भारतीय मानक Indian Standard

गैस सिलेंडर — रिफिल योग्य सीमलेस स्टील गैस सिलेंडर और ट्यूब के डिजाइन, निर्माण और परीक्षण

भाग 2 1 100 एमपीए से अधिक या इसके समतुल्य तन्य शक्ति के साथ शमित और दृढीकृत इस्पात सिलेंडर और ट्यूब

Gas Cylinders — Design, Construction and Testing of Refillable Seamless Steel Gas Cylinders and Tubes Part 2 Quenched and Tempered Steel Cylinders and Tubes with Tensile Strength Greater than or equal to 1 100 MPA

ICS 23.020.35

© BIS 2023 © ISO 2019

भारतीय मानक ब्यूरो BUREAU OF INDIAN STANDARDS मानक भवन, 9 बहादुर शाह ज़फर मार्ग, नई दिल्ली - 110002 MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG NEW DELHI - 110002 www.bis.gov.in www.standardsbis.in

December 2023

Price Group 9

NATIONAL FOREWORD

This Indian Standard (Part 2) which is identical to ISO 9809-2 : 2019 'Gas cylinders — Design, construction and testing of refillable seamless steel gas cylinders and tubes — Part 2: Quenched and tempered steel cylinders and tubes with tensile strength greater than or equal to 1 100 MPA' issued by the International Organization for Standardization (ISO) was adopted by the Bureau of Indian Standards on recommendation of the Gas Cylinders Sectional Committee and approval of the Mechanical Engineering Division Council.

The text of ISO standard has been approved as suitable for publication as an Indian Standard without deviations. Certain terminologies and conventions are, however, not identical to those used in Indian Standard. Attention is particularly drawn to the following:

- a) Wherever the words 'International Standard' appear, referring to this standard, they should be read as 'Indian Standard'; and
- b) Comma (,) has been used as a decimal marker, while in Indian Standards, the current practice is to use a point (.) as the decimal marker.

In this adopted standard, reference appears to certain International Standard for which Indian Standard also exist. The corresponding Indian Standard, which are to be substituted in their respective places, are listed below along with their degree of equivalence for the editions indicated:

International Standard	Corresponding Indian Standard	Degree of Equivalence
ISO 148-1 : 2016 Metallic materials — Charpy pendulum impact test — Part 1: Test method	IS 1757 (Part 1) : 2020/ ISO 148-1 : 2016 Metallic materials — Charpy pendulum impact test: Part 1 Test method (<i>fourth revision</i>)	Identical
ISO 6506-1 : 2014 Metallic materials — Brinell hardness test — Part 1: Test method	IS 1500 (Part 1) : 2019/ISO 6506-1 : 2014 Metallic materials — Brinell hardness test: Part 1 Test method (<i>fifth revision</i>)	Identical
ISO 6508-1 : 2016 Metallic materials — Rockwell hardness test — Part 1: Test method	IS 1586 (Part 1) : 2018/ISO 6508-1 : 2016 Metallic materials — Rockwell hardness test: Part 1 Test method (<i>fifth revision</i>)	Identical
ISO 6892-1 : 2019 Metallic materials — Tensile testing — Part 1: Method of test at room temperature	IS 1608 (Part 1) : 2022/ISO 6892-1 : 2019 Metallic materials — Tensile testing: Part 1 Method of test at room temperature (<i>fifth revision</i>)	Identical
ISO 9712 : 2021 Non-destructive testing — Qualification and certification of NDT personnel	IS 13805 : 2004 General standard for qualification and certification of non-destructive testing personnel — Specification (<i>first revision</i>)	Not equivalent

Contents

Page

Introd	luction	1	v
1	Scope	·	1
2	Norm	ative references	1
3	Term	s and definitions	1
4	Symb	nls	3
т 5	Incno	ction and tasting	
5	mspe	· ,	4
6	Mater	Tals	4
	6.1	General requirements	4
	0.Z	Controls on chemical composition	5 6
	0.5 6.4	Failure to most test requirements	0
_	0.4	randre to meet test requirements	0
7	Desig	n	7
	7.1	General requirements	7
	/.Z	Limitation on tensile strength	/
	7.3	Design of convey ends (heads and heads)	/
	7.4 75	Design of conceve base and	0 Q
	7.5	Neck design	O
	7.0	Foot rings	11
	7.8	Neck rings	11
	7.9	Design drawing	11
0	C		
8	Const	ruction and workmanship	11
	δ.1 0.2	Well this lange	11
	8.Z	Wall thickness	11
	0.3 Q /	Surface Imperfections	12
	0.4 85	Out-of-roundness	12
	0.J 8.6	Mean diameter	12
	0.0 8 7	Straightness	12
	8.8	Verticality and stability	12
	8.9	Neck threads	13
0	True		10
9	1ype	Approval procedure	13
	9.1	Drototype tests	13
	9.2	9.2.1 Conoral requirements	14
		922 Verification of hardness /tensile correlation	15
		9.2.3 Pressure cycling test	16
		9.2.4 Flawed cylinder burst test	17
		9.2.5 Flawed cylinder cycle test	19
		9.2.6 Base check	20
		9.2.7 Bend test and flattening test	20
		9.2.8 Torque test for taper thread only	21
		9.2.9 Shear stress calculation for parallel threads	21
	9.3	Type approval certificate	22
10	Batch	tests	22
-	10.1	General requirements	22
	10.2	Tensile test	24
	10.3	Impact test	25
	10.4	Hydraulic bursting test	27

		10.4.1	Test installation	
		10.4.2	Test conditions	
		10.4.3	Interpretation of test results	
11	Tests/	'examina	itions on every cylinder	
	11.1	General		
	11.2	Hydrauli	ic test	
		11.2.1	Proof pressure test	
		11.2.2	Volumetric expansion test	
	11.3	Hardnes	is test	
	11.4	Leak tes	t	
	11.5	Capacity	v check	
12	Certifi	ication		
13	Marki	ng		
Annex	A (nor	mative) I	Description and evaluation of manufacturing imperfections in	
	seaml	ess gas c	ylinders	
Annex	B (nor	mative) (Jltrasonic examination	
Annex	c (info	rmative)	Example of type approval certificate	
Annex	D (info	ormative)	Example of acceptance certificate	
Annex	E (info	ormative)	Bend stress calculation	
Annex	F (info	rmative)	An example of shear strength calculation for parallel threads	
Biblio	graphy	<i></i>		

Introduction

This document provides a specification for the design, manufacture, inspection and testing of a seamless steel cylinder and tube. The objective is to balance design and economic efficiency against international acceptance and universal utility.

ISO 9809 (all parts) aims to eliminate existing concern; about climate, duplicate inspections and restrictions because of a lack of definitive International Standards.

This document is intended to be used under a variety of regulatory regimes, and has been written so that it is suitable to be referenced in the UN Model Regulations^[11].

this Page has been intertionally left blank

Indian Standard

GAS CYLINDERS — DESIGN, CONSTRUCTION AND TESTING OF REFILLABLE SEAMLESS STEEL GAS CYLINDERS AND TUBES

PART 2 QUENCHED AND TEMPERED STEEL CYLINDERS AND TUBES WITH TENSILE STRENGTH GREATER THAN OR EQUAL TO 1 100 MPA

1 Scope

This document specifies minimum requirements for the material, design, construction and workmanship, manufacturing processes, examination and testing at time of manufacture for refillable seamless steel gas cylinders and tubes with water capacities up to and including 450 l.

it is applicable to cylinders and tubes for compressed, liquefied and dissolved gases and for quenched and tempered steel cylinders and tubes with an actual tensile strength $R_{ma} \ge 1$ 100 MPa.

It is not applicable to cylinders and tubes with $R_{\text{ma, max}} > 1$ 300 MPa for diameters >140 mm and guaranteed wall thicknesses $a' \ge 12$ mm and for cylinders and tubes with $_{\text{Rma, max}} > 1$ 400 MPa for diameters ≤ 140 mm and guaranteed wall thicknesses $a' \ge 6$ mm because, beyond these limits, additional requirements can apply.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 148-1, Metallic materials — Charpy pendulum impact test — Part 1: Test method

ISO 6506-1, Metallic materials — Brinell hardness test — Part 1: Test method

ISO 6508-1, Metallic materials — Rockwell hardness test — Part 1: Test method

ISO 6892-1, Metallic materials — Tensile testing — Part 1: Method of test at room temperature

ISO 9712, Non-destructive testing — Qualification and certification of NDT personnel

ISO 10286, Gas cylinders — Terminology

ISO 11114-1, Gas cylinders — Compatibility of cylinder and valve materials with gas contents — Part 1: Metallic materials

ISO 11114-4, Transportable gas cylinders — Compatibility of cylinder and valve materials with gas contents — Part 4: Test methods for selecting steels resistant to hydrogen embrittlement

ISO 13341, Gas cylinders — Fitting of valves to gas cylinders

ISO 13769, Gas cylinders — Stamp marking

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 10286 and the following apply.

IS/ISO 9809 (Part 2) : 2019

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at http://www.electropedia.org/

3.1

batch

quantity of up to 200 for cylinders and up to 50 for tubes, plus cylinders/tubes for destructive testing of the same nominal diameter, thickness, length and design made successively on the same equipment, from the same cast of steel and subjected to the same heat treatment for the same duration of time

Note 1 to entry: In this document where not specifically mentioned for "cylinder/tube" only the term "cylinder" will be used.

3.2

burst pressure

 $p_{\rm b}$

highest pressure reached in a cylinder during a burst test

3.3

design stress factor

F

ratio of equivalent wall stress at test pressure, $p_{\rm h}$, to guaranteed minimum yield strength, $R_{\rm eg}$

3.4

quenching

hardening heat treatment in which a cylinder, which has been heated to a uniform temperature above the upper critical point, Ac₃, of the steel, is cooled rapidly in a suitable medium

3.5

reject

cylinder that has been set aside (Level 2 or Level 3) and not allowed to enter into service

3.6

rendered unserviceable

cylinder that has been treated in such a way as to render it impossible for it to enter into service

Note 1 to entry: Examples for acceptable methods to render cylinders unserviceable can be found in ISO 18119. Any actions on cylinders rendered unserviceable are outside the scope of this document.

3.7

repair

action to return a rejected cylinder to a Level 1 condition

3.8

tempering

toughening heat treatment which follows quenching, in which the cylinder is heated to a uniform temperature below the lower critical point, Ac_1 , of the steel

3.9

test pressure

 $p_{\rm h}$

required pressure applied during a pressure test

Note 1 to entry: Test pressure is used for cylinder wall thickness calculation.

3.10

working pressure

settled pressure of a compressed gas at a uniform reference temperature of 15 °C in a full gas cylinder

3.11

yield strength

stress value corresponding to the upper yield strength, R_{eH} , or for steels which do not exhibit a defined yield, the 0,2 % proof strength (non-proportional extension), $R_{p0,2}$

Note 1 to entry: See ISO 6892-1.

4 Symbols

Α	percentage elongation after fracture
а	calculated minimum thickness, in millimetres, of the cylindrical shell
<i>a</i> ′	guaranteed minimum thickness, in millimetres, of the cylindrical shell
<i>a</i> ₁	guaranteed minimum thickness, in millimetres, of a concave base at the knuckle (see Figure 2)
<i>a</i> ₂	guaranteed minimum thickness, in millimetres, at the centre of a concave base (see Figure 2)
b	guaranteed minimum thickness, in millimetres, at the centre of a convex base (see Figure 1)
С	maximum permissible deviation of burst profile, in millimetres (see Figure 13)
d	depth of artificial flaw, in millimetres, in flawed cylinder burst test and flawed cylinder cycle test (see <u>Figure 5</u>)
D	nominal outside diameter of the cylinder, in millimetres (see <u>Figure 1</u> and <u>Figure 2</u>)
D _c	external diameter, in millimetres, of cutter milling tool for flawed cylinder burst test and flawed cylinder cycle test (see <u>Figure 5</u>)
$D_{\rm f}$	diameter, in millimetres, of former (see <u>Figure 6</u>)
F	design stress factor (variable) (see <u>3.3</u>)
Н	outside height, in millimetres, of domed part (convex head or base end) (see Figure 1)
h	outside depth (concave base end), in millimetres (see Figure 2)
l _o	length of artificial flaw, in millimetres, in flawed cylinder burst test and flawed cylinder cycle test (see <u>Figure 5</u>)
L_1	length of cylindrical part of the cylinder, in millimetres (see Figure 3)
L _o	original gauge length, in millimetres, as defined in ISO 6892-1 (see Figure 8)
$p_{\rm b}$	measured burst pressure, in bars, above atmospheric pressure
	NOTE 1 bar = 10^5 Pa = 0,1 MPa.
$p_{\rm f}$	measured failure pressure, in bars, above atmospheric pressure
$p_{\rm h}$	hydraulic test pressure, in bars, above atmospheric pressure
p _y	observed pressure when cylinder starts yielding during hydraulic bursting test, in bars, above atmospheric pressure
r	inside knuckle radius, in millimetres (see <u>Figure 1</u> and <u>Figure 2</u>)

- *r*_c cutter tip radius of milling tool for artificial flaw, in millimetres, for flawed cylinder burst test and flawed cylinder cycle test (see <u>Figure 5</u>)
- R_{eg} minimum guaranteed value of the yield strength (see <u>7.1.1</u>), in megapascals, for the finished cylinder
- R_{ea} actual value of the yield strength, in megapascals, as determined by the tensile test (see 10.2)
- $R_{\rm mg}$ minimum guaranteed value of the tensile strength, in megapascals, for the finished cylinder
- $R_{\rm ma}$ actual value of tensile strength, in megapascals, as determined by the tensile test (see <u>10.2</u>)
- $R_{\text{ma, max}}$ maximum actual value of the tensile strength range, in megapascals
- $R_{\rm ma, min}$ minimum actual value of the tensile strength range, in megapascals
- $S_{\rm o}$ original cross-sectional area of tensile test piece, in square millimetres, in accordance with ISO 6892-1
- *t* actual thickness of the test specimen, in millimetres
- *t*_m average cylinder wall thickness at position of testing during the flattening test, in millimetres
- *V* water capacity of cylinder, in litres
- *w* width, in millimetres, of the tensile test piece (see Figure 8)

5 Inspection and testing

Assessment of conformity to this international standard shall take into account the applicable regulations of the countries of use.

To ensure that cylinders conform to this document, they shall be subject to inspection and testing in accordance with <u>Clauses 9</u>, <u>10</u> and <u>11</u>.

Tests and examinations performed to demonstrate compliance with this document shall be conducted using instruments calibrated before being put into service and thereafter according to an established programme.

6 Materials

6.1 General requirements

6.1.1 Materials for the manufacture of gas cylinders shall fall within one of the following categories:

- a) internationally recognized cylinder steels;
- b) nationally recognized cylinder steels;
- c) new cylinder steels resulting from technical progress.

For all categories, the relevant conditions specified in 6.2 and 6.3 shall be satisfied.

6.1.2 The material used for the manufacture of gas cylinders shall be steel, other than rimming quality, with non-ageing properties and shall be fully killed with aluminium and/or silicon.

In cases where examination of this non-ageing property is required by the customer, the criteria by which it is to be specified should be agreed with the customer and inserted in the order.

6.1.3 The cylinder manufacturer shall establish means to identify the cylinders with the cast of steel from which they are made.

6.1.4 High strength cylinders made in accordance with this document are normally not compatible with corrosive or embrittling gases (see ISO 11114-1). They may nevertheless be used with these gases provided that their compatibility is proven by a recognized test method, e.g. ISO 11114-4.

6.1.5 Wherever continuously cast billet material is used, the manufacturer shall ensure that there are no deleterious imperfections (porosity) in the material to be used for making cylinders (see <u>9.2.6</u>).

6.2 Controls on chemical composition

- **6.2.1** The chemical composition of all steels shall be defined at least by:
- the carbon, manganese and silicon contents in all cases;
- the chromium, nickel and molybdenum contents or other alloying elements intentionally added to the steel;
- the maximum sulfur and phosphorus contents in all cases.

The carbon, manganese and silicon contents and, where appropriate, the chromium, nickel and molybdenum contents shall be given, with tolerances, such that the differences between the maximum and minimum values of the cast do not exceed the values shown in <u>Table 1</u>.

Element	Maximum content (mass fraction)	Permissible range (mass fraction)	Check analysis Deviation from the limits specified for the cast analyses (mass fraction)
	%	%	%
Carbon	<0,30	0,03	10.02
	≥0,30	0,04	-±0,02
Manganese	All values	0,20	≤1,00 ± 0,04
			$>1,00 \le 1,70 \pm 0,05$
Silicon	All values	0,15	±0,03
Chromium	<1,20	0,20	≤2,00 ± 0,05
	≥1,20	0,30	>2,00 ≤ 2,20 ± 0,10
Nickel	All values	0,30	≤2,00 ± 0,05
			$>2,00 \le 4,30 \pm 0,07$
Molybdenum	<0,50	0,10	≤0,30 ± 0,03
	≥0,50	0,15	$>0,30 \le 0,60 \pm 0,04$

Table 1 — Chemical composition tolerances

The combined content of the following elements: vanadium, niobium, titanium, boron and zirconium, shall not exceed 0,15 %.

The actual content of any element deliberately added shall be reported and their maximum content shall be representative of good steel making practice.

6.2.2 Sulfur and phosphorus in the cast analysis of material used for the manufacture of gas cylinders shall not exceed the values shown in <u>Table 2</u>.

Table 2 — Maximum sulfur	and phosphorus	limits in %	(mass fraction)
--------------------------	----------------	-------------	-----------------

Sulfur	0,005
Phosphorus	0,015

6.2.3 The cylinder manufacturer shall obtain and provide certificates of cast (heat) analyses of the steels supplied for the construction of gas cylinders.

Should check analyses be required, they shall be carried out either on specimens taken during manufacture from the material in the form as supplied by the steel maker to the cylinder manufacturer or from finished cylinders. In any check analysis, the maximum permissible deviation from the limits specified for the cast analyses shall conform to the values specified in <u>Table 1</u>.

6.3 Heat treatment

6.3.1 The cylinder manufacturer shall certify the heat treatment process applied to the finished cylinders.

6.3.2 Quenching in media other than mineral oil is permissible, provided that:

- the method produces cylinders free of cracks;
- the manufacturer ensures that the rate of cooling does not produce any cracks in the cylinder;
- every production cylinder is subjected to a method of non-destructive testing to prove freedom from cracks, if the average rate of cooling in the medium is greater than 80 % of that in water at 20 °C without additives;
- during the production of cylinders, the concentration of the quenchant is checked and recorded during every shift to ensure that the limits are maintained. Further documented checks shall be carried out to ensure that the chemical properties of the quenchant are not degraded.

6.3.3 The tempering process shall achieve the required mechanical properties.

The actual temperature to which a type of steel is subjected for a given tensile strength shall not deviate by more than +/-30 °C from the temperature specified by the cylinder manufacturer.

6.4 Failure to meet test requirements

In the event of failure to meet the test requirements, retesting or reheat treatment and retesting shall be carried out as follows to the satisfaction of the inspector.

- a) If there is evidence of a fault in carrying out a test, or an error of measurement, a further test shall be performed. If the result of this test is satisfactory, the first test shall be ignored.
- b) If the test has been carried out in a satisfactory manner, the cause of test failure shall be identified.
 - 1) If the failure is considered to be due to the heat treatment applied, the manufacturer may subject all the cylinders implicated by the failure to only one further heat treatment, e.g. if the failure is in a test representing the prototype or batch cylinders. Test failure shall require reheat treatment of all the represented cylinders prior to retesting.

This reheat treatment shall consist of re-tempering or re-quenching and tempering.

Whenever cylinders are reheat treated, the minimum guaranteed wall thickness shall be maintained.

Only the relevant prototype or batch tests needed to prove the acceptability of the new batch shall be performed again. If one or more tests prove even partially unsatisfactory, all cylinders of the batch shall be rejected.

2) If the failure is due to a cause other than the heat treatment applied, all cylinders with imperfections shall be either rejected or repaired such that the repaired cylinders pass the test(s) required for the repair. They shall then be re-instated as part of the original batch.

Design 7

7.1 General requirements

The calculation of the wall thickness of the pressure-containing parts shall be related to the guaranteed minimum yield strength, R_{eg} , of the material in the finished cylinder.

7.1.2 Cylinders shall be designed with one or two openings along the central cylinder axis only.

7.1.3 For calculation purposes, the value of R_{eg} shall not exceed 0,90 R_{mg} .

7.1.4 The internal pressure upon which the calculation of wall thickness is based shall be the hydraulic test pressure $p_{\rm h}$.

Limitation on tensile strength 7.2

The maximum value of the tensile strength is limited by the ability of the steel to meet the requirements of <u>Clauses 9</u> and <u>10</u>. The maximum range of tensile strength shall be 120 MPa (i.e. $R_{\text{ma,max}} - R_{\text{ma,min}} \le 120 \text{ MPa}$).

However, the actual value of the tensile strength as determined in 10.2 shall not exceed 1 300 MPa for cylinders with an outside diameter greater than 140 mm, and 1 400 MPa for cylinders with an outside diameter equal to or less than 140 mm.

7.3 Design of cylindrical shell thickness

The guaranteed minimum thickness of the cylindrical shell, a', shall not be less than the thickness calculated using <u>Formulae (1)</u> and (2), and additionally condition (3) shall be satisfied:

$$a = \frac{D}{2} \left(1 - \sqrt{\frac{10 \, FR_{\rm eg} - \sqrt{3}p_{\rm h}}{10 \, FR_{\rm eg}}} \right) \tag{1}$$

where the value of *F* is the lesser of $\frac{0.65}{R_{eg}/R_{mg}}$ or 0.77.

 R_{eg}/R_{mg} shall not exceed 0,90.

The wall thickness shall also satisfy **Formula (2)**:

$$a \ge \frac{D}{250} + 1 \tag{2}$$

with an absolute minimum of a = 1,5 mm.

The burst ratio shall be satisfied by test as given in Formula (3):

$$p_{\rm b} / p_{\rm h} \ge 1.6$$
 (3)

NOTE 1 If the result of these requirements is a guaranteed thickness of the cylindrical shell $a' \ge 12$ mm for diameter $D \ge 140$ mm, or a guaranteed thickness of the cylindrical shell, $a' \ge 6$ mm for diameter $D \le 140$ mm, such a design is outside the scope of this document (see <u>Clause 1</u>).

NOTE 2 It is generally assumed that $p_h = 1,5$ times working pressure for compressed gases for cylinders designed and manufactured to this document.

NOTE 3 For some applications such as tubes assembled in batteries to equip trailers or skids (ISO modules) or MEGCs for the transportation and distribution of gases, it is important that stresses associated with mounting the tube (e.g. bending stresses, see <u>Annex E</u>, torsional stresses, dynamic loadings) are considered by the assembly manufacturer and the tube manufacturer.

NOTE 4 In addition, during hydraulic pressure testing, tubes could be supported or lifted by their necks; therefore, potential bending stresses are considered. For general guidance, see <u>Annex E</u>.

7.4 Design of convex ends (heads and bases)

7.4.1 When convex base ends (see Figure 1) are used, the thickness, *b*, at the centre of a convex end shall be not less than that required by the following criteria:

where the inside knuckle radius, r, is not less than 0,075D, then

 $b \ge 1,5 a$ for $0,40 > H/D \ge 0,20$;

 $b \ge a$ for $H/D \ge 0,40$.

To obtain a satisfactory stress distribution in the region where the end joins the shell, any thickening of the end when required shall be gradual from the point of juncture, particularly at the base. For the application of this rule, the point of juncture between the shell and the end is defined by the horizontal lines indicating dimension H in Figure 1.

7.4.2 The cylinder manufacturer shall prove by the pressure cycling test detailed in <u>9.2.3</u> that the design is satisfactory.

The shapes shown in Figure 1 are typical of convex heads and base ends. Shapes a), c) and d) are base ends and shape b) is a head.

7.5 Design of concave base ends

When concave base ends (see Figure 2) are used, the following design values are recommended:

 $a_1 \ge 2a$ $a_2 \ge 2a$ $h \ge 0,12D$ $r \ge 0,075D$

The design drawing shall at least show values for a_1 , a_2 , h and r.

To obtain a satisfactory stress distribution, the thickness of the cylinder shall increase progressively in the transition region between the cylindrical part and the base.

The cylinder manufacturer shall in any case prove by the pressure cycling test detailed in <u>9.2.3</u> that the design is satisfactory.

1 cylindrical part

Figure 2 — Concave base end

7.6 Neck design

7.6.1 The external diameter and thickness of the formed neck end of the cylinder shall be adequate for the torque applied in fitting the valve to the cylinder. The torque may vary according to the valve/fitting type (e.g. plugs), diameter of thread, the form of thread and the sealant used in the fitting of the valve.

NOTE For guidance on torques, see ISO 13341.

7.6.2 In establishing the minimum thickness, the thickness of wall in the cylinder neck shall prevent permanent expansion of the neck during the initial and subsequent fittings of the valve into the cylinder without support of an attachment. The external diameter and thickness of the formed neck end of the cylinder shall not be damaged (no permanent expansion or crack) by the application of the maximum design torque required to fit the valve to the cylinder (see ISO 13341) and the stresses when the cylinder is subjected to its test pressure. In specific cases (e.g. very thin walled cylinders), where these stresses cannot be supported by the neck itself, the neck may be designed to require reinforcement, such as a neck ring or shrunk on collar, provided the reinforcement material and dimensions are clearly specified by the manufacturer and this configuration is part of the type approval procedure (see <u>9.2.8</u> and <u>9.2.9</u>).

7.7 Foot rings

When a foot ring is provided, it shall be made of material compatible with that of the cylinder. The shape should preferably be cylindrical and shall give the cylinder stability. The foot ring shall be secured to the cylinder by a method other than welding, brazing or soldering. Any gaps which can form water traps shall be sealed by a method other than welding brazing or soldering. This is particularly important in the case of high strength cylinders.

7.8 Neck rings

When a neck ring is provided, it shall be s made of material compatible with that of the cylinder and shall be securely attached by a method other than welding, brazing or soldering.

The manufacturer shall ensure that the axial load to remove the neck ring is greater than 10 times the weight of the empty cylinder and not less than 1 000 N, and that the torque to turn the neck ring is greater than 100 Nm.

7.9 Design drawing

A fully dimensioned drawing shall be prepared, which includes the specification of the material and details relevant to the design of the permanent fittings. Dimensions of non-safety related fittings can be agreed on between the customer and manufacturer and need not be shown on the design drawing.

8 Construction and workmanship

8.1 General

The cylinder shall be produced by

- a) forging or drop forging from a solid ingot or billet,
- b) manufacturing from seamless tube, or
- c) pressing from a flat plate.

Metal shall not be added in the process of closure of the end. Manufacturing defects shall not be corrected by plugging of bases (e.g. addition of metal by welding).

8.2 Wall thickness

During production, each cylinder or semi-finished shell shall be examined for thickness. The wall thickness at any point shall be not less than the minimum thickness specified.

8.3 Surface imperfections

The internal and external surfaces of the finished cylinder shall be free from imperfections which could adversely affect the safe working of the cylinder.

For examples of imperfections and assistance on their evaluation, see <u>Annex A</u>.

8.4 Ultrasonic examination

8.4.1 After completion of the final heat treatment and after the final cylindrical wall thickness has been achieved each cylinder shall be ultrasonically examined for internal, external and sub-surface imperfections in accordance with <u>Annex B</u>.

8.4.2 In addition to the ultrasonic examination as specified in <u>8.4.1</u>, the cylindrical area to be closed (that creates the shoulder and in case of cylinders made from tube, also the base) shall be ultrasonically examined prior to the forming process to detect any defects that after closure could be positioned in the cylinder ends.

In case of cylinders produced from tube (provided that the thickness of the tube is unaltered) this additional test is not required if the tube is 100 % ultrasonically tested before closure of the ends in accordance with <u>Annex B</u>.

The test shall be performed as close as possible to the open end of the shell.

The untested area shall extend to a length of not more than 40 mm from the open end of the shell.

In both 8.4.1 and 8.4.2 it is not required to perform the ultrasonic examination for small cylinders with a cylindrical length of less than 200 mm or where the product of $p_h \times V < 600$ bar $\cdot l$.

NOTE This examination does not necessarily cover the tests required in <u>6.3.2</u>.

8.5 Out-of-roundness

The out-of-roundness of the cylindrical shell, i.e. the difference between the maximum and minimum outside diameters at the same cross-section, shall not exceed 2 % of the mean of these diameters.

8.6 Mean diameter

The mean outside diameter of the cylindrical part outside the transition zones on a cross-section shall not deviate by more than ± 1 % from the nominal design outside diameter.

8.7 Straightness

The maximum deviation (b) of the cylindrical part of the shell (l_1) from a straight line shall not exceed 3 mm per metre length (see Figure 3).

8.8 Verticality and stability

For a cylinder designed to stand on its base, the deviation from vertical (a) shall not exceed 10 mm per metre length (l_2) (see Figure 3), and the outer diameter of the surface in contact with the ground is recommended to be greater than 75 % of the nominal outside diameter.

- ^a Maximum 0,01 × l_2 (see 8.8).
- ^b Maximum 0,003 × l_1 (see 8.7).

Figure 3 — Deviation of cylindrical part of shell from a straight line and from vertical

8.9 Neck threads

The internal neck threads shall conform to a recognized standard agreed on between the parties to permit the use of a corresponding valve, thus minimizing neck stresses following the valve torqueing operation. Internal neck threads shall be checked using gauges corresponding to the agreed neck thread or by an alternative method agreed on between the parties.

NOTE For example, where the neck thread is specified to be in accordance with ISO 11363-1, the corresponding gauges are specified in ISO 11363-2.

Particular care shall be taken to ensure that neck threads are accurately cut, are of full form and free from any sharp profiles e.g. burrs.

9 Type approval procedure

9.1 General requirements

A technical specification of each new design of cylinder or cylinder family as defined in f), including design drawing, design calculations, steel details, manufacturing process and heat treatment details, shall be submitted by the manufacturer to the inspector. The type approval tests detailed in <u>9.2</u> shall be carried out on each new design under the supervision of the inspector.

A cylinder shall be considered to be of a new design, compared with an existing approved design, when at least one of the following applies:

- a) it is manufactured in a different factory;
- b) it is manufactured by a different process (see <u>8.1</u>); this includes the case when major process changes are made during the production period, e.g. end forging to spinning, change in heat treatment process;

- c) it is manufactured from a steel of different specified chemical composition range from that defined in <u>6.2.1;</u>
- d) it is given a different heat treatment beyond the limits stipulated in <u>6.3</u>;
- e) the base or the base profile has changed, e.g. concave, convex, hemispherical or also if there is a change in base thickness/cylinder diameter ratio;
- f) the overall length of the cylinder has increased by more than 50 % (cylinders with a length/ diameter ratio less than 3 shall not be used as reference cylinders for any new design with this ratio greater than 3);
- g) the nominal outside diameter has changed;
- h) the guaranteed minimum thickness has changed;
- i) the hydraulic test pressure, p_h , has been increased (where a cylinder is to be used for lowerpressure duty than that for which design approval has been given, it shall not be deemed to be a new design);
 - NOTE When the test pressure has decreased a revision of the approval certificate could be needed.
- j) the guaranteed minimum yield strength, R_{eg} , and/or the guaranteed minimum tensile strength, R_{mg} , for the finished cylinder have changed.

If the diameter of the internal thread has increased by less than 50 % then:

- k) in case of tapered threads the torque test shall be performed (see <u>9.2.8</u>).
- 1) in case of parallel threads the calculation of the shear strength shall be performed (see <u>9.2.9</u>).

If the diameter of the internal thread has increased by 50 % or more, the pressure cycling test on two cylinders shall also be performed (see 9.2.3).

In both cases the new diameter shall be reported in the revised type approval certificate.

9.2 Prototype tests

9.2.1 General requirements

A minimum of 50 cylinders and 15 for tubes, which are guaranteed by the manufacturer to be representative of the new design, shall be made available for prototype testing. However, if for special applications the total number of cylinders required is less than 50, a sufficient number of cylinders shall be made to complete the prototype tests required, in addition to the production quantity, but in this case, the approval validity is limited to this particular production batch.

In the course of the type approval process, the inspector shall select the necessary cylinders for testing and

a) verify that:

- the design conforms to the requirements of <u>Clause 7</u>;
- the thicknesses of the walls and ends on two cylinders (those taken for mechanical testing) meet the requirements of <u>7.3</u> to <u>7.6</u>, the measurements being taken at least at three transverse sections of the cylindrical part and on a longitudinal section of the base and head;
- the requirements of <u>Clause 6</u> are complied with;
- the requirements of <u>7.7</u>, <u>7.8</u> and <u>8.5</u> to <u>8.9</u> inclusive are complied with for all cylinders selected for inspection;

- the internal and external surfaces of the cylinders are free of any imperfection which might make them unsafe to use (for examples, see <u>Annex A</u>);
- b) supervise the following tests on the cylinders selected:
 - the tests specified in <u>10.1.2</u> a) (hydraulic burst test) on two cylinders, the cylinders bearing representative stamp markings;
 - the tests specified in <u>10.1.2</u> b) (mechanical testing) on two cylinders, the test pieces' being identifiable with the batch. Hardness tests shall be carried out on the tensile test pieces to verify the hardness/tensile correlation (see <u>9.2.2</u>);
 - a hardness survey, comprising four hardness tests at 90° to each other at each end of the cylindrical wall, on the two cylinders selected for mechanical testing. The maximum range of Brinell hardness on each cylinder shall be 25 HB; the manufacturer shall establish the equivalent range to this when an alternative hardness testing method is used;
 - the tests specified in <u>9.2.3</u> (pressure cycling test) on two cylinders, the cylinders bearing representative stamp markings;
 - the tests specified in <u>9.2.4</u> (flawed cylinder burst test) on at least two cylinders of the batch with the highest hardness value (mean of the two measurements);
 - the tests specified in <u>9.2.5</u> (flawed cylinder cycle test) on two cylinders;
 - the tests specified in <u>9.2.6</u> (base check) on the two cylinders selected for mechanical testing;
 - the tests specified in <u>9.2.7</u> (bend test and flattening test) on two cylinders, the test pieces being identifiable with the batch. Either two bend tests (see <u>9.2.7.1</u>) in a circumferential direction, or one flattening test (see <u>9.2.7.2</u>) or one ring flattening test (see <u>9.2.7.3</u>). This can be on the same cylinders as those taken for the mechanical testing;
 - the geometrical requirements for the neck thread are complied with for all cylinders selected for inspection;
 - the tests specified in <u>9.2.8</u> (torque test for taper thread only) on one cylinder being identifiable with the batch or <u>9.2.9</u> (shear stress calculation for parallel threads).

Consideration should be given to selecting cylinders which represent the lower and upper values of the hardness range within the batch.

9.2.2 Verification of hardness/tensile correlation

The manufacturer shall demonstrate to the satisfaction of the inspector that the hardness range specified is related to the tensile range specified in <u>7.2</u>. When Brinell hardness testing is used, the following procedure shall be adopted.

Prior to the presentation of a first batch of cylinders for prototype testing, the manufacturer shall establish a linear regression between $R_{\rm ma}$ and HB for the type of steel and heat treatment method used, using a minimum of 20 values of $R_{\rm ma}$ and HB tested on 10 cylinders at each end. The hardness values shall be obtained on complete cylinders tested on the production line hardness testing machine; the tensile test pieces shall be taken at the hardness test spot. The values obtained shall cover the anticipated tensile range.

In order to determine the limits for the hardness range as required in <u>11.3</u>, a scatter of 10 HB around HB 1 and HB 2 shall be permitted (to allow for example for measurement tolerance). The guaranteed hardness range shall therefore be:

 $HB_{min.} = HB 1 - 10 HB$

 $HB_{max} = HB 2 + 10 HB$

However, the maximum hardness range $HB_{max} - HB_{min}$ shall not exceed 55 HB (equivalent to ≤ 200 MPa; see Figure 4).

NOTE It can be helpful to establish a separate correlation for each family of cylinders considering the different reactions (elasticity, wall thickness, etc.) to hardness testing.

- ^a Scatter band, max. ±10 HB.
- ^b Hardness range, max. 55 HB.

NOTE R_{mg} is normally equal to or lower than $R_{ma,min}$.

Figure 4 — Hardness/tensile test graph

At the prototype stage, hardness tests shall be carried out as described in <u>9.2.1</u> b) at the spot where the tensile test specimen is taken. The results of hardness and tensile strength shall be compared with the graph established by the manufacturer to determine whether or not they are within the scatter band (see Figure 4). When hardness measurements are outside the hardness limits as stated above, see <u>6.4</u>.

NOTE An equivalent test procedure can be used, provided equivalence of the scatter band and the maximum hardness range can be demonstrated.

9.2.3 Pressure cycling test

This test shall be carried out on cylinders bearing representative markings, with a non-corrosive liquid subjecting the cylinders to successive reversals at an upper cyclic pressure, which is at least equal to the hydraulic test pressure $p_{\rm h}$. The cylinders shall withstand 12 000 cycles without failure.

For cylinders with a hydraulic test pressure $p_h > 450$ bar, the upper cyclic pressure may be reduced to two thirds of this test pressure. In this case, the cylinders shall withstand 80 000 cycles without failure.

The value of the lower cyclic pressure shall not exceed 10 % of the upper cyclic pressure but shall have an absolute maximum of 30 bar.

The cylinder shall actually experience the maximum and minimum cyclic pressures during the test.

The frequency of reversals of pressure shall not exceed 0,25 Hz (15 cycles/min). The temperature measured on the outside surface of the cylinder shall not exceed 50 $^{\circ}$ C during the test.

After the test, the cylinder bases shall be sectioned in order to measure the thickness and to ensure that this thickness is sufficiently close to the minimum thickness prescribed in the design and shall be within the usual production tolerances. In no case shall the actual base thickness (a_1 or b depending on the shape of the base) exceed the minimum value(s) specified on the drawing by more than 15 %.

The test shall be considered satisfactory if the cylinder attains the required number of cycles without developing a leak.

9.2.4 Flawed cylinder burst test

9.2.4.1 General

The flawed cylinder burst test shall be carried out to determine if the failure pressure, $p_{\rm f}$, which produces the leak (and not a burst) with a flaw of a given size is greater than two thirds of the test pressure (2/3 $p_{\rm h}$) of the cylinder, adjusted for the actual thickness versus calculated minimum wall thickness.

9.2.4.2 Details of flaw

See Figure 5.

The flaw shall be machined longitudinally, approximately at mid-length of the cylindrical part of the cylinder. The flaw shall be located at the point of minimum wall thickness, *t*, of the midsection, based on thickness measurement at four points around the cylinder.

The flaw length, l_0 , shall be the overall length of cut and shall be equal to Formula (4):

$$l_{\rm o} = 1.6 \sqrt{D \ a} \pm 1 \,\rm{mm} \tag{4}$$

The flaw cutter shall be approximately 12,5 mm thick with an angle of 45° and a tip radius, rc, of $(0,25 \pm 0,025)$ mm. The cutter diameter, Dc, shall be 50 mm for cylinders with a diameter, D, less than or equal to 140 mm, and 65 mm to 80 mm for cylinders with D greater than 140 mm.

A standard Charpy V-notch cutter is recommended, sharpened regularly to ensure that the tip radius meets the requirements.

The depth, d, of the flaw shall be adjusted to obtain a leak by hydropressurization. "Leak" means that the crack has not propagated by more than 10 % outside the machined flaw length, as measured on the external surface, i.e. total length shall be not greater than $1,1 \times l_0$. The flaw depth shall be at least 60 % of the actual wall thickness, t, of the cylinder at the flaw location.

Key

- α 45° cutter angle
- 1 ligament
- $D_{\rm c}$ cutter diameter
- *r*_c cutter profile radius

Figure 5 — Profile of artificial flaw

9.2.4.3 Test procedure

The test shall be performed by monotonic pressurization or cyclic pressurization as described in this subclause.

a) Monotonic pressurization

The cylinder shall be pressurized hydrostatically as described in 10.4 (hydraulic bursting test), until pressure is released from the cylinder at the flaw location.

b) Cyclic pressurization

The test shall be performed as described in 9.2.3 with the upper cyclic pressure being two thirds of the test pressure $(2/3 p_h)$ of the cylinder adjusted for actual thickness versus calculated minimum wall thickness (i.e. $2/3 p_h \times t/a$).

9.2.4.4 Acceptance criteria for the flawed cylinder burst test

The cylinder shall have passed the test if the following conditions are met.

- a) For cylinders tested using monotonic pressurization:
 - the failure pressure, $p_{\rm f}$, shall be equal to or greater than two thirds of the test pressure $(2/3 \times p_{\rm h})$ of the cylinder adjusted for the actual thickness versus calculated minimum wall thickness and the failure mode shall be by a "leak", i.e. $p_{\rm f}/(2/3 p_{\rm h}) \ge 1,0 t/a$;
 - if these requirements are not fulfilled (i.e. failure occurs below $2/3 p_h \times 1,0 t/a$), but the failure mode is a leak, a new test may be performed with a shallower flaw. If burst type failure occurs at a pressure greater than $2/3 p_h \times 1,0 t/a$, but the flaw depth is shallow, a new test may be performed with a deeper flaw;
 - a total crack length measured on the external surface of 1,1 times the original machined length is allowed, i.e. total crack length shall not be greater than 1,1 l_0 .

- b) For cylinders tested using cyclic pressurization:
 - fatigue crack growth beyond the original machined flaw length is allowed. However, the failure mode shall be by a "leak".

9.2.5 Flawed cylinder cycle test

9.2.5.1 Test conditions

The flawed cylinder cycle test shall be carried out as described in <u>9.2.3</u> at p_h , with the exception that the cycling frequency shall not exceed 5 cycles/min.

The cylinders shall contain an artificial flaw as described in <u>9.2.5.2</u>.

9.2.5.2 Details of flaw

See <u>Figure 5</u>.

The flaw shall be machined longitudinally, approximately at mid-length of the cylindrical part of the cylinder. The flaw shall be located at minimum wall thickness, *t*, of the midsection.

The flaw length, l_0 , shall be the overall length of cut and shall be equal to:

 $l_0 = 1.6 \sqrt{D \ a} \pm 1 \text{ mm}$

The flaw cutter shall be approximately 12,5 mm thick with an angle of 45° and a tip radius, r_c of (0,25 ± 0,025) mm. The cutter diameter, D_c , shall be 50 mm for cylinders with a diameter *D* less than or equal to 140 mm, and 65 mm to 80 mm for cylinders with *D* greater than 140 mm.

A standard Charpy V-notch cutter is recommended, sharpened regularly to ensure that the tip radius meets the requirements.

The depth, *d*, of the flaw shall be not less than 10 % of the wall thickness *t*.

When measuring the actual flaw depth, a deviation not exceeding 0,1 mm is acceptable (e.g. for an actual wall thickness of 7,0 mm the flaw depth shall in no case be less than 0,6 mm).

9.2.5.3 Acceptance criteria for the flawed cylinder cycle test

The cylinder shall have passed the test if the number of cycles attained without failure exceeds 3 500, as a mean value of the two cylinders tested, but with an absolute minimum of 3 000.

The test report shall include actual details of the test as follows, in addition to cylinder design details:

- pressure range;
- cycle rate;
- temperature range;
- actual flaw length;
- actual wall thickness;
- actual flaw depth;
- number of cycles obtained without failure.

If the test is continued to failure, the mode of failure shall be reported (i.e. leak or burst).

IS/ISO 9809 (Part 2) : 2019

If the cylinders pass a minimum of 12 000 cycles without failure, the unflawed pressure cycling test as required in <u>9.2.1</u> b) and specified in <u>9.2.3</u> need not be carried out.

9.2.6 Base check

A meridian section shall be made in the base centre of the cylinder and one of the surfaces thus obtained polished for examination under a magnification of between ×5 and ×10.

The cylinder shall be regarded as defective if the presence of cracks is detected. It shall also be regarded as defective if the dimensions of any pores or inclusions present reach values considered to pose a threat to safety.

In cases where the base is suspected to be plugged, the section shall be etched after the first examination to verify the absence of a plug. Plugged cylinders shall not be approved.

In no case shall the sound thickness (i.e. the thickness with no imperfections) in the base centre be less than the minimum specified thickness (see <u>7.4.1</u>).

9.2.7 Bend test and flattening test

9.2.7.1 Bend test

Figure 6 — Illustration of bend test

9.2.7.1.1 The bend test shall be carried out on two test pieces obtained by cutting either one or two rings of width 25 mm or 4 *t*, whichever is greater, into equal parts (see Figure 7). Each test piece shall be of sufficient length to permit the bend test to be carried out correctly. Only the edges of each strip may be machined.

9.2.7.1.2 The test piece shall not crack when bent inwards around the former until the inside surfaces are not further apart than the diameter of the former (see Figure 6).

9.2.7.1.3 The diameter of the former, D_{f} , shall be not more than eight times the actual wall thickness of the test piece, *t*.

9.2.7.2 Flattening test

9.2.7.2.1 The flattening test shall be performed on one cylinder selected after heat treatment.

9.2.7.2.2 The test cylinder shall be flattened between wedge-shaped knife edges with a 60° included angle, the edges being rounded to a nominal radius of 13 mm. The length of the wedges shall be not

less than the width of the flattened cylinder. The longitudinal axis of the cylinder shall be at an angle of approximately 90° to the knife edges.

9.2.7.2.3 The test cylinder shall be flattened until the distance between the knife edges is 10 $t_{\rm m}$, where $t_{\rm m}$ is the average cylinder wall thickness at the position of testing. The flattened cylinder shall remain visually uncracked.

9.2.7.3 Ring flattening test

The ring flattening test shall be carried out on one ring of width 25 mm or 4 *t*, whichever is the greater, taken from the cylinder body (see Figure 7). Only the edges of the ring may be machined. The ring shall be flattened between platens until the distance between platens is 10 times the average thickness of the test ring. The flattened ring shall remain visually uncracked.

9.2.8 Torque test for taper thread only

9.2.8.1 Procedure

The body of the cylinder shall be held in such a manner as to prevent it from rotating. The cylinder shall be fitted with a valve or a plug and tightened to 1,5 times of the maximum torque specified in ISO 13341 for the relevant material or as recommended by the manufacturer where not covered by ISO 13341. If a neck-ring is part of the cylinder design, it shall be attached to the cylinder during torque test.

The parameters that shall be monitored and recorded are:

- a) valve or plug material;
- b) valving procedure;
- c) applied torque;
- d) diameter of internal tapered thread at upper end.

9.2.8.2 Acceptance criteria

The cylinder neck and threads shall remain within the gauge tolerances.

9.2.9 Shear stress calculation for parallel threads

9.2.9.1 Procedure

The bigger diameter of the parallel threads shall have a tight fit and a calculated shear strength of at least 10 times the shear stress at the test pressure of the cylinder.

NOTE An example of the shear stress calculation can be found in $\frac{\text{Annex F}}{\text{STD-H28/2}}$ which is based on US-FED-STD-H28/2.

The parameters that shall be recorded are:

- a) type of thread;
- b) calculated shear stress level.

9.2.9.2 Acceptance criteria

The calculated shear strength shall be at least 10 times the shear stress at test pressure.

9.3 Type approval certificate

If the results of the prototype tests and verifications according to 9.2 are satisfactory, the inspector shall issue a type approval certificate. Annex C provides an example of a type approval certificate. Other formats with at least the same content are also acceptable.

10 Batch tests

10.1 General requirements

10.1.1 All tests for checking the quality of the gas cylinder shall be carried out on material from finished cylinders. Each cast of steel shall be represented by a set of batch test results (see <u>3.1</u>).

For the purposes of batch testing, the manufacturer shall provide the inspector with:

- the type approval certificate;
- the certificates stating the cast analysis of the steel supplied for the construction of the cylinders;
- evidence that appropriate heat treatment has been performed;
- certificates showing the ultrasonic examination results;
- a list of the cylinders, stating serial numbers and stamp markings as required;
- confirmation that threads have been checked in accordance with gauging requirements. The gauges to be used shall be specified (e.g. ISO 11363-2).

10.1.2 During batch testing, the inspector shall undertake the following.

- Ascertain that the type approval certificate has been obtained and that the cylinders conform to it.
- Check whether the requirements given in <u>Clauses 5, 6</u> and <u>7</u> have been met and, in particular, check by an external and internal visual examination of the cylinders whether their construction is satisfactory. The inspector shall verify that the requirements of <u>7.7</u>, <u>7.8</u> and <u>8.2</u> to <u>8.9</u> have been fulfilled by the manufacturer. The visual examination shall cover at least 10 % of the cylinders submitted. However, if an unacceptable imperfection is found (as specified in <u>Annex A</u>), 100 % of cylinders shall be visually inspected.
- Select the necessary cylinders per batch for destructive testing and carry out the tests specified in <u>10.1.2</u> a) (hydraulic burst tests) and <u>10.1.2</u> b) (mechanical testing). Where alternative tests are permitted, the purchaser and manufacturer shall agree on which tests are to be carried out.
- Supervise the test specified in 9.2.4 (flawed cylinder burst test) on one cylinder when the Charpy values do not meet the B-values in <u>Table 3</u> (see <u>10.4.2</u>);
- Supervise the test specified in <u>9.2.4</u> (flawed cylinder burst test) on two cylinders when the Charpy values are less than 80 % of the approved Charpy values (i.e. those obtained during the type approval), and the approved Charpy values are higher than the B-values in <u>Table 3</u> (see <u>10.4.2</u>). If the flawed cylinder burst test is then satisfied, the new values shall become the approved reference Charpy values. The reference Charpy value shall be made available to the inspector performing the batch tests.
- Supervise the test specified in <u>9.2.4</u> (flawed cylinder burst test) for cylinders with a guaranteed minimum wall thickness <3 mm where no impact tests are required. This test shall be carried out on one cylinder per cast or, if the cast exceeds 1 000 cylinders, one cylinder per 1 000 cylinders or part thereof.
- Check whether the information supplied by the manufacturer referred to in <u>10.1.1</u> is correct; random checks shall be carried out.

— Assess the results of hardness testing referred to in <u>11.3</u>.

NOTE Consideration can be given to selecting cylinders representing the lower and upper values of the hardness range within the batch.

The following tests shall be carried out on each batch of cylinders.

- a) On one cylinder, a hydraulic bursting test (see <u>10.4</u>).
- b) On a further cylinder:
 - one tensile test in the longitudinal direction (see <u>10.2</u>);
 - when the minimum guaranteed wall thickness of the cylinder permits the machining of a test piece at least 3 mm thick, three impact tests in the transverse or longitudinal direction as required in <u>10.3</u>;
 - for cylinders made from continuously cast billet material, a base check in accordance with <u>9.2.6</u>.
 - NOTE For the location of test pieces, see <u>Figure 7</u>.
- c) If necessary, on further cylinders:
 - one or two flawed cylinder burst tests, depending on the Charpy impact values obtained in the batch test.

Key

- 1 hardness/tensile strength correlation tests (prototype tests only)
- 2 bend test pieces or flattening ring (prototype tests only)
- 3 impact test pieces longitudinal and transverse (alternative positions shown dashed)
- 4 tensile test piece

NOTE Dashed lines indicate that these tests are not required on every batch of cylinders, but for prototype testing only.

Figure 7 — Typical location of test pieces

10.2 Tensile test

10.2.1 A tensile test shall be carried out on material taken from the cylindrical part of the cylinder by adopting either of the following procedures.

- a) Rectangular specimens shall be prepared in accordance with Figure 8 and with a gauge length $L_0 = 5.65\sqrt{S_0}$. The two faces of the test piece representing the inside and outside surfaces of the cylinder shall not be machined. The elongation after fracture, *A*, measured shall be not less than 12 %.
- b) Machined round specimens shall be prepared having the maximum diameter practicable, the elongation, *A*, measured on a gauge length of five times the specimen diameter being no less than 14 %.

It is recommended that machined round specimens not be used for wall thickness less than 3 mm.

10.2.2 The tensile test shall be carried out in accordance with ISO 6892-1.

NOTE Attention is drawn to the method of measurement of elongation described in ISO 6892-1, particularly in cases where the tensile test piece is tapered, resulting in a point of fracture away from the middle of the gauge length.

10.3 Impact test

10.3.1 Except for the requirements set out below, the test shall be carried out in accordance with ISO 148-1.

The impact test pieces shall be taken in the direction as required in <u>Table 3</u> from the wall of the cylinder. The notch shall be perpendicular to the face of the cylinder wall (see <u>Figure 9</u>). For longitudinal tests, the test piece shall be machined all over (on six faces). If the wall thickness does not permit a final test piece width of 10 mm, the width shall be as near as practicable to the nominal thickness of the cylinder wall. The test pieces taken in the transverse direction shall be machined on four faces only, the outer face of the cylinder wall unmachined and the inner face optionally machined as shown in <u>Figure 10</u>.

Кеу

- 1 transverse test piece
- 2 cylinder longitudinal axis
- 3 Charpy V-notch perpendicular to the wall
- 4 longitudinal test piece

- 1 machining optional
- 2 striking anvil
- 3 test piece
- 4 centre of strike
- ^a Direction of strike.

Figure 10 — Description of transverse impact testing

10.3.2 Minimum acceptance values shall be as given in <u>Table 3</u>.

Cylinder diamete	r D, mm			>14	0		≤140
Direction of testi	ng			Transv	erse		longitudinal
Minimum guaran	teed wall thickness (a'),	, mm	3 ^e to 5	>5 to 7,5	>7,5 to 10	>10 ^d	3 to 6
Test temperature	e, °Ca			-50)		-50
		Ab	30	35	40		60
Impact value ^c	Mean of						
J/cm ²	three test pieces ^b	B ^b	40	50	60		60

Table 3 — Impact test acceptance values

^a For applications at lower temperatures, the test shall be carried out at the lowest temperature specified.

 $^{\rm b}$ $\,$ No individual value shall be less than 70 % of the mean value.

A-values: absolute minimum acceptance values (average of three test pieces).

B-values: Mean values above which no flawed burst test is required as a batch test (see <u>10.1.2</u>).

 $^{\rm c}$ The impact value (J/cm²) is calculated by dividing the impact energy (J) by the actual cross-sectional area below the notch (cm²) of the Charpy test specimen.

^d Test specimens taken from the inner surface and machined on six faces.

^e For thin walled transverse specimens with a wall thickness less than 3,5 mm, mechanical flattening of the test piece is allowed.

10.4 Hydraulic bursting test

10.4.1 Test installation

The test equipment shall be capable of operating in accordance with the test conditions specified in 10.4.2 and of producing accurately the information specified in 10.4.3.

A typical hydraulic bursting test installation is illustrated in Figure 11.

Key

- 1 test fluid reservoir
- 2 tank for measurement of test fluid (the feed tank can also be used as the measuring tank)
- 3 pump
- 4 pressure gauge
- 5 pressure/time curve recorder
- 6 vent or air release valve
- 7 test well
- 8 cylinder

Figure 11 — Typical hydraulic burst test installation

10.4.2 Test conditions

As the cylinder and test equipment are being filled with water, care shall be taken to ensure that no air is trapped in the circuit by operating the hydraulic pump until water is discharged from the vent or air-release valve. During the test, pressurization shall be carried out in two successive stages.

- a) In the first stage, the pressure shall be increased at a rate of not more than 5 bar/s up to a pressure value corresponding to the initiation of plastic deformation.
- b) In the second stage, the pump discharge rate shall be maintained as constant as possible until the cylinder bursts.

10.4.3 Interpretation of test results

10.4.3.1 Interpretation of the burst test results shall involve:

- a) examination of the pressure/time curve or pressure/volume of water used curve, to determine the pressure at which plastic deformation of the cylinder commences, together with the bursting pressure;
- b) examination of the burst tear and of the shape of its edges.

10.4.3.2 For the results of a burst test to be considered satisfactory, the following requirements shall be met.

a) The observed yield pressure, $p_{y'}$ shall be greater than or equal to $\frac{1}{E} \times$ the test pressure, i.e.

Formula (5):

$$p_{y} \ge \frac{1}{F} \times p_{h} \tag{5}$$

b) The actual burst pressure, p_b , shall be greater than or equal to 1,6 times the test pressure, i.e. $p_b \ge 1.6 p_h$.

10.4.3.3 The cylinder shall remain in one piece and shall not fragment.

10.4.3.4 The main fracture shall be in the cylindrical portion and shall not be brittle, i.e. the fracture edges shall be inclined with respect to the wall. The tear shall not reveal a significant defect in the metal and in no case shall reach the neck. For concave bases, the tear shall not run further than the cylindrical body at the base end and, for convex bases, the tear shall not reach the centre of the base.

10.4.3.5 Acceptance criteria

The fracture shall be acceptable only if it conforms to one of the following descriptions:

- a) longitudinal, without branching (see Figure 12);
- b) longitudinal, with a side branching at each end, which in no case extends one third of the cylinder circumference (see Figure 13).

If the configuration of the fracture does not conform to <u>Figure 12</u> or <u>Figure 13</u>, but all other material and mechanical test results are satisfactory, investigation of the cause of the non-conformity shall be undertaken prior to acceptance or rejection of the batch.

Figure 12 — Acceptable burst profiles — longitudinal without branching

Figure 13 — Acceptable burst profiles — longitudinal with branching

11 Tests/examinations on every cylinder

11.1 General

During production, the examinations specified in <u>8.2</u> and <u>8.4</u> shall be carried out on all cylinders.

Following final heat treatment, all cylinders, except those selected for testing under <u>Clause 10</u>, shall be subjected to the following tests:

- a hydraulic proof pressure test in accordance with <u>11.2.1</u> or a hydraulic volumetric expansion test in accordance with <u>11.2.2</u>. Test method requirements are given below. Additional guidance for these test methods and equipment control (calibration and maintenance) can be found in ISO 18119. The purchaser and manufacturer shall agree on which of these alternatives shall be carried out;
- a hardness test in accordance with <u>11.3;</u>
- a leak test in accordance with <u>11.4;</u>
- a water capacity check in accordance with <u>11.5</u>.

11.2 Hydraulic test

11.2.1 Proof pressure test

The water pressure in the cylinder shall be increased at a controlled rate until the test pressure, p_h , is reached within a measuring tolerance of 0/+3 % or +10 bar, whichever is the lower.

The cylinder shall remain under pressure, $p_{\rm h}$, for at least 30 s to establish that the pressure does not fall and that there are no leaks. During the period that the cylinder is under test pressure, it shall be visible (including the base) and remain dry. After the test, the cylinder shall show no visible permanent deformation and no trace of moisture implying leakage.

11.2.2 Volumetric expansion test

The water pressure in the cylinder shall be increased at a controlled rate until the test pressure, p_h , is reached within a measuring tolerance of 0/+3 % or +10 bar, whichever is the lower.

The cylinder shall remain under pressure, p_h , for at least 30 s and the total volumetric expansion measured. The pressure shall then be released and the volumetric expansion re-measured.

The cylinder shall be rejected if it shows a permanent expansion (i.e. volumetric expansion after the pressure has been released) in excess of 5 % of the total volumetric expansion measured at the test pressure, $p_{\rm h}$.

The total and permanent expansion readings shall be recorded, together with the corresponding serial number of each cylinder tested, so that the elastic expansion (i.e. total expansion less permanent expansion) under the test pressure can be established for each cylinder.

11.3 Hardness test

A hardness test in accordance with ISO 6506-1 (Brinell), ISO 6508-1 (Rockwell) or other equivalent methods shall be carried out at each end of every cylinder by the manufacturer after the final heat treatment and the values recorded. The hardness values thus determined shall be within the limits established during prototype testing (see 9.2.3).

For tubes the hardness shall be measured and recorded at four diametrically opposed points on at least three circular cross-sections distributed over the whole parallel length of each tube at intervals not greater than 3 m. The results on each circular cross-section shall be within the minimum-maximum

tensile strength range guaranteed by the manufacturer. The values may be plotted on a diagram to identify their position.

NOTE 1 Methods for measuring the surface indentations, other than those given in ISO 6506-1 or ISO 6508-1 can be used subject to agreement between the parties concerned, provided that an equal level of accuracy can be demonstrated.

NOTE 2 The hardness value at any single location can be the average of a maximum of three test results.

11.4 Leak test

Only for cylinders with base ends formed from tube, the manufacturer shall employ such manufacturing techniques and apply such tests as will demonstrate to the satisfaction of the inspector that the cylinders do not leak.

The following are examples of typical testing procedures:

- a pneumatic leakage test where the base end shall be clean and free from all moisture on the test pressure side. The inside area of the cylinder base surrounding the closure shall be subjected to a pressure equal to at least two thirds of the test pressure of the cylinder for a minimum of 1 min; this area shall be not less than 20 mm in diameter around the closure and at least 6 % of the total base area. The opposite side shall be covered with water or another suitable medium and closely examined for indication of leakage;
- alternative tests on finished cylinders (e.g. helium leak or pneumatic leak tests).

For both the above leak testing procedures, cylinders that leak shall be rejected.

11.5 Capacity check

The manufacturer shall verify that the water capacity conforms to the design drawing.

12 Certification

Each batch of cylinders shall be covered by a certificate signed by the inspector to the effect that the cylinders meet the requirements of this document in all respects. <u>Annex D</u> provides a typical example of a suitably worded acceptance certificate. Other formats with at least the same content are also acceptable.

Copies of the certificate shall be issued to the manufacturer. The original certificate shall be retained by the inspector and the copies by the manufacturer.

NOTE Regarding certificates, national regulations can contain additional or overriding requirements.

13 Marking

Each cylinder shall be permanently marked on the shoulder, or on a reinforced part of the cylinder or on a permanently fixed collar or neck ring in accordance with ISO 13769.

NOTE Regarding marking, national regulations can contain additional or overriding requirements.

Annex A

(normative)

Description and evaluation of manufacturing imperfections in seamless gas cylinders

A.1 Overview

Several types of imperfections can occur during the manufacture of seamless gas cylinders.

Such imperfections can be due to material defects, the manufacturing process, handling, and other circumstances during the manufacturing process.

The aim of this Annex is to identify the manufacturing imperfections most commonly found on finished cylinders and to provide requirements for the visual inspection at the stage of product acceptance.

NOTE 1 This Annex does not address customer specifications, e.g. cylinder aesthetics, special surface preparations.

NOTE 2 Cylinder sampling method(s) and the quantity sampled for inspection, after cylinders with imperfections have been found are not covered by this Annex and are prescribed in <u>10.1.2</u>.

NOTE 3 Manufacturing imperfections can be identified and evaluated at any stage of the manufacturing process.

NOTE 4 On small diameter cylinders, these general limits could have to be adjusted. Consideration of appearance also plays a part in the evaluation of dents, especially in the case of small cylinders.

NOTE 5 Consideration of appearance and localisation (in thicker parts with lower stresses) can be taken into account.

A.2 General

A.2.1 The visual inspection shall be conducted in good lighting on a product that is clean, dry, and suitable enough for proper inspection of all surfaces. The visual inspection shall be conducted by eye, and internal inspections can be augmented by a scope, dental mirror, or other suitable device. Where magnification is used, the final assessment of the imperfection shall be evaluated as if no magnification had been used.

In thicker parts of the cylinder, the acceptable absolute value of the size of the imperfection can be proportionately increased to the thickness, provided that it does not adversely affect the safe performance or integrity of the cylinder.

Where needed, the severity of a detected imperfection can be further evaluated by the use of other devices or methods.

If unclean, the cylinder surfaces shall be re-cleaned before submitting the cylinder for inspection.

A.2.2 If appropriate, small imperfections, as permitted by <u>Table A.1</u>, can be removed by local dressing, grinding, machining, or other suitable methods. Great care shall be taken to avoid introducing new defects or imperfections.

After such a repair, the cylinder shall be re-examined, and if the wall thickness is reduced, it shall be rechecked and be at least at minimum guaranteed wall thickness.

A.3 Manufacturing imperfections and the procedure for their evaluation

The most commonly found safety- and performance-related manufacturing imperfections and their descriptions are listed in <u>Table A.1</u>.

In addition, the manufacturing imperfections and their descriptions for features which are not safetyor performance-related (cosmetic) are listed in <u>Tables A.2</u>.

Limits for the repair or rejection of cylinders manufactured to this document are included in <u>Table A.1</u>.

The acceptance or rejection conditions for gas cylinders are categorized into three levels, in accordance with $\underline{A.4}$.

The process that shall be followed at the final visual inspection is given in Figure A.1.

Figure A.1 — Flow diagram for the final visual inspection of gas cylinders at the time of product acceptance

A.4 Acceptance and rejection conditions

The following categorize the levels of imperfections and provide instructions depending on the severity of the imperfection and regarding the disposition of the cylinders.

Level 1 imperfection

Conforming condition of a cylinder that has no adverse effects on the safe performance or integrity of the cylinder. Cylinders with Level 1 imperfections are acceptable and do not require repair.

Level 2 imperfection

Non-conforming condition of a cylinder with features more severe than Level 1 imperfections. Cylinders with Level 2 imperfections shall be rejected. If it is decided that a rejected cylinder with Level 2 imperfections is to be repaired, it shall be repaired in accordance with <u>A.2.2</u> and be re-inspected. Otherwise, the cylinders are to be treated as cylinders with Level 3 imperfections.

Level 3 imperfection

Non-conforming condition of a cylinder with features more severe than Level 2 imperfections. Cylinders with Level 3 imperfections shall be rejected. Rejected cylinders with Level 3 imperfections shall not be repaired and shall be rendered unserviceable.

The cylinders presented to the inspector for inspection at the time of product acceptance should have been found acceptable by the manufacturer and should be free of imperfections to Levels 2 and 3.

	l able A.1 –	- Salety- and periornance	related manufacturing	Imperiections and their eval	uation for seamless s	teel cylinders
Pos	Type of	Description	Decision at t	the time of inspections and follow-up	o actions	Note
	imperfection		Level 1 imperfection Acceptable	Level 2 imperfection Reject and repair if possible (for repairs, see <u>A.2.2</u>)	Level 3 imperfection Reject and render unserviceable	
-	Bulge	A visible swelling of the wall (see Figure A.2).			All cylinders with such imperfection.	The cause of such failure shall be identified.
7	Dent (Flat)	A visible depression in the wall that has neither penetrated nor removed metal and is greater in depth than 0,5 % of the external cylinder diameter (see Figure A.3). (See also excessive grinding or machining.)	When the depth of the dent is less than 1 % of the exter- nal-cylinder diameter and when the diameter ¹) of the dent is greater than 30 times its depth. ¹) If the dent is not circular, the largest dimension shall be taken as diameter.		When the depth of the dent exceeds 1 % of the external-cylinder diame- ter or when the diameter ¹) of the dent is less than 30× its depth. ¹) If the dent is not circu- lar, the largest dimension	In all cases, the wall thickness shall be verified at the imperfection area and shall not be less than the guaranteed minimum wall thickness. shall be taken as diameter.
3	Dent con- taining cut or gouge	A depression in the wall (see item 2) which contains a cut or gouge (See item 4). (See Figure A.4.)			All cylinders with such imperfections.	
4	Cut, gouge, groove, metallic, or scale impression	An impression in the wall where metal has been removed, displaced, or redistributed with a depth of greater than 3 % of the guaranteed minimum wall thickness (see Figure A.5).	When the depth does not exceed 5 % of the guaranteed minimum wall thickness and there are no sharp and longer than 10 times the guaranteed minimum wall thickness.	External surface imperfection in excess of Level 1. They can be dressed provided that the remaining wall thickness below defect is greater than the guaranteed minimum wall thickness.	Internal surface imperfec- tion in excess of Level 1. External surface imper- fection in excess of Level 1 which has not been repaired or cannot be repaired.	
വ	Excessive grinding or machining	A local reduction of wall thick- ness by grinding or machining or other mechanical metal removal process.			When the wall thickness is reduced to below the guaranteed minimum wall thickness.	When it results in the formation of a dent or grinding mark, treat it as "dent" (item 2) or "cut" (item 3).
9	Lamination	A layering of the material with a surface-breaking imperfection sometimes, appearing as a discontinuity, crack, lap, or bulge at the surface (see Figure A.6).		External imperfection: all cylinders with such imperfection.	Internal imperfection: all cylinders with such imperfection.	Laminations can exist within the entire surface of the cylinder and can appear as bulge or blister on the surface.

ميرابيطميد ł 7 4 ć J 4 Cafaty ς. Table A

Pos	Type of	Description	Decision at	the time of inspections and follow-up) actions	Note
	imperfection		Level 1 imperfection Acceptable	Level 2 imperfection Reject and repair if possible (for repairs, see <u>A.2.2</u>)	Level 3 imperfection Reject and render unserviceable	
7	Crack	A split or separation in the metal, typically appearing as a line on the surface.		When removable within thickness tolerance, i.e. the remaining wall thickness below defect is greater than the guaranteed minimum wall thickness.	When not removable within the thickness tolerance.	
ω	Neck cracks and tap mark:	A split or separation in the material, typically appearing as lines usually running down/up vertically the thread and across the thread. (see Figure A.7). They shall not be confused with tap marks/thread machining marks typically appearing as straight line (see Figure A.8).	Only cylinders with tap marks.		All cylinders with neck cracks.	Unlike tap marks, cracks can appear on the top face of the cylinder neck.
6	Internal shoulder folds	Metal flows in the shoulder area creating a visual groove. The groove of the fold will always be in longitudinal direction which can propagate into the threaded part of the neck (see Figure A.9, key 1). Folds can be the initiation point for cracks, which can propagate into the cylindrical machined or threaded area of the shoulder (see Figure A.7, key 3).	Folds which are clearly visible as open depressions where no oxides have been trapped into the metal shall be accepted, provided that the peaks are smooth and the bottom (valley) of the depression is rounded. Minor sharp folds are acceptable, provided they do not adversely affect the safety of the cylinder (see Figure A.10).	Folds in excess of Level 1 which can be removed by a machining operation until the lines of oxide are no longer visible and provided that the re- maining thickness meets the design criteria (see Figure A.9, key 2).	Repaired Level 2 folds where the lines are still visible.	
10	a) Features on internal base surface on cylinder: made from tube	Splits (resembling cracks), po- rosity, and remaining oxides on the central surface of the cylinder base (e.g. in star form, see Figure A.12).		When removable within the thickness tolerance.	When not removable within the thickness tolerance.	

ype of erfection	Description	Decision at Level 1 immerfection	the time of inspections and follow-u Level 2) actions Level 3	Note
		Level 1 Imperfection Acceptable	Level 2 imperfection Reject and repair if possible (for repairs, see <u>A.2.2</u>)	Level 3 imperfection Reject and render unserviceable	
0, I 1	splits, cracks, porosity, tool- narks, and scale impressions of the cylinder base.	Tool marks and scale impres- sions provided they have been shown not to adversely affect the safety or perfor- mance of the cylinder.	Features in excess of Level 1 and when removable within the thickness tolerance.	When not removable within the thickness tolerance.	
	A mottled, rough, and slightly wavy appearance on the inter- nal surface due to discontinuous metal flow (see Figure A.12).	If no cracks are visible in the orange peel surface.		If cracks are visible in the orange peel surface.	
	Damaged neck threads, e.g. with dents, cuts, burrs, and chipped stripped, or missing threads. For chipped threads see Figure A.13.	All tap marks. Superficial damage which has been shown not to adversely affect the safety or performance of the cylinder.	Features in excess of Level 1 and when the design permits it, threads can be retapped/reworked and rechecked by the appropriate thread gauge and carefully visually re- examined. The required number of effective threads shall be present.	Features in excess of Level 1 and not repaired or inappropriate number of effective threads.	In case of doubt, the visual inspection can be augmented (see <u>A.2.1</u>).
	Small holes in the metal due to chemical or water attack (see Figure A.14).		All pits regardless of size can be removed, provided that the requirements of <u>A.2.2</u> are met.	All cylinders with such imperfections which are not repaired or the re- maining wall thickness is less than the guaranteed minimum wall thickness.	
	A feature at the time of visual in- spection that does not conform with the design drawing and/or technical specification.		All such cylinders can be repaired or be accepted, provided that the cylinder complies with the type ap- proval and is acceptable to all parties concerned.	All cylinders not meeting Level 2. Such cylinders can be re- routed to another design drawing and/or technical specification, provided that they meet the type approval.	
	A neck ring is loose by manual handling.		All cylinders presenting such an imperfection can be repaired.	All cylinders presenting such an imperfection and are not repaired.	

Table A.1 (continued)

Pos	Type of	Description	Decision at	the time of inspections and follow-u	p actions	Note
	imperfection		Level 1 imperfection Acceptable	Level 2 imperfection Reject and repair if possible (for repairs, see <u>A.2.2</u>)	Level 3 imperfection Reject and render unserviceable	
16	Internal con- tamination	Visual foreign matters such as loose particles, liquids, paint, lubricants, and turnings.	Discolouration (thin oxide layer) which is not detri- mental to the intended gas service.	All cylinders with visually internal contamination. Such cylinders can be cleaned.	All cylinders with such imperfections which are not repaired.	The cause of the con- tamination shall be determined.
17	Internal ridge or rib	A raised surface with sharp corners at its base (see Figure A.15).		When corners can be rounded by internal blasting.	All cylinders with such imperfections which are not repaired.	

 Description	Decision at the	e time of inspections and follo	w-up actions	Note
	Level 1 imperfection Acceptable	Level 2 imperfection Reject and repair if possible (for repairs see <u>A.2.2</u>)	Level 3 imperfection Reject and render unserviceable	
raised surface with unded or sharp corners at base (see Figure A.15).	NOTE As these imper- fections are not safety- or performance related, they are deemed acceptable.			This is not a harmful imperfection. However, ribs could be confused with weldment during the use of the cylinder.

	Ś
	e
	DC
	Ē
	S
	e
	Ē
	S I
	ŝ
-	Ĩ
	an
	Se
	5
ç	2
	ns
	ē
•	CE
ç	Ĩ
	er
	1D
•	
	b
•	
	Ē
	S
5	Ĩ
	Ē
	na
	5
	ne
	S
ς	3
	L
6	N
•	
	e
	Q
E	

Figure A.2 — Bulge

Figure A.3 — Dent

Figure A.4 — Dent containing cut or gouge

a) Groove, cut

b) Metallic or scale impression

b) Lamination photograph

Figure A.6 — Surface-breaking imperfection

Кеу

- 1 cylinder neck cracks
- 2 cross section of cylinder neck
- 3 neck crack/shoulder crack

Figure A.7 — Neck cracks

Key

1 tap mark

Key

- 1 folds or cracks
- 2 after machining

Кеу

- 1 area of fine/small folds
- 2 minor sharp folds
- 3 rounded depressions (valley)

Figure A.11 — Features on cylinder base made from tube

Figure A.12 — Orange peel

Figure A.13 — Chipped thread

Figure A.14 — Pitting

Figure A.15 — Rib

Annex B (normative)

Ultrasonic examination

B.1 General

This annex is based on techniques used by cylinder manufacturers. Other techniques of ultrasonic examination may be used, provided these have been demonstrated to be suitable for the manufacturing method.

B.2 General requirements

The ultrasonic examination equipment shall be capable of at least detecting the reference standard notches described in B.3.2. It shall be serviced regularly in accordance with the manufacturer's operating instructions to ensure that its accuracy is maintained. Inspection records and approval certificates for the equipment shall be maintained.

The operation of the ultrasonic examination equipment shall be by qualified and experienced personnel certified at least to Level 1 and supervised by personnel certified at least to Level 2 in accordance with ISO 9712. Other standards, which meet or exceed these minimum requirements, may be used subject to approval by the inspector. The inner and outer surfaces of any cylinder, which is to be examined ultrasonically, shall be in a condition suitable for an accurate and reproducible examination.

For flaw detection, the pulse echo system shall be used. For thickness measurement, either the resonance method or the pulse echo system shall be used. Either contact or immersion techniques of examination shall be used.

A coupling method which ensures adequate transmission of ultrasonic energy between the test probe and the cylinder shall be used.

B.3 Flaw detection of the cylindrical parts

B.3.1 Procedure

The cylinders to be examined and the search unit with probes shall go through a rotating motion and translation relative to one another such that a helical scan is performed on the cylinder. The velocity of rotation and translation shall be constant to within ± 10 %. The pitch of the helix shall be less than the width covered by the probe (at least a 10 % overlap shall be guaranteed) and be related to the effective beam width such as to ensure 100 % coverage at the velocity of rotational and translation used during the calibration procedure.

An alternative scanning method may be used for detection of transverse imperfections, in which the scanning or relative movement of the probes and the work piece is longitudinal, the sweeping motion being such as to ensure a 100 % surface coverage with approximately 10 % overlapping of the sweeps.

The cylinder wall shall be examined for longitudinal imperfections with the ultrasonic energy transmitted in both circumferential directions and, for transverse imperfections, in both longitudinal directions.

For concave-based cylinders where hydrogen embrittlement or stress corrosion can occur (see ISO 11114-1), the transition region between the cylindrical part and the cylinder base shall also be examined for transverse imperfections in the direction of the base. For the area to be considered, see

IS/ISO 9809 (Part 2) : 2019

Figure B.1. In this case, or when optional examination is carried out on the transition areas between the wall and neck and/or wall and base, this may be conducted manually, if not carried out automatically.

Figure B.1 — Base/wall transition region

One of the following two methods shall be used.

— Method A:

The ultrasonic sensitivity shall be set at +6 dB to improve the detection of imperfections equivalent to 5 % of the cylindrical wall thickness in this thickened portion.

— Method B:

The ultrasonic system shall be calibrated using a standard reference artefact of a cylinder with a notch at sidewall-to-base transition (SBT) area shown in <u>Figure B.2</u>.

The depth of notch, *T*, for SBT shall be (10 ± 1) % of the guaranteed minimum wall thickness, *a*', with a minimum of 0,2 mm and maximum of 1 mm, over the full length of the notch.

Key

- *D* approximate notch location
- *a* guaranteed minimum wall thickness, *a*′

Figure B.2 — Schematic representation of reference notch for SBT

The effectiveness of the equipment shall be periodically checked by putting a reference standard through the examination procedure. This check shall be carried out at least at the beginning and end of each shift. If during this check, the presence of the appropriate reference notch is not detected, all cylinders examined subsequent to the last acceptable check shall be retested after the equipment has been reset.

B.3.2 Reference standard

A reference of convenient length shall be prepared from a cylinder which is dimensionally and acoustically representative of the cylinder to be examined, as demonstrated by the manufacturer. The reference standard shall be free of discontinuities which can interfere with the detection of the reference notches.

Reference notches, both longitudinal and transverse, shall be machined on the outer and inner surface of the reference standard. The notches shall be separated such that each notch can be clearly identified.

The dimensions and shape of notches are of crucial importance for the adjustment of the equipment (see <u>Figures B.3</u> and <u>B.4</u>).

- The length of the notches, *E*, shall not be greater than 50 mm.
- The width, *W*, shall not be greater than twice the nominal depth, *T*. However, where this condition cannot be met a maximum width of 1,0 mm is acceptable.
- The depth of the notches, *T*, shall be (5 ± 0,75) % of the guaranteed minimum wall thickness, *a*', with a minimum of 0,2 mm and a maximum of 1,0 mm over the full length of the notch. Runouts at each end are permissible.
- The notch shall be sharp edged at its intersection with the surface of the cylinder wall. The crosssection of the notch shall be rectangular, except where spark erosion machining methods are employed, when it is acknowledged that the bottom of the notch will be rounded.

- The shape and dimensions of the notch shall be demonstrated by an appropriate method.
- NOTE $T = (5 \pm 0.75) \% a'$ but $\le 1 \text{ mm and } \ge 0.2 \text{ mm}; W \le 2T$, but if not possible, $\le 1 \text{ mm}, E \le 50 \text{ mm}.$

Key

- 1 outside reference notch
- 2 inside reference notch

B.3.3 Calibration of equipment

Using the reference standard described in B.3.2, the equipment shall be adjusted to produce clearly identifiable indications from inner and outer surface notches at the test speed. The amplitude of the indications shall be as near equal as possible. If it is not possible to set the rejection levels individually, then the indication of smallest amplitude shall be used as the rejection level and for setting visual, audible, recording or sorting devices. The equipment shall be calibrated with the reference standard or probe, or both, moving in the same manner, in the same direction and at the same speed as will be used during the inspection of the cylinder. All visual, audible, recording or sorting devices shall operate at the test speed.

B.4 Wall thickness measurement

If the measurement of the wall thickness is not carried out in another stage of production, the cylindrical part shall be 100 % examined to ensure that the thickness is not less than the guaranteed minimum value. (e.g.: taking into account any negative tolerances resulting from the measurement system).

B.5 Interpretation of results

Cylinders with indications that are equal to or greater than the lowest of the indications from the reference notches shall be withdrawn. This comparison shall be made between the indications from the cylinder and those from the reference notch in the same orientation and on the same face, e.g. a transverse inside imperfection shall be compared with the transverse inside reference notch. The cause of the indication shall be identified and, if possible, removed; after removal, the cylinders shall be re-subjected to ultrasonic flaw detection and thickness measurement.

Occasionally, a below minimum wall thickness indication can result due to the presence of a sub-surface imperfection (e.g. internal lamination) at the point. In such cases, the extent of the imperfection shall be evaluated.

Any cylinder, which is shown to be below the guaranteed minimum wall thickness, shall be rejected.

B.6 Certification

The ultrasonic examination shall be certified by the cylinder manufacturer.

Every cylinder that has passed the ultrasonic examination in accordance with this specification shall be permanently marked with the characters "UT" or with the symbol as shown in <u>Figure B.5</u> (where the characters "XY" represent the manufacturer's logo or symbol).

Figure B.5 — UT symbol

Annex C (informative)

Example of type approval certificate

TYPI	E APPROVAL CERTIFICATE N	0						
Issued by (Inspector)								
	concerning							
SEA	MLESS STEEL GAS CYLINDER	S						
Approval No	Date							
Type of cylinder								
(Description of the family of cylinde	ers [Drawing No.] which has re	eceived type approval)						
p _h :bar	D:mm	a':	mm					
Shape of base:		Min. base thickness:	mm					
Overall length (min., max.): min mm		max.	mm					
V (min., max.): min l		max	l					
Material and heat treatment:								
Material characteristics: <i>R</i> _{eg} :MPa		<i>R</i> _{mg} :	MPa					
Type of thread		0						
Manufacturer or agent:								
(Name and	address of manufacturer or it	s agent)						
Reference to prototype test report(s):								
All information may be obtained from								
Results and conclusions:								
(Name	e and address of approving boo	dy)						
 Date	Place							

(Signature of inspector)

Annex D (informative)

Example of acceptance certificate

ACCEPTANCE CERTIFICATE No. _____ FOR SEAMLESS STEEL CYLINDERS

A consignment of	_ cylinders consisting	oftest batches has been inspected and tested
(quantity)		
in accordance with ISO 9809	related to Type	Approval certificate No.:
Designation or type of gas ²):		
Manufacturer's Nos.:		to
Owner's Nos. ²⁾ :		to
Manufacturer:	Manuf. order No.:	
Address:		
Country:		
Owner/Customer ¹⁾ :		Purchase order No.:
Address:		
Country:		
	TEC	CHNICAL DATA
Water capacity V: nominal ¹⁾ :	l	Nominal length (without cap and without valve): mm
minimal ¹⁾ :	l	
Test pressure <i>p</i> _h :	bar	Nominal diameter D: mm
Working pressure at 15° C ¹⁾ :	bar	Min. guaranteed wall thickness a':mm
Max. filling charge ¹⁾ :	kg	Drawing No.:
Material:		

Specified analysis ³⁾	С %	Si %	Mn %	P %	S %	Cr % ¹⁾	Mo % ¹⁾	Ni % ¹⁾
max.:								
min.:								

Heat treatment:	
Stamp markings ³⁾ :	

Date

Manufacturer

ACCEPTANCE TESTS

1. Measurements taken on one representative cylinder of the $batch^{4)}$

Test No. or Batch No. or Cylinder No.	Cast No.	Water capacity [1]	Mass empty [kg]	Min. me thick [m	easured cness m]
				wall	base

2. Mechanical tests⁴)

			Tensile te	est	Hardness	Bend or flat- tening test	Impa	ct test	B	Burst t	est
Test	Cast	Yield strength	Tensile strength	Elonga- tion		180° without cracking	Cha at	rpy V _°C	p _y	p _b	fail- ure mode
No.	No.						Dire	ction:			
		R _{ea}	R _{ma}	Α			Avg.	Min.	[bar]	[bar]	
		[MPa]	[MPa]	[%]			[J/ cm²]	[J/cm ²]			
Min. v	alues:										

3. Ultrasonic examination:
required (yes/no) ¹): passed (yes/no) ¹):
This is to certify that the cylinders covered by this Acceptance Certificate have passed the hydraulic pressure test and all the other tests as required in Clause 10 of ISO 9809 and they are in full accordance with this document and the certified design-type approval.
Special remarks:
On behalf of:
Date:

(Signature of inspector)

- 1) Delete as applicable.
- 2) If required by the customer.
- 3) To be quoted or drawing to be attached.
- 4) Need not be filled in if test reports are attached.

Annex E

(informative)

Bend stress calculation

The bend stress calculation assumes a tube horizontally supported at its two ends and uniformly loaded over its entire length. This load consists of the weight per unit of length of the straight cylindrical portion filled with water compressed to the specified test pressure. The wall thickness should be increased when necessary to meet this additional requirement:

- a) The sum of two times the maximum tensile stress in the bottom fibres (region) due to bending [see paragraph (b) of this section], plus the maximum tensile stress in the same fibres due to hydraulic test pressure [see paragraph (c) of this section] may not exceed 80 % of the minimum yield strength of the steel at this maximum stress.
- b) Formula (E.1) should be used to calculate the maximum tensile stress due to bending:

S = Mc/I

(E.1)

where

- *S* is the tensile stress in MPa;
- *M* is the bending moment in Nmm = $(WL^2/8)$;

where

- *W* is the weight per millimetre of length of tube filled with water in N/mm;
- *L* is the length of tube (including neck) in mm;
- *I* is the moment of inertia in $mm^4 = 0,049 \ 09 \ (D^4 d^4)$;

where

- *D* is the outside diameter in mm;
- *d* is the inside diameter in mm;
- c is the radius (D/2) of tube in mm.
- c) Formula (E.2) should be used to calculate the maximum longitudinal tensile stress due to hydraulic test pressure:

$$S = A1 P/A2 \tag{E.2}$$

where

- *S* is the tensile stress in MPa;
- *A*1 is the internal area in cross-section of tube in mm²;
- *P* is the hydraulic test pressure in MPa;
- A2 is the area of metal in cross-section of tube in mm^2 .

Annex F (informative)

An example of shear strength calculation for parallel threads

Cylinder neck thread: "25P" - M25x2 - ISO 15245-1

Reference Standard: US-FED-STD-H28/2

a) <u>Formula (F.1)</u> should be used for the calculation of the shear area of the internal thread (US-FED-STD-H28/2:1991, 70.2 Formula 2.a).

$$AS_{n,\min} = 3,1416 \times n \times LE \times d_{\min} \times \left[1/(2 \times n) + 0,57735 \times (d_{\min} - D2_{\max}) \right]$$
(F.1)

Input data: (ISO 15245-1, ISO 724)

Pitch of the thread = 2 mm

where

n is the number of threads per mm = 0,5;

 d_{\min} is the minimum major diameter of external thread = 24,682 mm;

 $D2_{max}$ is the maximum pitch diameter of internal thread = 23,925 mm;

LE is the length of thread engagement = 20 mm (10 threads);

 $AS_{n,min}$ is the shear area of internal thread.

 $AS_{\rm n,min}$ = 3,141 6 × 0,5 × 20 mm × 24,682 mm × [(1/(2 × 0,5)) + 0,577 35 × (24,682 mm - 23,925 mm)] = 1 114,3 mm²

b) Formula (F.2) should be used for the calculation of the thrust force applied on the cylinder valve.

$$T = p_{\rm h} \times 3,1416 \times \emptyset B^2 / 4 \tag{F.2}$$

where

$p_{ m h}$	is the test pressure of cylinder = 30 MPa;
ØB	is the max recess diameter ISO 15245-1 = 32,53 mm;

T is the thrust force on the cylinder valve.

 $T = 30 \times 3,141.6 \times 32,53^2/4 = 24.934$ N

c) Formula (F.3) should be used for the calculation of the shear stress.

$$S=T/AS_{n,\min}$$
(F.3)

where *S* is the shear stress on internal threads.

S = 24~934 N / 1 114,3 mm² = 22,38 MPa

d) Formula (F.4) should be used for verification.

$$FoS = USSO/S$$
 (F.4)

where

USSO is the ultimate shear strength of opening = $R_{mg}/2$ (ASME B1.1 (*)) = 900/2 = 450 MPa; where

 $R_{\rm mg}$ is the cylinder minimum guaranteed value of the tensile strength = 900 MPa (ISO 9809);

FoS is the factor of safety in shear =
$$USSO / S = 450 \text{ MPa} / 22,38 \text{ MPa} = 20,1.$$

It is verified that: *FoS* is greater than 10 times.

(*) other criteria can be used

Bibliography

- [1] ISO 18119, Gas cylinders Seamless steel and seamless aluminium-alloy gas cylinders and tubes Periodic inspection and testing
- [2] ISO 11363-1, Gas cylinders Gas cylinders 17E and 25E taper threads for connection of valves to gas cylinders Part 1: Specifications
- [3] ISO 11363-2, Gas cylinders Gas cylinders 17E and 25E taper threads for connection of valves to gas cylinders Part 2: Inspection gauges
- [4] ISO 11117, Gas cylinders Valve protection caps and valve guards Design, construction and tests
- [5] ISO/TR 12391-1, Gas cylinders Refillable seamless steel Performance tests Part 1: Philosophy, background and conclusions
- [6] ISO/TR 12391-2, Gas cylinders Refillable seamless steel Performance tests Part 2: Fracture performance tests Monotonic burst tests
- [7] ISO/TR 12391-3, Gas cylinders Refillable seamless steel Performance tests Part 3: Fracture performance tests Cyclical burst tests
- [8] ISO/TR 12391-4, Gas cylinders Refillable seamless steel Performance tests Part 4: Flawedcylinder cycle test
- [9] ISO 16115/TR, Gas cylinders Classification of imperfections arising during the manufacture of seamless steel and aluminium alloy gas cylinders
- [10] US-FED-STD-H28/2:1991, Screw-Thread Standard for Federal Services Section 2 Unified Inch Screw Threads — UN and UNR Thread Forms
- [11] United Nations Recommendations on the Transport of Dangerous Goods Model Regulations

this Page has been intertionally left blank

International Standard	Corresponding Indian Standard	Degree of Equivalence
ISO 11114-1 : 2020 Gas cylinders — Compatibility of cylinder and valve materials with gas contents — Part 1: Metallic materials	IS/ISO 11114-1: 2020 Gas cylinders — Compatibility of cylinder and valve materials with gas contents: Part 1 Metallic materials (<i>first</i> <i>revision</i>)	Identical
ISO 11114-4 : 2017 Transportable gas cylinders — Compatibility of cylinder and valve materials with gas contents — Part 4: Test methods for selecting steels resistant to hydrogen embrittlement	IS/ISO 11114-4 : 2017 Transportable gas cylinders — Compatibility of cylinder and valve materials with gas contents: Part 4 Test methods for selecting steels resistant to hydrogen embrittlement (<i>first revision</i>)	Identical
ISO 10286 : 2021 Gas cylinders — Vocabulary	IS 7241 : 1981 Glossary of terms used in gas cylinder technology (<i>first revision</i>)	Not equivalent
ISO 13341 : 2010 Gas cylinders — Fitting of valves to gas cylinders	IS 7302 : 2018 Valve fittings for self contained breathing apparatus (SCBA) and self contained underwater breathing apparatus (SCUBA) — Specification (<i>first revision</i>)	Not equivalent

The Committee has reviewed the provision of the following International Standard referred in this adopted standard and has decided that it is acceptable for use in conjunction with this standard:

International Standard	Title
ISO 13769 : 2018	Gas cylinders — Stamp marking

For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated expressing the result of a test or analysis, shall be rounded off in accordance with IS 2 : 2022 'Rules for rounding off numerical values (*second revision*)'. The number of significant places retained in the rounded-off value should be the same as that of the specified value in this standard.

Bureau of Indian Standards

BIS is a statutory institution established under the *Bureau of Indian Standards Act*, 2016 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Head (Publication & Sales), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the website-www.bis.gov.in or www.standardsbis.

This Indian Standard has been developed from Doc No.: MED 16 (23110).

Amendments Issued Since Publication

Amend No.	Date of Issue	Text Affected

BUREAU OF INDIAN STANDARDS

Headquarters:

Manak Bł <i>Telephone</i>	navan, 9 Bahadur Shah Zafar Marg, New Delhi 110002 es: 2323 0131, 2323 3375, 2323 9402	Website: www.bis.gov.in	
Regional	Offices:		Telephones
Central	: 601/A, Konnectus Tower -1, 6 th Floor, DMRC Building, Bhavbhuti Marg, New Delhi 110002		2323 7617
Eastern	: 8 th Floor, Plot No 7/7 & 7/8, CP Block, Sector V, Salt Lake, Kolkata, West Bengal 700091		<pre>{ 2367 0012 2320 9474</pre>
Northern	: Plot No. 4-A, Sector 27-B, Madhya Marg, Chandigarh 160019		265 9930
Southern	: C.I.T. Campus, IV Cross Road, Taramani, Chennai 600113		2254 1442 2254 1216
Western	: Plot No. E-9, Road No8, MIDC, Andheri (East), Mumbai 400093		2821 8093

Branches : AHMEDABAD. BENGALURU. BHOPAL. BHUBANESHWAR. CHANDIGARH. CHENNAI. COIMBATORE. DEHRADUN. DELHI. FARIDABAD. GHAZIABAD. GUWAHATI. HIMACHAL PRADESH. HUBLI. HYDERABAD. JAIPUR. JAMMU & KASHMIR. JAMSHEDPUR. KOCHI. KOLKATA. LUCKNOW. MADURAI. MUMBAI. NAGPUR. NOIDA. PANIPAT. PATNA. PUNE. RAIPUR. RAJKOT. SURAT. VISAKHAPATNAM.