that
the system’s design can support the required functionality and performance
criteria.

Benefits:
a) Early Detection of Issues: Identifies potential problems in requirements

or design before detailed development begins.

b) Improved Requirement Accuracy: Ensures that high-level requirements
are correctly translated into system functionality.

c) Enhanced Quality: Helps in building a robust foundation for the software,
leading to higher quality and more reliable systems.

In summary, High-Level Specification Test Techniques focus on evaluating the software’s
high-level requirements and design to ensure that it meets specified criteria and
functions as intended. These techniques help in identifying issues early in the
development process and contribute to the overall quality and reliability of the software
system.

3.5 Low-Level Specification Test Techniques

After conducting a high-level review of the product specification, testers can proceed
to a lower-level examination to ensure thoroughness and accuracy. This involves
checking specific attributes of the specification to ensure its quality and effectiveness.
Here are eight key attributes to consider:

a) Completeness: Ensure that the specification covers all necessary aspects
of the product and doesn’t omit any essential details.

b) Accuracy: Verify that the proposed solution described in the specification
is correct and aligned with project goals without errors.

c) Precision, Unambiguity, and Clarity: Assess whether the specification
provides clear and exact descriptions without ambiguity, ensuring a single
interpretation and ease of understanding.

.
o

d) Consistency: Confirm that the specification is internally consistent and
doesn’t conflict with itself or other items within the document.

e) Relevance: Determine if each statement in the specification is necessary
for defining the feature or if it includes extraneous information.

f) Feasibility: Evaluate whether the feature described in the specification
can be realistically implemented within the available resources, personnel,
budget, and schedule.

g) Code-Free: Ensure that the specification focuses on defining the product’s
functionality and behaviour rather than delving into software design,
architecture, or code details.

h) Testability: Verify that the feature can be effectively tested, with sufficient
information provided for testers to create tests to verify its operation.

During the testing of a product specification, testers should carefully assess each
attribute listed above. Any deficiencies found should be treated as bugs and addressed
accordingly.

3.6 Relevant Standards to High and Low Level Specification Techniques

IS 11291 (Part 3): 2023 covers various aspects of software testing, including both
high-level and low-level specification testing techniques. Here’s a brief overview of
how it addresses these techniques:

a) High-Level Specification Testing Techniques:
I) Scope and Objectives:

1. High-Level Requirements: The standard emphasizes deriving test cases
from high-level requirements or specifications. This involves creating tests
based on the system’s overall goals and intended behavior as described in
high-level documents.

2. Test Design: It provides guidance on designing test cases that align with
these high-level requirements, ensuring that they cover the intended
functionality and user scenarios.

II) Documentation:

1. Test Cases and Conditions: The standard outlines how to document test
cases that are derived from high-level specifications. This includes defining
test conditions that align with the functional and non-functional
requirements specified at a high level.

b) Low-Level Specification Testing Techniques:
I) Scope and Objectives:

1. Detailed Design: The standard covers the derivation of test cases from
detailed or low-level specifications, including design documents and
technical specifications. This focuses on verifying the implementation
details and ensuring that the software behaves according to these lower-
level specifications.

s
e

2. Test Design: It provides methodologies for designing test cases that check
specific aspects of the implementation, such as code paths, interfaces,
and integration points.

II) Documentation:

1. Test Cases and Procedures: Details how to document test cases that are
based on low-level design specifications, including specific procedures
and conditions that reflect the detailed design aspects of the system.

In summary, IS 11291 (Part 3): 2023 offers comprehensive guidance on how to handle
both high-level and low-level specification testing techniques, including the creation,
documentation, execution, and reporting of test cases derived from these specifications.

CHAPTER IV

TESTING THE SOFTWARE WITH
BLINDERS ON

»
CHAPTER 1V
TESTING THE SOFTWARE WITH BLINDERS ON

4.1 Dynamic Black-Box Testing: Testing the Software While Blindfolded

Dynamic black-box testing involves testing software while it’s running, without
knowledge of its internal code. This method, also known as behavioural testing, focuses
on how the software behaves when used by a customer. To conduct dynamic black-box
testing effectively, testers rely on a requirements document or product specification to
understand the expected inputs and outputs of the software.

Test cases are then defined based on this understanding, specifying the inputs to be
tested and the procedures to be followed during testing. Strategic selection of test
cases is essential for thorough testing, and techniques for writing and managing test
cases are covered in Chapter 18 of the book.

4.1.1 Relevant Standards :
Indian standards related to it include :

a) IS 11291 (Part 1) : 2023- Software and Systems Engineering - Software Testing:
Provides guidelines and requirements for software testing processes, including
dynamic black-box testing.

For more information , please feel free to explore the standard on BIS Website.
4.2 Data Flow Testing

Data Flow Testing is a software testing technique focused on analyzing the flow of data
through a program. It aims to ensure that variables are properly defined, used, and
managed throughout the codebase. This method involves examining the paths from
variable definitions to their uses to identify potential errors and ensure data integrity.

Purpose: To verify that data is correctly managed within the software, from the point of
definition to all its subsequent uses.

Data flow testing helps detect issues such as uninitialized variables or incorrect data
handling, thereby enhancing the reliability and correctness of software applications.

Indian standards related to data flow testing may include:

a) Clause 5.3.7 Data Flow Testing of IS 11291 (Part 4) focuses on evaluating how
variables are defined, used, and redefined in software. Here’s a brief summary:

Data flow testing involves creating a model to trace the definitions of variables to their
uses, ensuring no intervening redefinitions occur. For All-Definitions Testing, the
goal is to identify and cover all paths from each variable’s definition to its uses by
creating and executing corresponding test cases. All-C-Uses Testing focuses on paths
from variable definitions to computation uses, with test cases designed to cover these
specific paths. All-P-Uses Testing involves tracing paths from variable definitions to
predicate uses, deriving test cases to ensure these paths are covered. Overall, this
approach ensures comprehensive testing by tracking variable definitions and their
various uses, including computation and predicate uses, to validate that all defined
variables are thoroughly tested in the software.

CHAPTER V
EXAMINING THE CODE

»
CHAPTER V
EXAMINING THE CODE

5.1 Static White-Box Testing: Examining the Design and Code

Static white-box testing involves carefully reviewing the software design, architecture,
or code for bugs without executing it. It’s also known as structural analysis. The main
purpose of static white-box testing is to find bugs early in the development process,
especially those that might be difficult to uncover with dynamic black-box testing.
Additionally, it helps in generating ideas for test cases for black-box testing.

Common misconceptions about static white-box testing include it being time-consuming,
costly, or unproductive. However, compared to finding and fixing bugs later in the
development cycle, the benefits of early bug detection outweigh these concerns.

5.2 Coding Standards and Guidelines

In formal code reviews, inspectors aim to identify problems and omissions in the code,
including bugs and deviations from established standards or guidelines. Standards are
rigid rules that must be followed without exception, while guidelines are recommended
best practices. Adherence to standards and guidelines is crucial for several reasons:

a) Reliability: Code written to specific standards or guidelines tends to be
more reliable and secure.

b) Readability/Maintainability: Code following set standards and guidelines
is easier to comprehend and maintain.

c) Portability: Code adhering to standards is typically easier to move across
different platforms or compile with various compilers.

Indian standards related to it include :

a) IS 16124:2020 provides comprehensive standards and guidelines for
coding practices to enhance software quality and maintainability. Here’s
a summary of its key concepts:

Coding Standards and Guidelines in IS 16124:2020

a) Purpose: Establishes uniform coding practices to improve code quality,
readability, and maintainability. It aims to standardize coding procedures
to minimize errors and facilitate easier maintenance.

b) Code Consistency: Enforces consistent coding styles and conventions
across the development team. This includes naming conventions,
indentation, and formatting, which help in understanding and maintaining
the code.

c) Code Documentation: Emphasizes the importance of clear and
comprehensive documentation within the code. Proper comments and
documentation make the code easier to understand and maintain.

.
o

d)

g)

h)

Error Handling: Provides guidelines for effective error handling to ensure
robustness and reliability. This includes standardized approaches for
managing exceptions and logging errors.

Code Review: Recommends regular code reviews to catch issues early
and ensure adherence to coding standards. Reviews help in improving
code quality through collective scrutiny.

Performance and Efficiency: Encourages writing efficient code to optimize
performance. Guidelines include best practices for minimizing resource
usage and optimizing algorithms.

Security: Highlights the need for incorporating security practices in coding
to prevent vulnerabilities. This involves validating inputs, using secure
coding practices, and protecting against common security threats.

Modularity and Reusability: Advocates for designing modular code that
promotes reuse and simplifies maintenance. Encourages breaking down
code into manageable, reusable components.

Testing: Stresses the importance of integrating testing into the
development process. Ensures that code is thoroughly tested to identify
and fix defects early.

By adhering to IS 16124:2020, organizations can ensure higher quality, more reliable
software that is easier to maintain and extend.

CHAPTER VI

TESTING THE SOFTWARE WITH
X-RAY GLASSES

¢
CHAPTER VI
TESTING THE SOFTWARE WITH X-RAY GLASSES

6.1 Dynamic White-Box Testing

Dynamic white-box testing involves examining the code and observing its behavior
while the program is running. This approach allows testers to gain insights into how
the software works and informs their testing strategy. It’s akin to wearing X-ray glasses
to see inside the software “box” and understand its internal structure.

Key points about dynamic white-box testing include:

a) Understanding the Code: Testers use information about the code’s
structure and behavior to determine what to test and how to approach
testing. This knowledge influences test case design and execution.

b) Direct Testing of Low-Level Functions: Dynamic white-box testing
involves testing individual functions, procedures, or libraries, often using
Application Programming Interfaces (APIs) in software systems like
Microsoft Windows.

c) Testing at the Top Level: Testers evaluate the software as a complete
program while adjusting test cases based on their understanding of its
internal operations.

d) Accessing Variables and State Information: Testers may read variables
and state information from the software to validate test results and force
the software to perform specific actions for testing purposes.

e) Measuring Code Coverage: Testers measure the portion of code exercised
by their tests and adjust test cases to ensure adequate coverage, removing
redundant tests and adding missing ones as needed.

Dynamic white-box testing is not only about observing code behavior but also involves
actively controlling and manipulating the software during testing. By leveraging
knowledge of the code’s internals, testers can design more effective test cases and
ensure comprehensive coverage of the software’s functionality.

6.2 Dynamic White-Box Testing Versus Debugging

Dynamic white-box testing and debugging are distinct activities, despite both involving
the examination of code and identification of bugs. Here are the key differences:

6.2.1 Goal:

a) Dynamic White-box Testing: The goal is to find bugs by observing the
software’s behavior and understanding its internal structure. Testers focus
on identifying issues to be addressed by developers.

b) Debugging: The goal is to fix bugs identified during testing or reported by
users. Developers investigate the root cause of issues and modify the

code to resolve them.

s
e

6.2.2 Focus:

a) Dynamic White-box Testing: Testers focus on identifying and documenting
bugs, often by creating reproducible test cases that demonstrate
unexpected behavior.

b) Debugging: Developers focus on diagnosing the exact cause of bugs and
implementing solutions to eliminate them.

6.2.3 Overlap:

Both activities involve isolating the source of bugs, which may require analyzing code
and understanding its execution path.

Testers in dynamic white-box testing may provide information about suspicious code or
behavior to assist developers in debugging.

Indian standards related to these activities include:

a) 11291 (Part 2) : 2023 addresses debugging and testing through the following
key aspects:

i Debugging

Integration with Testing: The standard emphasizes integrating debugging
into the testing process. It suggests that effective debugging is supported
by comprehensive testing strategies that help identify where and why
defects occur.

Debugging Techniques: It acknowledges debugging as an essential activity
for resolving issues found during testing. The standard recommends using
systematic debugging practices alongside other testing methodologies to
ensure defects are thoroughly addressed.

ii. Dynamic White-Box Testing

Purpose and Process: The standard details dynamic white-box testing as
a technique that evaluates the internal logic of the code during execution.
It involves testing the software with an understanding of its internal
structure and logic.

Coverage and Effectiveness: It highlights how dynamic white-box testing
helps ensure that different code paths and data flows are tested, which is
crucial for finding defects related to code logic and execution.

How the Standard Addresses the above mentioned factors ?

a) Testing Methodologies : IS 11291 (Part 2) : 2023 outlines how dynamic
white-box testing should be conducted, including the creation of test cases
based on the internal structure of the application.

b) Debugging Support: The standard provides guidelines on how debugging
should complement testing. It suggests using debugging tools and
techniques to further analyze and fix issues uncovered by testing.

.
o

c) Integration: It encourages a seamless integration of debugging and testing
activities, ensuring that findings from dynamic white-box testing are used
to refine debugging processes.

By incorporating both dynamic white-box testing and debugging into the software
development lifecycle, IS 11291 (Part 2) : 2023 aims to improve software quality
through systematic testing and effective defect resolution.

6.3 Data Coverage

In white-box testing, the logical approach involves analyzing the code by dividing it into
its data and states, similar to how black-box testing is approached. Here are the key
points:

6.3.1 Dividing the Code:

Data: This includes variables, constants, arrays, data structures, and inputs and outputs
from various sources such as keyboard, mouse, files, and other devices.

States (Program Flow): This refers to the different conditions or modes the software
can be in during its execution, and how it transitions between these states.

6.3.2 Mapping to Black-box Cases:

By understanding the data and states of the software, testers can map the white-box
information to the test cases developed during black-box testing.

This mapping helps ensure that test cases cover both the functionality (black-box
perspective) and the underlying code behaviour (white-box perspective) comprehensively.

Indian standards related to this process may include:

a) IS 16443 : 2016: Provides guidance on software quality models, including
testing activities such as white-box testing. It may offer insights into how
to effectively map white-box analysis to black-box test cases.

b) IS 11291(Part-3) : 2023: Specifies software testing standards, including
techniques for white-box testing. It may outline methods for analyzing
code data and states to inform testing strategies.

Understanding the relationship between code analysis, data, states, and black-box
test cases is essential for thorough and effective white-box testing.

6.4 Code Coverage
6.4.1 Code Coverage Testing:

Involves testing the program’s states and flow, aiming to execute every module, line of
code, and logic path in the software.

Also known as dynamic white-box testing because it requires access to the code to
observe which parts of the software are traversed during test execution.

The goal is to achieve comprehensive coverage of the codebase to identify areas that
lack test coverage, redundant test cases, and areas requiring additional testing.

s
e

6.4.2 Methods for Code Coverage:

Single-stepping through the program using a compiler’s debugger is a basic method for
small programs or individual modules.

For larger software, specialized tools called code coverage analyzers are used. These
tools run transparently in the background during test execution, recording which parts
of the code are executed.

6.4.3 Benefits of Code Coverage Analysis:

Identifies parts of the software not covered by existing test cases, prompting the creation
of additional tests for comprehensive coverage.

Identifies redundant test cases that do not increase code coverage, helping optimize
test suites.

Guides the creation of new test cases for areas with low coverage, ensuring thorough
testing of critical functionalities.

Provides insights into the overall quality of the software based on the percentage of
code covered and the presence of bugs relative to coverage.

Understanding and applying code coverage testing methods is essential for ensuring
thorough testing and identifying areas of improvement in software quality.

Relevant Indian Standard :

IS 11291 (Part 4) : 2023 (Software Testing — Part 4: Test Techniques) discusses
code coverage as part of its test design techniques. It provides guidelines on various
types of code coverage, including:

a) Statement Coverage: Ensures that each line of code is executed at least
once.

b) Branch Coverage: Verifies that each branch (decision point) in the code
is tested.

c) Path Coverage: Ensures that all possible paths through the code are
exercised.

The standard details how to incorporate these coverage techniques into test design to
ensure comprehensive testing and identify untested code areas. It emphasizes using
code coverage metrics to assess test effectiveness and guide the creation of additional
test cases where needed.

CHAPTER VII
CONFIGURATION TESTING

»
CHAPTER VII

Configuration Testing

7.1 Obtaining the Hardware

7.1.1 Hardware Configuration Testing:

Testing software on different hardware configurations is essential for ensuring
compatibility and reliability. Obtaining diverse hardware setups can be expensive if
purchased outright, especially if they are only used for one test pass.

7.1.2 Strategies for Obtaining Hardware:

Purchase only the most commonly used configurations or encourage testers to have
different hardware setups, even if it contradicts the standardization preferences of
the IT department.

Contact hardware manufacturers to request loaned or donated hardware for testing
purposes, emphasizing the mutual interest in ensuring software compatibility.

Utilize internal resources by requesting employees to provide access to their office or
home hardware for testing purposes, offering to reimburse any expenses incurred.

Consider outsourcing testing to professional configuration and compatibility test labs,
which specialize in providing diverse hardware setups for testing purposes. This
approach may be more cost-effective than purchasing hardware outright.

Relevant Indian Standards:

a) ISO/IEC 25051:2014(E): Provides guidelines for software product evaluation,
including considerations for hardware compatibility testing.

7.2 Identifying Hardware Standards

Indian standards related to hardware primarily focus on quality management systems,
environmental management, and specific technical requirements. However, there are
ISO standards indirectly related to hardware development and testing:

CHAPTER VIII
COMPATIBILITY TESTING

»
CHAPTER VIII
COMPATIBILITY TESTING

Software compatibility testing ensures that your software can interact seamlessly
with other software and systems. Here are the main points:

8.1 Scope of Compatibility: Compatibility testing covers interactions between software
running on the same computer, across different computers connected via the internet,
or even through offline means like transferring data via removable media. It encompasses
a wide range of scenarios, from simple data sharing to complex multi-application
integration.

8.2 Examples of Compatibility: Examples include copying text from a web page to a
word processor, transferring data between different spreadsheet programs, ensuring
photo editing software works across various operating system versions, integrating
contact management data with a word processor for personalized invitations, and
migrating databases seamlessly between database programs.

8.3 Determining Compatibility Requirements: The extent of compatibility depends on
factors such as project specifications and the intended operating environment. For
standalone systems with proprietary hardware and software, compatibility considerations
may be minimal. However, software designed to interact with multiple platforms,
applications, and data sources requires thorough compatibility testing.

8.3 Key Questions for Compatibility Testing:

What platforms or operating systems is the software designed to be compatible with?
What other application software should the software be compatible with?
Are there specific compatibility standards or guidelines that need to be followed?

What types of data will the software interact with, and how should it share information
with other platforms and software?

8.4 Static Testing for Compatibility: Obtaining answers to these questions involves
static testing, including both black-box and white-box approaches. This includes analyzing
product specifications, discussing requirements with developers, and possibly reviewing
code to ensure all compatibility requirements are identified and addressed.

Indian Standards Related to Compatibility Testing:

Indian standards related to software compatibility testing may focus on interoperability,
data exchange formats, and quality management systems. For example, ISO/IEC 25051
provides guidelines for evaluating software product quality, including compatibility with
other systems. Additionally, standards like ISO/IEC 27001 address information security
aspects of software compatibility.

8.5 Standards and Guidelines

When it comes to ensuring compatibility and adherence to standards, it’s crucial to
consider both high-level and low-level requirements. Here’s a breakdown of each:

.
o

8.5.1 High-Level Standards:

a) General Operation: These standards define how the software should
function overall. For instance, they might outline user interface behaviors,
interaction patterns, and overall user experience guidelines.

b) Look and Feel: High-level standards often include design guidelines
concerning the appearance of the software, such as typography, color
schemes, iconography, and layout principles.

c) Supported Features: Standards may specify which features must be
supported by the software and how they should behave. This could include
functionalities like accessibility features, internationalization support, or
compatibility with specific hardware or software configurations.

8.5.2 Low-Level Standards:

a) File Formats: These standards dictate the structure, encoding, and rules
for handling various file formats that the software interacts with. This
includes document formats, image formats, audio/video codecs, etc.

b) Network Communication Protocols: Low-level standards cover the
protocols and procedures for communication between software components
over networks. This includes standards like HTTP, TCP/IP, WebSocket,
etc.

c) Data Exchange Formats: Standards related to data interchange formats
such as JSON, XML, CSV, etc., fall under this category.

By researching and understanding both high-level and low-level standards applicable
to your software, you can ensure compatibility, interoperability, and compliance with
industry norms and user expectations.

Relevant Indian Standards :

a) Clause A.2.2 of IS 11291 (Part 4) : 2023 :This clause explains about
Compatibility Testing , following are some important points :

i Purpose: To verify that a test item can function correctly in a shared
environment with other products, whether independent or dependent.

ii. Key Aspects:

1. Order of Installation/Instantiation: Ensures the correct sequence
for installation or running, which does not affect functionality.

2. Concurrent Use: Validates that multiple items can operate
simultaneously without issues.

3. Environment Constraints: Assesses whether environmental factors
like memory or platform affect performance.

CHAPTER IX
USABILITY TESTING

¢
CHAPTER IX
USABILITY TESTING

9.1 User Interface Testing

User interfaces (Uls) have undergone significant evolution, reflecting advancements
in technology and changing user expectations. From rudimentary interfaces to
sophisticated graphical user interfaces (GUIs), the goal has always been to provide
effective means for users to interact with computers.

a) Toggle Switches and Lights: Early computers utilized physical switches
and lights for input and output.

b) Paper Tape and Punch Cards: Mainframe computers in the ’60s and "70s
relied on paper tape and punch cards for data input.

c) Teletypes: Teletype machines allowed users to interact with computers
through text-based input and output.

d) MS-DOS: The introduction of personal computers brought command-line
interfaces like MS-DOS, which enabled users to type commands for
execution.

9.2 Current Trends:

a) Voice Interfaces: With advancements in natural language processing and
voice recognition, voice interfaces are becoming increasingly popular. Users
can interact with computers through spoken commands and receive
auditory feedback.

b) Gesture Interfaces: Touchscreens and motion-sensing technologies allow
users to interact with devices through gestures, such as swiping, tapping,
and pinching.

9.3 Importance of User Interface Testing and Key Ul Traits

User interface (UI) testing is a critical aspect of software quality assurance, ensuring
that software interfaces are intuitive, consistent, and user-friendly. While many
companies invest in sophisticated usability labs, software testers play a crucial role in
evaluating Uls for usability issues and adherence to standards. Here are some key
points to consider:

9.3.1 UI Testing Importance:

UI testing is essential even if software development teams invest in extensive Ul
research and design. Not all teams approach Ul design scientifically, and there can be
various reasons for Ul deficiencies, including lack of expertise, time constraints, or
technological limitations.

Testers need to assume responsibility for testing the usability of software interfaces,
identifying issues, and suggesting improvements to enhance user experience.

s
e

9.3.2 Key Ul Traits:

a) Follows Standards and Guidelines: Adhering to existing standards and
guidelines is paramount for a good Ul. Standards set by platforms like
Mac or Windows define how software should look and feel, ensuring
consistency and familiarity for users.

b) Intuitive: A good Ul should be intuitive, allowing users to interact with
software effortlessly. Elements should be well-organized, functions should
be obvious, and excessive functionality should be avoided.

c) Consistent: Consistency within the software and with other applications
is crucial. Users develop expectations based on their experiences with
other programs, so similar operations should be performed consistently.

d) Flexible: A flexible Ul accommodates different user preferences and
workflows, allowing users to customize their experience according to their
needs.

e) Comfortable: The Ul should not only be functional but also comfortable to

use over extended periods. Considerations such as font size, color contrast,
and ergonomic design contribute to user comfort.

f) Correct: A correct Ul accurately reflects the underlying functionality of
the software, providing users with reliable feedback and preventing
confusion or errors.

£g) Useful: Above all, a Ul should be useful, effectively facilitating the tasks
and goals of the user. Features should be relevant and add value to the
user experience.

Standards relevant to Usability Testing :
a) Clause A.2.15 Usability testing of IS 11291 (Part 4) : 2023 :

Usability Testing as defined in Clause A.2.15 of IS 11291 (Part 4) focuses on evaluating
whether users can effectively, efficiently, and satisfactorily use a test item to achieve
their goals in specified contexts.

Key Points:

a) Purpose: To determine if users can use the test item to meet their goals
with effectiveness, efficiency, and satisfaction.

b) Usability Model: The test item is assessed based on a model that includes
usability requirements and design standards. These requirements are
linked to the goals and contexts of use.

c) Usability Goals:

i Effectiveness: How well users can achieve their goals with the
test item.
ii. Efficiency: How quickly and easily users can achieve their goals.

iii. Satisfaction: How pleased users are with using the test item.

.
o

d) Context of Use: Usability goals are defined considering who will use the
test item, their characteristics, the environment in which it will be used,
and the tasks they need to perform.

e) Reference Standard: [SO 9241-11 provides additional guidance on human-
system interaction, which is relevant for setting usability requirements.

In summary, usability testing ensures that a test item meets user needs in practical
scenarios by focusing on how well it supports users in accomplishing their goals.

CHAPTER X
TESTING THE DOCUMENTATION

¢
CHAPTER X
TESTING THE DOCUMENTATION

10.1 Types of Software Documentation

Software documentation plays a crucial role in the overall product experience, providing
users with essential information about the software and its usage. In today’s landscape,
documentation encompasses various components beyond a simple readme file. Here
are key software components classified as documentation:

10.1.1 Packaging Text and Graphics:

Includes materials such as box art, carton inserts, and wrapping.

Contains screen shots, feature lists, system requirements, and copyright information.
10.1.2 Marketing Material:

Includes promotional inserts, ads, and other materials aimed at promoting related
software, add-ons, or service contracts.

10.1.3 Warranty/Registration:

Registration cards or online forms for customers to register the software.
End User License Agreement (EULA) outlining legal terms and conditions.
10.1.4 Labels and Stickers:

Appearing on media, boxes, or printed materials.

May include serial numbers and seals for EULA envelopes.

10.1.5 Installation and Setup Instructions:

Printed on discs, CD sleeves, or included as inserts.

Can range from simple instructions to complex installation manuals.
10.1.6 User’s Manual:

Traditional printed manuals or concise “getting started” guides.
Increasingly replaced by online manuals distributed on media or websites.
10.1.7 Online Help:

Indexed, searchable documentation often replacing printed manuals.
Supports natural language queries for user convenience.

10.1.8 Tutorials, Wizards, and CBT:

Blend programming code with written documentation.

s
e

Guides users through tasks with interactive assistance.

10.1.9 Samples, Examples, and Templates:

Provide pre-designed materials for users to customize.

Examples include forms in word processors or code snippets in compilers.
10.1.10 Error Messages:

Critical part of documentation, providing feedback and guidance to users in case of
errors.

10.2 Relevant Indian Standard :

IS 11291 (Part 3): 2023 addresses Testing the Documentation and Types of Software
Documentation by providing guidelines on how to ensure the quality and effectiveness
of different documentation types throughout the software testing lifecycle. Following
is an explanation in brief :

10.2.1 Testing the Documentation according to standard :

a) Objective: The standard outlines the processes for verifying that software
documentation is accurate, complete, and aligned with the software
requirements. This involves checking that documentation correctly
supports the software testing activities and meets the defined quality
standards.

b) Approach: It involves reviewing and validating documentation to ensure it
accurately reflects the software’s requirements, design, and testing
procedures. This includes ensuring that test plans, test cases, and other
documents are well-defined and properly support the testing objectives.

10.2.2 Types of Software Documentation according to Standard :

a) Requirements Documentation: Details the functional and non-functional
requirements of the software. Testing involves verifying that these
requirements are correctly captured and can be traced through to the
test cases.

b) Design Documentation: Includes software architecture and design
specifications. Testing focuses on ensuring that design documents are
complete, accurate, and support the implementation and testing of the
software.

c) Test Documentation: Comprises test plans, test cases, and test scripts.
The standard emphasizes ensuring that these documents are clear,
comprehensive, and correctly describe the testing strategy and expected
outcomes.

d) User Documentation: Consists of user manuals, help guides, and other
end-user documentation. Testing ensures that this documentation
accurately reflects the software’s functionality and provides clear guidance
to users.

.
o

In summary, IS 11291 (Part 3): 2023 provides a structured approach to testing various
types of software documentation, ensuring that all documentation supports the software
development and testing processes effectively and meets required quality standards.

Note : Please refer to unit 12 of Testing the Documentation (Part 3) of book Software
Testing (2™ edition) by Ron Patton for more details on “Testing the documentation”.

»
BIBLIOGRAPHY :

a) Software Testing (2" Edition) by Ron Patton
b) Software Quality Assurance by Claude Y. Laporte Alain April
C) Software Testing by Yogesh Singh

d) [S11291 (Part 1): 2023

e) IS 11291 (Part 2): 2023

f) IS 11291 (Part 3): 2023

g) ISO9241-11

h) IS 16443 :2016

i) ISO/IEC 25051:2014(E)

i) IS 16124:2020

k) IS 16457 : 2020

