

FlowCam for Freshwater Applications

Bhushan Pandit Yokogawa India Limited

FlowCam[®]

© Yokogawa Fluid Imaging Technologies – All Rights Reserved

Outline

FlowCam Overview
What regulations say
Applications in freshwater
Instrument Types
Example Data

FlowCam 8000 with marine dinoflagellates

FlowCam Overview

- Flow Imaging Microscopy (FIM)
- Invented by biological oceanographers to:
 - Provide a faster alternative to manual microscopy, and
 - Add a visual component to flow cytometry
- Used today in a variety of fields, including marine research, Freshwater, aquaculture, microalgae cultivation, biopharmaceutical research, and more.

Click here to watch a 3-minute FlowCam video

HABs

Freshwater and marine algal blooms can be called **harmful** because they lower dissolved oxygen concentrations, alter aquatic food webs, leave ugly scums along shorelines, produce taste-and-odor compounds that cause drinking water and fish flesh to taste bad, or produce toxins so potent they poison organisms in the water and on the land.

- Cyanobacteria
 - Toxin producers
 - Taste and odor producers
- Dinoflagellates
 - Taste and Odor producers
 - Toxin producers

Golden Algae

- Taste and odor producers
- Toxin producer
- Diatoms
 - Filter cloggers
 - Taste and Odor producers
 - Toxin producers
- Euglenoids, cryptomonads...

Taxonomic training helpful but not required

• Why are customers choosing FlowCam vs. Microscope Automated classification of Cyanobacteria and algae helps technicians quickly ID problems

Facilitates forecasting: statistically significant data sets

¥== ***

 $|\mathcal{N}|$

Method consistent regardless of staff turnover

Morphology (biovolume) automatically measured

Import data to LIMS

HAB Monitoring Criteria- Regulations

No Federal Standard

- Most toxin based
- WHO 2003
 - Broad guidelines for total cyanobacteria (cells/mL)
- EPA 2015
 - Cylindrospermopsin 0.7 ug/L
 - Microcystin 0.3 ug/L
- State Specific Guidelines
 - OH: Microcystin action levels 0.3 ug/L for at risk individuals and 1.6 ug/L for all individuals. Increased monitoring required when detected followed by QPCR
- Utilities must develop their own plan

	Relative Probability of Acute Health Effects	Cyanobacteria (cells/mL)	Chlorophyll a (µg/L)	Estimated Microcystin Levels (μg/L)		
	Low	< 20,000	< 10	< 10		
	Moderate	20,000 - 100,000	10 – 50	10 – 20		
at	High	> 100,000 - 10,000,000	50 – 5,000	20 – 2,000		
	Very High	> 10,000,000	> 5,000	> 2,000		

BIS Regulations- IS 10500-2012

ANNEX C

(Clause 4.3.10)

ILLUSTRATIVE LIST OF MICROSCOPIC ORGANISMS PRESENT IN WATER

Sl No.	Classification of Microscopic Organism	Group and Name of the Organism	Habitat	Effect of the Organisms and Significance	
(1)	(2)	(3)	(4)	(5)	
i)	Algac	 a) Chlorophyceae: Species of Coelastrum, Gomphospherium, Micractinium, Mougeotia, Oocystis, Euastrum, Scenedesmus, Actinastrum, Gonium, Eudorina Pandorina, Pediastrum, Zygnema, Chlamydomonas, Careteria, Chlorella, Chroococcus, Spirogyra, Tetraedron, Chlorogonium, Stigeoclonium 	Polluted water, impounded sources	Impart colouration	
		 Species of Pandorina, Volvox, Gomphospherium, Staurastrum, Hydrodictyon, Nitella 	Polluted waters	Produce taste and odour	
		 Species of Rhizoclonium, Cladothrix, Ankistrodesmus, Ulothrix, Micrasterias, Chromulina 	Clean water	Indicate clean condition	
		 Species of Chlorella, Tribonema, Clostrium, Spirogyra, Palmella 	Polluted waters, impounded sources	Clog filters and create impounded difficulties	
		b) Cyanophyceae:			
		1) Species of Anacystis and Cylindrospermum	Polluted waters	Cause water bloom and impart colour	
		 Species of Anabena, Phormidium, Lyngbya, Arthrospira, Oscillatona 	Polluted waters	Impart colour	
		 Species of Anabena, Anacystis, Aphanizomenon 	Polluted waters, impounded	Produce taste and odour	
		 Species of Anacystis, Anabena, Coelospherium, Cleotrichina, Aphanizomenon 	Polluted waters	Toxin producing	
		 Species of Anacystis, Rivularia, Oscillatoria, Anabena 	Polluted waters	Clog filters	

		1 B		
п)	Zooplankton	 a) Protozoa: Amoeba, Giardia Lamblia Arcella Difflugia, Actinophrys Endamoeba, Histolytica 	 Polluted waters Sewage and activated sludge 	Pollution indicators Parasitic and pathogenic
		 b) Ciliates: Paramoecium, Vorticella, Carchesium Stentor, Colpidium, Coleps, Euplotes Colopoda, Bodo c) Crustacea: 	, Highly polluted , waters, sewage and activated sludge	Bacteria eaters
		 Bosmina, Daphnia Cyclops 	Stagnant pollu- ted waters Step wells in tropical climate	Indicators of pollution Carrier host of guinea worm
iii)	Rotifers	 a) Rotifers: Anurea, Rotaria, Philodina b) Elagellates: 	Polluted and Algae laden waters	Feed on algae
		 Pragenaus: Ceratium, Glenodinium, Peridiniur Dinobryon 	n Rocky strata, iron bearing and acidic waters	Impart colour and fishy taste
		Euglena, Phacus	Polluted waters	Impart colour

temperate waters

10

IS 10500 : 2012

Sl No.	Classification of Microscopic Organism	Group and Name of the Organism	Habitat	Effect of the Organisms and Significance
(1)	(2)	(3)	(4)	(5)
iv)	Miscellaneous Organisms	a) Sponges, Hydra	Fresh water	Clog filters and affect purification systems
	2	b) Tubifex, Eristalls, Chironomids	Highly polluted waters, sewage and activated sludge and bottom deposits	Clog filters and render water unaesthetic
		c) Plumatella	Polluted waters	Produces biological slimes and causes filter operational difficulties
		c) Dreissena, Asellus	Polluted waters	Harbour pathogenic organisms

South African National Standard (SANS) 241

Microcystin only needs to be measured where algal bloom (>20000 cyanobacteria cells per millilitre) is present in a raw water source. In the absence of algal monitoring, an algal bloom is deemed to occur where the surface water is visibly green in the vicinity of the abstraction, or samples taken have a strong musty odour.

- Microcystin producing organisms include but are not limited to:
 - Microcystis
 - Anabaenopsis
 - Aphanizomenon
 - Dolichospermum
 - Merismopedia
 - Nodularia
 - Nostoc
 - Oscillatoria
 - Planktothrix
 - Woronichinia
 - Gleotrachia

8

Outline

FlowCam Overview

Applications in Fresh water

Instrument Types

Example Data

FlowCam 8000 with marine dinoflagellates

Monitoring Programs

Why Monitor

What to Monitor

- Drinking Water Aesthetics (Taste and Odor)
- Public Health
- Bloom Mitigation Research

- Full community composition
- Cyanobacteria
- Taste and odor producers
- Filter cloggers
- Zooplankton
- Other particles

Baseline Levels

- Understand algal diversity and abundance
- Unique to each waterbody
- Challenging
 - Population changes over time
 - Seasonally
 - Diurnally
 - Lake stratification
 - Nutrient availability

Trigger Levels

- The point at which the concentration of one genus of phytoplankton reaches a number that prompts further sampling and/or treatment.
- Developed from Baseline levels
 - Use monitoring goals to determine organisms of interest

Genus	Trigger Count— organism/mL	Туре	Reason
Dolichospermum	100*	Cyanobacteria	T&O- and cyanotoxin-producer
Microcystis	150	Cyanobacteria	T&O- and cyanotoxin-producer
Aphanizomenon	150	Cyanobacteria	T&O- and cyanotoxin-producer
Peridinium	400	Dinoflagellate	T&O-producer
Melosira	200	Diatom	T&O-producer
Cyclotella	No limit	Diatom	Abundant but has not been shown to cause an issue in CEL's source water
Pediastrum	No limit	Green algae	Abundant but has not been shown to cause an issue in CEL's source water
*chains/mL	·		

The City of Wichita Falls Cypress Environmental Laboratory (CEL) set trigger levels low to minimize taste and odor (T&O) issues.

Massachusetts Water Resources Authority increases monitoring if early warning levels are exceeded for algal abundance.

Genus	Early Warning Trigger Count- ASU/mL	Treatment Con- sideration Trigger Count—ASU/mL	Туре	Reason				
Dolichospermum	>15	>25	Cyanobacteria	T&O- and cyanotoxin-producer				
Chrysosphaerella	>100	>500	Chrysophyte	T&O-producer				
Synura	>10	>12	Chrysophyte	T&O-producer				
Dinobryon	>200	>500	Chrysophyte	T&O-producer				
Uroglenopsis	>200	>750	Chrysophyte	T&O-producer				
ASU-areal standard unit, T&O-taste and odor								

Monitoring Criteria Plan

ROUTINE MONITORING										
Sampling Freque	ncy		Alternate plants weekly							
Sampling Locati	ion		R	aw Pl	ant Influent		Finished			
			Cells/mL				$\mu m^3/mL$			
Cyanobacteria Co	unts		MIN		MAX		MIN		MAX .	
			0		20,000		0	8,0	00,000	
Monitor for changes in dissolve	Monitor for changes in dissolved oxygen levels, t			hyll-z	a, total phospho	rous, su	rface scums or blo	ooms.		
			AL	ER	F LEVEL I					
Sampling Frequency		Week	dy for elevated	sourc	ce					
			Cel	ls/mI				µm ³ /mL		
Cyanobacteria Count	5		MIN		MAX		MIN		MAX	
			20,001		50,000		8,000,001	2	0,000,000	
Monitor for elevated nutrients, j	pigment, or a	any oth	er visual observ	ration	15.					
			AL	ERT	LEVEL II					
Sampling Frequency	Week	ly for e	elevated source							
			Cells/mI					$\mu m^3/mL$		
Cyanobacteria Counts		M	IIN		MAX		MIN		MAX	
		50,	,001		100,000		20,000,00)1	40,000,000	
Toxin Screening		Microcystine			Saxitoxin		Cylindrospermopsin Anatoxin			
		Yes						No		
	All po a con	All positive toxin results must be confirmed by a contract lab.					uest genetic testing from a contract lab to determine if cyanobacteria have toxin producing genes.			
Toxins Present?	Imple Plan	Implement Cyanotoxin Treatment Response Rec Plan Rec				Requ the cy				
	Conti Influe	Continue weekly toxin screening at Raw Plant Influent and Finished Water sample sites.								
			ALI	ERT	LEVEL III					
Sampling Frequency	Weekly for	elevate	d source							
Semping Liegueney			Cells/ml	L				$\mu m^3/mL$		
Cvanobacteria Counts		М	N	_	MAX		MIN		MAX	
-; F		100.	001		undefine	d	40 000 001		undefined	
Toxin Screening		Micros	ystina,		Saxitoxi	1	Cylindros	permonsin	Anatoxin-a	
			Yes					No		
	All positive	toxin r	esults must be	confir	med by a contra	act				
F	Implement (Cvanot	oxin Treatment	Resp	onse Plan		1			
F	Enumerate t	oxin-sr	pecific cyanoba	cteria	1		1			
Toxins Present?	Determine i	ntracell	lular/extracellu	lar rat	tios		Request genetic	testing from a c	ontract lab to	
	Continue da	ily toxi	in screening				aetermine if the	e cyanobacteria h °	ave toxin	
	Continue daily toxin screening Notify Oklahoma Tourism and Recreation Department if toxins exceed threshold limit in Lake Eucha or Lake Spavinaw				producing gene	-				

 Table 1. Current alert levels and subsequent actions included in the City of Tulsa's Cyanobacteria Early Warning Plan.

Develop Trends

Dolichospermum

- Spike in organisms in June
- o MIB/Geosmin levels also spike
- CUSO applied in response
- Levels of cyanobacteria drop back to normal

Phytoplankton Monitoring Goals

Common Taste & Odor Algae

		Sampling Site										
Taste & Odor Algae	1	2	3									
Species	Count per mL	Count per mL	Count per mL									
Anabaena												
Aphanizomenon												
Ceratium												
Cylindrospermopsis												
Mallomonas												
Melosira												
Microcystis												
Oscillatoria												
Pandorina												
Peridinium												
Total												

Common Filter Clogging Algae

Filter Clogging Algae			
Species	Count per mL	Count per mL	Count per mL
Closterium			
Cyclotella			
Diatoma			
Fragillaria			
Navicula			
Synedra			
Total			

Common Toxin producing Algae

Toxin producing algae

Species	Count per mL	Count per mL	Count per mL
Microcystis			
Dolichospermum			
Planktothrix			
Lyngbya			
Phormidium			
Aphanizomenon			
Total			

General FlowCam Use Cases

- Concentration (particles/mL)
- Size distribution
- Morphology
- Classification
- Biovolume

Plankton assemblage from the Gulf of Maine imaged with FlowCam at 10X in Autoimage Mode.

Autoimage Mode

Trigger Mode

© Yokogawa Fluid Imaging Technologies – All Rights Reserved

Cyanobacteria

Diatoms & Other Algae

Detritus & Decomposing Algae

Outline

FlowCam Overview Applications in Marine Science Instrument Types Example Data

FlowCam 8000 with marine dinoflagellates

FlowCam Through the Years

1999

2006 to 2010

2010 to 2016

2016 to 2024

Trigger Mode- FlowCam

- Instead of the LED light flashing at a pre-defined rate, a laser triggers the camera to take a picture.
- When a particle gets excited, it emits light at a higher wavelength.
- 2 channels of detection.
 - Channel 1 is always for chlorophyll
- Best for turbid environments.

	Laser Detector Bands (Photomultiplier Tube Filters, PMTs)				
Laser	CH1	CH2			
Excitation Wavelength	Emission Wavelength	Emission Wavelength			
488 nm (Blue)	650 LP (Chlorophyll)	525±30 (Green, FITC)			
532 nm (Green)	650 LP (Chlorophyll)	575±30 (Orange, Phycoerythrin)			
633 nm (Red)	700±10 (Chlorophyll)	650±10 (Red, Phycocyanin)			

FlowCam[®] Product Portfolio for Aquatic Applications

Subvisible Imaging Particle Analysis

FlowCam 8100

Size, concentration, and morphology from 2 µm - 1 mm

FlowCam Cyano

For quick cyanobacteria detection and enumeration using pigment fluorescence. Particle size range: 2 µm - 1 mm

FlowCam 8400

Isolate phytoplankton images from other particles using fluorescence Particle size range: 2 µm - 1 mm

FlowCam Macro

Analysis of large particles and zooplankton from 300 µm - 5 mm

FlowCam 5000

Optimized for your application; our most affordable instrument. Particle size range: 2 µm - 300 µm

VisualSpreadsheet®

Powerful software to analyze images and visualize your results

| Yokogawa Fluid Imaging Technologies | www.flowcam.com | info@fluidimaging.com

Flow Imaging Microscopy from 300 nm to 5 mm

Outline

FlowCam Overview Applications in Marine Science Instrument Types Example Data

FlowCam 8000 with marine dinoflagellates

FlowCam 8000

$2\,\mu m$ to $1\,mm$

© Yokogawa Fluid Imaging Technologies – All Rights Reserved

10X, FOV100

Casco Bay (Maine USA), Live sample imaged with FlowCam 8100 (Autoimage Mode)

© Yokogawa Fluid Imaging Technologies – All Rights Reserved

20X, FOV50

Casco Bay (Maine USA), Live sample imaged with FlowCam 8100 (Autoimage Mode)

Trigger Mode: FlowCam Cyano

Primarily Cyanobacteria

Example Classification Workflow

Dolichospermum (coiled)

Dolichospermum (straight)

31

Microcystis (single)

Microcystis (colonial)

VisualSpreadsheet

© Yokogawa Fluid Imaging Technologies – All Rights Reserved

Acquire Images

35

Manual Classification

Build Libraries & Filters

Autoclassification

Review Results

© Yokogawa Fluid Imaging Technologies – All Rights Reserved

Export Summary Report

A	В	С	D	E	F	G	Н	L. L.	J	
1 ====== Metadata Statistics =======										
2										
3 Name	Count	Particles / mL								
4 Nauplius	7	35.1841								
5 Cylindrotheca	0	0								
6 Tripos lineatus	13	65.3419	0		.• /	. •	1	1 \		
7 Unidentified	35	175.9204	• (on	centr	ation (nartic	les ner r	n(1)		
8 Prorocentrum micans	2	10.0526	COI			puitic	ics per i	· · L /		
9 Tripos furca	1	5.0263								
10 Protoperidinium	2	10.0526								
11 Bivalve veliger	5	25.1315	Dart	-iclo D	ronart	idc				
12 Ditylum	3	15.0789	- I al l							
13 Chaetoceros	30	150.7889		·						
14 Pleurosigma	10	50.263								
15 Coscinodiscus	5	25.1315		aulati.	(a) C + a +	ictics				
16 Skeletonema	71	356.8671		iuidui	ve slal	ISLICS				
17 Navicula	0	0								
18 Dinophysis	0	0								
19 Thalassiosira	4	20.1052								
20 Thalassiosira	2	10.0526								
21 Pseudonitzschia	2	10.0526								
22 ====== End Metadata Statistics =======										
23										
24 ====== Particle Property Statistics =======										
25										
26 Name	Area (ABD) Mean	Aspect Ratio Mean	Biovolume (P. Spheroid) Mean	Ch2/Ch1 Ratio Mean	Diameter (ABD) Mean	Edge Gradient Mean	Geodesic Aspect Ratio Mean	Length Mean	Width Mean	
27 Nauplius	9885.3118	0.6436	1423726.034	0	110.3474	60.2737	0.02	228.8713	144.1884	
28 Cylindrotheca	0	0	0	0	0	0	0	0	0	
29 Tripos lineatus	936.4887	0.3527	20592.9812	0	34.1273	86.9849	0.1045	86.4826	27.0874	
30 Unidentified	2260.5758	0.3932	157954.5963	0	39.3559	66.3953	0.2849	108.5939	28.6398	
31 Prorocentrum micans	582.7098	0.4777	7001.8964	0	27.1367	103.385	0.4092	43.2813	18.6975	
32 Tripos furca	6410.2004	0.1392	181306.2907	0	90.3422	71.8224	0.0369	282.8863	49.5138	
33 Protoperidinium	1375.1412	0.8026	47788.0997	0	41.6433	87.1947	0.3309	60.94	41.55	
34 Bivalve veliger	6451.5999	0.8681	384911.8677	0	89.9378	152.7038	0.6832	101.8667	85.3853	
35 Ditylum	1467.0366	0.1948	41062.6018	0	39.443	65.444	0.0297	186.1671	23.8912	
36 Chaetoceros	617.7108	0.2887	31036.586	0	26.1976	56.6074	0.0322	83.4924	24.653	
37 Pleurosigma	2630.1559	0.2303	99090.2202	0	56.8839	97.4703	0.1103	156.9898	33.6555	
38 Coscinodiscus	1694.3512	0.8154	48440.4771	0	46.2932	111.5285	0.8898	53.8072	41.4808	
export classification summary	(+)				1			i	1	

Treatment measures and efforts-Costs

Characterizing and Mitigating Cyanobacterial Blooms in Drinking Water Reservoirs

Hunter Adams, Stephanie A. Smith, Sam Reeder, Emily Appleton, Butch Leinweber, Steve Forbes, Polly Barrowman, Greg Ford, Keisuke Ikehata, and Mark Southard

Key Takeaways

Successful detection and treatment of cyanobacterial blooms benefit from a thorough understanding of them.

The sooner a harmful algal bloom is detected and identified, the easier and less expensive it will be to eliminate it.

Many tools are available to refine monitoring and mitigation methods; research and technological advances continue to help support water utilities' efforts.

A laboratory in Wichita Falls, Texas, has developed a proactive, multifaceted approach to address the complexities of monitoring and mitigating blooms.

Layout imagery by mivod/Shutterstock.com

JOURNAL AWWA + MAY 2022 27

Lake Arrowhead Bloom Treated With Copper Sulfate and Citric Acid, June 2021

"Plastic Glitter-Microplastics"

Some of the installations across India and Globe

Annamalai University	Aquatic	India
APL Research Center-2 (A Division of Aurobindo		
Pharma Ltd)	Industrial	India
Syngene Ltd	Industrial	India
Centre for Marine Living Resources & Ecology (CMLRE)	Aquatic	India
CSIR Central Salt & Marine Chemicals Research		
Institute (CSMCRI)	Aquatic	India
CSIR National Institute of Oceanography (NIO) - India		
(Goa)	Aquatic	India
Indira Gandhi Center for Atomic Research (IGCAR)	Aquatic	India
National Centre for Antarctic & Ocean Research		
(NCAOR)	Aquatic	India
National Centre for Sustainable Coastal Management		
(NCSCM)	Aquatic	India
Reliance Industries, LTD.	Aquatic	India
National institute of oceanography (Goa)	Aquatic	India
National institute of oceanography (Goa)	Aquatic	India
National institute of oceanography (Kochi)	Aquatic	India
National institute of oceanography (Vizag)	Aquatic	India
National institute of oceanography (Goa)	Aquatic	India
National institute of oceanography (Goa)	Aquatic	India

Summary

- Proactive monitoring means that programs are put in place before a lake experiences a problem.
- FIM is a powerful tool for HAB monitoring programs
 - Taste and Odor
 - Filter Cloggers
 - Toxin Producers
- FIM can reduce TAT from sample to results, meaning faster response time and reduced treatment cost.
- Standardization of FIM methodology
 - JTG has been formed
 - Inclusion in Standard Methods (AWWA) within 1-2 years

Thank you!

Mr.Bhushan Pandit

Email: Bhushan.pandit@yokogawa.com

46