भारतीय मानक ब्यूरो

(Not to be reproduced without permission of BIS or used as an Indian Standard)

भारतीय मानक प्रारूप धातु विज्ञान के नमूने की तैयारी के लिए अभ्यास संहिता भाग 5 लौह मिश्रधातु (पहला पुनरीक्षण)

Draft Indian Standard CODE OF PRACTICE FOR PREPARATION OF METALLOGRAPHIC SPECIMENS

PART 5 FERROUS ALLOYS

(First Revision)

ICS 77.080.20

FOREWORD

(Formal clause of the foreword will be added later)

This standard was first published in 1976. This revision has been brought out to bring the standard in the latest style and format of the Indian Standards. In addition to this, references clause has been added.

This standard was originally published in eleven parts. The committee later decided to consolidate standards on etchants of all nonferrous materials. Consequently, Parts III, IV, VI, VII, VIII, IX, X, and XI have been withdrawn and superseded by Part III Etchants for non-ferrous materials.

The remaining parts of this standard are as follows:

Part II Electrolytic polishing

Part III Non-ferrous alloys (Superseded by Parts III, IV, VI, VII, VIII, IX, X, and XI)

Part V Ferrous alloys

For the purpose of deciding whether a particular requirement of this standard is complied with the final value, observed or calculated, expressing the result of a test or analysis, shall be rounded off in accordance with IS 2: 2022 'Rules for rounding off numerical values (*second*

revision)'. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.

Draft Indian Standard

CODE OF PRACTICE FOR PREPARATION OF METALLOGRAPHIC SPECIMENS PART 5 FERROUS ALLOYS

(First Revision)

1 SCOPE

1.1 This standard (Part 5) covers the polishing, etching and examination of iron and steel.

1.2 For convenience, this standard is divided in two sections, namely:

- a) *Macroscopic examination* In which the study is made at low magnification (usually 10 X or less).
- b) *Microscopic examination* In which the study is made at comparatively high magnification and resolution.

1.3 A metallographic examination shall frequently include both a macroscopic and microscopic examination. However, there are many occasions on which either the macroscopic or microscopic study alone is sufficient to supply the desired information.

2 REFERENCES

The standards listed below contain provisions, which through reference in this text constitute provisions of this standard. At the time of publication, the editions indicated were valid. All standards are subject to revision and parties to agreements based on this standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below:

IS No.	Title
MTD/22/21991	Code of practice for preparation of metallographic specimens: Part
	1 General features (first revision)
IS 7739 (Part 2):	Code of practice for preparation of metallographic specimens: Part
1975	2 Electrolytic polishing
IS 715: 2002	Coated Abrasives — Specification (fourth revision)

SECTION 1 MACROSCOPIC EXAMINATION OF STEEL

3 GENERAL

3.1 Macro-examination is an inspection procedure for revealing certain aspects of the quality and structure of a metal by subjecting it to the corrosive action of an etchant and examining it visually or at low magnification. This is usually done on steels and may be classified into two groups of study: one, the study of the surface characteristics of the

material, and the other the study of physical and chemical nonhomogeneity of the material, for example, porosity, cracks, seams, segregation, scabs, laps, piping, laminations, etc, or the absence of this condition, as revealed by sections of the material.

3.2 Other applications of macro-etching in the fabrications of metals, are the study of flaw lines of weld structure, definition of weld penetration, dilution of filler metal by base metals, entrapment of flux, porosity and cracks in weld and heat-affected zones, etc. It is also used in the heat-treatment shop to determine location of hard or soft spots, tong marks, quenching cracks, case depth in shallow hardening steels, case depth in carburization of dies, effectiveness of stop off coatings in carburization, etc. In the machine shop, it may be used for the determination of grinding cracks in tools and dies.

4 SELECTION OF SAMPLE

4.1 A representative sample shall be selected with due consideration for the purpose, of the test. The sample should usually be of a full section of the material and should be thick enough for easy handling and subsequent preparation. Normally, transverse cross-sectional samples in the form of flats discs at right angle to the axis shall be taken, and the cross-sectional dimension should not exceed 300 mm \times 300 mm.

4.1.1 If necessary, stipulation should be made in material specification regarding identity of the sample, for example, cast number, ingot number, relative- position of the sample, etc, as agreed to between the supplier and the purchaser.

4.2 During sample selection, consideration should be given to the stage of mechanical working at which the sample is selected. When macro-etching is used as an inspection procedure, sampling ought to be done in an early stage of manufacturing so that if the material is faulty, no further work is done, which may prove unnecessary and wasteful. However, care should also be taken not to select a sample so early that further working may introduce serious defects. For steels sample shall be taken after ingot breakdown and after most chances of bursts or flakes occurring have passed. Billets or blooms going into small sizes are sampled after initial breakdown. Materials for forging billets or die blocks is sampled near finish size. Sampling may be done systematically or on a random basis.

4.3 Samples may be cut from the whole by means of a saw, abrasive cut-off wheels or any other convenient machining operation. Gas-cutting may be used to cut samples from large sections, but the heat-affected zone of gas-cut samples shall be removed by machining or abrasive wheel cutting prior to etching. Suitable coolant shall be used to prevent overheating of specimens during abrasive cutting.

5 PREPARATION OF SPECIMENS

5.1 The required surface finish for specimens for macro-etching vary from saw-cut or machined surface to polished surfaces.

The degree of permissible surface roughness depends on the severity of the etchant and the type of examination being made.

5.2 If the surface characteristics of a material are under study, it is rather unusual to have any extensive preparation of the surface prior to macroscopic study. The surface is usually cleaned and degreased with carbon tetrachloride so that the subsequent etchant shall attack the surface of the material uniformly. With a hot-dipped or electroplated coating present on the surface of the material under study it is necessary to remove the coating metal to examine the underlying base metal. These protective metals are usually stripped by chemical solution; extreme care should be exercised so that the base metal is unattacked by the stripping solution.

5.3 In the study of materials for physical and chemical nonhomogeneity, it is usually necessary to section the material through a plane which should reveal the area of suspected heterogeneity. The degree of surface preparation to be given to the sample is largely dependent upon the type of etch to be used in the examination and the details to be revealed in the sample under test. In general, the quality of the surface finish must be higher as the severity of the etchant tit chemical attack decreases. Conversely, with an intensive etch, the quality of the surface preparation may be lowered. Rough grinding on an abrasive wheel or belt or with coarse emery paper is usually sufficient, and even machined surfaces may sometimes prove satisfactory for deep etching specimens for macroscopic examination. When less severe etching, such as with ammonium persulphate, is to follow, or in sulphur printing, a somewhat smoother finish may be desirable.

6 ETCHING FOR MACROSCOPIC EXAMINATION

6.1 Table 1 gives the etching reagents which are commonly recommended for the macroscopic examination of iron and steel.

6.1.1 Table 2 gives the recommended methods of macroetching for specific purposes.

6.2 In deep etching, hot solutions of hydrochloric acid, sulphuric acid, or mixtures of these acids, are generally used. Deep etching in hot, strong solutions of these acid requires considerable care in the time of exposure of a material being etched, since the attack is frequently very rapid. It is very easy to over-etch materials and thus mask the interpretation that would be gained from an accurately etched specimen. Likewise, the intensity of a local defect should be given careful consideration if viewed after deep etching, since the chemical attack will exaggerate the original condition tremendously. A deep etch is frequently used to disclose physical and chemical nonhomogeneity, such as porosity, cracks, seams, segregation, etc. Ammonium persulphate, Stead's reagent, Fry's reagent, and Humfrey's reagent are less drastic in attack than the deep etching reagents and are used for grain structure development, detection of phosphorus banding, detection of strain lines, and dendritic segregation, respectively.

6.3 After etching, the sample shall be washed in warm water or running water, using a stiff brush to remove all traces of rust. They should be dried with alcohol and clean air, and examined immediately afterwards.

6.3.1 For photographic purposes, increased contrast is frequently obtained by washing after etching and applying glycerin to the etched surface.

6.3.2 A solution of one part of syrupy phosphoric acid to one part of water, to which a little sugar has been added, is sometimes applied to the dried face to delay rusting. Dipping in an alkaline solution before drying may be helpful. Dried surfaces may be protected with oil or grease or with a transparent lacquer.

7 SULPHUR PRINTING

7.1 This is a macroscopic method for revealing sulphur segregation and the size and distribution of the sulphides.

7.2 The surface, to be tested for sulphur distribution shall be reasonably smooth and free from foreign matter such as dirt and grease. Grind the surface on No. 00 or No. 000 emery paper and wash thoroughly in water to produce a surface satisfactory for taking a sulphur print. Place a sheet of photographic paper (preferably matt finish, to prevent slipping), which has been soaked in a 2 percent aqueous solution of sulphuric acid for approximately 3 or 4 minutes, on the surface of the specimen and gently smooth out with a squeeze print roller so as to eliminate all entrapped air bubbles between the paper and the specimen surface. The paper shall be allowed to remain in contact with the specimen surface for 1 or 2 minutes. After that period, the paper shall be removed, rinsed, fixed in sodium thiosulphate (hypo), washed and dried in the usual manner.

Yellow or brown speeks on the paper indicate the presence of sulphides in the specimen.

7.2.1 Any surface, if once used for taking on sulphur print, shall not be used again for taking another sulphur print. If more prints are desired from the same section at least 3 mm of steel should be removed prior to making another print.

7.2.2 Transparent silver bromide paper may be used to give a sulphur print transparency from which contact prints in any number may be made on ordinary photographic paper.

7.3 The specimen may also be tested by pressing for 2 to 4 minutes upon gelatin paper which has been treated with solution No. 1 and yellow cadmium acetate is precipitated. By immersion for 2 to 3 minutes in solution No. 2, this is transformed to the dark brown to black copper sulphide.

NOTES

Solution No. 1: 25 g of cadmium acetate plus 200 ml of acetic acid (80 percent) to which is added a solution of 500 ml of sulphuric acid (r.d. 1.84) in 950 ml of water.
 Solution No. 2: 120 g of copper sulphate plus 880 ml of water plus 120 ml of sulphuric acid

(r.d. 1.84).

8 PHOSPHORUS PRINTING

8.1 This is a macroscopic method for revealing the distribution of phosphorus on the surface of steel.

8.2 The surface of the specimen shall be prepared by grinding or on No. 000 emery paper and cleaned after grinding by washing in warm running water and carefully drying.

8.2.1 A photographic or filter paper is first soaked in a solution consisting of ammonium molybdate (5 g per 100 ml of water) to which 35 ml of nitric acid (r.d. 1.2) has been added. The paper is then removed from the reagent, drained nearly free of excess solution, and applied directly to the prepared surface of the metal, care being taken to effect intimate contact between the paper and the surface. The paper is allowed to remain in contact with the surface for approximately 5 minutes.

8.2.2 The print is then removed from the specimen and developed for approximately 4 minutes in a developer made up of 5 ml of saturated stanneous chloride solution, 50 ml hydrochloric acid, 100 ml water and 1 g alum.

8.2.3 Development of a blue colour in the print indicates the location of phosphorus rich areas on the surface of the metal, and by noting the relative intensity of the blue colour, the amount of phosphorus present may be estimated. The intensity of colour increases with increased amounts of phosphorus.

9 LEAD PRINTING

9.1 This is a macroscopic method for revealing the lead distribution on the surface of a steel specimen.

9.2 The surface of the specimen shall be prepared by grinding on No. 000 emery paper and cleaned thoroughly in running water, degreased with a suitable solvent and dried.

9.2.1 Soak a caustic resistant filter paper in 5 percent caustic soda solution for 2 minutes. Place the soaked filter paper over the prepared surface and ensure through air-free contact between the paper and the specimen by means of a roller squeezer or by suitable application of pressure.

9.2.2 Remove the filter paper after maintaining the contact for about 4 minutes and then immerse it in 5 percent sodium sulphide solution for 1 minute. Take out the filter paper and wash in distilled water.

9.2.3 The brownish to dark spots indicate lead distribution in the examined surface.

9.3 It is difficult to preserve the lead prints, unless immediately photographed, preferably in colour.

SECTION 2 MICROSCOPIC EXAMINATION OF IRON AND STEEL

10 PREPARATION OF SPECIMENS

10.1 Recommended methods of selection, size, cutting, cleaning and mounting of specimens are given in IS 7739 (Part 1). Recommended methods of electrolytic polishing are given in IS 7739 (Part 2).

10.2 A flat surface on the specimen may be obtained by filing, machining, or grinding on stones or motor-driven abrasive belts. In filing, the specimen should be pushed against the cutting edges of the file with the file in a fixed position. The motion of the specimen against the file should be in one direction only, since cutting action on both the forward and backward, strokes shall tend to round the edges of the specimen. One of the most effective and rapid methods of facing a specimen is by the use of a motor driven abrasive belt. Grinding wheels are effective but require considerable attention so that the grinding surface is true at all times. Extreme care should be exercised during grinding so that the specimen does not become heated and thus temper the steel which is to be examined. It has been demonstrated that grinding may raise the temperature of the surface layer of the specimen to 1000°C.

10.3 The second stage or specimen preparation is the grinding with successively finer abrasive materials until the abrasive marks produced are fine enough to be removed readily by a final polishing operation.

10.4 The grinding operation wet or dry may be done either by hand or by power driven wheels if abrasive papers are used. Emery or carborundum papers are used in four or five degrees of fineness of grit. The commonly used papers are No. 2, 1, 0, 00, and 000. It is frequently not necessary to use the coarsest or No. 2 paper, but this is determined by the degree of surface obtained on the preliminary facing. If powder driven disks are used, the question of revolutions per minute is encountered. Actually the cutting speed is a function of linear speed; therefore it is impossible to name the revolutions per minute to be used on a disk since the linear speed varies from the centre of the disk to the periphery. The grinding speeds of the disks usually vary from 500 to 1000 rev/mm. The grinding on each paper should be done in one direction and at 90° to that of the preceding paper or stage. (For details of grit number of abrasive papers, *see* IS 715. A comparative chart of grit numbers of abrasive grains is given at Appendix A.)

10.5 The grinding operation may be done on paraffined disks or on paraffin impregnated billiard cloth or canvas. The main advantage of using paraffined disks or impregnated cloths is the preservation of nonmetallic inclusions in the polished surface and the retention of graphite in cast iron.

10.6 The grinding operation may also be done by using lead or lead alloy laps. In a lead-lapped disk, the abrasive is firmly fixed in the soft metal, and it is claimed that there is less tendency to 'drag out' nonmetallic inclusions.

10.7 Rough polishing, which follows grinding, may be considered as a final, grinding operation. The success of the polishing operation may largely be determined by this step. This may be done by any one of the following methods:

- a) Grinding on billiard cloth or canvas with aluminium oxide of grit No. 600,
- b) Grinding on fine abrasive papers such as No. 0000 or No. 600 grit silicon carbide, and
- c) Grinding with billiard cloth impregnated with paraffin.

10.8 The final polishing technique may be determined largely by the intent of the examination. If the type and amount of nonmetallic inclusions are to be studied, the final polish should be done on a disk with a hard, pileless cloth such as a good grade of heavy cotton or linen, the dull side of a heavy silk stain, or a good flat crepe. If the structure of the metal is to be studied at high power, a surface with fewer and less severe scratches, is required. Magnesium oxide or levigated suspension of γ -aluminium oxide are the common finishing powders. Finishing speeds are fairly slow in comparison with grinding.

While using magnesium oxide for final polishing, a small quantity of fresh, dry powder is applied to the lapping cloth and a thin paste is formed by adding sufficient quantity of distilled water. The paste is then worked into the cloth fibres with the finger tips, and after so charging the cloth and during subsequent polishing, additional distilled water is added when necessary to keep the lap moist.

The γ -aluminium oxide, used for final polishing, should have a uniform particle size of less than 0.1 μ m, and the *p*H of the suspending liquid shall be controlled between 8.3 and 10.0, by using phenolphthalein as indicator.

10.9 The polishing of cast iron specimens in which graphite is to be studied, and of steel specimens to be studied in the etched condition, should usually not be considered finished until the specimens have been etched and repolished a number of times to remove the surface layers that have been disturbed by the previous stages of polishing. Care may be required to avoid pitting of inclusions, if this process is repeated too often.

11 ETCHING FOR MICROSCOPIC EXAMINATION

11.1 In general, polished metal shows no trace of crystalline structure. Etching is used to clearly delineate the structure and to produce optical contrast among the various constituents, In Table 3 are given the etching reagents commonly recommended for microscopic examination of iron and steel.

11.2 The polished specimen should be thoroughly cleaned prior to etching. (The specimen should also be rubbed with caustic soda and washed in water.) The cleanliness of the polished surface may be tested by immersing it in alcohol. If the surface is completely wetted by the alcohol it shall accept uniformly the attack of the etchant. If complete wetting of the surface is not obtained, the specimen should be cleaned in ether or some similar oil and grease solvent.

11.3 The cleaned specimen is immersed in the etchant. This immersion is frequently done by means of nickel or other corrosion-resisting tongs. The specimen is usually immersed with the polished face up so that the progress of the etching may be observed. During etching the specimen should be kept in motion to prevent gas bubbles from clinging to the surface of the steel and thus retarding a uniform attack by the etchant. The progress of the etching may generally be observed visually, but it should also be carefully timed. If the sample is not etched sufficiently on the first immersion the process may be repeated, although re-etching frequently causes staining. However, if the specimen is over-etched on the first immersion, or any following immersion the specimen should be repolished and sometimes even reground prior to

etching again. Alternate polishing and etching are very often required, especially for high-alloy steels, in order to obtain a correct development of the microstructure.

11.3.1 Whenever the etching time is small, it is better to immerse the polished face only and take out the sample for examination of progress of etching. Only where the etching time is considerable, samples may be kept immersed in the etchant.

11.4 Following the etching, the specimen should be washed in water and immersed in alcohol and then dried in a blast of warm air. Cold water washing should be avoided since it retards the evaporation of the alcohol and usually tends to leave water spots on the surface of the etched specimen. During drying, the specimen should never be rubbed with cotton since it is usually fatal to the detail of the etch.

11.5 Polished and etched specimens, should be preserved if required in a desiccator or a sterilizer cabinet where dust, dirt, and moist gases from the atmosphere shall not collect on the surface.

11.5.1 Etched surfaces that are to be preserved for comparatively long periods of time should be coated thinly with a suitable lacquer. Lacquer coatings are best applied to prepared surfaces by partly immersing the specimen in a thinned solution of the lacquer, allowing the excess liquid to drain for a few seconds, and then permitting the lacquer to dry with the polished and etched surface in an up and horizontal position.

11.5.2 A thin coating of vaseline or neutral white mineral oil over the prepared surface is satisfactory in some cases for long time preservation, particularly when storage is made in a desiccator.

Table 1 Etching Reagents for Macroscopic Examination of Iron and Steel								
	(<i>Clause</i> 6.1)							
SL NO.	ETCHING REAGENT	COMPOSITION	J	REMARKS	USE			
(1)	(2)	(3)		(4)	(5)			
i.	Hydrochloric	HCl	50 ml	Used at to 82°C for 1 to 60 min	Shows segregation, porosity,			
	acid	H ₂ O	50 ml	depending on the size of sample, type of steel, and type of structure to be developed. Surface <i>A</i> or <i>B</i>	cracks, depth of hardened zone in tool steel, etc. May produce cracks in strained steel			
ii.	Mixed acid	HCl	38 ml	To be used as above for 15 to 45	Same as for reagent No. 1			
		H_2SO_4	12 ml	min. Surface <i>B</i> or <i>C</i>				
		H ₂ O	50 ml					
iii.	Nitric acid	HNO ₃	25 ml	Used cold for large surfaces such	Same as for reagents No. 1 and 2			
		H ₂ O	75 ml	as split ingots which may not conveniently be heated. Surface <i>B</i> or <i>C</i>				
iv.	Nitric acid	HNO ₃	0.5 to 1.0 percent in H ₂ O	Immerse 30 to 60 s after grinding specimen on 240-grit emery belt and thorough cleaning. Surface <i>B</i> or <i>C</i>	To show structure of welds			
v.	Ammonium persulphate	(NH4) ₂ S ₂ O ₈ H ₂ O	10 g 90 ml		Brings out grain structure in cases of excessive grain growth, recrystallization at welds, flow lines, etc			
vi.	Ammonium persulphate with potassium iodide	 A. (NH₄)₂S₂O₈ H₂O B. Same as A, plus KI C. Same as B, plus HgCl₂ 	2.5 g 100 ml 1.5 g 1.5 g	with solution A , then 10 min with B , then 5 min with C , and 5 min	Shows dendritic macrostructure of cast iron			

			D. Same as C, plus H ₂ SO ₄	15 ml		
vii.		Stead's	CuCl ₂	2.5 g	The salts are dissolved in the HCl	Brings out phosphorus-rich areas
	1	reagent	MgCl ₂	10.0 g		and phosphorus bending. May be
		-	HCl	5 ml	possible quantity of hot water.	used also for general segregation
			Ethyl alcohol	Up to	Surface <i>B</i> or <i>C</i>	
				250 ml		
viii.]	Fry's reagent	CuCl ₂	90 g	Most useful for mild steel,	Shows up strain lines due to cold
			HCl	120 ml	particularly bessemer and other	work
			H_2O	100 ml	high nitrogen steel. Before	
					etching, sample should be heated	
					to 200 to 250°C for 5 to 30 min,	
					depending on the condition of the	
					steel. During etching the surface	
					should be rubbed with a cloth	
					soaked in the etching solution.	
					Wash in alcohol or rinse in HCl (
					1+1) after etching to prevent deposition of copper. Surface <i>B</i>	
					or C	
viii.	(a)]	Fry's reagent	CuCl ₂	45 g	Same as for reagent No. 6, may	Same as for reagent No. 6
		<i>j</i> = <i>0</i>	HCl	U	give more contrast. Specimen can	
			H ₂ O	100 ml	be washed in water without	
					depositing copper. Surface B or C	
ix.]	Nital	HNO ₃	5 ml	Etch 5 min, followed by 1 sec in	Shows cleanness, depth of
			Ethyl alcohol	95 ml	HCl (10 percent). Surface <i>B</i> or <i>C</i>	hardening, carburized or
						decarburized surface, etc.
х.]	Humfrey's	Copper ammonium	120 g	Slight abrasion of surface after	Develops dendritic segregation
	1	reagent	chloride		etching is recommended. Surface	
			HCl	50 ml	В	
			H_2O	1000 ml		

xi.	Sulphuric	H_2SO_4	25 ml	Use cold 8 to 16 h. Surface B	Shows dendritic pattern and flow			
	acid	H_2O	75 ml		lines			
N	NOTE 1 — The use of concentrated reagents is intended unless otherwise specified.							
N	NOTE 2 — Surface designations :							
	Surface A — Saw-cut or machined surface							
	Surface B — Average ground surface							
	Surface C — Polished surface							

Table 2 Macroetching of Iron and Steel for Specific Purposes

(*Clause* 6.1.1)

PURPOSE	COMPOSITION	ſ	REMARKS	USE
(1)	(2)		(3)	(4)
Blowholes	H_2SO_4	10 ml	Use cold on large sections for 24 h.	Shows blowholes, porosity, pipe and
	H_2O	90 ml	Surface <i>B</i>	inclusions
Carburised case	HNO ₃	3 ml	Etch at room temperature. Surface	Shows depth of carburized case
	Ethyl alcohol	95 ml	В	
Contrast	Iodine	1 g	Use at room temperature. Surface	Produces contrast for photographing
	KI	2 g	В	
	H ₂ O	10 ml		
Cracks	HNO ₃	5 ml	Etch at room temperature. Etches	Detects fatigue, service hardening and
	Ethyl alcohol	95 ml	within $1/2$ h. Surface B	grinding cracks
Cracks	Copper ammonium	120 g	Etch first with a neutral solution to	Produces a strong relief effect. Shows
	Chloride		remove machine marks. Use cold	up dendrites and may indicate cracks
	HCl	50 ml	for 20-30 min. Surface B	
	H_2O	1000 ml		
Decarburization	HNO ₃	5 ml	Etch at room temperature. Surface	The decarburized areas shall be light.
	Ethyl alcohol	95 ml	С	Area not decarburized dark
Defects	H_2SO_4	10 ml	Use cold on large sections for 24 h.	Shows porosity, pipe, blowholes, and
	H_2O	90 ml	Surface <i>B</i>	inclusions
Defects	H_2SO_4	20 ml	Use near boiling for at least l/2 h.	Shows general structure and defects
	HCl	10 ml	Surface A	
	H_2O	30 ml		
Dendrites	H_2SO_4	20 ml	Use near boiling for at least l/2 h.	Shows general structure and defects
	HCl	10 ml	Surface A	
	H_2O	30 ml		
Dendritic pattern	H_2SO_4	25 ml	Use cold, 8 to 16 h. Surface <i>B</i>	Shows dendritic pattern and flow lines
	H_2O	75 ml		

Dendritic	CuCl ₂	3 g	Etch first with 10 percent nitric	Shows dendritic structure
structure	HC1	40 ml	1	
	H ₂ O	500 ml		
Fibre	$(NH_4)_2S_2O_8$	10-12 g	Swab on freshly made solution for	Shows fibre and grain contrast
	H ₂ O	U	1/2 min. Surface B	C
Flow lines	H_2SO_4	25 ml	Use cold, 8 to 16 h. Surface B	Shows flow lines and dendritic pattern
	H ₂ O	75 ml		
Flow lines	HCl	50 ml	Use hot. Surface A	Shows flow lines
	H_2O	50 ml		
Grain contrast	$(NH_4)_2S_2O_8$	10-20 g	Swab on freshly made solution for	Shows grain contrast and fibre
	H ₂ O	90 ml	1 to 2 min. Surface B	C .
Grain contrast	CuCl ₂	1.5 ml	Polish specimen carefully. Surface	Shows good grain contrast
	HCl	30 ml	C	
	H_2O	95 ml		
	Ethyl alcohol	30 ml		
Grain size	$(NH_4)_2S_2O_8$	10-20 g	Swab on freshly made solution for	Shows grain size especially in low-
	H ₂ O	90 ml	1 to 2 min. Surface <i>B</i>	carbon steels, wrought iron, and welded sections
Hardness	HNO ₃	5 ml	Etch at room temperature on	Shows depth of hardness penetration
penetration	Ethyl alcohol	95 ml	smooth ground surface. Surface B	of heat treated samples
Hardness	HCI	50 ml	Use hot 2 to 5 min. To preserve	Shows depth of hardening, especially
penetration	H ₂ O	50 ml	surface after etching, scrub in	carbon steels. Produces distinct
			running water, dip in weak	
			NH ₄ OH, dip in solution of soluble	troostitic zones
			cutting oil, dry with a rag and	
			compressed air. Surface B	
Heterogeneity	HC1	50 ml	Immerse specimen in hot solution	Shows heterogeneity in general
-	H ₂ O	50 ml	form $\frac{1}{2}$ to 1 h. Surface A	
Heterogeneity	HCl	—	Use hot 100°C. Surface A	Shows heterogeneity in 3 to 3.5 percent nickel steels

NOTE — Surface designations:

Surface A — Saw-cut or machined surface

Surface B — Average ground surface Surface C — Polished surface

(Continued)

PURPOSE (1)	COMPOSITION (2)		REMARKS (3)	USE (4)
Impurities in	CuCl ₂	1 g	Etch only well polished surface	Plates out copper on ferrite
ferrite	SnCl ₂	0.5 g	• 1	
	FeCl ₃	30 g	Surface <i>C</i>	good even etch
	HCl	30 ml		
	H ₂ O	500 ml		
	Ethyl alcohol	500 ml		
Inclusions	H_2SO_4	10 ml	Use cold on large sections for 24 h.	Shows inclusions, porosity, pipe
	H ₂ O	90 ml	Surface <i>B</i>	and blowholes
Inclusions	H_2SO_4	10-20 ml	Use hot. Surface A	Etches sulphide inclusions
	H_2O	80-90 ml		
Pipe and porosity	H_2SO_4	10 ml	Use cold on large sections for 24 h.	Shows pipe, porosity, blowholes
	H_2O	90 ml	Surface <i>B</i>	and inclusions
Rail sections	HCl	45 ml	Etch near boiling point for 2 h.	Use for etchingrail sections
	H_2SO_4	15 ml	Surface A	
	H ₂ O	5 ml		
Segregation	Picric acid	3 g	Etch at room temperature for 4 to	Shows segregation
	Ethyl alcohol	100 ml	5 h. Surface <i>B</i>	
Segregation	Picric acid	1 g	Use hot. Surface <i>B</i>	Shows segregation
	HCl	1 drop		
	Ethyl alcohol	25 ml		
Segregation	HNO ₃	10-15 ml	Etch at room temperature. Surface	Shows heavy segregation
	H ₂ O or ethyl alcohol	85-90 ml	В	

 Table 2 Macroetching of Iron and Steel for Specific Purposes — Contd

Segregation	HNO3 H2O or ethyl alcohol	5 ml 95 ml	Etches within $1/2$ h. Surface is black when etched. Surface <i>B</i>	Shows segregation in low carbon, low chromium nickel steel
Segregation	HNO ₃ H ₂ O	2-10 ml 90-98 ml	Etch first with weak acid to remove machine marks and then increase concentration for structure. Surface <i>B</i>	Shows segregation in sections and large pieces
Segregation	CuCl ₂ Picric acid HCl H ₂ O Ethyl alcohol	1 g 0.5 g 1.5-2.5 ml 10 ml 100 ml	May be used for electrolytic etching. Surface <i>B</i>	Shows segregation
Segregation, carbide	HNO ₃ Ethyl alcohol		Use on a polished, longitudinal section. For high-speed steel, etch until matrix is darkened. Surface <i>C</i>	00
Segregation, carbon and phosphorus	Copper ammonium chloride H ₂ O	5g 60 ml	Immerse finely ground, clean sample in solution for 1 min: wash with water and rub off copper. Surface C	Shows phosphorus and carbon segregation
Segregation,	Picric acid	0.5 g	Etch at room temperature until	Uneven staining represents
phosphorus	H_2O	100 ml	staining occurs. Surface C	phosphorus segregation
Segregation,	FeCl ₃	30 g	Polish as for microscopic work,	Shows phosphorus segregation
phosphorus	CuCl ₂	1 g	use etch cold for 10 set to 2 min.	
	SnCl ₂	0.5 g	Surface C	
	HCl	100 ml		
	H_2O	1000 ml		
Segregation,	$CuCl_2$	10 g	Dissolve salts in small amount of	• • • •
phosphorus	MgCl ₂	40 g	hot water then add alcohol. Apply	phosphorus segregation
	HCl	20 ml	solution to polished surface drop	
	Ethyl alcohol	1000 ml	by drop. Surface <i>C</i>	
Segregation,	$CuCl_2$	5 g	Etch for 1 mm. Surface <i>C</i>	Shows phosphorus segregation
phosphorus	$MgCl_2$	4 g		

HCl	1 ml
H_2O	20 ml
Ethyl alcohol	100 ml
NOTE Surface designations :	
Surface A — Saw-cut or machined surface	
Surface B — Average ground surface	
Surface C — Polished surface	

PURPOSE (1)	COMPOSITION (2)	N	REMARKS (3)	USE (4)
Segregation,	CuCl ₂	4 σ	Polish specimen carefully. Surface C	Shows phosphorus segregation
phosphorus	HCl	20 ml		Silo de prosprioras segregation
F	H ₂ O	40 ml		
	Ethyl alcohol	20 ml		
Segregation,	\tilde{CuCl}_2	1.5 g	Immerse specimen for 90 set or more.	Shows phosphorus segregation
phosphorus	Ni(NO ₃) ₃	5 g	Surface C	
	FeCl ₃	6 g		
	H ₂ O	12 ml		
Segregation,	H_2SO_4	10-20 ml	Use hot. Surface A	Etches sulphide inclusions
sulphide	H_2O	80-90 ml		
inclusions				
Soft spots	HNO ₃		Etch at room temperature. Surface <i>B</i>	Non-destructive test for hardened
	Ethyl alcohol	95 ml		tools
Soft spots	HCl	50 ml	Use cold on ground surface. Surface <i>B</i>	Shows soft spots
	H ₂ O	50 ml		
Strains	CuCl ₂	90 ml	11 1 1	Shows strain line
	HCl	120 ml	1	
	H_2O	100 ml	e e	
			3 min. Rub with powdered cupric	
			chloride, then rinse with alcohol.	
C turning	CC 1	6	Surface B	
Strains	CuCl ₂	6 g	Heat specimen to 200°C and immerse	Shows strain lines
	FeCl ₃ HCl	6 g 10 ml	ground surface. Surface B	
	-	10 ml		
Strongs tost	Ethyl alcohol CuSO4		Specimen 12 x 25 x 100 mm is	To moosure intergranular
Strauss test	H_2SO_4	3 g 10 ml	Specimen 12 x 25 x 100 mm is sensitized by actual welding, or	Ũ
	H ₂ SO ₄ H ₂ O	87 ml	artificially by heating to 480 to 700%	
	1120	07 III	artificiariy by ficating to 460 to 700%	icoloung steel

Table 2 Macroetching of Iron and Steel for Specific Purposes — Contd

				(generally 680°C). Immersed in the	
				boiling cupric sulphate solution for 72	
				h. Specimen is then bent 180° around	
				12 mm pin. Cracking indicates	
				disintegration has taken place due to	
				migration of carbides to grain	
				boundaries. Surface B	
Str	ucture	HNO ₃	25 ml	Etch at room temperature. Surface B	Shows general structure
		H ₂ O	75 ml	-	-
Str	ucture	H_2SO_4	20 ml	Use near boiling point for at least $l/2$ h.	Shows general structure and
		HCl	10 ml		defects
		H ₂ O	30 ml		
We	ld	HCl	50 ml	When testing large sections, the acid	For testing the soundness of weld
exa	mination	H_2O	50 ml	may be added by building a dam with	-
				paraffin wax around the part to be	
				tested. Surface A	
	NOT	E — Surface designation:			
		Surface A — Saw-cut or machined	l surface		
		Surface B — Average ground surf	ace		

	ſ	Fable 3 Etching Reagents f	for Microscopic Examination of Steels a	nd Irons						
	(Only reagents of analytical grade should be used)									
	(<i>Clause</i> 11.1)									
SL	ETCHING REAGENT	COMPOSITION	REMARKS	USE						
NO.										
(1)	(2)	(3)	(4)	(5)						
	Group I (General Reagents for Irons	s and Steels (Carbon, Low and Medium	-Alloy Steel)						
i.	Nitric acid (Nital)	- /	1-5 ml Etching rate is increased,100 ml selectivity decreased, with increasing percentage of HNO₃.	perlite colonies, (b) to reveal						

ii.	Picric acid (Picral)	or absolute (also amyl alcohol) Picric acid Ethyl or methyl alcohol, 95 percent or absolute (Use absolute alcohol only when acid contains 10 percent or more of moisture)	4 g 100 ml	Reagent No. 2 (picric acid) usually superior, 4 percent in amyl alcohol useful for grain boundary and contrast of low carbon materials. Etching time, a few seconds to a minute More dilute solutions occasionally useful. Does not reveal ferrite grain boundries as readily as No. 1. Etching time a few seconds to a minute or more	differentiate ferrite from martensite. The 1 percent solution is also suitable for uses (c), (d), (e) and (f) noted below for reagent No. 2 For all grades of carbon steels :(a) annealed, (b) normalized, (c) quenched, (d) quenched and tempered, (e)spheroidized, and (f) austempered. For all low- alloy steels attacked by this reagent
iii.	Hydrochloric and picric	HCl Picric acid	5 ml	Best results are obtained when	For revealing the austenite
	acid	Ethyl or methyl alcohol, 45 percent or absolute	1 g 100 ml	the martensite is tempered for 15 min at 205 to 245°C	grain size in quenched, and quenched-and-tempered steels
iv.	Chromic acid	CrO ₃ H ₂ O	10 g 100 ml	Used electrolytically, the specimen as anode, stainless steel or platinum as cathode, 20 to 25 mm apart; 6 V usually used. Time of etching 30 to 90 s depending on specimen	For various structures except grain boundries of ferrite. Attacks cementite very rapidly, austenite less rapidly, ferrite and iron phosphide very slowly if at
v.	Heat tinting	Heat only		Clean, dry, polished specimen heated face up on hot plate to 205 to 370°C. Time and temperature both have decided	all Pearlite first to pass through a given colour, followed by ferrite; cementite less affected, iron phosphide still

vi.	Heat etching	Heat only		effects. Bath of sand or molten metal may be used Specimen is heated 10 to 60 min at 815 to 1205°C in carefully purified hydrogen and should have no contact with scale or reducible oxides. After etching, specimen is cooled in mercury to avoid oxidation	cast irons For revealing austenitic grain
	Group II	General Reagents for A	Alloy Ste	els (Stainless and High-Speed S	teels)
vii.	Ferric chloride and	FeCl ₃	5 g	Etch at room temperature	Structure of austenitic nickel
	hydrochloric acid	HCl	50 ml		and stainless steels
		H ₂ O	100 ml		
viii.	Nitric acid (Nital)	HNO3 (colourless)	5 to10	Etch at room temperature	General structure of high-
		Ethyl or methyl	ml		speed tool steel
		alcohol (95 percent	90 to		
		or better)	95 ml		
ix.	Chrome regia	HCl	25 ml	5	Heat-treated 18 percent
		CrO ₃ solution (10	5 to	amount of chromic acid	chromium, 8 percent, nickel
		percent) in H ₂ O	50 ml		stainless steels. Useful
					electrolytically, if diluted
					with 2 parts alcohol and 2
					parts glycerin and applied for
					20 to 60 s with 6 V
х.	Ferric chloride and nitric	Saturated solution of Fe		Use full strength	Structure of stainless steel
	acid	HCl, to which a little U	NU3 18		
		added	1 .1	· · · · · · · · · · · · · · · · · · ·	
	NOTE — The use of concent	rated reagents is intended u	niess othe	rwise specified	
					((

(Continued)

		0 0	•	oscopic Examination of Steels ytical grade should be used)	and Irons
SL NO.	ETCHING REAGENT	COMPOSI	•	REMARKS	USE
(1)	(2)	(3)		(4)	(5)
xi.	Mixed acids in glycerol	A.HNO ₃	10 ml	Warm specimen in water	
		HCl	20 to 30 ml	before etching. For best results use method of alternate	
		Glycerin	20 to 30 ml	polishing and etching . If given sufficient time, shall etch totally austenitic alloys, but better results are obtained by using reagent No. 10-C	nickel-chromium alloys
		B.HNO ₃ HF Glycerin	10 ml 20 ml 20 to 40 ml	Amount of glycerin may be varied to suit metal	Structure of high silicon alloys of Duriron type
xii.	Oxalic acid	C.HNO ₃ HCl Glycerine H ₂ O ₂ Oxalic acid H ₂ O		employ method of alternate polishing and etching Used electrolytically, the	nickel, iron-chromium- manganese and all other austenitic iron-chromium base alloys For austenitic stainless steels and high-nickel alloys. Carbides and general structure revealed depending

				carbides in stainless steel may be revealed in 10 to 15 the general structure in abo 1 min. For study of carbide 1.5 to 3 V may be used, the increasing the etching tin and improving control of etc	s, ut es, us ne
xiii.	Ammonium persulphate	$\begin{array}{l} (NH_4)_2S_2O_8\\ H_2O \end{array}$	0	Used electrolytically like the oxalic acid solution, but acts more slowly, requiring longer than 15 s with 6 V	For fast-etching stainless steels
xiv.	Cupric chloride and hydrochloric acid	CuCl ₂ HCl Ethyl alcohol H ₂ O	5 g 100 ml 100 ml 100 ml	Used cold (Kalling's reagent)	For austenitic and ferritic steels, the ferrite being most easily attacked, and austenite attacked appreciably only when it has begun to decompose to martensite
XV.	Mixed acids and cupric chloride	HCl HNO ₂ Saturate with cupric chl and let stand for 20 to 3 before use		Apply by swabbing	For stainless alloys and others high in nickel or cobalt
xvi.	Nitric and acetic acids	HNO ₃ Acetic acid	30 ml 20 ml	Apply by swabbing	For stainless alloys and others high in nickel or cobalt
xvii.	Nitric and hydrofluoric acids	HNO ₃ HF (48 percent) H ₂ O	5 ml 1 ml 44 ml	Used cold for about 5 min	For revealing general structure of austenitic stainless steel with avoidance of stain markings

xviii.	J	HCl		Etch 2 to 10 min	To reveal the grain size of					
	nitric acids in	HNO ₃	3 ml		quenched, or quenched and					
	alcohol	Methyl alcohol	100 ml		tempered high speed steel					
xix.	Hydrochloric acid in	HCl	10 ml	Used electrolytically for 10 to 30 s	For straight chromium and					
	alcohol	Alcohol	90 ml	with 6 V; must be free from water to prevent tarnishing	chromium-nickel steels					
XX.	Lactic and	Lactic acid	45 ml	Used electrolytically for 10 to 30 s	For chromium steels (4 to 30					
	hydrochloric acids in	HCl	10 ml	with 6 V; does not tarnish	percent chromium) or delta					
	alcohol	Alcohol	45 ml		ferrite in austenitic stainless					
					steels					
	NOTE — The use of concentrated reagents is intended unless otherwise specified.									

(Continued)

Table 3 Etching Reagents for Microscopic Examination of Steels and Irons (Only reagents of analytical grade should be used) (Clause 11.1)								
ETCHING REAGENT	COMPOSITION		REMARKS	USE				
(2)	(3)		(4)	(5)				
Gro	oup II General Reagen	ts for Al	loy Steels (Stainless and High	n-Speed Steels)				
Ferricyanide solution	Potassium ferricyanide KOH H ₂ O	30 g 30 g 60 ml	Must be fresh. Use boiling	To distinguish between ferrite and sigma phase in iron-chromium, iron- chromium-nickel, iron-chromium- manganese and related alloys Colours : sigma phase, light blue; ferrite, yellow				
Cupric sulphate	CuSO ₄ HCl H ₂ O	4 g 20 ml 20 ml	Marble's reagent	Structure of stainless steel				
Hydrochloric and picric acids	HCl Picric acid Ethyl or methyl alcohol, 95 percent or absolute	5 ml 1 g 100 ml	Same as No. 3	To etch many steels of the iron- chromium, iron-chromium-nickel and iron-chromium-manganese types				
Heat tinting	at about 595 to 650°C		austenite darkens less rapidly than ferrite, on sections, preferably etched first with a chemical reagent	For austenitic stainless steel containing ferrite and carbide				
	ETCHING REAGENT (2) Gro Ferricyanide solution Cupric sulphate Hydrochloric and picric acids	(Only real ETCHING REAGENT COMPOSITION (2) (3) Growpoint I General Reagent Ferricyanide solution Potassium Ferricyanide solution Potassium Ferricyanide solution Potassium ferricyanide KOH H2O KOH H2O KOH Hydrochloric and picric HCl acids Picric acid Ethyl or methyl alcohol, 95 percent Or absolute Heat only in air for 10 Heat tinting Heat only in air for 10	Conjugate Conjugate	(Only reagents of analytical grade should be us (Clause 11.1)ETCHING REAGENTCOMPOSITIONREMARKS (2)(2)(3)(4)Group II General Reagents for Alloy Steels (Stainless and High PotassiumFerricyanide solutionPotassium30 g ferricyanidePotassium30 g ferricyanideMust be fresh. Use boiling ferricyanideCupric sulphateCuSO44 g HClHCl20 ml H2OHydrochloric and picric acidsHCl5 ml acidsSame as No. 3Picric acid acids1 g Ethyl or methylHeat tintingHeat only in air for 10 to 60 s at about 595 to 650°CHeat tintingHeat only in air for 10 to 60 s rapidly than ferrite, on sections, preferably etched				

XXV.	Cupric chloride	A. CuCl ₂ MgCl ₂ HCl H ₂ O Alcohol, absolute	1 g 4 g 1 ml 20 ml 100 ml	Dissolve salts in least possible quantity of hot water. Etch for about 1 min repeating if necessary. Stead's reagent	phosphorus or other elements in
		B. $CuCl_2$	5 g		copper deposit after etching
		HCl	40 ml	May be used cold. Etching	
		H ₂ O	30 ml	time, about 10 s. Fry's	To reveal strain lines and their
		Ethyl alcohol	25 ml	reagent	microstructure, and precipitation hardening in steel
xxvi.	Modified ferric chloride	FeCl ₃	30 g	Oberhoffer's reagent	For showing phosphorus
		CeCl ₂	1 g		segregation and dendritic structure
		SnCl ₂	0.5 g		
		HCl	50 ml		
		Ethyl alcohol	500 ml		
		H_2O	500 ml		
xvii.	Alkaline chromate				
Group 1	IV Structure and Depth of				
xviii.	Cupric sulphate and	$CuSO_4$	1.25 g	1	For showing total depth, structure,
	cupric	CuCl ₂	2.50 g	accurate. Etch by immersion	and various zones of nitrided
	chloride	MgCl ₂	10 g	0 0	chromium-vanadium steels and
		HCl		effects	nitralloy
		H_2O	100 ml		
		Dilute above			
		solution to 1000 ml with 95 percent			
		ethyl alcohol			
xxix.	Picric and nitric	Picric acid	10	Best results are obtained	For depth of case and structure
	acids	(4 percent) (No. 2)	parts	when the specimen is annealed in	of nitralloy

		HNO ₃ (4 percent)		lead at 800°C before etching		
		(No. 1)	1 part			
XXX.	Nitric acid (Nital)	HNO ₃	2 ml	Etch at room temperature	For structure and depth of case	
		Ethyl or methyl	100 ml		of nitrided steels	
		alcohol,				
		95 percent				
		or absolute				
xxxi.	Cupric sulphate	CuSO ₄	4 g	Marble's reagent	Total depth of nitrided case	
		HCl	20 ml			
		H_2O	20 ml			
Ν	NOTE — The use of concent	rated reagents is intended u	nless otherw	vise specified.		
		6		*		(C

(Continued)

		U	0	Microscopic Examination of Stee f analytical grade should be used	
SL NO.	ETCHING REAGENT	COMPOSITI	• 0	REMARKS	USE
(1)	(2)	(3)		(4)	(5)
		Group V Reagents for (Carbides, Ph	osphides, Nitrides and Tungstide	
xxxii.	Sodium picrate (neutral)	Sodium picrate H ₂ O (Wash salt well with alcohol to remove excess acid or alkali)	1 g 100 ml	Use boiling. Etching time 20 min	Shows difference between phosphides and cementite; iron phosphide attacked, cementite unattacked
xxxiii.	Chromic acid and heat tinting	CrO ₃ H ₂ O Followed by heat tinting	8 g 100 ml	Etching in picric acid (No. 2) then for 1 min in chromic acid; heat tint by heating face up on hot plate at about 260°C for 1 min	Distinguishes between iron phosphide and cementite in phosphide eutectic of cast iron; iron phosphide is coloured darker
xxxiv.	Sodium picrate, alkaline	Picric acid NaOH H ₂ O	2 g 25 g 100 ml	Use boiling, 5 to 10 min, or	Colours cementite, but not carbides high in chromium. In tungsten steels, iron tungstide (FenW) and iron tungsten carbide (Fe ₄ W ₂ C) are coloured more rapidly than cementite, but tungsten carbide is unaffected. Attacks sulfides. Delineates grain boundaries in hypereutectoid steels slowly cooled condition
XXXV.	Hydrogen peroxide and sodium hydroxide	H ₂ O ₂ NaOH 10 percent solution in water	10 ml 20 ml	Should be fresh. Etching time 10 to 12 min	Attacks and darkens iron tungstide in carbon-free tungsten alloys. When carbon is present this solution darkens the compound (Few WC) in proportion to the

					amount of carbide present; tungsten carbide is darkened
xxxvi.	Ferricyanide solution	A.K ₃ Fe(CN) ₆ KOH H ₂ O	1 to 4 g 10 g 100 ml	Should be freshly made; Etch 15 min in boiling solution. Seven grams of NaOH may be substituted for 10 g of KOH in either A or B	Differentiates between carbides and nitrides. Cementite is blackened, pearlite turned brown, and massive nitrides remain unchanged
		B.K ₃ Fe(CN) ₆ KOH H ₂ O	10 g 10 g 100 ml	May be used cold, but preferably hot, should be freshly made, etching time 5 to 10 min. Murakami's reagent	Darkens carbide containing chromium, carbides, and tungstides in tungsten and highspeed steels. At room temperature colours ternary carbides (Fe ₃ W ₃ C or Fe ₃ W ₂ C) in a few seconds, iron tungstide (Fe ₃ W ₂) in several minutes, and barely colours cementite
xxxvii.	Sodium cyanide	NaCN H2O	10 g 90 ml	Used electrolytically, the specimen as anode, cathode, similar material; about 25 mm apart 6 V (not less than 5). Etching time 5 min or more	Darkens carbides without attacking austenite or grain boundaries
xxxviii.	Chromic acid	CrO ₃ H ₂ O	10 g 100 ml	See No. 4 in Group I.	Attacks carbides in stainless steels very rapidly, austenite less rapidly, and ferrite very slowly if at all. For various structures of stainless

steels

xxxix.	Oxalic acid	Oxalic acid H ₂ O	U	<i>See</i> No. 12 in Group II. If strongly etched general structure is revealed; therefore for study of carbides reduced. voltage is used for etching, giving better control of etch	
NOTE -	—The use of concentrate	ed reagents is intended, unl	ess otherwise sp		(Continued)

Table 3 Etching Reagents for Microscopic Examination of Steels and Irons(Only reagents of analytical grade should be used)							
SL NO.	ETCHING REAGENT	COMPOSITION		REMARKS	USE		
(1)	(2)	(3)		(4)	(5)		
Group VI Reagents for Detection of Temper Embrittlement							
xl.	Picric acid	Picric acid H ₂ O	2 gm 100 ml	Etching time about 10 minutes. After etching, carefully remove the deposit under water by means of a cotton wool pad	A specimen of the steel, which appears to be temper brittled & etched with any one of the reagent No. 35, 36 or 37, simultaneously with a sample of		
xli.	Picric acid-Zephiran chloride* solution	Picric acid Ethyl ether 1 N Zephiran chloride solution (12-8 percent)	6 g 50 ml 2 ml	Dissolve picric acid in ether, add the water Zephiran chloride mixture, stir well and then leave for 24 h to settle. For etching use only the clear part of the solution. Etching time several minutes with the specimen kept still. Next wash in an ether- alcohol solution, rewash with water and carefully wipe the dark deposit	the same steel in the non-hardened state. In the case of embrittled steel, the etch will show up the grain boundaries of the parent austenite by blackening them, whereas there is no such reaction on the non-hardened steel. All the three reagents may not necessarily be suitable for every type of steel		
xlii.	Picric acid in xylol-ethyl alcohol	Picric acid Xylol Ethyl alcohol	10 g 80 ml 20 ml	Add the alcohol immediately before use, filter the undissolved picric acid. Etching time : 30 minutes. Carefully wipe the dark deposit			

NOTE — The use of concentrated reagents is intended, unless otherwise specified. *Zephiran chloride is a high molecular alkyl dimethyl benzyl ammonium chloride.

APPENDIX A

(*Clause* 10.4)

COMPARATIVE CHART OF GRIT NUMBERS OF ABRASIVE PAPERS

A-1 For designation of grain sizes, of coated abrasives only grit numbers are recognized in IS 715. Although grit numbers are now being universally adopted, coated abrasive papers are also available in a graded symbol sequence of 12/0 to $4\frac{1}{2}$ covering the grit number range of approximately 600 to 12. There is also a special emery polishing paper for very fine polishing, such as used in preparation of metallurgical specimens, which is graded in a symbol sequence of 4/0 to 3, covering the grit number range of approximately 600 to 180. A comparative chart showing the relation between grit numbers and the customary grading symbols are given below for the guidance of users:

Grit No.	Symbol for Silicon Carbide Paper	Symbol for Emery Polishing Paper
600	12/0	4/0
		3/0
500	11/0	2/0
460	10/0	0
360		
320	9/0	$\frac{1}{2}$
280	8/0	
240	7/0	1G
220	6/0	2
180	5/0	3
150	4/0	
120	3/0	
100	2/0	
80	0	
60	$\frac{1}{2}$	
50	1	
40	$1\frac{1}{2}$	
36	2	
30	$2\frac{1}{2}$	
24	3	