PROFORMA FOR ADOPTION OF DRAFT INDIAN STANDARD

BUREAU OF INDIAN STANDARDS

Subject: Approval of Draft Indian Standard

SI. No.	Doc. No.	IS No.	TITLE				
1	WRD/01/19429	IS 9119	Method of Flow Estimation by Characteristics (Approximate Methods) (<i>First Revision</i>)				Jet

In accordance with Part II, sub-rule (2) of rule 22 of BIS Rules 2018, I enclose a copy of the draft Indian Standard mentioned above finalized by the Sectional Committee WRD 01 and its Chairperson, in the light of comments received from important stake holders.

It is requested that this note and its enclosures may be returned to this office as early as possible recording your approval of the above draft Indian Standard.

Encl.: As above.

4

Dushyant Brajapati

Scientist E/ Director and Head (Water Resources Department)

दुष्यन्त प्रजापति/DUSHYANT PRAJAPATI वैज्ञानिक 'ई'/निदेशक एवं अमुख (जल संसाधन दिभाग) Sc. 'E'/Lirector & Head (Water Resources Depit.) भार रही ने मान का स्वार्थ के प्रजानिक वितरण मंत्रालय Ministry of Consumer Attairs, Food & Public Distribution भारत सरस्तार/Government of India 9. बहादुरशाह ज़फर मार्ग, नई दिल्ली-110002 9. Bahadur Shah Zafar Marg, Now Delhi-110002

<u>Chairperson, Water Resources Division Council</u> BIS U.O. No. WRD 01/T-26 Dated:

APPROVED

(Chairperson) Water Resources Division Council राकेश कुमार वर्मा/Rakesh Kumar Vorma राकेश कुमार वमा/Rakesn Kunar Verma अध्यक्ष/Chairman केन्द्रीय जल आयौग/Central Water Commission जल सीसायन, नदी विकास और गंगा सरस्रन यिमान Deptt. of Water Resources, RD & GR भारत सरकार/Govt. of India नई विल्ली/New Delhi

भारतीय मानक Indian Standard

IS 9119 : 2024

जेट विशेषताओं द्वारा प्रवाह अनुमान की पद्धति (अनुमानित पद्धतियाँ)

(पहला पुनरीक्षण)

Method of Flow Estimation by Jet Characteristics (Approximate Methods)

(First Revision)

ICS 93.025

© BIS 2024

भारतीय मानक ब्यूरो BUREAU OF INDIAN STANDARDS मानक भवन, 9 बहादुर शाह ज़फर मार्ग, नई दिल्ली - 110002 MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG NEW DELHI - 110002 www.bis.gov.in www.standardsbis.in

October 2024

Price Group 5

Hydrometry Sectional Committee, WRD 01

FOREWORD

The Indian Standard (First Revision) was adopted by the Bureau of Indian Standards after the draft was finalized by the Hydrometry Sectional Committee and had been approved by the Water Resources Division Council.

This method may be applied for approximately estimating the rate of flow through a horizontal pipe discharging freely into the atmosphere, such as discharge from a pump installed at a tube-well or any other lift pumps.

This standard was first published in 1979. This revision has been brought out to bring the standard in latest style and update with respect to the latest field practices. In revision of this standard, the following changes have been incorporated:

- a) The formula for computation of error in discharge has been added in 4.2.1; and
- b) List of standards related to fluid flow measurement given in Annex B for information has been updated.

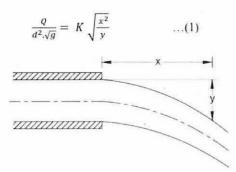
The composition of the Committee responsible for formulation of this standard is given in Annex C.

For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test, shall be rounded off in accordance with IS 2 : 2022 'Rounding off numerical values (*second revision*)'. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.

Indian Standard

METHOD OF FLOW ESTIMATION BY JET CHARACTERISTICS (APPROXIMATE METHODS)

(First Revision)


1 SCOPE

1.1 This standard lays down the procedures for estimation of flow in closed circular horizontal conduits flowing full and freely discharging into atmosphere as a free jet. The characteristics of this free jet are expressed in terms of the vertical drop of the jet over a certain horizontal distance from the free end of the pipe.

1.2 This method should not be used where there is a heavy tendency of jet to disintegrate and when the jet fluctuates violently.

2 PRINCIPLE OF METHOD

2.1 Neglecting the friction due to air, the jet issuing from the pipe takes a parabolic trajectory under the influence of the constant forward momentum flux and the gravitational field. Under these conditions (see Fig. 1 the discharge, Q in litre/min bears the following relationship with the diameter of the pipe d, horizontal distance from the exit end of the pipe x, and the drop of the jet, y (all dimensions in millimeters):

NOTE — It is preferable to avoid any fitting (like flange, coupling) near the end of the pipe, otherwise due correction should be made.

FIG. 1 DEFINITION SKETCH

3 GENERAL REQUIREMENTS FOR MEASUREMENTS

3.1 The pipe shall be flowing full at all times during the measurement and shall discharge freely and steadily into atmosphere.

3.2 The discharge pipe shall be level and shall consist of preferably a straight length of 40 d, subject to a minimum of 10 d, upstream of the exit end.

3.3 The internal surface of the pipe shall be clean, free from pitting and deposits and not encrusted.

3.4 The exit end of the pipe shall be in flush with the inner surface of the pipe and its plane parallel to a normal cross-section of the free jet.

3.5 The co-ordinates x and y shall be measured upstream of the disintegrating region of the jet. Keeping the horizontal distance x constant, at least six readings of y should be taken at the crest of the jet and the average value should be used to ensure that the deviation in the measurement of discharge to be within ± 3 percent.

4 COMPUTATION — QUANTITIES TO BE MEASURED

4.1 Equation

Equation of the type given in 2.1 is considered for finding the volume rate of flow. The constant K in equation (1) has been experimentally observed to be 0.573 as against a theoretical value of 0.555 and the equation shall read as:

$$\frac{Q}{d^2 \cdot \sqrt{g}} = 0.573 \sqrt{\frac{x^2}{y}}$$

4.2 Example for the calculation of rate of flow.

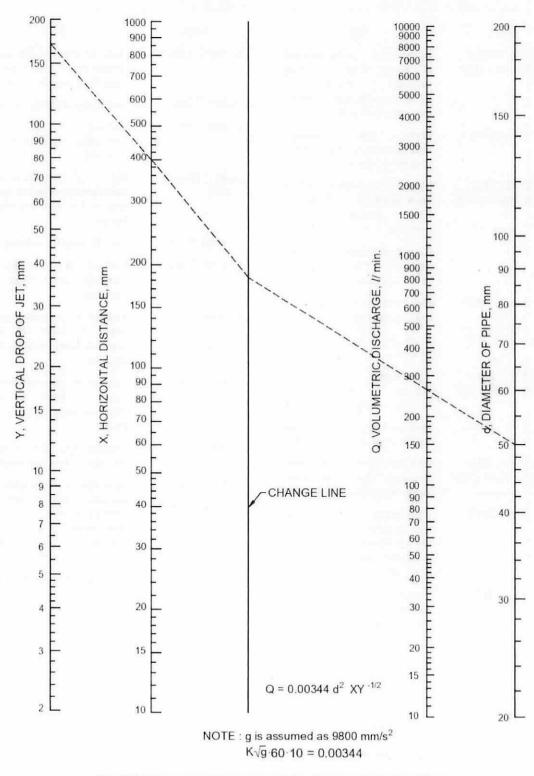
4.2.1 Method of application of the equation in $\underline{4.1}$ will be as follows:

- d, Diameter of the pipe = 50 mm
- x, Horizontal distance = 400 mm
- y, Vertical drop of jet = 170 mm
- g, Gravitational constant = $9\,800 \text{ mm/s}^2$
 - Therefore, volumetric discharge = 0.573 $d^2 \cdot \sqrt{g} \cdot \sqrt{\frac{x^2}{y}} \times 60 \times 10^{-6}$ litres/min = 264 litres/min

IS 9119 : 2024

The error in computation of discharges Q arising out of error in measurement of x and y can be calculated using the following formula.

$$\frac{\Delta Q}{Q} = \sqrt{\left(\frac{\Delta x}{x}\right)^2 + \left(\frac{\Delta y}{2y}\right)^2}$$


Where, Δx and Δy are the measurement errors in x and y respectively while ΔQ is the computed error in discharge Q.

An error of 5 mm in the measurement of y yields an error of 1.5 percent in the discharge for the specified diameter from 25 mm to 200 mm and discharges specified from 75 litres/min to 10 000 litres/min. For other values larger errors will be involved.

4.3 Alternately, the nomograph given in <u>Annex A</u> may be used for y from 2 mm to 200 mm and x from 10 mm to 1 000 mm with pipe diameter from 20 mm to 200 mm.

ANNEX A

(Clause 4.3)

NOMOGRAPH FOR SOLUTION ON JET CHARACTERISTICS OF FLOW

FIG. 2 NOMOGRAPH FOR SOLUTION ON JET CHARACTERISTICS OF FLOW

ANNEX B

(Foreword)

LIST OF REFERRED STANDARDS

IS No.	Title	IS No.	Title	
IS 1192 : 2024/ ISO 748 : 2021	Hydrometry — measurement of liquid flow in open channels — velocity area	IS 3918 : 1966	Code of practice for use of current meter (cup type) for water flow measurement	
	methods using point velocity measurements (<i>third revision</i>)	IS 4073 : 1967	Specification for fish weights	
IS 1194 : 1960	Forms for recording measurement of flow of water in open channels	IS 4080 : 1994	Vertical staff gauges — Functional requirements (<i>first</i> <i>revision</i>)	
IS 2912 : 2022 ISO 1070 : 2018	Liquid flow measurement in open channels — Slope — Area method (<i>second</i> <i>revision</i>)	IS 4477 (Part 2) : 1975	Method of measurement of fluid flow by means of venturi meters: Part II Compressible fluids	
IS 2951	Recommendation for	IS 4858 : 1968	Specification for velocity rods	
	estimation of flow of liquids in closed conduits:	IS 4890 : 1968	Methods for measurement of suspended sediment in open channels	
(Part 1) : 1965	Head loss in straight pipes due to frictional resistance	IS 6062 : 1971	Method of measurement of flow of water in open	
(Part 2) : 1965	Head loss in valves and fittings		channels using standing wave flume-fall	
IS 3910 : 2013/ ISO 2537 : 2007	Hydrometry — Rotating- element current-meters (second revision)	IS 6063 : 1971	Method of measurement of flow of water in open channels using standing wave	
IS 3911 : 1994	Surface floats — Functional requirements (<i>first revision</i>)		flume	
IS 3912 : 2013/	Hydrometry — Direct depth	IS 6064 : 1971	Specification for sounding and suspension equipment	
ISO 3454 : 2008	sounding and suspension equipment (second revision)	IS 6339 : 2013	Hydrometry — Sediment in streams and canals —	
IS 3913 : 2014	Hydrometry — Functional requirements and characteristics of suspended- sediment samplers (<i>second</i>		Determination of concentration, particle size distribution and relative density (<i>first revision</i>)	
IS 3917 : 2003	revision) Scoop type bed material samplers — Specification (first revision)	IS 9119 : 2024	Method of flow estimation by jet characteristics (approximate method)	

To access Indian Standards click on the link below:

https://www.services.bis.gov.in/php/BIS_2.0/bisconnect/knowyourstandards/Indian_standards/isdetails/

ANNEX C

(Foreword)

COMMITTEE COMPOSITION

Hydrometry Sectional Committee, WRD 01

Organization

Central Water & Power Research Station, Pune

Aimil Ltd, New Delhi

Bhabha Atomic Research Centre, Radiochemistry and Isotope Group, Mumbai

Bhakra Beas Management Board, Chandigarh

Brahmaputra Board, Govt of India, Guwahati

Center for Water Resources Development and Management, Kozikode

Central Water & Power Research Station, Pune

Central Water Commission, New Delhi

Fluid Control Research Institute, Palakkad

Gujarat Engineering Research Institute, Vadodara

India Meteorological Department, New Delhi

Indian Institute of Science, Bengaluru

Indian Institute of Technology, Madras

Indian Institute of Technology Roorkee, Roorkee

Indian Institute of Technology, New Delhi

L &T - Sargent & Lundy Limited, Vadodara

National Hydroelectric Power Corporation Limited, Faridabad

Representative(s)

SHRI R. S. KANKARA (Chairperson)

SHRI ANURAG GUPTA SHRI KULDEEP SHARMA(Alternate)

SHRI H. J. PANT SHRI V. K. SHARMA (*Alternate*)

DIRECTOR (WR) SENIOR DESIGN ENGINEER (WR) (Alternate)

SHRI SHER SINGH SHRI SHYAMAL KUMAR DEKA (Alternate)

DR MANOJ P. SAMUEL DR CELINE GEORGE (Alternate I) DR DRISSIA T. K. (Alternate II)

DR R. G. PATIL SHRI B. SURESH KUMAR (Alternate)

SHRI G. K. AGARWAL SHRI PANKAJ KUMAR SHARMA (Alternate I) SHRI N. N. RAI (Alternate II)

SHRI J. P. K. SURESH SHRI GOPAN C. K. (Alternate)

SHRI N. R. MAKWANA SHRI V. R. RATHWA (*Alternate*)

SHRI B. P. YADAV

PROF D. NAGESH KUMAR

DR BALAJI NARASIMHAN DR SOUMENDRA NATH KUIRY (Alternate)

PROF ASHISH PANDEY PROF SUMIT SEN (Alternate)

DR D. R. KAUSHAL PROF S. CHAKMA (Alternate)

SHRI YOGENDRA D. MISHRA SHRI KARTHIK T. (Alternate)

SHRIMATI MANJUSHA MISHRA SHRI SHYAN DHAR SHUKLA (*Alternate* I) SHRI SAMEER SHRIVASTAV (*Alternate* II)

Organization

National Institute of Hydrology, Roorkee

National Physical Laboratory, New Delhi

National Remote Sensing Center, Hyderabad

National Water Development Agency, New Delhi

Research Design and Standards Organization, Lucknow

Sutron Hydromet Systems Pvt Ltd, New Delhi

Water Resources Department, Govt of Punjab, Chandigarh

- Water Resources Departm Govt of Andhra Pradesh, Vijayawada Vi2ja hagaram
- Water Resources Organization, Public Works Department, Govt of Tamil Nadu, Chennai

In Personal Capacity (G-601, Prateek Stylome, Sector 45, Noida - 201301)

BIS Directorate General

Representative(s)

DR SANJAY KUMAR SHRI J. P. PATRA (*Alternate*)

DR A. K. BANDYOPADHYAY SHRI SHIV KUMAR JAISWAL (*Alternate*)

DR V. VENKATESHWAR RAO SHRI K. H. V. DURGA RAO (*Alternate*)

SHRI K. P. GUPTA SHRI AFROZ ALAM (*Alternate*)

SHRI PRADIP KUMAR SHRI U. V. SINGH (*Alternate*)

SHRI DEEPAK GUPTA SHRI SOMESH KUMAR (*Alternate*)

SHRI H. S. MINHAS SHRI VIJAY KUMAR (*Alternate*)

SHRI P. JOHN VICTOR SHRI A. G. MANOJ KUMAR (*Alternate*)

ER S. SRIDHARAN SUPTED ENGINEER DESIGN WRO (*Alternate*)

DR NAYAN SHARMA

SHRI DUSHYANT PRAJAPATI, SCIENTIST 'E'/ DIRECTOR AND HEAD (WATER RESOURCES) [REPRESENTING DIRECTOR GENERAL(*Ex-officio*)]

Member Secretary Shri Ajay Meena Scientist 'B'/Assistant Director (Water Resources), BIS

Bureau of Indian Standards

BIS is a statutory institution established under the *Bureau of Indian Standards Act*, 2016 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Head (Publication & Sales), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the website-www.bis.gov.in or www.standardsbis.in.

This Indian Standard has been developed from Doc No.: WRD 01 (19429).

Amendments Issued Since Publication

Amend No.	Date of Issue	Text Affected	

BUREAU OF INDIAN STANDARDS

Headqua	rters:		
	havan, 9 Bahadur Shah Zafar Marg, New Delhi 110002 es: 2323 0131, 2323 3375, 2323 9402	Website: www.bis.gov.in	
Regional	Offices:		Telephones
Central	: 601/A, Konnectus Tower -1, 6 th Floor, DMRC Building, Bhavbhuti Marg, New Delhi 110002		2323 7617
Eastern	: 8 th Floor, Plot No 7/7 & 7/8, CP Block, Sector V, Salt Lake, Kolkata, West Bengal 700091		2367 0012 2320 9474
Northern	: Plot No. 4-A, Sector 27-B, Madhya Marg, Chandigarh 160019		265 9930
Southern	: C.I.T. Campus, IV Cross Road, Taramani, Chennai 60011	3	2254 1442 2254 1216
Western	5 th Floor/MTNL CETTM, Technology Street, Hiranandani Powai, Mumbai 400076	Gardens,	{ 2570 0030 2570 2715

Branches : AHMEDABAD, BENGALURU, BHOPAL, BHUBANESHWAR, CHANDIGARH, CHENNAI, COIMBATORE, DEHRADUN, DELHI, FARIDABAD, GHAZIABAD, GUWAHATI, HARYANA (CHANDIGARH), HUBLI, HYDERABAD, JAIPUR, JAMMU, JAMSHEDPUR, KOCHI, KOLKATA, LUCKNOW, MADURAI, MUMBAI, NAGPUR, NOIDA, PARWANOO, PATNA, PUNE, RAIPUR, RAJKOT, SURAT, VIJAYAWADA.