
 IS 18620 (Part 1) : 2024
 ISO 19168-1 : 2020

भौगोलिक जानकारी — भ-ूस्थालनक

लिशषेताए ँके लिए एपीआई

भाग 1 कोर

Geographic Information —

Geospatial API for Features

Part 1 Core

ICS 35.240.70

 BIS 2024

 ISO 2020

भारतीय मानक ब्यरूो

BUREAU OF INDIAN STANDARDS

मानक भिन, 9 बहादरु शाह ज़फर मागग, नई लदल्िी - 110002
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG

NEW DELHI - 110002

www.bis.gov.in www.standardsbis.in

February 2024 Price Group 15

भारतीय मानक

Indian Standard

http://www.bis.org.in/
http://www.standardsbis.in/

Geospatial Information Sectional Committee, LITD 22

NATIONAL FOREWORD

This Indian Standard (Part 1) which is identical to ISO 19168-1 : 2020 ‘Geographic information —
Geospatial API for features — Part 1: Core’ issued by International Organization for Standardization
(ISO) was adopted by the Bureau of Indian Standards on the recommendation of the Geospatial
Information Sectional Committee and the approval of the Electronics and Information Technology
Division Council..

This standard consists of two parts. The other part is:

Part 2 Coordinate reference systems by reference

The text of ISO standard has been approved as suitable for publication as an Indian Standard without
deviations. Certain conventions are however not identical to those used in Indian Standards. Attention
is particularly drawn to the following:

a) Wherever the words ‘International Standard’ appear referring to this standard, they should be

read as ‘Indian Standard’; and

b) Comma (,) has been used as a decimal marker while in Indian Standards, the current practice

is to use a point (.) as the decimal marker.

The Committee has reviewed the provisions of following International Standards referred in this
adopted standard and has decided that they are acceptable for use in conjunction with this standard.
For dated references, only the edition cited applies. For undated references, the latest edition of the
referenced document applies, including any corrigenda and amendment:

International Standards Title

IETF RFC 2818

IETF RFC 3339 : 2002

Available at https://tools.ietf.org/rfc/rfc2818.txt t

Available at https:// tools.ietf.org/rfc/rfc3339.tx

IETF RFC 7230 to RFC 7235 Available at
https://tools.ietf.org/rfc/rfc7230.txt,
https://tools.ietf.org/rfc/rfc7231.txt,
https://tools.ietf.org/rfc/rfc7232.txt,
https://tools.ietf.org/rfc/rfc7233.txt,
https://tools.ietf.org/rfc/rfc7234.txt
https://tools.ietf.org/ rfc/rfc7235.txt

IETF RFC 8288 : 2017 Available at
https://tools.ietf.org/rfc/rfc8288.txt
OpenAPI Initiative (OAI), OpenAPI Specification 3.0.

For the purpose of deciding whether a particular requirement of this standard is complied with, the
final value, observed or calculated, expressing the result of a test or analysis, shall be rounded off in
accordance with IS 2 : 2022 ‘Rules for rounding off numerical values (second revision)’. The number
of significant places retained in the rounded off value should be same as that of the specified value in
this standard.

https://tools.ietf.org/rfc/rfc7234.txt
https://tools.ietf.org/rfc/rfc8288.txt

Introduction ...v
1 Scope ... 1
2 Normative references .. 1
3	 Terms,	definitions	and	abbreviated	terms .. 1

3.1 Abbreviated terms ... 2
4 Conformance ... 3
5 Conventions ... 4

5.1 Identifiers .. 4
5.2 Link relations.. 4
5.3 Use of HTTPS .. 5
5.4 HTTP URIs ... 5
5.5 API definition.. 5

5.5.1 General remarks ... 5
5.5.2 Role of OpenAPI .. 5
5.5.3 References to OpenAPI components in normative statements ... 6
5.5.4 Paths in OpenAPI definitions .. 6
5.5.5 Reusable OpenAPI components .. 6

6 Overview ... 6
6.1 Design considerations... 6
6.2 Encodings .. 7
6.3 Examples .. 8

7 Requirements class "Core" ... 8
7.1 Overview .. 8
7.2 API landing page ... 10

7.2.1 Operation ... 10
7.2.2 Response .. 11
7.2.3 Error situations ..11

7.3 API definition... 12
7.3.1 Operation ... 12
7.3.2 Response .. 12
7.3.3 Error situations ..12

7.4 Declaration of conformance classes .. 12
7.4.1 Operation ... 12
7.4.2 Response .. 13
7.4.3 Error situations ..13

7.5 HTTP 1.1 .. 13
7.5.1 HTTP status codes ...13

7.6 Unknown or invalid query parameters ... 14
7.7 Web caching .. 15
7.8 Support for cross-origin requests.. 15
7.9 Encodings ... 15
7.10 String internationalization .. 16
7.11 Coordinate reference systems .. 16
7.12 Link headers ... 17
7.13 Feature collections .. 17

7.13.1 Operation ... 17
7.13.2 Response .. 17
7.13.3 Error situations ..22

7.14 Feature collection .. 22
7.14.1 Operation ... 22
7.14.2 Response .. 22

iii

Contents Page

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

7.14.3 Error situations ..22
7.15 Features .. 23

7.15.1 Operation ... 23
7.15.2 Parameter limit ..23
7.15.3 Parameter bbox ..24
7.15.4 Parameter datetime ..25
7.15.5 Parameters for filtering on feature properties ...26
7.15.6 Combinations of filter parameters .. 27
7.15.7 Response .. 27
7.15.8 Error situations ..29

7.16 Feature .. 30
7.16.1 Operation ... 30
7.16.2 Response .. 30
7.16.3 Error situations ..30

8 Requirements classes for encodings ..31
8.1 Overview ... 31
8.2 Requirements Class "HTML" .. 31
8.3 Requirements Class "GeoJSON" ... 32
8.4 Requirements Class "Geography Markup Language (GML), Simple Features Profile,

Level 0" ... 33
8.5 Requirements class "Geography Markup Language (GML), Simple Features Profile,

Level 2" ... 35
9 Requirements class "OpenAPI 3.0" ...36

9.1 Basic requirements .. 36
9.2 Complete definition ... 36
9.3 Exceptions .. 37
9.4 Security ... 37
9.5 Features .. 37

10 Media types ...37
11 Security considerations..38

11.1 General .. 38
11.2 Multiple access routes ... 38
11.3 Multiple servers .. 39
11.4 Path manipulation on GET ... 39
11.5 Path manipulation on PUT and POST ... 39

Annex A (normative)	Abstract	test	suite ...40
Bibliography ...54

iv

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

Introduction

OGC API standards[9] define modular API building blocks to spatially enable Web APIs in a consistent
manner. The OpenAPI specification is used to define the API building blocks.

The OGC API family of standards is organized by resource type. This document specifies the
fundamental API building blocks for interacting with features. The spatial data community uses the
term 'feature' for things in the real world that are of interest.

For those not familiar with the term 'feature,' the explanations on Spatial Things, Features and
Geometry in the W3C/OGC Spatial Data on the Web Best Practice document provide more detail.

OGC API Features provides API building blocks to create, modify and query features on the Web.
OGC API Features is comprised of multiple parts, each of them a separate standard. This document,
the "Core", specifies the core capabilities and is restricted to fetching features where geometries are
represented in the coordinate reference system, WGS 84, with axis order longitude/latitude. Additional
capabilities that address more advanced needs will be specified in additional parts. Examples include
support for creating and modifying features, more complex data models, richer queries, additional
coordinate reference systems, multiple datasets and collection hierarchies.

By default, every API implementing this document will provide access to a single dataset. Rather than
sharing the data as a complete dataset, the OGC API Features standards offer direct, fine-grained access
to the data at the feature (object) level.

The API building blocks specified in this document are consistent with the architecture of the Web.
In particular, the API design is guided by the IETF HTTP/HTTPS RFCs, the W3C Data on the Web
Best Practices, the W3C/OGC Spatial Data on the Web Best Practices and the emerging OGC Web API
Guidelines. A particular example is the use of the concepts of datasets and dataset distributions as
defined in DCAT and used in schema.org.

This document specifies discovery and query operations that are implemented using the HTTP GET
method. Support for additional methods (in particular POST, PUT, DELETE, PATCH) will be specified in
additional parts.

Discovery operations enable clients to interrogate the API, including the API definition and metadata
about the feature collections provided by the API, to determine the capabilities of the API and retrieve
information about available distributions of the dataset.

Query operations enable clients to retrieve features from the underlying data store based upon simple
selection criteria, defined by the client.

A subset of the OGC API family of standards is expected to be published by ISO. For example, this
document is published by ISO as ISO 19168-1. To reflect that only a subset of the OGC API standards
will be published by ISO and to avoid using organization names in the titles of ISO standards, standards
from the "OGC API" series are published by ISO as "Geospatial API," i.e. the title of this document in OGC
is "OGC API — Features — Part 1: Core" and the title in ISO is "Geographic Information — Geospatial
API for features — Part 1: Core."

For simplicity, this document consistently uses:

— "OGC API" to refer to the family of standards for geospatial Web APIs that in ISO is published as
"Geospatial API;"

— "OGC API - Features" to refer to the multipart standard for features that in ISO is published as
ISO 19168 / "Geographic Information - Geospatial API for features;"

— "OGC API - Features — Part 1: Core" to refer to this document that in ISO is published as ISO 19168-1
/ "Geographic Information - Geospatial API for features — Part 1: Core."

This document defines the resources listed in Table 1. For an overview of the resources, see 7.1.

v

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

Table	1	—	Overview	of	resources,	applicable	HTTP	methods	and	links	to	the	document	sections

Resource Path
HTTP
method Document reference

Landing page / GET 7.2 API landing page
Conformance
declaration

/conformance GET 7.4 Declaration of conformance
classes

Feature collections /collections GET 7.13 Feature collections
Feature collection /collections/{collectionId} GET 7.14 Feature collection
Features /collections/{collectionId}/items GET 7.15 Features
Feature /collections/{collectionId}/items/{featureId} GET 7.16 Feature

Implementations of OGC API Features are intended to support two different approaches for how clients
can use the API. For further information, see 6.1.

vi

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

1 Scope

This document specifies the behaviour of Web APIs that provide access to features in a dataset in a
manner independent of the underlying data store. This document defines discovery and query
operations.

Discovery operations enable clients to interrogate the API, including the API definition and metadata
about the feature collections provided by the API, to determine the capabilities of the API and retrieve
information about available distributions of the dataset.

Query operations enable clients to retrieve features from the underlying data store based upon simple
selection criteria, defined by the client.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.

Internet Engineering Task Force (IETF), RFC 2818: HTTP Over TLS [online]. Edited by E. Rescorla.
2000 [viewed 2020-03-16]. Available at https:// tools .ietf .org/ rfc/ rfc2818 .txt

Internet Engineering Task Force (IETF), RFC 3339:2002: Date and Time on the Internet:
Timestamps [online]. Edited by G. Klyne, C. Newman. 2002 [viewed 2020-03-16]. Available at https://
tools .ietf .org/ rfc/ rfc3339 .txt

Internet Engineering Task Force (IETF), RFC 7230 to RFC 7235: HTTP/1.1 [online]. Edited by R.
Fielding, J. Reschke, Y. Lafon, M. Nottingham. 2014 [viewed 2020-04-28]. Available at https:// tools
.ietf .org/ rfc/ rfc7230 .txt, https:// tools .ietf .org/ rfc/ rfc7231 .txt, https:// tools .ietf .org/ rfc/ rfc7232 .txt,
https:// tools .ietf .org/ rfc/ rfc7233 .txt, https:// tools .ietf .org/ rfc/ rfc7234 .txt, and https:// tools .ietf .org/
rfc/ rfc7235 .txt

Internet Engineering Task Force (IETF), RFC 8288:2017: Web	 Linking [online]. Edited by M.
Nottingham. 2017 [viewed 2020-03-16]. Available at https:// tools .ietf .org/ rfc/ rfc8288 .txt

OpenAPI Initiative (OAI), OpenAPI	Specification	3.0 [online]. 2020 [viewed 2020-03-16]. The latest
patch version at the time of publication of this standard was 3.0.3, available at http:// spec .openapis
.org/ oas/ v3 .0 .3

3	 Terms,	definitions	and	abbreviated	terms

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at https:// www .iso .org/ obp

— IEC Electropedia: available at http:// www .electropedia .org/

1

GEOGRAPHIC INFORMATION — GEOSPATIAL API FOR
FEATURES

PART 1 CORE

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

Indian Standard

https://tools.ietf.org/rfc/rfc2818.txt
https://tools.ietf.org/rfc/rfc3339.txt
https://tools.ietf.org/rfc/rfc3339.txt
https://tools.ietf.org/rfc/rfc7230.txt
https://tools.ietf.org/rfc/rfc7230.txt
http://,
https://tools.ietf.org/rfc/rfc7231.txt
http://,
https://tools.ietf.org/rfc/rfc7232.txt
http://,
https://tools.ietf.org/rfc/rfc7233.txt
http://,
https://tools.ietf.org/rfc/rfc7234.txt
https://tools.ietf.org/rfc/rfc7235.txt
https://tools.ietf.org/rfc/rfc7235.txt
https://tools.ietf.org/rfc/rfc8288.txt
http://spec.openapis.org/oas/v3.0.3
http://spec.openapis.org/oas/v3.0.3
https://www.iso.org/obp/ui
http://www.electropedia.org/

3.1.1
dataset
collection of data

Note 1 to entry: Published or curated by a single agent, and available for access or download in one or more
formats.

Note 2 to entry: The use of ‘collection’ in the definition from DCAT is broader than the use of the term collection
in this document. See the definition of feature collection (3.1.4).

[SOURCE: DCAT[8], 6.6, modified — Definition split into definition and Note 1 to entry; Note 2 to entry
has been added]

3.1.2
distribution
specific representation of a dataset (3.1.1)

EXAMPLE A downloadable file, an RSS feed or an API.

[SOURCE: DCAT[8], 6.7, modified — Definition has been shortened]

3.1.3
feature
abstraction of real-world phenomena

Note 1 to entry: The explanations on Spatial Things, Features and Geometry in the W3C/OGC Spatial Data on the
Web Best Practice document[6] provide more detail.

[SOURCE: ISO 19101-1:2014, 4.1.11, modified — Note 1 to entry has been added]

3.1.4
feature collection
collection
set of features (3.1.3) from a dataset (3.1.1)

3.1.5
Web	API
API using an architectural style that is founded on the technologies of the Web

Note 1 to entry: Best Practice 24: Use Web Standards as the foundation of APIs in the W3C Data on the Web Best
Practices[7] provides more detail.

[SOURCE: DWBP[7], 8.10.1, modified — Rephrased for clarity]

3.1	 Abbreviated	terms

API Application Programming Interface

CORS Cross-Origin Resource Sharing

CRS Coordinate Reference System

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IANA Internet Assigned Numbers Authority

OGC Open Geospatial Consortium

2

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

TRS Temporal Coordinate Reference System

URI Uniform Resource Identifier

YAML YAML Ain’t Markup Language

4 Conformance

This document defines six requirements/conformance classes.

The standardization targets of all conformance classes are "Web APIs."

The main requirements class is:

— Core.

The Core specifies requirements that all Web APIs have to implement.

The Core does not mandate a specific encoding or format for representing features or feature collections.
Four requirements classes depend on the Core and specify representations for these resources in
commonly used encodings for spatial data on the web:

— HTML,

— GeoJSON,

— Geography Markup Language (GML), Simple Features Profile, Level 0, and

— Geography Markup Language (GML), Simple Features Profile, Level 2.

None of these encodings are mandatory and an implementation of the Core may also decide to implement
none of them, but to implement another encoding instead.

That said, the Core requirements class includes recommendations to support, where practical,
HTML and GeoJSON as encodings. Clause 6 (Overview) includes a discussion about the recommended
encodings.

The Core does not mandate any encoding or format for the formal definition of the API either. One
option is the OpenAPI 3.0 specification and a requirements class has been specified for OpenAPI 3.0,
which depends on the Core:

— OpenAPI specification 3.0.

As with the feature encodings, an implementation of the Core requirements class may also decide to
use other API definition representations in addition or instead of an OpenAPI 3.0 definition. Examples
for alternative API definitions: OpenAPI 2.0 (Swagger), future versions of the OpenAPI specification, an
OWS Common 2.0 capabilities document or WSDL.

The Core is intended to be a minimal useful API for fine-grained read-access to a spatial dataset where
geometries are represented in the coordinate reference system WGS 84 with axis order longitude/
latitude.

Additional capabilities, e.g. support for transactions, complex data structures, rich queries, other
coordinate reference systems, subscription/notification, and returning aggregated results, may be
specified in future parts of the OGC API Features series or as vendor-specific extensions.

Conformance with this document shall be checked using all the relevant tests specified in Annex A
(normative) of this document. The framework, concepts, and methodology for testing, and the criteria to
be achieved to claim conformance are specified in the OGC Compliance Testing Policies and Procedures
and the OGC Compliance Testing web site. Table 2 provides conformance class URIs

3

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

Table	2	—	Conformance	class	URIs

Conformance class URI
Core http:// www .opengis .net/ spec/ ogcapi -features -1/ 1 .0/ conf/ core
HTML http:// www .opengis .net/ spec/ ogcapi -features -1/ 1 .0/ conf/ html
GeoJSON http:// www .opengis .net/ spec/ ogcapi -features -1/ 1 .0/ conf/ geojson
GML, Simple Features Profile, Level 0 http:// www .opengis .net/ spec/ ogcapi -features -1/ 1 .0/ conf/ gmlsf0
GML, Simple Features Profile, Level 2 http:// www .opengis .net/ spec/ ogcapi -features -1/ 1 .0/ conf/ gmlsf2
OpenAPI Specification 3.0 http:// www .opengis .net/ spec/ ogcapi -features -1/ 1 .0/ conf/ oas30

5 Conventions

5.1	 Identifiers

The normative provisions in this document are denoted by the URI http://www.opengis.net/spec/
ogcapi-features-1/1.0.

All requirements and conformance tests that appear in this document are denoted by partial URIs
which are relative to this base.

5.2	 Link	relations

To express relationships between resources, RFC 8288 (Web Linking) is used.

The following registered link relation types[3] are used in this document.

— alternate: Refers to a substitute for this context.

— collection: The target IRI points to a resource which represents the collection resource for the
context IRI.

— describedby: Refers to a resource providing information about the link’s context.

— item: The target IRI points to a resource that is a member of the collection represented by the
context IRI.

— next: Indicates that the link’s context is a part of a series, and that the next in the series is the
link target.

— license: Refers to a license associated with this context.

— prev: Indicates that the link’s context is a part of a series, and that the previous in the series is the
link target.

— This relation is only used in examples.

— self: Conveys an identifier for the link’s context.

— service-desc: Identifies service description for the context that is primarily intended for
consumption by machines.

— API definitions are considered service descriptions.

— service-doc: Identifies service documentation for the context that is primarily intended for human
consumption.

4

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/core
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/html
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/geojson
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/gmlsf0
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/gmlsf2
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/oas30
http://www.opengis.net/spec/ogcapi-features-1/1.0
http://www.opengis.net/spec/ogcapi-features-1/1.0

In addition, the following link relation types are used for which no applicable registered link relation
type could be identified.

— items: Refers to a resource that is comprised of members of the collection represented by the link’s
context.

— conformance: Refers to a resource that identifies the specifications that the link’s context
conforms to.

— data: Refers to the root resource of a dataset in an API.

Each resource representation includes an array of links. Implementations are free to add additional
links for all resources provided by the API. For example, an enclosure link could reference a bulk
download of a collection. Or a related link on a feature could reference a related feature.

5.3 Use of HTTPS

For simplicity, this document in general only refers to the HTTP protocol. This is not meant to exclude
the use of HTTPS but is a shorthand notation for "HTTP or HTTPS." In fact, most servers are expected to
use HTTPS, not HTTP.

5.4 HTTP URIs

This document does not restrict the lexical space of URIs used in the API beyond the requirements of
the HTTP and URI Syntax IETF RFCs. If URIs include reserved characters that are delimiters in the URI
subcomponent, these have to be percent-encoded. See RFC 3986:2005, Clause 2[2] for details.

5.5	 API	definition

5.5.1	 General	remarks

Good documentation is essential for every API so that developers can more easily learn how to use the
API. In the best case, documentation will be available in HTML and in a format that can be processed by
software to connect to the API.

This document specifies requirements and recommendations for APIs that share feature data and
that want to follow a standard way of doing so. In general, APIs will go beyond the requirements and
recommendations stated in this document, or other parts of the OGC API series of standards, and will
support additional operations, parameters, etc. that are specific to the API or the software tool used to
implement the API.

5.5.2 Role of OpenAPI

This document uses OpenAPI 3.0 fragments as examples and to formally state requirements. However,
using OpenAPI 3.0 is not required for implementing a server.

Therefore, the Core requirements class only requires that an API definition be provided and linked
from the landing page.

A separate requirements class is specified for API definitions that follow the OpenAPI specification
3.0. This does not preclude that in the future or in parallel, other versions of OpenAPI or other API
descriptions are provided by a server.

NOTE This approach is used to avoid lock-in to a specific approach to defining an API as it is expected that
the API landscape will continue to evolve.

In this document, fragments of OpenAPI definitions are shown in YAML (YAML Ain’t Markup Language)
[1] since YAML is easier to read than JSON and is typically used in OpenAPI editors. YAML is described
by its authors as a human friendly data serialization standard for all programming languages.

5

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

5.5.3 References to OpenAPI components in normative statements

Some normative statements (requirements, recommendations and permissions) use a phrase that a
component in the API definition of the server must be "based upon" a schema or parameter component
in the OGC schema repository.

In this case, the following changes to the pre-defined OpenAPI component are permitted.

— If the server supports an XML encoding, xml properties may be added to the relevant OpenAPI
schema components.

— The range of values of a parameter or property may be extended (additional values) or constrained
(if a subset of all possible values is applicable to the server). An example for a constrained range of
values is to explicitly specify the supported values of a string parameter or property using an enum.

— The default value of a parameter may be changed or added unless a requirement explicitly
prohibits this.

— Additional properties may be added to the schema definition of a Response Object.

— Informative text may be changed or added, e.g. comments or description properties.

For API definitions that do not conform to the OpenAPI Specification 3.0, the normative statement
should be interpreted in the context of the API definition language used.

5.5.4	 Paths	in	OpenAPI	definitions

All paths in an OpenAPI definition are relative to a base URL of the server.

EXAMPLE 1 URL of the OpenAPI definition.

If the OpenAPI Server Object looks like this:

servers:
 - url: https://dev.example.org/
 description: Development server
 - url: https://data.example.org/
 description: Production server
The path "/mypath" in the OpenAPI definition of a Web API would be the URL https://data.example.
org/mypath for the production server.

5.5.5	 Reusable	OpenAPI	components

Reusable components for OpenAPI definitions for implementations of OGC API Features are referenced
from this document.

6 Overview

6.1 Design considerations

While this is the first version of the OGC API Features series, the fine-grained access to features over
the Web has been supported by the OGC Web Feature Service (WFS) standard (in ISO: ISO 19142) and
many implementations of that standard for many years. WFS uses a Remote-Procedure-Call-over-HTTP
architectural style using XML for any payloads. When the WFS standard was originally designed in the
late 1990s and early 2000s this was the state-of-the-art.

OGC API Features supports similar capabilities, but uses a modernized approach that follows the
current Web architecture and in particular the W3C/OGC best practices for sharing Spatial Data on the
Web as well as the W3C best practices for sharing Data on the Web.

6

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

https://data.example.org/mypath
https://data.example.org/mypath

Beside the general alignment with the architecture of the Web (e.g., consistency with HTTP/HTTPS,
hypermedia controls), another goal for OGC API Features is modularization. This goal has several facets,
as described below.

— Clear separation between core requirements and more advanced capabilities. This document
specifies the core requirements that are relevant for almost everyone who wants to share or use
feature data on a fine-grained level. Additional capabilities that several communities are using
today will be specified as extensions in additional parts of the OGC API Features series.

— Technologies that change more frequently are decoupled and specified in separate modules
("requirements classes" in OGC terminology). This enables, for example, the use/re-use of new
encodings for spatial data or API descriptions.

— Modularization is not just about features or resources, but about providing building blocks for fine-
grained access to spatial data that can be used in Web APIs in general. In other words, a server
supporting OGC API Features is not intended to implement just a standalone Features API. A
corollary of this is that the same Web API may also implement other standards of the OGC API
family that support additional resource types; for example, tile resources could provide access to
the same features, but organized in a spatial partitioning system; or map resources could process
the features and render them as map images.

Implementations of OGC API Features are intended to support two different approaches for how clients
can use the API.

In the first approach, clients are implemented with knowledge about this document and its resource
types. The clients navigate the resources based on this knowledge and based on the responses provided
by the API. The API definition may be used to determine details, e.g., on filter parameters, but this may
not be necessary depending on the needs of the client. These are clients that are in general able to use
multiple APIs as long as they implement OGC API Features.

The other approach targets developers that are not familiar with the OGC API standards, but want to
interact with spatial data provided by an API that happens to implement OGC API Features. In this case
the developer studies and uses the API definition, typically an OpenAPI document, to understand the
API and implement the code to interact with the API. This assumes familiarity with the API definition
language and the related tooling, but it should not be necessary to study the OGC API standards.

6.2 Encodings

This document does not mandate any encoding or format for representing features or feature
collections. In addition to rules for HTML, the standard encoding for Web content, rules for commonly
used encodings for spatial data on the Web are provided (GeoJSON, GML).

None of these encodings is mandatory and an implementation of the Core requirements class may
implement none of them but implement another encoding instead.

Support for HTML is recommended as HTML is the core language of the World Wide Web. A server that
supports HTML will support browsing the data with a web browser and will enable search engines to
crawl and index the dataset.

GeoJSON is a commonly used format that is simple to understand and well supported by tools and
software libraries. Since most Web developers are comfortable with using a JSON-based format, this
version of OGC API Features recommends supporting GeoJSON for encoding feature data, if the feature
data can be represented in GeoJSON for the intended use.

Some examples for cases that are out-of-scope of GeoJSON are:

— when solids are used for geometries (e.g., in a 3D city model),

— geometries that include non-linear curve interpolations that cannot be simplified (e.g., use of arcs in
authoritative geometries),

7

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

— geometries that have to be represented in a coordinate reference system (CRS) that is not based on
WGS 84 longitude/latitude (e.g., an authoritative national CRS),

— features that have more than one geometric property.

In addition to HTML and GeoJSON, a significant volume of feature data is available in XML-based
formats, notably GML. GML supports more complex requirements than GeoJSON and does not have any
of the limitations mentioned in the above bullets, but as a result, GML is more complex to handle for
both servers and clients. Requirements classes for GML are, therefore, included in this document. We
expect that these will typically be supported by servers where users are known to expect feature data
in XML/GML.

The recommendations for using HTML and GeoJSON reflect the importance of HTML and the
current popularity of JSON-based data formats. As the practices in the Web community evolve, the
recommendations will likely be updated in future versions of this document to provide guidance on
using other encodings.

This document does not provide any guidance on other encodings. The supported encodings, or more
precisely the media types of the supported encodings, can be determined from the API definition. The
desired encoding is selected using HTTP content negotiation.

For example, if the server supports GeoJSON Text Sequences, an encoding that is based on JSON text
sequences and GeoJSON to support streaming by making the data incrementally parseable, the media
type application/geo+json-seq would be used.

In addition, HTTP supports compression and therefore the standard HTTP mechanisms can be used to
reduce the size of the messages between the server and the client.

6.3 Examples

This document uses a simple example throughout the document: The dataset contains buildings and
the server provides access to them through a single feature collection ("buildings") and two encodings,
GeoJSON and HTML.

The buildings have a few (optional) properties: the polygon geometry of the building footprint, a name,
the function of the building (residential, commercial or public use), the floor count and the timestamp
of the last update of the building feature in the dataset.

In addition to the examples included in the document, additional and more comprehensive examples
are available at http:// schemas .opengis .net/ ogcapi/ features/ part1/ 1 .0/ examples.

7 Requirements class "Core"

7.1 Overview

Requirements class
http:// www .opengis .net/ spec/ ogcapi -features -1/ 1 .0/ req/ core
Target type Web API
Dependency RFC 7230 to RFC 7235 (HTTP/1.1)
Dependency RFC 2818 (HTTP over TLS)
Dependency RFC 3339 (Date and Time on the Internet: Timestamps)
Dependency RFC 8288 (Web Linking)

8

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

http://schemas.opengis.net/ogcapi/features/part1/1.0/examples
http://www.opengis.net/spec/ogcapi-features-1/1.0/req/core

A server that implements this requirements class provides access to the features in a dataset.

NOTE 1 Other parts of this document can define API extensions that support multiple datasets. The statement
that the features are from "a dataset" is not meant to preclude such extensions. It reflects that this document
does not specify how the API publishes features or other spatial data from multiple datasets.

The entry point is a Landing page (path /).

NOTE 2 All paths (e.g., /) are relative. If the API covers other resources beyond those specified in this
document, the landing page can also be, for example, a sub-resource of the base URL of the API.

The Landing page provides links to:

— the API definition (link relations service-desc and service-doc),

— the Conformance declaration (path /conformance, link relation conformance), and

— the Collections (path /collections, link relation data).

The API definition describes the capabilities of the server that can be used by clients to connect to the
server or by development tools to support the implementation of servers and clients. Accessing the API
definition using HTTP GET returns a description of the API. The API definition can be hosted on the
API server(s) or a separate server.

The Conformance declaration states the conformance classes from standards or community
specifications, identified by a URI, to which the API conforms. Clients can, but are not required to, use
this information. Accessing the Conformance declaration using HTTP GET returns the list of URIs of
conformance classes implemented by the server.

The data is organized into one or more collections. Collections provides information about and access
to the collections.

This document specifies requirements only for collections consisting of features, i.e., each collection
considered by this document is a feature collection. Other OGC API standards may add requirements for
other types of collections.

NOTE 3 To support the future use of datasets with items that are not features, the term "feature" has not been
added in the names of the resource types or their paths.

This document does not include any requirements about how the features in the dataset have to be
aggregated into collections. A typical approach is to aggregate by feature type but any other approach
that fits the dataset or the applications using this distribution may also be used.

Accessing Collections using HTTP GET returns a response that contains at least the list of collections.
For each Collection, a link to the items in the collection (Features, path /collections/{collectionId}/
items, link relation items) as well as key information about the collection. This information includes:

— a local identifier for the collection that is unique for the dataset;

— a list of coordinate reference systems (CRS) in which geometries may be returned by the server. The
first CRS is the default coordinate reference system (in the Core, the default is always WGS 84 with
axis order longitude/latitude);

— an optional title and description for the collection;

— an optional extent that can be used to provide an indication of the spatial and temporal extent of the
collection, typically derived from the data;

— an optional indicator about the type of the items in the collection (the default value, if the indicator
is not provided, is 'feature').

The Collection resource is also available at path /collections/{collectionId}, often with more
details than included in the Collections response.

9

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

Each Collection that is a feature collection consists of features. This document only discusses the
behaviour of feature collections.

Each feature in a dataset is part of exactly one collection.

Accessing the Features using HTTP GET returns a document consisting of features in the collection.
The features included in the response are determined by the server based on the query parameters
of the request. To support access to larger collections without overloading the client, the API supports
paged access with links to the next page, if more features are selected than the page size.

A bbox or datetime parameter may be used to select only a subset of the features in the collection (the
features that are in the bounding box or time interval). The bbox parameter also matches all features in
the collection that are not associated with a location. The datetime parameter also matches all features
in the collection that are not associated with a time stamp or interval.

The limit parameter may be used to control the subset of the selected features that should be returned
in the response, the page size.

Each page may include information about the number of selected and returned features (numberMatched
and numberReturned) as well as links to support paging (link relation next).

Each Feature (path /collections/{collectionId}/items/{featureId}) is also a separate resource
and may be requested individually using HTTP GET.

In addition to the simple path structures described above, where all features are organized in a one-
level collection hierarchy, additional parts of the OGC API Feature series are expected to provide
alternate access to the features served by the API via additional, deeper collection hierarchies.

7.2 API landing page

7.2.1 Operation

Requirement 1 /req/core/root-op
A The server SHALL support the HTTP GET operation at the path /.

10

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

7.2.2 Response

Requirement 2 /req/core/root-success
A A successful execution of the operation shall be reported as a response with a HTTP

status code 200.
B The content of that response shall be based upon the OpenAPI 3.0 schema

landingPage.yaml and include at least links to the following resources:
the API definition (relation type 'service-desc' or 'service-doc')
/conformance (relation type 'conformance')
/collections (relation type 'data')

Schema for the landing page

type: object
required:
 - links
properties:
 title:
 type: string
 description:
 type: string
 links:
 type: array
 items:
 $ref: http://schemas.opengis.net/ogcapi/features/part1/1.0/openapi/schemas/link.yaml
EXAMPLE 1 Landing page response document.

{
 "title": "Buildings in Bonn",
 "description": "Access to data about buildings in the city of Bonn via a Web API that
conforms to the OGC API Features specification.",
 "links": [
 { "href": "http://data.example.org/",
 "rel": "self", "type": "application/json", "title": "this document" },
 { "href": "http://data.example.org/api",
 "rel": "service-desc", "type": "application/vnd.oai.openapi+json;version=3.0",
"title": "the API definition" },
 { "href": "http://data.example.org/api.html",
 "rel": "service-doc", "type": "text/html", "title": "the API documentation" },
 { "href": "http://data.example.org/conformance",
 "rel": "conformance", "type": "application/json", "title": "OGC API conformance
classes implemented by this server" },
 { "href": "http://data.example.org/collections",
 "rel": "data", "type": "application/json", "title": "Information about the feature
collections" }
]
}

7.2.3 Error situations

See HTTP status codes for general guidance.

11

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

7.3	 API	definition

7.3.1 Operation

Every API is expected to provide a definition that describes the capabilities of the server and which
can be used by developers to understand the API, by software clients to connect to the server, or by
development tools to support the implementation of servers and clients.

Requirement 3 /req/core/api-definition-op
A The URIs of all API definitions referenced from the landing page shall support the

HTTP GET method.
Permission 1 /per/core/api-definition-uri
A The API definition is metadata about the API and strictly not part of the API itself, but

it may be hosted as a sub-resource to the base path of the API, for example, at path /api.
There is no need to include the path of the API definition in the API definition itself.

NOTE Multiple API definition formats can be supported.

7.3.2 Response

Requirement 4 /req/core/api-definition-success
A A GET request to the URI of an API definition linked from the landing page (link

relations service-desc or service-doc) with an Accept header with the value
of the link property type shall return a document consistent with the requested
media type.

Recommendation
1

/rec/core/api-definition-oas

A If the API definition document uses the OpenAPI Specification 3.0, the document
should conform to the OpenAPI Specification 3.0 requirements class.

If the server hosts the API definition under the base path of the API (for example, at path /api, see
above), there is no need to include the path of the API definition in the API definition itself.

The idea is that any OGC API Features implementation can be used by developers that are familiar with
the API definition language(s) supported by the server. For example, if an OpenAPI definition is used, it
should be possible to create a working client using the OpenAPI definition. The developer may need to
learn a little bit about geometry data types, etc., but it should not be required to read this document to
access the data via the API.

In case the API definition is based on OpenAPI 3.0, consider the two approaches discussed in OpenAPI
requirements class.

7.3.3 Error situations

See HTTP status codes for general guidance.

7.4 Declaration of conformance classes

7.4.1 Operation

To support "generic" clients that want to access multiple OGC API Features implementations, and
not "just" a specific API/server, the server has to declare the conformance classes it implements and
conforms to.

Requirement 5 /req/core/conformance-op
A The server shall support the HTTP GET operation at the path /conformance.

12

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

7.4.2 Response

Requirement 6 /req/core/conformance-success
A A successful execution of the operation shall be reported as a response with a HTTP status

code 200.
B The content of that response shall be based upon the OpenAPI 3.0 schema

confClasses.yaml and list all OGC API conformance classes that the server conforms to.

Schema for the list of conformance classes

type: object
required:
 - conformsTo
properties:
 conformsTo:
 type: array
 items:
 type: string
EXAMPLE 1 Conformance declaration response document.

This example response in JSON is for a server that supports OpenAPI 3.0 for the API definition and HTML and
GeoJSON as encodings for features.

{
 "conformsTo": [
 "http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/core",
 "http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/oas30",
 "http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/html",
 "http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/geojson"
]
}

7.4.3 Error situations

See HTTP status codes for general guidance.

7.5 HTTP 1.1

Requirement 7 /req/core/http
A The server shall conform to HTTP 1.1.
B If the server supports HTTPS, the server shall also conform to HTTP over TLS.
NOTE This includes the correct use of, e.g. status codes, headers.

Recommendation 2 /rec/core/head
A The server should support the HTTP 1.1 method HEAD for all resources that support

the method GET.
NOTE 1 Supporting the method HEAD in addition to GET can be useful for clients and is simple to implement.

NOTE 2 Servers implementing CORS will also implement the method OPTIONS.

7.5.1 HTTP status codes

This API standard does not impose any restrictions on which features of the HTTP and HTTPS protocols
may be used. API clients should be prepared to handle any legal HTTP or HTTPS status code.

The status codes listed in Table 3 are of particular relevance to implementors of this document. Status
codes 200, 400, and 404 are called out in API requirements. Therefore, support for these status codes
is mandatory for all compliant implementations. The remainder of the status codes in Table 3 are not
mandatory, but are important for the implementation of a well-functioning API. Support for these status
codes is strongly encouraged for both client and server implementations.

13

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

Table	3	—	Typical	HTTP	status	codes

Status code Description

200 A successful request.
304 An entity tag was provided in the request and the resource has not been changed since the

previous request.
400 The server cannot or will not process the request due to an apparent client error, e.g. a query

parameter had an incorrect value.
401 The request requires user authentication. The response includes a WWW-Authenticate header

field containing a challenge applicable to the requested resource.
403 The server understood the request, but is refusing to fulfil it. While status code 401 indicates

missing or bad authentication, status code 403 indicates that authentication is not the issue,
but the client is not authorized to perform the requested operation on the resource.

404 The requested resource does not exist on the server, e.g. a path parameter had an
incorrect value.

405 The request method is not supported, e.g. a POST request was submitted, but the resource
only supports GET requests.

406 Content negotiation failed. For example, the Accept header submitted in the request did not
support any of the media types supported by the server for the requested resource.

500 An internal error occurred in the server.

More specific guidance is provided for each resource, where applicable.

Permission 2 /per/core/additional-status-codes
A Servers may support other capabilities of the HTTP protocol and, therefore, may return

other status codes than those listed in Table 3.

The API Description Document describes the HTTP status codes generated by that API. This should not
be an exhaustive list of all possible status codes. It is not reasonable to expect an API designer to control
the use of HTTP status codes which are not generated by their software. Therefore, it is recommended
that the API Description Document limit itself to describing HTTP status codes relevant to the proper
operation of the API application logic. Client implementations should be prepared to receive HTTP
status codes in addition to those described in the API Description Document.

7.6	 Unknown	or	invalid	query	parameters

Requirement 8 /req/core/query-param-unknown
A The server shall respond with a response with the status code 400, if the request URI in-

cludes a query parameter that is not specified in the API definition.

If a server wants to support vendor specific parameters, these shall be explicitly declared in the API
definition.

If OpenAPI is used to represent the API definition, a capability exists to allow additional parameters
without explicitly declaring them, i.e. parameters that have not been explicitly specified in the API
definition for the operation will be ignored.

OpenAPI schema for additional "free-form" query parameters

in: query
name: vendorSpecificParameters
schema:
 type: object
 additionalProperties: true
style: form
NOTE The name of the parameter does not matter as the actual query parameters are the names of the
object properties.

EXAMPLE 1 Assume that the value of vendorSpecificParameters is this object:

14

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

{
 "my_first_parameter": "some value",
 "my_other_parameter": 42
}
In the request URI this would be expressed as &my_first_parameter=some%20value&my_other_
parameter=42.

Requirement 9 /req/core/query-param-invalid
A The server shall respond with a response with the status code 400, if the request URI

includes a query parameter that has an invalid value.

This is a general rule that applies to all parameters, whether they are specified in this document or
in additional parts. A value is invalid if it violates the API definition or any other constraint for that
parameter stated in a requirement.

7.7	 Web	caching

Entity tags are a mechanism for web cache validation and for supporting conditional requests to reduce
network traffic. Entity tags are specified by RFC 7232 (HTTP/1.1).

Recommendation 3 /rec/core/etag
A The service should support entity tags and the associated headers as specified by

HTTP/1.1.

7.8 Support for cross-origin requests

Access to data from a HTML page is by default prohibited for security reasons, if the data is located on
another host than the webpage ("same-origin policy"). A typical example is a web-application accessing
feature data from multiple distributed datasets.

Recommendation 4 /rec/core/cross-origin
A If the server is intended to be accessed from the browser, cross-origin requests should

be supported. Note that support can also be added in a proxy layer on top of the server.

Two common mechanisms to support cross-origin requests are:

— Cross-origin resource sharing (CORS), and

— JSONP (JSON with padding).

7.9 Encodings

While OGC API Features does not specify any mandatory encoding, support for the following encodings
is recommended. See Clause 6 (Overview) for a discussion.

Recommendation 5 /rec/core/html
A To support browsing the dataset and its features with a web browser and to

enable search engines to crawl and index the dataset, implementations should
consider supporting an HTML encoding.

Recommendation 6 /rec/core/geojson
A If the feature data can be represented for the intended use in GeoJSON, imple-

mentations should consider supporting GeoJSON as an encoding for features
and feature collections.

Requirement /req/core/http implies that the encoding of a server response is determined using content
negotiation as specified by the HTTP RFC.

15

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

The section Media Types includes guidance on media types for encodings that are specified in this
document.

Note that any server that supports multiple encodings will have to support a mechanism to mint
encoding-specific URIs for resources in order to express links, for example, to alternate representations
of the same resource. This document does not mandate any particular approach on how this is
supported by the server.

As clients simply need to dereference the URI of the link, the implementation details and the mechanism
on how the encoding is included in the URI of the link are not important. Developers interested in the
approach of a particular implementation, for example, to manipulate ("hack") URIs in the browser
address bar, can study the API definition.

NOTE Two common approaches are:

— an additional path for each encoding of each resource (this can be expressed, for example, using format
specific suffixes like ".html");

— an additional query parameter (for example, "accept" or "f") that overrides the Accept header of the HTTP
request.

7.10 String internationalization

If the server supports representing resources in multiple languages, the usual HTTP content negotiation
mechanisms apply. The client states its language preferences in the Accept-Language header of a request
and the server responds with responses that have linguistic text in the language that best matches the
requested languages and the capabilities of the server.

Recommendation 7 /rec/core/string-i18n
A For encodings that support string internationalization, the server should include in-

formation about the language for each string value that includes linguistic text.
EXAMPLE If JSON-LD is used as an encoding, the built-in capabilities to annotate a string with its language should be used.

The link object based on RFC 8288 (Web Linking) includes a hreflang attribute that can be used to
state the language of the referenced resource. This can be used to include links to the same data in, e.g.
English or French. Just like with multiple encodings, a server that wants to use language-specific links
will have to support a mechanism to mint language-specific URIs for resources in order to express links
to, for example, the same resource in another language. Again, this document does not mandate any
particular approach on how such a capability is supported by the server.

7.11 Coordinate reference systems

As discussed in Chapter 9 of the W3C/OGC Spatial Data on the Web Best Practices document[6], how to
express and share the location of features in a consistent way is one of the most fundamental aspects of
publishing geographic data and it is important to be clear about the coordinate reference system that
coordinates are in.

For the reasons discussed in the Best Practices, OGC API Features uses WGS 84 longitude and latitude
as the default coordinate reference system for spatial geometries.

Requirement 10 /req/core/crs84
A Unless the client explicitly requests a different coordinate reference system, all spatial

geometries shall be in the coordinate reference system http:// www .opengis .net/ def/ crs/
OGC/ 1 .3/ CRS84 (WGS 84 longitude/latitude) for geometries without height information
and http:// www .opengis .net/ def/ crs/ OGC/ 0/ CRS84h (WGS 84 longitude/latitude plus
ellipsoidal height) for geometries with height information.

Implementations compliant with the Core are not required to support publishing feature geometries
in coordinate reference systems other than http:// www .opengis .net/ def/ crs/ OGC/ 1 .3/ CRS84 (for

16

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

http://www.opengis.net/def/crs/OGC/1.3/CRS84
http://www.opengis.net/def/crs/OGC/1.3/CRS84
http://www.opengis.net/def/crs/OGC/0/CRS84h
http://www.opengis.net/def/crs/OGC/1.3/CRS84

coordinates without height) or http:// www .opengis .net/ def/ crs/ OGC/ 0/ CRS84h (for coordinates with
height), i.e., the (optional) third coordinate number is always the height.

The Core also does not specify a capability to request feature geometries in a different coordinate
reference system. Such a capability will be specified in another part of the OGC API Features series.

The same principles apply for temporal geometries, which are measured relative to a temporal
coordinate reference system. OGC API Features uses the Gregorian calendar and all dates or timestamps
discussed in this document are in the Gregorian calendar and conform to RFC 3339.

Recommendation 8 /rec/core/rfc3339
A RFC 3339 should also be used for feature properties that are temporal instants or

intervals, where applicable, but feature properties may be represented in another
format or in other temporal coordinate reference systems, too.

7.12	Link	headers

Recommendation 9 /rec/core/link-header
A Links included in payload of responses should also be included as Link headers in the

HTTP response according to RFC 8288, Clause 3.
This recommendation does not apply if there are a large number of links included in a
response or a link is not known when the HTTP headers of the response are created.

7.13 Feature collections

7.13.1 Operation

Requirement 11 /req/core/fc-md-op
A The server shall support the HTTP GET operation at the path /collections.

7.13.2 Response

Requirement 12 /req/core/fc-md-success
A A successful execution of the operation shall be reported as a response with a HTTP status

code 200.
B The content of that response shall be based upon the OpenAPI 3.0 schema collections.yaml.

Schema for the collections resource

type: object
required:
 - links
 - collections
properties:
 links:
 type: array
 items:
 $ref: http://schemas.opengis.net/ogcapi/features/part1/1.0/openapi/schemas/link.yaml
 collections:
 type: array
 items:
 $ref: http://schemas.opengis.net/ogcapi/features/part1/1.0/openapi/schemas/
collection.yaml

17

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

http://www.opengis.net/def/crs/OGC/0/CRS84h
http://schemas.opengis.net/ogcapi/features/part1/1.0/openapi/schemas/link.yaml
http://schemas.opengis.net/ogcapi/features/part1/1.0/openapi/schemas/collection.yaml
http://schemas.opengis.net/ogcapi/features/part1/1.0/openapi/schemas/collection.yaml

Requirement 13 /req/core/fc-md-links
A A 200-response shall include the following links in the links property of the

response:
— a link to this response document (relation: self),

— a link to the response document in every other media type supported by
the server (relation: alternate).

B All links shall include the rel and type link parameters.
Recommendation 10 /rec/core/fc-md-descriptions
A If external schemas or descriptions for the dataset exist that provide infor-

mation about the structure or semantics of the data, a 200-response should
include links to each of those resources in the links property of the response
(relation: describedby).

B The type link parameter should be provided for each link. This applies to
resources that describe the whole dataset.

C For resources that describe the contents of a feature collection, the links
should be set in the links property of the appropriate object in the
collections resource.

D Examples for descriptions are: XML Schema, Schematron, JSON Schema, RDF
Schema, OWL, SHACL, a feature catalogue.

Recommendation 11 /rec/core/fc-md-license
A For each feature collection included in the response, the links property

of the collection should include a link to the applicable licence (relation:
license).

B Alternatively, if all data shared via the API is available under the same licence,
the link may instead be added to the top-level links property of the response.

C Multiple links to the license in different media types may be provided. At least
a link to media type text/html or text/plain should be provided.

Requirement 14 /req/core/fc-md-items
A For each feature collection provided by the server, an item shall be provided

in the property collections.
Permission 3 /per/core/fc-md-items
A To support servers with many collections, servers may limit the number of

items in the property collections.

This document does not specify mechanisms on how clients may access all collections from servers
with many collections. Such mechanisms may be specified in additional parts of OGC API Features.
Options include support for paging and/or filtering.

Requirement 15 /req/core/fc-md-items-links
A For each feature collection included in the response, the links property of the

collection shall include an item for each supported encoding with a link to the
features resource (relation: items).

B All links shall include the rel and type properties.

18

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

Requirement 16 /req/core/fc-md-extent
A For each feature collection, the extent property, if provided, shall provide

bounding boxes that include all spatial geometries and time intervals that
include all temporal geometries in this collection. The temporal extent may use
null values to indicate an open time interval.

B If a feature has multiple properties with spatial or temporal information, it is
the decision of the server whether only a single spatial or temporal geometry
property is used to determine the extent or all relevant geometries.

NOTE The member spatial only needs to be provided in the extent object if features in the feature
collection have spatial properties. The same applies to temporal and features with temporal properties. For
example, a feature collection where features have a spatial, but no temporal property will only provide the
spatial member.

Recommendation 12 /rec/core/fc-md-extent-single
A While the spatial and temporal extents support multiple bounding boxes

(bbox array) and time intervals (interval array) for advanced use cases,
implementations should provide only a single bounding box or time interval
unless the use of multiple values is important for the use of the dataset and
agents using the API are known to support multiple bounding boxes or time
intervals.

Permission 4 /per/core/fc-md-extent-extensions
A The Core only specifies requirements for spatial and temporal extents. How-

ever, the extent object may be extended with additional members to repre-
sent other extents, for example, thermal or pressure ranges.

B The Core only supports spatial extents in WGS 84 longitude/latitude and
temporal extents in the Gregorian calendar (these are the only enum values in
extent.yaml).

C Extension to the Core may add additional reference systems to the extent
object.

Schema for a feature collection

type: object
required:
 - id
 - links
properties:
 id:
 description: identifier of the collection used, for example, in URIs
 type: string
 title:
 description: human readable title of the collection
 type: string
 description:
 description: a description of the features in the collection
 type: string
 links:
 type: array
 items:
 $ref: http://schemas.opengis.net/ogcapi/features/part1/1.0/openapi/schemas/link.yaml
 extent:
 description: >-
 The extent of the features in the collection. In the Core only spatial and temporal
 extents are specified. Extensions may add additional members to represent other
 extents, for example, thermal or pressure ranges.
 type: object
 properties:
 spatial:
 description: >-

The spatial extent of the features in the collection.
 type: object

19

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

 properties:
bbox:

description: >-
One or more bounding boxes that describe the spatial extent of the dataset.
In the Core only a single bounding box is supported. Extensions may support
additional areas. If multiple areas are provided, the union of the bounding
boxes describes the spatial extent.

type: array
minItems: 1
items:

description: >-
Each bounding box is provided as four or six numbers, depending on
whether the coordinate reference system includes a vertical axis
(height or depth):

* Lower left corner, coordinate axis 1
* Lower left corner, coordinate axis 2
* Minimum value, coordinate axis 3 (optional)
* Upper right corner, coordinate axis 1
* Upper right corner, coordinate axis 2
* Maximum value, coordinate axis 3 (optional)

The coordinate reference system of the values is WGS 84 longitude/latitude
(http://www.opengis.net/def/crs/OGC/1.3/CRS84) unless a different
coordinate reference system is specified in `crs`.

For WGS 84 longitude/latitude the values are in most cases the sequence of
minimum longitude, minimum latitude, maximum longitude and maximum
latitude. However, in cases where the box spans the antimeridian the first
value (west-most box edge) is larger than the third value (east-most box
edge).

If the vertical axis is included, the third and the sixth number are
the bottom and the top of the 3-dimensional bounding box.

If a feature has multiple spatial geometry properties, it is the decision
of the server whether only a single spatial geometry property is used to
determine the extent or all relevant geometries.

type: array
minItems: 4
maxItems: 6
items:

type: number
example:

- -180
- -90
- 180
- 90

crs:
description: >-

Coordinate reference system of the coordinates in the spatial extent
(property `bbox`). The default reference system is WGS 84
longitude/latitude.
In the Core this is the only supported coordinate reference system.
Extensions may support additional coordinate reference systems and add
additional enum values.

type: string
enum:
- 'http://www.opengis.net/def/crs/OGC/1.3/CRS84'

default: 'http://www.opengis.net/def/crs/OGC/1.3/CRS84'
 temporal:
 description: >-

The temporal extent of the features in the collection.
 type: object
 properties:

interval:
description: >-

One or more time intervals that describe the temporal extent of the dataset.
The value `null` is supported and indicates an open time interval.
In the Core only a single time interval is supported. Extensions may support
multiple intervals. If multiple intervals are provided, the union of the

20

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

intervals describes the temporal extent.
type: array
minItems: 1
items:

description: >-
Begin and end times of the time interval. The timestamps are in the
temporal coordinate reference system specified in `trs`. By default
this is the Gregorian calendar.

type: array
minItems: 2
maxItems: 2
items:

type: string
format: date-time
nullable: true

example:
- '2011-11-11T12:22:11Z'
- null

trs:
description: >-
 Coordinate reference system of the coordinates in the temporal extent
(property `interval`). The default reference system is the Gregorian
calendar. In the Core this is the only supported temporal coordinate
reference system. Extensions may support additional temporal coordinate
reference systems and add additional enum values.

type: string
enum:

- 'http://www.opengis.net/def/uom/ISO-8601/0/Gregorian'
default: 'http://www.opengis.net/def/uom/ISO-8601/0/Gregorian'

 itemType:
 description: indicator about the type of the items in the collection (the default
value is 'feature').
 type: string
 default: feature
 crs:
 description: the list of coordinate reference systems supported by the service
 type: array
 items:
 type: string
 default:
 - http://www.opengis.net/def/crs/OGC/1.3/CRS84
NOTE The crs property of the collection object is not used by this requirements class, but is reserved for
future use.

This feature collections example response in JSON is for a dataset with a single collection "buildings".
It includes links to the features resource in all formats that are supported by the service (link relation
type: "items").

There is a link to the feature collections response itself (link relation type: "self"). Representations of
this resource in other formats are referenced using link relation type "alternate".

An additional link is to a GML application schema for the dataset - using link relation type "describedby".

A bulk download of all the features in the dataset is referenced using (link relation type: "enclosure").

Finally, there are also links to the licence information for the building data (using link relation type
"licence").

Reference system information is not provided as the service provides geometries only in the default
systems (spatial: WGS 84 longitude/latitude; temporal: Gregorian calendar).

EXAMPLE 1 Feature collections response document.

{
 "links": [
 { "href": "http://data.example.org/collections.json",
 "rel": "self", "type": "application/json", "title": "this document" },
 { "href": "http://data.example.org/collections.html",
 "rel": "alternate", "type": "text/html", "title": "this document as HTML" },

21

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

 { "href": "http://schemas.example.org/1.0/buildings.xsd",
 "rel": "describedby", "type": "application/xml", "title": "GML application schema
for Acme Corporation building data" },
 { "href": "http://download.example.org/buildings.gpkg",
 "rel": "enclosure", "type": "application/geopackage+sqlite3", "title": "Bulk
download (GeoPackage)", "length": 472546 }
],
 "collections": [
 {
 "id": "buildings",
 "title": "Buildings",
 "description": "Buildings in the city of Bonn.",
 "extent": {
 "spatial": {

"bbox": [[7.01, 50.63, 7.22, 50.78]]
 },
 "temporal": {

"interval": [["2010-02-15T12:34:56Z", null]]
 }
 },
 "links": [
 { "href": "http://data.example.org/collections/buildings/items",

"rel": "items", "type": "application/geo+json",
"title": "Buildings" },

 { "href": "https://creativecommons.org/publicdomain/zero/1.0/",
"rel": "license", "type": "text/html",
"title": "CC0-1.0" },

 { "href": "https://creativecommons.org/publicdomain/zero/1.0/rdf",
"rel": "license", "type": "application/rdf+xml",
"title": "CC0-1.0" }

]
 }
]
}

7.13.3 Error situations

See HTTP status codes for general guidance.

7.14 Feature collection

7.14.1 Operation

Requirement 17 /req/core/sfc-md-op
A The server shall support the HTTP GET operation at the path

/collections/{collectionId}.
B The parameter collectionId is each id property in the feature collections response

(JSONPath: $.collections[*].id).

7.14.2 Response

Requirement 18 /req/core/sfc-md-success
A A successful execution of the operation shall be reported as a response with a HTTP

status code 200.
B The content of that response shall be consistent with the content for this feature

collection in the /collections response, i.e. the values for id,
title, description and extent shall be identical.

7.14.3 Error situations

See HTTP status codes for general guidance.

22

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

If the parameter collectionId does not exist on the server, the status code of the response will be 404
(see Table 3).

7.15 Features

7.15.1 Operation

Requirement 19 /req/core/fc-op
A For every feature collection identified in the feature collections response (path

/collections), the server shall support the HTTP GET operation at the path
/collections/{collectionId}/items.

B The parameter collectionId is each id property in the feature collections response
(JSONPath: $.collections[*].id).

7.15.2 Parameter limit

Requirement 20 /req/core/fc-limit-definition
A The operation shall support a parameter limit with the following characteristics

(using an OpenAPI Specification 3.0 fragment):
name: limit
in: query
required: false
schema:
 type: integer
 minimum: 1
 maximum: 10000
 default: 10
style: form
explode: false

Permission 5 /per/core/fc-limit-default-minimum-maximum
A The values for minimum, maximum and default in requirement

/req/core/fc-limit-definition are only examples and may be changed.
Requirement 21 /req/core/fc-limit-response-1
A The response shall not contain more features than specified by the optional limit

parameter. If the API definition specifies a maximum value for limit parameter,
the response shall not contain more features than this maximum value.

B Only items are counted that are on the first level of the collection. Any nested ob-
jects contained within the explicitly requested items shall not be counted.

Permission 6 /per/core/fc-limit-response-2
A The server may return less features than requested (but not more).

A template for the definition of the parameter in YAML according to OpenAPI 3.0 is available at limit.yaml.

23

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

7.15.3	 Parameter	bbox

Requirement
22

/req/core/fc-bbox-definition

A The operation shall support a parameter bbox with the following characteristics
(using an OpenAPI Specification 3.0 fragment):
name: bbox
in: query
required: false
schema:
 type: array
 minItems: 4
 maxItems: 6
 items:
 type: number
style: form
explode: false

Requirement
23

/req/core/fc-bbox-response

A Only features that have a spatial geometry that intersects the bounding box shall be
part of the result set, if the bbox parameter is provided.

B If a feature has multiple spatial geometry properties, it is the decision of the server
whether only a single spatial geometry property is used to determine the extent or
all relevant geometries.

C The bbox parameter shall also match all features in the collection that are not asso-
ciated with a spatial geometry.

D The bounding box is provided as four or six numbers, depending on whether the
coordinate reference system includes a vertical axis (height or depth):
— Lower left corner, coordinate axis 1;

— Lower left corner, coordinate axis 2;

— Minimum value, coordinate axis 3 (optional);

— Upper right corner, coordinate axis 1;

— Upper right corner, coordinate axis 2;

— Maximum value, coordinate axis 3 (optional).
E The bounding box shall consist of four numbers and the coordinate reference

system of the values shall be interpreted as WGS 84 longitude/latitude
(http:// www .opengis .net/ def/ crs/ OGC/ 1 .3/ CRS84) unless a different coordinate
reference system is specified in a parameter bbox-crs.

F The coordinate values shall be within the extent specified for the coordinate refer-
ence system.

"Intersects" means that the rectangular area specified in the parameter bbox includes a coordinate that
is part of the (spatial) geometry of the feature. This includes the boundaries of the geometries (e.g. for
curves the start and end position and for surfaces the outer and inner rings).

In case of a degenerated bounding box, the resulting geometry is used. For example, if the lower left corner
is the same as the upper right corner, all features match where the geometry intersects with this point.

24

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

http://www.opengis.net/def/crs/OGC/1.3/CRS84

This document does not specify requirements for the parameter bbox-crs. Those requirements will be
specified in an additional part of the OGC API Features series.

For WGS 84 longitude/latitude the bounding box is in most cases the sequence of minimum longitude,
minimum latitude, maximum longitude and maximum latitude. However, in cases where the box spans
the anti-meridian, the first value (west-most box edge) is larger than the third value (east-most box edge).

EXAMPLE 1 The bounding box of the New Zealand Exclusive Economic Zone.

The bounding box of the New Zealand Exclusive Economic Zone in WGS 84 (from 160.6°E to 170°W and from
55.95°S to 25.89°S) would be represented in JSON as [160.6, -55.95, -170, -25.89] and in a query as
bbox=160.6,-55.95,-170,-25.89.

Note that according to the requirement to return an error for an invalid parameter value, the server
will return an error, if a latitude value of 160.0 is used.

If the vertical axis is included, the third and the sixth number are the bottom and the top of the
3-dimensional bounding box.

A template for the definition of the parameter in YAML according to OpenAPI 3.0 is available at bbox.yaml.

7.15.4 Parameter datetime

Requirement 24 /req/core/fc-time-definition
A The operation shall support a parameter datetime with the following

characteristics (using an OpenAPI Specification 3.0 fragment):
name: datetime
in: query
required: false
schema:
 type: string
style: form
explode: false

Requirement 25 /req/core/fc-time-response
A Only features that have a temporal geometry that intersects the temporal infor-

mation in the datetime parameter shall be part of the result set, if the parameter is
provided.

B If a feature has multiple temporal properties, it is the decision of the server wheth-
er only a single temporal property is used to determine the extent or all relevant
temporal properties.

C The datetime parameter shall also match all features in the collection that are not
associated with a temporal geometry.

D Temporal geometries are either a date-time value or a time interval. The parame-
ter value shall conform to the following syntax (using ABNF):
interval-closed = date-time "/" date-time
interval-open-start = [".."] "/" date-time
interval-open-end = date-time "/" [".."]
interval = interval-closed / interval-open-start /
interval-open-end
datetime = date-time / interval

E The syntax of date-time is specified by RFC 3339:2002, 5.6.
F Open ranges in time intervals at the start or end are supported using a double-dot

(..) or an empty string for the start/end.

25

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

"Intersects" means that the time (instant or interval) specified in the parameter datetime includes a
timestamp that is part of the temporal geometry of the feature (again, a time instant or interval). For
time intervals, this includes the start and end time.

NOTE ISO 8601-2 distinguishes open start/end timestamps (double-dot) and unknown start/end
timestamps (empty string). For queries, an unknown start/end has the same effect as an open start/end.

EXAMPLE 1 A date-time

 February 12, 2018, 23:20:52 UTC:

 datetime=2018-02-12T23%3A20%3A52Z

For features with a temporal property that is a timestamp (like lastUpdate in the building features), a
date-time value would match all features where the temporal property is identical.

For features with a temporal property that is a date or a time interval, a date-time value would match
all features where the timestamp is on that day or within the time interval.

EXAMPLE 2 Intervals.

 February 12, 2018, 00:00:00 UTC to March 18, 2018, 12:31:12 UTC:

 datetime=2018-02-12T00%3A00%3A00Z%2F2018-03-18T12%3A31%3A12Z

 February 12, 2018, 00:00:00 UTC or later:

 datetime=2018-02-12T00%3A00%3A00Z%2F.. or datetime=2018-02-12T00%3A00%3A00Z%2F

 March 18, 2018, 12:31:12 UTC or earlier:

 datetime=..%2F2018-03-18T12%3A31%3A12Z or datetime=%2F2018-03-18T12%3A31%3A12Z

For features with a temporal property that is a timestamp (like lastUpdate in the building features), a
time interval would match all features where the temporal property is within the interval.

For features with a temporal property that is a date or a time interval, a time interval would match all
features where the values overlap.

A template for the definition of the parameter in YAML according to OpenAPI 3.0 is available at
datetime.yaml.

7.15.5	 Parameters	for	filtering	on	feature	properties

Recommendation 13 /rec/core/fc-filters
A If features in the feature collection include a feature property that has a simple value

(for example, a string or integer) that is expected to be useful for applications using
the service to filter the features of the collection based on this property, a parameter
with the name of the feature property and with the following characteristics (using an
OpenAPI Specification 3.0 fragment) should be supported:
in: query
required: false
style: form
explode: false

The schema property should be the same as the definition of the feature property in
the response schema.

EXAMPLE 1 An additional parameter to filter buildings based on their function.

name: function
in: query
description: >-
 Only return buildings of a particular function.\

26

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

 Default = return all buildings.
required: false
schema:
 type: string
 enum:

- residential
- commercial
- public use

style: form
explode: false
example: 'function=public+use'
EXAMPLE 2 An additional parameter to filter buildings based on their name.

name: name
in: query
description: >-
 Only return buildings with a particular name. Use '*' as a wildcard.\

 Default = return all buildings.
required: false
schema:
 type: string
style: form
explode: false
example: 'name=A*'
For string-valued properties, servers could support wildcard searches. The example included in the
OpenAPI fragment would search for all buildings with a name that starts with "A".

7.15.6	 Combinations	of	filter	parameters

Any combination of bbox, datetime and parameters for filtering on feature properties is allowed. Note
that the requirements on these parameters imply that only features matching all the predicates are in
the result set, i.e. the logical operator between the predicates is 'AND'.

7.15.7 Response

Requirement 26 /req/core/fc-response
A A successful execution of the operation shall be reported as a response with a HTTP status

code 200.
B The response shall only include features selected by the request.

The number of features returned depends on the server and the parameter limit:

— The client can request a limit it is interested in.

— The server likely has a default value for the limit, and a maximum limit.

— If the server has any more results available than it returns (the number it returns is less than or
equal to the requested/default/maximum limit) then the server will include a link to the next set of
results.

So (using the default/maximum values of 10/10000 from the OpenAPI fragment in requirement /req/
core/fc-limit-definition):

— If you ask for 10, you will get 0 to 10 (as requested) and if there are more, a next link;

— If you do not specify a limit, you will get 0 to 10 (default) and if there are more, a next link;

— If you ask for 50000, you can get up to 10000 (server-limited) and if there are more, a next link;

— If you follow the next link from the previous response, you can get up to 10000 additional features
and if there are more, a next link.

27

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

Requirement 27 /req/core/fc-links
A A 200-response shall include the following links:

— a link to this response document (relation: self),

— a link to the response document in every other media type supported by the
service (relation: alternate).

Recommendation 14 /rec/core/fc-next-1
A A 200-response should include a link to the next "page" (relation: next), if more

features have been selected than returned in the response.
Recommendation 15 /rec/core/fc-next-2
A Dereferencing a next link should return additional features from the set of

selected features that have not yet been returned.
Recommendation 16 /rec/core/fc-next-3
A The number of features in a response to a next link should follow the same

rules as for the response to the original query and again include a next link, if
there are more features in the selection that have not yet been returned.

This document does not mandate any specific implementation approach for the next links.

An implementation could use opaque links that are managed by the server. It is up to the server to
determine how long these links can be de-referenced. Clients should be prepared to receive a 404
response.

Another implementation approach is to use an implementation-specific parameter that specifies the
index within the result set from which the server begins presenting results in the response, like the
startIndex parameter that was used in WFS 2.0 (and which may be added again in additional parts of
the OGC API Features series).

Clients should not assume that paging is safe against changes to dataset while a client iterates through
next links. If a server provides opaque links these could be safe and maintain the dataset state during
the original request. Using a parameter for the start index, however, will not be safe.

NOTE 1 Additional requirements classes for safe paging or an index parameter can be added in extensions to
this document.

Permission 7 /per/core/fc-prev
A A response to a next link may include a prev link to the resource that included the next link.

Providing prev links supports navigating back and forth between pages, but depending on the
implementation approach, it may be too complex to implement.

Requirement 28 /req/core/fc-rel-type
A All links shall include the rel and type link parameters.
Requirement 29 /req/core/fc-timeStamp
A If a property timeStamp is included in the response, the value shall be set to the

time stamp when the response was generated.
Requirement 30 /req/core/fc-numberMatched
A If a property numberMatched is included in the response, the value shall be iden-

tical to the number of features in the feature collections that match the selection
parameters like bbox, datetime or additional filter parameters.

B A server may omit this information in a response, if the information about the
number of matching features is not known or difficult to compute.

28

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

Requirement 31 /req/core/fc-numberReturned
A If a property numberReturned is included in the response, the value shall be iden-

tical to the number of features in the response.
B A server may omit this information in a response, if the information about the

number of features in the response is not known or difficult to compute.

NOTE 2 The representation of the links and the other properties in the payload depends on the encoding of the
feature collection.

If the request is to return building features and "10" is the default limit, the links in the response could
be (in this example represented as link headers and using an additional parameter offset to implement
next links - and the optional prev links):

EXAMPLE 1 Links

Link: <http://data.example.org/collections/buildings/items.json>; rel="self";
type="application/geo+json"
Link: <http://data.example.org/collections/buildings/items.html>; rel="alternate";
type="text/html"
Link: <http://data.example.org/collections/buildings/items.json?offset=10>; rel="next";
type="application/geo+json"
Following the next link could return:

Link: <http://data.example.org/collections/buildings/items.json?offset=10>; rel="self";
type="application/geo+json"
Link: <http://data.example.org/collections/buildings/items.html?offset=10>;
rel="alternate"; type="text/html"
Link: <http://data.example.org/collections/buildings/items.json?offset=0>; rel="prev";
type="application/geo+json"
Link: <http://data.example.org/collections/buildings/items.json?offset=20>; rel="next";
type="application/geo+json"
If an explicit limit of "50" is used, the links in the response could be:

Link: <http://data.example.org/collections/buildings/items.json?limit=50>; rel="self";
type="application/geo+json"
Link: <http://data.example.org/collections/buildings/items.html?limit=50>;
rel="alternate"; type="text/html"
Link: <http://data.example.org/collections/buildings/items.json?limit=50&off
set=50>; rel="next"; type="application/geo+json"
Following the next link could return:

Link: <http://data.example.org/collections/buildings/items.json?limit=50&off
set=50>; rel="self"; type="application/geo+json"
Link: <http://data.example.org/collections/buildings/items.html?limit=50&off
set=50>; rel="alternate"; type="text/html"
Link: <http://data.example.org/collections/buildings/items.json?limit=50&offset=0>;
rel="prev"; type="application/geo+json"
Link: <http://data.example.org/collections/buildings/items.json?limit=50&off
set=100>; rel="next"; type="application/geo+json"

7.15.8 Error situations

See HTTP status codes for general guidance.

If the path parameter collectionId does not exist on the server, the status code of the response
will be 404.

A 400 will be returned in the following situations:

— if query parameter limit is not an integer or not between minimum and maximum;

— if query parameter bbox does not have 4 (or 6) numbers or they do not form a bounding box;

— if parameter datetime is not a valid time stamp or time interval.

29

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

7.16 Feature

7.16.1 Operation

Requirement 32 /req/core/f-op
A For every feature in a feature collection (path /collections/{collectionId}),

the server shall support the HTTP GET operation at the path /collections/
{collectionId}/items/{featureId}.

B The parameter collectionId is each id property in the feature collections re-
sponse (JSONPath: $.collections[*].id). featureId is a local identifier of the
feature.

Permission 8 /per/core/f-id
A The Core requirements class only requires that the feature URI be unique. Imple-

mentations may apply stricter rules and, for example, use of unique id values per
dataset or collection.

7.16.2 Response

Requirement 33 /req/core/f-success
A A successful execution of the operation shall be reported as a response with a

HTTP status code 200.
Requirement 34 /req/core/f-links
A A 200-response shall include the following links in the response:

— a link to the response document (relation: self),

— a link to the response document in every other media type supported by the
service (relation: alternate), and

— a link to the feature collection that contains this feature (relation: collection).
B All links shall include the rel and type link parameters.

NOTE The representation of the links in the payload will depend on the encoding of the feature.

EXAMPLE 1 Links

The links in a feature could be (in this example represented as link headers):

Link: <http://data.example.org/collections/buildings/items/123.json>; rel="self";
type="application/geo+json"
Link: <http://data.example.org/collections/buildings/items/123.html>; rel="alternate";
type="text/html"
Link: <http://data.example.org/collections/buildings/items.json>; rel="collection";
type="application/geo+json"

7.16.3 Error situations

See HTTP status codes for general guidance.

If the path parameter collectionId or the path parameter featureId do not exist on the server, the
status code of the response will be 404.

30

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

8 Requirements classes for encodings

8.1 Overview

This clause specifies four pre-defined requirements classes for encodings to be used by an OGC API
Features implementation. These encodings are commonly used encodings for spatial data on the web:

— HTML;

— GeoJSON;

— Geography Markup Language (GML), Simple Features Profile, Level 0;

— Geography Markup Language (GML), Simple Features Profile, Level 2.

None of these encodings are mandatory and an implementation of the Core requirements class may also
implement none of them but implement another encoding instead.

The Core requirements class includes recommendations to support HTML and GeoJSON as encodings,
where practical. Clause 6 (Overview) includes a discussion about recommended encodings.

8.2 Requirements Class "HTML"

Geographic information that is only accessible in formats like GeoJSON or GML has two issues:

— The data is not discoverable using the most common mechanism for discovering information, i.e. the
search engines of the Web;

— The data cannot be viewed directly in a browser (additional tools are required to view the data).

Therefore, sharing data on the Web should include publication in HTML. To be consistent with the Web,
it should be done in a way that enables users and search engines to access all data.

This is discussed in detail in Best Practice 2: Make your spatial data indexable by search engines[6]. This
document therefore recommends supporting HTML as an encoding.

Requirements Class
http:// www .opengis .net/ spec/ ogcapi -features -1/ 1 .0/ req/ html
Target type Web API
Dependency Requirements Class "Core"
Dependency HTML5
Dependency schema.org
Requirement 35 /req/html/definition
A Every 200-response of an operation of the server shall support the media type text/html.
Requirement 36 /req/html/content
A Every 200-response of the server with the media type "text/html" SHALL be a HTML 5

document that includes the following information in the HTML body:
— all information identified in the schemas of the Response Object in the HTML

<body>, and

— all links in HTML <a> elements in the HTML <body>.
Recommendation 17 /rec/html/schema-org
A A 200-response with the media type text/html, should include schema.org annotations.

31

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

http://www.opengis.net/spec/ogcapi-features-1/1.0/req/html

8.3 Requirements Class "GeoJSON"

GeoJSON is a commonly used format that is simple to understand and well supported by tools and
software libraries. Since most Web developers are comfortable with using a JSON-based format,
supporting GeoJSON is recommended, if the feature data can be represented in GeoJSON for the
intended use.

Requirements Class
http:// www .opengis .net/ spec/ ogcapi -features -1/ 1 .0/ req/ geojson
Target type Web API
Dependency Requirements Class "Core"
Dependency GeoJSON
Requirement
37

/req/geojson/definition

A 200-responses of the server shall support the following media types:
— application/geo+json for resources that include feature content, and

— application/json for all other resources.
Requirement
38

/req/geojson/content

A Every 200-response with the media type application/geo+json shall be
— a GeoJSON FeatureCollection Object for features, and

— a GeoJSON Feature Object for a single feature.
B The links specified in the requirements /req/core/fc-links and /req/core/f-links

shall be added in an extension property (foreign member) with the name links.
C The schema of all responses with the media type application/json shall conform

with the JSON Schema specified for the resource in the Core requirements class.

Templates for the definition of the schemas for the GeoJSON responses in OpenAPI definitions are
available at featureCollectionGeoJSON.yaml and featureGeoJSON.yaml. These are generic schemas that
do not include any application schema information about specific feature types or their properties.

EXAMPLE 1 A GeoJSON FeatureCollection Object response

In the example below, only the first and tenth feature is shown. Coordinates are not shown.

{
 "type" : "FeatureCollection",
 "links" : [{
 "href" : "http://data.example.com/collections/buildings/items?f=json",
 "rel" : "self",
 "type" : "application/geo+json",
 "title" : "this document"
 }, {
 "href" : "http://data.example.com/collections/buildings/items?f=html",
 "rel" : "alternate",
 "type" : "text/html",
 "title" : "this document as HTML"
 }, {
 "href" : "http://data.example.com/collections/buildings/items?f=json&offset=10&
#x0026;limit=10",
 "rel" : "next",
 "type" : "application/geo+json",
 "title" : "next page"
 }],
 "timeStamp" : "2018-04-03T14:52:23Z",
 "numberMatched" : 123,
 "numberReturned" : 10,
 "features" : [{

32

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

http://www.opengis.net/spec/ogcapi-features-1/1.0/req/geojson

 "type" : "Feature",
 "id" : "123",
 "geometry" : {
 "type" : "Polygon",
 "coordinates" : [...]
 },
 "properties" : {
 "function" : "residential",
 "floors" : "2",
 "lastUpdate" : "2015-08-01T12:34:56Z"
 }
 }, { ...
 }, {
 "type" : "Feature",
 "id" : "132",
 "geometry" : {
 "type" : "Polygon",
 "coordinates" : [...]
 },
 "properties" : {
 "function" : "public use",
 "floors" : "10",
 "lastUpdate" : "2013-12-03T10:15:37Z"
 }
 }]
}
EXAMPLE 2 A GeoJSON FeatureCollection Object response

In the example below, coordinates are not shown.

{
 "type" : "Feature",
 "links" : [{
 "href" : "http://data.example.com/collections/buildings/items/123?f=json",
 "rel" : "self",
 "type" : "application/geo+json",
 "title" : "this document"
 }, {
 "href" : "http://data.example.com/collections/buildings/items/123?f=html",
 "rel" : "alternate",
 "type" : "text/html",
 "title" : "this document as HTML"
 }, {
 "href" : "http://data.example.com/collections/buildings",
 "rel" : "collection",
 "type" : "application/geo+json",
 "title" : "the collection document"
 }],
 "id" : "123",
 "geometry" : {
 "type" : "Polygon",
 "coordinates" : [...]
 },
 "properties" : {
 "function" : "residential",
 "floors" : "2",
 "lastUpdate" : "2015-08-01T12:34:56Z"
 }
}

8.4	 Requirements	Class	"Geography	Markup	Language	(GML),	Simple	Features	Profile,	
Level 0"

In addition to HTML and GeoJSON, a significant volume of feature data is available in XML-based
formats, notably GML. Therefore, this document specifies requirements classes for GML. The Simple
Features Profile, Level 0, is the simplest profile of GML and is typically supported by tools.

33

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

The GML Simple Features Profile is restricted to data with 2D geometries with linear/planar
interpolation (points, line strings, polygons). In addition, the Level 0 profile is limited to features that
can be stored in a tabular data structure.

Requirements class
http:// www .opengis .net/ spec/ ogcapi -features -1/ 1 .0/ req/ gmlsf0
Target type Web API
Dependency Requirements Class "Core"
Dependency Geography Markup Language (GML), Simple Features Profile, Level 0
Requirement
39

/req/gmlsf0/definition

A 2 0 0 -r e s p on se s of t he ser ver sh a l l s upp or t t he fol low i n g me d i a t y p e s:

— application/gml+xml; version=3.2; profile="http://www.opengis.net/def/
profile/ogc/2.0/gml-sf0" for resources that include feature content,

— application/xml for all other resources.
Requirement
40

/req/gmlsf0/content

A Table 4 specifies the XML document root element that the server shall return in a
200-response for each resource.

B Every representation of a feature shall conform to the GML Simple Features Profile, Level 0
and be substitutable for gml:AbstractFeature.

C The schema of all responses with a root element in the core namespace shall validate against
the OGC API Features Core XML Schema.

Requirement
41

/req/gmlsf0/headers

A If a property timeStamp is included in the response, its value shall be reported using the
HTTP header named Date (see RFC 7231:2014, 7.1.1.2).

B If a property numberMatched is included in the response, its value SHALL be reported using
an HTTP header named OGC-NumberMatched.

C If a property numberReturned is included in the response, its value SHALL be reported using
an HTTP header named OGC-NumberReturned.

D If links are included in the response, each link SHALL be reported using an HTTP header
named Link (see RFC 8288:2018, Clause 3).

Table	4	—	Media	types	and	XML	elements	for	each	resource

Resource Path XML	root	element
Landing page / core:LandingPage

Conformance
declaration

/conformance core:ConformsTo

Feature
collections

/collections core:Collections

Feature
collection

/collections/{collectionId} core:Collections, with just
one entry for the collection
collectionId

Features /collections/{collectionId}/items sf:FeatureCollection

Feature /collections/{collectionId}/items/{featureId} substitutable for
gml:AbstractFeature

The namespace prefixes used above and in the OGC API Features Core XML schemas are:

— core: http://www.opengis.net/ogcapi-features-1/1.0

34

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

http://www.opengis.net/spec/ogcapi-features-1/1.0/req/gmlsf0
http://www.opengis.net/ogcapi-features-1/1.0

— sf: http://www.opengis.net/ogcapi-features-1/1.0/sf

— gml: http://www.opengis.net/gml/3.2

— atom: http://www.w3.org/2005/Atom

— xlink: http://www.w3.org/1999/xlink

The mapping of the content from the responses specified in the Core requirements class to the XML is
straightforward. All links have to be encoded as HTTP header Link.

See 6.3 for links to example responses in XML.

8.5	 Requirements	class	"Geography	Markup	Language	(GML),	Simple	Features	Profile,	
Level 2"

The difference between this requirements class and the Level 0 requirements class is that non-spatial
feature properties are not restricted to atomic values (e.g. strings, numbers).

Requirements class
http:// www .opengis .net/ spec/ ogcapi -features -1/ 1 .0/ req/ gmlsf2
Target type Web API
Dependency Requirements Class "Core"
Dependency Geography Markup Language (GML), Simple Features Profile, Level 2
Requirement
42

/req/gmlsf2/definition

A 2 0 0 -responses of the ser ver shall support the following media t ypes:

— application/gml+xml; version=3.2; profile=http://www.opengis.net/def/
profile/ogc/2.0/gml-sf2 for resources that include feature content,

— application/xml for all other resources.
Requirement
43

/req/gmlsf2/content

A The requirement /req/gmlsf0/content applies, too, with the following changes:

— All references to media type application/gml+xml; version=3.2;
profile="http://www.opengis.net/def/profile/ogc/2.0/gml-sf0" are replaced
by application/gml+xml; version=3.2; profile=http://www.opengis.net/def/
profile/ogc/2.0/gml-sf2.

— All references to "GML Simple Features Profile, Level 0" are replaced by "GML
Simple Features Profile, Level 2".

Requirement
44

/req/gmlsf2/headers

A The requirement /req/gmlsf0/headers applies.

35

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

http://www.opengis.net/ogcapi-features-1/1.0/sf
http://www.opengis.net/gml/3.2
http://www.w3.org/2005/Atom
http://www.w3.org/1999/xlink
http://www.opengis.net/spec/ogcapi-features-1/1.0/req/gmlsf2
http://www.opengis.net/def/profile/ogc/2.0/gml-sf2
http://www.opengis.net/def/profile/ogc/2.0/gml-sf2

9 Requirements class "OpenAPI 3.0"

9.1 Basic requirements

Servers conforming to this requirements class define their API by an OpenAPI Document.

Requirements class
http:// www .opengis .net/ spec/ ogcapi -features -1/ 1 .0/ req/ oas30
Target type Web API
Dependency Requirements Class "Core"
Dependency OpenAPI Specification 3.0
Requirement
45

/req/oas30/oas-definition-1

A An OpenAPI definition in JSON using the media type
application/vnd.oai.openapi+json;version=3.0 and a HTML version of the API
definition using the media type text/html SHALL be available.

The requirements /req/core/root-success and /req/core/api-definition-success in Core require that
the API definition documents are referenced from the landing page.

Requirement 46 /req/oas30/oas-definition-2
A The JSON representation shall conform to the OpenAPI Specification, version 3.0.

OpenAPI definitions can be created using different approaches. A typical example is the representation
of the feature collections. One approach is to use a path parameter collectionId, i.e., the API definition
has only a single path entry for all feature collections. Another approach is to explicitly define each
feature collection in a separate path and without a path parameter, which allows to specify filter
parameters or explicit feature schemas per feature collection. Both approaches are valid.

Requirement 47 /req/oas30/oas-impl
A The server shall implement all capabilities specified in the OpenAPI definition.

9.2	 Complete	definition

Requirement 48 /req/oas30/completeness
A The OpenAPI definition shall specify for each operation all HTTP Status Codes and Re-

sponse Objects that the server uses in responses.
B This includes the successful execution of an operation as well as all error situations that

originate from the server.

Note that servers that, for example, are access-controlled (see Security), support web cache validation,
CORS or that use HTTP redirection will make use of additional HTTP status codes beyond regular codes
such as 200 for successful GET requests and 400, 404 or 500 for error situations. See HTTP status codes.

It is possible for Clients to receive responses not documented in the OpenAPI definition. For example,
additional errors may occur in the transport layer outside of the server.

36

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

http://www.opengis.net/spec/ogcapi-features-1/1.0/req/oas30

9.3 Exceptions

Requirement 49 /req/oas30/exceptions-codes
A For error situations that originate from the server, the API definition shall cover all appli-

cable HTTP Status Codes.

EXAMPLE 1 An exception response object definition.

description: An error occurred.
content:
 application/json:
 schema:
 $ref: http://schemas.opengis.net/ogcapi/features/part1/1.0/openapi/schemas/
exception.yamltext/html:
 schema:
 type: string

9.4 Security

Requirement 50 /req/oas30/security
A For cases where the operations of the server are access-controlled, the security scheme(s)

shall be documented in the OpenAPI definition.

The OpenAPI specification currently supports the following security schemes:

— HTTP authentication,

— an API key (either as a header or as a query parameter),

— OAuth2’s common flows (implicit, password, application and access code) as defined in RFC 6749, and

— OpenID Connect Discovery.

9.5 Features

Recommendation 18 /rec/oas30/f-key-properties
A The schema for the Response Objects of the HTTP GET operation for features should

include key feature properties of the features in that feature collection.
This is particularly helpful if filter parameters are defined for the collection
(see recommendation /rec/core/fc-filters).

10 Media types

JSON media types that would typically be used in a server that supports JSON are:

— application/geo+json for feature collections and features, and

— application/json for all other resources.

XML media types that would typically occur in a server that supports XML are:

— application/gml+xml;version=3.2 for any GML 3.2 feature collections and features,

— application/gml+xml;version=3.2;profile="http://www.opengis.net/def/profile/ogc/2.0/
gml-sf0" for GML 3.2 feature collections and features conforming to the GML Simple Feature Level
0 profile,

— application/gml+xml;version=3.2;profile=http://www.opengis.net/def/profile/ogc/2.0/
gml-sf2 for GML 3.2 feature collections and features conforming to the GML Simple Feature Level 2
profile, and

37

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

http://www.opengis.net/def/profile/ogc/2.0/gml-sf2
http://www.opengis.net/def/profile/ogc/2.0/gml-sf2

— application/xml for all other resources.

The typical HTML media type for all "web pages" in a server would be text/html.

The media type for an OpenAPI 3.0 definition is application/vnd.oai.openapi+json;version=3.0
(JSON) or .application/vnd.oai.openapi;version=3.0 (YAML).

NOTE The OpenAPI media types have not been registered yet with IANA and can change in the future.

11 Security considerations

11.1 General

A Web API is a powerful tool for sharing information and analysis resources. It also provides many
avenues for unscrupulous users to attack those resources. Designers and developers of Web APIs should
be familiar with the potential vulnerabilities and how to address them.

A valuable resource is the Common Weakness Enumeration (CWE) registry at http:// cwe .mitre .org/
data/ index .html. The CWE is organized around three views: Research, Architectural, and Development.

— Research: facilitates research into weaknesses and can be leveraged to systematically identify
theoretical gaps within CWE.

— Architectural: organizes weaknesses according to common architectural security tactics. It is
intended to assist architects in identifying potential mistakes that can be made when designing
software.

— Development: organizes weaknesses around concepts that are frequently used or encountered in
software development.

API developers should focus on the Development view. These vulnerabilities primarily deal with the
details of software design and implementation.

API designers should focus primarily on the Architectural view. However, there are critical
vulnerabilities described in the Development view which are also relevant to API design. Vulnerabilities
described under the following categories are particularly important:

— Pathname Traversal and Equivalence Errors;

— Channel and Path Errors;

— Web Problems.

Many of the vulnerabilities described in the CWE are introduced through the HTTP protocol. API
designers and developers should be familiar with how the HTTP 1.1 addresses these vulnerabilities.
This information can be found in the “Security Considerations” sections of the IETF RFCs 7230 to 7235.

The following subclauses describe some of the most serious vulnerabilities which can be mitigated by
the API designer and developer. These are high-level generalizations of the more detailed vulnerabilities
described in the CWE.

11.2 Multiple access routes

APIs deliver a representation of a resource. OGC APIs can deliver multiple representations (formats) of
the same resource. An attacker might find that information which is prohibited in one representation
can be accessed through another. API designers must take care that the access controls on their

38

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

http://cwe.mitre.org/data/index.html
http://cwe.mitre.org/data/index.html

resources are implemented consistently across all representations. That does not mean that they have
to be the same. For example:

— HTML vs. GeoTIFF: The HTML representation may consist of a text description of the resource
accompanied by a thumbnail image. This has less information than the GeoTIFF representation and
may be subject to more liberal access policies.

— Data Centric Security: Techniques to embed access controls into the representation itself. A GeoTIFF
with Data Centric Security would have more liberal access policies than a GeoTIFF without.

Bottom Line: the information content of the resources exposed by an API shall be protected to the same
level across all access routes.

11.3 Multiple servers

The implementation of an API may span a number of servers. Each server is an entry point into the API.
Without careful management, information which is not accessible through one server can be accessible
through another.

Bottom Line: Understand the information flows through your API and verify that information is
properly protected along all access paths.

11.4 Path manipulation on GET

RFC 2626:1999, section 15.2 states that if an HTTP server translates HTTP URIs directly into file
system calls, the server has to take special care not to serve files that were not intended to be delivered
to HTTP clients. The threat is that an attacker could use the HTTP path to access sensitive data, such as
password files, which could be used to further subvert the server.

Bottom Line: Validate all GET URLs to make sure they are not trying to access resources they should
not have access to.

11.5 Path manipulation on PUT and POST

A transaction operation adds new or updates existing resources on the API. This capability provides a
whole new set of tools to an attacker.

Many of the resources exposed through an OGC API include hyperlinks to other resources. API clients
follow these hyperlinks to access new resources or alternate representations of a resource. Once a
client authenticates to an API, they tend to trust the data returned by that API. However, a resource
posted by an attacker could contain hyperlinks which contain an attack. For example, the link to an
alternate representation could require the client to re-authenticate prior to passing them on to the
original destination. The client sees the representation they asked for and the attacker collects the
clients’ authentication credentials.

Bottom Line: APIs which support transaction operations should validate that an update does not
contain any malignant content prior to exposing it through the API.

39

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

Annex A
(normative)

Abstract	test	suite

A.1 General

OGC API Features is not a Web Service in the traditional sense. Rather, it defines the behaviour and
content of a set of Resources exposed through a Web Application Programming Interface (Web API).
Therefore, an API may expose resources in addition to those defined by the standard. A test engine
must be able to traverse the API, identify and validate test points, and ignore resource paths which are
not to be tested.

A.2 Conformance class core

Conformance class
http:// www .opengis .net/ spec/ ogcapi -features -1/ 1 .0/ conf/ core
Target type Web API
Requirements class Requirements Class “Core”

A.2.1 General tests

A.2.1.1 HTTP

Abstract	test	1 /conf/core/http
Test purpose Validate that the resource paths advertised through the API conform with HTTP 1.1 and,

where appropriate, TLS.
Requirement /req/core/http
Test method 1. All compliance tests shall be configured to use the HTTP 1.1 protocol exclusively.

2. For APIs which support HTTPS, all compliance tests shall be configured to use HTTP
over TLS (RFC 2818) with their HTTP 1.1 protocol.

A.2.1.2 CRS 84

Abstract	test	2 /conf/core/crs84
Test purpose Validate that all spatial geometries provided through the API are in the CRS84 coordinate

reference system unless otherwise requested by the client.
Requirement /req/core/crs84
Test method 1. Do not specify a coordinate reference system in any request. All spatial data should be

in the CRS84 reference system.

2. Validate retrieved spatial data using the CRS84 reference system.

A.2.2 Landing page {root}/

Abstract	test	3 /conf/core/root-op
Test purpose Validate that a landing page can be retrieved from the expected location.
Requirement /req/core/root-op

40

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/core

Test method 1. Issue an HTTP GET request to the URL {root}/

2. Validate that a document was returned with a status code 200

3. Validate the contents of the returned document using test /conf/core/root-
success.

Abstract	test	4 /conf/core/root-success
Test purpose Validate that the landing page complies with the required structure and contents.
Requirement /req/core/root-success
Test method Validate the landing page for all supported media types using the resources and

tests identified in Table 5.
For formats that require manual inspection, perform the following:
a. Validate that the landing page includes a "service-desc" and/or "service-doc"

link to an API Definition;

b. Validate that the landing page includes a "conformance" link to the conformance
class declaration;

c. Validate that the landing page includes a "data" link to the Feature contents.

The landing page may be retrieved in a number of different formats. Table A.1 identifies the applicable
schema document for each format and the test to be used to validate the landing page against that
schema. All supported formats should be exercised.

Table	A.1	—	Schema	and	Tests	for	Landing	Pages

Format Schema document Test ID
HTML landingPage.yaml /conf/html/content
GeoJSON landingPage.yaml /conf/geojson/content
GMLSF0 core.xsd, element core: LandingPage /conf/gmlsf0/content
GMLSF2 core.xsd, element core: LandingPage /conf/gmlsf2/content

A.2.3	 API	definition	path	{root}/api	(link)

Abstract	test	
5

/conf/core/api-definition-op

Test purpose Validate that the API Definition document can be retrieved from the expected location.
Requirement /req/core/api-definition-op
Test method 1. Construct a path for each API Definition link on the landing page.

2. Issue a HTTP GET request on each path.

3. Validate that a document was returned with a status code 200.

4. Validate the contents of the returned document using test /conf/core/api-
definition-success.

Abstract	test	
6

/conf/core/api-definition-success

Test purpose Validate that the API Definition complies with the required structure and contents.
Requirement /req/core/api-definition-success
Test method Validate the API Definition document against an appropriate schema document.

41

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

A.2.4 Conformance path {root}/conformance

Abstract	test	7 /conf/core/conformance-op
Test purpose Validate that a Conformance Declaration can be retrieved from the expected location.
Requirement /req/core/conformance-op
Test method 1. Construct a path for each "conformance" link on the landing page as well as for

the {root}/conformance path.

2. Issue an HTTP GET request on each path.

3. Validate that a document was returned with a status code 200.

4. Validate the contents of the returned document using test /conf/core/
conformance-success.

Abstract	test	8 /conf/core/conformance-success
Test purpose Validate that the Conformance Declaration response complies with the required

structure and contents.
Requirement /req/core/conformance-success
Test method 1. Validate the response document against OpenAPI 3.0 schema confClasses.yaml.

2. Validate that the document includes the conformance class "http:// www .opengis
.net/ spec/ ogcapi -features -1/ 1 .0/ conf/ core".

3. Validate that the document lists all OGC API conformance classes that the API
implements.

A.2.5 Feature collections {root}/collections

Abstract	test	9 /conf/core/fc-md-op
Test purpose Validate that information about the Collections can be retrieved from the ex-

pected location.
Requirement /req/core/fc-md-op
Test method 1. Issue an HTTP GET request to the URL {root}/collections.

2. Validate that a document was returned with a status code 200.

3. Validate the contents of the returned document using test /conf/core/fc-md-
success.

Abstract	test	10 /conf/core/fc-md-success
Test purpose Validate that the Collections content complies with the required structure and

contents.
Requirement /req/core/fc-md-success, /req/core/crs84
Test method 1. Validate that all response documents comply with /conf/core/fc-md-links.

2. Validate that all response documents comply with /conf/core/fc-md-items.

3. In case the response includes a "crs" property, validate that the first value is
either "http:// www. opengis. net/ def/ crs/ OGC/ 1. 3/ CRS84" or
"http://www .opengis. net/ def/ crs/ OGC/ 0/ CRS84h".

4. Validate the Collections content for all supported media types using the
resources and tests identified in Table 6.

The Collections content may be retrieved in a number of different formats. Table A.2 identifies the
applicable schema document for each format and the test to be used to validate the collections content
against that schema. All supported formats should be exercised.

42

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/core
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/core
http://www.opengis.net/def/crs/OGC/1.3/CRS84
http://www.opengis.net/def/crs/OGC/0/CRS84h
http://www.opengis.net/def/crs/OGC/0/CRS84h

Table	A.2	—	Schema	and	tests	for	collections	content

Format Schema document Test ID
HTML collections.yaml /conf/html/content
GeoJSON collections.yaml /conf/geojson/content
GMLSF0 core.xsd, element core:Collections /conf/gmlsf0/content
GMLSF2 core.xsd, element core:Collections /conf/gmlsf2/content

Abstract	test	11 /conf/core/fc-md-links
Test purpose Validate that the required links are included in the Collections Metadata document.
Requirement /req/core/fc-md-links
Test method Verify that the response document includes:

1. a link to this response document (relation: self),

2. a link to the response document in every other media type supported by the
server (relation: alternate).

Verify that all links include the rel and type link parameters.

Abstract	test	12 /conf/core/fc-md-items
Test purpose Validate that each collection provided by the server is described in the Collections

Metadata.
Requirement /req/core/fc-md-links
Test method 1. Verify that there is an entry in the collections array of the Collections Metadata

for each feature collection provided by the API.

2. Verify that each collection entry includes an identifier.

3. Verify that each collection entry includes links in accordance with /conf/core/
fc-md-items-links.

4. Verify that if the collection entry includes an extent property, that that property
complies with /conf/core/fc-md-extent.

5. Validate each collection entry for all supported media types using the resources
and tests identified in Table 7.

The collection entries may be encoded in a number of different formats. Table A.3 identifies the
applicable schema document for each format and the test to be used to validate the collection entries
against that schema. All supported formats should be exercised.

Table	A.3	—	Schema	and	Tests	for	Collection	Entries

Format Schema document Test ID
HTML collection.yaml Manual Inspection
GeoJSON collection.yaml /conf/geojson/content
GMLSF0 core.xsd, element core:Collections /conf/gmlsf0/content
GMLSF2 core.xsd, element core:Collections /conf/gmlsf2/content

43

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

Abstract	test	13 /conf/core/fc-md-items-links
Test purpose Validate that each Feature Collection metadata entry in the Collections Metadata

document includes all required links.
Requirement /req/core/fc-md-items-links
Test method 1. Verify that each Collection item in the Collections Metadata document includes

a link property for each supported encoding.

2. Verify that the links properties of the collection include an item for each
supported encoding with a link to the features resource (relation: items).

3. Verify that all links include the rel and type link parameters.

Abstract	test	14 /conf/core/fc-md-extent
Test purpose Validate the extent property, if it is present.
Requirement /req/core/fc-md-extent
Test method 1. Verify that the extent, if present, provides bounding boxes that include all

spatial geometries in this collection.

2. Verify that the extent, if present, provides time intervals that include all
temporal geometries in this collection. A temporal boundary of null indicates
an open time interval.

A.2.6 Feature collection {root}/collections/{collectionId}

Abstract	test	15 /conf/core/sfc-md-op
Test purpose Validate that the Collection content can be retrieved from the expected location.
Requirement /req/core/sfc-md-op
Test method For every Feature Collection described in the Collections content, issue an HTTP

GET request to the URL /collections/{collectionId} where {collectionId} is
the id property for the collection. Validate that a Collection was returned with a
status code 200. Validate the contents of the returned document using test /conf/
core/sfc-md-success.

Abstract	test	16 /conf/core/sfc-md-success
Test purpose Validate that the Collection content complies with the required structure and

contents.
Requirement /req/core/sfc-md-success
Test method Verify that the content of the response is consistent with the content for this

Feature Collection in the /collections response, i.e. the values for id, title,
description and extent are identical.

A.2.7 Features {root}/collections/{collectionId}/items

Abstract	Test	17 /conf/core/fc-op
Test purpose Validate that features can be identified and extracted from a Collection using

query parameters.
Requirement /req/core/fc-op

44

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

Test method 1. For every feature collection identified in Collections, issue an HTTP
GET request to the URL /collections/{collectionId}/items where
{collectionId} is the id property for a Collection described in the Collections
content.

2. Validate that a document was returned with a status code 200.

3. Validate the contents of the returned document using test /conf/core/fc-
response.

Repeat these tests using the following parameter tests:
Bounding	box:
— Parameter /conf/core/fc-bbox-definition

— Response /conf/core/fc-bbox-response
Limit:
— Parameter /conf/core/fc-limit-definition

— Response /conf/core/fc-limit-response
DateTime:
— Parameter /conf/core/fc-time-definition

— Response /conf/core/fc-time-response
Error conditions:
— Query Invalid /conf/core/query-param-invalid

— Query Unknown /conf/core/query-param-unknown
Execute requests with combinations of the "bbox" and "datetime" query parame-
ters and verify that only features are returned that match both selection criteria.

Abstract	test	18 /conf/core/fc-bbox-definition
Test purpose Validate that the bounding box query parameters are constructed correctly.
Requirement /req/core/fc-bbox-definition
Test method Verify that the bbox query parameter complies with the following definition

(using an OpenAPI Specification 3.0 fragment):
name: bbox
in: query
required: false
schema:
 type: array
 minItems: 4
 maxItems: 6
 items:
 type: number
style: form
explode: false

Use a bounding box with four numbers in all requests:
— Lower left corner, WGS 84 longitude;

— Lower left corner, WGS 84 latitude;

— Upper right corner, WGS 84 longitude;

— Upper right corner, WGS 84 latitude.

45

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

Abstract	test	19 /conf/core/fc-bbox-response
Test purpose Validate that the bounding box query parameters are processed correctly.
Requirement /req/core/fc-bbox-response
Test method 1. Verify that only features that have a spatial geometry that intersects the

bounding box are returned as part of the result set.

2. Verify that the bbox parameter matched all features in the collection that
were not associated with a spatial geometry (this is only applicable for
datasets that include features without a spatial geometry).

3. Verify that the coordinate reference system of the geometries is WGS 84
longitude/latitude ("http:// www .opengis .net/ def/ crs/ OGC/ 1 .3/ CRS84" or
"http:// www .opengis .net/ def/ crs/ OGC/ 0/ CRS84h") since no parameter
bbox-crs was specified in the request.

Abstract	test	20 /conf/core/fc-limit-definition
Test purpose Validate that the bounding box query parameters are constructed correctly.
Requirement /req/core/fc-limit-definition
Test method Verify that the limit query parameter complies with the following definition (using

an OpenAPI Specification 3.0 fragment):

name:limit
in:query
required: false

type:integer
style:

NOTE The API can define values for "minimum", "maximum" and "default".

Abstract	test	21 /conf/core/fc-limit-response
Test purpose Validate that the limit query parameters are processed correctly.
Requirement /req/core/fc-limit-response
Test method 1. Count the Features which are on the first level of the collection. Any nested

objects contained within the explicitly requested items shall not be counted.

2. Verify that this count is not greater than the value specified by the limit
parameter.

3. If the API definition specifies a maximum value for limit parameter, verify
that the count does not exceed this maximum value.

Abstract	test	22 /conf/core/fc-time-definition
Test purpose Validate that the dateTime query parameters are constructed correctly.
Requirement /req/core/fc-time-definition
Test method Verify that the datetime query parameter complies with the following definition

(using an OpenAPI Specification 3.0 fragment):
name: datetime
in: query
required: false
schema:
 type: string
style: form
explode: false

46

schema:

explode: false
form

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

http://www.opengis.net/def/crs/OGC/1.3/CRS84
http://www.opengis.net/def/crs/OGC/0/CRS84h

Abstract	test	23 /conf/core/fc-time-response
Test purpose Validate that the dateTime query parameters are processed correctly.
Requirement /req/core/fc-time-response
Test method 1. Verify that only features that have a temporal geometry that intersects

the temporal information in the datetime parameter were included in the
result set.

2. Verify that all features in the collection that are not associated with a
temporal geometry are included in the result set.

3. Validate that the datetime parameter complies with the syntax described in
/req/core/fc-time-response.

Abstract	test	24 /conf/core/query-param-invalid
Test purpose Validate that the API correctly deals with invalid query parameters.
Requirement /req/core/query-param-invalid
Test method 1. Enter an HTTP request with an invalid query parameter.

2. Verify that the API returns the status code 400.
Abstract	test	25 /conf/core/query-param-unknown
Test purpose Validate that the API correctly deals with unknown query parameters.
Requirement /req/core/query-param-unknown
Test method 1. Enter an HTTP request with a query parameter that is not specified in the

API definition.

2. Verify that the API returns the status code 400.
Abstract	test	26 /conf/core/fc-response
Test purpose Validate that the Feature Collections complies with the require structure and

contents.
Requirement /req/core/fc-response
Test method 1. Validate that the type property is present and has a value of

FeatureCollection.

2. Validate that the features property is present and that it is populated with an
array of feature items.

3. Validate that only Features which match the selection criteria are included in
the Feature Collection.

4. If the links property is present, validate that all entries comply with /conf/
core/fc-links.

5. If the timeStamp property is present, validate that it complies with /conf/
core/fc-timeStamp.

6. If the numberMatched property is present, validate that it complies with /conf/
core/fc-numberMatched.

7. If the numberReturned property is present, validate that it complies with /
conf/core/fc-numberReturned.

8. Validate the collections content for all supported media types using the
resources and tests identified in Table 8.

The collections metadata may be retrieved in a number of different formats. Table A.4 identifies the
applicable schema document for each format and the test to be used to validate the feature collections
against that schema. All supported formats should be exercised.

47

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

Table	A.4	—	Schema	and	Tests	for	feature	collections

Format Schema document Test ID
HTML featureCollectionGeoJSON.yaml /conf/html/content
GeoJSON featureCollectionGeoJSON.yaml /conf/geojson/content
GMLSF0 core-sf.xsd, element sf:FeatureCollection /conf/gmlsf0/content
GMLSF2 core-sf.xsd, element sf:FeatureCollection /conf/gmlsf2/content

Supporting tests:

Abstract	test	27 /conf/core/fc-links
Test purpose Validate that the required links are included in the Collections document.
Requirement /req/core/fc-links, /req/core/fc-rel-type
Test method Verify that the response document includes:

1. a link to this response document (relation: self),

2. a link to the response document in every other media type supported by the
server (relation: alternate).

Verify that all links include the rel and type link parameters.
Abstract	test	28 /conf/core/fc-timeStamp
Test purpose Validate the timeStamp parameter returned with a Features response.
Requirement /req/core/fc-timeStamp
Test method Validate that the timeStamp value is set to the time when the response was

generated.
Abstract	test	29 /conf/core/fc-numberMatched
Test purpose Validate the numberMatched parameter returned with a Features response.
Requirement /req/core/fc-numberMatched
Test method Validate that the value of the numberMatched parameter is identical to the number

of features in the feature collections that match the selection parameters like bbox,
datetime or additional filter parameters.

Abstract test 30 /conf/core/fc-numberReturned
Test purpose Validate the numberReturned parameter returned with a Features response.
Requirement /req/core/fc-numberReturned
Test method Validate that the numberReturned value is identical to the number of features in the

response.

A.2.8 Feature

Abstract	test	31 /conf/core/f-op
Test purpose Validate that a feature can be retrieved from the expected location.
Requirement /req/core/f-op
Test method 1. For a sufficiently large subset of all features in a feature collection (path /

collections/{collectionId}), issue an HTTP GET request to the URL /
collections/{collectionId}/items/{featureId} where {collectionId} is the
id property for the collection and {featureId} is the id property of the feature.

2. Validate that a feature was returned with a status code 200.

3. Validate the contents of the returned feature using test /conf/core/f-success.

48

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

Abstract	test	32 /conf/core/f-success
Test purpose Validate that the Feature complies with the required structure and contents.
Requirement /req/core/f-success
Test method 1. Validate that the Feature includes all required link properties using /conf/

core/f-links

2. Validate the Feature for all supported media types using the resources and tests
identified in Table 9

The Features may be retrieved in a number of different formats. Table A.5 identifies the applicable
schema document for each format and the test to be used to validate the features against that schema.
All supported formats should be exercised.

Table	A.5	—	Schema	and	tests	for	features

Format Schema document Test ID
HTML featureGeoJSON.yaml /conf/html/content
GeoJSON featureGeoJSON.yaml /conf/geojson/content
GMLSF0 gml.xsd, element substituable for gml:AbstractFeature /conf/gmlsf0/content
GMLSF2 gml.xsd, element substituable for gml:AbstractFeature /conf/gmlsf2/content

Note that in the case of GMLSF0/GMLSF2 it is not sufficient to validate against gml.xsd as the feature
will be defined in a GML application schema. Determine the XML Schema Document for the namespace
of the feature to validate the XML document.

Supporting tests:

Abstract	test	33 /conf/core/f-links
Test purpose Validate that the required links are included in a Feature.
Requirement /req/core/f-links
Test method Verify that the returned Feature includes:

1. a link to this response document (relation: self),

2. a link to the response document in every other media type supported by the server
(relation: alternate),

3. a link to the feature collection that contains this feature (relation: collection).
Verify that all links include the rel and type link parameters.

49

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

A.3 Conformance class GeoJSON

Conformance class
http:// www .opengis .net/ spec/ ogcapi -features -1/ 1 .0/ conf/ geojson
Target type Web API
Requirements class Requirements class “GeoJSON”
Dependency Conformance class “Core”

A.3.1	 GeoJSON	definition

Abstract	test	34 /conf/geojson/definition
Test purpose Verify support for JSON and GeoJSON
Requirement /req/geojson/definition
Test method 1. A resource is requested with response media type of application/geo+json

2. All 200-responses shall support the following media types:
— application/geo+json for resources that include feature content, and
— application/json for all other resources.

A.3.2 GeoJSON content

Abstract	test	35 /conf/geojson/content
Test purpose Verify the content of a GeoJSON document given an input document and schema.
Requirement /req/geojson/content
Test method 1. Validate that the document is a GeoJSON document.

2. Validate the document against the schema using an JSON Schema validator.

A.4 Conformance class GML simple features level 0

Conformance class
http:// www .opengis .net/ spec/ ogcapi -features -1/ 1 .0/ conf/ gmlsf0
Target type Web API
Requirements
class

Requirements class “Geography Markup Language (GML), Simple Features Profile,
Level 0”

Dependency Conformance class “Core”

A.4.1	 GML	simple	features	0	definition

Abstract	test	36 /conf/gmlsf0/definition
Test purpose Verify support for GML Simple Features level 0
Requirement /req/gmlsf0/definition
Test method Verify that every 200-response of an operation of the API where XML was requested is

of media type application/gml+xml; profile="http://www.opengis.net/def/
profile/ogc/2.0/gml-sf0" (resources: Features and Feature) or application/xml
(all other resources)

50

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/geojson
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/gmlsf0

A.4.2 GML simple features 0 content

Abstract	test	37 /conf/gmlsf0/content
Test purpose Verify the content of an GML Simple Features 0 document given an input document and

schema.
Requirement /req/gmlsf0/content
Test method 1. For the resources "Features" and "Feature", validate that the document is a GML

Simple Features level 0 document.

2. Verify that the document has the expected root element.

3. Validate the document against the schema using an XML schema validator.

A.5 Conformance class GML simple features level 2

Conformance class
http:// www .opengis .net/ spec/ ogcapi -features -1/ 1 .0/ conf/ gmlsf2
Target type Web API
Requirements
class

Requirements class “Geography Markup Language (GML), Simple Features Profile,
Level 2”.

Dependency Conformance class “Core”

A.5.1	 GML	simple	features	2	definition

Abstract	test	38 /conf/gmlsf2/definition
Test purpose Verify support for GML Simple Features level 2.
Requirement /req/gmlsf2/definition
Test method Verify that every 200-response of an operation of the API where XML was request-

ed is of media type application/gml+xml; profile=http://www.opengis.
net/def/profile/ogc/2.0/gml-sf2 (resources: Features and Feature) or
application/xml (all other resources).

A.5.2 GML simple features 2 content

Abstract	test	39 /conf/gmlsf2/content
Test purpose Verify the content of an GML Simple Features level 2 document given an input document

and schema.
Requirement /req/gmlsf2/content
Test method 1. For the resources "Features" and "Feature", validate that the document is a GML

Simple Features level 2 document.

2. Verify that the document has the expected root element.

3. Validate the document against the schema using an XML schema validator.

51

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/gmlsf2

A.6 Conformance class HTML

Conformance class
http:// www .opengis .net/ spec/ ogcapi -features -1/ 1 .0/ conf/ html
Target type Web API
Requirements class Requirements class “HTML”.
Dependency Conformance class “Core”.

A.6.1	 HTML	definition

Abstract	test	40 /conf/html/definition
Test purpose Verify support for HTML.
Requirement /req/html/definition
Test method Verify that every 200-response of every operation of the API where HTML was request-

ed is of media type text/html.

A.6.2 HTML content

Abstract	test	41 /conf/html/content
Test purpose Verify the content of an HTML document given an input document and schema.
Requirement /req/html/content
Test method 1. Validate that the document is an HTML 5 document.

2. Manually inspect the document against the schema.

A.7 Conformance class OpenAPI 3.0

Conformance class
http:// www .opengis .net/ spec/ ogcapi -features -1/ 1 .0/ conf/ oas30
Target type Web API
Requirements class Requirements class “OpenAPI Specification 3.0”.
Dependency Conformance class “Core”.

Abstract	test	42 /conf/oas30/completeness
Test purpose Verify the completeness of an OpenAPI document.
Requirement /req/oas30/completeness
Test method Verify that for each operation, the OpenAPI document describes all HTTP Status

Codes and Response Objects that the API uses in responses.
Abstract	test	43 /conf/oas30/exceptions-codes
Test purpose Verify that the OpenAPI document fully describes potential exception codes.
Requirement /req/oas30/exceptions-codes
Test method Verify that for each operation, the OpenAPI document describes all HTTP Status

Codes that may be generated.

52

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/html
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/oas30

Abstract	test	41 /conf/oas30/oas-definition-1
Test purpose Verify that JSON and HTML versions of the OpenAPI document are available.
Requirement /req/oas30/oas-definition-1
Test method 1. Verify that an OpenAPI definition in JSON is available using the media type

application/vnd.oai.openapi+json;version=3.0 and link relation service-desc.

2. Verify that an HTML version of the API definition is available using the media
type text/html and link relation service-doc.

Abstract	test	45 /conf/oas30/oas-definition-2
Test purpose Verify that the OpenAPI document is valid JSON.
Requirement /req/oas30/oas-definition-2
Test method Verify that the JSON representation conforms to the OpenAPI Specification, ver-

sion 3.0.
Abstract	test	46 /conf/oas30/oas-impl
Test purpose Verify that all capabilities specified in the OpenAPI definition are implemented by

the API.
Requirement /req/oas30/oas-impl
Test method 1. Construct a path from each URL template including all server URL options and

all enumerated path parameters.

2. For each path defined in the OpenAPI document, validate that the path performs
in accordance with the API definition and the API-Features standard.

Abstract	test	47 /conf/oas30/security
Test purpose Verify that any authentication protocols implemented by the API are documented in

the OpenAPI document.
Requirement /req/oas30/security
Test method 1. Identify all authentication protocols supported by the API.

2. Validate that each authentication protocol is described in the OpenAPI
document by a Security Schema Object and its use is specified by a Security
Requirement Object.

53

IS 18620 (Part 1) : 2024

ISO 19168-1 : 2020

Bibliography

[1] Ain’t Markup Language Y.A.M.L., [online, viewed 2020-03-16]. Edited by O. Ben-Kiki, C. Evans,
Ingy döt Net. Available at https:// yaml .org/

[2] Internet Engineering Task Force (IETF), RFC 3986:2005, Uniform	 Resource	 Identifier	
(URI): Generic Syntax [online]. Edited by T. Berners-Lee, R. Fielding, L. Masinter. [viewed 2020-
03-16]. Available at https:// tools .ietf .org/ rfc/ rfc3986 .txt

[3] Internet Assigned Numbers Authority (IANA), Link	Relation	Types [online, viewed 2020-
03-16], Available at https:// www .iana .org/ assignments/ link -relations/ link -relations .xml

[4] ISO 19142:2010, Geographic information — Web Feature Service

[5] Open Geospatial Consortium (OGC), OGC 09-025r2: Web	Feature	Service	2.0 [online]. Edited
by P. Vretanos. 2014 [viewed 2020-03-16]. Available at http:// docs .opengeospatial .org/ is/ 09
-025r2/ 09 -025r2 .html

[6] Open Geospatial Consortium (OGC) / World Wide Web Consortium (W3C): Spatial Data on the
Web	Best	Practices [online]. Edited by J. Tandy, L. van den Brink, P. Barnaghi. 2017 [viewed
2020-03-16]. Available at https:// www .w3 .org/ TR/ sdw -bp/

[7] World Wide Web Consortium, (W3C): Data	on	the	Web	Best	Practices [online]. Edited by
B.F. Lóscio, C. Burle, N. Calegari. 2017 [viewed 2020-03-16]. Available at https:// www .w3 .org/
TR/ dwbp/

[8] World Wide Web Consortium, (W3C): Data	 Catalog	 Vocabulary [online]. Edited by R.
Albertoni, D. Browning, S. Cox, A.G. Beltran, A. Perego, P. Winstanley. 2020 [viewed 2020-03-16].
Available at https:// www .w3 .org/ TR/ vocab -dcat/

[9] Open Geospatial Consortium (OGC), Welcome To The OGC APIs [online, viewed 2020-03-16].
Available at https:// www .ogcapi .org/

[10] ISO 8601-2, Date and time — Representations for information interchange — Part 2: Extensions

[11] Internet Engineering Task Force (IETF), RFC 2626:1999: The internet and the millenium
problem[online]. Edited by P. Nesser. [viewed 2020-06-04]. Available at https:// www .ietf .org/
rfc/ rfc2626 .txt

[12] Internet Engineering Task Force (IETF), RFC 7946: The GeoJSON Format [online]. Edited by
H. Butler, M. Daly, A. Doyle, S. Gillies, S. Hagen, T. Schaub. 2016 [viewed 2020-03-16]. Available
at https:// tools .ietf .org/ rfc/ rfc7946 .txt

[13] Open Geospatial Consortium (OGC), OGC 10-100r3: Geography	Markup	 Language	 (GML)	
Simple	 Features	 Profile [online]. Edited by L. van den Brink, C. Portele, P. Vretanos. 2012
[viewed 2020-03-16]. Available at http:// portal .opengeospatial .org/ files/ ?artifact _id = 42729

[14] schema.org, Schema.org [online, viewed 2020-03-16]. Available at https:// schema .org/ docs/
schemas .html

[15] WHATWG, HTML, Living Standard [online, viewed 2020-03-16]. Available at https:// html .spec
.whatwg .org/

54

IS 18620 (Part 1) : 2024
ISO 19168-1 : 2020

https://yaml.org/
https://tools.ietf.org/rfc/rfc3986.txt
https://www.iana.org/assignments/link-relations/link-relations.xml
http://docs.opengeospatial.org/is/09-025r2/09-025r2.html
http://docs.opengeospatial.org/is/09-025r2/09-025r2.html
https://www.w3.org/TR/sdw-bp/
https://www.w3.org/TR/dwbp/
https://www.w3.org/TR/dwbp/
https://www.w3.org/TR/vocab-dcat/
https://www.ogcapi.org/
https://tools.ietf.org/rfc/rfc7946.txt
http://portal.opengeospatial.org/files/?artifact_id=42729
https://schema.org/docs/schemas.html
https://schema.org/docs/schemas.html
https://html.spec.whatwg.org/
https://html.spec.whatwg.org/

Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 2016 to promote harmonious

development of the activities of standardization, marking and quality certification of goods and attending to

connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without

the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the

standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to

copyright be addressed to the Head (Publication & Sales), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed

periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are

needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards

should ascertain that they are in possession of the latest amendments or edition by referring to the website-

www.bis.gov.in or www.standardsbis.in.

This Indian Standard has been developed from Doc No.: LITD 22 (22760).

Amendments Issued Since Publication

Amend No. Date of Issue Text Affected

BUREAU OF INDIAN STANDARDS

Headquarters:

Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002

Telephones: 2323 0131, 2323 3375, 2323 9402 Website: www.bis.gov.in

Regional Offices: Telephones

Central : 601/A, Konnectus Tower -1, 6th Floor,

DMRC Building, Bhavbhuti Marg, New

Delhi 110002

Eastern : 8th Floor, Plot No 7/7 & 7/8, CP Block, Sector V,

Salt Lake, Kolkata, West Bengal 700091

Northern : Plot No. 4-A, Sector 27-B, Madhya Marg,

Chandigarh 160019

2323 7617

2367 0012

2320 9474

265 9930

 Southern : C.I.T. Campus, IV Cross Road, Taramani, Chennai 600113 2254 1442

 2254 1216

Western : Plot No. E-9, Road No.-8, MIDC, Andheri

(East), Mumbai 400093

2821 8093

Branches : AHMEDABAD. BENGALURU. BHOPAL. BHUBANESHWAR. CHANDIGARH. CHENNAI.

COIMBATORE. DEHRADUN. DELHI. FARIDABAD. GHAZIABAD. GUWAHATI.

HIMACHAL PRADESH. HUBLI. HYDERABAD. JAIPUR. JAMMU & KASHMIR.

JAMSHEDPUR. KOCHI. KOLKATA. LUCKNOW. MADURAI. MUMBAI. NAGPUR.

NOIDA. PANIPAT. PATNA. PUNE. RAIPUR. RAJKOT. SURAT. VISAKHAPATNAM.

Published by BIS, New Delhi

http://www.bis.gov.in/

	NATIONAL FOREWORD
	Introduction

	1 Scope
	2 Normative references
	3 Terms, definitions and abbreviated terms
	3.1 Abbreviated terms
	4 Conformance
	5 Conventions
	5.1 Identifiers
	5.2 Link relations
	5.3 Use of HTTPS
	5.4 HTTP URIs
	5.5 API definition
	5.5.1 General remarks
	5.5.2 Role of OpenAPI
	5.5.3 References to OpenAPI components in normative statements
	5.5.4 Paths in OpenAPI definitions
	5.5.5 Reusable OpenAPI components
	6 Overview
	6.1 Design considerations
	6.2 Encodings
	6.3 Examples
	7 Requirements class "Core"
	7.1 Overview
	7.2 API landing page
	7.2.1 Operation
	7.2.2 Response
	7.2.3 Error situations
	7.3 API definition
	7.3.1 Operation
	7.3.2 Response
	7.3.3 Error situations
	7.4 Declaration of conformance classes
	7.4.1 Operation
	7.4.2 Response
	7.4.3 Error situations
	7.5 HTTP 1.1
	7.5.1 HTTP status codes
	7.6 Unknown or invalid query parameters
	7.7 Web caching
	7.8 Support for cross-origin requests
	7.9 Encodings
	7.10 String internationalization
	7.11 Coordinate reference systems
	7.12 Link headers
	7.13 Feature collections
	7.13.1 Operation
	7.13.2 Response
	7.13.3 Error situations
	7.14 Feature collection
	7.14.1 Operation
	7.14.2 Response
	7.14.3 Error situations
	7.15 Features
	7.15.1 Operation
	7.15.2 Parameter limit
	7.15.3 Parameter bbox
	7.15.4 Parameter datetime
	7.15.5 Parameters for filtering on feature properties
	7.15.6 Combinations of filter parameters
	7.15.7 Response
	7.15.8 Error situations
	7.16 Feature
	7.16.1 Operation
	7.16.2 Response
	7.16.3 Error situations
	8 Requirements classes for encodings
	8.1 Overview
	8.2 Requirements Class "HTML"
	8.3 Requirements Class "GeoJSON"
	8.4 Requirements Class "Geography Markup Language (GML), Simple Features Profile, Level 0"
	8.5 Requirements class "Geography Markup Language (GML), Simple Features Profile, Level 2"
	9 Requirements class "OpenAPI 3.0"
	9.1 Basic requirements
	9.2 Complete definition
	9.3 Exceptions
	9.4 Security
	9.5 Features
	10 Media types
	11 Security considerations
	11.1 General
	11.2 Multiple access routes
	11.3 Multiple servers
	11.4 Path manipulation on GET
	11.5 Path manipulation on PUT and POST
	Annex A (normative) Abstract test suite
	Bibliography

