INTERNATIONAL STANDARD

Second edition 2018-10

Mechanical vibration — Vibration of rotating machinery equipped with active magnetic bearings —

Part 1: Vocabulary

Vibrations mécaniques — Vibrations de machines rotatives équipées de paliers magnétiques actifs —

Partie 1: Vocabulaire

Reference number ISO 14839-1:2018(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO 2018

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Fax: +41 22 749 09 47 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Page

Contents

Foreword			
1	Scop)e	1
2	Normative references		
3	Terms and definitions		
	3.1	General terms	
	3.2	Terms relating to rotors	
	3.3	Terms relating to stators	
	3.4	Terms relating to rotors Terms relating to stators Terms relating to position transducers	
	3.5	Terms relating to dynamics, control and electronics	
	3.6	Terms relating to auxiliary equipment	17
Bibliography			
Alphabetical index			

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 108, *Mechanical vibration, shock and condition monitoring*, Subcommittee SC 2, *Measurement and evaluation of mechanical vibration and shock as applied to machines, vehicles and structures*.

This second edition cancels and replaces the first edition (ISO 14839-1:2002), which has been technically revised. It also incorporates the Amendment ISO 14839-1:2002/Amd. 1:2010.

The main change compared to the previous edition is as follows:

— the terms have been updated and revised to reflect how they are used in practice.

A list of all parts in the ISO 14839 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

Mechanical vibration — Vibration of rotating machinery equipped with active magnetic bearings —

Part 1: Vocabulary

1 Scope

This document defines terms relating to rotating machinery equipped with active magnetic bearings.

NOTE General terms and definitions of mechanical vibration are given in ISO 2041; those relating to balancing are given in ISO 21940-2; those relating to geometric characteristics such as coaxiality, concentricity and runout are explained in ISO 1101.

2 Normative references

There are no normative references in this document.

3 Terms and definitions

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at http://www.electropedia.org/

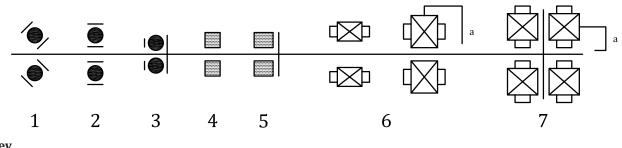
3.1 General terms

- 3.1.1
- levitation

maintaining the position of a rotor by attractive or repulsive magnetic forces without mechanical contact

3.1.2

magnetic bearing


bearing which utilizes either attractive or repulsive magnetic forces for the *levitation* (3.1.1) and dynamic stabilization of a rotor

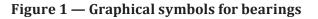
3.1.3 active magnetic bearing AMB

means of supporting a rotor, without mechanical contact, using only attractive magnetic forces based upon servo feedback technology which normally consists of transducers, electromagnets, *power amplifiers* (3.5.3), power supplies and controllers

Note 1 to entry: For rotating machinery equipped with active magnetic bearings, the graphical symbols for bearings are shown in Figure 1.

Note 2 to entry: The principle of an active magnetic bearing is shown in Figure 2.

Кеу


- 1 angular ball bearing
- 2 deep groove ball bearing
- 3 thrust ball bearing
- 4 radial bushing
- a With transducer.

thrust bushing

radial active magnetic bearing

axial active magnetic bearing

5

6

7

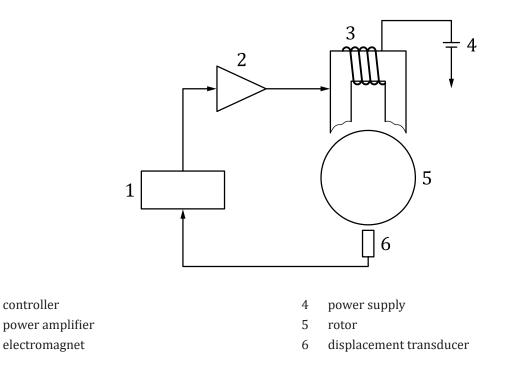


Figure 2 — Principle of active magnetic bearing

3.1.4

Key 1

2

3

passive magnetic bearing

means of supporting a rotor, without mechanical contact, using magnetic forces without feedback control

EXAMPLE *Permanent magnetic bearing* (<u>3.1.5</u>), *super-conducting magnetic bearing* (<u>3.1.6</u>).

3.1.5

permanent magnetic bearing

PMB

passive magnetic bearing (3.1.4) using one or several pairs of permanent magnets without feedback control

3.1.6

super-conducting magnetic bearing SMB

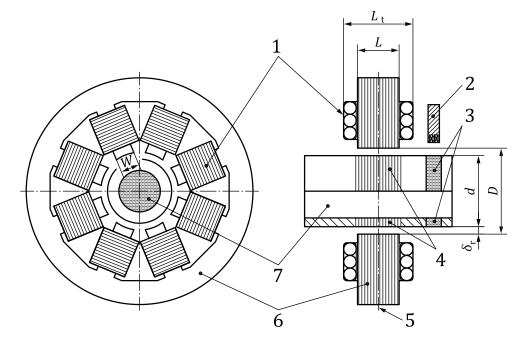
passive magnetic bearing (3.1.4) using a pair of (high-temperature) super conductors and permanent magnets without feedback control, utilizing the so-called pinning force (attractive and repulsive forces)

3.1.7 hybrid magnetic bearing HMB

bearing consisting of any combination of an *active magnetic bearing* (3.1.3) and *passive magnetic bearing* (3.1.4)

3.1.8

permanent-magnet-biased AMB


active magnetic bearing (3.1.3) in which the nominal (non-zero) or bias magnetic fluxes are established by one or more permanent magnets

3.1.9

radial magnetic bearing

magnetic bearing (3.1.2) which levitates a rotor in the radial direction and supports it against disturbances in the radial direction, such as unbalance forces, fluid forces or gravity

Note 1 to entry: See Figure 3.

Key

- 1 radial coil
- 2 radial transducer
- 3 radial transducer target
- 4 radial rotor core
- 5 axial centre of radial AMB
- 6 radial stator core
- 7 shaft


- D inner diameter of radial stator core
- *d* outer diameter of radial rotor core
- $\delta_{\rm r}$ nominal magnetic gap (D d)/2
- L_{t} total bearing length (including coil windings)
- *L* effective length of radial bearing
- W width of a magnetic pole
- A_r area of magnetic pole ($A_r = WL$)

Figure 3 — Radial AMB assembly

3.1.10 axial magnetic bearing thrust magnetic bearing

magnetic bearing (3.1.2) which levitates a rotor in the axial direction and supports it against disturbances in the axial direction, such as fluid forces or gravity

Note 1 to entry: See Figure 4.

Key

1 rotor

- 2 axial transducer target
- 3 axial transducer
- 4 axial stator core
- 5 axial coil
- 6 (clearance) centre of axial AMB
- 7 axial rotor disc

- *d*_a outer diameter of axial rotor disc
- D_0 outer diameter of outer pole of axial stator
- d_0 inner diameter of outer pole of axial stator
- *d*_i outer diameter of inner pole of axial stator
- *D*_i inner diameter of inner pole of axial stator
- δ_a nominal magnetic gap
- A_a area of the magnetic pole pair

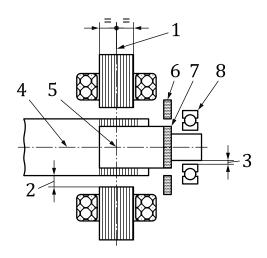
$$A_{\rm a} = \frac{\pi}{4} \left(D_{\rm o}^{2} - d_{\rm o}^{2} + d_{\rm i}^{2} - D_{\rm i}^{2} \right)$$

Figure 4 — Axial AMB assembly

3.1.11

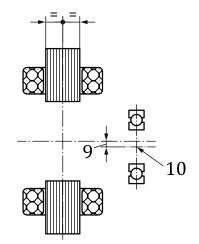
nominal magnetic gap

distance between the magnetic materials of the rotor and the stator inside the AMB (3.1.3) when the journal centre of the rotor is located in the clearance centre of the bearing stator


Note 1 to entry: See δ_r in Figure 3 for radial AMB, and δ_a in Figure 4 for axial AMB.

3.1.12

clearance centre of a radial AMB


geometric centre of a radial bearing stator

Note 1 to entry: See Figure 5.

Key

- 1 axial centre of radial AMB
- 2 magnetic gap of radial AMB
- 3 radial clearance of touch-down bearing
- 4 journal (rotor) centreline of radial AMB
- 5 clearance centreline of radial AMB
- 6 radial transducer

- 7 radial transducer target
- 8 touch-down bearing
- 9 radial centre offset between radial touch-down bearing and AMB centre
- 10 radial centre of radial touch-down bearing

NOTE Similar consideration applies to a radial homopolar AMB.

Figure 5 — Centres and centrelines of radial heteropolar AMB

3.1.13

magnetic centre of a radial AMB

position of a rotor in a radial *AMB* (3.1.3) at which the net radial attractive forces exerted on the rotor go to zero for nominal currents or fluxes, and without any magnetic excitation or compensation forces

3.1.14

axial centre of a radial AMB

axial directional position of geometric centre of *stator core* (3.3.1)

Note 1 to entry: See <u>Figure 5</u>.

3.1.15

clearance centre of an axial AMB

clearance centre of a thrust AMB

axial position of the geometric centre of an (axial) thrust AMB (3.1.3) stator

Note 1 to entry: See Figure 4.

3.1.16

axial magnetic centre of an axial AMB

position of an *axial rotor disc* (3.2.2) in an axial *AMB* (3.1.3) at which the net axial attractive forces exerted on the rotor disc go to zero for nominal currents or fluxes, and without any magnetic excitation or compensation forces

3.1.17

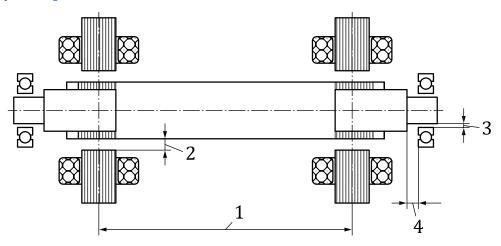
clearance centreline of a radial AMB

line between the clearance centres of two radial AMBs (3.1.3) specified by the bearing stator configuration

Note 1 to entry: See Figure 5.

3.1.18 journal centreline of a radial AMB

geometric centreline between the journal centres of a radial AMB (3.1.3) rotor


Note 1 to entry: See Figure 5.

3.1.19

bearing span between radial AMBs

axial distance between the axial centres of two radial AMBs (3.1.3)

Note 1 to entry: See Figure 6.

Key

- 1 bearing span between radial AMBs
- 2 magnetic radial clearance of radial AMB
- 3 radial clearance of touch-down bearing
- 4 axial clearance of touch-down bearing

Figure 6 — Heteropolar-type radial AMB

3.1.20 number of poles

sum of the south and north magnetic gap poles of an AMB (3.1.3)

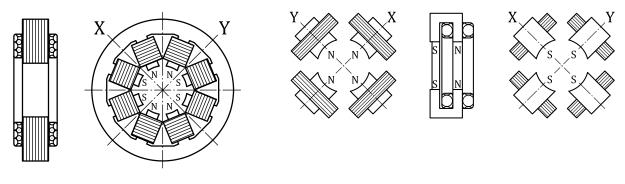
Note 1 to entry: See Figure 7.

3.1.21

heteropolar-type radial AMB

radial \overline{AMB} (3.1.3) in which the electromagnetic cross section has poles of different polarity, and the poles may have different polarity arrangements

Note 1 to entry: Polarity arrangements can be (N, S, N, S, ...), (N, S, S, N, ...), etc.


Note 2 to entry: See Figure 7 a).

3.1.22

homopolar-type radial AMB

radial *AMB* (3.1.3) whose electromagnet has more than one axial cross section, each having poles of a single polarity

Note 1 to entry: See Figure 7 b).

a) Heteropolar type (8 poles)

b) Homopolar type (8 poles)

Кеу

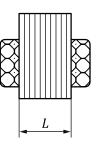
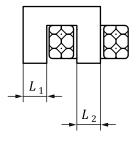

X, Y control axes

Figure 7 — Number of poles of radial AMB


3.1.23 effective length of a radial magnetic bearing

pole face axial length of a radial bearing stator for which the radial electromagnet is able to generate an attractive force exerted on the rotor

Note 1 to entry: See Figure 8.

a) Heteropolar type

 $L = L_1 + L_2$

b) Homopolar type

Figure 8 — Effective length of radial magnetic bearing, L

3.1.24 projection area of a radial AMB

product *dL* of the radial bearing *journal diameter* (3.2.3), *d*, and the effective bearing length, *L*

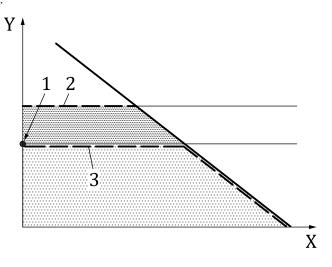
Note 1 to entry: See <u>Figure 3</u>.

3.1.25

area of one magnetic pole

cross-sectional area, A, of a magnetic pole which can generate an attractive force exerted on the rotor

Note 1 to entry: This is different from the projection area as defined in 3.1.24.


Note 2 to entry: See A_r in Figure 3 for radial AMB, and A_a in Figure 4 for axial AMB.

3.1.26 load capacity of an AMB

maximum force that an AMB (3.1.3) can generate on the rotor at its fixed centred position

Note 1 to entry: This is usually limited by the magnetic saturation of the ferromagnetic material of stator and rotor core, the maximum coil current available from the *power amplifier* (3.5.3) that drives the *magnetizing coil* (3.3.4) and the maximum driving voltage of the power amplifier.

Note 2 to entry: See Figure 9.

Key

- X frequency of magnetic force
- Y force
- 1 static load capacity: usually given by AMB temperature limit (or coil temperature limit)
- 2 peak transient load capacity: usually given by current limitations of the AMB
- 3 dynamic load capacity: given by the amplifier voltage limit and eddy current effects

Figure 9 — Load capacity of an AMB

3.1.26.1

static load capacity of an AMB

F_{max}

maximum load capacity for constant load over an unlimited time period of continuous operation

3.1.26.2

peak transient load capacity of an AMB

maximum load capacity over a limited time period

3.1.26.3

dynamic load capacity of an AMB

maximum allowed amplitude value for a periodic force generated by an AMB (3.1.3) as a function of frequency

3.1.27

load pressure of a radial AMB

static load capacity (3.1.26.1), F_{max} , divided by the *projection area* (3.1.24), dL, of the bearing, defined as

 $p = F_{\max}/(dL)$

3.1.28

number of control axes of an AMB

number of degrees of freedom of the rotor motion which are controlled by the AMB (3.1.3)

EXAMPLE

- a) 1-axis-controlled AMB: an AMB which actively controls vibration and motion only for one degree of freedom of the rotor;
- b) 2-axis-controlled AMB: an AMB which actively controls vibration and motion for two degrees of freedom of the rotor;
- c) 3-axis-controlled AMB: an AMB which actively controls vibration and motion for three degrees of freedom of the rotor.

3.1.29

total AMB loss

sum of iron loss due to eddy currents and hysteresis in the rotor and the stator, copper loss (ohmic loss) in coils, windage loss on the bearing rotor surface and circuit loss in the electrical equipment (cable, electronic cabinet)

3.1.30

self-sensing AMB

active magnetic bearing (3.1.3) which includes the function of rotor position detection without the use of direct *displacement transducers* (3.4.3)

3.1.31

rise time

time required for an *AMB* (3.1.3) force to change from 10 % to 90 % of the *peak transient load capacity* (3.1.26.2)

3.1.32

dwell time

time that the peak transient force can remain at the peak level

3.1.33

non-collocation

situation in which radial transducers and electromagnets are not placed at the same axial location

Note 1 to entry: Figures 3 and 4 show the typical cases, and non-collocation often affects the plant dynamics.

3.1.34

coaxiality

geometric line positioning characteristic between AMB (3.1.3) and *touch-down bearing* (3.6.1) as well as between the AMBs

Note 1 to entry: Coaxiality is explained in ISO 1101.

3.1.35

concentricity

geometric point positioning characteristic between AMB (3.1.3) and *touch-down bearing* (3.6.1) as well as between the AMBs

Note 1 to entry: Concentricity is explained in ISO 1101.

3.2 Terms relating to rotors

3.2.1 radial rotor core radial rotor journal

ferromagnetic portion of the rotating shaft on which the radial magnetic control forces are exerted, which is typically laminated

3.2.2

axial bearing disc axial disc axial rotor disc thrust bearing disc thrust disc thrust rotor disc ferromagnetic portion of the rotating shaft on which the axial magnetic forces are exerted

3.2.3

journal diameter diameter of the *radial magnetic bearing* (<u>3.1.9</u>) rotor

Note 1 to entry: See *d* in Figure 3.

3.2.4

geometrical runout mechanical runout

measured fictitious displacement of the rotating shaft due to the effect of the non-circularity and non-coaxiality of the shaft shape

3.2.5

electrical runout position transducer runout

measured fictitious displacement of the rotating shaft due to the magnetic or electrical non-homogeneity of the position *transducer target* (3.4.6)

3.2.6

DN value

product *dN* of the diameter *d* (mm) and the rotor speed *N* (r/min)

Note 1 to entry: The diameter, *d*, is defined as:

a) the outer diameter of the rotor of a radial AMB if the stator is external to the rotor (see *d* in Figure 3);

b) the inner diameter of the rotor of a radial AMB if the rotor is external to the stator;

c) the outer diameter of the rotor of an axial AMB (see d_a in Figure 4).

3.3 Terms relating to stators

3.3.1

stator core

core of the stationary AMB (3.1.3) components made of ferromagnetic or other magnetically permeable materials

3.3.2

radial stator core

stationary section of the *radial magnetic bearing* (3.1.9) around which the *magnetizing coil* (3.3.4) is wound

3.3.3

axial stator core

thrust stator core stationary section of the *axial magnetic bearing* (3.1.10) around which the *magnetizing coil* (3.3.4) is wound

3.3.4

magnetizing coil

coil used to generate the magnetic flux in the core material

3.3.5

radial coil

magnetizing coil (3.3.4) wound around the core of the radial bearing or the radial electromagnetic pole itself

3.3.6

axial coil

thrust coil

magnetizing coil (3.3.4) of an axial AMB (3.1.3)

3.3.7

allowed operating temperature

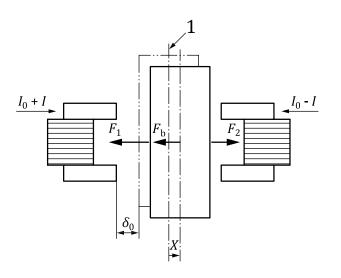
coil and lamination temperatures which allow for specified normal *AMB* (3.1.3) operation

3.4 Terms relating to position transducers

3.4.1

position measuring system

composition of devices comprising a sensor that responds to changes in the rotor/stator gap, an amplifier to excite the sensor and apply a gain to the response signal, and a signal post processing unit


3.4.2

shaft displacement

rotor centre displacement in the radial or axial direction measured from the nominal position, indicating a change of rotor position

Note 1 to entry: Shaft displacement is sometimes called shaft vibration, shaft movement or shaft motion.

Note 2 to entry: See Figure 10.

$$\begin{split} F_{\rm b} &= F_1 - F_2 = K \left(\frac{I_0 + I}{\delta_0 + X} \right)^2 - K \left(\frac{I_0 - I}{\delta_0 - X} \right)^2 \\ &\approx 4K \frac{I_0}{\delta_0^2} I - 4K \frac{I_0^2}{\delta_0^3} X \\ &= K_{\rm i} I + K_{\rm s} X \\ K_{\rm i} &= 4K \frac{I_0}{\delta_0^2} \\ K_{\rm s} &= -4K \frac{I_0^2}{\delta_0^3} \end{split}$$

where

 F_1, F_2 is the attractive force generated by one electromagnet;

F^b is the total attractive force;

- *I* is the control current;
- I_0 is the bias current;
- *K* is the coefficient of the electromagnet;
- *K*_i is the force/current gain;
- *K*_s is the negative position stiffness;
- *X* is the radial shaft displacement;
- δ_0 is the nominal magnetic gap.

Key

1 clearance centreline

NOTE Linearization of the total attractive force F_b is shown in terms of an AMB bias current I_0 , which could be set, typically, using a 2-quadrant power amplifier.

Figure 10 — Current-force characteristic

3.4.3 displacement transducer position transducer

transducer for the detection of shaft position without any mechanical contact

Note 1 to entry: See Figures 3 and 4.

EXAMPLE Eddy current transducer, inductive transducer, capacitive transducer, optical transducer, Hall effect transducer.

3.4.4 radial displacement transducer radial position transducer transducer for the detection of radial shaft position

Note 1 to entry: See Figures 3 and 5.

3.4.5 axial displacement transducer axial position transducer thrust displacement transducer thrust position transducer transducer for the detection of axial shaft position

Note 1 to entry: See Figure 4.

3.4.6 transducer target area of rotating shaft where the *position transducer* (<u>3.4.3</u>) detects the displacement

Note 1 to entry: See <u>Figures 3</u> and <u>4</u>.

3.4.7 radial transducer target radial target area of rotating shaft where the *radial position transducer* (3.4.4) detects the displacement in the radial direction

Note 1 to entry: See Figure 3.

3.4.8 axial transducer target

axial target

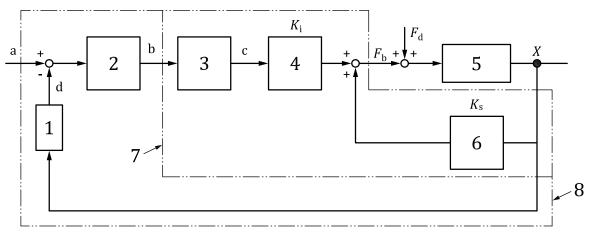
area of rotating shaft where the *axial position transducer* (3.4.5) detects the displacement in the axial direction

Note 1 to entry: See <u>Figure 4</u>.

3.5 Terms relating to dynamics, control and electronics

3.5.1 AMB system

system consisting of a rotor, *position transducers* (3.4.3) or other means to detect rotor position, controller(s), *power amplifiers* (3.5.3) and electromagnets to levitate and support the rotor by attractive magnetic forces


Note 1 to entry: See <u>Figures 2</u> and <u>11</u>.

3.5.2

AMB controller

device which detects and processes the transducer signal and transfers it to the *power amplifier* (3.5.3) in order to regulate the magnetic attractive force to levitate the rotor

Note 1 to entry: It can be realized by an analogue and/or digital device (analogue controller, digital controller).

Кеу

- 1 position transducer
- 2 AMB controller
- 3 power amplifier
- 4 force/current gain
- 5 mechanical plant rotor
- 6 negative position stiffness
- 7 AMB actuator
- 8 AMB (including AMB actuator)

- *F*_b AMB force
- *F*_d disturbance force
- X displacement
- *K*_i force/current gain
- *K*_s negative position stiffness
- a Reference signal.
- b Control signal.
- c Control current.
- d Transducer signal.

Figure 11 — Block diagram of an AMB system with a reference signal

3.5.3

power amplifier

power output device which generates *magnetizing coil* (3.3.4) current in order to generate a magnetic control force

EXAMPLE Typical types of power amplifiers are linear power amplifier, analogue amplifier, pulse width modulating (PWM) amplifier, switching amplifier.

3.5.4

AMB current control

method of controlling *AMB* (3.1.3) using voltage input/current output *power amplifiers* (3.5.3) for the feedback actuator from power amplifier to electromagnetic current

3.5.5

AMB voltage control

method of controlling AMB (3.1.3) using voltage input/voltage output power amplifiers (3.5.3)

3.5.6 AMB bias current I₀

fixed d.c. coil current used to linearize the attractive force in relation to the current and the clearance of the AMB (3.1.3)

Note 1 to entry: See formulae in Figure 10.

3.5.7 negative position stiffness *K*_s

<in the bias-linearized AMB actuator> position stiffness of the electromagnet due to *bias current* (3.5.6) at the nominal rotor position without an external load

Note 1 to entry: K_s is negative.

Note 2 to entry: See <u>Figures 10</u> and <u>11</u>.

3.5.8

closed-loop dynamic system stiffness

transfer function(s) of the F_d/X ratio of the AMB(s) (3.1.3) closed-loop system with the disturbance input force F_d and output displacement X

Note 1 to entry: See <u>Figure 11</u>.

3.5.9

closed-loop dynamic system compliance

reciprocal of the closed-loop dynamic system stiffness (3.5.8), i.e. X/F_d

Note 1 to entry: See Figure 11.

3.5.10

open-loop AMB dynamic stiffness

transfer function of the F_b/X ratio of the AMB (3.1.3) open-loop system with the displacement input X and the bearing output force F_b , through the transducer, controller, *power amplifier* (3.5.3) and electromagnet

Note 1 to entry: The frequency-dependent bearing spring force is obtained by the real part of the complex ratio F_b/X , and the frequency-dependent bearing damping force is obtained by the imaginary part of the complex ratio F_b/X .

Note 2 to entry: See Figure 11.

3.5.11 AMB centralized control

control structure that has internal connections between the controller inputs and controller outputs for different degrees of freedom of the rotor

EXAMPLE The following control methods are in this category:

- gyroscopic effects compensator;
- cross stiffness control;
- multi-input multi-output (MIMO) controller.

3.5.12

AMB decentralized control

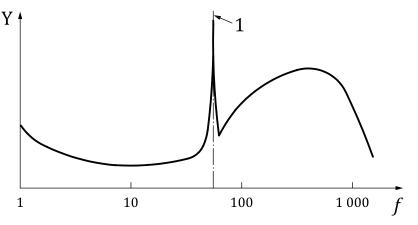
control structure that has no internal connections between the controller inputs and controller outputs for different degrees of freedom of the rotor

EXAMPLE Multiple single-input single-output (SISO) controllers.

3.5.13

AMB tuning process

process of adjusting the controller's transfer function so that a rotor is in a desired operating condition within a *magnetic bearing* (3.1.2) system


3.5.14

peak-of-gain control

unbalance force counteracting control

control method which automatically detects and compensates unbalance forces of the rotor to minimize relative rotor to housing vibration due to unbalance

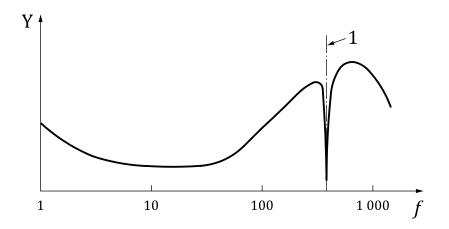
Note 1 to entry: The counteracting force is transmitted through the *AMB* (3.1.3) to the foundation (see Figure 12). As a result, absolute housing vibration is likely to increase while relative rotor to housing vibration is minimized.

Кеу

- *f* frequency, Hz
- Y controller gain, dB
- 1 frequency of rotation

Figure 12 — Example of a controller transfer function for unbalance force counteracting control

3.5.15


unbalance force rejection control

control method which allows the rotor to rotate around its principal axis of inertia while the transmitted unbalance force through the AMB (3.1.3) is minimized, which leads to minimized resulting vibration of the bearing casing

Note 1 to entry: Shaft vibration can increase.

Note 2 to entry: The "ABS" (automatic balancing system) or "N-cut" have the same function as the *unbalance force rejection control* (3.5.15).

Note 3 to entry: See Figure 13.

Кеу

- *f* frequency, Hz
- Y controller gain, dB
- 1 frequency of rotation

Figure 13 — Example of a controller transfer function for unbalance force rejection control

3.6 Terms relating to auxiliary equipment

3.6.1

touch-down bearing

bearing installed in the *AMB system* (3.5.1), which is designed to limit the rotor motion and to prevent contact with the AMB stator or rotor surface due to overload, failure or deactivation of the AMB system

Note 1 to entry: Other designations include auxiliary bearing, back-up bearing, catcher bearing, emergency bearing and retainer bearing.

3.6.2

touch-down bearing clearance

half of the difference between the inner diameter of the touch-down radial bearing bore and the outer diameter of the rotor shaft, or the axial clearance between the thrust face of an axial *touch-down bearing* (3.6.1) and the shaft shoulder

Note 1 to entry: These touch-down bearing clearances need to be smaller than the gap between the rotor and stator in the *AMB system* (3.5.1).

Note 2 to entry: For radial clearance of touch-down bearing, see key 3 in Figure 5 or Figure 6.

3.6.3

touch-down test

test where a rotor rotating at the designated speed is dropped intentionally on the *touch-down bearings* (3.6.1) in order to evaluate their performance

Note 1 to entry: Other designations include drop test, landing test, back-up bearing test.

3.6.4

uninterruptible power supply system

UPS system

source of stored energy that can be used to power the *AMB system* (3.5.1) during a mains power supply failure

3.6.5

touch-down bearing compliant mount

flexible element which provides a defined stiffness and damping support for a mounted radial *touch- down bearing* (3.6.1)

Note 1 to entry: This support is required in order to improve vibration response when running on touch-down bearings.

3.6.6

touch-down bearing hard-stop clearance

travel distance to a hard stop which limits the movement of the compliant mount of a radial *touch-down bearing* (3.6.1)

Bibliography

- [1] ISO 1101, Geometrical product specifications (GPS) Geometrical tolerancing Tolerances of form, orientation, location and run-out
- [2] ISO 2041, Mechanical vibration, shock and condition monitoring Vocabulary
- [3] ISO 21940-2, Mechanical vibration Rotor balancing Part 2: Vocabulary

Alphabetical index

A

active magnetic bearing 3.1.3 allowed operating temperature 3.3.7AMB 3.1.3 AMB bias current 3.5.6 AMB centralized control 3.5.11 AMB controller 3.5.2 AMB current control 3.5.4 AMB decentralized control 3.5.12 AMB system 3.5.1 AMB tuning process 3.5.13 AMB voltage control 3.5.5 area of one magnetic pole <u>3.1.25</u> auxiliary bearing 3.6.1 axial AMB 3.1.10 axial bearing disc 3.2.2 axial centre of a radial AMB 3.1.14 axial coil 3.3.6 axial disc 3.2.2 axial displacement transducer 3.4.5 axial magnetic bearing 3.1.10 axial magnetic centre of an axial AMB 3.1.16 axial position transducer 3.4.5 axial rotor disc 3.2.2 axial stator core 3.3.3 axial (transducer) target 3.4.8 В back-up bearing 3.6.1

С

catcher bearing 3.6.1 clearance centre of a radial AMB 3.1.12 clearance centre of a thrust AMB 3.1.15 clearance centre of an axial AMB 3.1.15 clearance centreline of a radial AMB 3.1.17 closed-loop dynamic system compliance 3.5.9 closed-loop dynamic system stiffness 3.5.8 coaxiality 3.1.34 concentricity 3.1.35 D displacement transducer 3.4.3 DN value <u>3.2.6</u> drop test 3.6.3 dwell time 3.1.32 dynamic load capacity of an AMB 3.1.26.3 Ε effective length of a radial magnetic bearing 3.1.23 electrical runout 3.2.5 emergency bearing 3.6.1 G geometrical runout 3.2.4 Η heteropolar-type radial AMB 3.1.21 HMB 3.1.7 homopolar-type radial AMB 3.1.22 hybrid magnetic bearing 3.1.7 J journal centreline of a radial AMB 3.1.18 journal diameter 3.2.3

back-up bearing test <u>3.6.3</u>

bearing span between radial AMBs 3.1.19

L

landing test <u>3.6.3</u> levitation <u>3.1.1</u> load capacity of an AMB <u>3.1.26</u> load pressure of a radial AMB <u>3.1.27</u>

M

magnetic bearing <u>3.1.2</u> magnetic centre of a radial AMB <u>3.1.13</u> magnetizing coil <u>3.3.4</u> mechanical runout <u>3.2.4</u>

Ν

negative position stiffness <u>3.5.7</u> nominal magnetic gap <u>3.1.11</u> non-collocation <u>3.1.33</u> number of control axes of an AMB <u>3.1.28</u> number of poles <u>3.1.20</u> **0**

open-loop AMB dynamic stiffness <u>3.5.10</u> **P**

passive magnetic bearing 3.1.4 peak-of-gain control 3.5.14 peak transient load capacity of an AMB 3.1.26.2 permanent-magnet-biased AMB 3.1.8 permanent magnetic bearing 3.1.5 PMB 3.1.5 position measuring system 3.4.1 position transducer 3.4.3 position transducer runout 3.2.5 power amplifier 3.5.3 projection area of a radial AMB 3.1.24 **R** radial coil 3.3.5

radial magnetic bearing 3.1.9 radial position transducer 3.4.4 radial rotor core 3.2.1 radial rotor journal 3.2.1 radial stator core 3.3.2 radial (transducer) target 3.4.7 retainer bearing 3.6.1 rise time 3.1.31 S self-sensing AMB 3.1.30 shaft displacement 3.4.2 shaft motion 3.4.2 shaft movement 3.4.2 shaft vibration 3.4.2 SMB <u>3.1.6</u> static load capacity of an AMB 3.1.26.1 stator core 3.3.1 super-conducting magnetic bearing 3.1.6 Т thrust bearing disc 3.2.2 thrust coil 3.3.6 thrust disc 3.2.2 thrust displacement transducer 3.4.5 thrust magnetic bearing 3.1.10 thrust position transducer 3.4.5 thrust rotor disc 3.2.2 thrust stator core 3.3.3 total AMB loss 3.1.29 touch-down bearing 3.6.1 touch-down bearing clearance 3.6.2 touch-down bearing compliant mount 3.6.5touch-down bearing hard-stop clearance 3.6.6 touch-down test 3.6.3 transducer target 3.4.6

radial displacement transducer 3.4.4

ISO 14839-1:2018(E)

U

unbalance force counteracting control <u>3.5.14</u> unbalance force rejection control <u>3.5.15</u> uninterruptible power supply system <u>3.6.4</u> UPS system <u>3.6.4</u>

ISO 14839-1:2018(E)