BUREAU OF INDIAN STANDARDS

DRAFT FOR COMMENTS ONLY (Not to be reproduced without permission of BIS or used as an Indian Standard)

भारतीय मानक मसौदा

मोटर वाहन अनुप्रयोग (डीजल और गैसोलीन) के लिए आंतरिक दहन इजन क्रैंककेस तेल) — विशिष्टि

(IS 13656 का चौथा पुनरीक्षण)

Draft Indian Standard

INTERNAL COMBUSTION ENGINE CRANKCASE OILS FOR AUTOMOTIVE APPLICATION (DIESEL AND GASOLINE) — SPECIFICATION

(Fourth Revision of IS 13656)

(ICS No. 75.100)

Lubricants and their related products	Last date for receipt of comment is
Sectional Committee, PCD 25	22 December 2024

FOREWORD

(Formal clauses will be added later)

IS 496 'Specification for Automotive Internal Combustion Engine Lubricating Oils,' was first published in 1955 to incorporate the changing requirements of OEMs and users. The 1982 version was base stock specific. There were two other standards on the subject, based on re-refined oils and base-stock of mixed crude as:

- a) IS 9048 : 1982 Specification for Re-refined Automotive Internal Combustion Engine Lubricating Oils (*first revision*), and
- b) IS 10356 : 1982 Specification for Automotive Internal Combustion Engine Lubricating Oils from Base Stocks of Mixed Crude.

The Committee decided to combine the requirements in all the above standards and IS 13656 : 1993 for Internal Combustion Engine Crankcase Oils (Gasoline and Diesel) covering the requirements of upgraded quality of crankcase oil irrespective of varying base stock was published.

It was first revised in 2002 to reflect some of the performance standards that were being employed by the API, ACEA and OEMs to define oils that were required for equipment in use in the country. Two types of diesel lubricating oils, namely, EDL5 and EDL6 were included with their equivalent international performance levels. EPL category of passenger car motor oils were drafted in and a new type EPL4 with overseas performance as API SJ level was included. Besides, the corresponding equivalent overseas performance levels were well defined. The standards were covering two principal application-areas of lubricants with those categories that were recommended by automotive OEMs for their engines with respect to a) Diesel Engine Oils, and b) Passenger Car Motor Oils.

Considering various factors such as frequent upgradation of global specifications, obsolescence of hardware, increasing costs of engine testing and the dearth of test facilities, it was anticipated that oil marketers would increasingly utilize existing engine-test database to claim performance against various categories. Where the product performance category essentially involved a cross labelling between an API category, an ACEA category and/or an OEM specification, the particular code of practice and/or read across guide-lines stipulated by the particular agency needed to be utilized in order to support the particular claim.

In the second revision published in 2014, the categories EDL1 and EPL1 were excluded. The international equivalents for EDL2 and EDL3 were upgraded to API CF. Two new categories, i.e., EDL6 equivalent to API CG-4+MB 228.3 and EDL7 equivalent to API CH-4+MB 228.3 performance level were included. Besides, the references to ASTM Standards had been updated.

In the third revision published in 2019, EDL8, EDL9, EDL10, EDL11 and EDL12 for diesel engine oil and EPL5, EPL6, EPL7 and EPL8 categories for gasoline engine oil were included in view of the latest developments in engine oil specification catering the needs of BS IV and BS VI compliant engines. The Committee also decided to remove the qualification approval from the standard as it was not relevant.

In this fourth revision, along with editorial and typographic corrections, the following major changes have been made:

- a) Diesel engine oil performance category EDL2 and gasoline engine oil performance category EPL2 have been excluded;
- b) Gasoline engine oil performance category EPL9 has been included; and
- c) Qualification Approval (QA) procedure for defence products has been included so as to take care of supplies to defence forces.

For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test or analysis, shall be rounded off in accordance with IS 2 : 2022 'Rules for rounding off numerical values (*second revision*)'. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.

1 SCOPE

1.1 This standard prescribes the requirements and methods of sampling and test for the various types (*see* 3) of internal combustion engine lubricating oils for use in diesel engines and gasoline engines used in passenger and commercial vehicles including off-highway equipment.

1.2 This standard permits the use of multi-grade engine oils for the lubrication of spark/ compression-ignition types of internal-combustion engines used in passenger and commercial vehicles, off-highway vehicles and industrial equipment.

1.3 Lubricating oils, covered in this standard, are broadly classified into two types as specified in **3**.

2 REFERENCES

The standards listed in Annex A contain provisions which, through reference in this text, constitute provisions of this standard. At the time of publication, the editions indicated were valid. All standards are subject to revision and parties to agreement based on this standard are encouraged to investigate the possibility of applying the most recent edition of the standards listed in Annex A.

3 CLASSIFICATIONS

3.1 Types and Performance Level Categories

Internal combustion engine lubricating oils covered in this standard are of two types:

- a) Diesel engine oils; and
- b) Petrol engine oils.

They shall be qualified under the different performance-level categories, as per designations indicated in **3.1.1** and **3.1.2**. Corresponding international equivalent performance levels and the prescribed engine tests are indicated, for the purpose of ready reference, against each of the designated categories.

3.1.1 Diesel Engine Oils (DEO)

Sl No.	IS Category	International Equivalent	Engine Tests (For test methods, see Tables 2-8)
(1)	(2)	(3)	(4)
i)	EDL 3	API CF Plus Mack T- 7/T-8A	CRC L-38 or Sequence VIII, Caterpillar 1M-PC T-7 or Mack T-8A
ii)	EDL 4	API CF-4	CRC L-38 or Sequence VIII, Mack T-6 or Mack T-9 or Mack T-10, Mack T-7 or Mack T-8A, Caterpillar 1K ¹ , Corrosion Bench Test (CBT) ¹
iii)	EDL 5	API CF-4 combined with (ACEA E2-96 / MB 228.1 ²)	CRC L-38 or Sequence VIII, Mack T-6 or Mack T-9 or T-10, Mack T-7 or Mack T-8A, Caterpillar1K ¹ , Corrosion Bench Test (CBT) ¹ , OM 364A or OM 441LA, OM602A

			October 2024
iv)	EDL 6	API CG-4 combined with (ACEA E3-96 / MB 228.3 ²)	CRC L-38 or Sequence VIII, Mack T-8, Sequence IIIF or IIIG, Caterpillar 1N, Corrosion Bench Test (CBT), Roller Follower Wear Test (RFWT), EOAT, OM 364A or OM 441LA or OM 501LA, OM602A or OM 646LA
vi)	EDL 7	API CH-4 combined with MB 228.3 ²	Caterpillar 1P, Caterpillar 1K, Mack T- 9 or T-10 or T-12, Roller Follower Wear Test (RFWT), Cummins M11 or ISM, Mack T8E, Sequence IIIF or IIIG, High Temperature Corrosion Bench Test (HTCBT), EOAT, OM 364A or OM 441LA or OM 501LA, OM602A or OM 646LA
vii)	EDL8	API CI-4	Caterpillar 1P or Caterpillar 1R, Caterpillar 1K, Mack T-10 or Mack T- 12, Cummins M11 EGR or Cummins ISM, Mack T-8E, Roller Follower Wear Test (RFWT), Sequence IIIF or IIIG, EOAT
viii)	EDL9	API CI-4 PLUS	All engine tests of EDL8 + Mack T-11 engine test
ix)	EDL10	API CJ-4	Mack T-12, Cummins ISM, Caterpillar C13, Mack T-11, Cummins ISB, Caterpillar 1N, Sequence IIIF or IIIG or IIIH, EOAT, Roller Follower Wear Test (RFWT)
x)	EDL11	API CK-4	Mack T-12, Mack T-13, Cummins ISM, Caterpillar C13, Mack T-11, Cummins ISB, Roller Follower Wear Test (RFWT), Caterpillar 1N, COAT
xi)	EDL12	API FA-4	To pass all engine tests of EDL11 and refer Table 8.2

NOTES

1) CF-4 category lists Cummins NTC-400 (ASTM D5290) as test method required for this category. Due to lack of critical test parts, the NTC-400 test is no longer available as a calibrated test, and has been replaced in this category by the requirement of a second caterpillar 1K test and corrosion bench test (CBT). Alternatively, instead of running second Caterpillar 1K test and CBT, data from NTC-400 tests, run in calibrated test stands, can be used to support this category.

2) In case of MB claims, the package approval letter from MB is to be considered.

3) For bench test requirement refer respective performance level bench test table.

4) The higher performance grades which are backward compatible with the lower performance grades, the data of such higher performance grades may be considered for the approval/qualification of lower performance grades.

5) API FA-4 oils are not interchangeable or backward compatible with API CK-4, CJ-4, CI-4 with CI-4 PLUS, CI-4, and CH-4 oils.

3.1.2 Petrol Engine Oils

Sl.	IS	International	Engine Tests (For test methods, <i>see</i>
No	Category	Equivalent	3.4)
(1)	(2)	(3)	(4)
i)	EPL 3	API SG	CRC L-38 or Sequence VIII, Sequence IID, Sequence IIIE, Sequence VE
ii)	EPL 4	API SJ	CRC L-38 or Sequence VIII, Sequence IID or BRT, Sequence IIIE or Sequence IIIF or Sequence IIIG, Sequence VE or (Sequence IVA + Sequence VG)
iii)	EPL 5	API SL	Sequence IIIF or IIIG, Sequence IVA, Sequence VG, Sequence VIII
iv)	EPL 6	API SM	Sequence IIIG, Sequence IIIGA or ROBO, Sequence IVA, Sequence VG, Sequence VIII
v)	EPL 7	API SN	Sequence IIIG or Sequence IIIH, Sequence IVA, Sequence VG or Sequence VH, Sequence VIII
		API SN with Resource Conserving	All API SN tests, Sequence VID or Sequence VIE, Sequence VIF
vi)	EPL 8	API SN PLUS	Sequence IX test in addition to API SN engine tests
		API SN PLUS with Resource Conserving	All API SN PLUS tests, Sequence VID or Sequence VIE, Sequence VIF
vii)	EPL 9	API SP	Sequence IIIH, Sequence IVB, Sequence VH, Sequence VIII, Sequence IX, Sequence X
		API SP with Resource Conserving	All API SP tests, Sequence VIE, Sequence VIF

NOTES

1) Latest version of all international specifications referred to in this specification to be followed.

2) For bench test requirement refer respective bench test table.

3) API SN with SN PLUS and "Resource Conserving" and API SN with SN PLUS are also backward compatible to API Service Categories before API SN.

3.2 The oils may be labelled as fuel-efficient by suffixing the grade name with word 'FE', provided the oil meets fuel-economy targets as per the International Lubricant Standardization and Approval Committee (ILSAC) Standards of Passenger car engine oil.

3.3 Viscosity Grades

3.3.1 The oils shall conform to one of the SAE mono-viscosity grades or SAE multi-grades (*see* Table 1), which are combinations of W-Grades and other mono-grades, as for example: SAE 10W and SAE 30 for the SAE 10W-30 grade. Viscosity limits for each of the mono-grades are also given in Table 1.

3.3.2 In case of multi-grades, the prescribed viscosity limits (*see* Table 1) for both the constituent components of the multi-grade, shall be met.

3.4 Engine -Performance Test Requirements

The approved engine tests for performance evaluation of the two types of lubricants and their various performance categories have been listed in the Tables as given below, together with the prescribed requirements:

- a) Diesel engine oils (*see* Table 2 to Table 8); and
- b) Passenger car motor oils (see Table 9 to Table 13).

It is possible that the performance test data would be generated on engine tests carried out in different laboratories conducted at different period of time, using base stocks from different sources. Hence provisions available for Base Oil Interchange (BOI), Viscosity Grade Read-Across (VGRA), Viscosity Modifier Interchange (VMI), minor additive component substitution as provided in the relevant API/ACEA/OEM specification to be considered.

NOTE: Multiple Test Acceptance Criteria (MTAC) should be used for any data-based approach for evaluation of the quality and performance of a formulation where more than one test may be run. Generally, for a candidate tested once, test data for each criterion shall be a pass. For a candidate tested twice, the mean (average) value of each result shall be a pass. For a candidate tested three or more times, one test might be declared an outlier and thus discarded and the mean (average) value of retained test data for each result shall be a pass. MTAC shall be applicable to the specific tests carried out as detailed in Table 5.1, Table 6.1 and Table 7.1.

4 REQUIREMENTS

4.1 General

The oils shall be formulated by blending lube base stocks comprising of virgin oil or rerefined oil or synthetic fluid, or a combination of any of these, and additive components as necessary, to meet the requirements of this standard.

4.2 Physico-Chemical Requirements

4.2.1 The oil shall be free from suspended matter, grit, water or any other foreign matter and impurities.

4.2.2 The oil shall comply with the physico-chemical and other bench-test requirements as given below:

- a) For diesel engine oils:
 - i) Viscosity requirements as per Table1; and
 - ii) Physico-chemical requirements (other than viscosity) as per Table 14.
- b) For passenger car motor oils:
 - i) Viscosity requirements as per Table 1; and
 - ii) Physico-chemical requirements (other than viscosity) as per Table 14.

4.3 Stability of Finished Lubricating Oils

The finished blended oils shall have the additive elements uniformly distributed throughout the oil and shall show no evidence of instability at temperature specified in the homogeneity test described in Annex B.

5 PRODUCT QUALITIFICATION (FOR DEFENSE REQUIRMENTS ONLY)

The oil shall be qualified for use in defence forces in accordance with the provision of this standard and as per the details provided in Annex C. The authority for recommending a Qualification Approval is CQA(PP), Kanpur.

6 PACKING AND MARKING

6.1 Packing

The material shall be packed in metal containers or in any other suitable containers as agreed to between the purchaser and the supplier.

6.2 Marking

6.2.1 The container shall be securely closed and marked with the following:

- a) Indication of the source of manufacture, recognized trade-mark, if any;
- b) Type and viscosity grade;
- c) Net mass/volume of the material;
- d) Identification in code or otherwise to enable the lot of consignment of manufacture
- to be traced back from records; and
- e) Any other statutory requirement.

6.2.2 All markings including batch number or lot of manufacture shall be made on one flat end when the material is packed in barrels.

6.3 BIS Certification Marking

The product(s) conforming to the requirements of this standard may be certified as per the conformity assessment schemes under the provisions of the *Bureau of Indian Standards Act*, 2016 and the Rules and Regulations framed thereunder, and the products may be marked with the standard mark.

7 SAMPLING

7.1 Representative samples of the material shall be drawn as prescribed in IS 1447 (Part 1).

7.2 Number of Tests

Test for all the characteristics given in Table 1 and Table 14 of this standard shall be conducted on composite samples.

7.3 Criteria for Conformity

The lot shall be declared as conforming to the requirements of the specification, if all the results on the composite sample satisfy the relevant requirements.

Table 1 Engine Oil	Viscosity	Classification	(see Note 1)
Tuble I Lingine On	v ibcobicy	Clubbilleution	

Sl. No	SAE Viscosit y grade	Low Temp Cranking Viscosity, mPa-s, <i>Max</i>	Low Temp Pumping Viscosity, mPa- s, Max (see Note 2)	Low-Shear- Rate, Kinematic Viscosity, mm ² /s at 100	Low-Shear- Rate, Kinematic Viscosity, mm ² /s at 100	High-Shear-Rate Kinematic Viscosity(mPa-s), at 150 °C and 10 ⁶ s ⁻¹ , <i>Min</i>
				°C, Min	°C, Max	
(1)	(2)	(3)	(4) Method of	(5)	(6)	(7)
			Method o	I Test IS 1448	IS 1118 (Dort	25/Sec 1) / ASTM
		ASTM D5293	ASTM D4684	(Part 25/Sec		L-36-A-90 (ASTM
		ASTNI D5275	A51W1 D4004	(1 art 25/Sec 1)		ASTM D5481
			60000 at - 40	1)		
i)	0 W	6200 at – 35 °C	°C	3.8		
			60000 at - 35	- • -		
ii)	5 W	6600 at – 30 °C	°C	3.8		
			60000 at - 30			
iii)	10 W	7000 at – 25 °C	°C	4.1		
			60000 at – 25			
iv)	15 W	7000 at - 20 °C	°C	5.6		
			60000 at – 20			
v)	20 W	9500 at – 15 °C	°C	5.6		
.、		10000 1000	60000 at - 15	a a		
vi)	25 W	13000 at – 10 °C	°C	9.3		
vii)	8			4.0	<6.1	1.7
viii)	12			5.0	<7.1	2.0
ix)	16			6.1	<8.2	2.3
x)	20	·		6.9	<9.3	2.6
xi)	30			9.3	<12.5	2.9
				· · · · · · ·		3.5 (0W-40, 5W- 40 and 10W-40
xii)	40			12.5	<16.3	grades)
						3.7 (15W-40, 20W-40, 25W-40,
xiii)	40			12.5	<16.3	and 40 grades)
xiv)	50			16.3	<21.9	3.7
xv)	60			21.9	<26.1	3.7

(*Clauses* 3.3.1, 3.3.2, 4.2.2 (a) (i) and 4.2.2 (b) (i))

NOTES

SAE J300, April 2021
 ASTM D4864: The presence of any yield stress detectable by this method constitutes a failure regardless of viscosity.

Table 2 Engine Test Sequence for Diesel Engine Oils for EDL3

Test	Characteristics	Requirements	Method of Test	
Technique		EDL 3		

Doc: PCD 25 (26822) WC

					October 2024
(1)	(2)		(3)		(4)
CRC L-38	Bearing weight loss, mg, Max		50		ASTM D5119
		OR			·
Sequence	Bearing weight loss, mg,	1 test	2 test	3 test	ASTM D6709
VIII	Max	29.3	31.9	33.0	
Caterpillar	a) Top ring groove filling, percent volume, <i>Max</i>		70		
1M-PC	b) Weighted total demerit, <i>Max</i>	240			ASTM D6618
	c) Piston ring sticking	none			
	d) Piston, ring and liner scuffing	none			
Mack T-7	Average rate of kinematic viscosity increase during last 50 h, (mm ² /s at 100 °C)/h, <i>Max</i>	0.040			ASTM Research Report RR:DO2:1220
		OR			
Mack T-8A	Average rate of kinematic viscosity increase from 100 h to 150 h, (mm ² /s at 100 °C)/h, <i>Max</i>		0.20		ASTM D5967

NOTE – EDL3 is applicable for defence applications only.

Table 3 Engine Test Sequence for Diesel Engine Oils for EDL4 and EDL5 (Clauses 3.1.1 and 3.4)

Test Technique	Characteristics	Requir	Method of Test				
		EDL 4	EDL 5				
(1)	(2)	(3)	(4)	(5)			
CRC L-38	Bearing weight loss, mg, Max	50	50	ASTM D5119			
		OR					
Sequence VIII	Bearing weight loss, mg, <i>Max</i>	33	33	ASTM D6709			
Mack T-6	Merit rating, Min	90	90				
OR							

					•		(October 2024
Mack T-9	a) Top piston ring weight loss, Average, mg, <i>Max</i>	150				150		ASTM D6483
	b) Liner wear, μm, Max		40			40		
			OF	ξ	•			
Mack T-10	Top pistion ring weight loss, mg, <i>Max</i>		180			180		ASTM D6987 / ASTM D6987M
	Liner wear, µm, <i>Max</i>		47			47		D0907W
Mack T-7	Average rate of kinematic viscosity increase during last 50 h, (mm ² /s at 100 °C)/h, <i>Max</i>		0.040 0.04					ASTM Research Report RR:DO2:1220
OR								
Mack T-8A	Average rate of kinematic viscosity increase during last 150 h, (mm ² /s at 100 °C)/h, <i>Max</i>	0.20			0.20			ASTM D5967
Caterpillar 1K	Run Number	2 test	3 test	4 test	2 test	3 test	4 test	
	a) Weighted demerits (WDK), <i>Max</i>	332	339	342	332	339	342	
	b) Top groove fill (TGF), percent, <i>Max</i>	24	26	27	24	26	27	
	c) Top land heavy carbon (TLHC), percent, <i>Max</i>	4	4	5	4	4	5	ASTM D6750
	d) Average oil consumption	0.14	0.14	0.14	0.14	0.14	0.14	
	g/MJ, (0-252 h), Max (g/kW-h) (0- 252 h), Max	(0.5)	(0.5)	(0.5)	(0.5)	(0.5)	(0.5)	
	e) Final oil consumption, g/MJ, (228-252 h), <i>Max</i> (g/Kw- h), (228-252 h), <i>Max</i>	0.75 (0.27)	0.75 (0.27)	0.75 (0.27)	0.75 (0.27)	0.75 (0.27)	0.75 (0.27)	

				1			<u> </u>	October 2024
	f) Piston ring and liner scuffing Number of tests allowed	None	None	None	None	None	None	
	g) Piston ring sticking	None	None	None	None	None	None	
Corrosion Bench Test (CBT)	a) Copper, mg/kg (ppm) increase, <i>Max</i>		20			20		
	b) Lead, mg/kg (ppm) increase, <i>Max</i>		60			60		ASTM D5968
	c) Tin, mg/kg (ppm), <i>Max</i>		To Report			To Report		
	d) Copper strip rating, <i>Max</i>		3			3		IS 1448 (Part15) / ASTM D130
OM 364A	a) Bore polishing, percent, <i>Max</i>					8		
	b) Piston cleanliness, merit, <i>Min</i>					31		
	c) Average cylinder wear, µm, <i>Max</i>					7		CEC-L-42-A- 92
	d) Average engine sludge, merit, <i>Min</i>					9		
	e) Oil consumption, kg/test, <i>Max</i>	_	_			18		
			OR	2				
OM 441 LA	a) Bore polishing, percent, <i>Max</i>			—	—	2.0		
	b) Piston cleanliness, merit, <i>Min</i>	_	_			25		CEC-L-52-T-
	c) Average cylinder wear, µm, <i>Max</i>					8		97
	d) Average engine sludge, merit, <i>Min</i>					9		
	e) Engine deposit, demerits, <i>Max</i>				_	3		
	f) Wear rating, demerits, <i>Max</i>					2.5		

						L L	October 2024
	g) Ring sticking, ASF, <i>Max</i>		—	—	1		
	h) Oil consumption, kg/test, <i>Max</i>				100		
	i) Boost pressure loss, 400 h, percent				Repo rt		
OM 602A	a) Bore polishing, percent, <i>Max</i>	 	—		6		
	b) Piston cleanliness, merit, <i>Min</i>	 			22		
	c) Average cylinder wear, µm, <i>Max</i>	 			18		CEC-L-42-A- 95
	d) Average engine sludge, merit, <i>Min</i>	 			8.9		
	e) Oil consumption, kg/test, <i>Max</i>	 			10		
	f) Average cam wear, μm, <i>Max</i>	 			50		
	g) Viscosity increase at 40 °C, percent, <i>Max</i>	 			80		

Table 4 Engine Test Sequence for Diesel Engine Oils for EDL6(Clauses 3.1.1 and 3.4)

Test Technique	Characteristics]	Method of Test		
-					
(1)	(2)		(4)		
CRC L-38	a) Bearing weight loss, mg, Max		ASTM D5119		
		OR			
Sequence	a) Bearing weight loss, mg,	1 test	2 test	3 test	
VIII	Max	29.3	31.9	33.0	ASTM
	b) Used oil viscosity, mm ² /s, greater than SAE J300 lower limit for grade, <i>Min</i>	0.5	0.5	0.5	D6709
Mack T-8	a) Viscosity increase at 3.8	1 test	2 test	3 test	
	percent soot, mm^2/s , Max	11.5	12.5	13.0	ASTM
	b) Filter plugging, differential pressure, kPa(psi), <i>Max</i>	138(20)	138(20)	138(20)	D5967

				0	ctober 2024
	c) Oil consumption, g/kW-h (lb/bhp-h), <i>Max</i>	0.304 (0.000 5)	0.304 (0.000 5)	0.304 (0.000 5)	
Sequence III F	60 h viscosity (at 40 °C) increase from 10 min sample percent, <i>Max</i>	325	349	360	ASTM Research Report RR:DO2:149
	·	OR			
Sequence III G	Kinemic viscosity, percent increase at 40 °C, <i>Max</i>	150	173	184	ASTM D7320
Caterpillar	Run Number	XX	XX	XX	
1N	a) Weighted demerits (WDN), Max	286.2	311.7	323.0	
	b) Top groove fill (TGF), percent, <i>Max</i>	20	23	25	
	c) Top land heavy carbon (TLHC), percent, <i>Max</i>	3	4	5	ASTM D6750
	d) Oil consumption g/kW-h (0-252 h), <i>Max</i>	0.5	0.5	0.5	D0750
	e) Piston ring and liner scuffing, number of tests allowed	none	none	none	
	f) Piston ring sticking	none	none	none	
RFWT	Roller follower wear, µm, <i>Max</i>	11.4	12.4	12.7	ASTM D5966
EOAT	Aeration, volume percent, Max	10.0			ASTM D6894
Corrosion Bench Test	a) Copper, mg/kg (ppm) increase, <i>Max</i>		20		
(CBT)	b) Lead, mg/kg (ppm) increase, <i>Max</i>		60		ASTM D5968
	c) Tin, mg/kg (ppm), Max		To Report		
	d) Copper strip rating, Max.	_	3		IS 1448 (Part15) / ASTM D130
OM 364A	a) Bore polishing, percent, Max	_	2.5		
	b) Piston cleanliness, merit, <i>Min</i>	_	35		
	c) Average cylinder wear, µm, Max		6		CEC-L-42-A- 92
	d) Average engine sludge, merit, <i>Min</i>		9.5		
	e) Oil consumption, kg/test, Max	_	12		

		•		(October 2024
OM 441LA	a) Bore polishing, percent, Max	—	2.0		
	b) Piston cleanliness, merit, <i>Min</i>		25		
	c) Average cylinder wear, μ m, Max		8		CEC-L-52-T-
	d) Average engine sludge, merit, <i>Min</i>		9		97
	e) Engine deposit, demerits, Max		3		_
	f) Wear rating, demerits, <i>Max</i>		2.5		_
	g) Ring sticking, ASF, <i>Max</i>		1		-
	h) Oil consumption, kg/test, Max		100		
	j) Boost pressure loss, 400 h, percent, <i>Max</i>		4.0		
		OR			
	a) Piston cleanliness, merit,		10		
OM 501 LA	Min		19		_
	b) Engine sludge, average merit, <i>Min</i>		9		_
	c) General engine deposit, demerits, <i>Max</i>		2		_CEC SG-L-101
	d) Ring sticking, ASF, Max		1		
	e) Bore polishing percent, Max		2		
	f) Cylic wear, average µm,	—	8		_
	g) Wear rating, demerits, Max		2		_
	h) Turbocharger deposit		2		
	i) Specific oil consumption, g/h, <i>Max</i>		30		
OM 602A	a) Bore polishing, percent, Max		4.5		
	b) Piston cleanliness, merit, Min		24		
	c) Average cylinder wear, μm, Max		15		CEC-L-42-A- 95
	d) Average engine sludge, merit, <i>Min</i>		8.9		
	e) Oil consumption, kg/test, Max		10		
	f) Average cam wear, µm, <i>Max</i>		45		
	g)Viscosity increase at 40 °C, percent, <i>Max</i>	_	70		
	·	OR			- .
	a) Engine sludge, merit, Min	—	8.7		
	b) Piston cleanliness, merit,		12		
OM 646 LA	c) Piston ring wear axial @ ring 1, µm, Max		10.4		CEC SG-L-099

			0	Clobel 2024
d) Piston ring wear axial @ ring 2, µm, <i>Max</i>		6	—	
e) Piston ring wear axial @ ring 3, µm, Max		5		
f) Piston ring wear radial @ ring 1, μm, Max		10		
g) Piston ring wear radial @ ring 2, µm, Max		12		
h) Piston ring wear radial @ ring 3, μm, <i>Max</i>		8		
j) Main bearing wear, average, μm, <i>Max</i>		2.1	—	
k) Con rod bearing, average, μm, <i>Max</i>		2.1		
m) Cam wear inlet, average, µm, <i>Max</i>	—	110		
n) Cam wear outlet, average, µm, <i>Max</i>		140		
p) Cylinder wear, average, µm, <i>Max</i>		5		
q) Bore polishing, percent, Max		3.5	—	
r) Timing chain wear, percent Max		0.4		
s) Viscosity Increase at 100 °C, percent, <i>Max</i>		100		
t) Ring sticking		No		
u) Tapet wear inlet, average, μm		Rate and report		
v) Tapet wear outlet, average, μm		Rate and report		
w) Oil consumption, g/test, Max		7000		

Table 5.1 Engine Test Sequence for Diesel Engine Oils for EDL7(Clauses 3.1.1 and 3.4)

Test Technique	Characteristics	Requirements		nts	Method of Test
			EDL 7		
(1)	(2)	(3)			(4)
		1 test	2 test	3 test	
Caterpillar IP	a) Weighted demerits (WDP), Max	350	378	390	
	b) Top Groove Carbon (TGC), demerits, <i>Max</i>	36	39	41	ASTM D6681

	I	г г		Octob	er 2024
	c) Top land carbon (TLC) percent, demerits, <i>Max</i>	40	46	49	
	d) Average oil consumption, g/h (0-360 h), <i>Max</i>	12.4	12.4	12.4	
	e) Final oil consumption, g/h (312-360 h), <i>Max</i>	14.6	14.6	14.6	
	f) Piston, ring and liner scuffing	None	None	None	
Cat 1K	a) Weighted demerits (WDK), Max	332	347	353	
	b) Top groove fill (TGF), percent, Max	24	27	29	
	c) Top land heavy carbon (TLHC), percent, <i>Max</i>	4	5	5	ASTM D6750
	d) Average oil consumption,				
	g/kW-h (0 h -252 h), Max	0.54	0.54	0.54	
	g/MJ (0 h -252 h), Max	0.15	0.15	0.15	
	e) Piston, ring and liner scuffing	None	None	None	-
Mack T9	a) Average liner wear, normalized to 1.75 percent soot, μm, <i>Max</i>	25.4	26.6	27.1	
	b) Average top ring weight loss, mg, Max	120	136	144	ASTM D6483
	c) EOT used oil lead content – less new oil lead content, mg/kg (ppm), <i>Max</i>	25	32	36	
_	OR	II			
Mack T 10	a) Ring wear, mg, <i>Max</i>	150	159	163	
	b) Liner wear, µm, Max	32	34	35	ASTM D6987
	c) Lead content at EOT, mg/kg, Max	50	56	59	
	OR				
Mack T 12	a) Top ring weight loss, mg, Max	120	132	137	
	b) Liner wear, µm, Max	30	30.8	31.1	ASTM D7422
	c) Lead content at EOT, mg/kg, Max	65	75	79	
RFWT	Average pin wear, µm, <i>Max</i> (mils, <i>Max</i> .)	7.6 (0.30)	8.4 (0.33)	9.1 (0.36)	ASTM D5966
EOAT	Aeration, volume percent, Max	8.0	8.0	8.0	ASTM D6894
Cummins M11	a) Rocker pad average weight loss, normalized to 4.5 percent soot, mg, <i>Max</i>	6.5	7.5	8.0	
	b) Oil filter differential pressure at EOT, kPa, <i>Max</i>	79	93	100	ASTM D6838
	c) Average engine sludge, CRC merits at EOT, <i>Min</i>	8.7	8.6	8.5	
	OR				
ISM	a) Cross head wear, mg, Max	7.5	7.8	7.9	
	b) Oil filter delta pressure at 150 h, kPa, <i>Max</i>	79	95	103	ASTM D7468
	c) Sludge rating, CRC merits, Min	8.1	8	8	

				Octob	er 2024
Ext. Mack T8E	a) Relative viscosity at 4.8 percent soot by TGA, mm ² /s, <i>Max</i>	2.1	2.2	2.3	-ASTM D5967
	b) Viscosity increase at 3.8 percent soot by TGA, mm ² /s, <i>Max</i>	11.5	12.5	13.0	ASTM D3907
Sequence IIIF	60 h viscosity at 40 °C, increase from 10 min sample, percent, <i>Max</i>	295	295#	295#	ASTM D6984
	OR				1
Sequence IIIG	Kinemic viscosity percent increase at 40 °C, <i>Max</i>	150	150#	150 [#] (FF)	ASTM D7320
	OR				
Sequence IIIH	60 h kinemic viscosity percent increase at 40 °C, <i>Max</i>	249	249#	249#	ASTM D8111
HTC BT	Used oil elemental concentration: (135 °C)				
	a) Copper, mg/kg (ppm) increase, Max		20		
	b) Lead, mg/kg (ppm) increase, Max		120		ASTM D6594
	c) Tin, mg/kg (ppm) increase		To Report		
	d) Copper Strip rating, Max		3		
OM 364A	a) Bore polishing, percent, Max		2.5		
	b) Piston cleanliness, merit, Min		35		CEC-L-42-A- 92
	c) Average cylinder wear, µm, <i>Max</i>		6)2
	d) Average engine sludge, merit, <i>Min</i>		9.5		_
	e) Oil consumption, kg/test, <i>Max</i>		12		
OM 441 LA	a) Bore polishing, percent, Max		2.5		1
OM 441 LA			2.5		-
	b) Piston cleanliness, merit, <i>Min</i>		25		-
	c) Average cylinder wear, µm, <i>Max</i>		8		CEC-L-52-T-
	d) Average engine sludge, merit, <i>Min</i>		9		97
	e) Engine deposit, demerits, Max		3		_
	f) Wear rating, demerits, Max		2.5		
	g) Ring sticking, ASF, Max		1		
	h) Oil consumption, kg/test, Max		100		
	j) Boost pressure loss, 400 h, percent, Max		4.0		
	OR				1
OM 501 LA	a) Piston cleanliness, merit, Min		20		
	b) Engine sludge, average merit, <i>Min</i>		9		
	c) General engine deposit, demerits, Max		2		CEC SG-L- 101
	d) Ring sticking, ASF, Max		1]
	e) Bore polishing percent, <i>Max</i>		2	<u> </u>	1
	f) Cyclic wear, average µm, Max		8	<u> </u>	1
				<u> </u>	
	g) Wear rating, demerits, <i>Max</i>		3		

			-	Octob	er 2024
	h) Turbocharger deposit, demerits, Max	_	2		
	j) Specific oil consumption, g/h, Max		30		
OM 602A	a) Bore polishing, percent, <i>Max</i>		4.5		
	b) Piston cleanliness, merit, Min		24		
	c) Average cylinder wear, new [#] /old, µm, <i>Max</i>		15#/10		CEC-L-42-A-
	d) Average engine sludge, merit, Min	_	8.9		95
	e) Oil consumption, kg/test, Max	_	10		
	f) Average cam wear, new [#] /old, μ m, <i>Max</i>		45#/28		
	g) Viscosity increase at 40 °C, percent, Max		70		
	OR				
OM 646 LA	a) Engine sludge, merit, <i>Min</i>		8.8		
	b) Piston cleanliness, merit, Min		14		
	c) Piston ring wear axial @ ring 1, μm, Max		10.4		
	d) Piston ring wear axial @ ring 2, μm, Max		6		
	e) Piston ring wear axial @ ring 3, µm, <i>Max</i>		5		CEC SG-L- 099
	f) Piston ring wear radial @ ring 1, μm, Max		10	_	
	g) Piston ring wear radial @ ring 2, μm, Max		12		
	h) Piston ring wear radial @ ring 3, μm, Max		8		
	j) Main bearing wear, average, µm, Max		2.1		
	k) Con rod bearing, average, µm, Max		2.1		
	l) Cam wear inlet, µm, Max		100		
	m) Cam wear outlet, µm, Max		130		
	n) Cylinder wear, µm, <i>Max</i>		5		
	p) Bore polishing, percent, Max		3.5		
	q) Timing chain wear, percent, Max		0.4		
	r) Viscosity increase at 100 °C, percent		100		
	s) Ring sticking		No		
	t) Tapet wear inlet, µm, <i>Max</i>		Rate and report		
	u) Tapet wear outlet, µm, <i>Max</i>		Rate and report		
	v) Oil consumption, g/test, <i>Max</i>		7000		

[#] MTAC applicable as detailed in 3.4

Table 5.2 Bench test for EDL7

Characteristics	Requirement		Method of Test
Foaming/Settling - 10 min for all sequence, ml/ml			ASTM D892
a) Sequence I	10 /	0	
b) Sequence II	20 / 0		
c) Sequence III	10 / 0		
	SAE 10W-30	SAE 15W-40	
Volatility loss at 250 °C, percent, Max	20	18	ASTM D5800
Volatility loss at 371 °C, percent, Max	17	15	ASTM D6417
Kinematic viscosity at 100 °C after shearing, mm ² /s, <i>Min</i>	SAE XW-30 9.3	SAE XW-40 12.5	ASTM D6278

(Clauses 3.1.1 and 3.4)

Table 6.1 Engine Test Sequence for Diesel Engine Oils for EDL8

Test Technique	Characteristics	Method of Test			
(1)	(2)		(3)		(4)
		1 test	2 test	3 test	
Caterpillar IP	a) Weighted demerits (WDP), Max	350	378	390	
	b) Top groove carbon (TGC), demerits, <i>Max</i>	36	39	41	ASTM
	c) Top land carbon (TLC), demerits, <i>Max</i>	40	46	49	D6681
	d) Average oil consumption, g/h (0-360 h), <i>Max</i>	12.4	12.4	12.4	
	e) Final oil consumption, g/h (312- 360 h), <i>Max</i>	14.6	14.6	14.6	
	f) Piston, ring and liner scuffing	None	None	None	
	OI	R			
Caterpillar 1R	a) Weighted demerits (WDR), Max	382	396	402	
	b) Top groove carbon (TGC), demerits, <i>Max</i>	52	57	59	ASTM D6923
	c) Top land carbon (TLC), demerits, <i>Max</i>	31	35	36	

Doc: PCD 25 (26822) WC

				October	: 2024
	d) Initial oil consumption (IOC), (0 h to 252 h), average, g/h, <i>Max</i>	13.1	13.1	13.1	
	e) Final oil consumption (FOC), (432 h to 504 h), average, g/h, <i>Max</i>	IOC+1.8	IOC+1.8	IOC+1.8	
	f) Piston, ring and liner distress	None	None	None	
	g) Ring sticking	None	None	None	
Mack T-10 OR	a) Merit rating, <i>Min</i>	1000	1000	1000	ASTM D6987 / ASTM
Mack T-12	b) Merit rating, <i>Min</i>	1000	1000	1000	6987M / ASTM D7422
Cummins	a) Average crosshead mass loss, mg, Max	20	21.8	22.6	
(M-11) EGR	b) Average top mig mass loss, mg	Report	Report	Report	ASTM
	c) Oil filter differential pressure at 250 h, kPa, <i>Max</i>	275	320	341	D6975
	d) Average engine sludge, CRC merits at EOT, <i>Min</i>	7.8	7.6	7.5	
	O				
Cummins	a) Crosshead wear, mg, <i>Max</i>	7.5	7.8	7.9	
ISM	b) Oil filter differential pressure at 150 h, kPa, <i>Max</i>	55	67	74	ASTM D7468
1	c) Sludge rating, CRC Merits, Min	8.1	8.0	8.0	
Ext. T-8E ¹	Relative viscosity at 4.8 percent soot	1.8	1.9	2.0	ASTM D5967
Sequence IIIF ²	Kinematic viscosity at 40 °C, percent increase <i>Max</i>	275	275#	275#	ASTM D6984
	0	R			
Sequence IIIG	Kinematic viscosity, percent increase at 40 °C, Max	150	150#	150#	ASTM D7320
	0	R	ſ	1	
Sequence IIIH	60 h to 80 h kinematic viscosity, percent increase at 40 °C, <i>Max</i>	370	370#	370#	ASTM D8111
Caterpillar	a) Weighted demerits (WDK), Max	332	347	353	
1K	b) Top groove fill (TGF), percent, Max	24	27	29	
	c) Top land heavy carbon (THLC), percent, <i>Max</i>	4	5	5	ASTM
	d) Average oil consumption, (0 h to 252 h), g/MJ, <i>Max</i> ,	0.15	0.15	0.15	D6750
	(0 h to 252 h), (g/kWh), Max	(0.54)	(0.54)	(0.54)	
	e) Piston, ring and liner scuffing	None	None	None	
RFWT	Average pin wear, mils, Max	0.3	0.33	0.36	ASTM

Doc: PCD 25 (26822) WC

				October 2024		
	(μm), <i>Max</i>	7.6	8.4	9.1	D5966	
EOAT	Aeration, volume percent, Max	8.0	8.0#	8.0#	ASTM D6894	

[#]MTAC applicable as detailed in 3.4

NOTES

¹ A passing T-11 (TGA percent soot at 12.0 mm²/s increase at 100° C, *Min*), 6.00 (first test), 5.89(second test), and 5.85 (third test), can be used in place of a T-8E in the applicable categories. This is not intended to indicate equivalence.

 2 The Sequence IIIG limits shown are more restrictive than the corresponding limits in sequence IIIF and are not intended to indicate equivalence. Results meeting the Sequence IIIG criteria stated can be used in lieu of Sequence IIIF.

Table 6.2 Bench Test for Diesel Engine Oils for EDL8

Bench Tests	Characteristic	Requirements	Method of Test
High temperature/	High temperature/high shear	3.5	ASTM D4683 / ASTM
High temperature/ High shear	viscosity, at 150 °C, mPa-s,		D4741 /
ingh shear	Min		ASTM D5481
	Limits are applied to SAE viscosity grades 0W, 5W, 10W and 15W:		ASTM D4684
	Viscosity of 75 h used oil sample from T-10 test (or T- 10A test)	25000	
MRV-TP-1	OR		-
MKV-1P-1	100 h used oil sample from T- 12 test (or T-12A test, tested at -20 °C, mPa-s, <i>Max</i>	25000	
	If yield stress is detected, use modified D4684 (external pre- heat), then mPa-s, <i>Max</i> and yield stress, Pa	<35	
Noack	Evaporative loss at 250 °C, percent, <i>Max</i>	15	ASTM D5800
	Copper, mg/kg increase, Max	20	
135 °C HTCBT	Lead, mg/kg increase, Max	120	ASTM D6594
	Tin, mg/kg increase, Max	Report	-
	Copper strip rating, Max	3	
Viscosity loss due to shear	Kinematic viscosity after shearing, mm ² /s, <i>Min</i>	SAE XW-30 (9.3) / SAE XW-40 (12.5)	ASTM D6278
	Foaming / Settling - 10 min for all sequences, ml/ml, <i>Max</i>		
Foaming	a) Sequence I	10 / 0	ASTM D892
	b) Sequence II	20 / 0	
	c) Sequence III	10 /0	

	Elastomer Compatibility (ASTM D7216)					
Elastomer	Volume Change, percent	Hardness Change, points	Tensile Strength Change, percent	Elongation at Break Change, percent		
Nitrile (NBR)	(+5, -3)	(+ 7, -5)	(+ 10, - TMC	(+10, - TMC		
			1006)	1006)		
Silicone (VMQ)	(+TMC 1006, - 3)	(+5, -TMC 1006)	(+ 10, -45)	(+ 20, -30)		
Polyacrylate (ACM)	(+5, -3)	(+ 8, -5)	(+ 18, -15)	(+10, -35)		
Fluoroelastomer (FKM)	(+5, -2)	(+7, -5)	(+ 10, - TMC 1006)	(+10, -TMC 1006)		

Table 6.3 Engine Test Sequence for Diesel Engine Oils for EDL9

(Clauses 3.1.1 and 3.4)

Test Sequence	Requirements		
Engine tests	Shall pass all the engine tests for EDL8		
Mack T 11 test	TGA percent soot at 12.0 mm ² /s increase at 100 °C, Min – shall be 6.00		
Bench Tests	Shall pass all the bench tests for EDL8		

Table 7.1 Engine Test Sequence for Diesel Engine Oils for EDL10

Test Technique	Characteristics		Requirements EDL 10		Method of Test
(1)	(2)		(3)	-	(4)
		1 test	2 test	3 test	
T-12	Merit rating, Min	1000	1000	1000	ASTM D7422
ISM	Merit rating, Min	1000	1000	1000	ASTM D7468
	Top ring mass loss, mg, Max	100	100	100	D7400
C13	Merit rating, Min	1000	1000	1000	ASTM D7549
	Hot stuck piston ring	None	None	None	D1347
	TGA percent soot at 4.0 mm ² /s increase, at 100 °C, <i>Min</i>	3.5	3.4	3.3	
T-11	TGA percent soot at 12.0 mm ² /s increase, at 100 °C, <i>Min</i>	6.0	5.9	5.9	ASTM D7156
	TGA percent soot at 15.0 mm ² /s increase, at 100 °C, <i>Min</i>	6.7	6.6	6.5	

				October	2024
	Slider tappet mass loss, average, mg, <i>Max</i>	100	108	112	
ISB	Cam lobe wear, average, µm, <i>Max</i>	55	59	61	ASTM D7484
	Crosshead mass loss, average, mg	Report	Report	Report	
	Weighted demerits (WDN), Max	286.2	311.7	323.0	
	Top groove fill (TGF), percent, Max	20	23	25	
	Top land heavy carbon (THLC), percent, <i>Max</i>	3	4	5	ASTM
	Oil consumption,				D6750
Caterpillar 1N	(0 h-252 h), g/MJ, Max	0.15	0.15	0.15	
	(0 h-252 h), (g/kWh), Max	(0.54)	(0.54)	(0.54)	
	Piston, ring and liner scuffing	None	None	None	
	Piston ring sticking	None	None	None	
RFWT	Average pin wear, mils, <i>Max</i> (µm) <i>Max</i>	0.3 (7.6)	0.33 (8.4)	0.36 (9.1)	ASTM D5966
Sequence IIIF or alternate	Kinematic viscosity at 40 °C, percent increase, <i>Max</i>	275	275#	275#	ASTM D6984
Sequence IIIG	Kinematic viscosity at 40 °C, percent increase, <i>Max</i>	150	150#	150#	ASTM D7320
	1	OR		1	1
Sequence IIIH	60 h to 80 h Kinematic viscosity, percent increase at 40 °C, <i>Max</i>	370	370#	370#	ASTM D8111
	1	OR	L	1	1
Sequence IIIH70	70 h Kinematic viscosity, percent increase at 40 °C, <i>Max</i>	370	370#	370#	ASTM D8111
EOAT	Aeration volume, percent, Max	8.0	8.0#	8.0#	ASTM D6894
L			·		•

[#] MTAC applicable as detailed in 3.4

Table 7.2 Bench Test for Diesel Engine Oils for EDL10

Bench Tests	Characteristics	Primary Requirements	Method of Test
High temperature/ High shear	High temperature/high shear viscosity at 150 °C, mPa-s, <i>Min</i>	3.5	ASTM D4683 / ASTM D4741 / ASTM D5481

			October 2024
MRV-TP-1	Viscosity of the 180 h used oil drain sample from a T-11 test, tested at -20 °C, mPa-s, <i>Max</i>	25000	ASTM D6896
	If yield stress is detected, use modified D4684 (external pre-heat), then mPa-s, <i>Max</i> and yield stress, Pa	<35	
Noack	Evaporative loss at 250 °C, percent, Max (viscosity other than SAE 10W- 30)	13	ASTM D5800
	Evaporative loss at 250 °C, percent, Max (SAE 10W-30 viscosity)	15	
	Copper, mg/kg increase, Max	20	
HTCBT	Lead, mg/kg increase, Max	120	ASTM D6594
	Copper strip rating, Max	3	
Viscosity Loss due to shear	Kinematic viscosity after 90 pass shearing, mm ² /s at 100°C, <i>Min</i>	SAE XW-30 (9.3) / SAE XW-40 (12.5)	ASTM D7109
Foaming	Foaming / Settling – 10 min for each sequence, ml/ml, <i>Max</i> a) Sequence I b) Sequence II c) Sequence III	10 / 0 20 / 0 10 / 0	ASTM D892

Chemical Requirements (Non-Critical)					
Chemicals Requirement Method of Test					
Sulphated ash, <i>m/m</i> percent, <i>Max</i>	1.0	ASTM D874			
Phosphorous, <i>m/m</i> percent, <i>Max</i>	0.12	ASTM D4951			
Sulphur, <i>m/m</i> percent, <i>Max</i>	0.4	ASTM D4951			

Elastomer Compatibility (ASTM D7216)					
Elastomer	Volume Change, percent	Hardness Change, points	Tensile Strength Change, percent	Elongation at Break Change, percent	
Nitrile (NBR)	(+5, -3)	(+7, -5)	(+ 10, -TMC 1006)	(+10, -TMC 1006)	
Silicone (VMQ)	(+TMC 1006, - 3)	(+5, -TMC 1006)	(+10, -45)	(+20,-30)	
Polyacrylate (ACM)	(+5,-3)	(+ 8, -5)	(+ 18, -15)	(+10, -35)	
Fluoroelastom er (FKM)	(+5, -2)	(+7, -5)	(+ 10, - TMC 1006)	(+10, -TMC1006)	
Vamac G	(+TMC 1006, - 3)	(+5, -TMC 1006)	(+10, -TMC 1006)	(+10, -TMC 1006)	

Table 8.1 Engine Test Sequence for Diesel Engine Oils for EDL11 and EDL 12(Clauses 3.1.1 and 3.4)

Test Technique	Characteristics Requirements EDL 11 & EDL 12				Method of Test
(1)	(2)		(3)		(4)
	Test Run	1 test	2 test	3 test	
T-12	Top ring mass loss, mg, Max in T-12	105	105	105	ASTM
	Cylinder liner wear, µm, Max	24.0	24.0	24.0	D7422
	IR Peak at EOT, Absorbance, cm ⁻¹	125	130	133	
T-13	Kinematic viscosity increase at 40 °C, percent, <i>Max</i>	75	85	90	ASTM D8048
	Average oil consumption, 48 h to 192 h, g/h				
	TGA percent soot at 4.0 mm ² /s, increase at 100 °C, <i>Min</i>	3.5	3.4	3.3	
T-11	TGA percent soot at 12.0 mm ² /s, increase at 100 °C, <i>Min</i>	6.0	5.9	5.9	ASTM D7156
	TGA percent soot at 15.0 mm ² /s, increase at 100 °C, <i>Min</i>	6.7	6.6	6.5	
C13	Merit rating, <i>Min</i>	1000	1000	1000	ASTM
COAT	Average aeration, 40 h to 5 0h, percent, Max	11.8	11.8	11.8	ASTM D8047
ISB	Slider tappet mass loss, mg, average, <i>Max</i>	100	108	112	ASTM D7484
13D	Cam lobe wear, µm, average, <i>Max</i>	55	59	61	
	Crosshead mass loss, mg, average	Report	Report	Report	
ISM	Top ring mass loss, mg, Max	100	100	100	ASTM
	Merit rating, <i>Min</i>	1000	1000	1000	D7468
-	Weighted demerits (WDN), Max	286.2	311.7	323	
	Top groove fill (TGF), percent, Max	20	23	25	
Caterpillar 1N	Top land heavy carbon (THLC), percent, <i>Max</i>	3	4	5	
	Oil Consumption,				- ASTM D6750
	(0 h to 252 h), g/MJ, Max	0.15	0.15	0.15	
	Piston, ring and liner scuffing	None	None	None	
	Piston ring sticking	None	None	None	-
RFWT	Average pin wear, mils, Max	0.3	0.33	0.36	ASTM
	(µm), <i>Max</i>	(7.6)	(8.4)	(9.1)	D5966

Table 8.2 Bench Test for Diesel Engine Oils for EDL11 and EDL 12(Clauses 3.1.1 and 3.4)

Characteristics	Primary Requ	Method of Test	
Characteristics	EDL 11	EDL 12	Method of Test
Applicable SAE J300 Viscosity	SAE xW-30	SAE xW-30	

			October 2024	
High temperature / high shear, mPa.s				
xW-30 grades, Min	3.5	2.9	ASTM D4683 / ASTM	
xW-30 grades, Max	Not Applicable	3.2	D4741 / ASTM D5481	
xW-40 grades	Shall meet SAE J300	Not Applicable	-	
HTCBT				
Copper, mg/kg increase, Max	20	20	ASTM D6594	
Lead, mg/kg increase, Max	120	120		
Copper strip rating, Max	3	3		
Kinematic viscosity at 100 °C after 90 pass shearing, mm ² /s, <i>Min</i>				
xW-30	9.3	9.3	ASTM D445	
0W-40	12.5	Not		
Other xW-40	12.8	Not		
HTHS viscosity at 150 °C after 90 pass shearing, mPa.s, <i>Min</i>	3.4	2.8	ASTM D7109	
xW-30 grades				
Evaporative loss at 250 °C, percent, <i>Max</i>	13	13	ASTM D5800	
Foaming / Settling –10 min for each sequence, ml, <i>Max</i>				
a) Sequence I	10 / 0	10 / 0	ASTM D892	
b) Sequence II	20 / 0	20 / 0		
c) Sequence III	10 / 0	10 / 0		
Sooted oil MRV TP-1				
Viscosity of the 180 h used oil drain sample from a T-11 test, tested at -20 °C, mPa-s, <i>Max</i>	25000	25000	ASTM D6896	
Yield stress of the 180 h used oil sample above, Pa, <i>Max</i>	≤35	≤35		

	Chemical Requirements (Non-Critical)				
	Require	nents			
Chemicals	EDL11	EDL12	Method of Test		
Sulphated ash, percent, <i>m/m</i> , <i>Max</i>	1.0	1.0	ASTM D874		
Phosphorous, percent, <i>m/m</i> , <i>Max</i>	0.12	0.12	ASTM D4951		

Sulphur, percent, <i>m/m</i> , <i>Max</i>	0.4	0.4	

Elastomer Compatibility (ASTM D7216)					
Elastomer	ElastomerVolume Change, percentHardness Change, PointsTensile Strength Change, percent				
Nitrile (NBR)	(+5, -3)	(+7, -5)	(+10, -TMC 1006)	(+10, -TMC 1006)	
Silicone (VMQ)	(+TMC 1006, -3)	(+5, -TMC 1006)	(+10, -45)	(+20, -30)	
Polyacrylate (ACM)	(+5, -3)	(+8, -5)	(+18, -15)	(+10, -35)	
Fluoroelastomer (FKM)	(+5, -2)	(+7, -5)	(+10, - TMC 1006)	(+10, -TMC 1006)	
Vamac G	(+TMC 1006, - 3)	(+5, -TMC 1006)	(+10, -TMC 1006)	(+10, -TMC 1006)	

Table 9.1 Engine Test Sequence for Petrol Engine Oils(Clauses 3.1.2 and 3.4)

Test Technique	Characteristics	Requir	Method of Test	
1		EPL 3 ¹	EPL 4	
(1)	(2)	(3)	(4)	(5)
	a) Bearing weight loss, mg, <i>Max</i>	40	40	
	b) Piston skirt varnish, Min	9.0		ASTM D5119
c) Shear stability		Stay in Grade (Refer to Table 11.3A)		-
	OR			
Sequence	a) Bearing weight loss, mg, Max	26.4	26.4	
VIII	b) Shear stability	Stay in Gra Table	de (Refer to 11.3A)	ASTM D6709
Sequence	a) Average engine rust rating, Min	8.5	8.5	
IID	b) Number stuck lifters	None	None	ASTM D5844
	OR			
BRT	Average grey value, Min	100	100	ASTM D6557
Sequence	a) Average piston varnish rating, <i>Min</i>	8.9	8.9	
IIIE	b) Average oil ring land deposits, Min	3.5	3.5	
	c) Average engine sludge rating, Min	9.2	9.2	ASTM D5533
	d) Hours to 375 percent kinematic viscosity increase (at 40 °C), <i>Min</i>	64	64	

				<u>Del 2024</u>
	e) Cam plus lifter wear, mm:			
	1) Average, <i>Max</i>	0.064	0.064	
	2) Maximum, Max	0.030	0.030	_
	f) Lifter stickingg) Cam or lifter scuffing	None None	None None	
		None	None	
	h) Ring sticking (oil related)	None	None	
Sequence	a) Kinematic viscosity, percent increase at			
IIIF	40 °C, Max		325	_
	b) Average piston skirt varnish rating, <i>Min</i>		8.5	– ASTM
	c) Weighted piston deposit rating, <i>Min</i>		3.2	D6984
	d) Screened average cam-cum-lifter wear, mm, <i>Max</i>	—	0.020	
	e) Hot stuck rings		None	
	OR			
Sequence IIIG	Kinemic viscosity, percent increase at 40 °C, <i>Max</i>		150	
	Weighted piston deposit rating, Min		3.5	ASTM D7320
	Cam plus lifter wear average, µm, Max		60	
	Hot stuck rings		None	
	OR			
Sequence	60 h kinematic viscosity, percent increase			
IIIĤ	at 40 °C, Max		307	
	70 h average weighted piston deposits, merits, <i>Min</i>		2.5	ASTM D8111
	70 h average piston skirt varnish, merits, <i>Min</i>		7.5	
Sequence VE	a) Average engine sludge rating, <i>Min</i>	9.0	9.0	
	b) Rocker arm cover sludge rating, <i>Min</i>	7.0	7.0	
	c) Average engine varnish rating, Min	5.0	5.0	
	d) Average piston skirt varnish rating, Min	6.5	6.5	
	e) Cam wear:			
	1) Average, Max	0.380	0.380	ASTM D5302
	2) Maximum, <i>Max</i>	0.127	0.127	
	f) Oil ring clogging, percent, Max	Report	Report	
	g) Oil screen clogging, percent, Max	20.0	20.0	
	h) Compression ring sticking (hot stuck)	None	None	
	OR Sequence IVA plus Se	equence VG		

_

-

			Octobe	r 2024
Sequence IVA	Cam wear average, µm, <i>Max</i>		120	ASTM D689
	a) Average engine sludge rating, Min		7.8	
	b) Rocker arm cover sludge rating, <i>Min</i>		2.0	ASTM
			8.0	D6593
Sequence	c) Average piston skirt varnish, rating, <i>Min</i>		7.5	
VG	d) Average engine varnish rating, <i>Min</i>		8.9	
	e) Oil screen clogging, percent, Max		20	
	f) Hot stuck compression ring		None	
	OR Sequence IVA plus S	equence VH		
Sequence VH	a) Average engine sludges, merits, <i>Min</i>		7.4	
	b) Average rocker cover sludge, merits, Min		7.4	
	c) Average engine varnish, merits, <i>Min</i>		8.6	ASTM
	d) Average piston skirt varnish, merits, Min		7.4	D8256
	e) Oil screen clogging, percent area		Rate and repor	t
	f) Hot stuck compression rings		None	_

-

Г

Table 9.2 Compositional and Bench Test Requirements (Petrol Engine Oils) for EPL 3 and EPL 4

Characteristics/	Primary Requirements			Method of		
PCMO Performance Category		EPL 4		Test		
	EPL 3	SAE 0W-20, 5W-20, 5W-30, 10W-30	All Other Viscosity Grades			
(1)	(2)	(3)	(4)	(5)		
Phosphorous Content ¹ , percent by mass, <i>Max</i>	0.12	0.12	0.12	IS 1448 (Part 54)		
TEOST high temperature deposits, mg, <i>Max</i>		60	60	ASTM D6335		
Gelation index ¹ , Max		12	Not Required	ASTM D5133		
HTHS viscosity at 150 °C, mPa-s, <i>Min</i>		Not Required	2.6	ASTM D4683 / ASTM D4741 / ASTM D5481		
Volatility ² loss, percent, <i>Max</i>		22	20	ASTM D5800		
	OR					
Volatility ² loss at 371 °C, percent,		17	15	ASTM D6417		

Max			
	OR		
Volatility ² loss at 371 °C, percent <i>Max</i>	 17	15	ASTM D5480
(EOFT), percent flow reduction, <i>Max</i>	 50	50	ASTM D6795
Phosphorus, <i>m/m</i> , percent, <i>Max</i>	 0.10	Not Required	
Phosphorus, <i>m/m</i> , percent, <i>Min</i> (unless valid results from ASTM D5302 are obtained)	 0.06	0.06	ASTM D4951 / ASTM D5185
Foaming tendency (Option A), <i>Max</i>			
Sequence I	 10 /		ASTM D892
Sequence II	 50 /		
Sequence III	 10 /	0	
Static foam, tendency/stability, <i>Max</i> (optional blending required)	 200/50	200/50	ASTM D6082
Homogeneity and miscibility	 Homogeneous with SAE reference oil	Homogeneous with SAE reference oil	ASTM D6922

NOTES

¹ Phosphorous content and gelation index limits applicable to 0W-20, 5W-20, 5W-30 and 10W-30 viscosity grades only. ² Passing volatility loss only required for SAE 15W-40 oils.

Table 10.1 Engine Test Sequence for Petrol Engine Oils for EPL 5

Test Technique	Characteristics	Primary Requirements EPL5	Method of Test		
(1)	(2)	(3)	(4)		
	a) Kinematic viscosity, percent increase at 40 °C, <i>Max</i>	275			
Sequence IIIF	b) Average piston skirt varnish rating, <i>Min</i>	9.0	ASTM D6984		
	c) Weighted piston deposit rating ¹ , <i>Min</i>	4.0			
	d) Screened average cam-cum-lifter wear, μm, <i>Max</i>	20 ²			
	e) Hot stuck rings	None			
	f) Low temperature viscosity performance, mPa-s ³	Report	ASTM D4684 / ASTM D5293		
	OR				

			October 2024
Sequence	a) Kinematic viscosity, percent increase at 40 °C, <i>Max</i>	150	
IIIG	b) Weighted piston deposit rating, Min	3.5	ASTM D7320
	c) Cam plus lifter wear, µm, Max	60	
	d) Hot stuck rings	None	
	e) Low temperature viscosity performance ⁴	Report	ASTM D4684
Sequence IIIH	a) 70 h kinematic viscosity, percent increase at 40 °C, <i>Max</i>	181	
	b) 70 h average weighted piston deposits, merits, <i>Min</i>	3.3	ASTM D8111
	c) 70 h average piston skirt varnish, merits, <i>Min</i>	7.9	
Sequence IVA	Cam wear average, µm, <i>Max</i>	120	ASTM D6891
Sequence VE ¹	a) Cam wear average, µm, <i>Max</i>	127	ASTM D5302
	b) Cam wear max, µm, <i>Max</i>	380	
Sequence VG	a) Average engine sludge rating, <i>Min</i>	7.8	
	b) Rocker arm cover sludge rating, Min	8.0	
	c) Average piston skirt varnish rating, <i>Min</i>	7.5	ASTM D6593
	d) Average engine varnish rating, <i>Min</i>	8.9	
	e) Oil screen clogging, percent, Max	20	
	f) Compression ring sticking (hot stuck)	None	
	g) Cold stuck rings	Report	
	h) Oil screen debris, percent	Report	
	j) Oil ring clogging, percent	Report	
	OR		
Sequence VH	a) Average engine sludge, merits, Min	7.4	
	b) Average rocker cover sludge, merits, <i>Min</i>	7.4	
	c) Average engine varnish, merits, Min	8.6	ASTM D8256
	d) Average piston skirt varnish, merits, <i>Min</i>	7.4	4
	e) Oil screen clogging, percent area	Rate and Report	
	f) Hot stuck compression rings	None	
Sequence	a) Bearing weight loss, mg, Max	26.4	ASTM D6709

			000000000000000000000000000000000000000
VIII	b) Shear stability	Refer Table 11.3A	
	b) Shear stability	Kelel Table 11.5A	ASTM D6278

NOTES

¹Not required for oils containing a minimum of 0.06 percent mass phosphorous in the form of ZDDP.

 2 Calculate by eliminating the highest and lowest cam-plus-lifter wear result and then calculating an average based on the remaining ten rating positions.

³ Evaluate the 80 h test oil sample by test Method ASTM D4684 at the temperature indicated by the low temperature grade of oil as determined on the 80 h sample by Test Method ASTM D5293.

⁴ Measure the viscosity of the EOT oil sample by Test Method ASTM D4684 in mPa-s. The measured viscosity shall meet the requirements of the original grade or the next higher grade.

Table 10.2 Bench Tests of EPL 5

Characteristics	SAE 0W-20, 5W-20, 5W-30, 10W-30	Other Viscosity Grades	Method of Test
High temperature/high shear at 150 °C, <i>Min</i> , mPa-s) As per SAE J300		ASTM D4683 / ASTM D4741 / ASTM D5481
Ball rust test, average grey value, <i>Min</i>	100	100	ASTM D6557
Volatility loss, percent, Max	15	15	ASTM D5800
Volatility loss at 371 °C, percent, Max	10	10	ASTM D6417
EOFT, percent flow reduction, Max	50	50	
EOWTT, percent flow reduction, Max			ASTM D6795
With 0.6 percent H ₂ O	50	50	
With 1.0 percent H ₂ O	50	50	
With 2.0 percent H ₂ O	50	50	_
With 3.0 percent H ₂ O	50	50	
Phosphorus, <i>m/m</i> , percent, <i>Max</i>	0.10	Not Required	ASTM D4951 / ASTM
Phosphorus, <i>m/m</i> , percent, <i>Min</i>	0.06	0.06	D5185
Foaming tendency, foaming/settling, ml/ml, <i>Max</i>			
a) Sequence I	10 / 0	10 / 0	ASTM D892
b) Sequence II	50 / 0	50 / 0]
c) Sequence III	10 / 0	10 / 0	
Static foam, tendency / stability, Max	100 / 0	100 / 0	ASTM D6082
Homogeneity and miscibility	Homogeneous with SAE reference oil		ASTM D6922

High temperature deposit (TEOST MHT-4), mg, <i>Max</i>	45	45	ASTM D7097
Gelation index, <i>Max</i> ¹	12^{2}	12^{2}	ASTM D5133

NOTES

¹ Requirement applies only to SAE 0W-20, 5W-20, 0W-30, 5W-30 and 10W-30 viscosity grades ² For gelation temperature at or above the W grade pump ability temperature as defined in SAE J300

Table 11.1 Engine Test Sequence for Petrol Engine Oils for EPL6 and EPL 7

			Method of Test				
Test Technique	Test chnique Characteristics EPL 6 EPL 7		PL 7	L 7 EPL7 with Resour ce			
(1)	(2)	(3))	(4)		(5)	(6)
		SAE 0W-20, 5W-20, 0W-30, 5W-30, 10W-30	All others	SAE 0W-16, 5W-16, 0W-20, 5W-20, 0W-30, 5W-30, 10W-30	All others	All viscosit y grades	
Sequence IIIG		Pass	Pass	Pass	Pass	Pass	
	Kinematic viscosity, percent increase at 40°C, <i>Max</i>	150	150	150	150	150	ASTM
	Weighted piston deposit rating, <i>Min</i>	3.5	3.5	4	4	4	D7320
	Cam plus lifter wear, µm, <i>Max</i>	60	60	60	60	60	
	Hot stuck rings	None	None	None	None	None	
			OR				
Sequence IIIH	Kinematic viscosity, percent increase at 40 °C, <i>Max</i>	150	150	150	150	150	
	Average weighted piston deposits, merits, <i>Min</i>	3.2	3.2	3.7	3.7	3.7	ASTM D8111
	Hot stuck rings	None	None	None	None	None	

	-					October 2	024
Sequence IIIGA	Low temperature viscosity performance	Pass	Not Requi red	Refer bench test			ASTM D4684
			OR				
ROBO test (MRV TP- 1)	Low temperature viscosity performance	Pass	Not Requi red	-	-	-	
		OR					ASTM
Sequence IIIHA	Low temperature viscosity performance	Pass	Not Requi red	-	-	-	D4684
Sequence IVA	Cam wear average, µm, <i>Max</i>	90	90	90	90	90	ASTM D6891
Sequence VG		Pass	Pass	Pass	Pass	Pass	
	Average engine sludge rating, <i>Min</i>	7.8	7.8	8.0	8.0	8.0	
	Rocker arm cover sludge rating, <i>Min</i>	8.0	8.0	8.3	8.3	8.3	
	Average piston skirt varnish rating, <i>Min</i>	7.5	7.5	7.5	7.5	7.5	
	Average engine varnish rating, <i>Min</i>	8.9	8.9	8.9	8.9	8.9	ASTM
	Oil screen sludge, percent area, <i>Max</i>	20	20	15	15	15	D6593
	Oil screen debris, percent	Report	Repo rt	Report	Report	Report	
	Compression ring sticking (hot stuck)	None	None	None	None	None	
	Cold stuck rings	Report	Repo rt	Report	Report	Report	
	Oil ring clogging, percent	Report	Repo rt	Report	Report	Report	
			OR				
Sequence VH		Pass	Pass	Pass	Pass	Pass	
	Average engine sludge, merits, <i>Min</i>	7.4	7.4	7.6	7.6	7.6	
	Average rocker cover sludge, merits, <i>Min</i>	7.4	7.4	7.7	7.7	7.7	
	Average engine varnish, merits, <i>Min</i>	8.6	8.6	8.6	8.6	8.6	

						October 2	024	
	Average piston skirt varnish, merits, <i>Min</i>	7.6	7.6	7.6	7.6	7.6		
	Oil screen clogging, percent area	Report	Repo rt	Report	Report	Report		
	Hot stuck compression rings	None	None	None	None	None		
Sequence VID		Not Require	Not Requi	Not Require	Not Required	Pass		
	For SAE xW-16 visc			•	,			
	FEI SUM, percent, Min					2.8		
	FEI 2, percent after 100h aging, <i>Min</i>					1.3		
	For SAE xW-20 visc	osity grade						
	FEI SUM, percent, Min		—			2.6		
	FEI 2, percent after 100h aging, <i>Min</i>					1.2	ASTM D7589	
	For SAE xW-30 viscosity grade							
	FEI SUM, percent, Min					1.9		
	FEI 2, percent after 100h aging, <i>Min</i>		_			0.9		
	For SAE 10W-30 and all other viscosity grade							
	FEI 2, percent after 100h aging, <i>Min</i>					1.5		
	For SAE 10W-30 and all others, FEI SUM, percent, <i>Min</i>		_			0.6		
	Bolin, percent, min		OR		I		<u> </u>	
Sequence		Not	Not	Not	Not	Pass		
VIF		Require d	Requi red	Required	Required			
	For SAE xW-16 viscosity grade							
	FEI SUM, percent, Min					3.7	ASTM D8226	
	FEI 2, percent after 100 h aging, <i>Min</i>		_			1.8		

		-				October 2	024
Sequence		Not	Not	Not	Not	Pass	
VIĒ		Require	Requi	Required	Required		
		d	red	1	1		
	For SAE xW-20 visc	osity grade					
			1	1	1	1	
	FEI SUM, percent, Min					3.2	
	FEI 2, percent after 125 h aging, <i>Min</i>		_			1.5	
	For SAE xW-30 visc	osity grade					ASTM
	FEI SUM, percent, <i>Min</i>					2.5	D8114
	FEI 2, percent after 125 h aging, <i>Min</i>					1.2	
	For SAE 10W-30 vis	cosity grad	e				
	FEI SUM, percent, <i>Min</i>					2.2	
	FEI 2, percent after 125 h aging, <i>Min</i>					1.0	
Sequence		Not	Not	Not	Not	Pass	
VIF		Require	Requi	Required	Required		
		d	red				
	For SAE xW-16 viscosity grade					ASTM D8226	
	FEI SUM, percent, Min					3.7	00220
	FEI 2, percent after 125 h aging, <i>Min</i>					1.8	
Sequence VIII	Bearing weight loss, mg, <i>Max</i>	26	26	26	26	26	ASTM D6709

Table 11.2 Bench tests of EPL 6

Characteristics	SAE 0W-20, 5W-20, 0W-30, 5W-30, 10W-30	Other Viscosity Grades	Method of Test
(1)	(2)	(3)	(4)
Ball rust test, average gray value, <i>Min</i>	100	100	ASTM D6557
Volatility loss, percent, Max	15	15	ASTM D5800
Simulated distillation at 371 °C, percent, <i>Max</i>	10	10	ASTM D6417
EOFT, percent flow reduction, Max	50	50	ASTM D6795
EOWTT, percent flow reduction, <i>Max</i>			ASTM D6794

			October 2024
With 0.6 percent H ₂ O	50	50	
With 1.0 percent H ₂ O	50	50	
With 2.0 percent H ₂ O	50	50	
With 3.0 percent H ₂ O	50	50	
Phosphorus, <i>m/m</i> , percent, <i>Max</i>	0.08	Not Required	ASTM D4951
Phosphorus, <i>m/m</i> , percent, <i>Min</i>	0.06	0.06	
Sulphur, <i>m/m</i> , percent, <i>Max</i>			
0W-20, 5W-20, 0W-30,5W-30	0.5	Not Required	ASTM D4951 /
10W-30	0.7	Not Required	ASTM D2622
Foaming tendency, foaming/settling, ml/ml, <i>Max</i>			ASTM D892
a) Sequence I	10 / 0	10 / 0	ASTM D892
b) Sequence II	50 / 0	50 / 0	
c) Sequence III	10 / 0	10 / 0	
High temperature foaming, tendency /stability, <i>Max</i>	100 / 0	100 / 0	ASTM D6082
Homogeneity and miscibility	Homogeneous with reference oi		ASTM D6922
(Sequence VIII) Shear Stability	Refer Table 11	.3A	ASTM D6709
	OR		
Shear Stability (30 Passes)	Refer Table 11.3A		ASTM D6278
High temperature deposit (TEOST MHT), mg, <i>Max</i>	35	45	ASTM D7097
Gelation index, Max	12 ¹	Not Required	ASTM D5133

NOTES

¹ To be evaluated from -5 °C to the temperature at which 40000cP is attained or -40 °C or 2 °C below the appropriate MRV TP-1 temperature, whichever occurs first.

Table 11.3 Bench tests of EPL 7

(*Clauses* 3.1.2 and 3.4)

	EPL 7		EPL 7 with Resource Conserving	Method of
Characteristics	SAE 0W-16, 5W- 16, 0W-20, 5W- 20, 0W-30, 5W- 30, 10W-30	Other Viscosity Grades	All Viscosity Grades	Test
Aged oil low-temperature viscosity, Sequence IIIGA	Pass	Pass	Pass	ASTM D4684
	OR			

		1	<u> </u>	October 2024
Aged oil low-temperature viscosity, ROBO test	Pass	Pass ¹	Pass ¹	ASTM D7528
Sequence IIIGB P retention percent, <i>Min</i>	Not Required	Not Required	79	ASTM D7320
OR				
Sequence IIIHB P retention percent, <i>Min</i>	Not Required	Not Required	81	ASTM D7320
High temperature/high shear viscosity at 150 °C, mPa-s, <i>Min</i>	2.3	2.6	2.3	ASTM D4683 / ASTM D4741 / ASTM D5481
Ball rust test, average grey value, <i>Min</i>	100	100	100	ASTM D6557
Volatility loss, percent Max	15	15	15	ASTM D5800
Simulated distillation at 371°C, percent, <i>Max</i>	10	10	10	ASTM D6417
EOFT, percent flow reduction, <i>Max</i>	50	50	50	ASTM D6795
EOWTT, percent flow reduction, <i>Max</i>				
With 0.6 percent H ₂ O	50	50	50	
With 1.0 percent H ₂ O	50	50	50	ASTM
With 2.0 percent H ₂ O	50	50	50	D6794
With 3.0 percent H ₂ O Catalyst compatibility	50	50	50	
Phosphorus, <i>m/m</i> , percent	0.06 to 0.08	0.06, <i>Min</i> ¹	0.06 to 0.08	ASTM D4951 / ASTM D5185
Sulphur, <i>m/m</i> , percent, <i>Max</i>				
0W-16, 0W-20, 5W- 20,5W-16 0W-30,5W-30	0.5 ²	Not Required	0.5 ²	ASTM D4951 / ASTM
10W-30	0.6^{2}	Not Required	0.6^{2}	D2622
All other viscosity grades	Not Required	Not Required	0.6 ²	
Foaming tendency, foaming/settling, ml/ml, <i>Max</i>				ASTM D892
a)Sequence I	10 / 0	10 / 0	10 / 0	

			L L	Dctober 2024
b) Sequence II	50 / 0	50 / 0	50 / 0	
c) Sequence III	10 / 0	10 / 0	10 / 0	
High temperature foaming,	100 / 0	100 / 0	100 / 0	ASTM
tendency /stability, Max				D6082
Homogeneity and	Homogeneous v	with ASTM ref	erence oil	ASTM
miscibility	Homogeneous		erenee on	D6922
(Sequence VIII) Shear	ASTM			
stability	Refe	r Table 11.3A		D6709
	OR			
Shear stability (30 Passes)	Refer Table	11.3A	-	ASTM
				D6278
High temperature deposit	35	45	35	ASTM
(TEOST MHT), mg, Max				D7097
Gelation index, Max	12 ³	Not	12 ³	ASTM
		Required		D5133
High temperature deposit		Not	Not	
(TEOST 33C), Total	Not Required	Required	Required	
deposit weight, mg, Max		1	. 1	
SAE 0W-20	Not Required	Not	Not	ASTM
SAE 0W-20	Not Kequileu	Required	Required	D6335
		-	-	
All other viscosity grades	Not Required	Not	30	
	_	Required		
	Not Doquired	Not	No water	ASTM
Emulsion retention	Not Required	Required	separation	D7563

NOTES

¹Not required for mono grade and 15W, 20W, and 25W multigrades.

³ To be evaluated from -5 °C to the temperature at which 40000cP is attained or -40 °C or 2 °C below the appropriate MRV TP-1 temperature, whichever occurs first.

Table 11.3A Requirements of CRC L-38/Sequence VIII / ASTM D6278 (30 Passes) Tests Stay-In-Grade

(Clauses 3.1.2, 3.4; and applicable for shear stability tests mentioned in Tables 9.1, 10.1, 11.2, 11.3 and 13.2)

Viscosity Grade	10 h Stripped Kinematic Viscosity at 100 °C, mm²/s, <i>Min</i> (L-38/Sequence VIII)	Kinematic viscosity at 100 °C, mm²/s, <i>Min</i> (ASTM D6278)
(1)	(2)	(3)
XW-16	6.1	5.8

² For all viscosity grades: If CH-4, CI-4 and/or CJ-4 categories precede the "S" category and there is no API Certification Mark, the "S" category limits for phosphorus, sulfur and TEOST MHT do not apply. However, the CJ-4 limits for phosphorus and sulfur do apply for CJ-4 oils. This footnote cannot be applied if when CK-4 and FA-4 is also claimed. Note that these "C" category oils have been formulated primarily for diesel engines and may not provide all of the performance requirements consistent with vehicle manufacturers' recommendations for gasoline-fueled engines.

XW-20	6.9	6.5
XW-30	9.3	8.5
XW-40	12.5	11.5
XW-50	16.3	15.0
XW-60	21.9	19.8

Table 12.1 Engine Tests Requirement for EPL 8 (Cl 2.1.2 12.4

(*Clauses* 3.1.2 and 3.4)

	EPL8		EPL8 with Resource Conserving	Method of Test
Characteristics	SAE 0W-16, 5W-16, 0W-20, 5W-20, 0W-30, 5W-30, 10W-30	Other Viscosity Grades	All Viscosity Grades	
All engine tests as per EPL 7	Pass	Pass	Pass	
Sequence IX, average numbers of events, <i>Max</i>	5	5	5	ASTM D8291

Table 12.2 Bench Tests Requirement for EPL 8

(*Clauses* 3.1.1 *and* 3.4)

Characteristics	EPL8	EPL 8 with Resource Conserving
	Requirements	Requirements
All bench tests as per EPL 7	Pass	Pass

Table 13.1 Engine Tests Requirement for EPL 9(Clauses 3.1.1 and 3.4)

Test Technique	Characteristics	EPL 9		EPL9 with Resource Conserving	
		SAE 0W-16, 5W-16, 0W-20, 5W-20, 0W-30, 5W-30, 10W-30	Other Viscosity Grades	All Viscosity Grades	Method of Test
Sequence IIH	Kinematic viscosity, percent increase at 40°C, <i>Max</i>	100	100	100	ASTM
	Average weighted piston deposits, merits, <i>Min</i>	4.2	4.2	4.2	D8111
	Hot stuck rings	None	None	None	
Sequence IVB	Average intake lifter volume loss, mm ³ , <i>Max</i>	2.7	2.7	2.7	ASTM D8350
	End of test iron, ppm,	400	400	400	ASTM

				October 20	24
	Max				D8256
Sequence VH	Average engine sludge, merits, <i>Min</i>	7.6	7.6	7.6	
	Average rocker cover sludge, merits, <i>Min</i>	7.7	7.7	7.7	
	Average engine varnish, merits, <i>Min</i>	8.6	8.6	8.6	
	Average piston skirt varnish, merits, <i>Min</i>	7.6	7.6	7.6	
	Oil screen sludge, percent area	Report	Report	Report	
	Oil screen debris, percent area	Report	Report	Report	
	Hot – stuck compression rings	None	None	None	
	Cold stuck rings	Report	Report	Report	
	Clogging, percent area	Report	Report	Report	
Sequence VIE					
	For SAE xW-20 viscosity	y grade			
	FEI SUM, percent, Min			3.8	
	FEI 2, percent after 125 h aging, <i>Min</i>			1.8	
	For SAE xW-30 viscosity	y grade			
	FEI SUM, percent, Min			3.1	ASTM
	FEI 2, percent after 125 h aging, <i>Min</i>			1.5	D8114
	For SAE 10W-30 viscosity grade and all other grades				
	FEI SUM, percent, Min			2.8	
	FEI 2, percent after 125 h aging, <i>Min</i>			1.3	
Sequence VIF	For SAE xW-16 viscosity	v grade			
1	FEI SUM, percent, Min			4.1	ASTM
	FEI 2, percent after 125 h aging, <i>Min</i>			1.9	D8226
Sequence VIII	For SAE XW-16	Not Required	Not Required	Not Required	
	Bearing weight loss, mg, <i>Max</i> (For all viscosity grades)	26	26	26	ASTM D6709
Sequence IX	Average of events for four iterations, <i>Max</i>	5	5	5	ASTM
1	Number of events per iteration, <i>Max</i>	8	8	8	D8291
Sequence X	Percent increase, Max	0.085	0.085	0.085	ASTM D8279

Table 13.2 Bench Tests Requirement for EPL 9
(<i>Clauses</i> 3.1.1 and 3.4)

Characteristics	EPL 9		EPL 9 with Resource Conserving	Method of Test
	SAE 0W-16, 5W-16, Other 0W-20, 5W-20, 0W- Viscosity 30, 5W-30, 10W-30 Grades		All Viscosity Grades	
(1)	(2)	(3)	(4)	(5)
Aged oil low-temperature viscosity, (Sequence IIIHA)	Pass ¹	Pass	Pass	ASTM D8111
Measure aged oil low temperature viscosity on final formulation—this includes base oil and additive combination being licensed—for each viscosity grade by either IIIHA or ROBO	Pass	Pass	Pass	ASTM D4684 (MRV TP- 1)
Measure CCS viscosity of EOT IIIHA or ROBO sample at CCS temperature corresponding to original viscosity grade	Pass	Pass	Pass	As per SAE J300
	OR			
ROBO test, aged oil low- temperature viscosity Measure aged oil low temperature viscosity on final formulation—this includes base oil and additive combination being licensed—for each viscosity grade by either IIIHA or ROBO Measure CCS viscosity of EOT IIIHA or ROBO sample at CCS temperature corresponding to original viscosity grade	Pass	Pass	Pass	ASTM D7528 ASTM D4684 (MRV TP-1) As per SAE J300
High temperature/high shear viscosity at 150 °C, mPa-s, <i>Min</i>	2.3	2.3	2.3	ASTM D4683 / ASTM D4741 / ASTM D5481
Ball rust test, average gray value, <i>Min</i>	100 ²	100 ²	100 ²	ASTM D6557

October 2024						
Evaporation loss, 1 hr at	15	15	15	ASTM		
250 °C, percent, Max		10	10	D5800		
EOFT, percent flow	50	50	50	ASTM		
reduction, Max		20		D6795		
EOWTT, percent flow						
reduction, Max						
With 0.6 percent H ₂ O	50	50	50	ASTM		
With 1.0 percent H ₂ O	50	50	50	D6794		
With 2.0 percent H ₂ O	50	50	50			
With 3.0 percent H ₂ O	50	50	50			
				ASTM		
Phosphorus, <i>m/m</i> , percent	0.08 to 0.06^3	$0.06, Min^3$	0.08 to 0.06^3	D4951 /		
		,		ASTM D5105		
				D5185		
				ASTM		
Seel-share (, , , , , , , , , , , , , , , , , ,	0.5 (E 10W/ 20 :-	N	0.5 (Eq. 10)	D4951 /		
Sulphur, <i>m/m</i> , percent,	0.5 (For 10W-30 is $0.5^{(4)}$	Not	0.5 (For 10W-	ASTM		
Max	$(0.6)^{4)}$	Required	30 is 0.6) ⁴⁾	D5185 /		
				ASTM		
Ecoming ton don ov				D2622		
Foaming tendency, foaming/settling, ml/ml,						
Max				ASTM		
Sequence I	10 / 0	10 / 0	10 / 0	D892		
Sequence II	50 / 0	50 / 0	50 / 0	D072		
Sequence III	10 / 0	10/0	10 / 0			
High temperature	1070	1070	1070			
foaming, tendency	100 / 0	100 / 0	100 / 0	ASTM		
/stability, Max	10070	10070	10070	D6082		
Homogeneity and				ASTM		
miscibility	Homogeneous	with ASTM re	eference oil	D6922		
				ASTM		
(Sequence VIII) Shear	Ref	er Table 11.3A	1	D6709		
stability						
	OR			·		
		er Table 11.3A		ASTM		
Shear stability (30 Passes)				D6278		
	104	Not	104	ASTM		
Gelation index, Max^2	124	Required	12^{4}	D5133		
III als to us to the training		· ·	30, Not			
High temperature deposit	N-4 D 1	Not	Required (for	ASTM		
(TEOST 33C), total	Not Required	Required	SAE 0W-20	D6335		
deposit weight, mg, Max		1	and XW-16)	-		
	 .	Not	No water	ASTM		
Emulsion retention	Not Required	Required	separation	D7563		
		inquireu	Puluion	27000		

NOTES

¹Not required for mono grade and 15W, 20W and 25W multigrades.

² If CI-4, CJ-4, CK-4 and/or FA-4 categories precede the "S" category and there is no API Certification Mark, the Sequence VH (ASTM D8256), Ball Rust (ASTM D6557), and Gelation Index (ASTM D5133) tests are not required.

³ For all viscosity grades: If CH-4, CI-4 and/or CJ-4 categories precede the "S" category and there is no API Certification Mark, the "S" category limits for phosphorus and sulfur do not apply. However, the CJ-4 limits for

phosphorus and sulfur do apply for CJ-4 oils, and the phosphorus limit in the "SP with "Resource Conserving" column (0.08 percent mass maximum) applies when CK-4 with SP or FA-4 with SP is claimed. Note that these "C" category oils have been formulated primarily for diesel engines and may not provide all of the performance requirements consistent with vehicle manufacturers' recommendations for gasoline-fueled engines.

⁴To be evaluated from -5 °C to the temperature at which 40000 cP is attained or -40 °C or 2 °C below the appropriate MRV TP-1 temperature, whichever occurs first.

Table 13.3 Seal Tests Requirement for EPL 9

(Clauses 3.1.1 and 3.4)

Candidate oil testing for elastomer compatibility shall be performed using the five Standard Reference Elastomers (SREs) referenced herein and defined in SAE J2643. Candidate oil testing shall be performed according to ASTM D7216. The post-candidate-oil-immersion elastomers shall conform to the specification limits detailed herein.

Elastomer Material (SAE J2643)	Test Procedure	Material Property	Units	Limits
	ASTM D471	Volume	$\frac{\text{percent}}{\Delta}$	-5, 9
Polyacrylate Rubber (ACM-1)	ASTM D2240	Hardness	points	-10, 10
	ASTM D412	Tensile Strength	$\frac{\text{percent}}{\Delta}$	-40, 40
Hadar and d Nitella Dath an	ASTM D471	Volume	$\frac{\text{percent}}{\Delta}$	-5, 10
Hydrogenated Nitrile Rubber (HNBR-1)	ASTM D2240	Hardness	points	-10, 5
	ASTM D412	Tensile Strength	$\frac{\text{percent}}{\Delta}$	-20, 15
	ASTM D471	Volume	$\frac{\text{percent}}{\Delta}$	-5, 40
Silicone Rubber (VMQ-1)	ASTM D2240	Hardness	points	-30, 10
	ASTM D412	Tensile Strength	$\frac{\text{percent}}{\Delta}$	-50, 5
	ASTM D471	Volume	$\frac{\text{percent}}{\Delta}$	-2, 3
Fluorocarbon Rubber (FKM-1)	ASTM D2240	Hardness	points	-6, 6
	ASTM D412	Tensile Strength	$\frac{\text{percent}}{\Delta}$	-65, 10
	ASTM D471	Volume	$\frac{\text{percent}}{\Delta}$	-5, 30
Ethylene Acrylic Rubber (AEM-1)	ASTM D2240	Hardness	points	-20, 10
	ASTM D412	Tensile Strength	$\frac{\text{percent}}{\Delta}$	-30, 30

Table 14 Requirement for Physico-Chemical Properties (other than viscosity)[Clause 4.2.2 (a) ,4.2.2 (b) and 7.2]

SI. Characteri Method of **Requirement for Grade** Test no stics SAE SAE SAE SAE SAE SAE SAE Multi-SAE SAE SAE Grade 15W 20W 25W 5W 10W 20 30 40 0 50 60 W

Doc: PCD 25 (26822) WC

		October 2024						2024						
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
i)		Whe	When examined in transmitted light in a colourless glass test-tube of 25									Visual		
	Appearance	mm	mm internal diameter, oil shall be clear, bright and free from turbidity											
							and s	edime	nt	1		r		
ii)														IS 1448
	Viscosity	100	100	100	95	95	95	95	95	90	90	90		(Part 56) /
	index, Min	100	100	100	75))	15)))5	70	70	70		ASTM
														D2270
iii)	Pour													IS 1448
	Point ¹ , °C,	-33	-33	-27	-24	-21	-15	-9	-6	-6	-6	6		(Part 10) /
	Max													ASTM D97
iv)														IS 1448
	Flash												200	(Part 69) /
	Point ² , °C,	160	160	190	190	200	200	200	215	215	220	220	or	IS 1448
	Min												185	(Part 21) /
														ASTM D92
v)	Evaporativ													IS 1448
	e loss,	20	20	20	15	15	15	15	10	10	10	10	22 or	` /
	percent,	-	_	_	_						-	-	20^{3}	ASTM
• `	Max													D5800
vi)														IS 1448
	Foaming ter	Idency	y ⁴ foa	ming/s	settling	, ml/n	nl, Ma	x						(Part 67) /
	_	-		•	-									ASTM
	a) at 24													D892
	a) at 24 °C	25 / Nil												
	b) at 93.5													
	°C	150 / Nil												
	c) at 24													
	°C after													
	test at		25 / Nil											
	93.5 °C													
	75.5 C													

NOTES

¹ For defence requirement pour point for SAE 30 and SAE 40 shall be -18 °C, Max and for SAE 50 shall be -9 °C, Max.

² Flash point for multigrade is valid only for 0W-20, 5W-20, 5W-30, 10W-30 and for other multigrades it is not required.

³ Evaporation loss for SAE 0W-20, 5W-20, 5W-30, 10W-30 is 22 and for SAE 15W-40 it is 20.
 ⁴ For EPL 4 category the foaming tendency requirement shall be 10/0, 50/0, 10/0 (P-67) and 200/50 for high temp foaming tendency (ASTM D6082).
 ⁵ The above table is reference purpose only and applicable for older grades. However, bench test requirements of EPL5 to EPL8 and EDL8 to EDL12 grades as per respective table shall be followed.

ANNEX A

(Clause 2)

LIST OF REFERRED STANDARDS

IS No./	Title
International	
Standards	
IS 1447 (Part 1) :	Methods of sampling of petroleum and its products Part 1 Manual sampling
2021	(second revision)

IS 1448	Methods of test for petroleum and its products
(Part 1/ sec 2) :	Determination of base number of petroleum products by Potentiometric titration
2002	(second revision)
(Part 4/sec 2) :	Part 4/Section 2 Ash from Grease, Sulphated Ash and Water Soluble Ash
2021	(fourth revision)
(Part 10/sec2) :	
2021 / ISO 3016	Petroleum and Related Products from Natural or Synthetic Sources Section 2
: 2019	Determination of pour point (<i>third revision</i>)
(Part 16) : 2014 /	Crude petroleum and liquid petroleum products — Laboratory determination of
ISO 3675 : 1998	density — Hydrometer method (fourth revision)
(Part 21) : 2019 /	Determination of Flash Point — Pensky-Martens Closed Cup Method (third
ISO 2719 : 2016	revision)
(Part 25/Sec 1):	Transmission of the second line in the second
2018 / ISO 3104	Transparent and opaque liquids Section 1 Determination of kinematic viscosity
: 1994	and calculation of dynamic viscosity (second revision)
(Part 33) : 2021	Sulphur by high pressure decomposition device method (second revision)
(Part 54) : 2017	Determination of Phosphorus Content — Quinoline Phosphomolybdate Method
	(third revision)
(Part 56) : 2013 /	Coloulation of Viscouty Index from Viscoutic Viscout (1)
ISO 2909 : 2002	Calculation of Viscosity Index from Kinematic Viscosity (<i>third revision</i>)
(Part 67) : 2020	Determination of foaming characteristics of lubricating oils (second revision)
(Part 69): 2019	Determination of flash and fire points — Cleveland open cup method (second
/ ISO 2592:2017	revision)
(Part 86) : 2023	Determination of total base number by potentiometrical perchloric acid titration
`	method (first revision)
(Part 136) : 1991	Determination of evaporation loss of lubricating oils (Noack's method)
(Part187): 2021/	Petroleum Products — Determination of Sulfated Ash in Lubricating Oils and
ISO 3987 : 2010	Additives
ASTM D92-18	Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester
ASTM D97-17B	Standard Test Method for Pour Point of Petroleum Products
ACTM D120 10	Standard Test Method for Corrosiveness to Copper from Petroleum Products by
ASTM D130-19	Copper Strip Test
	Standard Test Method for Acid Number of Petroleum Products by
ASTM D664-24	Potentiometric Titration
ASTM D874-23	Standard Test Method for Sulfated Ash from Lubricating Oils and Additives
ASTM D892-23	Standard Test Method for Foaming Characteristics of Lubricating Oils
A STM D2270 24	Standard Practice for Calculating Viscosity Index from Kinematic Viscosity at
ASTM D2270-24	40 °C and 100 °C
	Standard Test Method for Sulfur in Petroleum Products by Wavelength
ASTM D2622-24	Dispersive X-ray Fluorescence Spectrometry
A STNI D2006 21	Standard Test Method for Base Number of Petroleum Products by
ASTM D2896-21	Potentiometric Perchloric Acid Titration
A STNI D 4050 00	Standard Test Method for Density, Relative Density, and API Gravity of
ASTM D4052-22	Liquids by Digital Density Meter
A STNI DA405 24	Standard Specification for Performance of Active API Service Category Engine
ASTM D4485-24	Oils
	Standard Test Method for Trace Nitrogen in Liquid Hydrocarbons by
ASTM D4629-24	Syringe/Inlet Oxidative Combustion and Chemiluminescence Detection
ASTM D4682 20	Standard Test Method for Measuring Viscosity of New and Used Engine Oils at High Shear Pate and High Temperature by Tenered Paering Simulator
ASTNI D4083-20	High Shear Rate and High Temperature by Tapered Bearing Simulator Viscometer at 150 °C

ASTM D4684- 20A	Standard Test Method for Determination of Yield Stress and Apparent Viscosity of Engine Oils at Low Temperature
ASTM D4711-89	Standard Test Method for Sulfonic and Sulfuric Acids in Alkylbenzene Sulfonic Acids
ASTM D4739-23	Standard Test Method for Base Number Determination by Potentiometric Hydrochloric Acid Titration
ASTM D4864-90	Standard Test Method for Determination of Traces of Methanol in Propylene Concentrates by Gas Chromatography
ASTM D4951-14	Standard Test Method for Determination of Additive Elements in Lubricating Oils by Inductively Coupled Plasma Atomic Emission Spectrometry
ASTM D5133 - 20A	Standard Test Method for Low Temperature, Low Shear Rate, Viscosity/Temperature Dependence of Lubricating Oils Using a Temperature- Scanning Technique
ASTM D5185-18	Standard Test Method for Multielement Determination of Used and Unused Lubricating Oils and Base Oils by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES)
ASTM D5291-21	Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Petroleum Products and Lubricants
ASTM D5293-20	Standard Test Method for Apparent Viscosity of Engine Oils and Base Stocks Between –10 °C and –35 °C Using Cold-Cranking Simulator
ASTM D5302- 00A	Standard Test Method for Evaluation of Automotive Engine Oils for Inhibition of Deposit Formation and Wear in a Spark-Ignition Internal Combustion Engine Fueled with Gasoline and Operated Under Low-Temperature, Light-Duty Conditions
ASTM D5762-24	Standard Test Method for Nitrogen in Liquid Hydrocarbons, Petroleum and Petroleum Products by Boat-Inlet Chemiluminescence
ASTM D5800-21	Standard Test Method for Evaporation Loss of Lubricating Oils by the Noack Method
ASTM D5966-22	Standard Test Method for Evaluation of Engine Oils for Roller Follower Wear in Light-Duty Diesel Engine
ASTM D5967-21	Standard Test Method for Evaluation of Diesel Engine Oils in T-8 Diesel
ASTM D5968-24	121 °C
ASTM D6082-23	Standard Test Method for High Temperature Foaming Characteristics of Lubricating Oils
ASTM D6278- 20A	Standard Test Method for Shear Stability of Polymer Containing Fluids Using a European Diesel Injector Apparatus
ASTM D6335-19	Standard Test Method for Determination of High Temperature Deposits by Thermo-Oxidation Engine Oil Simulation Test
ASTM D6443-24	Standard Test Method for Determination of Calcium, Chlorine, Copper, Magnesium, Phosphorus, Sulfur, and Zinc in Unused Lubricating Oils and Additives by Wavelength Dispersive X-ray Fluorescence Spectrometry (Mathematical Correction Procedure)
ASTM D6557 - 18e1	Standard Test Method for Evaluation of Rust Preventive Characteristics of Automotive Engine Oils
	· · · · · · · · · · · · · · · · · · ·

ASTM D659 18e1 Standard Test Method for Evaluation of Automotive Engine Oils for Inhibition of Deposit Formation in a Spark-Ignition Internal Combustion Engine Oils ASTM D6594 - Standard Test Method for Evaluation of Corrosiveness of Diesel Engine Oil at 135 °C ASTM D6618-23 Standard Test Method for Evaluation of Engine Oils in Diesel Four-Stroke Cycle Supercharged 1M-PC Single Cylinder Oil Test Engine ASTM D6681-23 Standard Test Method for Evaluation of Engine Oils in a High Speed, Single- Cylinder Diesel Engine—Caterpillar 1P Test Procedure (Cylinder Diesel Engine—Caterpillar 1P Test Procedure (O,04 % Fuel Sulfur) ASTM D6709-24 Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence VIII Spark-Ignition Engine (CLR Oil Test Engine) Standard Test Method for Determination of Homogeneity and Miscibility in ATM D6705-23 Standard Test Method for Determination of Homogeneity and Miscibility in Automotive Engine Oils ASTM D6975-03 Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIF. Spark-Ignition Engine ASTM D6984/ 05087/0877M- 05087/0877M- 05108 Standard Test Method for Evaluation of Diesel Engine Oils in T-10 Exhaust Gas Recirculation Diesel Engine ASTM D7042 - 1861 Standard Test Method for Dynamic Viscosity and Density of Liquids by Stabinger Viscometer (and the Calculation of Micematic Viscosity) Standard Test Method for Determination of Moderately High Temperature ASTM D7097-19 Standard Test Method for Determination of Automotive Engine Oils in the Sequence IIIG, Spark-Ignition Engine ASTM D704		October 2024
18e1 of Deposit Formation in a Spark-Ignition Internal Combustion Engine Pieled with Gasoline and Operated Under Low-Temperature. Light-Duty Conditions ASTM D6594- Standard Test Method for Evaluation of Engine Oils in Diesel Engine Oil at 135 °C ASTM D6618-23 Standard Test Method for Evaluation of Engine Oils in Diesel Four-Stroke Cycle Supercharged IM-PC Single Cylinder Oil Test Engine ASTM D6681-23 Standard Test Method for Evaluation of Engine Oils in a High Speed, Single-Cylinder Diesel Engine—Caterpillar 1P Test Procedure ASTM D6709-24 Standard Test Method for Evaluation of Engine Oils in a High-Speed, Single-Cylinder Diesel Engine—Caterpillar (CLR Oil Test Engine) Standard Test Method for Determination of Homogeneity and Miscibility in Automotive Engine Oils Standard Test Method for Determination of Homogeneity and Miscibility in Automotive Engine Oils ASTM D6922- Standard Test Method for Cummins M11 EGR Test Standard Test Method for Evaluation of Diesel Engine Oils in the Sequence IIIF, Spart-Eignition Engine ASTM D6987M- Gas Recirculation Diesel Engine Standard Test Method for Dynamic Viscosity and Density of Liquids by 21a Standard Test Method for Determination of Moderately High Temperature Piston Deposits by Thermo-Oxidation Engine Oil Sinulation Test—TEOST MHT ASTM D7042- Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIF, Spark-Egnition Engine ASTM D7097-19 Piston Deposits by Thermo-Oxidation	A STM D6502	Standard Test Method for Evaluation of Automotive Engine Oils for Inhibition
Ident with Gasoline and Operated Under Low-Temperature, Light-Duty Conditions ASTM D6594 - Standard Test Method for Evaluation of Corrosiveness of Diesel Engine Oil at 135 °C ASTM D6618-23 Standard Test Method for Evaluation of Engine Oils in Diesel Four-Stroke Cycle Supercharged 1M-PC Single Cylinder Oil Test Engine ASTM D6681-23 Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence VIII Spark-Ignition Engine (CLR Oil Test Engine) Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence VIII Spark-Ignition Engine (CLR Oil Test Engine) ASTM D6709-23 Standard Test Methods for Evaluation of Engine Oils in a High-Speed, Single-Cylinder Diresel Engine—1K Procedure (0.4 % Fuel Sulfar) and IN Procedure (0.04 % Fuel Sulfar) ASTM D6922-3 Standard Test Method for Determination of Homogeneity and Miscibility in Automotive Engine Oils ASTM D6925-03 Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIF, Spark-Ignition Engine ASTM D6984M- Standard Test Method for Evaluation of Automotive Engine Oils in T-10 Exhaust Gas Recirculation Diesel Engine Ofe987/6987M- Standard Test Method for Dynamic Viscosity and Density of Liquids by 21a Standard Test Method for Determination of Moderately High Temperature ASTM D7097-19 Standard Test Method for Determining Automotive Engine Oil compatibility with Typical Seal Elastomers ASTM D7216-22 Standard Test Method for Dete		of Deposit Formation in a Spark-Ignition Internal Combustion Engine Fueled
ASTM D6594- Standard Test Method for Evaluation of Corrosiveness of Diesel Engine Oil at 135 °C. ASTM D6618-23 Standard Test Method for Evaluation of Engine Oils in Diesel Four-Stroke Cycle Supercharged IM-PC Single Cylinder Oil Test Engine ASTM D6681-23 Standard Test Method for Evaluation of Automotive Engine Oils in a High Speed, Single-Cylinder Diesel Engine—Caterpillar IP Test Procedure ASTM D6709-24 Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence VIII Spark-Ignition Engine (CLR Oil Test Engine) Standard Test Method for Determination of Homogeneity and Miscibility in Automotive Engine Oils Standard Test Method for Determination of Homogeneity and Miscibility in Automotive Engine Oils ASTM D692- Standard Test Method for Cavaluation of Automotive Engine Oils in the Sequence IIIF, Spark-Ignition Engine ASTM D6984- Standard Test Method for Evaluation of Diesel Engine Oils in T-10 Exhaust Gas Recirculation Diesel Engine ASTM D6984- Standard Test Method for Dynamic Viscosity and Density of Liquids by 21a Standard Test Method for Dynamic Viscosity and Density of Liquids by 21a Standard Test Method for Determining Automotive Engine Oil Compatibility with Typical Seal Elastomers ASTM D7042- Standard Test Method for Determining Automotive Engine Oil Compatibility with Typical Seal Elastomers ASTM D7042-23 Standard Test Method for Determining Automotive Engine Oil Compatibility with Typical Seal Elastomers ASTM D7642-24	1801	
20e1 135 °C ASTM D6618-23 Standard Test Method for Evaluation of Engine Oils in Diesel Four-Stroke Cycle Supercharged IM-PC Single Cylinder Oil Test Engine ASTM D6681-23 Standard Test Method for Evaluation of Automotive Engine Oils in a High-Speed, Single- Cylinder Diesel Engine—Caterpillar IP Test Procedure ASTM D6709-24 Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence VIII Spark-Ignition Engine (CLR Oil Test Engine) Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence VIII Spark-Ignition Engine (OLR Oil Test Engine) ASTM D6970-23 Standard Test Method for Determination of Homogeneity and Miscibility in Automotive Engine Oils ASTM D6984 Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIF, Spark-Ignition Engine ASTM D6984 Standard Test Method for Evaluation of Diesel Engine Oils in T-10 Exhaust Gas Recirculation Diesel Engine D6987/6987M- 05 Standard Test Method for Dynamic Viscosity and Density of Liquids by Standard Test Method for Determination of Moderately High Temperature ASTM D7042- ASTM D7042- Standard Test Method for Determination of Automotive Engine Oil Sin the Sequence IIIG. Spark-Ignition Engine ASTM D7216-22 Standard Test Method for Determination of Moderately High Temperature ASTM D724-23 ASTM D722-5 Standard Test Method for Evaluation of Diesel Engine Oils in the Sequence IIIG. Spark-Igninion Engine	ASTM D6594 -	
ASTM D6618-23 Standard Test Method for Evaluation of Engine Oils in Diesel Four-Stroke Cycle Supercharged IM-PC Single Cylinder Oil Test Engine ASTM D6681-23 Standard Test Method for Evaluation of Engine Oils in a High Speed, Single- Cylinder Diesel Engine—Caterpillar IP Test Procedure ASTM D6709-24 Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence VIII Spark-Ignition Engine (CLR Oil Test Engine) Standard Test Methods for Evaluation of Homogeneity and Miscibility in ASTM D6750-23 Standard Test Method for Determination of Homogeneity and Miscibility in Automotive Engine Oils ASTM D6975-03 Standard Test Method for Cummins M11 EGR Test ASTM D6984- Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIF, Spark-Ignition Engine ASTM D6984- Standard Test Method for Evaluation of Diesel Engine Oils in T-10 Exhaust Gas Recirculation Diesel Engine ASTM D7042 - Standard Test Method for Dynamic Viscosity and Density of Liquids by Standard Test Method for Dynamic Viscosity and Density of Liquids by Standard Test Method for Determining Automotive Engine Oil Compartibility with Typical Seal Elastomers ASTM D7042 - Standard Test Method for Determining Automotive Engine Oil Compatibility with Typical Seal Elastomers ASTM D7216-22 Standard Test Method for Determining Automotive Engine Oil Compatibility with Typical Seal Elastomers ASTM D742-52 Standard Test Method for Detaulation of Engine Oils in the Sequence IIIG,	20e1	-
ASTM D0018-23 Cycle Supercharged 1M-PC Single Cylinder Oil Test Engine ASTM D6681-23 Standard Test Method for Evaluation of Engine Oils in a High Speed, Single-Cylinder Diesel Engine—Caterpillar 1P Test Procedure ASTM D6709-24 Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence VIII Spark-Ignition Engine (CLR Oil Test Engine) Standard Test Method for Evaluation of Engine Oils in A High-Speed, Single-Cylinder Diesel Engine—Ik Procedure (0.4 % Fucl Sulfur) and 1N Procedure (0.04 % Fucl Sulfur) ASTM D6750-23 Standard Test Method for Charmins M11 EGR Test ASTM D6972-03 Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIF, Spark-Ignition Engine ASTM D69787-03 Standard Test Method for Evaluation of Diesel Engine Oils in the Sequence IIIF, Spark-Ignition Engine ASTM D697874- Gas Recirculation Diesel Engine 05987/6987M- Gas Recirculation Diesel Engine 051 Standard Test Method for Determination of Moderately High Temperature ASTM D7042- Standard Test Method for Determining Automotive Engine Oil Compatibility with Typical Seal Elastomers ASTM D707-19 Piston Deposits by Thermo-Oxidation Engine Oil Sinulation Test—TEOST MHT Standard Test Method for Evaluation of Justication Sin the Sequence IIIG, Spark-Ignition Engine ASTM D722-22 Standard Test Method for Evaluation of Moderately High Temperature		Standard Test Method for Evaluation of Engine Oils in Diesel Four-Stroke
ASTM D6681-23 Standard Test Method for Evaluation of Engine Oils in a High Speed, Single- Cylinder Diesel Engine—Caterpillar 1P Test Procedure ASTM D6709-24 Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence VIII Spark-Ignition Engine (CLR Oil Test Engine) ASTM D6750-23 Cylinder Diesel Engine—IK Procedure (0.4 % Fuel Sulfur) and IN Procedure (0.04 % Fuel Sulfur) ASTM D6952-3 Cylinder Diesel Engine—IK Procedure (0.4 % Fuel Sulfur) and IN Procedure (0.04 % Fuel Sulfur) ASTM D6975-03 Standard Test Method for Cummins M11 EGR Test ASTM D6975-03 Standard Test Method for Evaluation of Automotive Engine Oils in the 18e1 Sequence IIIF, Spark-Ignition Engine Standard Test Method for Dynamic Viscosity and Density of Liquids by 21a Standard Test Method for Dynamic Viscosity and Density of Liquids by 21a Standard Test Method for Determination of Moderately High Temperature ASTM D7042 - ASTM D7042 - Standard Test Method for Determination of Moderately High Temperature ASTM D7057-19 Piston Deposits by Thermo-Oxidation Engine Oil Simulation Test—TEOST MHT ASTM D7216-22 Standard Test Method for Evaluation of Automotive Engine Oils in the 3equence IIIG, Spark-Ignition Engine ASTM D7320- Standard Test Method for Evaluation of Automotive Engine Oils in the 3equence IIIG, Spark-Ignition Engine ASTM D7422-23 Standard Test Method for Evaluation of Automotive Engine Oils in the 3e	ASTM D6618-23	-
ASTM D6061-22 Cylinder Diesel Engine — Caterpillar 1P Test Procedure ASTM D6709-24 Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence VIII Spark-Ignition Engine (CLR Oil Test Engine) ASTM D670-23 Cylinder Diesel Engine—IK Procedure (0.4 % Fuel Sulfur) and 1N Procedure (0.04 % Fuel Sulfur) ASTM D6922 - Standard Test Method for Determination of Homogeneity and Miscibility in Automotive Engine Oils ASTM D6975-03 Standard Test Method for Cummins M11 EGR Test ASTM D6984- Standard Test Method for Evaluation of Automotive Engine Oils in the 18e1 Sequence IIIF, Spark-Ignition Engine Standard Test Method for Evaluation of Diesel Engine Oils in T-10 Exhaust Gas Recirculation Diesel Engine 05 Standard Test Method for Determination of Moderately High Temperature Gas Recirculation Diesel Engine 05 Standard Test Method for Determination of Moderately High Temperature ASTM D7042 - 05 Standard Test Method for Determining Automotive Engine Oil Compatibility with Typical Seal Elastomers 05 Standard Test Method for Determining Automotive Engine Oil Compatibility with Typical Seal Elastomers 05 Standard Test Method for Evaluation of Automotive Engine Oils in the 18e1 05 Standard Test Method for Evaluation of Diesel Engine Oils in T-12 Exhaust Gas Recirculation Diesel Engine 05 Standard Test Method for Evaluation of Gusin T-12 Exhaust		Standard Test Method for Evaluation of Engine Oils in a High Speed Single-
ASTM D6709-24 Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence VIII Spark-Ignition Engine (CLR Oil Test Engine) Standard Test Methods for Evaluation of Engine Oils in a High-Speed, Single-ASTM D6750-23 Cylinder Diesel Engine — 1K Procedure (0.4 % Fuel Sulfur) and 1N Procedure (0.04 % Fuel Sulfur) ASTM D6972-0 Standard Test Method for Determination of Homogeneity and Miscibility in Automotive Engine Oils ASTM D6975-03 Standard Test Method for Cummins M11 EGR Test ASTM D6975-03 Standard Test Method for Cummins M11 EGR Test ASTM D6984- Standard Test Method for Detaulation of Automotive Engine Oils in the 18e1 Sequence IIIF, Spark-Ignition Engine ASTM D698706987M- Off are Kite Method for Dynamic Viscosity and Density of Liquids by 21a Standard Test Method for Dynamic Viscosity and Density of Liquids by 21a ASTM D702 - Standard Test Method for Determination of Moderately High Temperature ASTM D7037-19 Piston Deposits by Thermo-Oxidation Engine Oil Simulation Test — TEOST MHT ASTM D7216-22 Standard Test Method for Determining Automotive Engine Oil compatibility with Typical Seal Elastomers ASTM D7320- Standard Test Method for Evaluation of Automotive Engine Oils in the 18e1 Sequence IIIG, Spark-Ignition Engine Astm D7422-23 Standard Test Method for Determining Automotive Engine Oils in the 18e1 Sequence IIIG, Spark-Ignition Engine	ASTM D6681-23	
ASTM D6/09-24 Sequence VIII Spark-Ignition Engine (CLR Oil Test Engine) Standard Test Methods for Evaluation of Engine Oils in a High-Speed, Single- ASTM D6922 - Cylinder Diesel Engine—IK Procedure (0.4 % Fuel Sulfur) and 1N Procedure (0.04 % Fuel Sulfur) ASTM D6922 - Standard Test Method for Determination of Homogeneity and Miscibility in Automotive Engine Oils ASTM D6984 - Standard Test Method for Cummins M11 EGR Test ASTM D6984 - Standard Test Method for Evaluation of Automotive Engine Oils in the 18e1 Sequence IIIF, Spark-Ignition Engine Standard Test Method for Dynamic Viscosity and Density of Liquids by 21a Standard Test Method for Dynamic Viscosity and Density of Liquids by 21a Standard Test Method for Determination of Moderately High Temperature ASTM D7097-19 Piston Deposits by Thermo-Oxidation Engine Oil Simulation Test—TEOST MHT Standard Test Method for Determining Automotive Engine Oil Compatibility with Typical Seal Elastomers ASTM D7320- Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIG, Spark-Ignition Engine ASTM D7422-23 Standard Test Method for Evaluation of Diesel Engine ASTM D7428-22 Standard Test Method for Cummins ISM Test ASTM D7428-22 ASTM D7429-4 Standard Test Method for Determination of Haey-Duty Engine Oils under High Output Conditions—Caterpillar C13 Test Procedure ASTM D7548-24 Standard Test Method for Determination of Additive Elements in Lubricating Output Conditions—Caterpillar C13 Test Pro		
Standard Test Methods for Evaluation of Engine Oils in a High-Speed, Single- (0.4 % Fuel Sulfur)ASTM D6792-3Standard Test Method for Determination of Homogeneity and Miscibility in Automotive Engine OilsASTM D6975-03Standard Test Method for Cummins M11 EGR TestASTM D6984-Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIF, Spark-Ignition EngineASTMD6987-6987M- Gas Recirculation Diesel Engine05Standard Test Method for Dynamic Viscosity and Density of Liquids by Standard Test Method for Dynamic Viscosity and Density of Liquids by Standard Test Method for Determination of Moderately High Temperature ASTM D7042 - Standard Test Method for Determination of Moderately High Temperature ASTM D70719ASTM D7216-22Standard Test Method for Determining Automotive Engine Oil Compatibility with Typical Seal ElastomersASTM D7216-22Standard Test Method for Evaluation of Automotive Engine Oil Compatibility with Typical Seal ElastomersASTM D7216-22Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIG, Spark-Ignition EngineASTM D7226-22Standard Test Method for Evaluation of Diesel Engine Oils in the Sequence IIIG, Spark-Ignition EngineASTM D7422-3Standard Test Method for Evaluation of Engine Oils in T-12 Exhaust Gas Recirculation Diesel EngineASTM D7422-23Standard Test Method for Bench Oxidation of Engine Oils by ROBO ApparatusASTM D7422-23Standard Test Method for Evaluation of Heavy-Duty Engine Oils under High Output Conditions — Caterpillar C13 Test ProcedureASTM D7545-23Standard Test Method for Evaluation of Heavy-Duty Engine Oils by ROBO Apparatus <td>ASTM D6709-24</td> <td>ě</td>	ASTM D6709-24	ě
ASTM D6750-23 Cylinder Diesel Engine—1K Procedure (0.4 % Fuel Sulfur) and 1N Procedure (0.04 % Fuel Sulfur) ASTM D6922 - Standard Test Method for Determination of Homogeneity and Miscibility in Automotive Engine Oils ASTM D6975-03 Standard Test Method for Cummins M11 EGR Test ASTM D6984- IStandard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIF, Spark-Ignition Engine ASTM D6987M- 05 Standard Test Method for Dynamic Viscosity and Density of Liquids by Stabinger Viscometer (and the Calculation of Moderately High Temperature ASTM D7042 - Standard Test Method for Determination of Moderately High Temperature ASTM D7097-19 Piston Deposits by Thermo-Oxidation Engine Oil Simulation Test—TEOST MHT ASTM D7097-19 Standard Test Method for Determining Automotive Engine Oil Compatibility with Typical Seal Elastomers ASTM D7216-22 Standard Test Method for Determining Automotive Engine Oil Compatibility with Typical Seal Elastomers ASTM D7216-22 Standard Test Method for Evaluation of Automotive Engine Oil Compatibility with Typical Seal Elastomers ASTM D7320- Standard Test Method for Evaluation of Diesel Engine Oils in the Sequence IIIG, Spark-Ignition Engine ASTM D742-23 Standard Test Method for Evaluation of Diesel Engine Oils in 7-12 Exhaust Gas Recirculation Diesel Engine ASTM D7422-23 Standard Test Method for Evaluation of Diesel Engine Oils in 7-12 Exhaust Gas Recirculation Diesel Engine ASTM D758-22 Standard Test Method for Bench Oxidation of Engine Oils by ROBO Apparatus ASTM D754-24 Standard Test Method for Bench Oxidation of Heavy-Duty Engine Oils under High Output Conditions—Caterpillar C13 Test Procedure ASTM D754-24 Standard Test Method for Evaluation of Heavy-Duty Engine Oils under High Output Conditions—Caterpillar C13 Test Procedure ASTM D754-24 Standard Test Method for Evaluation of Automotive Engine Oils in the Standard Test Method for Evaluation of Automotive Engine Oils in the Standard Test Method for Evaluation of Automotive Engine Oils in the Standard Test Method for Evaluation o		
(0.4% Fuel Sulfur) ASTM D6922 - Standard Test Method for Determination of Homogeneity and Miscibility in ALTOMOTIVE Engine Oils ASTM D6975-03 Standard Test Method for Cummins M11 EGR Test Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIF, Spark-Ignition Engine ASTM D6987/6987M- Gas Recirculation Diesel Engine ASTM D7042 - Standard Test Method for Dynamic Viscosity and Density of Liquids by Sta Standard Test Method for Dynamic Viscosity and Density of Liquids by Sta Standard Test Method for Determination of Moderately High Temperature ASTM D7097-19 Piston Deposits by Thermo-Oxidation Engine Oil Simulation Test—TEOST MHT ASTM D7320- Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIG, Spark-Ignition Engine ASTM D742-23 Standard Test Method for Bench Oxidation of Engine Oils in T-12 Exhaust Gas Recirculation Diesel Engine ASTM D7422-23 Gas Recirculation Diesel Engine ASTM D7422-23 Standard Test Method for	A STM D6750 22	
ASTM D6922 - Standard Test Method for Determination of Homogeneity and Miscibility in 13 Automotive Engine Oils ASTM D6975-03 Standard Test Method for Cummins M11 EGR Test ASTM D6984- Standard Test Method for Evaluation of Automotive Engine Oils in the 18e1 Sequence IIIF, Spark-Ignition Engine ASTM D6987M- Gas Recirculation Diesel Engine 05 Standard Test Method for Dynamic Viscosity and Density of Liquids by Standard Test Method for Determination of Moderately High Temperature Piston Deposits by Thermo-Oxidation Engine Oil Simulation Test—TEOST MHT ASTM D7320- Standard Test Method for Determining Automotive Engine Oil Compatibility with Typical Seal Elastomers ASTM D7320- Standard Test Method for Deteraluation of Automotive Engine Oils in the Sequence IIIG, Spark-Ignition Engine ASTM D7422-23 Standard Test Method for Evaluation of Engine Oils in T-12 Exhaust Gas Recirculation Diesel Engine ASTM D7422-23 Standard Test Method for Evaluation of Engine Oils in T-12 Exhaust Gas Recirculation Diesel Engine ASTM D7422-23 Standard Test Method for Evaluation of Engine Oils in the Sequen	ASTNI D0750-25	
13 Automotive Engine Oils ASTM D6975-03 Standard Test Method for Cummins M11 EGR Test ASTM D6984 Standard Test Method for Evaluation of Automotive Engine Oils in the Ref Sequence IIIF, Spark-Ignition Engine ASTM Standard Test Method for Evaluation of Diesel Engine Oils in T-10 Exhaust Gas Recirculation Diesel Engine Gas Recirculation Diesel Engine ASTM D7042 - Standard Test Method for Dynamic Viscosity and Density of Liquids by Standard Test Method for Determination of Moderately High Temperature Piston Deposits by Thermo-Oxidation Engine Oil Simulation Test—TEOST MHT ASTM D7216-22 Standard Test Method for Evaluation of Automotive Engine Oil Compatibility with Typical Seal Elastomers Standard Test Method for Evaluation of Automotive Engine Oils in the RST Standard Test Method for Evaluation of Diesel Engine Oils in T-12 Exhaust Gas Recirculation Diesel Engine Standard Test Method for Bench Oxidation of Engine Oils in T-12 Exhaust Gas Recirculation Diesel Engine Standard Test Method for Evaluation of Heavy-Duty Engine Oils under High Output Conditions—Caterpillar C13 Test Procedure Standard Test Method for Evaluation of Automotive Engine Oil to Emulsify Water and Simulated Ed85 Fuel Standard Test Method for Evaluation of Automotive Engine Oil		
ASTM D6975-03 Standard Test Method for Cummins M11 EGR Test ASTM D6984- Standard Test Method for Evaluation of Automotive Engine Oils in the 18e1 Sequence IIIF, Spark-Ignition Engine ASTM Standard Test Method for Evaluation of Diesel Engine Oils in T-10 Exhaust 058 Gas Recirculation Diesel Engine 05 Standard Test Method for Dynamic Viscosity and Density of Liquids by 21a Stabinger Viscometer (and the Calculation of Kinematic Viscosity) Standard Test Method for Determination of Moderately High Temperature ASTM D7097-19 Piston Deposits by Thermo-Oxidation Engine Oil Simulation Test—TEOST MHT MIT ASTM D7216-22 Standard Test Method for Determining Automotive Engine Oil Compatibility with Typical Seal Elastomers ASTM D7320- Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIG, Spark-Ignition Engine Standard Test Method for Bench Oxidation of Engine Oils in T-12 Exhaust Gas Recirculation Diesel Engine ASTM D7422-23 Standard Test Method for Bench Oxidation of Heavy-Duty Engine Oils under High Output Conditions—Caterpillar C13 Test Procedure Standard Test Method for Evaluation of Additive Elements in Lubricating Oils by EDXRF Analysis Standard Test Method for Evaluation of Automotive Engine Oils on the AS		
ASTM D6984- I8e1 Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIF, Spark-Ignition Engine ASTM D6987/i6987M- 05 Standard Test Method for Evaluation of Diesel Engine Oils in T-10 Exhaust Gas Recirculation Diesel Engine ASTM D7042 - Standard Test Method for Dynamic Viscosity and Density of Liquids by Stabinger Viscometer (and the Calculation of Kinematic Viscosity) Standard Test Method for Determination of Moderately High Temperature Piston Deposits by Thermo-Oxidation Engine Oil Simulation Test—TEOST MHT ASTM D7097-19 Piston Deposits by Thermo-Oxidation of Automotive Engine Oil Compatibility with Typical Seal Elastomers ASTM D7216-22 Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIG, Spark-Ignition Engine ASTM D7422-23 Standard Test Method for Evaluation of Diesel Engine Oils in T-12 Exhaust Gas Recirculation Diesel Engine ASTM D7422-23 Standard Test Method for Evaluation of Engine Oils by ROBO Apparatus Gas Recirculation Diesel Engine Oils by ROBO Apparatus ASTM D7549-24 Standard Test Method for Evaluation of the Ability of Engine Oil under High Output Conditions—Caterpillar C13 Test Procedure ASTM D7563-23 Standard Test Method for Determination of Additive Elements in Lubricating Oils by EDXRF Analysis ASTM D751- Standard Test Method for Weasurement of Effects of Automotive Engine Oils on Fuel Economy of Passenger Cars and Light-Duty Trucks in Sequence VIF Spark Ignition Engine ASTM D8211- Standard Test Method for Evaluation of Pe		
18e1Sequence IIIF, Spark-Ignition EngineASTMD6987/6987M- 05Standard Test Method for Evaluation of Diesel Engine Oils in T-10 Exhaust Gas Recirculation Diesel EngineASTM D7042 - 21aStandard Test Method for Dynamic Viscosity and Density of Liquids by Stabinger Viscometer (and the Calculation of Moderately High Temperature Piston Deposits by Thermo-Oxidation Engine Oil Simulation Test—TEOST MHTASTM D7097-19Piston Deposits by Thermo-Oxidation Engine Oil Simulation Test—TEOST MHTASTM D7216-22Standard Test Method for Determining Automotive Engine Oil Compatibility with Typical Seal ElastomersASTM D7320- 18e1Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIG, Spark-Ignition EngineASTM D7422-23Standard Test Method for Evaluation of Diesel Engine Oils in T-12 Exhaust Gas Recirculation Diesel EngineASTM D7422-23Standard Test Method for Cummins ISM TestASTM D7528-22Standard Test Method for Evaluation of Heavy-Duty Engine Oils by ROBO ApparatusASTM D7563-23Standard Test Method for Evaluation of Heavy-Duty Engine Oil to Emulsify Water and Simulated Ed85 FuelASTM D7563-23Standard Test Method for Evaluation of Additive Elements in Lubricating 01 ils by EDXRF AnalysisASTM D8226- 21ae1Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIH, Spark-Ignition EngineASTM D8226- 21ae1Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence VIF Spark Ignition EngineASTM D8226- 21ae1Standard Test Method for Evaluation of Performance of Automotive Engine Oils on Fuel Economy of Passenger Cars and Light		
ASTM D6987/6987M- 05Standard Test Method for Evaluation of Diesel Engine Oils in T-10 Exhaust Gas Recirculation Diesel EngineASTM D7042 - Standard Test Method for Dynamic Viscosity and Density of Liquids by Stabinger Viscometer (and the Calculation of Kinematic Viscosity)ASTM D7097-19Piston Deposits by Thermo-Oxidation Engine Oil Simulation Test—TEOST MHTASTM D7216-22Standard Test Method for Determining Automotive Engine Oil Compatibility with Typical Seal ElastomersASTM D7320- I8e1Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIG, Spark-Ignition EngineASTM D7422-23Standard Test Method for Evaluation of Diesel Engine Oils in T-12 Exhaust Gas Recirculation Diesel EngineASTM D7422-23Standard Test Method for Cummins ISM TestASTM D758-22Standard Test Method for Evaluation of Heavy-Duty Engine Oils under High Output Conditions—Caterpillar C13 Test ProcedureASTM D7563-23Standard Test Method for Evaluation of Additive Elements in Lubricating 0 Oils by EDXRF AnalysisASTM D751- Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIH, Spark-Ignition EngineASTM D8226- 21ae1Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIH, Spark-Ignition EngineASTM D751- Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIH, Spark-Ignition EngineASTM D8226- 21ae1Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIH, Spark-Ignition EngineASTM D8291-24Oils in the Mitigation of Low-Sp		-
D6987/6987M- 05Standard Test Method for Evaluation of Diesel Engine Oils in T-10 Exhaust Gas Recirculation Diesel EngineASTM D7042 - 21aStandard Test Method for Dynamic Viscosity and Density of Liquids by Stabinger Viscometer (and the Calculation of Kinematic Viscosity)Standard Test Method for Determination of Moderately High Temperature Piston Deposits by Thermo-Oxidation Engine Oil Simulation Test—TEOST MHTASTM D7097-19Piston Deposits by Thermo-Oxidation Engine Oil Simulation Test—TEOST MHTASTM D7216-22Standard Test Method for Determining Automotive Engine Oil Compatibility with Typical Seal ElastomersASTM D7320- Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIG, Spark-Ignition EngineASTM D7422-23Standard Test Method for Evaluation of Diesel Engine Oils in T-12 Exhaust Gas Recirculation Diesel EngineASTM D7482-23Standard Test Method for Cummins ISM TestASTM D758-22Standard Test Method for Evaluation of Heavy-Duty Engine Oils under High Output Conditions—Caterpillar C13 Test ProcedureASTM D7563-23Standard Test Method for Determination of Additive Elements in Lubricating Oils by EDXRF AnalysisASTM D8111- Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIH, Spark-Ignition EngineASTM D8226- 21ae1Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIH, Spark-Ignition EngineASTM D751- Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIH, Spark-Ignition EngineASTM D8226- 21ae1Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIH, Spark-Ignition Engine </td <td></td> <td>Sequence IIIF, Spark-Ignition Engine</td>		Sequence IIIF, Spark-Ignition Engine
D0597/0587/05Gas Recirculation Diesel Engine056as Recirculation Diesel Engine05Standard Test Method for Dynamic Viscosity and Density of Liquids by Stabinger Viscometer (and the Calculation of Kinematic Viscosity)Standard Test Method for Determination of Moderately High Temperature Piston Deposits by Thermo-Oxidation Engine Oil Simulation Test—TEOST MHTASTM D7216-22Standard Test Method for Determining Automotive Engine Oil Compatibility with Typical Seal ElastomersASTM D7320- Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIG, Spark-Ignition EngineASTM D7422-23Standard Test Method for Evaluation of Diesel Engine Oils in T-12 Exhaust Gas Recirculation Diesel EngineASTM D7482-22Standard Test Method for Cummins ISM TestASTM D7582-22Standard Test Method for Evaluation of Heavy-Duty Engine Oils under High Output Conditions—Caterpillar C13 Test ProcedureASTM D7549-24Standard Test Method for Determination of Additive Elements in Lubricating Oils by EDXRF AnalysisASTM D751- Standard Test Method for Evaluation of Additive Elements in Lubricating Oils by EDXRF AnalysisASTM D8226- 21ae1Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIH, Spark-Ignition EngineASTM D8291-24Oils in the Method for Evaluation of Performance of Automotive Engine Oils on Fuel Economy of Passenger Cars and Light-Duty Trucks in Sequence VIF Spark Ignition EngineASTM D8291-24Oils in the Mitigation of Low-Speed, Preignition in the Sequence IX Gasoline Turbocharged Direct-Injection, Spark-Ignition EngineCEC L-36-A-90The measurement of Iubricants dynamic vis		Standard Test Method for Evaluation of Diesel Engine Oils in T-10 Exhaust
05 Standard Test Method for Dynamic Viscosity and Density of Liquids by 21a Stabinger Viscometer (and the Calculation of Kinematic Viscosity) Standard Test Method for Determination of Moderately High Temperature ASTM D7097-19 Piston Deposits by Thermo-Oxidation Engine Oil Simulation Test—TEOST MHT MHT ASTM D7216-22 Standard Test Method for Determining Automotive Engine Oil Compatibility with Typical Seal Elastomers ASTM D7320- Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIG, Spark-Ignition Engine ASTM D7422-23 Standard Test Method for Evaluation of Diesel Engine Oils in T-12 Exhaust Gas Recirculation Diesel Engine ASTM D7548-22 Standard Test Method for Bench Oxidation of Engine Oils by ROBO Apparatus ASTM D7549-24 Standard Test Method for Evaluation of Heavy-Duty Engine Oils under High Output Conditions—Caterpillar C13 Test Procedure ASTM D7563-23 Standard Test Method for Determination of Additive Elements in Lubricating Oils by EDXRF Analysis ASTM D751- Standard Test Method for Determination of Automotive Engine Oils in the Sequence IIII, Spark-Ignition Engine ASTM D751- Standard Test Method for Determination of Additive Elements in Lubricating Oils by EDXRF Analysis ASTM D751- Standard Test Method for Determination of Automotive Engine Oils in the Sequence IIII, Spark-Igniton Engine AST	D6987/6987M-	ę
21aStabinger Viscometer (and the Calculation of Kinematic Viscosity)ASTM D7097-19Standard Test Method for Determination of Moderately High TemperaturePiston Deposits by Thermo-Oxidation Engine Oil Simulation Test—TEOST MHTASTM D7216-22Standard Test Method for Determining Automotive Engine Oil Compatibility with Typical Seal ElastomersASTM D7320- 18e1Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIG, Spark-Ignition EngineASTM D7422-23Standard Test Method for Evaluation of Diesel Engine Oils in T-12 Exhaust Gas Recirculation Diesel EngineASTM D7468-22Standard Test Method for Bench Oxidation of Engine Oils by ROBO Apparatus ASTM D7528-22ASTM D7549-24Standard Test Method for Evaluation of the Avy-Duty Engine Oils under High Output Conditions—Caterpillar C13 Test ProcedureASTM D7563-23Standard Test Method for Evaluation of Additive Elements in Lubricating Oils by EDXRF AnalysisASTM D8111- Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIH, Spark-Ignition EngineASTM D8226- 21ae1Standard Test Method for Measurement of Effects of Automotive Engine Oils on Fuel Economy of Passenger Cars and Light-Duty Trucks in Sequence VIF Spark Ignition EngineASTM D8291-24Standard Test Method for Evaluation of Performance of Automotive Engine Oils in the Mitigation of Low-Speed, Preignition EngineCEC L-36-A-90The measurement of lubricants dynamic viscosity under high shear conditions (Ravenfield viscometer)		
ASTM D7097-19Standard Test Method for Determination of Moderately High Temperature Piston Deposits by Thermo-Oxidation Engine Oil Simulation Test—TEOST MHTASTM D7216-22Standard Test Method for Determining Automotive Engine Oil Compatibility with Typical Seal ElastomersASTM D7320- 18e1Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIG, Spark-Ignition EngineASTM D7422-23Standard Test Method for Evaluation of Diesel Engine Oils in T-12 Exhaust Gas Recirculation Diesel EngineASTM D7468-22Standard Test Method for Cummins ISM TestASTM D7528-23Standard Test Method for Evaluation of Heavy-Duty Engine Oils under High Output Conditions—Caterpillar C13 Test ProcedureASTM D7563-23Standard Test Method for Determination of Additive Elements in Lubricating Oils by EDXRF AnalysisASTM D751- 53AStandard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIH, Spark-Ignition EngineASTM D8206- 21ae1Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIH, Spark-Ignition EngineASTM D8206- 21ae1Standard Test Method for Evaluation of Automotive Engine Oils in the Spark-Ignition EngineASTM D8206- 21ae1Standard Test Method for Evaluation of Performance of Automotive Engine Oils on Fuel Economy of Passenger Cars and Light-Duty Trucks in Sequence VIF Spark Ignition EngineASTM D8206- 21ae1Standard Test Method for Evaluation of Performance of Automotive Engine Oils on Fuel Economy of Passenger Cars and Light-Duty Trucks in Sequence VIF Spark Ignition EngineASTM D8201-24Oils in the Mitigation of Low-Speed, Preignition in the Sequence III Gasolin	ASTM D7042 -	Standard Test Method for Dynamic Viscosity and Density of Liquids by
ASTM D7097-19Piston Deposits by Thermo-Oxidation Engine Oil Simulation Test—TEOST MHTASTM D7216-22Standard Test Method for Determining Automotive Engine Oil Compatibility with Typical Seal ElastomersASTM D7320-Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIG, Spark-Ignition EngineASTM D7422-23Standard Test Method for Evaluation of Diesel Engine Oils in T-12 Exhaust Gas Recirculation Diesel EngineASTM D7422-23Standard Test Method for Evaluation of Engine Oils by ROBO ApparatusASTM D7468-22Standard Test Method for Evaluation of Heavy-Duty Engine Oils under High Output Conditions—Caterpillar C13 Test ProcedureASTM D7549-24Standard Test Method for Evaluation of the Ability of Engine Oil to Emulsify Water and Simulated Ed85 FuelASTM D751-Standard Test Method for Evaluation of Additive Elements in Lubricating Oils by EDXRF AnalysisASTM D8111- 23AStandard Test Method for Measurement of Effects of Automotive Engine Oils on Fuel Economy of Passenger Cars and Light-Duty Trucks in Sequence VIF Spark Ignition EngineASTM D8226- 21ae1Standard Test Method for Evaluation of Performance of Automotive Engine Oils on Fuel Economy of Passenger Cars and Light-Duty Trucks in Sequence VIF Spark Ignition EngineASTM D8291-24Oils in the Mitigation of Low-Speed, Preignition in the Sequence IX Gasoline Turbocharged Direct-Injection, Spark-Ignition EngineCEC L-36-A-90The measurement of lubricants dynamic viscosity under high shear conditions (Ravenfield viscometer)	21a	Stabinger Viscometer (and the Calculation of Kinematic Viscosity)
MHTASTM D7216-22Standard Test Method for Determining Automotive Engine Oil Compatibility with Typical Seal ElastomersASTM D7320- 18e1Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIG, Spark-Ignition EngineASTM D7422-23Standard Test Method for Evaluation of Diesel Engine Oils in T-12 Exhaust Gas Recirculation Diesel EngineASTM D7468-22Standard Test Method for Bench Oxidation of Engine Oils by ROBO ApparatusASTM D7528-22Standard Test Method for Evaluation of Heavy-Duty Engine Oils under High Output Conditions—Caterpillar C13 Test ProcedureASTM D7549-24Standard Test Method for Evaluation of the Ability of Engine Oil to Emulsify Water and Simulated Ed85 FuelASTM D751-Standard Test Method for Determination of Additive Elements in Lubricating Oils by EDXRF AnalysisASTM D8111- 23AStandard Test Method for Measurement of Effects of Automotive Engine Oils on Fuel Economy of Passenger Cars and Light-Duty Trucks in Sequence VIF Spark Ignition EngineASTM D8291-24Standard Test Method for Evaluation of Performance of Automotive Engine Oils in the Mitigation of Low-Speed, Preignition in the Sequence IX Gasoline Turbocharged Direct-Injection, Spark-Ignition EngineCEC L-36-A-90The measurement of Iubricants dynamic viscosity under high shear conditions (Ravenfield viscometer)		Standard Test Method for Determination of Moderately High Temperature
MHTASTM D7216-22Standard Test Method for Determining Automotive Engine Oil Compatibility with Typical Seal ElastomersASTM D7320- 18e1Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIG, Spark-Ignition EngineASTM D7422-23Standard Test Method for Evaluation of Diesel Engine Oils in T-12 Exhaust Gas Recirculation Diesel EngineASTM D7468-22Standard Test Method for Bench Oxidation of Engine Oils by ROBO ApparatusASTM D7528-22Standard Test Method for Evaluation of Heavy-Duty Engine Oils under High Output Conditions—Caterpillar C13 Test ProcedureASTM D7549-24Standard Test Method for Evaluation of the Ability of Engine Oil to Emulsify Water and Simulated Ed85 FuelASTM D751-Standard Test Method for Determination of Additive Elements in Lubricating Oils by EDXRF AnalysisASTM D8111- 23AStandard Test Method for Measurement of Effects of Automotive Engine Oils on Fuel Economy of Passenger Cars and Light-Duty Trucks in Sequence VIF Spark Ignition EngineASTM D8291-24Standard Test Method for Evaluation of Performance of Automotive Engine Oils in the Mitigation of Low-Speed, Preignition in the Sequence IX Gasoline Turbocharged Direct-Injection, Spark-Ignition EngineCEC L-36-A-90The measurement of Iubricants dynamic viscosity under high shear conditions (Ravenfield viscometer)	ASTM D7097-19	Piston Deposits by Thermo-Oxidation Engine Oil Simulation Test—TEOST
ASTM D7210-22with Typical Seal ElastomersASTM D7320- 18e1Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIG, Spark-Ignition EngineASTM D7422-23Standard Test Method for Evaluation of Diesel Engine Oils in T-12 Exhaust Gas Recirculation Diesel EngineASTM D7468-22Standard Test Method for Cummins ISM TestASTM D7528-22Standard Test Method for Bench Oxidation of Engine Oils by ROBO ApparatusASTM D7548-24Standard Test Method for Evaluation of Heavy-Duty Engine Oils under High Output Conditions—Caterpillar C13 Test ProcedureASTM D7563-23Standard Test Method for Determination of the Ability of Engine Oil to Emulsify Water and Simulated Ed85 FuelASTM D751- 6Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIH, Spark-Ignition EngineASTM D8211- 23AStandard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIH, Spark-Ignition EngineASTM D8226- 21ae1Standard Test Method for Evaluation of Performance of Automotive Engine Oils on Fuel Economy of Passenger Cars and Light-Duty Trucks in Sequence VIF Spark Ignition EngineASTM D8291-24Oils in the Mitigation of Low-Speed, Preignition in the Sequence IX Gasoline Turbocharged Direct-Injection, Spark-Ignition EngineCEC L-36-A-90The measurement of lubricants dynamic viscosity under high shear conditions (Ravenfield viscometer)		
ASTM D7210-22with Typical Seal ElastomersASTM D7320- 18e1Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIG, Spark-Ignition EngineASTM D7422-23Standard Test Method for Evaluation of Diesel Engine Oils in T-12 Exhaust Gas Recirculation Diesel EngineASTM D7468-22Standard Test Method for Cummins ISM TestASTM D7528-22Standard Test Method for Bench Oxidation of Engine Oils by ROBO ApparatusASTM D7548-24Standard Test Method for Evaluation of Heavy-Duty Engine Oils under High Output Conditions—Caterpillar C13 Test ProcedureASTM D7563-23Standard Test Method for Determination of the Ability of Engine Oil to Emulsify Water and Simulated Ed85 FuelASTM D751- 6Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIH, Spark-Ignition EngineASTM D8211- 23AStandard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIH, Spark-Ignition EngineASTM D8226- 21ae1Standard Test Method for Evaluation of Performance of Automotive Engine Oils on Fuel Economy of Passenger Cars and Light-Duty Trucks in Sequence VIF Spark Ignition EngineASTM D8291-24Oils in the Mitigation of Low-Speed, Preignition in the Sequence IX Gasoline Turbocharged Direct-Injection, Spark-Ignition EngineCEC L-36-A-90The measurement of lubricants dynamic viscosity under high shear conditions (Ravenfield viscometer)		Standard Test Method for Determining Automotive Engine Oil Compatibility
ASTM D7320- 18e1Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIG, Spark-Ignition EngineASTM D7422-23Standard Test Method for Evaluation of Diesel Engine Oils in T-12 Exhaust Gas Recirculation Diesel EngineASTM D7422-23Standard Test Method for Cummins ISM TestASTM D7528-22Standard Test Method for Bench Oxidation of Engine Oils by ROBO ApparatusASTM D7549-24Standard Test Method for Evaluation of Heavy-Duty Engine Oils under High Output Conditions—Caterpillar C13 Test ProcedureASTM D7563-23Standard Test Method for Determination of Additive Elements in Lubricating Oils by EDXRF AnalysisASTM D8111- 23AStandard Test Method for Measurement of Effects of Automotive Engine Oils on Fuel Economy of Passenger Cars and Light-Duty Trucks in Sequence VIF Spark Ignition EngineASTM D8206- 21ae1Standard Test Method for Evaluation of Performance of Automotive Engine Oils in the Mitigation of Low-Speed, Preignition EngineCEC L-36-A-90The measurement of lubricants dynamic viscosity under high shear conditions (Ravenfield viscometer)	ASTM D/210-22	
18e1Sequence IIIG, Spark-Ignition EngineASTM D7422-23Standard Test Method for Evaluation of Diesel Engine Oils in T-12 Exhaust Gas Recirculation Diesel EngineASTM D7468-22Standard Test Method for Cummins ISM TestASTM D7528-22Standard Test Method for Bench Oxidation of Engine Oils by ROBO ApparatusASTM D7549-24Standard Test Method for Evaluation of Heavy-Duty Engine Oils under High Output Conditions—Caterpillar C13 Test ProcedureASTM D7563-23Standard Test Method for Evaluation of the Ability of Engine Oil to Emulsify Water and Simulated Ed85 FuelASTM D751-Standard Test Method for Determination of Additive Elements in Lubricating Oils by EDXRF AnalysisASTM D8111-Standard Test Method for Measurement of Automotive Engine Oils in the Sequence IIIH, Spark-Ignition EngineASTM D8226- 21ae1Standard Test Method for Evaluation of Performance of Automotive Engine Oils in the Mitigation of Low-Speed, Preignition in the Sequence IX Gasoline Turbocharged Direct-Injection, Spark-Ignition EngineCEC L-36-A-90The measurement of lubricants dynamic viscosity under high shear conditions (Ravenfield viscometer)	ASTM D7320-	**
ASTM D7422-23Standard Test Method for Evaluation of Diesel Engine Oils in T-12 Exhaust Gas Recirculation Diesel EngineASTM D7468-22Standard Test Method for Cummins ISM TestASTM D7528-22Standard Test Method for Bench Oxidation of Engine Oils by ROBO ApparatusASTM D7549-24Standard Test Method for Evaluation of Heavy-Duty Engine Oils under High Output Conditions—Caterpillar C13 Test ProcedureASTM D7563-23Standard Test Method for Evaluation of the Ability of Engine Oil to Emulsify Water and Simulated Ed85 FuelASTM D751-Standard Test Method for Determination of Additive Elements in Lubricating Oils by EDXRF AnalysisASTM D8111-Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIH, Spark-Ignition EngineASTM D8226- 21ae1Standard Test Method for Evaluation of Performance of Automotive Engine Oils in the Mitigation of Low-Speed, Preignition in the Sequence IX Gasoline Turbocharged Direct-Injection, Spark-Ignition EngineCEC L-36-A-90The measurement of lubricants dynamic viscosity under high shear conditions (Ravenfield viscometer)		e
ASTM D7422-23Gas Recirculation Diesel EngineASTM D7468-22Standard Test Method for Cummins ISM TestASTM D7528-22Standard Test Method for Bench Oxidation of Engine Oils by ROBO ApparatusASTM D7549-24Standard Test Method for Evaluation of Heavy-Duty Engine Oils under High Output Conditions—Caterpillar C13 Test ProcedureASTM D7563-23Standard Test Method for Evaluation of the Ability of Engine Oil to Emulsify Water and Simulated Ed85 FuelASTM D7551 -Standard Test Method for Determination of Additive Elements in Lubricating Oils by EDXRF AnalysisASTM D8111-Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIH, Spark-Ignition EngineASTM D8226- 21ae1Standard Test Method for Evaluation of Performance of Automotive Engine Oils on Fuel Economy of Passenger Cars and Light-Duty Trucks in Sequence VIF Spark Ignition EngineASTM D8291-24Oils in the Mitigation of Low-Speed, Preignition in the Sequence IX Gasoline Turbocharged Direct-Injection, Spark-Ignition EngineCEC L-36-A-90The measurement of lubricants dynamic viscosity under high shear conditions (Ravenfield viscometer)		
ASTM D7468-22Standard Test Method for Cummins ISM TestASTM D7528-22Standard Test Method for Bench Oxidation of Engine Oils by ROBO ApparatusASTM D7549-24Standard Test Method for Evaluation of Heavy-Duty Engine Oils under High Output Conditions—Caterpillar C13 Test ProcedureASTM D7563-23Standard Test Method for Evaluation of the Ability of Engine Oil to Emulsify Water and Simulated Ed85 FuelASTM D7751 -Standard Test Method for Determination of Additive Elements in Lubricating Oils by EDXRF AnalysisASTM D8111-Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIH, Spark-Ignition EngineASTM D8226- 21ae1Standard Test Method for Evaluation of Performance of Automotive Engine Oils on Fuel Economy of Passenger Cars and Light-Duty Trucks in Sequence VIF Spark Ignition EngineASTM D8291-24Standard Test Method for Evaluation of Performance of Automotive Engine Oils in the Mitigation of Low-Speed, Preignition in the Sequence IX Gasoline Turbocharged Direct-Injection, Spark-Ignition EngineCEC L-36-A-90The measurement of lubricants dynamic viscosity under high shear conditions (Ravenfield viscometer)	ASTM D7422-23	e
ASTM D7528-22Standard Test Method for Bench Oxidation of Engine Oils by ROBO ApparatusASTM D7549-24Standard Test Method for Evaluation of Heavy-Duty Engine Oils under High Output Conditions—Caterpillar C13 Test ProcedureASTM D7563-23Standard Test Method for Evaluation of the Ability of Engine Oil to Emulsify Water and Simulated Ed85 FuelASTM D7751 - 16Standard Test Method for Determination of Additive Elements in Lubricating Oils by EDXRF AnalysisASTM D8111- 23AStandard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIH, Spark-Ignition EngineASTM D8226- 21ae1Standard Test Method for Evaluation of Performance of Automotive Engine Oils on Fuel Economy of Passenger Cars and Light-Duty Trucks in Sequence VIF Spark Ignition EngineASTM D8291-24Oils in the Mitigation of Low-Speed, Preignition in the Sequence IX Gasoline Turbocharged Direct-Injection, Spark-Ignition EngineCEC L-36-A-90The measurement of Iubricants dynamic viscosity under high shear conditions (Ravenfield viscometer)	ASTM D7468-22	<u> </u>
ASTM D7549-24Standard Test Method for Evaluation of Heavy-Duty Engine Oils under High Output Conditions—Caterpillar C13 Test ProcedureASTM D7563-23Standard Test Method for Evaluation of the Ability of Engine Oil to Emulsify Water and Simulated Ed85 FuelASTM D7751 - 16Standard Test Method for Determination of Additive Elements in Lubricating Oils by EDXRF AnalysisASTM D8111- 23AStandard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIH, Spark-Ignition EngineASTM D8226- 21ae1Standard Test Method for Evaluation of Performance of Automotive Engine Oils on Fuel Economy of Passenger Cars and Light-Duty Trucks in Sequence VIF Spark Ignition EngineASTM D8291-24Standard Test Method for Evaluation of Performance of Automotive Engine Oils in the Mitigation of Low-Speed, Preignition in the Sequence IX Gasoline Turbocharged Direct-Injection, Spark-Ignition EngineCEC L-36-A-90The measurement of lubricants dynamic viscosity under high shear conditions (Ravenfield viscometer)		
ASTM D/349-24Output Conditions—Caterpillar C13 Test ProcedureASTM D7563-23Standard Test Method for Evaluation of the Ability of Engine Oil to Emulsify Water and Simulated Ed85 FuelASTM D7751 - 16Standard Test Method for Determination of Additive Elements in Lubricating Oils by EDXRF AnalysisASTM D8111- 23AStandard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIH, Spark-Ignition EngineASTM D8226- 21ae1Standard Test Method for Measurement of Effects of Automotive Engine Oils on Fuel Economy of Passenger Cars and Light-Duty Trucks in Sequence VIF Spark Ignition EngineASTM D8291-24Standard Test Method for Evaluation of Performance of Automotive Engine Oils in the Mitigation of Low-Speed, Preignition in the Sequence IX Gasoline Turbocharged Direct-Injection, Spark-Ignition EngineCEC L-36-A-90The measurement of lubricants dynamic viscosity under high shear conditions (Ravenfield viscometer)		Standard Test Method for Evaluation of Heavy Duty Engine Oils under High
ASTM D7563-23Standard Test Method for Evaluation of the Ability of Engine Oil to Emulsify Water and Simulated Ed85 FuelASTM D7751 - 16Standard Test Method for Determination of Additive Elements in Lubricating Oils by EDXRF AnalysisASTM D8111- 23AStandard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIH, Spark-Ignition EngineASTM D8226- 21ae1Standard Test Method for Measurement of Effects of Automotive Engine Oils on Fuel Economy of Passenger Cars and Light-Duty Trucks in Sequence VIF Spark Ignition EngineASTM D8291-24Standard Test Method for Evaluation of Performance of Automotive Engine Oils in the Mitigation of Low-Speed, Preignition in the Sequence IX Gasoline Turbocharged Direct-Injection, Spark-Ignition EngineCEC L-36-A-90The measurement of lubricants dynamic viscosity under high shear conditions (Ravenfield viscometer)	ASTM D7549-24	
ASTM D7503-23Water and Simulated Ed85 FuelASTM D7751 - 16Standard Test Method for Determination of Additive Elements in Lubricating Oils by EDXRF AnalysisASTM D8111- 23AStandard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIH, Spark-Ignition EngineASTM D8226- 21ae1Standard Test Method for Measurement of Effects of Automotive Engine Oils on Fuel Economy of Passenger Cars and Light-Duty Trucks in Sequence VIF Spark Ignition EngineASTM D8291-24Standard Test Method for Evaluation of Performance of Automotive Engine Oils in the Mitigation of Low-Speed, Preignition in the Sequence IX Gasoline Turbocharged Direct-Injection, Spark-Ignition EngineCEC L-36-A-90The measurement of lubricants dynamic viscosity under high shear conditions (Ravenfield viscometer)	<u> </u>	
ASTM D7751 - 16Standard Test Method for Determination of Additive Elements in Lubricating Oils by EDXRF AnalysisASTM D8111- 23AStandard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIH, Spark-Ignition EngineASTM D8226- 21ae1Standard Test Method for Measurement of Effects of Automotive Engine Oils on Fuel Economy of Passenger Cars and Light-Duty Trucks in Sequence VIF Spark Ignition EngineASTM D8291-24Standard Test Method for Evaluation of Performance of Automotive Engine Oils in the Mitigation of Low-Speed, Preignition in the Sequence IX Gasoline Turbocharged Direct-Injection, Spark-Ignition EngineCEC L-36-A-90The measurement of lubricants dynamic viscosity under high shear conditions (Ravenfield viscometer)	ASTM D7563-23	
16Oils by EDXRF AnalysisASTM D8111- 23AStandard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIH, Spark-Ignition EngineASTM D8226- 21ae1Standard Test Method for Measurement of Effects of Automotive Engine Oils on Fuel Economy of Passenger Cars and Light-Duty Trucks in Sequence VIF Spark Ignition EngineASTM D8291-24Standard Test Method for Evaluation of Performance of Automotive Engine Oils in the Mitigation of Low-Speed, Preignition in the Sequence IX Gasoline Turbocharged Direct-Injection, Spark-Ignition EngineCEC L-36-A-90The measurement of lubricants dynamic viscosity under high shear conditions (Ravenfield viscometer)	A STM D7751	
ASTM D8111- 23AStandard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIH, Spark-Ignition EngineASTM D8226- 21ae1Standard Test Method for Measurement of Effects of Automotive Engine Oils on Fuel Economy of Passenger Cars and Light-Duty Trucks in Sequence VIF Spark Ignition EngineASTM D8291-24Standard Test Method for Evaluation of Performance of Automotive Engine Oils in the Mitigation of Low-Speed, Preignition in the Sequence IX Gasoline Turbocharged Direct-Injection, Spark-Ignition EngineCEC L-36-A-90The measurement of lubricants dynamic viscosity under high shear conditions (Ravenfield viscometer)		5
23ASequence IIIH, Spark-Ignition EngineASTM D8226- 21ae1Standard Test Method for Measurement of Effects of Automotive Engine Oils on Fuel Economy of Passenger Cars and Light-Duty Trucks in Sequence VIF Spark Ignition EngineASTM D8291-24Standard Test Method for Evaluation of Performance of Automotive Engine Oils in the Mitigation of Low-Speed, Preignition in the Sequence IX Gasoline Turbocharged Direct-Injection, Spark-Ignition EngineCEC L-36-A-90The measurement of lubricants dynamic viscosity under high shear conditions (Ravenfield viscometer)		
ASTM D8226- 21ae1Standard Test Method for Measurement of Effects of Automotive Engine Oils on Fuel Economy of Passenger Cars and Light-Duty Trucks in Sequence VIF Spark Ignition EngineASTM D8291-24Standard Test Method for Evaluation of Performance of Automotive Engine Oils in the Mitigation of Low-Speed, Preignition in the Sequence IX Gasoline Turbocharged Direct-Injection, Spark-Ignition EngineCEC L-36-A-90The measurement of lubricants dynamic viscosity under high shear conditions (Ravenfield viscometer)		
ASTM D8226- 21ae1on Fuel Economy of Passenger Cars and Light-Duty Trucks in Sequence VIF Spark Ignition EngineASTM D8291-24Standard Test Method for Evaluation of Performance of Automotive Engine Oils in the Mitigation of Low-Speed, Preignition in the Sequence IX Gasoline Turbocharged Direct-Injection, Spark-Ignition EngineCEC L-36-A-90The measurement of lubricants dynamic viscosity under high shear conditions (Ravenfield viscometer)	23A	
21ae1 on Fuel Economy of Passenger Cars and Light-Duty Trucks in Sequence VIF Spark Ignition Engine Standard Test Method for Evaluation of Performance of Automotive Engine ASTM D8291-24 Oils in the Mitigation of Low-Speed, Preignition in the Sequence IX Gasoline Turbocharged Direct-Injection, Spark-Ignition Engine CEC L-36-A-90 The measurement of lubricants dynamic viscosity under high shear conditions (Ravenfield viscometer)	ASTM D8226-	•
Spark Ignition EngineASTM D8291-24Standard Test Method for Evaluation of Performance of Automotive EngineOils in the Mitigation of Low-Speed, Preignition in the Sequence IX Gasoline Turbocharged Direct-Injection, Spark-Ignition EngineCEC L-36-A-90The measurement of lubricants dynamic viscosity under high shear conditions (Ravenfield viscometer)		
ASTM D8291-24Oils in the Mitigation of Low-Speed, Preignition in the Sequence IX Gasoline Turbocharged Direct-Injection, Spark-Ignition EngineCEC L-36-A-90The measurement of lubricants dynamic viscosity under high shear conditions (Ravenfield viscometer)		
Turbocharged Direct-Injection, Spark-Ignition Engine CEC L-36-A-90 The measurement of lubricants dynamic viscosity under high shear conditions (Ravenfield viscometer)		č
CEC L-36-A-90 The measurement of lubricants dynamic viscosity under high shear conditions (Ravenfield viscometer)	ASTM D8291-24	
(Ravenfield viscometer)		
	CEC L-36-A-90	The measurement of lubricants dynamic viscosity under high shear conditions
CEC-L-42-A-92 Heavy duty diesel piston deposits and cylinder bore polishing (OM 364A		(Ravenfield viscometer)
	CEC-L-42-A-92	Heavy duty diesel piston deposits and cylinder bore polishing (OM 364A

	engine)
CEC-L-42-A-95	
CEC-L-52-T-97	Evaluation of diesel engine oils using the OM441LA diesel engine
CEC SG-L-099	
CEC SG-L-101	Evaluation of Performance of Heavy-Duty Engine Oils
SAE J300 (2021)	Engine Oil Viscosity Classification
SAE J2643 (2023)	Standard Reference Elastomers (SRE) for Characterizing the effect of liquids on Vulcanized Rubbers

ANNEX B (Clause 4.3.1) HOMOGENEITY TEST

B-1 GENERAL

This test determines whether oil is and will remain homogeneous and whether it will be miscible and be stable after being submitted to a prescribed cycle of temperature changes.

B-2 SAMPLE

B-2.1 Test Sample — Approximately 300 ml.

B-2.2 Standard Reference Oils — As approved by the qualifying authority.

B-3 APPARATUS

B-3.1 Test Jar

A test jar of clear glass, cylindrical form, flat bottom, approximately 30 mm to 35 mm in inside diameter and 115 mm to 125 mm in height.

B-3.2 Thermometers

- 50 °C to + 50 °C range.

B-3.3 Cork

To fit the test jar, bored centrally to put the test thermometer.

B-3.4 Jacket

Glass or metal, water-tight, of cylindrical form, flat bottom, about 115 mm in depth, with inside diameter 9.5 mm to 12.5 mm greater than the outside diameter of the jar.

B-3.5 Disk

Cork or felt, 6 mm in thickness, of the same diameter as the inside of the jacket.

B-3.6 Gasket

A ring gasket, about 5 mm in thickness, to fit snugly around the outside of test jar and loosely inside the jacket. The purpose of the ring gasket is to prevent the test jar from touching the jacket.

B-3.7 Bath

A cooling bath of a type suitable for obtaining the required temperatures.

B-4 PROCEDURE

B-4.1 Shake oil sample well and pour into a sample jar to 75 mm mark. Add reference oil to each of the sample jars to the 75 mm mark. Mix the oil thoroughly and heat to 46 $^{\circ}$ C in a water-bath. After the oils reach room temperature, observe and record the colour and evidence of separation. Determine and record the pour point of each oil.

B-4.2 Maintain the temperature of the cooling bath at -1 °C to +2 °C. Support the jacket, containing the test jar, firmly in a vertical position in the cooling bath so that not more than 25 mm of the jacket projects out of the cooling medium.

B-4.3 Beginning at a temperature 12 °C before the expected pour point, at each test thermometer reading that is a multiple of 3 °C, remove the test jar from the jacket carefully and tilt it just enough to ascertain whether there is a movement of the oil in the test jar. The complete operation of removal and replacement shall require not more than 3 s. If the oil has not ceased to flow when its temperature has reached 10 °C, place the test jar in the jacket in a second bath maintained at a temperature of -18 °C to -15 °C. If the oil has not ceased to flow when its temperature has reached -7 °C, place the test jar in the jacket in a third bath maintained at a temperature of -34.5 °C. For determination of very low pour points, additional baths should be maintained with successively lower temperature differentials of about 17 °C. In each case transfer the test jar when the temperature of the oil reaches a point of 28 °C, above the temperature of the new bath. At no time place the cold/test jar directly in the cooling medium. As soon as the oil in the test jar does not flow when the jar is tilted, hold the test jar in a horizontal position for exactly 5 s, as noted by a stop-watch or other accurate timing device, and observe carefully. If the oil shows any movement under these conditions, place the test jar immediately in the jacket and repeat a test for flow at the next temperature 3 °C lower.

B-4.4 Continue the test in this manner until a point is reached at which the oil in the test jar shows no movement when the test jar is held in a horizontal position for exactly 5s. Certain lubricating oils tend to move as a whole and should be very closely observed. Record the reading of the test thermometer at this temperature, corrected for error, if necessary. Allow the samples to thaw; and when the cloudiness has barely disappeared, observe and record the colour and evidence of separation. When the samples reach room temperature, place them in an oil-bath after removing the thermometers. Heat the bath at 230 °C and immediately remove the sample jars. Cork the samples and store them at their respective pour points for 18 h to 24 h. Remove the jars and allow the samples to thaw. When cloudiness has barely disappeared, observe and record the colour and evidence of separation. Repeat the last operation when the samples reach room temperature.

B-5 METHODS OF REPORTING RESULTS

B-5.1 Report evidence of separation in the following four successive stages:

- a) Initial sample;
- b) Warmed to just above cloud point after having once reached pour point;
- c) After a cycle of heating to 230 °C and cooling to pour point, storing it for 24 h at this temperature and warming to just above pour point; and
- d) Warmed to room temperature.

B-5.2 Evidence of separation is to be reported as:

a) Condition:

- i. Definite
- ii. None or doubtful
- b) Location:
 - i. Near top
 - ii. Near bottom
 - iii. Filament
 - iv. Uniformly distributed
- c) Particle size:
 - i. Small, as in cloud or haze
 - ii. Specks or larger particles
- d) Colour:
 - i. White or very light
 - ii. Yellow
 - iii. Black

ANNEX C (Clause 5) PROCEDURES FOR QUALIFICATION APPROVAL (FOR DEFENSE REQUIREMENTS ONLY)

C-1 PROCEDURE

C-1.1 The oil shall be qualified for use in defence forces in accordance with the provision of this standard. The authority for recommending a Qualification Approval is CQA(PP), Kanpur.

C-1.2 The CQA(PP), Kanpur will have following functions:

- a) Approval for engine/performance test facilities of laboratories for the purpose of recognizing them to carry out engine/performance test evaluation as required by this standard.
- b) Approval for blending and quality control facilities of lubricant manufactures for the purpose of ensuring their ability to manufacture qualified lubricants within the tolerance limits stipulated by this standard.
- c) Scrutiny of laboratory test data including evaluation test components for the purpose of assessing whether the candidate lubricant formulation meet the requirements of the standard and accordingly recommend for or against qualifying the products.

C-1.3 Candidate oil companies desirous of obtaining the Qualification Approvals of their products for defence purpose shall apply to the CQA(PP) along with details in prescribed form which requires disclosure of full particulars of the formulation in terms of both base stocks and additive components along with the samples. Such application should be

addressed as confidential documents to the designated official of the CQA(PP), Kanpur. The information contained therein shall be treated in strict confidence and not disclosed to any person organizations, unless so authorized in writing by the candidate oil company.

The duly authenticated details required to be provided by the applicant firm to CQA (PP), Kanpur are as follows:

a) Finished product sample of 5 Litres in case of liquid lubricants submitted in a single container along with 2 litres of base Oil(s) and 50 g/ml to 250 g/ml (or as advised by CQAPP) each of all ingredients / additives being used in the manufacturing of the finished product.

b) The procedure for securing qualification of lubricating engine oils against this standard requires submission of the following information and documents by the applicant organization in specified formats to CQA (PP) Kanpur:

- i. Type, viscosity grade and performance category of the standard against which approval is sought, including cross-labelling requirements, if any;
- ii. Product identification code/brand name of the oil with viscosity grade(s);
- iii. Conformance to composition, physico-chemical, other rheological, bench test and engine-performance data requirements as per Tables 1-15, as applicable;
- iv. Product identification data as per Table 15; and
- v. Any supplementary or alternate data or evidence in support of the performance claims.

c) It is possible that the performance test data would be generated on engine tests carried out in different laboratories conducted at different periods of time, using base stocks from different sources. It is also possible that certain test facilities referred in the standard may not be available. However, the applicant shall satisfy the CQA(PP) Qualification approval norms in terms of Base Oil Interchange (BOI), Viscosity Grade Read-Across (VGRA), Viscosity Modifier Interchange (VMI), minor additive component substitution etc. (as provided in the relevant API/ACEA/OEM specifications) and that the data presented is valid for the applicant's formulation in vogue. CQA (PP) based on the overall review of the performance data, shall decide whether the lubricating oil formulated by the applicant meets the requirements of this standard.

d) All the test results of the Quality Control and Assurance Test Parameters & percentage (percent) of various elements, including sulphur content, should be generated at their own laboratory and the copy of test report of laboratory, where Qualification/Type test have been carried out should be submitted to CQA(PP).

e) Infra-red spectra of the finished product; base oil(s) and all ingredients/additives are also to be submitted along with operating parameters.

- f) The following documents also required to be submitted to CQA(PP) Kanpur
 - i. Formulation details of the product.
 - ii. Test Reports/Technical Details/Data sheets/specifications of all the materials used in the formulation.
- iii. Traceability of procurement of base oils and all additives.

g) Certificate regarding homogeneity test of their products at least three different propositions with similar type of products of leading manufacturers such as M/s IOC, M/s BPCL, M/s Balmer Lawrie and Co. or any competitor oil are to be submitted.

h) Declaration of minimum shelf life of the product under consideration.

j) Storage stability data of full shelf life carried out at a time interval of six months. Copy of Initial and Final Test Report are also to be enclosed with storage stability Data.

k) In addition to above, firm shall submit engine/performance data or its supplementary supporting data/alternate data to demonstrate that their product meets the required performance level of governing specification

1) Complete list of laboratory equipments/testing facilities are to be submitted in the following format: -

Sr No	Name of test equipment	Test method	Make/ Model & Year of	Range	Sensitivity / least count	Calibration status along with
	& No/s		Purchase			calibration certificate

- m) The CQA(PP), Kanpur reserves the right to demand additional evidence/ test regarding the performance of the product & material used.
- n) In case of any dispute, the decision of DGQA shall be final.

C-1.4 The CQA(PP) based on an overall review of the test data shall decide whether the candidate oil formulation meets the requirements of this standard.

C-1.5 In the event of the CQA(PP) recommending qualification approval, the CQA(PP) shall issue a qualification approval for the product meeting relevant details.

C-1.6 At any time, if there is a change in the base stock or base stock sources refining treatment or additives used in the formulation, requalification will be required. Where the proposed changes are minor, the CQA(PP) may at its discretion recommend waiving complete requalification or may require only partial requalification of the proposed changes.

C-1.7 In the event the candidate lubricant formulation is found to be marginally failing in some performance tests, the candidate oil company may disclose its formulation particulars to the CQA(PP) and request it to consider the possibility of a modified formulation meeting the requirements of this standard. In such event, the CQA(PP) may its discretion, suggest limited re-evaluation of the modified formulation. On the basis of such re-evaluation the CQA(PP) may consider recommending qualification approval to the modified formulation.

C-1.8 The oil once approved against the standard will be qualified for a period not exceeding 5 years from the date of the original qualification. When the qualification period has expired each product shall be requalified if the manufacturer wishes to maintain the formulation as a current product meeting this standard.

Table 15 Requirements for Finished Product Identification and Permissible Variation for Product-Conformance

[*Clause* C-1.3 (a) (iv)]

Sl	Characteristics	Requirements	Method of Test
No.	Characteristics	Requirements	Witchioù of Test

Doc: PCD 25 (26822) WC

			October 2024
(1)	(2)	(3)	(4)
i)	Density at 15 °C, g/ml	To be reported	IS 1448 (Part16) / ASTM D7042 / ASTM D4052
ii)	Flash point COC, °C, <i>Min</i>	As specified in Table 13	IS 1448 (Part 69) / ASTM D92
iii)	Pour point, °C, <i>Max</i>	As specified in Table 13	IS 1448 (Part 10) / ASTM D97
iv)	Kinematic viscosity, mm ² /s	Shall conform to the control viscosity as given in product PI and within viscosity range of the grade	IS 1448 (Part 25/Sec 1) / ASTM D445 / ASTM D7042
v)	Low temperature cranking viscosity, cP, Max	As specified in Table 1	ASTM D5293
vi)	Low temperature pumping, viscosity, cP, <i>Max</i>	As specified in Table 1	ASTM D4684
vii)	Viscosity index, <i>Min</i>	As specified in Table 13	IS 1448 (Part 56) / ASTM D2270
viii)	Foam tendency/stability	As specified in Table 13	IS 1448 (Part 67) / ASTM D892
ix)	Total base number	Up to 5: -0.5, <i>Min</i> Above 5: -10 percent, <i>Min</i>	IS 1448 (Part 86) / ASTM D2896 / ASTM D4739
x)	Total acid number	To be reported	IS 1448 (Part 1/Sec 1) / ASTM D664
xi)	Sulphur	\pm 20 percent of the reported value	ASTM D2622 / ASTM D4951 / ASTM D5185 / ASTM D7751 / ASTM D6443
xii)	Sulphated ash	± 20 percent of the reported value	IS 1448 (Part 4/Sec 2) / IS 1448 (Part 187) / ASTM D874
xiii)	Calcium	-10 percent to +20 percent of the reported value	ASTM D4951 / ASTM D5185 / ASTM D7751 / ASTM D6443
xiv)	Barium	-do-	-do-
xv)	Magnesium	-do-	-do-
xvi)	Zinc	-do-	-do-
xvii)	Phosphorus	-do-	ASTM D4951/ IS 1448 (Part 54)
xviii)	Nitrogen	-do-	ASTM D5762 / ASTM D4629 / ASTM D5291
xix)	Sodium	-do-	ASTM D4951

NOTE — Elements at Sl No. (xiii) to Sl No. (xix) to be reported subject to being present.