भारतीय मानक Indian Standard

वायरलाइन हीरक कोर वेधन उपकरण — पद्धति ए

भाग 1 मीटरी इकाइयाँ

(पहला पुनरीक्षण)

Wireline Diamond Core Drilling Equipment — System A Part 1 Metric Units

(First Revision)

ICS 73.100.30

© BIS 2024

भारतीय मानक ब्यूरो BUREAU OF INDIAN STANDARDS मानक भवन, 9 बहादुर शाह ज़फर मार्ग, नई दिल्ली - 110002 MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG NEW DELHI - 110002 www.bis.gov.in www.standardsbis.in

August 2024

Price Group 7

Diamond Core and Waterwell Drilling Sectional Committee, MED 21

FOREWORD

This Indian Standard (Part 1) (First Revision) was adopted by the Bureau of Indian Standards, after the draft finalized by the Diamond Core and Waterwell Drilling Sectional Committee had been approved by the Mechanical Engineering Division Council.

This standard was first published in 2004. This standard is being revised again to keep pace with the latest technological developments and international practices. Also, in this revision, the standard has been brought into the latest style and format of Indian Standards, and references of Indian Standards, wherever applicable have been updated. The following major modifications have been incorporated in this revision of the standard:

- a) Mechanical properties have been revised;
- b) Eccentricity limit has been revised; and
- c) Straightness has been modified.

In the preparation of this standard, considerable assistance has been derived from the following standard:

ISO 10097-1 : 1999 Wireline diamond core drilling equipment — System A: Part 1 Metric units

The composition of the Committee responsible for the formulation of this standard is given in Annex B.

For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test or analysis, shall be rounded off in accordance with IS 2 : 2022 'Rules for rounding off numerical values (*second revision*)'. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.

Indian Standard

WIRELINE DIAMOND CORE DRILLING EQUIPMENT — SYSTEM A

PART 1 METRIC UNITS

(First Revision)

1 SCOPE

This standard specifies the nomenclature and the leading dimensions necessary for the interchangeability of the following wireline drilling equipment for drilling holes 48 mm to 96 mm in diameter, yielding cores of 27 mm to 63 mm in diameter.

The equipment is illustrated in <u>Fig. 1</u> and comprises the following:

- a) Core bit;
- b) Reaming shell;
- c) Core lifter;
- d) Core lifter case;
- e) Outer tube;
- f) Inner tube; and
- g) Drill rod (smooth pipe only).

2 REFERENCES

The standard given below contain provisions which, through reference in this text, constitute provision of this standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this standard are encouraged to investigate the possibility of applying the most recent editions of this standards:

IS No./Other	Title
Standards	
IS 9439 : 2022	Glossary of terms used in
	water well drilling
	technology (first revision)

IS No. /Other Title Standards IS/ISO 18758-1 : Mining and earth-moving 2018 machinery - Rock drill rigs and rock reinforcement rigs: Part 1 Vocabulary ISO 3551-1:1992 Rotary core diamond drilling equipment System A: Part 1 Metric units

3 TERMINOLOGY

For the purpose of this standard the terminologies given in IS 9439 and IS/ISO 18758-1 shall apply.

4 DESIGNATION

Items made in accordance with this part shall be designated by the identification letters WL and hole dimensions *A*, *B*, *N*, and *H*.

Example:

Core bit for wireline drilling hole *B* dimensions: WLB core bit.

5 MATERIALS

Materials used in the manufacture of the wireline drilling equipment specified in this standard shall have the minimum mechanical properties as specified in Table 1.

Table 1 Mechanical Properties

(Clause 5)

Sl No.	Component	Minimum Tensile Strength,	Minimum Yield Stress, Re,	Minimum Brinell Hardness	Minimum Elongation After Fracture, A	Condition
		N/mm ² (MPa)	N/mm ² (MPa)		%	
(1)	(2)	(3)	(4)	(5)	(6)	(7)
i)	Drill rods	690	550	200	15	Induction
ii)	Core tubes	780	680	229	15	hardened Tempered/stress relieved
iii)	Other items			Not specified		

To access Indian Standards click on the link below:

https://www.services.bis.gov.in/php/BIS 2.0/bisconnect/knowyourstandards/Indian standards/isdetails/

6 DIMENSIONS AND TOLERANCES

6.1 General

All dimensions and tolerances are in millimetres unless otherwise stated and shall be in accordance with Table 3 to Table 9 inclusive.

6.2 Conformity

In those industries where drilling depths are measured in metres, the rod lengths shall be 3 m, 1.5 m, or 0.75 m.

6.3 Eccentricity

The eccentricity is defined as the distance between the centres of the outer and inner diameters and may not exceed 5 percent of nominal wall thickness Q. The eccentricity is calculated according to the formula:

$$\frac{Q_{Max} - Q_{Min}}{2Q_{\text{nom}}} \times 100$$

Where, Q_{Max} and Q_{Min} are measured values in the same section.

6.4 Straightness

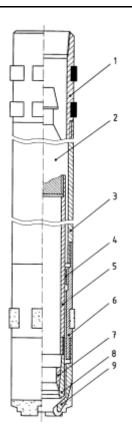
When measured over the whole length of the tube by rolling against a straightedge, the maximum deviation shall not be greater than following:

- a) For drill rods 1 in 2 000; and
- b) For core tubes 1 in 2 000.

6.5 Technical conditions

Tubes should be made seamless. Tube rolling technique and machining operations are optional. Tube straightness is checked by rolling the tube on a horizontal or slightly inclined flat surface. When rolling, no clearances shall be seen between the rod ends and the surface, nor between the middle of the rod (tube) and the surface. Hole drilling by wireline system A equipment shall be cased by System A casing as specified in ISO 3551-1 and Table 2.

SI No.	Identification Letters	Meanings of Identification Letters
(1)	(2)	(3)
i)	A, A_1 , etc	Outside diameters; A being largest; A ₁ , A ₂ , etc progressively smaller
ii)	$B, B_1,$ etc	Inside diameters; B being smallest; B_1 , B_2 , etc progressively larger
iii)	$C, C_1,$ etc	External lengths; C being longest; C_1 , C_2 , etc progressively shorter
iv)	$D, D_1,$ etc	Internal lengths; D being longest; D_1 , D_2 , etc progressively shorter
v)	$E, E_1,$ etc	Major diameter of pin threads; E being largest; E_1 , E_2 , etc smaller
vi)	F, F_1 , etc	Minor diameter of pin threads; F being largest; F_1 , F_2 , etc smaller
vii)	Thread pitch (threads per inch)	Pin threads
viii)	$G, G_1,$ etc	Width at root of pin thread
ix)	$H, H_1,$ etc	Length of o.d. machined for external threading
x)	J, J_1 , etc	Minimum length for full depth of pin threads
xi)	$K, K_{1},$ etc	Length of relief at the starting point of pin threads
xii)	L , L_1 , etc	Angle of bevel for pin thread shoulder
xiii)	$M, M_1,$ etc	Major diameter of box threads; M being largest; M_1 , M_2 , etc smaller
xiv)	N, N_1 , etc	Minor diameter of box; N being largest; N_1 , N_2 , etc smaller
xv)	Thread pitch (threads per inch)	Box threads
xvi)	$P, P_1,$ etc	Width at root of box threads
xvii)	$Q, Q_1,$ etc	Length of i.d. machined for internal threading
xviii)	$R, R_1,$ etc	Minimum length for full depth of box threads
xix)	$S, S_1,$ etc	Length of counter bore at the starting of box threads
xx)	T , T_1 , etc	Angle of bevel for thread shoulder
xxi)	U , U_1 , etc	Included angles, Internal and external

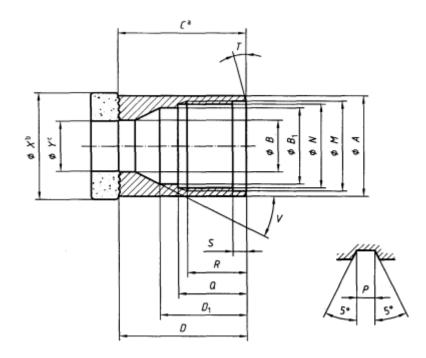

Table 2 System of Dimensional Identification Letters (Clause 6.5)

Sl No.	Identification Letters	Meanings of Identification Letters
(1)	(2)	(3)
xxii)	V , V_1 , etc	Internal angles, not pertaining to threaded connections
xxiii)	W , W_1 , etc	External angles, not pertaining to threaded connections
xxiv)	X	Diamond set dimensions: External (o.d.)
xxv)	Y	Diamond set dimensions: Internal (i.d.)
NOTES	S	
1 All de	ecimal dimensions indicate allowabl	e tolerances.

 Table 2 (Concluded)

2 The following common abbreviations have sometimes been used in tables in the English version for the sake of simplicity: o.d. = outside diameter; and

i.d. = inside diameter.



Key

- 1 Head (not standardized)
- 2 Bearing unit (not standardized)
- 3 Outer core barrel
- 4 Stabilizer (not standardized)
- 5 Retractable core barrel
- Reaming shell
- 7 Core lifter
- 8 Core lifter case
- 9 Bit

6

FIG. 1 WIRELINE CORE BARREL ASSEMBLY

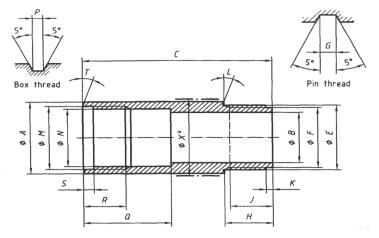
where

a = Clear of diamond

FIG. 2 WIRELINE CORE BIT

b = Set o.d.

c = Set i.d.


Table 3 Wireline Core Bit (see Fig. 2)

(*Clause* <u>6.1</u>)

Sl No.	Dir	nension	WLA	WLB	WLN	WLH
(1)	(2)		(3)	(4)	(5)	(6)
i)	Α	Max	46.66	57.96	73.91	94.31
		Min	46.56	57.86	73.81	94.21
ii)	В	Max	27.89	37.70	48.82	64.69
		Min	27.76	36.91	48.02	63.90
iii)	B_1	Max	36.91	46.43	60.72	78.18
		Min	36.12	45.64	59.93	77.39
iv)	С	Min	57.91	66.04	65.41	96.22
v)	D	Max	58.71	66.83	66.20	97.01
		Min	57.91	66.04	65.41	96.22
vi)	D_1	Max	49.61	57.55	54.37	83.74
ŕ		Min	48.82	56.75	53.58	82.95
vii)	М	Max	42.09	52.43	67.51	85.78
,		Min	42.04	52.37	67.46	85.70
viii)	Ν	Max	40.59	50.85	65.99	84.20
, i i		Min	40.51	50.80	65.94	84.12
ix)	Thre	ead pitch	6.35	6.35	6.35	6.35
x)	Р	Max	3.20	3.20	3.20	3.20
ŕ		Min	3.12	3.12	3.12	3.12
xi)	Q	Max	42.29	42.52	42.55	42.75
ŕ	~	Min	42.16	42.39	42.42	42.62
xii)	R	Min	38.89	38.89	38.89	38.89
xiii)	S	Max	7.4	7.4	7.4	7.14
ŕ		Min	6.35	6.35	6.35	6.35
xiv)		T	15°	15°	15°	15°

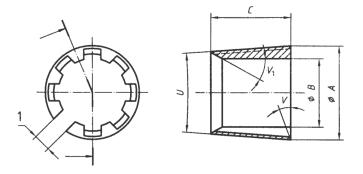
Sl No.	Dimension		WLA	WLB	WLN	WLH
(1)	(2)		(3)	(4)	(5)	(6)
xv)		V	30°	30°	30°	30°
xvi)	X	Max	47.75	59.69	75.44	95.76
		Min	47.50	59.44	75.18	95.38
xvii)	Y	Max	27.10	36.53	47.75	63.63
		Min	26.85	36.27	47.50	63.37

 Table 3 (Concluded)

where

a = Set o.d.

FIG. 3 WIRELINE REMAINING SHELL


Table 4 WIRELINE REMAINING SHELL (see FIG. 3) (Clause 6.1)

			(Ciui	ise <u>6.1</u>)		
Sl No.	Dim	ension	WLA	WLB	WLN	WLH
(1)		(2)	(3)	(4)	(5)	(6)
i)	Α	Max	46.66	57.96	73.91	94.31
		Min	46.56	57.86	73.81	94.21
ii)	В	Max	36.51	46.04	60.33	77.79
		Min	36.36	45.86	60.12	77.53
iii)	С	Max	162.32	159.15	171.85	182.96
		Min	161.53	158.35	171.05	182.17
iv)	Ε	Max	41.96	52.30	67.39	85.62
		Min	41.91	52.25	67.34	85.55
v)	F	Max	40.44	50.72	65.86	84.05
		Min	40.39	50.67	65.81	83.97
vi)	Threa	ad pitch	6.35	6.35	6.35	6.35
vii)	G	Max	3.20	3.20	3.20	3.20
		Min	3.12	3.12	3.12	3.12
viii)	H	Max	41.28	41.38	41.28	41.20
		Min	41.15	41.25	41.15	41.07
ix)	J	Min	38.89	38.89	38.89	38.89
x)	K	Max	7.14	7.14	7.14	7.14
		Min	6.35	6.35	6.35	6.35
xi)		L	15°	15°	15°	15°
xii)	М	Max	42.09	52.43	67.51	85.78
		Min	42.04	52.37	67.46	85.70
xiii)	Ν	Max	40.59	50.85	65.99	84.20
		Min	40.51	50.80	65.94	84.12
xiv)	Threa	ad pitch	6.35	6.35	6.35	6.35
xv)	Р	Max	3.20	3.20	3.20	3.20
		Min	3.12	3.12	3.12	3.12
xvi)	Q	Max	61.01	61.32	67.69	74.04
		Min	60.88	61.19	67.56	73.91
xvii)	R	Min	38.89	38.89	38.89	38.89

IS 15481 (Part 1) : 2024

Table 4 (Concluded)

Sl No.	Dim	nension	WLA	WLB	WLN	WLH
(1)		(2)	(3)	(4)	(5)	(6)
xviii)	S	Max	7.14	7.14	7.14	7.14
		Min	6.35	6.35	6.35	6.35
xix)		Т	15°	15°	15°	15°
xx)	X	Max	48.13	60.07	75.82	96.27
		Min	47.88	59.82	75.57	95.89

Key 1 Gap FIG. 4 WIRELINE CORE LIFTER

Table 5 Wireline Core Lifter (see Fig. 4)

	(<i>Clause</i> <u>6.1</u>)										
Sl No.	Dim	ension	WLA	WLB	WLN	WLH					
(1)	((2)	(3)	(4)	(5)	(6)					
i)	Α	Max	30.23	40.23	52.04	68.94					
		Min	30.18	40.18	51.99	68.88					
ii)	В	Max	26.59	36.02	47.12	62.87					
		Min	26.54	35.97	47.07	62.81					
iii)	С	Max	22.62	25.80	28.97	38.50					
		Min	21.83	25.00	28.18	37.70					
iv)	U	Max	5° to 15'	5° to 15'	5° to 15'	5° to 15'					
		Min	4° to 45'	4° to 45'	4° to 45'	4° to 45'					
v)	V		0°	0^{o}	0°	0^{o}					
vi)		V_1	30°	30°	30°	30°					

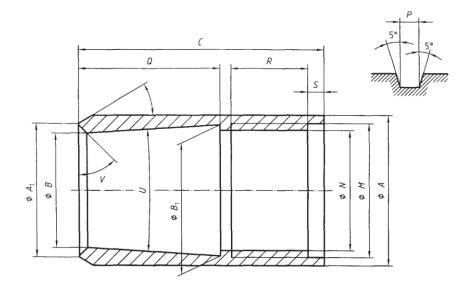


FIG. 5 WIRELINE CORE LIFTER CASE

Table 6 Wireline Core Lifter Case (see Fig.5)

(*Clause* <u>6.1</u>)

Sl No.	Dir	nension	WLA	WLB	WLN	WLH
(1)		(2)	(3)	(4)	(5)	(6)
i)	Α	Max	32.94	43.00	55.93	73.23
		Min	32.89	42.95	55.88	73.18
ii)	A_1	Max	30.68	40.41	52.73	67.99
		Min	30.63	40.35	52.68	67.94
iii)	В	Max	28.30	38.02	49.56	65.61
		Min	28.24	37.97	49.50	65.56
iv)	B_1	Max	31.09	41.43	53.21	70.38
		Min	31.01	41.33	53.14	70.31
v)	С	Max	63.90	70.25	75.01	89.30
,		Min	63.10	69.45	74.22	88.50
vi)	М	Max	31.32	41.10	53.47	70.69
		Min	31.27	41.05	53.42	70.64
vii)	Ν	Max	30.18	39.93	52.20	69.29
		Min	30.12	39.88	52.15	69.24
viii)	Thre	ead pitch	3.175	3.175	3.175	3.175
ix)	Р	Max	1.63	1.63	1.63	1.63
		Min	1.55	1.55	1.55	1.55
x)	Q	Max	40.08	44.85	51.59	67.07
		Min	39.29	44.05	50.80	66.28
xi)	R	Min	20.64	20.64	20.64	20.64
xii)	S	Max	3.97	3.97	3.97	3.97
		Min	3.18	3.18	3.18	3.18
xiii)		Т	30°	30°	30°	30°
xiv)	U	Max	5° to 15°'	5° to 15°'	5° to 15° '	5° to 15°'
		Min	4° to 45° '	4° to 45° '	4° to 45° '	4° to 45°'
xv)		V	45°	45°	45°	45°

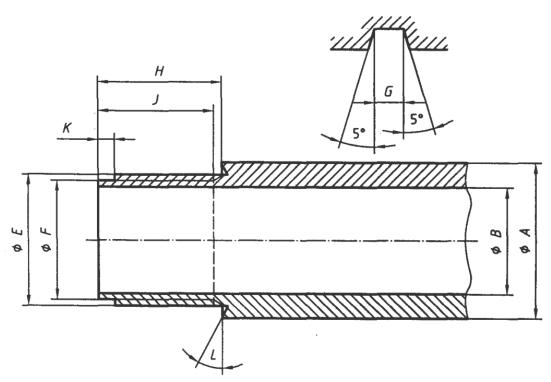


FIG. 6 WIRELINE CORE BARREL OUTER TUBE (LOWER END)

Table 7 Wireline Outer Tube (Lower End) (see Fig. 6)

(*Clause* <u>6.1</u>)

Sl No.	Dimension		WLA	WLB	WLN	WLH
(1)		(2)	(3)	(4)	(5)	(6)
i)	Α	Max	46.19	57.33	73.23	92.33
		Min	46.04	57.15	73.03	92.08
ii)	В	Max	36.51	46.04	60.53	77.79
		Min	36.36	45.86	60.33	77.53
iii)	Ε	Max	41.96	52.30	67.39	05.62
		Min	41.91	52.25	67.34	85.55
iv)	F	Max	40.44	50.72	65.86	84.05
		Min	40.39	50.67	65.81	83.97
v)	Threa	ad pitch	6.35	6.35	6.35	6.35
vi)	G	Max	3.20	3.20	3.20	3.20
		Min	3.12	3.12	3.12	3.12
vii)	H	Max	41.28	41.48	41.38	41.28
		Min	41.15	4135	41.25	41.15
viii)	J	Min	38.89	38.89	38.89	38.89
ix)	K	Max	7.14	7.14	7.14	7.14
		Min	6.35	6.35	6.35	6.35
x)	L	Min	15°	15°	15°	15°

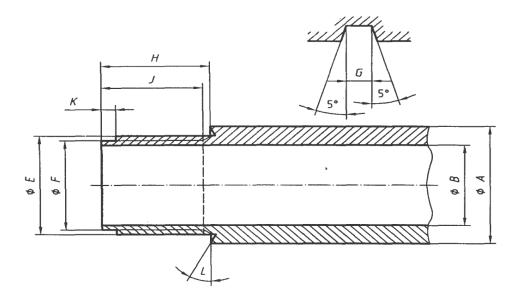
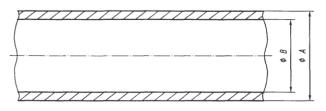



FIG. 7 WIRELINE CORE BARREL INNER TUBE (LOWER END)

Sl No.	Dimension		WLA	WLB	WLN	WLH
(1)		(2)	(3)	(4)	(5)	(6)
i)	Α	Max	32.67	42.99	55.74	73.23
		Min	32.54	42.86	55.56	73.03
ii)	В	Max	28.58	38.10	50.01	66.93
		Min	28.45	37.97	49.83	66.73
iii)	Ε	Max	31.24	40.97	53.34	70.56
		Min	31.19	40.92	53.29	70.51
iv)	F	Max	30.07	39.80	52.07	69.16
		Min	30.02	39.75	52.02	69.11
v)	Thr	ead pitch	3.175	3.175	3.175	3.175
vi)	G	Max	1.63	1.63	1.63	1.63
		Min	1.55	1.55	1.55	1.55
vii)	H	Max	22.10	22.10	22.10	22.10
		Min	21.97	21.97	21.97	21.97
viii)	J	Min	20.64	20.64	20.64	20.64
ix)	K	Max	3.97	3.97	3.97	3.97
		Min	3.18	3.18	3.18	3.18
x)	L	Min	0°	0°	0°	0°

Table 8 Wireline COre Barrel Inner Tube (Lower End) (see Fig. 7)

(*Clause* <u>6.1</u>)

NOTE — For dimensions see <u>Table 9</u>.

FIG. 8 DRILL ROD (SMOOTH PIPE)

Table 9 Drill Rod, Smooth Pipe (see Fig. 8)

Sl No.	Dimension		WLA	WLB	WLN	WLH
(1)	(2)		(3)	(4)	(5)	(6)
i)	Α	Max	44.60	55.75	70.05	89.15
		Min	44.45	55.58	69.85	88.90
ii)	В	Max	35.08	46.20	60.33	78.00
		Min	34.93	46.02	60.12	77.77

(*Clause* <u>6.1</u>)

NOTE — Further details are given in <u>Annex A</u>.

ANNEX A

(Informative)

PRINCIPAL	DIMENSIONS	OF DRILI	L ROD THREADS

Sl No.	Dimensions	WLA	WLB	WLN	WLH
(1)	(2)	(3)	(4)	(5)	(6)
i)	Thread tapering	1:28.64	1:28.64	1:28.64	2:28.64
ii)	Angle of thread arrival	1°	1°	1°	1°
iii)	Angle of thread profile	29°	29°	29°	29°
iv)	Thread pitch	6.350	8.466	8.466	8.466
v)	Maximum outside diameter of box thread in stop batt axis	41.325	52.125	66.425	84.655
vi)	Maximum outside diameter of box thread in stop shoulder axis	39.805	50.595	64.895	83.135
vii)	Mean spire depth of box thread	0.752	0.785	0.785	0.785
viii)	Width at root of box thread	3.00	4.06	4.06	4.06
ix)	Mean length of box thread from stop batt to internal angle of stop shoulder	41.8	44.9	44.9	45.0
x)	Minimum length for full depth of box thread	39.7	43.3	43.3	43.3
xi)	Minimum inside diameter of pin thread in stop batt axis	38.18	48.84	63.12	81.38
xii)	Minimum inside diameter of pin thread in shoulder axis	39.80	50.47	64.74	83.01
xiii)	Mean spire depth of pin thread	0.740	0.800	0.800	0.800
xiv)	Width at root of pin thread	3.00	4.06	4.06	4.06
xv)	Mean length of pin thread from stop batt to external angle of stop shoulder	41.3	44.4	44.4	44.4
xvi)	Minimum length for full depth of pin thread	39.7	43.7	43.7	43.7
xvii)	Angles of bevel for thread stop battes and stop shoulders	15°	15°	15°	15°

NOTE — Many dimensions are approximate.

ANNEX B

(*Foreword*)

COMMITTEE COMPOSITION

Diamond Core and Waterwell Drilling Sectional Committee, MED 21

Organization	Representative(s)
Geological Survey of India, New Delhi	SHRI AJAY AGARWAL (<i>Chairperson</i>)
Aqseptence Group (India) Pvt Ltd (Formaly Known as Johanson Screens India Pvt Ltd), Sanand	SHRI SHIV NARAYAN SINGH SHRI SHIVEN AMIN (Alternate)
Atlas Copco (I) Ltd, Pune	Shri Shudhanshu Nigam Shri S. Datta Majumdar (<i>Alternate</i>)
Central Ground Water Board, Faridabad	SHRI G. L. MEENA SHRI NIDHISH VERMA (<i>Alternate</i>)
Central Mine Planning and Design Institute, Ranchi	SHRI ANIL SAVANUR SHRI A.V. RAMAKRISHNA (<i>Alternate</i>)
Epiroc Mining India Limited, Nashik	SHRI SUJEET KUMAR Shri Chandan Ghosh (<i>Alternate</i>)
Geological Survey of India, Kolkata	SHRI ANUP KUMAR JOHRI Shri C. B. Tiwari (<i>Alternate</i> I) Shri S. Shankar (<i>Alternate</i> II)
Indian Institute of Technology (ISM), Dhanbad	Mohammed Hamid Siddique Shri Pawan Gupta (<i>Alternate</i> I) Shri Vinay Kumar Rajak (<i>Alternate</i> II)
Indian Institute of Technology Kharagpur, Kharagpur	PROF KHANINDRA PATHAK SHRIMATI SUNITA MISHRA (<i>Alternate</i>)
Indian Institute of Technology, Kanpur	PROF J. RAMKUMAR PROF SUDHANSHU SHEKHAR SINGH (<i>Alternate</i>)
Indian Institute of Technology, Roorkee	PROF B. K. GANDHI Shri Varun Kumar Sharma (<i>Alternate</i>)
Indian Pump Manufacturers Association, Mumbai	SHRI YOGESH MISTRY Shri Utkarsh A. Chhaya (<i>Alternate</i>)
Kores (India) Ltd, Mumbai	Shri Sandeep Dholi
Mining Associates Pvt Ltd, Asansol	SHRI RAM BABU BANSAL
Rites Ltd, Gurugram	SHRI S. KUNAL
Rockdrill (India), Jodhpur	SHRI KAMAL KISHOR GUPTA SHRI RAVINDRA KUMAR GUPTA (<i>Alternate</i>)
Sandvik Smith Asia Limited, Medak	SHRI RANGAYYA NAIDU SHRI N. BHASKARA REDDY (<i>Alternate</i>)
In Personal Capacity (F-401, Maruti Sadan, Begumpet, Hyderabad)	SHRI A. B. ANAND

Organization

Representative(s)

In Personal Capacity (*D-5/10, Rail Vihar, Indirapuram, Ghaziabad*)

In Personal Capacity (90 Mayur Vihar, Sec 48, Chandigarh)

BIS Directorate General

SHRI P. C. DEWLI

SHRI MAHESH CHANDRA JINDAL

SHRI K. V. RAO, SCIENTIST 'F'/SENIOR DIRECTOR AND HEAD (MECHANICAL ENGINEERING) [REPRESENTING GENERAL (*Ex-officio*)]

Member Secretary Shri Shubham Yadav Scientist 'C'/Deputy Director (Mechanical Engineering), BIS this Page has been intertionally left blank

this Page has been intertionally left blank

Bureau of Indian Standards

BIS is a statutory institution established under the *Bureau of Indian Standards Act*, 2016 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

Headquarters:

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Head (Publication & Sales), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the website-www.bis.gov.in or www.standardsbis.in.

This Indian Standard has been developed from Doc No.: MED 21 (19184).

Amendments Issued Since Publication

Amend No.	Date of Issue	Text Affected

BUREAU OF INDIAN STANDARDS

1					
Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002Telephones: 2323 0131, 2323 3375, 2323 9402Website: www.bis.gov.in					
Regional	Offices:		Telephones		
Central	: 601/A, Konnectus Tower -1, 6 th Floor, DMRC Building, Bhavbhuti Marg, New Delhi 110002		<i>Telephones</i> { 2323 7617		
Eastern	: 8 th Floor, Plot No 7/7 & 7/8, CP Block, Sector V, Salt Lake, Kolkata, West Bengal 700091		<pre>{ 2367 0012 2320 9474 { 265 9930</pre>		
Northern	: Plot No. 4-A, Sector 27-B, Madhya Marg, Chandigarh 160019		265 9930		
Southern	: C.I.T. Campus, IV Cross Road, Taramani, Chennai 600113		<pre>{ 2254 1442 2254 1216</pre>		
Western	: Manakalya, 5 th Floor/MTNL CETTM, Technology Street, H Mumbai 400076	Hiranandani Gardens, Powai	{ 25700030 25702715		

Branches : AHMEDABAD, BENGALURU, BHOPAL, BHUBANESHWAR, CHANDIGARH, CHENNAI, COIMBATORE, DEHRADUN, DELHI, FARIDABAD, GHAZIABAD, GUWAHATI, HARYANA (CHANDIGARH), HUBLI, HYDERABAD, JAIPUR, JAMMU, JAMSHEDPUR, KOCHI, KOLKATA, LUCKNOW, MADURAI, MUMBAI, NAGPUR, NOIDA, PARWANOO, PATNA, PUNE, RAIPUR, RAJKOT, SURAT, VIJAYAWADA.