
 IS/ISO/IEC 29192-8 : 2022

सूचना सुरक्षा — लाइटवेट क्रिप्टोग्राफी

भाग 8 प्रामाक्रिक एक्ररिप्शन

Information Security — Lightweight
Cryptography

Part 8 Authenticated Encryption

ICS 35.030

 BIS 2023

ISO/IEC 2022

भारतीय मानक ब्यरूो

BUREAU OF INDIAN STANDARDS

मानक भवन, 9 बहादरु शाह ज़फर मार्ग, नई ददल्ली - 110002
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG

NEW DELHI - 110002

www.bis.gov.in www.standardsbis.in

October 2023 Price Group 9

भारतीय मानक

Indian Standard

http://www.bis.org.in/
http://www.standardsbis.in/

Information Systems Security and Privacy Sectional Committee, LITD 17

NATIONAL FOREWORD

This Indian Standard (Part 8) which is identical to ISO/IEC 29192-8 : 2022 ‘Information security —
Lightweight cryptography — Part 8: Authenticated encryption’ issued by the International Organization
for Standardization (ISO) and International Electrotechnical Commission (IEC) was adopted by the
Bureau of Indian Standards on the recommendations of the Information Systems Security and Privacy
Sectional Committee and approval of the Electronics and Information Technology Division Council.

This Indian Standard is published in several parts. The other parts in this series are:

Part 1
Part 2
Part 3
Part 4
Part 5
Part 6
Part 7

 General
 Block ciphers
 Stream ciphers
 Mechanisms using asymmetric techniques
 Hash-functions
Message authentication codes (MACs)
Broadcast authentication protocols

The text of ISO/IEC standard has been approved as suitable for publication as an Indian Standard
without deviations. Certain conventions are however not identical to those used in Indian Standards.
Attention is particularly drawn to the following:

a) Wherever the words ‘International Standard’ appears referring to this standard, they should be
read as ‘Indian Standard’; and

b) Comma (,) has been used as a decimal marker while in Indian Standards, the current Practice
is to use a point (.) as the decimal marker.

LITD1
Comment on Text
It should be "jointly was" instead of "was".

Introduction ...iv
1 Scope ... 1
2 Normative references ... 1
3	 	Terms	and	definitions .. 1
4 Symbols and abbreviated terms.. 3
5 Grain-128A .. 5

5.1 Introduction to Grain-128A ... 5
5.2 Internal state .. 6
5.3 Encryption and MAC generation procedure .. 7
5.4 Decryption and MAC verification procedure .. 8
5.5 Sub-functions ... 9

5.5.1 Initialization function Init ... 9
5.5.2 MAC Initialization function Imac .. 10
5.5.3 Next-state function Next .. 11
5.5.4 Pre-output function Prt .. 11
5.5.5 Keystream function Strm .. 11
5.5.6 Function Upmac ... 12
5.5.7 Function Fmac ... 12

Annex A (normative)	Object	identifiers ..13
Annex B (informative) Numerical examples ..14
Annex C (informative) Security considerations ...16
Bibliography ...17

iii

Contents Page

IS/ISO/IEC 29192-8 : 2022

Introduction

This document specifies authenticated encryption tailored for implementation in constrained
environments. Data transmitted from one party to another is often vulnerable against various attacks
such as eavesdropping or malicious alterations. Similarly, data at rest usually requires protection.

Encryption mechanisms as specified in the ISO/IEC 18033 series and ISO/IEC 10116 provide solutions
against eavesdropping. Integrity protection is usually guaranteed with a message authentication code
(MAC) algorithm, such as those defined in the ISO/IEC 9797 series. In addition, ISO/IEC 19772 describes
several authenticated encryption mechanisms, that is to say mechanisms that efficiently combine the
encryption and MAC operations.

Nonetheless, some applications including radiofrequency identification (RFID) tags, smart cards, secure
batteries, health-care systems and sensor networks, encounter several constraints. Chip area, energy
consumption, execution time, program code, RAM size and communication bandwidth are typically
critical for the applications listed above. The ISO/IEC 29192 series specifies lightweight cryptography
suitable for these constrained environments. ISO/IEC 29192-2 and ISO/IEC 29192-3 respectively define
lightweight block ciphers and stream ciphers. Both can be used to provide confidentiality. Regarding
protection against alteration, lightweight MAC algorithms are defined in ISO/IEC 29192-6.

In this document, lightweight authenticated encryption mechanisms are defined. Similar to
ISO/IEC 19772, they provide confidentiality, integrity and optionally data origin authentication.
They differ from those specified in the aforementioned document, in that they have been specifically
designed for constrained environments.

This document specifies a unique method. In the future, other methods may be added to this document,
including lightweight authenticated encryption with additional data (AEAD) methods, based either on
block ciphers or stream ciphers.

iv

IS/ISO/IEC 29192-8 : 2022

1 Scope

This document specifies one method for authenticated encryption suitable for applications requiring
lightweight cryptographic mechanisms.

This method processes a data string with the following security objectives:

a) data confidentiality, i.e. protection against unauthorized disclosure of data,

b) data integrity, i.e. protection that enables the recipient of data to verify that it has not been
modified.

Optionally, this method can provide data origin authentication, i.e. protection that enables the recipient
of data to verify the identity of the data originator.

The method specified in this document is based on a lightweight stream cipher, and requires the parties
of the protected data to share a secret key for this algorithm. Key management is outside the scope of
this document.

NOTE Key management techniques are defined in the ISO/IEC 11770 series.

2 Normative references

There are no normative references for this document.

3	 	Terms	and	definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at https:// www .iso .org/ obp

— IEC Electropedia: available at https:// www .electropedia .org/

3.1
authenticated encryption
(reversible) transformation of data by a cryptographic algorithm to produce ciphertext that cannot be
altered by an unauthorized entity without detection, i.e. it provides data confidentiality, data integrity,
and optionally data origin authentication

[SOURCE: ISO/IEC 19772:2020, 3.2, modified — The definition was slightly modified to make the data
origin authentication optional.]

1

Indian Standard

INFORMATION SECURITY — LIGHTWEIGHT CRYPTOGRAPHY

PART 8 AUTHENTICATED ENCRYPTION

IS/ISO/IEC 29192-8 : 2022

https://www.iso.org/obp/ui
https://www.electropedia.org/

3.2
authenticated encryption mechanism
cryptographic technique used to protect the confidentiality, guarantee the integrity of data and
optionally the data origin and which consists of two component processes: an encryption (3.6) algorithm
and a decryption (3.5) algorithm

[SOURCE: ISO/IEC 19772:2020, 3.3, modified — The definition was slightly modified to make the data
origin authentication optional.]

3.3
ciphertext
data which has been transformed to hide its information content

[SOURCE: ISO/IEC 18033-1:2021, 3.7]

3.4
data integrity
property that data has not been altered or destroyed in an unauthorized manner

[SOURCE: ISO/IEC 9797-1:2011, 3.4]

3.5
decryption
reversal of a corresponding encryption (3.6)

[SOURCE: ISO/IEC 9797-1:2011, 3.5]

3.6
encryption
reversible operation by a cryptographic algorithm converting data into ciphertext (3.3) so as to hide the
information content of the data

[SOURCE: ISO/IEC 9797-1:2011, 3.6]

3.7
initialization value
value used in defining the starting point of an encryption (3.6) process

[SOURCE: ISO/IEC 18033-4:2011, 3.7]

3.8
key
sequence of symbols that controls the operation of a cryptographic transformation

[SOURCE: ISO/IEC 9797-1:2011, 3.7, modified — Note was removed.]

3.9
keystream function
function that takes as input, the current state (3.17) of the keystream generator (3.10) and (optionally)
part of the previously generated ciphertext (3.3), and gives as output the next part of the keystream

[SOURCE: ISO/IEC 18033-4:2011, 3.9]

3.10
keystream generator
state-based process (i.e. as a finite state machine) that takes as input, a key (3.8), an initialization value
(3.7), and if necessary the ciphertext (3.3), and gives as output a keystream (i.e. a sequence of bits or
blocks of bits) of arbitrary length

[SOURCE: ISO/IEC 18033-4:2011, 3.10, modified —"initialization vector" changed to "initialization
value".]

2

IS/ISO/IEC 29192-8 : 2022

3.11
message authentication code
MAC
string of bits which is the output of a MAC algorithm (3.12)

[SOURCE: ISO/IEC 9797-1:2011, 3.9, modified — Note was removed.]

3.12
message authentication code algorithm
MAC algorithm
algorithm for computing a function which maps strings of bits and a secret key (3.16) to fixed-length
strings of bits, satisfying the following two properties:

— for any key and any input string, the function can be computed efficiently;

— for any fixed key, and given no prior knowledge of the key, it is computationally infeasible to
compute the function value on any new input string, even given knowledge of a set of input strings
and corresponding function values, where the value of the ith input string might have been chosen
after observing the value of the first i-1 function values (for integers i > 1)

[SOURCE: ISO/IEC 9797-1:2011, 3.10, modified — Notes were removed]

3.13
next-state function
function that takes as input, the current state (3.17) of the keystream generator (3.10) and (optionally)
part of the previously generated ciphertext (3.3), and gives as output a new state (3.17) for the keystream
generator (3.10)

[SOURCE: ISO/IEC 18033-4:2011, 3.12]

3.14
plaintext
cleartext
unencrypted information

[SOURCE: ISO/IEC 18033-1:2021, 3.20]

3.15
pre-output stream
pseudo-random bits, which are used for the encryption (3.6) and the decryption (3.5) of the message,
and the generation of the message authentication code (3.11)

3.16
secret key
key (3.8) used with symmetric cryptographic techniques by a specified set of entities

[SOURCE: ISO/IEC 18033-1:2021, 3.25]

3.17
state
internal state of a keystream generator (3.10)

[SOURCE: ISO/IEC 29192-3:2012, 3.12]

4 Symbols and abbreviated terms

For the purposes of this document, the following symbols and abbreviated terms apply.

ACCU Dedicated accumulator register for the MAC (t bits).

3

IS/ISO/IEC 29192-8 : 2022

AM Authenticated message, the concatenation of the ciphertext C and the MAC .
AM = C || MAC.

AND Bitwise logical AND operation.

AUTH(i) Dedicated register for the MAC computation.

ai Variable forming part of the internal state of a keystream generator.

bi Variable forming part of the internal state of a keystream generator.

C Ciphertext.

Ci Ciphertext bit.

Fmac Function which finalizes the MAC computation.

Imac Function which initializes the MAC registers.

Init Function which generates the initial internal state of a keystream generator.

IV Initialization value.

K Key.

l Length of a plaintext or ciphertext block (in bits).

Len Function that returns the number of bits in a string.

LFSR Linear feedback shift register.

MAC Message authentication code. MAC is a t-bit string.

Mi Message bit.

n Length of the authenticated message (AM) (in bits).

Next Next-state function of a keystream generator.

NLFSR Nonlinear feedback shift register.

OR Bitwise logical OR operation.

P Plaintext.

Pi Plaintext bit.

Prt Function that generates a pre-output of the stream cipher.

ri Variable forming part of the internal state of a keystream generator.

SHIFT Dedicated shift register for the MAC (t bits).

si Variable forming part of the internal state of a keystream generator.

Strm Keystream function of a keystream generator.

S(i) Internal state of keystream generator.

t MAC length (in bits).

Upmac Function which updates the MAC registers.

4

IS/ISO/IEC 29192-8 : 2022

Y Pre-output stream.

Y(i) Pre-output bit.

Z Keystream.

Z(i) Keystream bit.

0i Block of i zero bits.

1i Block of i one bits.

⊕ Bitwise XOR (eXclusive OR) operation.

|| Concatenation of strings, i.e. if A and B are blocks of data, then A||B is the block obtained
concatenating A and B in the order specified.

X|s Left-truncation of the block of bits X: if X has a bit-length greater than or equal to s, then X|s
is the s-bit block consisting of the left-most s bits of X.

X|s Right-truncation of the block of bits X: if X has a bit-length greater than or equal to s, then X|s
is the s-bit block consisting of the right-most s bits of X.

5 Grain-128A

5.1 Introduction to Grain-128A

Grain-128A is a synchronous stream cipher with an add-on module that generates a message
authentication code (MAC).

It is composed of two sub-modules that work conjointly:

a) a stream cipher module that generates the key stream for the encryption/decryption of the
message;

b) a MAC module that constitutes the MAC algorithm.

Grain-128A has a 128-bit long key, K, and a 96-bit initialization value, IV. It generates a t-bit MAC.

As a precondition, the recipients will have received K and IV in a secure way as pre-shared parameters.

For this mechanism, t shall be at least equal to 32 and the MAC shall apply to the entire plaintext.

After the initialization of the system with the K and the IV, the cipher generates a pre-output stream.
This pre-output stream is split into two parts:

a) the even bits compose the keystream to encrypt/decrypt the message;

b) the odd bits are used to generate the MAC.

NOTE 1 Grain-128A document [12] defines two modes of operation: with or without a MAC. The MAC is disabled
when IV0 = 0 and conversely enabled when IV0 = 1. This document only specifies the authenticated mode, i.e. the
MAC is always supported. Accordingly, the value of IV0 is fixed to ‘1’.

As a synchronous keystream generator, Grain-128A follows the general models of stream ciphers defined
in ISO/IEC 18033-4, with supplementary functions to take the MAC generation into consideration.

Grain-128A finite-state machine is defined by:

a) an initialization function, Init, which takes as input a key, K, and an initialization value, IV, and
outputs an initial state S(−2*t) for the keystream generator;

5

IS/ISO/IEC 29192-8 : 2022

NOTE 2 As for any stream cipher, the uniqueness of the IV for a given key, K, is a crucial requirement. The
reuse of an IV under the same key leads to trivial attacks causing plaintext recovery and impersonation.

b) a MAC initialization function, Imac, which initializes the MAC registers;

c) a next-state function, Next, which takes as input the current state of the pre-output stream
generator S(i), and outputs the next state of the pre-output stream generator S(i+1);

d) a pre-output function, Prt, which takes as input a state of the pre-output generator S(i), and outputs
pre-output bits Y(i);

e) a keystream function, Strm, that outputs a key stream bit Z(i);

f) an update MAC function, Upmac, which takes as input the current MAC registers, a pre-output bit
Y(i), a bit of the message Mi and outputs the next state of the MAC registers;

g) a final MAC function, Fmac, which completes the MAC computation and outputs the MAC of the
message.

The output function is the binary-additive function. That is to say, the operation to combine the plaintext
with the key stream is the bitwise XOR.

The encryption of plaintext bit Pi by a keystream bit Z(i) is given by:

Ci = Pi ⊕ Z(i)

Inversely, the decryption of a ciphertext Ci by a keystream bit Z(i) is given by:

Pi = Ci ⊕ Z(i)

Annex B provides some numerical examples for t = 32 and t = 64. Annex A defines object identifiers
that shall be used to identify the lightweight authenticated encryption algorithms specified in this
document. Annex C exposes some security considerations on Grain-128A.

5.2 Internal state

Grain-128A state is composed of two sub-modules.

a) The state variable S(i) which is subdivided into two 128-bit registers:

S(i) = (NLFSR(i), LFSR(i))

where

NLFSR(i) = (b0
(i), b1

(i), ..., b127
(i))

 LFSR(i) = (s0
(i), s1

(i), ..., s127
(i))

where bj and sj are bits (for j = 0, 1, 2, …,127).

b) The MAC variable AUTH(i) which is subdivided into two t-bit registers:

AUTH(i) = (ACCU(i), SHIFT(i))

where

ACCU(i) = (a0
(i), a1

(i), ..., at-1
(i))

SHIFT(i) = (r0
(i), r1

(i), ..., rt-1
(i))

6

IS/ISO/IEC 29192-8 : 2022

where aj and rj are bits (for j = 0, 1, 2, …, t-1)

Figure 1 illustrates the building blocks of Grain-128A. The algorithm is composed of four registers:
NLFSR, LFSR, SHIFT and ACCU registers.

On the top left of Figure 1, the feedbacks of the registers LFSR and NLFSR are outlined together with
the generation of the pre-output stream. The small figures on top of and below the LFSR and NLFSR
registers indicate the number of bits extracted from the registers. The operations are fully described in
the sub-functions Next, Strm and Prt.

Figure 1 also shows how the pre-output stream is split in two sub-streams. Even bits compose the
keystream to encrypt the data, while odd bits update the MAC module.

On the right of Figure 1, the SHIFT and the ACCU registers compose the module dedicated to the MAC
generation.

Figure 1 — An overview of the building blocks of Grain-128A

5.3 Encryption and MAC generation procedure

The originator shall perform the following steps to protect a data string P.

Inputs:

— P = P0 P1 …Pl-1, an l-bit-string to encrypt and authenticate

— IV is a 96-bit string that was pre-shared between recipients

— The 128-bit key, K, that was securely shared beforehand.

Output: AM = C0 C1 … Cl-1 || MAC, the authenticated encryption (l+t)-bit string of P.

a) Initialize the state variable with key, K, and the initialization value, IV:

— S(−2*t) = Init(K,IV)

b) Initialize the MAC variable:

— (AUTH(0),S(0)) = Imac(S(−2*t))

7

IS/ISO/IEC 29192-8 : 2022

c) For every bit of the message Pi, generate a keystream bit Z(i) and update the MAC state.

— For i = 0, 1 ,…, l-1:

— Encrypt the message bit:

— Y(2*i) = Prt(S(2*i))

— Z(i) = Strm(Y(2*i))

— Ci = Pi ⊕ Z(i)

— S(2*i+1) = Next(S(2*i))

— Update the MAC variable:

— Y(2*i+1) = Prt(S(2*i+1))

— AUTH(i+1) = Upmac(AUTH(i), Y(2*i+1), Pi)

— S(2*i+2) = Next(S(2*i+1))

d) Finalize the MAC computation:

— MAC = Fmac(AUTH(i))

e) Concatenate the encrypted message C and the MAC to produce the (l+t)-bit string AM, the
authenticated-encrypted version of P.

— AM = C || MAC, where C = C0 C1 …Cl-1 is an l-bit-string.

f) Output AM.

5.4	 	Decryption	and	MAC	verification	procedure

The recipient shall perform the following steps to decrypt and verify an (l+t)-bit authenticated-
encrypted string AM.

Inputs:

— AM = C0 C1 …Cl-1 || MAC, where AM is an l+t-bit string.

— IV is a 96-bit string that was pre-shared between recipients.

— The 128-bit key, K, that was securely shared beforehand.

Output: P = P0 P1 …Pl-1, the decryption of C or INVALID in case of incorrect MAC

a) If the length of AM is less than t bits then halt and output INVALID. Otherwise let:

— n = Len(AM)

— l = n-t

— C = AM|l , where C = C0 C1 …Cl-1 and where Ci are bits for i = 0, …, l-1

— MAC ’ = AM|t

b) Initialize the state variable with key, K, and the initialization value, IV:

— S(−2*t) = Init(K,IV)

c) Initialize the MAC variable:

— (AUTH(0),S(0)) = Imac(S(−2*t))

8

IS/ISO/IEC 29192-8 : 2022

d) For every bit of the message Ci, generate a key stream bit Z(i) and update the MAC state.

— For 0, 1, …, l-1:

— Decrypt the message bit:

— Y(2*i) = Prt(S(2*i))

— Z(i) = Strm(Y(2*i))

— Pi = Ci ⊕ Z(i)

— S(2*i+1) = Next(S(2*i))

— Update the MAC variable:

— Y(2*i+1) = Prt(S(2*i+1))

— AUTH(i+1) = Upmac(AUTH(i),Y(2*i+1), Pi)

— S(2*i+2) = Next(S(2*i+1))

e) Finalize the MAC computation:

— MAC = Fmac(AUTH(i))

f) Compare MAC’ and the computed MAC:

— If MAC = MAC’ continue, otherwise halt and output INVALID.

g) Output the l-bit string P = P0 P1 …Pl-1 .

5.5 Sub-functions

5.5.1 Initialization function Init

The internal state S(i) of Grain-128A is initialized using the following Init function. The NLFSR is fed
with the key. The LFSR is fed with the initialization value IV appended with a 32-bit fixed padding value
13101. The first bit of the IV is forced to 1 to indicate the authenticated mode (IV0 = 1). As a warm-up,
the state is clocked 256 times where the pre-output is reinjected into the two shift registers LFSR and
NLFSR.

Inputs: 128-bit key K, 96-bit initialization value, IV.

Output: The state variable S(−2*t)

a) Set the NLFSR(−256-2*t) registers as follows:

— For i = 0, …, 127, set bi
(−256-2*t) = Ki

b) Set the LFSR(−256-2*t) register as follows:

— For i = 0, …,95, set si
(−256-2*t) = IVi

— For i = 96, …,126, set si
(−256-2*t) = 1

— s127
(−256-2*t) = 0

c) Clock 256 times

— For i = 0, …, 255:

Y(−256-2*t+i) = Prt(S(−256-2*t+i))

9

IS/ISO/IEC 29192-8 : 2022

S(−255-2*t+i) = Next(S(−256-2*t+i))

b127
(−255-2*t+i) = b127

(−255-2*t+i) ⊕ Y(−256-2*t+i)

s127
(−255-2*t+i) = s127

(−255-2*t+i) ⊕ Y(−256-2*t+i)

d) Output: S(−2*t)

Figure 2 illustrates the function Init. It shows how the two registers LFSR and NLFSR are updated and
how the pre-output stream is generated. The double lines indicate that the pre-output stream bits are
reinjected into the LSFR and the NLFSR during the Init procedure.

Figure 2 — Initialization of Grain-128A

5.5.2 MAC Initialization function Imac

The MAC state AUTH(i) is initialized using the following Imac function. The ACCU buffer is set with the t
first pre-output bits Y(i) generated after the initialization. The SHIFT register is set with the next t pre-
output bits Y(i). It also updates the state S.

Input: S(−2*t)

Outputs: AUTH(0), S(0)

a) Set the ACCU(0) register as follows:

— For i = 0, …, t-1:

ai
(0) = Prt(S(−2*t+i))

S(−2*t+i+1) = Next(S(−2*t+i))

b) Set the SHIFT(0) register as follows:

— For i = 0, …, t-1:

ri
(0) = Prt(S(-t+i))

S(-t+i+1) = Next(S(-t+i))

Output: AUTH(0) and S(0).

10

IS/ISO/IEC 29192-8 : 2022

5.5.3 Next-state function Next

LFSR is a linear shift register with the feedback polynomial f.

f(X) = 1 + X32 + X47 + X58 + X90 + X121 + X128

NLFSR is a nonlinear shift register with the feedback polynomial g.

g(X) = 1 + X32 + X37 + X72 + X102 + X128 + X44X60 + X61X125 + X63X67 + X69X101 + X80X88 + X110X111 +
X115X117 + X46X50X58 + X103X104X106 + X33X35X36X40

In addition, s0
(i) bit of the LFSR is injected into the NLFSR adding s0

(i) to the NLFSR feedback g.

Input: S(i).

Output: S(i+1)
.

a) Compute the feedback g of NLFSR(i) as follows:

— b127
(i+1) = s0

(i) ⊕ b0
(i) ⊕ b26

(i) ⊕ b56
(i) ⊕ b91

(i) ⊕ b96
(i) ⊕ (b3

(i) AND b67
(i)) ⊕ (b11

(i) AND b13
(i))

⊕ (b17
(i) AND b18

(i)) ⊕ (b27
(i) AND b59

(i)) ⊕ (b40
(i) AND b48

(i)) ⊕ (b61
(i) AND b65

(i)) ⊕ (b68
(i) AND

b84
(i)) ⊕ (b88

(i) AND b92
(i) AND b93

(i) AND b95
(i)) ⊕ (b22

(i) AND b24
(i) AND b25

(i)) ⊕ (b70
(i) AND

b78
(i) AND b82

(i))

b) Compute the feedback f of LFSR(i) as follows:

— s127
(i+1) = s0

(i) ⊕ s7
(i) ⊕ s38

(i) ⊕ s70
(i) ⊕ s81

(i) ⊕ s96
(i)

c) Shift the two registers:

— For j = 0 to 126, set bj
(i+1) = bj+1

(i)

— For j = 0 to 126, set sj
(i+1) = sj+1

(i)

d) Output S(i+1).

5.5.4 Pre-output function Prt

The Prt function generates a pre-output bit Y(i) from the state S(i) using a Boolean function.

Input: S(i)
.

Output: Pre-output bit Y(i).

a) Compute h as follows:

— h = (b12
(i) AND s8

(i)) ⊕ (s13
(i) AND s20

(i)) ⊕ (b95
(i) AND s42

(i)) ⊕ (s60
(i) AND s79

(i)) ⊕ (b12
(i) AND

b95
(i) AND s94

(i))

b) Compute Y(i) as follows:

— Y(i) = h ⊕ b2
(i) ⊕ b15

(i) ⊕ b36
(i) ⊕ b45

(i) ⊕ b64
(i) ⊕ b73

(i) ⊕ b89
(i) ⊕ s93

(i)

c) Output Y(i).

5.5.5 Keystream function Strm

The Strm function generates the keystream bit Z(i) to add with the message to encrypt or decrypt.

Input: Y(2*i).

11

IS/ISO/IEC 29192-8 : 2022

Output: Z(i).

a) Compute the keystream bit Z(i)

— Z(i) = Y(2*i)

b) Output Z(i).

5.5.6 Function Upmac

The MAC registers are updated as a function of the message bit Mi and the pre-output bit Y(2*i+1).

Inputs: AUTH(i), Y(2*i+1), Mi.

Output: AUTH(i+1).

a) Update the ACCU(i) register:

— For j = 0 to t-1, set aj
(i+1) = aj

(i) ⊕ (Mi AND rj
(i))

b) Update the SHIFT(i) register:

— For j = 0 to t-2, set rj
(i+1) = rj+1

(i)

— rt-1
(i+1) = Y(2*i+1)

c) Output AUTH(i+1).

5.5.7 Function Fmac

The Fmac function completes the MAC computation. It pads the message with an additional bit set to 1,
which is equivalent to add bitwise the SHIFT and the ACCU registers. The final MAC is the new value of
the ACCU register.

Input: AUTH(i).

Output: MAC

a) Update the ACCU(i) register as follows:

— For j = 0 to t-1, set aj
(i+1) = aj

(i) ⊕ rj
(i)

b) Output MAC = ACCU(i+1).

12

IS/ISO/IEC 29192-8 : 2022

Annex A
(normative)

Object	identifiers

This annex lists the object identifiers assigned to the lightweight authenticated encryption algorithms
specified in this document.

LightweightCryptography-8 {
iso(1) standard(0) lightweight-cryptography(29192) part8(8)
asn1-module(0) algorithm-object-identifiers(0)}

DEFINITIONS EXPLICIT TAGS::= BEGIN
-- EXPORTS All; --
-- IMPORTS None; --

OID::= OBJECT IDENTIFIER -- Alias

-- Synonyms --
is29192-8 OID::= {iso(1) standard(0) lightweight-cryptography(29192) part8(8)}

-- Lightweight authenticated encryption mechanisms

lightweight-Authenticated-Encryption OID::= {is29192-8 mechanism(1)}

grain-128A OID::= {lightweight-Authenticated-Encryption 1}

LightweightCryptographyIdentifier::= SEQUENCE {
 algorithm ALGORITHM.&id({AuthenticatedEncryptionAlgorithms}),
 parameters
ALGORITHM.&Type({AuthenticatedEncryptionAlgorithms }{@algorithm})
 OPTIONAL
}

authenticatedEncryption ALGORITHM::= {
 PARMS MacLengthID
 DYN-PARMS InitializationVector
 IDENTIFIED BY grain-128A }

AuthenticatedEncryptionAlgorithms ALGORITHM::= {
 authenticatedEncryption, ... }

MacLength::= INTEGER

MacLengthID::= CHOICE {
 int MacLength,
 oid OID
}

InitializationVector::= OCTET STRING (SIZE (12))

-- ALGORITHM information object class
ALGORITHM::= CLASS {
 &Type OPTIONAL,
 &DynParms OPTIONAL,
 &id OBJECT IDENTIFIER UNIQUE }
WITH SYNTAX {
 [PARMS &Type]
 [DYN-PARMS &DynParms]
 IDENTIFIED BY &id }

END

13

IS/ISO/IEC 29192-8 : 2022

Annex B
(informative)

Numerical examples

B.1 General

This annex provides numerical examples for each mechanism in big-endian hexadecimal notation.

B.2 Numerical examples of Grain-128A

Case t = 32

Key = 00000000 00000000 00000000 00000000

IV = 00000000 00000000 00000000

— message = (0 octet) Ciphertext = (0 octet) tag = 4ff6a6c1

— message = 00 (1 octet) Ciphertext = 0d (1 octet) tag = ebdbd53e

— message = ff (1 octet) Ciphertext = f2 (1 octet) tag = 77c0fb94

— message = 1234 (2 octets) Ciphertext = 1f1f (2 octets) tag = ccf86228

— message = 123456789a (5 octets) Ciphertext = 1f1f495626 (5 octets) tag = 678f3c3f

Key = 01234567 89abcdef fedcba98 76543210

IV = ccbbaa99 88776655 44332211

— message = (0 octet) Ciphertext = (0 octet) tag = 8af0c528

— message = 00 (1 octet) Ciphertext = 5b (1 octet) tag = b1cd3942

— message = ff (1 octet) Ciphertext = a4 (1 octet) tag = a7266d64

— message = 1234 (2 octets) Ciphertext = 4953 (2 octets) tag = 505c31a2

— message = 123456789a (5 octets) Ciphertext = 4953a8b691 (5 octets) tag = 8d177f5f

Case t = 64

Key = 00000000 00000000 00000000 00000000

IV = 00000000 00000000 00000000

14

IS/ISO/IEC 29192-8 : 2022

— message = (0 octet) Ciphertext = (0 octet)

 tag = 57b96fed 4b02cd4a

— message = 00 (1 octet) Ciphertext = bc (1 octet)

 tag = a412f970 a6e03906

— message = ff (1 octet) Ciphertext = 43 (1 octet)

 tag = 0a8b8b04 0241953d

— message = 1234 (2 octets) Ciphertext = aeb7 (2 octets)

 tag = 6c1074bb 921726e0

— message = 123456789a (5 octets) Ciphertext = aeb78c06fc (5 octets)

tag = d26ecba2 9b945971

Key = 01234567 89abcdef fedcba98 76543210

IV = ccbbaa99 88776655 44332211

— message = (0 octet) Ciphertext = (0 octet)

 tag = 7a87686f 7c0075c1

— message = 00 (1 octet) Ciphertext = 0b (1 octet)

 tag = c6607eae 3b483d93

— message = ff (1 octet) Ciphertext = f4 (1 octet)

 tag = adc28cee f98ffa5d

— message = 1234 (2 octets) Ciphertext = 1997 (2 octets)

 tag = f53a3b4c 43b2e476

— message = 123456789a (5 octets) Ciphertext = 1997270f22 (5 octets)

tag = be9ea6a7 ae4bee82

15

IS/ISO/IEC 29192-8 : 2022

Annex C
(informative)

Security considerations

Grain-128A is an all-in-one algorithm that provides authenticated encryption.

Assuming the IV is not reused, it claims an authentication security level of 2t where t is the length of the
MAC. There is currently no known attack on Grain-128A authenticated mode that recovers the key or
the state in a more efficient way than a simple exhaustive key search attack. Security level of encryption
is 128.

The algorithm was designed for extremely constrained environments. The size of the MAC will be
chosen to obtain the best trade-off performance/security.

For most lightweight applications, t = 64 is strongly recommended and offers a suitable protection
against guessing the MAC and against forgery attacks.

For extremely optimized applications, for example when the payload size is restricted or when the
bandwidth is very limited, t = 32 may be considered. In that case, it is recommended to restrict the
number of computations with a given key. The duration of the messages validity should also be analysed
with care.

Grain-128A targets lightweight applications and does not target a quantum-safe security level.

16

IS/ISO/IEC 29192-8 : 2022

Bibliography

[1] ISO/IEC 9797 (all parts), Information technology — Security techniques — Message authentication
codes (MACs)

[2] ISO/IEC 10116:2017, Information technology — Security techniques — Modes of operation for an
n-bit block cipher

[3] ISO/IEC 11770 (all parts), Information security — Key management

[4] ISO/IEC 18033 (all parts), Information security — Encryption algorithms

[5] ISO/IEC 19772:2020, Information security — Authenticated encryption

[6] ISO/IEC 29167-13:2015, Information technology — Automatic identification and data capture
techniques — Part 13: Crypto suite Grain-128A security services for air interface communications

[7] ISO/IEC 29192-2:2019, Information security — Lightweight cryptography — Part 2: Block ciphers

[8] ISO/IEC 29192-3, Information technology — Security techniques — Lightweight cryptography —
Part 3: Stream ciphers

[9] ISO/IEC 29192-6:2019, Information technology — Lightweight cryptography — Part 6: Message
authentication codes (MACs)

[10] Dinur I., Shamir A., “Breaking Grain-128 with dynamic cube attacks” - Fast Software
Encryption, pages 167–187. Springer Berlin Heidelberg, 2011.

[11] Ågren M., Hell M., Johansson T., Meier W., “Grain-128a: a new version of Grain-128 with
optional authentication”- Symmetric Key Encryption Workshop 2011, DTU, Denmark, February
2011

[12] Ågren M., Hell M., Johansson T., Meier W., “Grain-128a: a new version of Grain-128 with
optional authentication”- International Journal of Wireless and Mobile Computing, Vol. 5, No. 1,
pp. 48-59, 2011.

[13] Hell M., Johansson T., Meier W., Sönnerup J., Yoshida H., “Grain-128AEAD - a
lightweight AEAD streamcipher”- NIST Lightweight Cryptography, Round 1 Submission (2019)

[14] Wegman M, Carter L., “New hash functions and their use in authentication and set equality” -
Journal of Computer and System Sciences, 22(3):265 – 279, 1981.

[15] Wang P., Zheng K-Y, “Security analysis of authentication mechanism in Grain-128A” - Journal of
Cryptologic Research 2018, Vol. 5 Issue (1): 94-100

[16] Wang Q., Hao Y., Todo Y., Li C., Isobe T., Meier W., “Improved division property based cube
attacks exploiting algebraic properties of superpoly” - Advances in Cryptology – CRYPTO 2018,
pages 275–305. Springer International Publishing, 2018.

[17] Todo Y., Isobe T., Meier W., Aoki K., Zhang B., “Fast correlation attack revisited” - Advances in
Cryptology- CRYPTO 2018, pages 129–159. Springer International Publishing, 2018.

17

IS/ISO/IEC 29192-8 : 2022

Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 2016 to promote harmonious

development of the activities of standardization, marking and quality certification of goods and attending to

connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without

the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the

standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to

copyright be addressed to the Head (Publication & Sales), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed

periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are

needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards

should ascertain that they are in possession of the latest amendments or edition by referring to the website-

www.bis.gov.in or www.standardsbis.in.

This Indian Standard has been developed from Doc No.: LITD 17 (22419).

Amendments Issued Since Publication

Amend No. Date of Issue Text Affected

BUREAU OF INDIAN STANDARDS

Headquarters:

Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002

Telephones: 2323 0131, 2323 3375, 2323 9402 Website: www.bis.gov.in

Regional Offices: Telephones

Central : 601/A, Konnectus Tower -1, 6th Floor,

DMRC Building, Bhavbhuti Marg, New

Delhi 110002

Eastern : 8th Floor, Plot No 7/7 & 7/8, CP Block, Sector V,

Salt Lake, Kolkata, West Bengal 700091

Northern : Plot No. 4-A, Sector 27-B, Madhya Marg,

Chandigarh 160019

2323 7617

2367 0012

2320 9474

265 9930

 Southern : C.I.T. Campus, IV Cross Road, Taramani, Chennai 600113 2254 1442

 2254 1216

Western : Plot No. E-9, Road No.-8, MIDC, Andheri

(East), Mumbai 400093

2821 8093

Branches : AHMEDABAD. BENGALURU. BHOPAL. BHUBANESHWAR. CHANDIGARH. CHENNAI.

COIMBATORE. DEHRADUN. DELHI. FARIDABAD. GHAZIABAD. GUWAHATI.

HIMACHAL PRADESH. HUBLI. HYDERABAD. JAIPUR. JAMMU & KASHMIR.

JAMSHEDPUR. KOCHI. KOLKATA. LUCKNOW. MADURAI. MUMBAI. NAGPUR.

NOIDA. PANIPAT. PATNA. PUNE. RAIPUR. RAJKOT. SURAT. VISAKHAPATNAM.

Published by BIS, New Delhi

http://www.bis.gov.in/

	Introduction
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Symbols and abbreviated terms
	5 Grain-128A
	5.1 Introduction to Grain-128A
	5.2 Internal state
	5.3 Encryption and MAC generation procedure
	5.4 Decryption and MAC verification procedure
	5.5 Sub-functions
	5.5.1 Initialization function Init
	5.5.2 MAC Initialization function Imac
	5.5.3 Next-state function Next
	5.5.4 Pre-output function Prt
	5.5.5 Keystream function Strm
	5.5.6 Function Upmac
	5.5.7 Function Fmac

	Annex A (normative) Object identifiers
	Annex B (informative) Numerical examples
	Annex C (informative) Security considerations
	Bibliography

