भारतीय मानक Indian Standard IS 18832 : 2024 ISO 22447 : 2019

औद्योगिक अपशिष्ट जल वर्गीकरण

Industrial Wastewater Classification

ICS 13.030.20

© BIS 2024 © ISO 2019

भारतीय मानक ब्यूरो BUREAU OF INDIAN STANDARDS मानक भवन, 9 बहादुर शाह ज़फर मार्ग, नई दिल्ली - 110002 MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG NEW DELHI - 110002 www.bis.gov.in www.standardsbis.in

October 2024

Price Group 9

NATIONAL FOREWORD

This Indian Standard which is identical to ISO 22447 'Industrial wastewater classification' issued by the International Organization for Standardization (ISO) was adopted by the Bureau of Indian Standards on the recommendation of the Environment Protection Sectional Committee and approval of the Chemical Division Council.

This document specifies the principles, categories, and codes for the classification of industrial wastewater and is applicable to all types and sources of industrial wastewater. It provides a broad framework classifying industrial wastewater into different categories based on industry type and the associated water quality constituents, namely physical, chemical and biological characteristics with a specific code assigned based on both industry type and waste-stream classification.

The text of ISO standard has been approved as suitable for publication as an Indian Standard without deviations. Certain conventions and terminologies are, however, not identical to those used in Indian Standards. Attention is particularly drawn to the following:

- a) Wherever the words 'International Standard' appear referring to this standard, they should be read as 'Indian Standard'; and
- b) Comma (,) has been used as a decimal marker in the International Standard, while in Indian Standards, the current practice is to use a point (.) as the decimal marker.

Textual Error — When adopting the text of the International Standard, the textual error given below was discovered. It has been marked in the text:

Error

Correction

An exception is when m = 9, the number may be rounded as $10 \times 10n$, in this case, instead of writing it as 10n, it should be written as 1(n + 1), for example, 9,875 should be written as 11. An exception is when m = 9, the number may be rounded as $10 \times 10n$, in this case, instead of writing it as 10n, it should be written as 1(n + 1), for example, 9,875 should be written as 14.

In this adopted standard, reference appears to certain International Standards where the standard atmospheric conditions to be observed are stipulated which are not applicable to tropical/subtropical countries. The applicable standard atmospheric conditions for Indian conditions are (27 ± 2) °C and (65 ± 5) percent, relative humidity and shall be observed while using this standard.

In reporting the result of a test or analysis made in accordance with this standard if the final value, observed or calculated, is to be rounded off, it shall be done in accordance with IS 2 : 2022 'Rules for rounding off numerical values (*second revision*)'.

Contents

muou	uction	IV
1	Scope	1
2	Normative references	1
3	Terms, definitions and abbreviated terms3.1Terms and definitions3.2Abbreviated terms	1 1
4	 Classification of industrial wastewater 4.1 Classification principle and code structure for industrial wastewater classification 4.1 Classification principle 4.1.2 Code structure 4.2 Classification of industrial wastewater based on industrial types (Level 1) 4.3 Classification of industrial wastewater based on water quality parameters (Level 2) 	3 3 4 5
Annex	A (informative) Classification and reuse by case study	14
Biblio	graphy	18

Page

Introduction

Industrial wastewater is produced by many kinds of industries. In some parts of the world, climate change is putting water resources under stress. Treatment of industrial wastewater provides an opportunity for resource recovery, which can help to drought-proof ongoing operations. Reclaiming and reusing industrial wastewater reduces demands on limited freshwater resources, as well as the amount of wastewater and the associated contaminants that are released to the environment. How to process and reuse industrial wastewater efficiently is a great challenge as wastewater characteristics are as complex and varied as the industries that produce these waste-streams. Industrial wastewater contains a wide range of inorganic and complex organic contaminants, with various concentrations and almost as wide a range of potential physical, chemical and biological treatment processes and has specific treated water quality required for reuse. A clear ISO industrial wastewater classification and coding system is needed to assist both industry and government to record the information of wastewater (including industrial type and water quality parameter) and provide some information on identifying best available control technologies and treatment performance capabilities in order to establish reasonable expectations and facilitate the development of universal wastewater treatment technologies in industrial reuse, and promote the information communication during commercial trade, for example, bidding, consultation, and so on.

The industrial wastewater classification system described in this document covers the basic and most important information required to properly characterize industrial process waste-streams to quickly determine the requirement of the appropriate treatment or reuse technology options for specific industries, reduce operating costs for enterprises, and ultimately promote the systematic development of process water treatment and reuse technologies for industrial application. For the government and large corporations, a more important usage of the classification and coding system is to help them with establishment and improvement of standards concerning discharge and reuse of industrial wastewater.

This document provides a wastewater classification framework and coding system, along with a water quality parameter list. The usages of the classification and coding system facing different users, namely the entrepreneur or the government, are provided in <u>Annex A</u>. It is intended that this classification system will help to promote understanding between different business parties, governments, to collaboratively develop wastewater treatment and reuse technologies among different countries, improve the efficiency of industrial wastewater reuse, and save and protect environment. Due to the similar nature, it may also apply for the wastewater treatment concerning discharge.

Indian Standard

INDUSTRIAL WASTEWATER CLASSIFICATION

1 Scope

This document specifies the principles, categories, and codes for the classification of industrial wastewater and is applicable to all types and sources of industrial wastewater. It provides a broad framework classifying industrial wastewater into different categories based on industry type and the associated water quality constituents, namely physical, chemical and biological characteristics with a specific code assigned based on both industry type and waste-stream classification.

2 Normative references

There are no normative references in this document.

3 Terms, definitions and abbreviated terms

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at http:// www.iso.org/obp
- IEC Electropedia: available at http:// <u>www.electropedia.org/</u>

3.1 Terms and definitions

3.1.1 biochemical oxygen demand BOD

mass concentration of dissolved oxygen consumed under specified conditions by the aerobic biological oxidation of a chemical compound or organic matter in water

Note 1 to entry: BOD_5 : Degradation time = 5 days; Temperature = 20 °C.

[SOURCE: ISO 9408:1999]

3.1.2 chemical oxygen demand COD

mass concentration of oxygen equivalent to the amount of dichromate consumed by dissolved and suspended matter when a water sample is treated with that oxidant under defined conditions

[SOURCE: ISO 6107-2:2006]

3.1.3

EC₅₀

concentration estimated to cause an effect on a test end-point in 50 % of an exposed population over a defined exposed period

[SOURCE: ISO 16387:2014]

3.1.4

free chlorine

chlorine present in the form of hypochlorous acid, hypochlorite ions or dissolved elemental chlorine

[SOURCE: ISO 7027:1999]

3.1.5

total coliforms

group of aerobic and facultatively anaerobic Gram-negative, non-spore-forming, lactose-fermenting bacteria which typically inhabit the large intestine of man and animals

[SOURCE: ISO 6107-7:2006]

3.1.6

total dissolved solids (TDS)

weight of inorganic and organic matter in true solution per unit volume of water

[SOURCE: ISO 16345:2014]

3.1.7

total hardness

total concentration of calcium and magnesium

[SOURCE: ISO 6059:1984]

3.1.8 total kjeldahl nitrogen

total F TKN

concentration of organic nitrogen and ammoniacal nitrogen in a sample, determined under specified conditions based on digestion with sulfuric acid

[SOURCE: ISO 6107-8:1993]

3.1.9

total nitrogen sum of *total kjeldahl nitrogen* (3.1.8) (ammonia, organic and reduced nitrogen) and nitrate-nitrite

3.1.10

total organic carbon

TOC

all the carbon present in organic matter which is dissolved and suspended in the water

[SOURCE: ISO 11733:2004]

3.1.11

total phosphorus

sum of all phosphorus compounds that occur in various forms

3.1.12

total residual chlorine

chlorine present in the form of *free chlorine* (3.1.4) or combined chlorine, or both

[SOURCE: ISO 7027:1999]

3.1.13 total solids TS sum of dissolved and suspended solids

[SOURCE: ISO 6107-2:2006]

3.1.14 total suspended solids TSS

weight of particulates, both organic and inorganic, suspended, but not dissolved, per unit of water

[SOURCE: ISO 16345:2014]

3.1.15

turbidity

reduction of transparency of a liquid caused by the presence of undissolved matter

[SOURCE: ISO 7027:1999]

3.1.16

96 h LC₅₀

bioassay determining the dilution of an effluent which causes the death of 50 % (one half) of a group of test animals (typically rainbow trout) after exposure for 96 hours

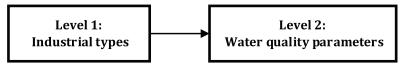
3.2 Abbreviated terms

BOD₅ biochemical oxygen demand after 5 days COD chemical oxygen demand DO dissolved oxygen EC electrical conductivity FOG fat, oil and grease n.e.c. not elsewhere classified SDI silting density index TDS total dissolved solids TKN total Kjeldahl nitrogen TN total nitrogen TOC total organic carbon total oxygen demand TOD TP total phosphorus TS total solids TSS total suspended solids

4 Classification of industrial wastewater

4.1 Classification principle and code structure for industrial wastewater classification

4.1.1 Classification principle

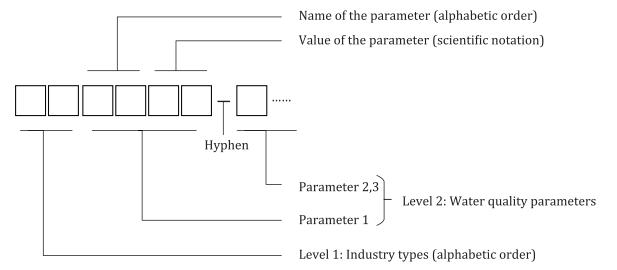

Industrial processes, even in the same industry (e.g. pulp and paper), characteristically generate different distinctive waste-streams as a result of differences between production processes.

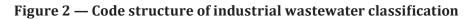
IS 18832 : 2024 ISO 22447 : 2019

Consequently, the effectiveness of a particular technology or a group of technologies can be expected to be varied, and require different wastewater treatment processes and reuse technologies.

In this document, hierarchical classification is used to classify different levels of industrial wastewater based on: type of the industry (Level 1) and water quality parameters (e.g. pH, TSS, TDS, COD, TN and TP) (Level 2). The relationship between different levels is shown in <u>Figure 1</u>. Level 1 and Level 2 have a progressive relationship.

This classification system defines the basic and most important characteristics of industrial wastewater from different dimensions. It is intended to guide technology selection and design for industrial wastewater treatment and reuse. Although some reference codes are provided in this document, the relevant and suitable parameters can be selected according to local industrial wastewater quality and technological conditions in different countries or regions.


Figure 1 — Relationship between different levels of industrial wastewater classification


4.1.2 Code structure

The code of industrial wastewater classification adopts hierarchical code. The hierarchy corresponding to the classification of industrial wastewater is divided into two levels. The hierarchical code of each level is in an ascending order.

The hierarchy code structure of industrial wastewater classification contains two levels (Figure 2). Level 1 (the first two digits) indicates the classification according to industry types, which uses two letters following the alphabetic order for each letter (from A to Z, then from a to z, which is 52 codes for each digit). Level 2 (the number of digits is determined by the number of water quality parameters included; each parameter has a four-digit-code) indicates the classification according to the water quality of the industrial wastewater. A hyphen is used for distinguishing between each water quality parameter.

For Level 2, if some water quality indexes are irrelevant to the certain industrial type, the corresponding codes should not be included. However, if it is still necessary for considering the requirements or the effects of those water quality indexes with no available value, the value of the parameter should be set as 0a as a default value.

4.2 Classification of industrial wastewater based on industrial types (Level 1)

Wastewater generated from different industries may have distinct water qualities. On this level, wastewater is classified according to industrial types in the areas of mining and quarrying, manufacturing, electricity, gas, steam and air conditioning supply, water supply, construction and the like. A recommended list of code vs. category of industrial wastewater according to industrial types is shown in Table 1, which mainly follows the International Standard Industrial Classification of All Economic Activities^[10], added up with special wastewater including laboratory wastewater, nuclear and radioactivity wastewater, and mixed wastewater that come from more than one industry category included in this level^{[11][12]}. Each type of industrial wastewater is given a two-letter code following alphabetic order (for each letter, from A to Z, then a to z if necessary). A total of 207 types of industrial wastewater were included, among which 34 big categories are coded as "*A" (* means a character), and shown as bold font in the table.

For the plants manufacturing products which belong to different industrial types, or in other situations that the wastewaters are mixed before reuse or discharge, if two types belong to the same big category, e.g. a mine produces both iron ore and rare earth, the mixed wastewater should be classified following the big category name, so does the code; if two types belong to different big categories, several possible mixed sub-categories are listed under the category of "mixed wastewater" (g*).

Governments, regional administrations, industrial sectors, and other users can edit and modify the information according to the specific situations. For the types of industry that are not included or newly appeared, the table can also be extended accordingly, or the wastewater can be classified as "other industrial wastewater" (hA). If there are modifications of the corresponding list, an illustration of the coding system should be provided in the document when applying.

Code	Category name			
AA	coal and lignite mining wastewater			
AB	hard coal mining wastewater			
AC	lignite mining wastewater			
BA	crude petroleum and natural gas extraction wastewater			
BB	crude petroleum extraction wastewater			
BC	natural gas extraction wastewater			
CA	metal ores mining wastewater			
СВ	iron ores mining wastewater			
CC	non-ferrous metal ores mining wastewater			
DA	other mining and quarrying wastewater			
DB	stone, sand and clay quarrying wastewater			
DC	chemical and fertilizer minerals mining wastewater			
DD	peat extraction wastewater			
DE	salt extraction wastewater			
DF	other mining and quarrying wastewater n.e.c.			
EA	food products manufacturing wastewater			
EB	meat processing and preserving wastewater			
EC	fish, crustaceans and molluscs processing and preserving wastewater			
ED	fruit and vegetables processing and preserving wastewater			
EE	vegetable and animal oils and fats manufacturing wastewater			
EF	dairy products manufacturing wastewater			
EG	grain mill products, starches and starch products manufacturing wastewater			
EH	grain mill products manufacturing wastewater			

Table 1 — Category and code for industrial wastewater based on industrial types

Code	Category name			
EI	starches and starch products manufacturing wastewater			
EJ	bakery products manufacturing wastewater			
EK	sugar manufacturing wastewater			
EL	cocoa, chocolate and sugar confectionery manufacturing wastewater			
EM	macaroni, noodles, couscous and similar farinaceous products manufacturing wastewater			
EN	prepared meals and dishes manufacturing wastewater			
EO	other food products manufacturing wastewater			
EP	prepared animal feeds manufacturing wastewater			
FA	beverages manufacturing wastewater			
FB	spirits distilling, rectifying and blending wastewater			
FC	wines manufacturing wastewater			
FD	malt liquors and malt manufacturing wastewater			
FE	soft drinks, mineral waters and other bottled waters manufacturing wastewater			
GA	tobacco products manufacturing wastewater			
HA	textiles manufacturing wastewater			
HB	textiles spinning, weaving and finishing wastewater			
НС	textiles fibre preparation and spinning wastewater			
HD	textiles weaving wastewater			
HE	textiles finishing wastewater			
HF	knitted and crocheted fabrics manufacturing wastewater			
HG	made-up textile articles (except apparel) manufacturing wastewater			
HH	carpets and rugs manufacturing wastewater			
HI	cordage, rope, twine and netting manufacturing wastewater			
HJ	other textiles manufacturing wastewater			
IA	wearing apparel manufacturing wastewater			
IB	wearing apparel (except fur apparel) manufacturing wastewater			
IC	articles of fur manufacturing wastewater			
ID	knitted and crocheted apparel manufacturing wastewater			
IE	other wearing apparel manufacturing wastewater			
JA	leather and related products manufacturing wastewater			
JB	leather tanning and dressing wastewater			
JC	fur dressing and dyeing wastewater			
JD	luggage, handbags and the like, saddlery and harness manufacturing wastewater			
JE	footwear manufacturing wastewater			
JF	other leather and related products manufacturing wastewater			
KA	wood, wood products and cork (except furniture) manufacturing wastewater; articles of straw and plaiting materials manufacturing wastewater			
KB	wood sawmilling and planning wastewater			
КС	products of wood, cork, straw and plaiting materials manufacturing wastewater			
KD	veneer sheets and wood-based panels manufacturing wastewater			
KE	builders' carpentry and joinery manufacturing wastewater			
KF	wooden containers manufacturing wastewater			
KG	other products of wood; manufacture of articles of cork, straw and plaiting materials manufactur wastewater			

Code	Category name			
LA	paper and paper products manufacturing wastewater			
LB	pulp, paper and paperboard manufacturing wastewater			
LC	corrugated paper and paperboard and containers of paper and paperboard manufacturing wastewater			
LD	other articles of paper and paperboard manufacturing wastewater			
MA	coke and refined petroleum products manufacturing wastewater			
MB	coke oven products manufacturing wastewater			
MC	refined petroleum products manufacturing wastewater			
NA	chemicals and chemical products manufacturing wastewater			
NB	basic chemicals manufacturing wastewater			
NC	fertilizers and nitrogen compounds manufacturing wastewater			
ND	plastics and synthetic rubber in primary forms manufacturing wastewater			
NE	pesticides and other agrochemical products manufacturing wastewater			
NF	paints, varnishes and similar coatings, printing ink and mastics manufacturing wastewater			
NG	soap and detergents, cleaning and polishing preparations, perfumes and toilet preparations manufacturing wastewater			
NH	man-made fibres manufacturing wastewater			
NI	other chemicals and chemical products manufacturing wastewater			
OA	pharmaceuticals, medicinal chemical and botanical products manufacturing wastewater			
PA	rubber and plastics products manufacturing wastewater			
PB	rubber tyres and tubes, retreading and rebuilding of rubber tyres manufacturing wastewater			
РС	other rubber products manufacturing wastewater			
PD	plastics products manufacturing wastewater			
QA	non-metallic mineral products manufacturing wastewater			
QB	glass and glass products manufacturing wastewater			
QC	refractory products manufacturing wastewater			
QD	clay building materials manufacturing wastewater			
QE	other porcelain and ceramic products manufacturing wastewater			
QF	cement, lime and plaster manufacturing wastewater			
QG	articles of concrete, cement and plaster manufacturing wastewater			
QH	Cutting, shaping and finishing of stone wastewater			
QI	other non-metallic mineral products manufacturing wastewater			
RA	basic metals manufacturing wastewater			
RB	basic iron and steel manufacturing wastewater			
RC	basic precious and other non-ferrous metals manufacturing wastewater			
RD	iron and steel casting wastewater			
RE	non-ferrous metals casting wastewater			
SA	fabricated metal products (except machinery and equipment) manufacturing wastewater			
SB	structural metal products, tanks, reservoirs and steam generators manufacturing wastewater			
SC	structural metal products manufacturing wastewater			
SD	tanks, reservoirs and containers of metal manufacturing wastewater			
SE	steam generators (except central heating hot water boilers) manufacturing wastewater			
SF	weapons and ammunition manufacturing wastewater			
SG	metal forging, pressing, stamping and roll-forming wastewater; powder metallurgy wastewater			

Code	Category name			
SH	metal treatment and coating wastewater; machining wastewater			
SI	cutlery, hand tools and general hardware manufacturing wastewater			
SJ	other fabricated metal products manufacturing wastewater			
TA	computer, electronic and optical products manufacturing wastewater			
ТВ	electronic components and boards manufacturing wastewater			
ТС	computers and peripheral equipment manufacturing wastewater			
TD	communication equipment manufacturing wastewater			
TE	consumer electronics manufacturing wastewater			
TF	measuring, testing, navigating and control equipment, watches and clocks manufacturing wastewater			
TG	measuring, testing, navigating and control equipment manufacturing wastewater			
TH	watches and clocks manufacturing wastewater			
TI	irradiation, electromedical and electrotherapeutic equipment manufacturing wastewater			
TJ	optical instruments and photographic equipment manufacturing wastewater			
TK	magnetic and optical media manufacturing wastewater			
UA	electrical equipment manufacturing wastewater			
UB	electric motors, generators, transformers and electricity distribution and control apparatus manufacturing wastewater			
UC	batteries and accumulators manufacturing wastewater			
UD	wiring and wiring devices manufacturing wastewater			
UE	fibre optic cables manufacturing wastewater			
UF	other electronic and electric wires and cables manufacturing wastewater			
UG	wiring devices manufacturing wastewater			
UH	electric lighting equipment manufacturing wastewater			
UI	domestic appliances manufacturing wastewater			
UJ	other electrical equipment manufacturing wastewater			
VA	machinery and equipment n.e.c. manufacturing wastewater			
VB	general-purpose machinery manufacturing wastewater			
VC	engines and turbines manufacturing wastewater			
VD	fluid power equipment manufacturing wastewater			
VE	other pumps, compressors, taps and valves manufacturing wastewater			
VF	bearings, gears, gearing and driving elements manufacturing wastewater			
VG	ovens, furnaces and furnace burners manufacturing wastewater			
VH	lifting and handling equipment manufacturing wastewater			
VI	office machinery and equipment (except computers and peripheral equipment) manufacturing wastewater			
VJ	power-driven hand tools manufacturing wastewater			
VK	other general-purpose machinery manufacturing wastewater			
VL	special-purpose machinery manufacturing wastewater			
VM	agricultural and forestry machinery manufacturing wastewater			
VN	metal-forming machinery and machine tools manufacturing wastewater			
VO	machinery for metallurgy manufacturing wastewater			
VP	machinery for mining, quarrying and construction manufacturing wastewater			
VQ	machinery for food, beverage and tobacco processing manufacturing wastewater			
VR	machinery for textile, apparel and leather production manufacturing wastewater			

Code	Category name			
VS	other special-purpose machinery manufacturing wastewater			
WA	motor vehicles, trailers and semi-trailers manufacturing wastewater			
WB	motor vehicles manufacturing wastewater			
WC	bodies (coachwork) for motor vehicles manufacturing wastewater			
WD	trailers and semi-trailers manufacturing wastewater			
WE	parts and accessories for motor vehicles manufacturing wastewater			
XA	other transport equipment manufacturing wastewater			
XB	ships and boats building wastewater			
XC	ships and floating structures building wastewater			
XD	pleasure and sporting boats building wastewater			
XE	railway locomotives and rolling stock manufacturing wastewater			
XF	air and spacecraft and related machinery manufacturing wastewater			
XG	military fighting vehicles manufacturing wastewater			
XH	transport equipment manufacturing wastewater			
XI	motorcycles manufacturing wastewater			
XJ	bicycles and invalid carriages manufacturing wastewater			
ХК	other transport equipment manufacturing wastewater			
YA	furniture manufacturing wastewater			
ZA	other manufacturing wastewater			
ZB	jewellery, bijouterie and related articles manufacturing wastewater			
ZC	jewellery and related articles manufacturing wastewater			
ZD	imitation jewellery and related articles manufacturing wastewater			
ZE	musical instruments manufacturing wastewater			
ZF	sports goods manufacturing wastewater			
ZG	games and toys manufacturing wastewater			
ZH	medical and dental instruments and supplies manufacturing wastewater			
ZI	other manufacturing wastewater			
aA	discarded resource and waste material recovery and processing wastewater			
aB	metal scrap and dross processing wastewater			
aC	non-metal scrap and dross processing wastewater			
aD	other discarded resource and waste material recovery and processing wastewater			
bA	wastewater related to electricity, gas, steam and air conditioning supply			
сА	wastewater related to water production and supply			
cB	wastewater related to tap water production and supply			
сС	other wastewater generated by water treatment, use and distribution			
dA	construction wastewater			
eA	nuclear and radioactivity wastewater			
eB	radioactive metal mining and dressing wastewater			
eC	nuclear fuel and raw material processing wastewater			
eD	nuclear radiation processing wastewater			
еE	radioactive chemical product manufacturing wastewater			
eF	nuclear power plant wastewater			
eG	other nuclear and radioactivity wastewater			
fA	laboratory wastewater			

 Table 1 (continued)

Code	Category name
fB	engineering and technical laboratory wastewater
fC	agricultural laboratory wastewater
fD	medical laboratory wastewater
fE	other laboratory wastewater
gA	mixed wastewater
gB	mixed wastewater from mining of metal ores and other mining and quarrying
gC	mixed wastewater from food products manufacturing and beverages manufacturing
gD	mixed wastewater from textiles manufacturing and wearing apparel manufacturing
gE	mixed wastewater from wood and wood products manufacturing and furniture manufacturing
gF	mixed wastewater from chemicals and chemical products manufacturing and rubber and plastics products manufacturing
gG	mixed wastewater from basic metals manufacturing and fabricated metal products manufacturing
gH	mixed wastewater from computer, electronic and optical products manufacturing and electrical equipment manufacturing
gI	mixed wastewater from motor vehicles, trailers and semi-trailers manufacturing and other transport equipment manufacturing
hA	other industrial wastewater

4.3 Classification of industrial wastewater based on water quality parameters (Level 2)

An open coding system is provided on this level to guide different governments, regional administrations and industrial sectors to choose relevant water quality parameters (e.g. pH, TSS, TDS, COD, TN and TP). For each parameter, a four-digit-code is provided, the first two digits indicate the parameter's name, and the last two indicate the measured value of the parameter.

For the parameter name, two digits following the alphabetical order (from A to Z) are recommended. The codes of 92 water quality parameters that belong to 7 types are listed in <u>Table 2</u>. For the water quality parameters that are not included or newly appeared, the table can also be extended accordingly, or it can be classified as "other parameters" (HA). A detailed usage guideline of the list is given in <u>Annex A</u>. Users can edit, modify, or extend the information according to their own situations, if so, an illustration of the coding system should be provided in the document when applying.

Level 2 is recommended to use two digits' scientific notation, which expresses a number as a form of $mn = m \times 10^n$ ($m \neq 0, 1 \le |n| < 10, n$ is an integer) is most frequently used in this list, to represent the measured value of water quality parameters.

If $n \ge 0$,

- 1. the value can be directly written as $m \times 10^n$, e.g. 8 000 written as 83; 6 written as 60;
- 2. if the value is written as $m.lop... \times 10^n$, the number will be (m + 1)n or mn by using international Rounding Rules, for example, 7 165 written as 73;
- 3. an exception is when m = 9, the number may be rounded as 10×10^n , in this case, instead of writing it as *10n*, it should be written as *1(n + 1)*, for example, 9,875 should be written as 11.

If n < 0, the "-1 to -9" should be presented as alphabetical order "a to *i*", i.e., -1 written as a, -2 as b...-9 as *i*. Other rules are the same as $n \ge 0$. For example, 0,008 3 written as 8c; 0,000 553 96 written as 6d; 0,097 written as 1a.

If some water quality indexes are irrelevant to the certain industrial type, the corresponding codes should not be included. However, if it's still necessary for considering the requirements or the effects of

several water quality indexes with no available value, the value of the parameter should be set as 0a as a default value.

Since the units of different water quality values were mostly mg/l, the value of |n| is unlikely to be larger than 9.

A hyphen is used for distinguishing between each water quality parameter.

Table 2 — Codes vs. parameter names of water quality of industrial wastewater

Code	ode Water quality parameter name Units		Value	
Α	Physical parameters			
AA	Temperature	°C	00-99	
AB	Colour	colour unit	$m \times 10^n$	
AC	Turbidity	NTU	<i>m</i> × 10 ^{<i>n</i>}	
AD	Electrical Conductivity (EC)	μS/cm	<i>m</i> × 10 ^{<i>n</i>}	
AE	Odor	odor unit	<i>m</i> × 10 ^{<i>n</i>}	
AF	Radioactive	Bq/l	$m \times 10^n$	
В	Basic chemical parameters			
BA	pH		00-14	
BB	Dissolved Oxygen (DO)	mg/l	<i>m</i> × 10 ^{<i>n</i>}	
BC	Total Organic Carbon (TOC)	mg/l	<i>m</i> × 10 ^{<i>n</i>}	
BD	Total Dissolved Solids (TDS)	mg/l	<i>m</i> × 10 ^{<i>n</i>}	
BE	Total Suspended Solids (TSS)	mg/l	<i>m</i> × 10 ^{<i>n</i>}	
BF	Total Hardness	mg/l (as CaCO ₃)	<i>m</i> × 10 ^{<i>n</i>}	
BG	Biological Oxygen Demand (BOD)	mg/l	<i>m</i> × 10 ^{<i>n</i>}	
BH	5 Days 20°C BOD (BOD ₅)	mg/l	<i>m</i> × 10 ^{<i>n</i>}	
BI	Chemical Oxygen Demand (COD)	mg/l	<i>m</i> × 10 ^{<i>n</i>}	
BJ	Silting Density Index (SDI)		00-99	
BK	M-Alkalinity	mg/l (as CaCO ₃) or mmol/l	<i>m</i> × 10 ^{<i>n</i>}	
BL	P-Alkalinity	mg/l (as CaCO ₃) or mmol/l	$m \times 10^n$	
С	Organic matters			
СА	Fat, Oil and Grease (FOG)	mg/l	$m \times 10^n$	
СВ	Formaldehyde	mg/l	<i>m</i> × 10 ^{<i>n</i>}	
СС	Phenols	mg/l	$m \times 10^n$	
CD	Pesticide	mg/l	$m \times 10^n$	
CE	Detergents	mg/l	$m \times 10^n$	
CF	Polychlorinated Biphenyls	mg/l	$m \times 10^n$	
CG	Carbon Tetrachloride	mg/l	$m \times 10^n$	
СН	Hexachlorobenzene	mg/l	$m \times 10^n$	
CI	DTT	mg/l	$m \times 10^n$	
CJ	Endrin	mg/l	$m \times 10^n$	
СК	Dieldrin	mg/l	$m \times 10^n$	
CL	Aldrin	mg/l	$m \times 10^n$	
СМ	Isodrin	mg/l	$m \times 10^n$	
CN	Perchloroethylene	mg/l	$m \times 10^n$	
CO	Hexachlorobutadiene	mg/l	$m \times 10^n$	
СР	Chloroform	mg/l	$m \times 10^n$	
NOTE The	e parameters of wastewater are quoted from ex	isted standards, see References [13] to [<u>20]</u> .	

Code	Water quality parameter name	Units	Value
CQ	1,2 Dichloro Ethylene	mg/l	$m \times 10^n$
CR	Trichloroethylene	mg/l	$m \times 10^n$
CS	Trichlorobenzene	mg/l	$m \times 10^n$
СТ	Benzene	mg/l	$m \times 10^n$
CU	Methylbenzene	mg/l	$m \times 10^n$
CV	Ethylbenzene	mg/l	$m \times 10^n$
CW	Chlorobenzene	mg/l	$m \times 10^n$
СХ	Trichloromethane	mg/l	$m \times 10^n$
CY	Tetrachloroethylene	mg/l	$m \times 10^n$
CZ	Propylene	mg/l	$m \times 10^n$
Са	n-Hexane extraction	mg/l	$m \times 10^n$
Cb	Volatile Organic Carbon	mg/l	$m \times 10^n$
Cc	Total Petroleum Hydrocarbon	mg/l	$m \times 10^n$
D	Inorganic matters		
DA	Sulphide (S)	mg/l	$m \times 10^n$
DB	Sulfate	mg/l	$m \times 10^n$
DC	Free Chlorine	mg/l	$m \times 10^n$
DD	Chloridion	mg/l	$m \times 10^n$
DE	Total Residual Chlorine	mg/l	$m \times 10^n$
DF	Fluorides (F)	mg/l	$m \times 10^n$
DG	Cyanide (as HCN)	mg/l	$m \times 10^n$
DH	Silicium (SiO ₂)	mg/l	$m \times 10^n$
Ε	Nutrient elements		
EA	Total Kjeldahl Nitrogen (TKN)	mg/l	$m \times 10^n$
EB	Free Ammonia (NH ₃)	mg/l	$m \times 10^n$
EC	Ammonia as N	mg/l	$m \times 10^n$
ED	Nitrate+ Nitrite as N	mg/l	$m \times 10^n$
EE	Nitrate as N	mg/l	$m \times 10^n$
EF	Nitrite as N	mg/l	$m \times 10^n$
EG	Total Nitrogen	mg/l	$m \times 10^n$
EH	Phosphate (PO ₄)	mg/l	$m \times 10^n$
EI	Ortho Phosphorous, Dissolved as P	mg/l	$m \times 10^n$
EJ	Phosphorous	mg/l	$m \times 10^n$
EK	Total Phosphorus	mg/l	$m \times 10^n$
EL	Potassium (K)	mg/l	$m \times 10^n$
EM	Sodium (Na)	mg/l	$m \times 10^n$
F	Metals		
FA	Aluminium (Al)	mg/l	$m \times 10^n$
FB	Arsenic (As)	mg/l	$m \times 10^n$
FC	Boron (B)	mg/l	$m \times 10^n$
FD	Barium (Ba)	mg/l	$m \times 10^n$
FE	Cobalt (Be)	mg/l	$m \times 10^n$
FF	Calcium (Ca)	mg/l	$m \times 10^n$

Code	Water quality parameter name	Units	Value
FG	Copper (Cu)	mg/l	$m \times 10^n$
FH	Cadmium (Cd)	mg/l	$m \times 10^n$
FI	Chromium (Hexavalent)	mg/l	<i>m</i> × 10 ^{<i>n</i>}
FJ	Chromium (Trivalent)	mg/l	<i>m</i> × 10 ^{<i>n</i>}
FK	Total Chromium	mg/l	<i>m</i> × 10 ^{<i>n</i>}
FL	Cobalt (Co)	mg/l	<i>m</i> × 10 ^{<i>n</i>}
FM	Iron (Fe)	mg/l	<i>m</i> × 10 ^{<i>n</i>}
FN	Lead (Pb)	mg/l	<i>m</i> × 10 ^{<i>n</i>}
FO	Magnesium (Mg)	mg/l	<i>m</i> × 10 ^{<i>n</i>}
FP	Manganese (Mn)	mg/l	<i>m</i> × 10 ^{<i>n</i>}
FQ	Mercury (Hg)	mg/l	<i>m</i> × 10 ^{<i>n</i>}
FR	Molybdenum (Mo)	mg/l	<i>m</i> × 10 ^{<i>n</i>}
FS	Nickel (Ni)	mg/l	<i>m</i> × 10 ^{<i>n</i>}
FT	Selenium (Se)	mg/l	<i>m</i> × 10 ^{<i>n</i>}
FU	Tin (Sn)	mg/l	<i>m</i> × 10 ^{<i>n</i>}
FV	Zinc (Zn)	mg/l	<i>m</i> × 10 ^{<i>n</i>}
G	Biological parameters		
GA	Total Coliforms	CFU/1001	<i>m</i> × 10 ^{<i>n</i>}
GB	Faecal Coliform	CFU/1001	<i>m</i> × 10 ^{<i>n</i>}
GC	Virus	PFU/l	<i>m</i> × 10 ^{<i>n</i>}
GD	Toxicity (Luminescent bacteria test, EC ₅₀)	%	00-99
GE	Toxicity (Rainbow trout test, 96 hr LC ₅₀)	%	00-99
HA	Other parameters		
OTE The	e parameters of wastewater are quoted from existed	standards, see Reference	s [<u>13]</u> to [<u>20</u>].

 Table 2 (continued)

Annex A

(informative)

Classification and reuse by case study

In this document, industrial wastewater classification codes are used to provide basic information about the wastewater characteristics including: type of the industry and water quality parameters. This information is useful to guide the commercial trade between different business parties or with the national and regional governments. The collection of the data can also help to define the application of specific water reuse technologies, establish new standards or rules, and to improve the requirements of treatment performance in a specific industry.

A.1 The usage in commercial trade

The classification of industrial wastewater and its coding system can largely simplify the commercial trade, for example, if an enterprise in steel industry produces wastewater with parameters listed in <u>Table A.1</u>, and is looking for suppliers to provide treatment for discharge or reuse, in the bidding document, the codes of in/effluent can be used for presenting the requirement instead of listing them as a table, such as <u>Table A.1</u>, see Reference [21].

Code	Category name		
RB	Basic iron and steel manufacturing wastewater		
Code	Water quality parameter	Influent	Effluent
BB	Electrical Conductivity (EC) (µS/cm)	5 300	650
BF	Total Hardness (mg/l as CaCO ₃)	220	200
DD	Chloridion (mg/l)	320	80
DC	Sulphate (mg/l)	680	180
FJ	Iron (mg/l)	1,0	0,05
FS	Strontium (mg/l)	9,8	3,5
FA	Aluminium (mg/l)	0,6	0,2
BA	рН	8,5	8,0
CA	Fat, Oil and Grease (FOG) (mg/l)	14	ND
BJ	Silting Density Index (SDI)	NA	5,0

Table A.1 — Code and value of industrial wastewater parameters in an ideal steel plant

In this case, <u>Table A.1</u> provides values of the top 10 most important wastewater quality parameters for the treatment and reuse system bidding by the steel plant, the code of the influent is

RBBA08-BB53-BF22-BJ0a-CA11-DC72-DD32-FA6a-FJ10-FS11

while the code for the quality of the effluent of treatment system is

RBBA08-BB62-BF22-BJ05-CA0a-DC22-DD81-FA2a-FJ5b-FS40

Please note that, although the FOG has been eliminated to under the detection limits after the treatment, and before the treatment, SDI were not detected, the code of effluent or influent should not delete it, in order to better show the initial conditions, requirements and effects of the treatment. The bidder from across the world can then decode the codes, get the detailed information about the in/ effluent, and choose suitable treatment and reuse tech to meet the requirements for one or several quality parameters, and design a reasonable processing procedure. With the general coding system,

42 characters can show the classification and water quality of certain wastewater, which largely facilitate the commercial communication.

A.2 The usage in everyday performance for maintenance department of wastewater reuse

Not only the communication department will benefit from this document, the daily operation and design departments will also save plenty of time when applying this classification and coding system. For example, in a pilot plant treating wastewater for the purpose of reuse in a second steel plant, a sand filtration unit and an electrodialysis reversal unit which has a daily treatment capacity of 350 m³ per day^[22] were installed, and the daily water quality of in/effluent was recorded. <u>Table A.2^[22]</u> illustrates everyday performance of wastewater treatment for water reuse. Through coding, everyday performance can be easily shared within maintenance department.

Code									
RB									
Code	Water quality parameter	Wastewater influent	Reuse water effluent	Day 7 influent	Day 7 effluent	Day 15 influent	Day 15 effluent	Day 20 influent	Day 20 effluent
AD	EC	3 860	305	4 695	275	4 085	269	3 511	325
FF	Calcium	166	1,4	99	1,0	149	0,9	195	0,9
BI	COD	41	20	40	19	36	20	28	17
DD	Chloridion	888	13	1 098	15	1 063	11	735	19
DB	Sulfate	437	86	443	89	469	67	465	88
Codes for each day		RBAD43- BI41-DB42- DD92-FF22	RBAD32- BI21-DB91- DD11-FF10	RBAD53- BI41-DB42- DD11-FF12	RBAD32- BI21-DB91- DD21-FF10	RBAD43- BI41-DB52- DD13-FF12	RBAD32- BI21-DB71- DD11-FF9a	RBAD43- BI31-DB52- DD72-FF22	RBAD32- BI21-DB91- DD21-FF9a

Table A.2 — Code and value of industrial reuse wastewater parameters in a steel plant

As above, although both plants are in the same industry, the parameter of water reuse and treatment systems can be chosen specifically to meet the different requirements of users.

A.3 The usage in making or updating standards and laws for wastewater reuse by decision makers

For decision makers as the governments and large corporations, a more important usage of the classification and coding system is for helping to establish or improve the standards of discharge and reuse of industrial wastewater. This classification and coding system is especially helpful when dealing with analysis of large amount of data from different plants. For instance, although the above two plants apply different water quality parameters according to their own situation, electrical conductivity (AD) and chloridion (DD) are included by both, thus, it's reasonable that through the investigation of a large amount of the data upload by different plants, a summary of most frequently appeared parameters in a specific industry can be concluded, and applied for further draft standards of wastewater reuse or discharge for this industry, namely when the government calls for data collection of wastewater from textile industry (HA-HJ), all plants (e.g. 100) with wastewater code started with H must upload their data. The codes uploaded are listed in <u>Table A.3</u>.

Code		Category name						
HA	textiles manufacturing wastewater							
Effluent	HBAB10-AD52-BI33	HAAA49-AB92-AD72-BA08-BI23	HAAA59-AB93-AD33-BI84					
Code	HBAB40-AD52-BA06-BI34	HAAA24-AB43-AD63-BA07-BI15	HAAA28-AB33-AD82-BI65					
	HCAB43-AD42-BA07-BI64	HAAA57-AB31-AD42-BA09-BI23	HAAA57-AB71-AD82-BA08-BI13					
	HCAB72-AD82-BA09-BI94	HAAA40-AB60-AD73-BA06-BI94	HAAA27-AB40-AD33-BA08-BI25					
	HCAB50-AD53-BA08-BI34	HAAA45-AB91-AD72-BA06-BI95	HAAA54-AB81-AD62-BA06-BI73					
	HCAB70-AD42-BA07-BI55	HAAA42-AB50-BA06-BI95	HAAA38-AB51-AD73-BA08-BI23					
	HCAA33-AB72-AD73-BA06-BI25	HAAA59-AB21-BA07-BI13	HAAA40-AB41-AD32-BA9-BI64					
	HCAA33-AB13-BA07-BI83	HAAA49-AB81-BA06-BI34	HAAB83-AD42-BA09-BI94					
	HCAA45-AB93-BA06-BI94	HAAA59-AB43-BA06-BI55	HAAB31-AD82-BA07-BI44					
	HCAA26-AB60-BA07-BI34	HAAA50-AB72-BI25	HAAB12-BA09-BI75					
	HCAA36-AB30-AD43-BA06-BI23	HAAA24-AB81-BI64	HBAB50-BA09-BI83					
	HCAB63-AD52-BA06-BI43	HAAA46-AB51-BI15	HBAA40-AB20-BA08-BI75					
	HCAB30-AD62-BA06-BI43	HAAA58-AB91-BI63	HBAA37-AB42-BA09-BI93					
	HDAB13-AD83-BA09-BI75	HAAA50-AB10-BI35	HBAA29-AB73-BA09-BI23					
	HDAB62-AD33-BA06-BI65	HAAA34-AB71-AD53-BI55	HBAA54-AB13-AD73-BA09-BI55					
	HDAB90-AD33-BA08-BI34	HAAA27-AB20-AD53-BI93	HBAA44-AB31-AD33-BA09-BI93					
	HDAB91-AD32-BA09-BI94	HAAA49-AB53-AD73-BI15	HBAA41-AB41-AD72-BA08-BI65					
	HDAA32-AB50-AD62-BI54	HAAA21-AB11-AD53-BI15	HDAA60-AB63-BI84					
	HDAA50-AB73-AD33-BI63	HBAA45-AB62-AD83-BA06-BI13	HEAA52-AB33-BA06-BI15					
	HDAA34-AB73-AD43-BI15	HBAA47-AB10-AD32-BI64	HEAA51-AB43-BA08-BI35					
	HDAA54-AB62-AD73-BI34	HBAB80-AD53-BI43	HEAA28-AB31-BA08-BI63					
	HEAA51-AB13-AD43-BA09-BI65	HBAB90-AD32-BI44	HEAA42-AB82-BA08-BI33					
	HEAA54-AB51-AD72-BA09-BI13	HBAB33-AD63-BI93	HEAA47-AB90-BA06-BI63					
	HEAA57-AB93-AD63-BA09-BI45	HBAB90-AD62-BI13	HEAA30-AB72-AD52-BA08-BI44					
	HFAB90-BI94	HBAB42-AD82-BI44	HEAB81-AD72-BI75					
	HFAB93-BI25	HBAB50-AD53-BI23	HEAB60-AD52-BI45					
	HFAA57-AB72-BA09-BI14	HEAB31-BI24	HEAB63-AD52-BI24					
	HFAB90-AD73-BI14	HEAB33-BI95	HFAA33-AB21-BA09-BI13					
	HGAB60-AD42-BI33	HFAB93-BI75	HFAA27-AB61-AD72-BA08-BI23					
	HGAB63-BI83	HGAB83-BI24	HFAA37-AB53-AD52-BA07-BI35					
	HHAA27-AB93-BA09-BI34	HGAA37-AB72-BI24	HFAB13-AD73-BA09-BI34					
	HHAA59-AB70-BA07-BI94	HGAA36-AB22-BI94	HIAA36-AB82-BA08-BI15					
	HJAA48-AB23-AD73-BA06-BI55	HGAB23-BI45	HIAA44-AB12-AD73-BA08-BI64					
		HHAB61-BA06-BI25						

Table A.3 — Codes of wastewater uploaded into reuse treatment system by textile industry plants

NOTE The value of each water quality parameters is randomly simulated according to published studies and projects experience, see References [22] to [24].

Among the codes provided, COD-BI (100 %), and colour-AB (100 %) are the most frequently required parameters, electrical conductivity-AD (60 %), pH-BA (60 %) and temperature-AA (62 %) are also frequently required, then the government can set the COD-AD and colour-AB as mandatory parameters in textile industrial wastewater reuse, while temperature-AA, electrical conductivity-AD and pH-BA as optional parameters. In addition, with the values provided in the code, even a brief evaluation for the potential improvement can be achieved more easily, for example, when the data of a water quality parameter from the same industrial type are collected: 70 % plants meet the value range while 30 %

plants cannot meet this range, governments or large corporations as decision makers can know the overall situation and may push those 30 % plants to improve their performance to meet this value range.

Bibliography

- [1] ISO 6059:1984, Water quality Determination of the sum of calcium and magnesium EDTA titrimetric method
- [2] ISO 6107-2:2006, Water quality Vocabulary Part 2
- [3] ISO 6107-7:2006, Water quality Vocabulary Part 7
- [4] ISO 6107-8:1993, Water quality Vocabulary Part 8
- [5] ISO 7027:1999, Water quality Determination of turbidity
- [6] ISO 9408:1999, Water quality Evaluation of ultimate aerobic biodegradability of organic compounds in aqueous medium by determination of oxygen demand in a closed respirometer
- [7] ISO 11733:2004, Water quality Determination of the elimination and biodegradability of organic compounds in an aqueous medium Activated sludge simulation test
- [8] ISO 16345:2014, Water-cooling towers Testing and rating of thermal performance
- [9] ISO 16387:2014, Soil quality Effects of contaminants on Enchytraeidae (Enchytraeus sp.) Determination of effects on reproduction
- [10] United Nations (2008). International Standard Industrial Classification of All Economic Activities (ISIC), Rev.4
- [11] North American Industry Classification System (NAICS) (2012). *Guide to Industry Classifications for International Surveys*, Rev.2
- [12] Ministry of Environmental Protection of the People's Republic of China (2009). *Codes for Wastewater Categories*. Beijing, China (HJ 520-2009)
- [13] Ministry of Environmental Protection of the People's Republic of China (2009). *Codes for Water Pollutants*. Beijing, China (HJ 525-2009)
- [14] Federal-Provincial-Territorial Committee on Health and the Environment, (2010). Canadian guidelines for domestic reclaimed water for use in toilet and urinal flushing. Ottawa, Canada
- [15] Amec Foster Wheeler Environment and Infrastructure UK Ltd IEEP, ACTeon, IMDEA and NTUA (2016). *EU-level instruments on water reuse*. European Union
- [16] Italian ministry of the environment and protection of the territory (2003). *Regulation containing technical standards for the reuse of waste water*
- [17] Ministry of Environmental Protection of the People's Republic of China, (1996). Integrated wastewater discharge standard. Beijing, China (GB8978--1996)
- [18] VICTORIA EPA, (2003). Use of reclaimed water. Victoria, Australia
- [19] Royal Government of Cambodia (2009). Sub decree on water pollution control
- [20] Environment Canada, (2000). Biological test method: acute lethality of effluents to rainbow trout. Government of Canada
- [21] CHRISTOPHERSEN D., (2008). Water Reuse Strategies: Steel Industry Case Studies
- [22] YU M. C., LIANG T. M.(2008), A feasibility study of industrial wastewater recovery using electrodialysis reversal. *Desalination*, **221**, (1–3), pp.433-439

- [23] ERGAS S., THERRIAULT B., RECKHOW D.(2006)., Evaluation of Water Reuse Technologies for the Textile Industry. *Journal of Environmental Engineering*, **132**(3), pp.315-323
- [24] GOZÁLVEZ-ZAFRILLA J.M., SANZ-ESCRIBANO D., LORA-GARCÍA J., HIDALGO M.L.(2008). , Nanofiltration of secondary effluent for wastewater reuse in the textile industry. *Desalination*, **222**(1-3), pp.272-279
- [25] ISO 20670:2018, Water reuse Vocabulary

this Page has been intertionally left blank

this Page has been intertionally left blank

Bureau of Indian Standards

BIS is a statutory institution established under the *Bureau of Indian Standards Act*, 2016 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

Headquarters:

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Head (Publication & Sales), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the website-www.bis.gov.in or www.standardsbis.in.

This Indian Standard has been developed from Doc No.: CHD 32 (23896).

Amendments Issued Since Publication

Amend No.	Date of Issue	Text Affected

BUREAU OF INDIAN STANDARDS

-				
Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002Website: www.bis.gov.inTelephones: 2323 0131, 2323 3375, 2323 9402Website: www.bis.gov.in				
Regional	Offices:		Telephones	
Central	: 601/A, Konnectus Tower -1, 6 th Floor, DMRC Building, Bhavbhuti Marg, New Delhi 110002		<i>Telephones</i> { 2323 7617	
Eastern	: 8 th Floor, Plot No 7/7 & 7/8, CP Block, Sector V, Salt Lake, Kolkata, West Bengal 700091		<pre>{ 2367 0012 2320 9474 { 265 9930</pre>	
Northern	: Plot No. 4-A, Sector 27-B, Madhya Marg, Chandigarh 160019		265 9930	
Southern	: C.I.T. Campus, IV Cross Road, Taramani, Chennai 60011	3	2254 1442 2254 1216	
Western	: 5 th Floor/MTNL CETTM, Technology Street, Hiranandan Mumbai 400076	i Gardens, Powai	{ 25700030 25702715	

Branches : AHMEDABAD, BENGALURU, BHOPAL, BHUBANESHWAR, CHANDIGARH, CHENNAI, COIMBATORE, DEHRADUN, DELHI, FARIDABAD, GHAZIABAD, GUWAHATI, HARYANA (CHANDIGARH), HUBLI, HYDERABAD, JAIPUR, JAMMU, JAMSHEDPUR, KOCHI, KOLKATA, LUCKNOW, MADURAI, MUMBAI, NAGPUR, NOIDA, PARWANOO, PATNA, PUNE, RAIPUR, RAJKOT, SURAT, VIJAYAWADA.