भारतीय मानक प्रारूप

आईसी इंजन के लिए पिस्टन के छल्ले के लिए विशिष्टता भाग 5 स्टेप्ड ऑयल स्क्रेपर रिंग्स 30 यूपी से 200 मिमी तक नाममात्र व्यास जेड-रिंग्स

Draft Indian Standard

SPECIFICATION FOR PISTON RINGS FOR IC ENGINES PART 5 STEPPED OIL SCRAPER RINGS FROM 30 UP TO 200 mm NOMINAL DIAMETER Z-RINGS (*Fint Parisian*)

(First Revision)

ICS: 43.060.10

Not to be reproduced without permission of BIS or used as standard

Last date for receipt of comments is 16/11/2022

Automotive Primemovers, Transmission Systems and Internal Combustion Engine Sectional Committee, TED 2

FOREWORD (Formal Clause to be added later)

This standard is one of a series of Indian Standards on the Specification for piston rings for IC engines. Other standards in this series are:

IS 8422 (Part 1) : 1977	Specification for piston rings for IC engines: Part 1 plain compression rings from 30 up to 200 mm nominal diameter R – Rings
IS 8422 (Part 2) : 1977	Specification for piston rings for IC engines: Part 2 taper faced compression rings from 30 up to 200 mm nominal diameter $M - Rings$
IS 8422 (Part 3) : 1977	Specification for piston rings for IC engines: Part 3 keystone rings from 82 up to 200 mm nominal diameter T - Rings 15
IS 8422 (Part 4) : 1977	Specification for piston rings for IC engines: Part 4 napier oil scraper rings from 30 up to 200 mm nominal diameter N – Rings
IS 8422 (Part 6) : 1977	Specification for piston rings for IC engines: Part 6 slotted oil control rings from 50 up to 200 mm nominal diameter S – Rings
IS 8422 (Part 7) : 1977	Specification for piston rings for IC engines: Part 7 double bevelled slotted oil control rings from 50 up to 200 mm nominal diameter G – Rings
IS 8422 (Part 8) : 1977	Specification for piston rings for IC engines: Part 8 narrow land slotted oil control rings from 50 up to 200 mm nominal diameter D - Rings

This standard is one of the series of Indian Standards on piston ring dimensions, tangential force, etc. IS 5791: 2006 is a necessary adjunct to this standard which gives details of materials, surface finish, gap types and sizes, surface coatings, manufacturing processes, etc.

In this draft for first revision of this standard, the referencing standards have been updated. A separate clause for references has also been introduced for ease of interpretation. However, wherever a reference to any Indian Standard appears in this specification, it shall be taken as a reference to the latest version of the standard.

In the preparation of this standard due consideration has been given to the prevalent sizes in the industry. It is recommended that for new designs, only the sizes given in this standard be used.

In the preparation of this standard assistance has been derived from 'Draft British Standard Specification of piston rings up to 200 mm diameter for internal combustion engines : Part 1 Single piece designs, dimensions, materials and designations', issued by the British Standards Institution.

The composition of the Committee responsible for the formulation of this standard is given at Annex A (Will be added later).

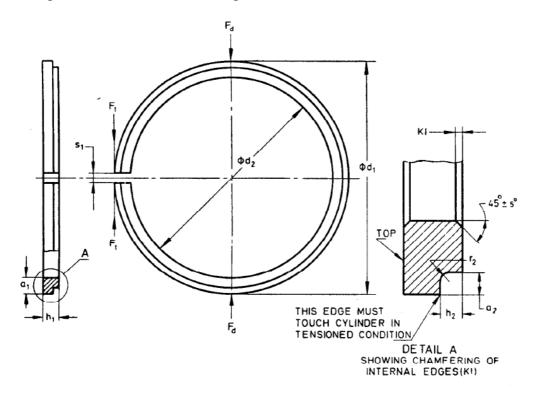
For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of test or analysis, shall be rounded off in accordance with IS 2: 2022 'Rules for rounding off numerical values (*second revision*)'. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.

Draft Indian Standard

SPECIFICATION FOR PISTON RINGS FOR IC ENGINES PART 5 STEPPED OIL SCRAPER RINGS FROM 30 UP TO 200 mm NOMINAL DIAMETER Z-RINGS

1 SCOPE

Specifies the dimensions, tolerances, tangential loads and other details of Z-rings (stepped oil scraper rings) from 30 up to 200 mm nominal diameter for internal combustion engines.


2 REFERENCES

The standards given below contain provisions which, through reference in this text, constitute provision of this standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this standard are encouraged to investigate the possibility of applying the most recent editions of these standards.

IS No.		Tit	Title						
5791: 2006	combustion tions (<i>Third R</i>	U	-	Piston	rings	-	Material		

3 DIMENSIONS AND TOLERANCES

Shall be as given in Table 1 read with Fig. 1.

All dimensions in millimetres

FIG. 1 STEPPED OIL SCRAPER RING (Z-RING) 4 DESIGNATION

Shall Include:

- a) Type of ring;
- b) Nominal diameter d_1 ;
- c) Axial width h_1 ;
- d) Number of this standard;
- e) Material symbol,
- f) Manufacturing process; and
- g) Type of coating.

Example:

Stepped oil scraper ring (Z-ring) of nominal diameter d_1 =90 mm, axial width h_1 2.5 mm, made of alloyed cast iron (A3), internally bevelled (IF) and phosphated on all sides (P), shall be designated as :

Z-Ring 90 × 2.5 IS: 8422 (Part 5) A3 IF P

TABLE 1 DIMENSIONS AND LOADS OF Z-RINGS
(Clause 3 and Fig. 1)

(All dimensions in millimetres)

TED 02 (20906) P Revision of IS 8422 (Part 5)

Nominal Dia- meter	Inside Dia- meter		dial Wall hickness	Axia	al Width of $h_{1 - 0.025}^{-0.010}$	f Ring	Closed Gap S1		idth of St Shown in	ep h ₂ ±0.1 Column	Radial Depth of Step	Radius r ₂	Inside Edges	Tangential Load F _d * in N ±25% for h1 Shown in Column		
d1	d ₂	aı	Tol	1	2	3	1	1	2	3	a2		(KI)	1	2	3
30	27.5	1.25		1		1						1		8.9	11.1	_
32	29.3	1.35	+0.10											9.9	12.7	
34	31.1	1.45	-0.15							—	0.4 + 0.1			10.9	13.8	_
35 36	32.1 33	1.45 1.5	with a maximum				$0.15^{+0.20}_{0}$				0.4 ± 0.1			10.3 10 9	13.1 13.5	
38	34.8	1.5	variation									0.25		10.9	13.3	
40	36.6	1.0	of 0.15									Max	0.3	12.7	16.0	-
42	38.5	1.75	in a ring	2	2.5				0.7		0.5 ± 0.1		Max	12.5	15.8	
44	40.3	1.85						0.6						13.5	17.2	
	41.2	19						0.0						13.8	17.4	
45 46	41.2	1.95					$0.20^{+0.20}_{0}$				0.6 ± 0.1			13.8	17.4	
46 48	44.0	2.0									0.6 ± 0.1			14.2	18.0	
-10																
														Tangential for h ₁ S	Load F _t * Shown in	
														1	2	3
50	45.8	2.1												7.4	9.4	—
52	47.6	2.2												7.9	10.0	
53	48.5	2 25					0.20 ^{+0.20}			—				8.2	10.2	
54 55	49.4 50.4	2.3 2.3									0.7 ± 0.1			8.3 8.0	10.5 10.1	
56	51.3	2.3	+0.10 0.20								0.7 ± 0.1			8.0 8.3	10.1	
58	53.1	2.35	with a											8.8	11-0	
60	54.9	2.55	maximum					1				0.25	0.3	9.2	11.7	_
62	56.8	2.6	variation	2								Max	Max	9.1	11.5	13.7
63	57.7	2.65	of 0.15	-	2.5									9.3	11.8	14.1
64	58.6	2.7	in a ring				$0.25^{+0.20}_{0}$							9.6	12.1	14.5 14.8
65	59.5	2.75						0.6	0.7	0.9	0.8 ± 0.1			9.8	12.4	14.8
66	60.4	2.8						0.0		0.9	0.0 ± 0.1			10.0	12.6	13.2
67	61.4	28												9.7	12.2	
68	62.3	2.85	1											9.9	12.6	15.0
70	64.1	2.95												10.4	13.2	15.8
72	65.9	3.05												10.9	13.8	165
74 75	67.8 68.7	3.1 3.15	4									-		10.9 14.0	13.8 16.7	16.5
75 76	68.7 69.6	3.15		2.5			$0.30^{+0.20}_{-0}$	0.7	0.9	_	0.9 ± 0.1			14.0 14.3	16.7	
78	71.4	3.3			3		0.30		0.9		0.9 ± 0.1			14.5	17.7	

80	733	335												14.7	17.6	_
82	75.1	3.45					0.20 ± 0.20				1 ± 0.1			15.2	18.2	
84	76.9	3.55					$0.30^{+0.20}_{0}$				1 ± 0.1			15.2	19.1	
85	77.8	3.6												16.2	19.4	
86	78.8	3.6												15.8	19.4	
88	80.6	3.7												16.4	19.7	
90	82.4	3.8						-			1.1 ± 0.1			16.9	20.3	23.6
92	842	3.9									1.1 ± 0.1			17.6	21.0	24.4
94	861	395												17.4	20.8	24.4
95	87.0	4			3	3.5		0.7	0.9	1.2				17.7	21.3	24.8
96	87.9	4 05			5									18.0	21.6	25 3
98	897	414												18.5	22.3	26.0
100	91.6	42		2.5			$0.40^{+0.25}_{0}$							18.4	22.1	25.8
102	93.4	43		2.5										19.0	22.8	26.5
104	95 4	43										0.25	0.45	18.2	21.8	25.4
105	96.1	4.45	1								1.2 ± 0.1	Max	Max	19.9	23.8	27.8
106	97.0	4.5	+0.10											20.2	24.2	28.2
108	990	4.5	- 0.25											19.3	23.1	27.0
110	1008	4.6	with a											23.6	27.6	_
112	102.6	4.7	maximum											24.3	28.4	
114	1046	4.7	variation											23.3	27.2	
115	1054	4.8	of 0.18			—					1.3 ± 0.1			24.4	28.6	
116	1064	48	in a ring											24.0	28.0	
118	1082	49												24.5	28.6	
120	1100	5							1.2					25.2	29.2	
122	112.0	5		3	3.5			0.9						24.1	28.2	
124	114.0	5									1.4 ± 0.1			23.3	27.2	
125	114.6	5.2												25.9	30.2	34.7
126	115 6	52												25.5	29.6	34.2
128	117.6	52												24.5	28.6	32.9
130	1192	5.4								1.3				26.5	30.9	35.6
132	1212	5.4				4								25.6	29.8	34.5
134	1232	54					$0.50^{+0.25}_{0}$				15101			24.7	28.9	33.3
135	124.0	55					0.00 0				1.5 ± 0.1		0.55	25.8	30.1	34.7
136 138	125.0	5.5 5.5											0.55 Max	25.3 24.5	29.6 28.6	34.1
138	127.0 1286	5.5					-						IVIAA		35.5	32.9
140	1286	5.7 5.7												30.8 29.8	35.5 34.4	—
142 144	1306	57 5.7			4				1.3					29.8 28.8	34.4 33.3	
144	1320	5.7		3.5	4			1.2	1.5		1.6 ± 0.1			31.7	36.5	<u> </u>
145	133.2	5.9		5.5				1.2			1.0 ± 0.1			31.7	35.9	
140	1342	5.9 5.9												31.2	33.9 34.8	
148	1302	3.9			I									30.2	34.0	

NominalInsideDia-Dia-metermeterd1d2		tadial Wall Thickness	Axial Width of Ring $h_{1\ -0.025}^{-0.010}$			Closed Gap S1		idth of St Shown in S	ep h ₂ ±0.1 Column	Radial Depth of Step	Radius r ₂	Chamfering of Inside Edges (KI)	Tangential Load F _d * in N ±25% for h1 Shown in Column												
uı	u ₂	aı	Tol	1	2	3		1	2	3	a2		(KI)	1	2	3									
150 152 154	138.0 140.0 1420	6.0 6.0 6.0									1.7 ± 0.15			30.7 29.8 28.9	35.4 34.4 33.3	—									
155 156 158	142.6 1436 1456	6.2 6.2 6.2	+0.10 - 0.25 with a maximum variation of 0.18 in a ring	- 0.25 with a maximum variation of 0.18							_				31.6 31.1 30.2	36.4 35.8 34.7									
160 162 164	147.2 149.2 151.2	6.4 6.4 6.4						$0.60^{+0.25}_{-0}$	1.2	1.3			0.25 Max	0.55 Max	32.2 31.3 30.4	37.2 36.1 35.0									
165 166 168	152.0 153.0 155.0	6.5 6.5 6.5			in a ring	in a ring	in a ring	in a ring	in a ring	in a ring						1.5		1.8 ± 0.2	1.8 ± 0.2		31.6 31-0 30.2	36.3 35.8 34.8			
170 172 174	156.6 158.6 160.6	6.7 6.7 6.7				3.5	4						1.9 ± 0.2			32.1 31.3 30.4	37.2 36.1 35.0								
175 176 178	161.2 162.2 164.2	69 69 6.9	+0.15 - 0.30 with a maximum variation of 0.23 in a ring	- 0.30 with a	- 0.30 with a maximum	+0.15	+0.15	+0.15	+0.15	+0.15	+0.15	+0.15											32.9 32.5 31-7	38.0 37.5 36.5	43.1 425 41.4
180 182 184	165.8 167.8 169.8	7 1 7.1 7.1						4.5				1.45		0.5		33.7 32.9 32.0	38.9 37.9 37.0	44.1 42.9 42.0							
185 186 188	170.6 171.6 173.6	7 2 7.2 7 2					$0.70^{+0.25}_{0}$				2 ± 0.2	Max	0.8 Max	32.8 32.4 31.7	37 9 37.4 36.5	43.0 42.3 41.4									
190 192 194	175.2 177.2 179.2	7.4 7.4 7.4												33 7 32.8 32.0	38.8 37.8 37.0	44.0 42.8 42.0									
195 196 198 200	180.0 181.0 183.0 184.6	7.5 7.5 7.5 7.7												33.0 32.6 31.9 33.8	38.0 37.7 36.7 38.9	43.1 42.8 41.5 44.1									

NOTE — Tangential force F_t and diametral load F_d values in col 1, 2 and 3 correspond to the values of he given in col 1, 2 and 3 respectively. *Tangential and diametral load values are applicable for material A1 only (*see* IS: 5791-1977 Technical supply conditions for piston rings for IC engines (*first revision*)]. For other materials load factors given in IS: 5791-1977 shall be used.

5 GENERAL REQUIREMENTS

Shall be as given in IS: 5791-1977.

6 MARKING

The rings which are to be fitted in a particular direction shall be marked with the word 'TOP' on the top sides of the rings. For other markings reference should be made to IS: 5791-1977.

6.1 BIS Certification Marking

Each piston rings for I.C engines may also be marked with the Standard Mark.

6.1.1 The use of the Standard Mark is governed by the provisions of the *Bureau of Indian Standards Act, 2016* and the Rules and Regulations made thereunder. The details of conditions under which the license for the use of the Standard Mark may be granted to manufacturers or producers may be obtained from the Bureau of Indian Standards.

ANNEX A

(Foreword)

COMMITTEE COMPOSITION

AUTOMOTIVE PRIMEMOVERS, TRANSMISSION SYSTEMS AND INTERNAL COMBUSTION ENGINE SECTIONAL COMMITTEE, TED 02

Will be added later