BUREAU OF INDIAN STANDARDS

DRAFT FOR COMMENTS ONLY

(Not to be reproduced without the permission of BIS or used as an Indian Standard)

भारतीय मानक मसौदा

खानों में वेष्टन द्वारा और व्यक्ति-रोहन द्वारा ढुलाई के लिए लड़दार इस्पात के तार के रस्से — विशिष्टि

(आई एस 1855 का चौथा पुनरीक्षण)

Draft Indian Standard

STRANDED STEEL WIRE ROPES FOR WINDING AND MAN-RIDING HAULAGES IN MINES — SPECIFICATION

(Fourth Revision of IS 1855)

ICS 73.100.40:77.140.65

Wire Ropes and Wire ProductsLast date for receipt of
comments is 19 June 2024

FOREWORD

(Formal clauses to be added later)

This standard was first issued in 1961 and was revised in 1977, 2003 and 2022. The standard is being revised again for incorporating the modifications found necessary as a result of experience gained with the use of this standard. Also the major changes in the standard with this revision are given below:

- a) The scope of the standard has been modified;
- b) Provision for minimum breaking force has been modified; and
- c) Requirements for wire rope core has been modified in clause 6.2.

All the necessary information regarding the conditions, under which the rope is to be used together with other particulars, laid down in Annex A, shall be supplied with the enquiry and order.

For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test shall be rounded-off in accordance with IS 2: 2022 'Rules for rounding off numerical values (*second revision*)'. The

number of significant places retained in the rounded-off value should be the same as that of the specified value in this standard.

Draft Indian Standard

STRANDED STEEL WIRE ROPES FOR WINDING AND MAN-RIDING HAULAGES IN MINES — SPECIFICATION

(Fourth Revision)

1 SCOPE

This standard covers general requirements for stranded steel wire ropes for winding and manriding haulages in mines. Most common rope constructions and rope types are given in following table. Common rope grades, cores and size ranges are identified by x mark. Specially developed constructions including compacted ropes, cushion core rope and plastic valley filled ropes may be used to fulfill specific requirement of the installation if agreed between manufacturer and purchaser.

Construction	Туре		Ro	pe Gra	de		Co	ore	Rope	Table
		1230	1420	1570	1770	1960	Fibre	Steel	Size	
									(Dia	
									mm)	
$6 \times 7 (6 - 1)$		_	-	×	×	×	×	×	13 to 29	1
6 × 15 S (7 –7 –1)				×	×	×	×	×	13 to 32	2
6 × 17 S (8 –8 –1)		—	-	×	×	×	×	×	13 to 35	
6 × 19 S (9 –9 –1)				×	×	×	×	×	13 to 38	
6×26 SW (10 -5 + 5 -5 -1)				×	×	×	×	×	25 to 41	3
6×31 SW (12 - 6 + 6 - 6 - 1)	Round			×	×	×	×	×	29 to 44	
6×36 SW $(14 - 7 + 7 - 7 - 1)$	strand			×	×	×	×	×	35 to 51	
6×41 SW (16 $-8 + 8 - 8 - 1$)		-	-	×	×	×	×	×	38 to 60	
6 × 49 SWS (16 –8 + 8 –8 –				×	×	×	×	×	51 to 64	
8-1)										
6×46 SW (18-9+9-9-1)				×	×	×	×	×	51 to 64	
6×52 SW (18-9+9-9/6-1)				×	×	×	×	×	51 to 64	
$17 \times 7[11 \times 7 (6 - 1): 6 \times$		×	×	×	×	×	×	×	16 to 35	4
7(6-1)]	Multi									
$18 \times 7[12 \times 7 (6 - 1) : 6 \times 7$	strand	×	×	×	×	×	×	×	16 to 35	
(6-1)]	rotation									
34 × 7 [17 × 7 (6 –1): 11 ×	resistant	×	×	×	×	×	×	×	19 to 60	5
7(6–l)/6×7(6–1)]										
$36 \times 7 [18 \times 7(6-1): 12 \times 7(6)]$		×	×	×	×	×	×	×	19 to 60	
$-1)/6 \times 7(6-1)$]										
35×7 [16×7(6-1): 6×7 (6-1)				×	×	×		×	19 to 60	8
+ $6 \times 7(6-1) - 6 \times 7$ (6-1)-										
1×7(6-1)										
40×7 [18×7(6-1) : 7×7(6-1)				×	×	×		×	19 to 60	8
+ $7 \times 7(6-1)$ - $7 \times 7(6-1)$ -										
1×7(6-1)]										
35×19 S [16×19S(9-9-1) :				×	×	×		×	19 to 60	8
6×19 S (9-9-1) + 6×19S(9-										

9-1)-6×19 S (9-9-1)-										
1×19S(9-9-1)										
* 15×7				×	×	×		×	19 to 60	8
* 16×7				×	×	×		×	19 to 60	8
$6 \times V 8 (7 - \Delta)$	Flattened			×	×	×	×	×	16 to 32	
$6 \times V 9 (8 - \Delta)$	strand	_	_	×	×	×	×	×	16 to 32	6
$6 \times V 22 (9/12 - \Delta)$				×	×	×	×	×	25 to 36	
$6 \times V \ 25 \ (12/12 - \Delta)$		_	_	×	×	×	×	×	25 to 44	7
$6 \times V \ 28 \ (15/12 - \Delta)$				×	×	×	×	×	32 to 56	
$6 \times V 31(18/12 - \Delta)$]			×	×	×	×	×	36 to 64	

*15x7 & 16x7 construction rope shall have IWRC having more than 7 strands for flexibility and lay direction shall be opposite to rope lay direction for rotational resistance property.

2 REFERENCES

The standards listed below contain provisions, which through reference in this text constitute provisions of this standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this standard are encouraged to investigate the possibility of applying the most recent edition of the standards indicated below:

IS No.	Title
IS 1804 : 2004	Steel wire ropes — Fibre main cores — Specification
	(fourth revision)
IS 1835 : 1976	Round steel wire for ropes (third revision)
IS 2363 : 2022	Glossary of terms relating to wire ropes (second revision)
IS 9182 (Part 1) :	Lubricants for wire ropes and fire cores: Part 1 Lubricants for fire
1993	core of wire ropes (first revision)
IS 13917 : 2003	Stranded wire ropes for mine hoisting — Technical delivery
	requirements (first revision)

3 TERMINOLOGY

For the purpose of this standard, the definitions given in IS 2363 shall apply.

4 ROPE SIZE AND TOLERANCE

The size of the rope, designated, as 'nominal diameter' shall be one of those given in Tables 1 to 7. The actual diameter of the rope as supplied shall be within +4, -1 percent of the nominal diameter.

5 MINIMUM BREAKING FORCE

Minimum breaking force shall be as given in Tables 1 to 8 or higher values as agreed between manufacturer and purchaser. Minimum breaking force for compacted ropes and specially developed ropes may be as agreed between manufacturer and purchaser.

NOTE — The actual breaking force shall not fall below the minimum breaking force values and may be obtained through Method A or B (including foot notes) as specified in IS 13917.

6 GENERAL REQUIREMENTS

The wire rope shall conform to IS 13917 in addition to the requirements given below:

6.1 Wire

The chemical composition of the raw material for producing wires to be used in the rope shall conform to any of the Grades 1, 2 and 3 of IS 1835.

6.2 Core

Core shall be fibre core or steel core as per **6.2.1** and **6.2.2**.

6.2.1 Fibre Core

The core shall be made from natural hard fibre, either manila (abaca) or sisal, and shall conform to the requirements laid down in IS 1804.

6.2.2 Steel Core

Whenever steel main core is specified, it shall be an independent wire rope core (CWR), except for multi-strand rotation resistant ropes where wire strand cores (CWS) shall be used. In case of inner core of multi-strand rotation resistant rope is having 3 or 4 number of strands in first inner layer, there may not have essentially a central core. The tensile designation of the wires for steel core and core wires in the strands of the rope shall not exceed the tensile grade of the main rope wires, however, it can be up to one grade lower than the main rope wires. In case of shaped wires from strand core, **4.3** of IS 13917 shall be referred.

NOTE — The use of steel core has certain advantages in adverse conditions, such as corrosive atmosphere, multi-layer winding leading to crushing of rope, and deep shaft winding leading to considerable stretch in the rope.

6.3 Joints

6.3.1 Joints in wires at the final stage shall be avoided as far as possible, but where necessary, those shall be spread as widely as possible in the strand and in no case more than one wire shall be joined in a strand length of every 1 000 m or part. Total number of such joints shall not be more than 3 in any length of rope.

6.3.2 The joints shall be as far as possible electrically welded or brazed.

6.3.3 Tucked joints shall not be permitted.

6.4 Lay

6.4.1 Direction of Lay

The rope shall be of Lang's lay unless otherwise specified by the purchaser (zZ or sS).

6.4.2 Length of Lay

The length of lay of ropes shall not exceed 8 times the nominal diameter.

6.5 Mass

6.5.1 The rope mass values shown in Tables 1 to 8 are of fully lubricated ropes. The ropes, which are not lubricated, may be lighter.

6.5.2 The actual rope mass shall meet the requirements of IS 13917.

NOTE — Rope mass values for the rope not covered in the table 1 to 8 shall be as agreed between manufacturer and supplier.

7 GALVANIZING

Galvanizing shall meet the requirement of IS 13917.

8 LUBRICATION

8.1 The ropes shall be thoroughly lubricated with an appropriate lubricant specified in IS 13917 unless otherwise requested by the purchaser specifically.

8.2 Galvanized ropes for friction winder shall be lubricated with a lubricant, which will be resistant to slippage.

8.3 Fibre core shall be lubricated with a suitable lubricant as specified in IS 9182 (Part 1) and shall have retention of lubricant after rope making (in new condition):

- a) to an extent of minimum 12 percent by mass of dry fire core for general winding ropes; and
- b) to an extent of minimum 8 percent by mass of dry fire core for friction winder ropes.

9 FREEDOM FROM DEFECTS

<u>Doc: MED 10 (25710)</u> May 2024

The completed ropes shall be free from defects like loose wires and strands, kink, protrusion of core and other irregularities that can be detected visually. The ropes shall be evenly laid and shall remain in condition when properly unwound from the reel.

10 SAMPLING PLAN

10.1 Lot

Steel wire rope of same size manufactured using the same set of strands and same type of core under identical condition of production, shall constitute a lot.

NOTE — Manufacturer shall provide evidence for the tractability of the individual rope lengths to the parent rope to establish that those represent the lot as defied above.

10.2 For ascertaining the conformity of a lot, the following sampling plan shall be made:

- a) Dimensional checking 100 percent, or
- b) Breaking force test one sample from a lot

11 PREFORMING

Round and flattened strand ropes shall be preformed unless otherwise agreed upon. Multi-strand rotation resistant ropes may at the option of the manufacturer be supplied as non-preformed. Manufacturer shall provide at least one seizing at the rope ends for all round and flattened strand ropes and two to three seizing's of appropriate length and distance in case of rotation resistant ropes.

12 TEST

The wire ropes shall meet the test requirements and compliance criteria as laid down in IS 13917.

13 PACKING AND MARKING

3.1 Packing

Packing shall be done as per IS 13917.

13.2 Marking

The reel number, nominal rope size, construction, rope grade, direction of lay, core, coating, length, purchaser's order reference and any other marking which may be specified by the purchaser shall be legibly displayed on both sides of reel flanges through suitable tags or stenciling.

13.3 BIS Certification Marking

13.3.1 Each reel of wire rope may also be marked with the standard mask.

13.3.2 The product(s) conforming to the requirements of this standard may be certified as per the conformity assessment schemes under the provisions of the *Bureau of Indian Standards Act*, 2016 and the Rules and Regulations framed thereunder, and the products may be marked with the Standard Mark.

Table 1 Breaking Force and Mass for 6 × 7 (6-1) Construction Ropes(Clauses 4, 5, 6.5.1 and 6.5.2)

Typical Cross Section		Typical Construction					
	Rope Construction	Strand Construction					
WITH FIBRE CORE (CF)	6x7	6-1					

Nominal	Nomina	al Mass	Minim	um Breakir	g Force Co	rresponding	g to Rope G	rade of
Diameter			15	70	70 17'		1960	
	Fibre core	Steel core	Fibre core	Steel core	Fibre core	Steel core	Fibre core	Steel core
	(CF)	(CWR)	(CF)	(CWR)	(CF)	(CWR)	(CF)	(CWR)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
mm	kg/	100	kN	kN	kN	kN	kN	kN
13	60.4	66.4	88.1	95.2	99.4	107	110	119
14	70.1	77.0	102	110	115	124	128	138
16	91.5	101	134	144	151	163	167	180
18	116	127	169	183	191	206	211	228
19	129	142	188	203	212	229	235	254
20	143	157	209	225	235	254	260	281
21	158	173	230	248	259	280	287	310
22	173	190	252	273	285	307	315	340
24	206	226	300	324	339	366	375	405
25	223	246	326	352	367	397	407	440
26	242	266	353	381	397	429	440	475
27	261	287	380	411	429	463	475	513
28	280	308	409	442	461	498	510	551
29	301	331	439	474	495	534	548	591
NOTE — To cal	culate the aggreg	gate breaking for	ce, multiply the fi	gures given in co	ol 4, 6 and 8 by 1	.111 and in col 5	, 7 and 9 by 1.19	3.

Table 2 Breaking Force and Mass for 6×15 S (7 - 7 - 1), 6×17 S (8 - 8 - 1)and 6×19 S (9 - 9 - 1) Construction Ropes

Typical Cross Section	Typical Construction				
	Rope Construction	Strand Construction			
	Construction				
	6x15S	7-7-1			
	6x17S	8-8-1			
	6x19S	9-9-1			
WITH FIBRE CORE (CF) WITH STEEL CORE (CWR)					

Nominal	Nomin	al Mass	Minim	um Breakin	g Force Co	rresponding	g to Rope G	rade of
Diameter			15	70	17	70	19	60
	Fibre core	Steel core	Fibre core	Steel core	Fibre core	Steel core	Fibre core	Steel core
	(CF)	(CWR)	(CF)	(CWR)	(CF)	(CWR)	(CF)	(CWR)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
mm	kg/	100	kN	kN	kN	kN	kN	kN
13	63.0	69.3	87.8	94.8	99.0	107	110	118
14	73.0	80.3	102	110	115	124	127	137
16	95.4	105	133	144	150	162	166	179
18	121	133	168	182	190	205	210	227
19	135	148	188	203	211	228	234	253
20	149	164	208	224	234	253	260	280
21	164	181	229	247	258	279	286	309
22	180	198	252	272	284	306	314	339
24	215	236	299	323	337	364	374	403
25	233	256	325	351	366	395	405	438
26	252	277	351	379	396	428	439	474
27	272	299	379	409	427	461	473	511
28	292	321	407	440	459	496	509	549
29	313	345	437	472	493	532	546	589
32	382	420	532	575	600	648	664	717
35	456	502	637	687	718	775	795	858
38	538	592	750	810	846	913	937	1012
NOTE — To cal	culate the aggres	gate breaking for	ce, multiply the fi	gures given in co	ol 4, 6 and 8 by 1	.163 and in col 5	, 7 and 9 by 1.25.	

Table 3 Breaking Force and Mass for 6×26 SW (10 - 5 + 5 - 5 - 1), 6×31 SW (12 - 6 + 6 - 6 - 1), 6×36 SW (14 - 7 + 7 - 7 - 1), 6×41 SW (16 - 8 + 8 - 8 - 1) and 6×49 SWS (16 - 8 + 8 - 8 - 1) Construction Ropes

Typical Cross Section]	Typical Construction					
	Rope Construction	Strand Construction					
	6x26SW	10-5+5-5-1					
	6 × 31 SW	12-6 + 6-6-1					
	6 × 36 SW	14-7 + 7-7-1					
WITH FIBRE CORE (CF) WITH STEEL CORE (CWR)	6 × 41 SW	16-8 + 8-8-1					
	6x49SWS	16-8+8-8-8-1					
	6x46SW	18-9+9-9-1					
	6x52SW	18-9+9-9/6-1					

Nominal	Nomin	al Mass	Minim	um Breakir	ng Force Co	rresponding	to Rone G	rade of
Diameter		ai 1 11 455		70	1770		1960	
	Fibre core	Steel core	Fibre core	Steel core	Fibre core	Steel core	Fibre core	Steel core
	(CF)	(CWR)	(CF)	(CWR)	(CF)	(CWR)	(CF)	(CWR)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
mm	kg/	100	kN	kN	kN	kN	kN	kN
25	238	261	324	350	365	394	404	436
26	257	283	350	378	395	426	437	472
28	298	328	406	439	458	494	507	548
29	320	352	436	470	491	530	544	587
32	389	428	530	573	598	646	662	715
35	466	512	634	685	715	773	792	855
36	493	542	671	725	757	817	838	905
38	549	604	748	808	843	911	934	1 008
40	608	669	829	895	934	1 009	1 035	1 117
41	639	703	871	940	982	1 060	1 087	1 174
42	671	738	914	987	1 030	1 1 1 2	1 141	1 232
44	736	810	1 003	1 083	1 1 3 0	1 221	1 252	1 352
48	876	964	1 193	1 289	1 345	1 453	1 490	1 609
51	989	1 088	1 347	1 455	1 519	1 640	1 682	1 816
52	1 028	1 1 3 1	1 401	1 513	1 579	1 705	1 748	1 888
56	1 192	1 311	1 624	1 754	1 831	1 978	2 028	2 190
60	1 369	1 506	1 856	2 014	2 102	2 270	2 328	2 514
64	1 557	1 713	2 121	2 291	2 392	2 583	2 648	2 860
NOTE — To ca	lculate the aggres	gate breaking for	ce, multiply the fi	gures given in co	ol 4, 6 and 8 by 1	.19 and in col 5,	7 and 9 by 1.28.	•

Table 4 Breaking Force and Mass for 17 \times 7 (6 –1) and 18 \times 7 (6 –1) Construction Ropes

Typical Cross Section	Туріс	Typical Construction					
	Rope Construction	Strand Construction					
	17×7 (11×7:6 × 7-FC)	6-1					
	17x7 (11x7:6x7-1x7)	6-1					
	18×7 (12×7:6×7-FC)	6-1					
WITH FIBRE CORE (CF) WITH STEEL CORE (CWS)	18x7 (12x7:6x7-1x7)	6-1					

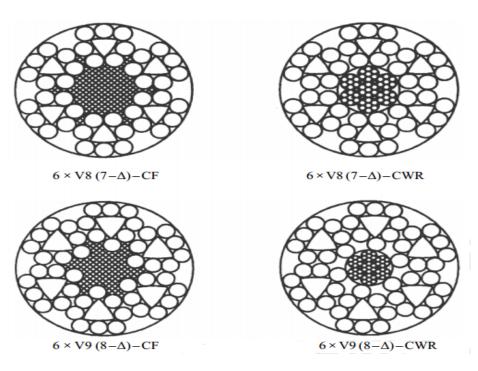
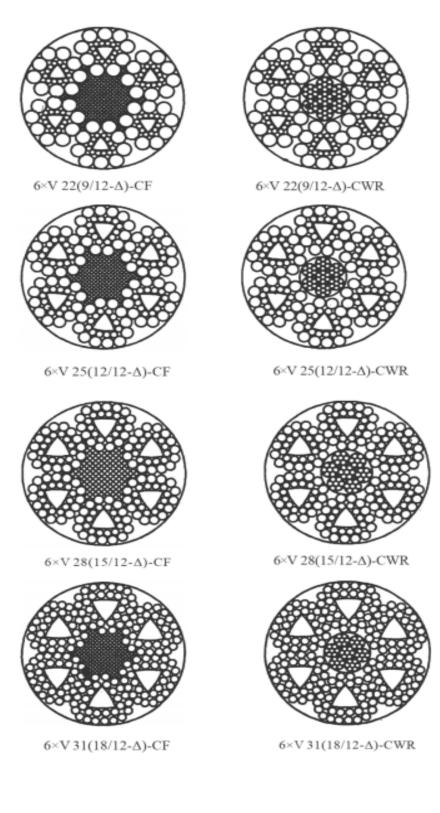

Nominal	Nomina	l Mass			Mini	mum Break	ing Force C	Correspondi	ng to Rope	Grade of			
Diameter			1	1230		1420		1570		1770		1960	
	Fibre core	Steel	Fibre	Steel	Fibre	Steel	Fibre	Steel	Fibre	Steel	Fibre	Steel	
	(CF)	core	core	core	core	core	core	core	core	core	core	core	
		(CWS)	(CF)	(CWS)	(CF)	(CWS)	(CF)	(CWS)	(CF)	(CWS)	(CF)	(CWS)	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	
mm	kg/1	00	kN	kN	kN	kN	kN	kN	kN	kN	kN	kN	
16	98	103	100	103	116	119	128	132	144	149	160	165	
19	138	145	141	146	163	168	181	186	204	210	225	232	
20	153	161	226	161	181	186	200	206	226	232	250	257	
22	185	195	190	195	219	225	242	249	273	281	302	311	
24	220	232	226	232	261	268	288	297	325	335	360	370	
25	239	251	245	252	283	291	313	322	352	363	390	402	
26	259	272	265	273	306	315	338	348	381	393	422	435	
27	279	293	286	294	330	340	365	376	411	423	455	469	
28	300	315	307	316	355	365	392	404	442	455	490	504	
32	392	412	401	413	463	477	512	527	577	595	639	659	
35	469	492	480	494	554	571	613	631	691	711	765	788	
NOTE — To c	alculate the aggre	egate breaking	force, multi	ply the figures g	given in col 4,	6, 8, 10 and 12	by 1.28 and in	col 5, 7, 9, 11 a	nd 13 by 1.32.				

Table 5 Breaking Force and Mass for 34×7 (6 –1) and 36×7 (6 –1) Construction Ropes

Typical Cross Section	Typical Construction					
	Rope Construction	Strand Construction				
	34x7 (17×7:11x7/6×7-FC)	6-1				
	34x7 (17x7:11x7/6x7-1x7)	6-1				
	36x7 (18×7:12x7/6×7-FC)	6-1				
WITH FIBRE CORE (CF) WITH STEEL CORE (CWS)	36x7 (18x7:12x7/6x7-1x7)	6-1				

Nominal	Nomina	l Mass		Minimum Breaking Force Corresponding to Rope Grade of								
Diameter			1	230	14	420	15	570	17	70	19	60
	Fibre core	Steel	Fibre	Steel	Fibre	Steel	Fibre	Steel	Fibre	Steel	Fibre	Steel
	(CF)	core	core	core	core	core	core	core	core	core	core	core
		(CWS)	(CF)	(CWS)	(CF)	(CWS)	(CF)	(CWS)	(CF)	(CWS)	(CF)	(CWS)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
mm	kg/1	00	kN	kN	kN	kN	kN	kN	kN	kN	kN	kN
19	141	145	139	141	160	163	177	180	199	203	221	225
22	189	195	186	190	215	219	237	242	267	273	296	302
25	244	251	240	245	277	283	306	312	345	352	382	390
26	264	272	260	265	300	306	331	338	374	381	414	422
28	306	315	301	307	348	354	384	392	433	442	480	489
30	351	362	346	352	399	407	441	450	497	507	551	562
32	400	412	393	401	454	463	502	512	566	577	627	639
34	451	465	444	453	512	523	567	578	639	651	707	721
36	506	521	498	508	575	586	635	648	716	730	793	809
38	563	580	555	566	640	653	708	722	798	814	884	901
40	624	643	614	627	709	723	784	800	884	902	979	999
41	656	676	646	658	745	760	824	840	929	947	1 029	1 049
44	755	778	743	758	858	875	949	968	1 070	1 091	1 185	1 208
48	899	926	885	902	1 021	1 042	1 129	1 152	1 273	1 298	1 410	1 438
51	1015	1046	999	1 019	1 153	1 176	1 275	1 300	1 437	1 466	1 592	1 623
52	1055	1087	1 038	1 059	1 199	1 223	1 325	1 352	1 494	1 524	1 655	1 687
55	1180	1216	1 162	1 185	1 341	1 368	1 483	1 512	1 672	1 705	1 851	1 888
56	1224	1261	1 204	1 228	1 390	1 418	1 537	1 568	1 733	1 767	1 919	1 957
60	1405	1447	1 382	1 410	1 596	1 628	1 765	1 800	1 989	2 029	2 203	2 247
NOTE — To c	alculate the aggre	egate breaking	force, multi	oly the figures g	given in col 4,	6,8,10 and 12 b	/ 1.33 and in co	ol 5,7,9, 11 and	13 by 1.346.	•	-	•

Table 6 Breaking Force and Mass for $6 \times V 8 (7 - \Delta)$ and $6 \times V 9 (8 - \Delta)$ Construction Ropes



(Clauses 4, 5, 6.5.1 and 6.5.2)

Nominal	Nomina	al Mass	Minim	um Breakin	g Force Co	rresponding	g to Rope G	rade of
Diameter			15	70	17	70	19	60
	Fibre core	Steel core	Fibre core	Steel core	Fibre core	Steel core	Fibre core	Steel core
	(CF)	(CWR)	(CF)	(CWR)	(CF)	(CWR)	(CF)	(CWR)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
mm	kg/	100	kN	kN	kN	kN	kN	kN
16	105	114	145	154	164	174	182	193
19	148	161	205	218	231	245	256	272
20	164	179	227	241	256	272	284	301
21	181	197	251	266	283	300	313	332
22	198	216	275	292	310	329	343	364
24	236	257	327	347	369	391	409	434
25	256	279	355	377	400	425	443	470
26	277	302	384	408	433	459	480	509
29	345	376	478	507	539	572	597	633
32	420	458	582	617	656	696	727	771
NOTES			•				•	

1 To calculate the aggregate breaking force, multiply the figures given in col 4, 6 and 8 by 1.137 and in col 5, 7 and 9 by 1.21. **2** In case of Δ wire, 3 or more round wires may also be used.

Table 7 Breaking Force and Mass for $6 \times V$ 22 (9/12 – Δ), $6 \times V$ 25 (12/12 – Δ), $6 \times V$ 28 (15/12 – Δ) and $6 \times V$ 31 (18/12 – Δ) Construction Ropes

Nominal Nominal Mass			Minim	imum Breaking Force Corresponding to Rope Grade of						
Diameter			15	70	17	70	19	60		
	Fibre core	Steel core	Fibre core	Steel core	Fibre core	Steel core	Fibre core	Steel core		
	(CF)	(CWR)	(CF)	(CWR)	(CF)	(CWR)	(CF)	(CWR)		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)		
mm	kg/	100	kN	kN	kN	kN	kN	kN		
25	256	279	344	365	388	412	430	456		
26	277	302	373	395	420	445	465	493		
28	321	350	432	458	487	516	539	572		
29	345	376	463	491	522	554	579	613		
32	420	458	564	598	636	674	704	747		
35	502	548	675	715	761	807	843	893		
36	531	579	714	757	805	853	892	945		
40	656	715	882	934	994	1 054	1 1 1 0	1 167		
44	794	865	1 067	1 131	1 203	1 275	1 332	1 412		
48	945	1 030	1 270	1 346	1 431	1 571	1 585	1 680		
51	1 066	1 163	1 433	1 519	1 616	1 713	1 789	1 896		
52	1 109	1 209	1 490	1 579	1 680	1 780	1 860	1 972		
56	1 286	1 402	1 728	1 832	1 948	2 065	2 157	2 287		
60	1 476	1 609	1 984	2 103	2 237	2 370	2 477	2 625		
64	1 679	1 831	2 257	2 392	2 545	2 697	2 818	2 986		

Table 7 (Concluded)

1 To calculate the aggregate breaking force, multiply the figures given in col 4, 6 and 8 by 1.177 and in col 5, 7 and 9 by 1.25. **2** In case of Δ wire, 3 or more round wires may also be used.

Table 8 Breaking Force and Mass for 35×7 (6 –1) and 35×198 (9-9-1) Construction 35(W)x7 Class and 15x7 Class Ropes

(Clauses 4, 5, 6.5.1 and 6.5.2	(Clauses	4, 5,	6.5.1	and	6.5.2
--------------------------------	---	---------	-------	-------	-----	-------

Typical Cross Section	Typical Constru	uction
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Rope Construction	Strand Construction
	35x7 (16x7:6x7+6x7-6x7-1x7)	6-1
	40x7 [18x7:7x7+7x7-7x7-1x7)	6-1
	35x19S (16x19S:6x19S+6x19S-	9-9-1
	6x19S-1x19S)	
	15x7 : IWRC	6-1
~ 88 <del>.000</del> .68	16x7 : IWRC	6-1
WITH STEEL CORE (CWS)		
WITH STEEL CORE (CWR)		

Nominal	Approximate	Minimum Braking	g Force Correspondi	ng to Rope Grade of
Diameter	Mass	1570	1770	1960
	Steel Core	Steel Core	Steel Core	Steel Core
	(CWR)	(CWR)	(CWR)	(CWR)
(1)	(2)	(3)	(4)	(5)
mm	kg/100 m	kN	kN	kN
19	164	204	230	255
20	182	226	255	282
22	220	274	308	342
24	262	326	367	406
25	284	353	398	441
26	307	382	431	477
28	356	443	500	553
29	382	475	536	593
30	409	509	573	635
32	465	579	652	723
34	525	653	737	816
35	556	692	781	864
36	588	732	826	914
38	656	816	920	1019
40	726	904	1020	1129
42	801	997	1124	1245
44	879	1094	1234	1366
45	919	1145	1290	1429

46	961	1196	1348	1493
48	1046	1302	1468	1626
50	1135	1413	1593	1764
51	1181	1470	1657	1835
52	1228	1528	1723	1908
54	1324	1648	1858	2058
55	1373	1710	1928	2134
56	1424	1772	1998	2213
58	1527	1901	2144	2374
60	1634	2035	2294	2540

#### ANNEX A

(Foreword)

#### INFORMATION TO BE GIVEN WITH THE ENQUIRY OR ORDER

The information to be given with the enquiry or order is detailed below. It is recommended that the information should be supplied in the tabular form illustrated on page 15 & 16.

#### A-1 PARTICULARS OF SHAFT

- a) *Depth* From lowest working level in shaft to bank, vertical distance from bank to center of head pulley.
- b) Whether up cast, downcast, or both.
- c) Whether wet or dry, and approximate range of temperature variation.
- d) Whether shaft water is known to be of an injurious nature; its pH value and chloride content, if available.
- e) Whether steam is exhausted into the shaft, and whether there are any other special circumstances likely to affect the rope.

#### A-2 PARTICULARS OF WINDING ENGINE DRUM

- a) *Type of drum:* 
  - 1) If parallel type, give diameter, width and distance of fist and last live turns from centerline of drum.
  - 2) If conical type, give minimum and maximum diameters, width and distance of fist and last working turns from centerline of drum.
  - 3) If cylindro-conical type, give maximum and minimum diameters, distance of fist and last live turns from centre-line of drum, number of working turns on the minimum diameter, number of turns on the scroll, width of drum, width of scroll and width of parallel portion of drum.
- b) Nature and arrangement of drum lagging or cladding material and particulars of any grooving.
- c) Whether rope is wound on itself; if so, number of layers.

#### A-3 PARTICULARS OF DRIVING SHEAVE

- a) Diameter, and
- b) Rope groove lining.

## A-4 PARTICULARS OF PITHEAD PULLEYS AND POSITION WITH RESPECT TO WINDING ENGINE

- a) Horizontal and vertical distance between centres of pithead pulleys and whether the vertical centreline of or between the pulleys coincides with the centreline of the drum or sheave.
- b) Diameter of pithead pulley at the bottom of groove.

- c) Diameter of any guide sheave and its position with respect to the pithead pulley or driving sheave.
- d) Height of centre of head pulley above centre of drum or ground type driving sheave.
- e) Horizontal distance between centre of drum or ground type driving sheave and rope hanging in shaft.
- f) Inside and outside fleet angles.

#### A-5 MAXIMUM WINDING SPEED IN METRES PER SECOND

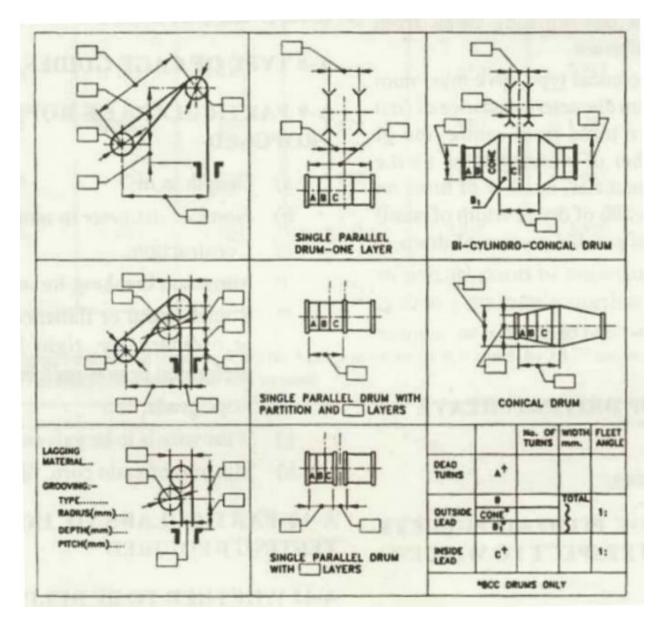
# A-6 MAXIMUM ACCELERATION IN METRES PER SECOND PER SECOND OF ROPE WHEN RAISING FULL LOAD

#### A-7 MAXIMUM LOAD AND NORMAL LOAD SUSPENDED FROM THE WINDING ROPE CAPPING INCLUDING THE MASS OF ANY BALANCE ROPE AND ITS ATTACHMENTS

#### A-8 TYPE OF CAGE GUIDES

#### A-9 PARTICULARS OF ROPE REQUIRED OR PROPOSED

- a) Length, in m;
- b) Nominal diameter, in mm;
- c) Construction;
- d) Minimum breaking force, in kN;
- e) Round strand or flattened strand Lang's lay or ordinary lay, right hand or left hand, preformed or non-preformed;
- f) Rope grade;
- g) If the wire is to be galvanized, state type; and
- h) Material of main core, fibre or wire.


#### A-10 PARTICULARS OF INSPECTION AND TESTING REQUIRED

#### A-11 WHETHER TO BE DELIVERED ON REEL HAVING LIMITING DIMENSIONS

#### Enquiry or Order Form for Winding Rope Round Strand or Flattened Strand Only

(Annex A)

Mine	Engine
1 Shaft Data	a) Up cast or downcast
a) <i>Depth</i> — lowest working level to bank	b) Wet or dry
(m)	c) Approximate working temperature range (°C)
b) Type of cage guides	d) Approximate analysis of shaft water if
c) Any special circumstances in shaft (for	
example, exhaust steam)	pH value
2 Rope Loading	injurious = $\frac{l}{Chloride (as Cl_2) parts per million}$
a) Maximum working load, excluding rope,	
but including cage, balance rope, etc (kg)	a) Maximum winding speed (m/s)
3 Data of Rope Required or Proposed	b) Maximum acceleration or retardation under full
a) Length (m)	load conditions $(m/s^2)$
b) Diameter (mm)	
c) Lay (Lang's or ordinary, right hand or	
left hand)	
d) Whether preformed	
e) Construction	
f) Rope grade	
g) Minimum breaking force (kN)	
h) Whether galvanized and type required	
j) Material and construction of main core	
k) To be delivered on reel having limiting	
dimensions, if any	
m) Details of special tests and inspection	



#### 4 Drum and Head Gear, Type of Drum or Driving Sheave

NOTE — All diameters are to bottom of rope groove. † If the rope coil is from right to left, A and C are reversed.