# भारतीय मानक ब्यूरो BUREAU OF INDIAN STANDRADS

Draft for comments only

Doc. No: TXD 14 (24788) July 2024

(Not to be reproduced without permission of BIS or used as Standard)

भारतीय मानक मसौदा

# वस्तादि — धातुशील कार्ड क्लोथिंग — विशिष्टि भाग 1 शब्दावली

[ आई एस 9568 (भाग 1) पहला पुनरीक्षण ]

Draft Indian Standard

# **TEXTILES — METALLIC CARD CLOTHING — SPECIFICATION** PART 1 TERMINOLOGY

[First Revision of IS 9568 (Part 1)]

#### ICS 59.120.10

| Textile Machinery and Accessories | Last date for receipt of comment is |
|-----------------------------------|-------------------------------------|
| Sectional Committee, TXD 14       | 24 September 2024                   |

#### FOREWORD

(Formal clauses will be added later)

This standard has been prepared with the intention of eliminating ambiguity and confusion arising from local interpretations of terms and expressions used in relation to saw-tooth wire for metallic card clothing.

This standard originally published in 1980. This standard is based on ISO 5234 'Textile machinery and accessories — Metallic card clothing — Definitions of dimensions, types and mounting', issued by the International Organization for Standardization (ISO). The present revision has been made to include the definition of Serrations with saw tooth roller.

For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test or analysis, shall be rounded off in accordance with IS 2 : 2022 'Rules for rounding off numerical values (*second revision*)'. The number of significant places retained in the rounded off value should be the same as that of the specified valued in this standard.

# **1 SCOPE**

This standard (Part 1) covers the definitions of terms relating to saw-tooth wire of various cross sections and tooth forms for metallic card clothing.

# **2 DEFINITIONS**

#### 2.1 Cross Section of Metallic Saw-Tooth Wire

**2.1.1** The definitions of terms relating to section of wire, as shown in Fig. 1, for mounting in a grooved roller or on the surface of an ungrooved roller are given in Table 1.



FIG. 1 WIRE WITH NORMAL RIB

**2.1.2** The definitions of terms relating to different sections of wire, as shown in Fig. 2 and Fig. 3, for mounting on an ungrooved roller are given in Table 1.

#### 2.2 Serrations with saw tooth roller

Serrations are a series of sharp, tooth-like projections along the edge of a roller used in carding machines. These saw tooth rollers are designed to grip, separate, align, and clean fibers during the carding process, ensuring efficient fiber processing and preparation for subsequent textile manufacturing stages.







FIG. 3 WIRE WITH INTERCHANGING (V-TYPE INTERLOCKING) RIB

| Table 1 Definitions of Terms | <b>Relating to</b> | Different Se | ctions of <b>\</b> | Wire |
|------------------------------|--------------------|--------------|--------------------|------|
| (Clause                      | es 2.1.1 and 2     | 2.1.2)       |                    |      |

| Sl No. | Symbol                | Term                 | Definition                                      |
|--------|-----------------------|----------------------|-------------------------------------------------|
| (1)    | (2)                   | (3)                  | (4)                                             |
| i)     | $h_1$                 | Total height of wire | Height of wire from base to top of wire         |
| ii)    | $h_2$                 | Rib height           | Height of rib from base of wire                 |
| iii)   | h <sub>3</sub>        | Height of undercut   | Height of undercut, measured from base of the   |
|        |                       |                      | wire                                            |
| iv)    | $h_4$                 | Height of tenon      | Height of tenon, measured from base of the wire |
| v)     | h5                    | Rib datum line       | Measured from base of the wire point of V       |
| vi)    | $b_1$                 | Rib width            | Width of wire from back to front at the base    |
| vii)   | $b_2$                 | Blade root width     | Blade width measured at blade root              |
| viii)  | <b>b</b> <sub>3</sub> | Blade tip width      | Blade width measured at the blade tip           |
| ix)    | $b_4$                 | Width of tenon       | Width of tenon from rib body                    |
| x)     | b5                    | Width of undercut    | Width of undercut from back of wire to rib body |
| xi)    | $b_6$                 | Pitch width of rib   | Width from back of wire to tenon                |
| xii)   | k                     | Included angle of V- |                                                 |
|        |                       | rib                  |                                                 |

## **2.3 Tooth Forms**

The terms relating to tooth forms are defined in **2.3.1** to **2.3.3**; wire forms have been shown facing the rib.



#### 2.3.1 Hand of Teeth

Wires with left-hand and right-hand points are shown in Fig. 4 and Fig. 5.



FIG. 4 WIRE WITH LEFT-HAND POINTS



FIG. 5 WIRE WITH RIGHT-HAND POINTS

## 2.3.2 Angles of Wire

Definitions of angles of wire are given in Table 2.

## 2.3.3 Types of Wire

Definitions of terms relating to types of wire are given in Table 3 read with Fig. 6 to Fig.12.

## 2.4 Method of Mounting the Foregoing Wire Sections

**2.4.1** Mounting of wire sections on the surface of an ungrooved roller is shown in Fig. 13 and Fig. 14.

**2.4.2** Mounting of wire section in a grooved roller is shown in Fig. 15.



# Table 2 Definitions of Angles of Wire(Clause 2.3.2)

| Sl No. | Symbol   | Term           | Definition                                          |
|--------|----------|----------------|-----------------------------------------------------|
| (1)    | (2)      | (3)            | (4)                                                 |
| i)     | α        | Front angle    | Angle between front of tooth and a perpendicular to |
|        |          | (Rake angle)   | the base                                            |
| ii)    | β        | Wedge angle    | Angle between front angle and back angle of tooth   |
| iii)   | γ        | Back angle     | Angle between back of tooth and base of wire        |
| iv)    | δ (90-α) | Front angle    | Angle between front of tooth and base of wire       |
| v)     | 3        | Included angle | Angle between front and back of two adjacent teeth  |
|        |          |                | $(\varepsilon = \beta)$                             |
| vi)    | η        | Back point     | Angle between flat on top of tooth and base of wire |
|        |          | angle          |                                                     |



FIG. 6 POINTED WIRE



FIG. 7 DIAMOND POINT WIRE



FIG. 9 MOREL WIRE



FIG. 8 EXTENDED PITCH WIRE



FIG. 10 FLAT TOP WIRE



Fig. 11 Pointed Curved Back Wire  $h_6$   $p \rightarrow 1$   $r_4$  $r_7$   $r_7$ 

FIG. 12 CURVED BACK WITH FLAT TOP WIRE

Table 3 Definitions of Terms Relating to Types of Wires(Clause 2.3.3)

| Sl No. | Symbol | Term        | Definition                                              |
|--------|--------|-------------|---------------------------------------------------------|
| (1)    | (2)    | (3)         | (4)                                                     |
| i)     | $h_6$  | Tooth depth | Depth of tooth cut out measured from tip of tooth       |
| ii)    | р      | Tooth pitch | The distance from tip to tip of the wire point parallel |
|        |        |             | to the base of wire                                     |
| iii)   | 1      | Land        | Length of flat on top of the tooth                      |

| iv)   | S                     | Slot width  | Width of punch blade                |
|-------|-----------------------|-------------|-------------------------------------|
| v)    | $\mathbf{r}_1$        | Back radius | —                                   |
| vi)   | $\mathbf{r}_2$        | Tooth root  | Radius at the root of the tooth     |
|       |                       | radius      |                                     |
| vii)  | <b>r</b> <sub>3</sub> | Back root   | Radius blending into back of tooth  |
|       |                       | radius      |                                     |
| viii) | $r_4$                 | Front root  | Radius blending into front of tooth |
|       |                       | radius      |                                     |

**2.5** Definitions of terms relating to mounting of metallic card wire are given in Table 4 read with Fig. 15.

2.5.1 Single wire winding and multiple wire winding are shown in Fig. 16 and Fig. 17 respectively.





FIG. 13 MOUNTING OF WIRE WITH NORMAL RIB ON AN UNGROOVED ROLL (*see* FIG. 1)

FIG. 14 MOUNTING OF WIRE with Interlocking Rib on an Ungrooved Roller (*see* Fig. 2)



FIG. 15 MOUNTING OF WIRE WITH NORMAL RIB IN A GROOVED ROLLER (see Fig. 1)

# Table 4 Definition of Terms Relating to Wire Mounting<br/>(Clause 2.5)

| System                | Formula                           | Term               | Definition                                                                         |
|-----------------------|-----------------------------------|--------------------|------------------------------------------------------------------------------------|
| <b>d</b> <sub>1</sub> |                                   | Bare diameter      | Diameter of bare roller on which the wire is                                       |
|                       |                                   |                    | mounted or in which the groove is cut                                              |
| $d_2$                 |                                   | Diameter over      | Diameter measured over the tips                                                    |
|                       |                                   | wire or top        | of the wire when mounted                                                           |
|                       |                                   | diameter           |                                                                                    |
| d <sub>3</sub>        | $d_3 = d_1 - 2m_3$                | Groove root        | Diameter of bare roller $(d_2)$ minus twice the                                    |
|                       |                                   | diameter           | groove depth (m <sub>2</sub> )                                                     |
|                       | 1 1 01                            |                    | or                                                                                 |
|                       | $d_3 = d_2 - 2h_1$                |                    | Diameter over tips $(d_2)$ minus twice the total                                   |
|                       |                                   | Width of ano ava   | neight of wire(n <sub>1</sub> )                                                    |
|                       |                                   | Dopth of groove    | Donth to which the analysis out helow the                                          |
| III2                  |                                   | Depth of groove    | surface of the bare roller                                                         |
| <b>g</b> 1            |                                   | Pitch of wire rows | Distance from face to face of adjacent. wires measured parallel to the roller axis |
| <b>g</b> <sub>2</sub> |                                   | Lead               | Distance from face to face of one individual                                       |
| <b>g</b> <sub>3</sub> |                                   |                    | wire measured parallel to the roller axis. The                                     |
| <b>g</b> 4            |                                   |                    | index indicates the number of starts                                               |
| etc.                  |                                   |                    |                                                                                    |
| R.H.                  |                                   | Right-hand lead    | The helix angle of the card wire is inclined                                       |
|                       |                                   |                    | from right-hand to left-hand with the roller                                       |
|                       |                                   |                    | axis viewed laterally                                                              |
|                       |                                   |                    |                                                                                    |
|                       |                                   |                    |                                                                                    |
|                       |                                   |                    |                                                                                    |
| L.H.                  |                                   | Left-hand lead     | The helix angle of the card wire is inclined                                       |
|                       |                                   |                    | from left-hand to right-hand with the roller                                       |
|                       |                                   |                    | axis viewed laterally                                                              |
|                       |                                   |                    | mm                                                                                 |
|                       |                                   |                    | Hunde                                                                              |
|                       |                                   |                    | LH                                                                                 |
| Т                     | $T = \frac{unit \ of \ length}{}$ | Teeth per unit     | Teeth per unit length, measured on straight                                        |
|                       | p                                 | length             | wire                                                                               |
| R                     | $R = \frac{unit of length}{r}$    | Rows of wire per   | Number of rows of wire per unit length,                                            |
|                       | $g_1$                             | unit length        | measured across the face of the roller parallel                                    |
|                       |                                   |                    | to the roller axis                                                                 |
| D                     | $D=T\times R$                     | Point density      | Teeth per unit length $\times$ row of wire per unit                                |
|                       |                                   | or number of point | length                                                                             |
|                       |                                   | per length         |                                                                                    |



FIG. 16 SINGLE WIRE WINDING

FIG. 17 MULTIPLE WIRE WINDING