
Earth-moving machinery —
Functional safety —
Part 4:
Design and evaluation of software and
data transmission for safety-related
parts of the control system
Engins de terrassement — Sécurité fonctionnelle —
Partie 4: Conception et évaluation du logiciel et de la transmission
des données pour les parties relatives à la sécurité du système de
commande

© ISO 2020

INTERNATIONAL
STANDARD

ISO
19014-4

First edition
2020-07

Reference number
ISO 19014-4:2020(E)

ISO 19014-4:2020(E)

ii © ISO 2020 – All rights reserved

COPYRIGHT PROTECTED DOCUMENT

© ISO 2020
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

ISO 19014-4:2020(E)

Foreword ..iv
Introduction ..v
1 Scope ... 1
2 Normative references .. 1
3	 Terms	and	definitions ... 1
4 Software development .. 4

4.1 General ... 4
4.2 Planning .. 5
4.3 Artifacts ... 6
4.4 Software safety requirements specification .. 7
4.5 Software architecture design .. 8
4.6 Software module design and coding .. 8
4.7 Language and tool selection .. 9
4.8 Software module testing .. 10
4.9 Software module integration and testing ... 11
4.10 Software validation .. 12

5 Software-based parameterization ..12
5.1 General .. 12
5.2 Data integrity ... 13
5.3 Software-based parameterization verification ..13

6 Transmission protection of safety-related messages on bus systems ...13
7 Independence by software partitioning ..14

7.1 General .. 14
7.2 Several partitions within a single microcontroller ...15
7.3 Several partitions within the scope of an ECU network ...16

8 Information for use ...17
8.1 General .. 17
8.2 Instruction handbook .. 17

Annex A (informative) Description of software methods/measures ...18
Annex B (normative) Software validation test environments ..31
Annex C (informative) Data integrity assurance calculation..34
Annex D (informative) Methods and measures for transmission protection ...36
Annex E (informative) Methods and measures for data protection internal to microcontroller38
Bibliography ...40

© ISO 2020 – All rights reserved iii

Contents Page

ISO 19014-4:2020(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/ directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/ patents).

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www .iso .org/
iso/ foreword .html.

This document was prepared by ISO/TC 127, Earth-moving machinery, Subcommittee SC 2, Safety,
ergonomics and general requirements, in collaboration with the European Committee for Standardization
(CEN) Technical Committee CEN/TC 151, Construction equipment and building material machines - Safety,
in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

This first edition of ISO 19014-4, together with other parts in the ISO 19014 series, cancels and replaces
ISO 15998:2008 and ISO/TS 15998-2:2012, which have been technically revised.

The main changes compared to the previous documents are as follows:

— additional requirements for software development,

— requirements for software-based parametrization development,

— requirements for transmission of safety related messages on a communication bus, and

— requirements for software validation and verification of machine performance levels.

A list of all parts in the ISO 19014 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www .iso .org/ members .html.

iv © ISO 2020 – All rights reserved

https://www.iso.org/directives-and-policies.html
https://www.iso.org/iso-standards-and-patents.html
https://www.iso.org/foreword-supplementary-information.html
https://www.iso.org/foreword-supplementary-information.html
https://www.iso.org/members.html

ISO 19014-4:2020(E)

Introduction

This document addresses systems comprising any combination of electrical, electronic, and
programmable electronic components [electrical/electronic/programmable electronic systems (E/E/
PES)] used for functional safety in earth-moving machinery.

The structure of safety standards in the field of machinery is as follows.

Type-A standards (basis standards) give basic concepts, principles for design, and general aspects that
can be applied to machinery.

Type-B standards (generic safety standards) deal with one or more safety aspect(s), or one or more
type(s) of safeguards that can be used across a wide range of machinery:

— type-B1 standards on particular safety aspects (e.g. safety distances, surface temperature, noise);

— type-B2 standards on safeguards (e.g. two-hands controls, interlocking devices, pressure sensitive
devices, guards).

Type-C standards (machinery safety standards) deal with detailed safety requirements for a particular
machine or group of machines.

This document is a type-C standard as stated in ISO 12100.

This document is of relevance, in particular, for the following stakeholder groups representing the
market players with regard to machinery safety:

— machine manufacturers (small, medium, and large enterprises);

— health and safety bodies (regulators, accident prevention organisations, market surveillance etc.).

Others can be affected by the level of machinery safety achieved with the means of the document by the
above-mentioned stakeholder groups:

— machine users/employers (small, medium, and large enterprises);

— machine users/employees (e.g. trade unions, organizations for people with special needs);

— service providers, e. g. for maintenance (small, medium, and large enterprises);

The above-mentioned stakeholder groups have been given the possibility to participate at the drafting
process of this document.

The machinery concerned and the extent to which hazards, hazardous situations, or hazardous events
are covered are indicated in the Scope of this document.

When requirements of this type-C standard are different from those which are stated in type-A or
type-B standards, the requirements of this type-C standard take precedence over the requirements of
the other standards for machines that have been designed and built according to the requirements of
this type-C standard.

© ISO 2020 – All rights reserved v

Earth-moving machinery — Functional safety —

Part 4:
Design and evaluation of software and data transmission
for safety-related parts of the control system

1 Scope

This document specifies general principles for software development and signal transmission
requirements of safety-related parts of machine-control systems (MCS) in earth-moving machinery
(EMM) and its equipment, as defined in ISO 6165. In addition, this document addresses the significant
hazards as defined in ISO 12100 related to the software embedded within the machine control system.
The significant hazards being addressed are the incorrect machine control system output responses
from machine control system inputs.

Cyber security is out of the scope of this document.

NOTE For guidance on cybersecurity, see an appropriate security standard.

This document is not applicable to EMM manufactured before the date of its publication.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 6750-1, Earth-moving machinery — Operator's manual — Part 1: Contents and format

ISO 12100:2010, Safety of machinery — General principles for design — Risk assessment and risk reduction

ISO 13849-1, Safety of machinery — Safety-related parts of control systems — Part 1: General principles
for design

ISO 19014-1, Earth-moving machinery — Functional safety — Part 1: Methodology to determine safety-
related parts of the control system and performance requirements

ISO 19014-2:—1), Earth-moving machinery — Functional safety — Part 2: Design and evaluation of
hardware and architecture requirements for safety-related parts of the control system

3	 Terms	and	definitions

For the purposes of this document, the terms and definitions in ISO 12100, ISO 19014-1, ISO 13849-1
and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at https:// www .iso .org/ obp

— IEC Electropedia: available at http:// www .electropedia .org/

1) Under preparation. Stage at the time of publication: ISO/DIS 19014-2:2020.

INTERNATIONAL STANDARD ISO 19014-4:2020(E)

© ISO 2020 – All rights reserved 1

https://www.iso.org/obp/ui
http://www.electropedia.org/

ISO 19014-4:2020(E)

3.1
bus system
subsystem used in an electronic control system for the transmission of messages (3.6)

Note 1 to entry: The bus system consists of the system unit (sources and sinks of information), a transmission
path/transmission medium (e.g. electrical lines, fiber-optical lines, radio frequency transmission) and the
interface between message source/sink and bus electronics (e.g. protocol application specific integrated circuit,
transceivers).

3.2
encapsulated bus system
bus system (3.1) comprising a fixed number or a predetermined maximum number of bus participants
connected to each other through a transmission medium with well-defined and fixed performance/
characteristics

3.3
failure of peer communication
situation in which the communication peer is not available

3.4
unintended message repetition
situation in which the same message (3.6) is unintentionally sent again

3.5
message repetition
situation in which the same message (3.6) is intentionally sent again

Note 1 to entry: This technique of resending the same message addresses failures such as message loss (3.10).

3.6
message
electronic transmission of data

Note 1 to entry: Transmitted data can include user data, address, or identifier data and data to ensure
transmission integrity.

3.7
ECU
electronic control unit
electronic device (electronic programmable controller) used in a control system on earth-moving
machinery

[SOURCE: ISO 22448:2010, 3.3, modified — The admitted terms "ECM" and "electronic control module"
have been removed.]

3.8
reaction time
time from the detection of a safety-related event until the initiation of a safety reaction

3.9
artifact
work products that are produced and used during a project to capture and convey information

3.10
message loss
unintended deletion of a message (3.6) due to a fault of a bus participant

2 © ISO 2020 – All rights reserved

ISO 19014-4:2020(E)

3.11
incorrect sequence
unintended modification of the sequence of messages (3.6) due to a fault of a bus participant

Note 1 to entry: Bus systems (3.1) can contain elements with stored messages (first-in, first-out (FIFOs), etc.) that
can modify the correct sequence.

3.12
message	falsification
unintended modification of messages (3.6) due to an error of a bus participant or due to errors on the
transmission channel

3.13
message retardation
unintended delay or prevention of the safety function, caused by an overload of the transmission path
by normal data exchange or by sending incorrect messages (3.6)

3.14
alive counter
accounting component initialised with “0” when the object to be monitored is created or restored

Note 1 to entry: The counter increases from time t–1 to time t as long as the object is alive. Finally, the alive
counter shows the period of time for which the object has been alive within a network.

3.15
black box testing
testing of an object that does not require knowledge of its internal structure or its concrete
implementation

3.16
partition
resource entity allocating a portion of memory, input/output devices, and central processing unit usage
to one or more system tasks (3.21)

Note 1 to entry: The partitions can be assigned to one or more subsystems within the microcontroller network.

3.17
software partitioning
software fault (3.26) containment method consisting of assigning resources to specific software
components with the intention of avoiding the propagation of a software fault to multiple partitions (3.16)

3.18
software component
one or more software modules (3.19)

[SOURCE: ISO 26262-1:2018, 3.157, modified — The word "units" has been replaced with "modules".]

3.19
software module
independent piece of software that can be independently tested and traced to a specification

Note 1 to entry: The software module is an indivisible software component.

3.20
software partitions
runtime environment with separate system resources assigned

3.21
system task
runtime entities that are executed within the resource budget of partitions (3.16) and with different
priorities

© ISO 2020 – All rights reserved 3

ISO 19014-4:2020(E)

3.22
independence of software
exclusion of unintended interactions between software components, as well as freedom from impact on
the correct operation of a software component resulting from errors of another software component

3.23
operational history
operating data about a software component or a software module (3.19) during its time in service

3.24
maximum cycle time
static time to access a communication bus between nodes at a bus or node level

Note 1 to entry: The application of a time-triggered protocol ensures this cycle time is not exceeded.

3.25
maximum response time
fixed time assigned to a system activity to exchange globally-synchronised messages (3.6) on a bus in a
time-triggered architecture

3.26
software fault
incorrect step, process, or data definition in software which causes the system to produce
unexpected results

3.27
impact analysis
documentation that records the understanding and implications of a proposed change

3.28
configuration	management	process
task of tracking and controlling changes to the artifacts (3.9) in the development process

3.29
constant transmission of messages
situation in which the faulty node continually transmits messages (3.6) that compromises the operation
of the bus

3.30
blocking access to the data bus
situation in which the faulty node does not adhere to the expected patterns of use and makes excessive
demands of service, thereby reducing its availability to other nodes

4 Software development

4.1 General

The main objective of the following requirements is to achieve software reliability by means of
readable, understandable, testable, and maintainable software. This clause gives recommendations for
the design of software and the subsequent related testing. The avoidance of software faults shall be
considered during the entire software development process.

Where an existing software component has been developed to a previous standard and demonstrated
through application usage and validation to reduce the risk to as low as reasonably practicable, there
shall be no requirement to update the software life cycle documentation at the software module level.

Machine control software shall comply with the safety requirements of this clause. In addition, the
machine control software shall be designed and developed according to the principles of ISO 12100:2010
for relevant but not significant hazards which are not dealt with by this document.

4 © ISO 2020 – All rights reserved

ISO 19014-4:2020(E)

4.2 Planning

A plan shall be developed to define the relationship between the individual phases of the software
development and the related artifacts.

Appropriate methods and measures from Table 3 through Table 9 shall be selected for software
development according to the machine performance level required (MPLr).

The MPLr of the system may be achieved by adding, in parallel, two systems of a lower performance
level. When adding in parallel (according to ISO 19014-2), the software can be developed in each system
to the lower MPLr requirements. This is only allowable when there are no common cause failures
between the two systems.

The suitability of the selected methods or measures to the application shall be justified and shall be
made at the beginning of each planned development phase. For a particular application, the appropriate
combination of methods or measures shall be stated during development planning. Methods or
measures not listed in Table 3 through Table 9 may be used.

Figure 1 — Software development V-model

Figure 1 is a representation of one possible design method (V-model). Any organized, proven
development process that meets the requirements of this document may be used for the software
development.

When selecting methods and measures, in addition to manual coding, model-based development may
be applied where the source code is automatically generated from models.

With each method or measure in the tables, there is a different level of provision for each performance
level. Table 1 indicates the requirements.

Table	1	—	Software	safety	requirements	specification

Symbol Software	safety	requirements	specification
+ The method or measure shall be used for this MPLr.

In case this method or measure is not used, the related rationale shall be documented during the
safety planning phase.

o The method or measure may be used for this MPLr.
– The method or measure is not suitable to meet this MPLr.

© ISO 2020 – All rights reserved 5

ISO 19014-4:2020(E)

Methods and measures corresponding to the respective MPLr shall be selected. Alternative or
equivalent methods and measures are identified by letters after the number. At least one of the
alternatives or equivalent methods and measures marked with a “+” shall be selected, in which case,
providing a rationale is not required. An example of this is Table 2.

Table	2	—	Example	software	safety	requirements	specification

Method/measure MPLr = a MPLr = b, c MPLr = d MPLr = e
1.a Measure 1 + + – –
1.b Measure 2 + + + +
1.c Measure 3 + + + +

In this case,

— one measure from Measure 1, Measure2 or Measure 3 shall be fulfilled for MPLr = a, b, c;

— one measure from Measure2 or Measure 3 shall be fulfilled for MPLr = d, e;

— otherwise, a rationale shall be provided about the unspecified alternative method/measure to
satisfy the requirement of the standard for the specific MPLr.

Rationale or justification shall be provided if other equivalent methods or measures are used instead of
the listed methods or measures.

If a software component has any impact on different safety functions with a different MPLr, then the
requirements related to the highest MPLr shall apply.

If the software contains safety-related and non-safety-related components, then the overall embedded
software machine performance level achieved (MPLa) shall be limited to the software component with
the lowest MPLa; this requirement does not apply when adequate independence between the software
components can be demonstrated in accordance with Clause 7.

When reusing a software component that is intended to be modified, an impact analysis shall be
performed. An action plan shall be developed and implemented for the overall software life cycle, based
on the result of the impact analysis, to ensure that the safety goals are met.

4.3 Artifacts

Once the individual phases of software development plan have been determined, the artifacts shall be
defined for each phase to be carried out. Other phases and related artifacts can be added by distributing
the activities and tasks. Taking into account the extent and complexity of the project, all artifacts in the
individual phases shown in Figure 1 may be modified.

NOTE It is common to combine individual phases if the method/measure used makes it difficult to clearly
distinguish between the phases. For example, the design of the software architecture and the software
implementation can be generated successively with the same computer-aided development tool, as is done in the
model-based development process.

As part of the software development process, the artifacts shall be:

a) documented according to the outcomes expected from the planned phases;

b) modified as a consequence of an impact analysis, and only the impacted software shall be
regression tested;

c) subject to a configuration management process.

6 © ISO 2020 – All rights reserved

ISO 19014-4:2020(E)

The first artifact applicable to the process is the software development plan. The subsequent artifacts,
defined by the plan, shall include:

— design specification and related verification report, for each software design phase (descending
branch of the V-model in Figure 1);

— test specification and related test report, for each software (SW) testing phase (rising branch of the
V-model in Figure 1);

— executable software.

4.4	 Software	safety	requirements	specification

The software safety requirements specification shall describe requirements for the following, if
relevant:

— functions that enable the system to achieve or maintain a safe state;

— functions related to the detection, indication, and handling of faults by the safety-related parts of
control systems (SRP/CS);

— functions related to the detection, indication, and handling of faults in the software;

— functions related to the online and offline tests of the safety functions;

NOTE 1 An online test is performed while the system being tested is in use. An offline test is performed
while the system being tested is not in use.

NOTE 2 An example of an online test would be checking for faults in the steering system while driving the
machine. An example of an offline test would be checking for faults in the steering system prior to allowing
machine movement.

— functions that allow modifications of safety-related software parameters;

— interfaces with functions that are not safety-related;

— performance and response time;

— interfaces between the software and the hardware of the electronic control unit.

Appropriate method or measures shall be selected from Table 3 to meet the specified MPLr.

Table	3	—	Software	safety	requirements	specification

Method/measure Reference MPLr
= a

MPLr
= b, c

MPLr
= d

MPLr
= e

1. Requirements specification in natural language A.1 + + + +
2. Computer aided specification tools A.2 o o o +
3.a Informal methods A.3 + + + –
3.b Semi-formal methods A.4 + + + +
3.c Formal methods A.5 + + + +
4. Forward traceability between the system safety re-

quirements and the software safety requirements
A.6

o o o +

5. Backward traceability between the software safety
requirements and the system safety requirements

o o o +

6.a Walk-through of software safety requirements A.7 + + + –
6.b Inspection of software safety requirements A.8 + + + +
NOTE The detailed description of these methods/measures is in Annex A.

© ISO 2020 – All rights reserved 7

ISO 19014-4:2020(E)

4.5 Software architecture design

Software architecture that describes the hierarchical structure of all the safety-related software
components of each safety control system (SCS) shall be developed based on the software safety
requirements. Appropriate methods or measures shall be selected from Table 4 to meet the
specified MPLr.

Table 4 — Software architecture design

Method/measure Reference MPLr
= a

MPLr
= b, c

MPLr
= d

MPLr
= e

1.a Informal methods A.3 + + + –
1.b Semi-formal methods A.4 + + + +
1.c Formal methods A.5 + + + +
2. Computer-aided design tools A.9 o o o +
3.a Cyclic behaviour, with guaranteed maximum

cycle time
A.10

o o + +

3.b Time-triggered architecture o o + +
3.c Event-driven, with guaranteed maximum re-

sponse time
o o + +

4. Forward traceability between the software safety
requirements specification and the software ar-
chitecture

A.6

o o o +

5. Backward traceability between the software
architecture and the software safety requirements
specification

o o o +

6.a Walk-through of software architecture A.7 + + + –
6.b Inspection of software architecture A.8 + + + +
NOTE The detailed description of these methods/measure is in Annex A.

4.6 Software module design and coding

The objectives of this phase of software development are:

— specifying, in detail, the behaviour of the safety-related software modules that are prescribed by
the software architecture;

— generating readable, testable, and maintainable software modules (e.g. manual code, model, etc.);

— verifying that the software architecture has been fully and correctly implemented.

Appropriate methods or measures shall be selected from Table 5 to meet the specified MPLr. There is
no requirement to review auto-generated code.

Table 5 — Software module design and coding

Method/measure Reference MPLr
= a

MPLr
= b, c

MPLr
= d

MPLr
= e

1.a Informal methods A.3 + + – –
1.b Semi-formal methods A.4 + + + +
1.c Formal methods A.5 + + + +
NOTE The detailed description of these methods/measures is in Annex A.
a The use of trusted and verified software elements is highly recommended.
b These methods or measures are not always applicable for graphical modelling notations used in model-based
development.

8 © ISO 2020 – All rights reserved

ISO 19014-4:2020(E)

Method/measure Reference MPLr
= a

MPLr
= b, c

MPLr
= d

MPLr
= e

2. Computer aided design tool A.9 o o o +
3. Use of design and coding standards

A.11

o + + +
4. No unstructured control flow in programs in higher

level languagesb
o o + +

5. Limited automatic type conversionb o o + +
6. Limited use of interruptsb o o o +
7. Limited use of pointersb o o o +
8. Limited use of recursion o o o +
9.a Dynamic variables or objects without online checkb A.12 o o – –
9.b Dynamic variables or objects with online checkb A.13 o o + +
10. Software module size limit

A.14

+ + + +
11. One entry/one exit point in subroutines and func-

tionsb
o + + +

12. Fully defined interface o + + +
13. Information hiding/encapsulation o o + +
14. Software complexity control o o o +
15. Structured design or coding A.15 o + + +
16. Defensive design or code A.16 o o o +
17. Use of trusted/verified software elementsa A.17 o o o o
18. Forward traceability between the software safety

requirements specification and the software design A.6 o o o +

19.a Walk-through of software design, source code or
both

A.7 + + + –

19.b Inspection of software design, source code or both A.8 + + + +
NOTE The detailed description of these methods/measures is in Annex A.
a The use of trusted and verified software elements is highly recommended.
b These methods or measures are not always applicable for graphical modelling notations used in model-based
development.

4.7 Language and tool selection

The safety integrity of the software being developed can be directly affected by the programming
language selected, the tools used during development and testing, and the use of existing, trusted,
verified software modules. Appropriate methods or measures shall be selected from Table 6 to meet
the specified MPLr.

Table 6 — Language and tool selection

Method/measure Reference MPLr
= a

MPLr
= b, c

MPLr
= d

MPLr
= e

1. Suitable programming language A.18 + + + +
2. Language subset support A.19 o o o +
3.a Tools and translators with increased confidence

from use or validation
A.20 o + + +

3.b Certified tools and certified translators A.21 o + + +
NOTE The detailed description of these methods/measures is in Annex A.

Table 5 (continued)

© ISO 2020 – All rights reserved 9

ISO 19014-4:2020(E)

4.8 Software module testing

The objective of software module testing is to verify that the designed and implemented software
modules correctly fulfil the software safety design. In this phase, a procedure for testing the software
modules against their requirements shall be produced and the tests shall be carried out in accordance
with that procedure.

For a systematic approach to software module testing, the use of appropriate tools for test management
and test automation supports the work-intensive and error-prone tasks in software module testing.
The availability of support tools encourages a more exhaustive approach to both normal and regression
testing.

For easier verification, validation, assessment, and maintenance, all data, decisions, and rationale
should be documented throughout the software project. Documentation on the software modules
should include:

— testing performed;

— decisions and their rationale;

— problems and their solutions.

NOTE Data recording is important for the maintenance of computer systems as the rationale for certain
decisions made during the development project is not always known by the maintenance engineers.

Appropriate methods or measures shall be selected from Table 7 to meet the specified MPLr.

Software module testing may be executed in different environments, for example:

— model-in-the-loop tests,

— software-in-the-loop tests,

— processor-in-the-loop tests,

— hardware-in-the-loop tests.

Table 7 — Software module testing

Method/measure Reference MPLr
= a

MPLr
= b, c

MPLr
= d

MPLr
= e

1. Boundary value analysis A.22 o o + +
2. Control flow analysis A.23 o o + +
3. Data flow analysis A.24 o o + +
4. Test case execution from boundary value analysis A.25 o o o +
5. Functional/black box testing (including fault insertion

(FI) testing)
A.26 + + + +

6.a Structure test coverage (entry points)
A.27

o + – –
6.b Structure test coverage (statements) o + + -
6.c Structure test coverage (branches) o + + +
7. Equivalence classes and input partition testinga A.28 o o + +
8. Test case execution from model-based test case genera-

tion
A.29 o o o +

NOTE The detailed description of these methods/measures is in Annex A.
a The tester may choose not to perform this test method, but shall perform it at the integration level, when required.

10 © ISO 2020 – All rights reserved

ISO 19014-4:2020(E)

Method/measure Reference MPLr
= a

MPLr
= b, c

MPLr
= d

MPLr
= e

9. Response timings and memory constraints testinga

A.30
o + + +

10. Performance requirements testinga o + + +
11. Avalanche/stress testinga o o o +
12. SW module interface testing A.31 o o o +
13 Back-to-back comparison testing A.32 o o + +
14. Forward traceability between the software module

design and the module test specifications
A.6 o o o +

NOTE The detailed description of these methods/measures is in Annex A.
a The tester may choose not to perform this test method, but shall perform it at the integration level, when required.

4.9 Software module integration and testing

The objectives of this phase of software development are:

— integrating the software modules into software components throughout the embedded software of
the safety control system;

— verifying that the software requirements are correctly realized by the embedded software.

In this phase, the particular integration steps are tested against the software safety requirements. The
interfaces between the software modules and between software modules and components are also
tested. The steps of the integration and the tests of the software components shall directly correspond
to the hierarchical software architecture.

Appropriate methods/measures shall be selected from Table 8 to meet the specified MPLr. However,
the tester may choose not to apply a test method or measure at the integration level, but shall apply the
method or measure at the module level, when required.

Software module integration testing may be executed in different environments, for example:

— model-in-the-loop tests,

— software-in-the-loop tests,

— processor-in-the-loop tests,

— hardware-in-the-loop tests.

Table 8 — Software module integration and testing

Method/measure Reference MPLr
= a

MPLr
= b, c

MPLr
= d

MPLr
= e

1. Functional/black box testing (including fault insertion
(FI) testing)

A.26 + + + +

2. Equivalence classes and input partition testing A.28 o o + +
3. Response timings and memory constraints

A.30
o + + +

4. Performance requirements testing o + + +
5. Avalanche/stress testing o o o +
6. Back-to-back comparison testing A.32 o o + +
7. Forward traceability between the software architec-

ture design and the integration test specifications
A.6 o o o +

NOTE The detailed description of these methods/measures is in Annex A.

Table 7 (continued)

© ISO 2020 – All rights reserved 11

ISO 19014-4:2020(E)

4.10 Software validation

The objective of this phase of software development is showing that the software safety requirements
are correctly realized by the embedded software.

Testing shall be the main verification method for software. Animation and modelling may be used to
supplement the verification activities.

The software shall be exercised by simulation of:

— input signals present during normal operation;

— anticipated occurrences;

— undesired conditions requiring system action.

The effectiveness of the test procedures, and of any other measures used, shall be evaluated against the
safety requirements specifications on conclusion of the verification process.

Appropriate methods/measures shall be selected from Table 9 to meet the specified MPLr.

Table 9 — Software validation

Method/measure Reference MPLr
= a

MPLr
= b, c

MPLr
= d

MPLr
= e

1.a Machine network test B.1 + + + +
1.b Hardware-in-the-loop test B.2 + + + +
1.c Machine level test B.3 + + + +
2. Forward traceability between the software safety

requirements specification and software verification
(including data verification) plan

A.6

o o o +

3. Backward traceability between the software ver-
ification (including data verification) plan and the
software safety requirements specification

o o o +

NOTE The detailed description of these methods/measures is in Annex B.

The test method shall be carried out as specified in Annex B.

5 Software-based parameterization

5.1 General

Software-based parameterization refers to the possibility of adapting the software system to different
requirements, after completion of development, by changing parameters in order to modify the
functionality of the software. Software-based parameterization of safety-related parameters shall be
considered part of the SRP/CS and shall be described in the software safety requirements specification.

Software-based parameters include:

— variant coding (e.g. country code, left-hand/right-hand steering, etc…);

— system parameters (e.g. value for low idle speed, engine characteristic diagrams, etc…);

— calibration data (e.g. machinery specific, limit stop for throttle setting, etc…).

12 © ISO 2020 – All rights reserved

ISO 19014-4:2020(E)

5.2 Data integrity

The integrity of data used for parameterization shall be maintained, and unauthorized modifications
shall be prevented. This shall be achieved by applying methods or measures to control:

— the range of valid inputs;

— data corruption before and after transmission;

— the errors from the parameter transmission process;

— the effects of incomplete parameter transmission; and

— the effects of faults and failures of hardware and software of the tool used for parameterization.

5.3	 Software-based	parameterization	verification

The following verification activities shall be performed for software-based parameterization:

— verification of the valid setting for each safety-related parameter (minimum, maximum, and
representative values);

— verification that the safety-related parameters have been checked for plausibility by use of invalid
values written in the software during the configuration phase to verify its behaviour;

— verification that unauthorized modification of safety-related parameters is prevented;

— verification that the data/signals for parameterization are generated and processed in such a way
that faults cannot lead to a loss of the safety function.

6 Transmission protection of safety-related messages on bus systems

This clause gives recommendations for the transmission protection of safety-related messages used in
SCS and in the communication that can take place between various components (e.g. microcontrollers,
intelligent sensors, intelligent actuators) within an SCS as shown in Figure 2.

NOTE 1 At the time of publication, only encapsulated bus systems in which the manufacturer has defined the
number and type of bus participants (i.e. units connected to the bus) are considered. Data and address busses
internal to the CPU and ECU internal devices are excluded.

Appropriate methods and measures from Table 11 shall be implemented to control the errors as shown
in Table 10.

Table 10 — Control of transmission error and performance levels

Transmission errors MPLr = a, b, c MPLr = d,e
Failure of peer communication YESa YES
Message falsification YESa YES
Message repetition NO YES
Message loss YESa YES
Message insertion NO YES
Incorrect sequence NO YES
Message retardation YESa YES
Blocking access to the data bus YESa YES
Constant transmission of messages YESa YES
a Does not apply to category B or 1 systems since diagnostic coverage is not required

NOTE 2 Techniques can be implemented on protocols such as SAE J1939 to address the transmission errors.

© ISO 2020 – All rights reserved 13

ISO 19014-4:2020(E)

Figure 2 — Micro-controller network consisting of electronic control units on a data bus

Table 11 defines some of the methods and measures to protect against the transmission errors by
excluding particular fault effects related to the communication or protection of the safety-related data
in the SCS. Other methods and measures may be used to protect against errors.

Table 11 — Methods and measures within the scope of a microcontroller network

Transmission errors (see Clause 6)

Failure
of peer

communi-
cation

Unin-
tended

mes-
sage

repeti-
tion

Message
loss

Message
insertion

Incor-
rect se-
quence

Message
falsifica-

tion

Message
retarda-

tion

Blocking ac-
cess to the

data bus

Constant
transmis-

sion of
messages

Meth-
od/
meas-
ure

D.1 Keep alive
messages YES NO NO NO NO NO NO YES YES

D.2 Alive counter NO YES YES YES NO NO NO NO YES

D.3 Cyclic
redundancy
check (CRC)

NO NO NO NO NO YES NO NO NO

D.4 Sequence
number NO YES YES YES YES NO NO NO YES

D.5 Message
repetition NO NO YES NO YES YES NO NO NO

D.6 Watchdog YES NO YES NO NO NO YES YES YES

D.7 Time-
triggered
data bus

YES NO NO YES NO NO YES NO NO

D.8 Bus guardian NO NO NO NO NO NO NO NO YES

D.9 Minislotting NO NO NO NO NO NO YES NO YES

The fulfilment of the MPLr by the measures implemented on the network communication may be
verified by means of the calculation of the data integrity assurance, as reported in Annex C. Annex D
has additional information on Table 11.

7 Independence by software partitioning

7.1 General

Software partitioning is intended to aid the designer in proving independence for software components.
Adequate independence of software components is guaranteed by excluding particular software fault
effects violating this independence.

14 © ISO 2020 – All rights reserved

ISO 19014-4:2020(E)

For that purpose, methods and measures shall be implemented with adequate effectiveness:

— to control hazards that can occur in subsystems so that they cannot affect other subsystems;

— to have adequate independence of software components by software partitioning.

In order to achieve adequate independence of software components, the system resources should be
assigned to independent partitions, each representing a particular runtime environment. The use of
software partitioning is not restricted to the co-existence of software of different MPL in the same
runtime environment. It can also support:

a) changes in a partition without re-verification of unmodified software partitions;

b) co-existence of software of a different nature (in-house, third party).

For software partitions with MPLr equal to c, d, e, independence is required.

NOTE Partitions can be allocated within a single microcontroller or allocated to several microcontrollers
within a microcontroller network.

Depending on the selected architecture, two approaches can be used:

a) several partitions within a single microcontroller;

b) several partitions within the scope of an ECU network.

The concept of software partitioning and its associated methods and measures for the independence of
software components shall be taken into account when specifying the software architecture.

That part of the software that implements the support for partitioning implementation shall have the
same or higher MPLa than the highest MPLr associated with the software partitions.

7.2 Several partitions within a single microcontroller

In order to guarantee adequate independence of software components within a single microcontroller
as shown in Figure 3, correct execution of the safety-related function shall be protected against any of
the following fault effects:

— memory corruption (unintended writing to memory of another partition);

NOTE 1 Memory corruption applies to memory mapped input/output (I/O), memory registers, etc.

— blocking of partitions (due to communication deadlocks);

— wrong allocation of processor execution time;

— wrong communication peer (the sender sends messages to the wrong recipient or masquerades as a
sender other than himself);

— corruption of I/O interface by unintended writing to an I/O interface of another partition.

NOTE 2 Corruption of I/O interface refers only to external devices.

© ISO 2020 – All rights reserved 15

ISO 19014-4:2020(E)

Figure 3 — Several partitions within a single microcontroller

Table 12 defines the measures so that all appropriate fault effects listed above can be handled to ensure
adequate effectiveness and adequate independence of software components. Additional information is
in Annex E.

Table 12 — Methods and measures within microcontroller

Fault effect

Memory
corruption

Blocking of
partitions

Wrong
processor
execution

time allocation

Wrong
communication

peer
Corruption of
I/O interface

Meth-
od/

meas-
ure

E.1 Unambiguous bidirectional
communication object NO NO NO YES NO

E.2 Strictly two unidirectional
communication objects NO NO NO YES NO

E.3 IDs	for	identification,	
acknowledgement, or both. NO NO NO YES NO

E.4 Asynchronous data
communication NO YES NO NO NO

E.5 Strict priority-based
scheduling NO NO YES NO NO

E.6 Time slicing method NO NO YES NO NO

E.7 Memory protection
mechanisms YES NO NO NO YES

E.8 Verification	of	safety	critical	
data YES NO NO NO NO

E.9 Static analysis YES NO NO NO NO

E.10 Static allocation YES YES YES YES YES

7.3 Several partitions within the scope of an ECU network

In order to guarantee adequate network communication, when the independence of software
components is implemented by means of a microcontroller network, refer to Clause 6.

16 © ISO 2020 – All rights reserved

ISO 19014-4:2020(E)

8 Information for use

8.1 General

Information for use shall be provided in accordance with ISO 12100:2010, 6.4.

8.2 Instruction handbook

Information for use shall be included in the machine instruction handbook (i.e., operator’s manual).
This information shall use ISO 6750-1 for guidance. This information can include the following:

— descriptions of symbols that are displayed to the operator and what action is required;

— descriptions of error messages that are displayed to the operator and what action is required;

— descriptions of warning messages that are displayed to the operator and what action is required;

— descriptions of calibration procedures that the operator is required to perform.

© ISO 2020 – All rights reserved 17

ISO 19014-4:2020(E)

Annex A
(informative)

Description of software methods/measures

A.1	 Requirements	specification	in	natural	language

The software safety requirements specification should include a description of the problem in natural
language and, if necessary, further informal methods, such as figures and diagrams.

A.2	 Computer-aided	specification	tools

Use of these tools to facilitate automatic detection of ambiguity and completeness in semi-formal and
formal specification methods should be used. The tool should produce specifications in the form of a
database that can be automatically inspected to assess consistency and completeness. In general, this
method supports not only the creation of the specification but also of design and other phases of the
project life cycle.

A.3 Informal methods

Informal methods should provide a means of developing a description of a system at some stage in its
development, i.e. specification, design or coding, typically by means of natural language, diagrams,
figures, etc.

A.4 Semi-formal methods

Semi-formal design methods should express a concept, specification or design unambiguously and
consistently, so that some mistakes and omissions can be detected.

The description should in some cases be analysed by machine or animated to display various aspects of
system behaviour. Animation can give extra confidence that the system meets the requirements.

Examples of semi-formal methods include, but are not limited to: data flow diagrams, pseudo code,
modelling tools, finite state machine/state transition diagrams.

A.5 Formal methods

Formal methods provide a means of developing description of a system in a strict notation that should
be subjected to mathematical analysis to detect various classes of inconsistency or incorrectness.
Moreover, the description should in some cases be analysed by machine with a rigor similar to the
syntax checking of source program compiler, or animated to display various aspects of the behaviour of
the system described. Animation can give extra confidence that the system meets the real requirement
as well as the formally specified requirement, because it improves human recognition of the specified
behaviour.

A formal method generally offers a notation (normally some form of discrete mathematics being used), a
way for deriving a description in that notation, and various forms of analysis for checking a description
for different correctness properties.

18 © ISO 2020 – All rights reserved

ISO 19014-4:2020(E)

A.6 Traceability of the safety software

In order to ensure that the software resulting from development activities meets the requirements for
correct operation of the safety-related system, consistency between the software development stages
is essential. Traceability between activities is a key concept that confirms:

1. that decisions made at an earlier stage are adequately implemented in later stages (forward
traceability),

2. that decisions made at a later stage are required by earlier decisions (backward traceability).

Forward traceability is broadly concerned with checking that a requirement is adequately addressed
in later software development stages. Forward traceability is valuable at several points in the safety
software development:

— from the system safety requirements to the software safety requirements;

— from the software safety requirements specification to the software architecture;

— from the software safety requirements specification to the software design;

— from the software design specification to the module and integration test specifications;

— from the system and software design requirements for hardware/software integration to the
hardware/software integration test specifications;

— from the software safety requirements specification to the software safety validation plan;

— from the software safety requirements specification to the software modification plan (including
re-verification and re-validation);

— from the software design specification to the software verification (including data verification) plan;

Backward traceability is broadly concerned with checking that every implementation (interpreted
in a broad context, and not confined to code implementation) decision is clearly justified by some
requirement. If this justification is absent, then the implementation contains something unnecessary
that adds to the complexity but not necessarily address any genuine requirement of the safety-related
system. Backward traceability is valuable at several points in the safety software development:

— from the safety requirements, to the perceived safety needs;

— from the software architecture, to the software safety requirements specification;

— from the software detailed design to the software architecture;

— from the software code to the software detailed design;

— from the software safety validation plan, to the software safety requirements specification;

— from the software modification plan, to the software safety requirements specification;

— from the software verification (including data verification) plan, to the software design specification.

A.7 Walk-through

A walk-through is a systematic, informal verification used to review an aspect of the design. During
a walk through, the author of an artifact provides a step-by-step report to one or more assessors.
The objective is to create a common understanding of the artifact, and to identify any errors, defects,
discrepancies or problems in the artifact. A walk-through is less stringent than an inspection.

A walk-through should be used to detect software faults as soon as economically possible during
development. It consists of a walk-through team selecting a small set of paper test cases, representative

© ISO 2020 – All rights reserved 19

ISO 19014-4:2020(E)

sets of inputs, and corresponding expected outputs for the program. The test data is then manually
traced through the logic of the program.

A.8 Inspection

An inspection is a systematic, formal verification method used to review an aspect of the design. During
an inspection, the artifact is checked by one or more assessors to see whether it complies with the
requirements. The inspection is organized and moderated by an inspection leader. The author of the
artifact participates in the inspection but cannot lead the process.

Design inspection can be performed at design level to reveal defects in the design of the software. A
design inspection is a formal, documented, comprehensive, and systematic examination of the software
design to evaluate the design requirements, the capability of the design to meet these requirements,
identify problems, and propose solutions. Such a review is primarily intended to verify the work of the
designers and should be treated as a confirmation and refining activity.

Code inspections can be performed at coding level to reveal defects in a software element. Formal
inspection is a structured process to inspect software material that is carried out by peers of the
person producing the material to find defects and to enable the producer to improve the material. The
producer should take no part in the inspection process, other than to brief the inspectors during the
familiarization stage. Formal inspections may be carried out on specific software elements produced at
any phase of the software development life cycle.

Prior to the inspection taking place the inspectors should become familiar with the materials to be
inspected. The inspectors’ roles in the inspection process should be clearly defined. An inspection
agenda should be prepared. Entry and exit criteria should be defined based on the properties required
for the software element. Entry criteria are the criteria or requirements which shall be met prior to the
inspection taking place. Exit criteria are the criteria or requirements which shall be met to complete a
specific process.

During the inspection the findings of the inspection should be formally recorded by the moderator,
whose role is to facilitate the inspection. A consensus on the findings should be reached by all inspectors.
Defects should be classified as either

a) requiring rectification prior to acceptance, or

b) requiring rectification by a given time/milestone.

Defects identified should be referred to the producer for subsequent rectification after completion of
the inspection. Depending on the number and scope of identified defects, the moderator may determine
the necessity for further inspection of the software material.

A.9 Computer-aided design tools

This type of tool can support to carry out the design procedure more systematically by including the
use of automatic elements which are made available to structure the design of the software.

Computer-aided design tools should be used during the design of both hardware and software
when available and justified by the complexity of the system. The correctness of such tools should
be demonstrated by specific testing, by an extensive history of satisfactory use, or by independent
verification of their output for the particular safety-related system that is being designed.

Support tools should be selected for their degree of integration. In this context, tools are integrated
if they work co-operatively such that the outputs from one tool have suitable content and format for

20 © ISO 2020 – All rights reserved

ISO 19014-4:2020(E)

automatic input to a subsequent tool, thus minimizing the possibility of introducing human error in the
reworking of intermediate results.

NOTE Integrated Development Environment (IDE) could be employed to provide comprehensive facilities
to computer programmers for software development. They normally consist of a source code editor, build
automation tools, and debugger. Most of them have intelligent code completion; some contain a compiler,
interpreter, or both.

A.10 Safety performance in real time

The implementation of fault-tolerance into safety-critical real-time systems with predictable behaviour
is achieved by means of the following solutions:

— In a cyclic behaviour with guaranteed maximum cycle time, communication between nodes is done
using a time-triggered protocol class C (TTP/C) according to a static schedule, deciding when to
transmit a message and whether a received message is relevant for the particular electronic module
or not. Access to the bus is controlled by a cyclic time-division multiple access (TDMA) scheme
derived from the global notion of time.

— In a time-triggered architecture (TTA) system, all system activities are initiated and based on the
progression of a globally synchronised time-base. Each application is assigned a fixed time slot on
the time-triggered bus, which contains the messages exchanged between the jobs of each application
which can therefore be exchanged only according to a defined schedule.

In an event-driven system, activities triggered by arbitrary events at unpredictable times should be
considered.

NOTE Other time-triggered protocols are FlexRay and TT-Ethernet (time-triggered Ethernet).

A.11 Design rules

Coding standards should be used to facilitate verifiability of the produced code. The detailed rules
should be fully agreed upon before coding. These rules typically require

— details of modularization, e.g. interfaces between software module, software module sizes;

— limited use of encapsulation, inheritance (restricted in depth), and polymorphism, in the case of
object-oriented languages;

— limited use or avoidance of certain language constructs such as “go-to”, “equivalence”, dynamic
objects, dynamic data, dynamic data structures, recursion, pointers, and exits;

— restrictions on interrupts enabled during the execution of safety-critical code;

— layout of the code (listing);

— no unconditional jumps (for example “go-to”) in programs in higher-level languages.

These rules enable ease of software module testing, verification, assessment, and maintenance.
Therefore, they should take into account available tools in particular analysers.

The use of interrupts should be restricted. Interrupts may be used if they simplify the system. Software
handling of interrupts should be inhibited during execution of safety-related system tasks. If interrupts
are used, then parts not able to be interrupted should have a specified maximum computation time,
so that the maximum time for which an interrupt is inhibited can be calculated. Interrupt usage and
inhibiting should be thoroughly documented.

In the application software, pointer arithmetic should be used at source code level only if the pointer
data type and value range (to ensure that the pointer reference is within the correct address space) are
checked.

© ISO 2020 – All rights reserved 21

ISO 19014-4:2020(E)

If recursion is used, clear criteria should be established on the allowed depth of recursion.

A.12 Dynamic variables or objects without online check

Because of the number of dynamic variables and objects, and the existing free memory space for
allocating new dynamic variables or objects, depends on the state of the system at the moment of
allocation, it is possible for software faults to occur when allocating or using the variables or objects.
For example, when the amount of free memory at the location allocated by the system is insufficient, the
memory contents of another variable can be inadvertently overwritten. If dynamic variables or objects
are not used, these software faults can be avoided.

Restrictions on the use of dynamic objects are needed where the dynamic behaviour cannot be
accurately predicted by static analysis (i.e. in advance of the program execution), and therefore
predictable program execution cannot be guaranteed. After a dynamic variable or object has been used
(for example, after exiting a subroutine) the whole memory which was allocated to it should be freed.

A.13 Dynamic variables or objects with online check

Online check determines at run time whether that the existing variables, data or code are not impacted
by the allocation. If allocation is not allowed (for example, if the memory at the determined address is
not sufficient), appropriate action shall be taken. This is an alternative method to statically allocating
all the required variables and objects.

A.14 Modular approach

A modular approach (modularization) presupposes a number of rules for the design, coding, and
maintenance phases of a software project. These rules vary according to the design method employed.
For the methods of this document, the following apply:

— A software module should have a single well-defined system task or function to fulfil.

— Connections between software modules should be limited and strictly defined.

— Collections of subprograms should be built, providing several levels of software modules.

— The software module size should be restricted to a specified value (typically two to four screen
sizes, but related to a pre-defined coding standard).

— Software modules should have single entry and single exit. If more than one point of entry or exit is
needed, the reason for this strategy shall be documented within the software; this ensures proper
execution and maintainability of the software.

— Software modules should communicate with other software modules via their interfaces. Where
global or common variables are used they should be well structured, access should be controlled,
and their use should be justified in each instance.

— All software module interfaces should be fully documented.

— Any software module interface should contain only those parameters necessary for its function.

— Complexity metrics should be used to predict the attributes of programs from properties of the
software itself or from its development or test history. Software tools are required to evaluate most
of the measures. Some of the metrics which can be applied are, e.g., graph theoretic complexity,
accessibility, number of operators and operands, and number of entries and exits per software module.

— Information hiding or encapsulation should be used to prevent unintended access to data or
procedures and thereby support a good program structure. Data that is globally accessible to all
software elements can be accidentally or incorrectly modified by any of these elements. Any changes
to these data structures can require detailed examination of the code and extensive modifications.

22 © ISO 2020 – All rights reserved

ISO 19014-4:2020(E)

Information hiding is a general approach for minimising these difficulties. The key data structures
are "hidden" and can only be manipulated through a defined set of access procedures. This allows
the internal structures to be modified or further procedures to be added without affecting the
functional behaviour of the remaining software.

A.15 Structured programming

Structured programming should be used to design and implement the program such that it is practical
to analyse without being executed.

The following should be carried out so as to minimize structural complexity:

a) divide the program into appropriately small software modules, ensuring all interactions are
explicit;

b) compose the software module control flow using structured constructs, (i.e. sequences, iterations
and selection statements);

c) keep the number of possible paths through a software module small, and the relation between the
input and output parameters as simple as possible;

d) avoid complicated branching, in particular, avoid unconditional jumps (go-to) in higher level
languages;

e) where possible, use input parameters as loop constraints to perform branching, and avoid using
calculations as the basis of branching and loop decisions.

Features of the programming language which encourage the above approach should be used in
preference to other features which are (allegedly) more efficient, except where efficiency takes absolute
priority.

A.16 Defensive programming

Many methods can be used during programming to check for control or data anomalies. The methods
used should be applied systematically throughout the programming of a system to decrease the
likelihood of erroneous data processing. There are two overlapping areas of defensive methods. Intrinsic
error-safe software is designed to accommodate its own design shortcomings. These shortcomings can
be due to mistakes in design or coding, or to erroneous requirements. Methods include the following:

— range checking the variables;

— checking values for plausibility;

— type, dimension, and range checking parameters of procedures at procedure entry.

This first set of defensive methods helps to ensure that the numbers manipulated by the program are
reasonable, both in terms of the program function and physical significance of the variables.

Read-only and read-write parameters should be separated, and their access checked. Functions should
treat all parameters as read-only. Literal constants should not be accessible. This helps detect accidental
overwriting or mistaken use of variables. Fault tolerant software is designed to “expect” failures in its
own environment or use outside nominal or expected conditions, and behave in a predefined manner.
Methods include the following:

— checking input variables and intermediate variables with physical significance for plausibility;

— checking the effect of output variables, preferably by direct observation of associated system state
changes;

© ISO 2020 – All rights reserved 23

ISO 19014-4:2020(E)

— checking by the software of its configuration, including both the existence and accessibility of
expected hardware, and also that the software itself is complete; this is particularly important for
maintaining integrity after maintenance procedures.

Some of the defensive programming methods, such as control flow sequence checking, also cope with
external failures.

A.17	Use	of	trusted/verified	software	elements

Trusted/verified software modules and software components may be re-used in new applications. This
allows the developer to take advantage of designs which have not been formally or rigorously verified,
but for which considerable operational history is available, thus reducing the amount of validation
required for software modules and hardware component designs in new applications.

A software component or software module can be sufficiently trusted if it is already verified to the
MPLr, or if it fulfils the following criteria:

— the safety-related function has at least one year or 1 000 hours of operation with no change to the
specification;

— prior operating history of the software module relates to the intended purpose in the new application,
thus establishing confidence in the software module’s suitability for the new application;

— no failures of safety-related functions in the re-used software during the operational history.

Careful evaluation of each function should be performed since a non-safety-related function in one
application can be a safety-related function in a different application

To verify that a component or software module meets the above criteria, the following procedures
should be available to provide the evidence to be documented:

— identification of each system and its components, including version numbers for software and
hardware used in the verification process;

— identification and selection of a sufficient sample of users and time of use of the application (i.e. one
year or 1 000 hours of operation);

— detection and registration of failures, with related corrective actions.

If alternative procedures are followed to collect evidence of suitability, a rationale should be provided
to demonstrate that the goal of trusted software component or software module is still achieved.

The described approach is extendable to supplied complex electronic components (e.g. from supplier
to customer), where an unmodified software is integrated with unmodified hardware, and when the
previously described requirements are fulfilled and documented.

A.18 Suitable programming language

The aim is to choose a programming language that supports the requirements of this document
as much as possible, in particular defensive programming, structured programming, and possibly
assertions statements. The programming language chosen should lead to easily verifiable code and
facilitate program development, verification, and maintenance. Widely used languages or their subsets
are preferred to special-purpose languages. Low-level languages, in particular assembly languages,
present problems due to their processor/platform machine-orientated nature.

A desirable language property is that its design and use should result in programs whose execution is
predictable without running the code. Given a suitably defined programming language, there is a subset

24 © ISO 2020 – All rights reserved

ISO 19014-4:2020(E)

which ensures that program execution is predictable. This subset cannot (in general) be statically
determined, although many static constraints can assist in ensuring predictable execution.

NOTE See IEC 61508-7: 2010, Table C.1 for a list of programming languages.

A.19 Language subset support

The use of a language subset reduces the probability of introducing programming faults and increase
the probability of detecting any remaining software faults. The programming language should be
examined to determine programming constructs which are either error-prone or difficult to analyse
(e.g. using static analysis methods). These programming constructs should then be excluded and a
language subset defined. Also, it should be documented as to why the constructs used in the language
subset are safe.

NOTE MISRA 'C' (Motor Industry Software Reliability Association) guidelines are an example of software
development guidelines that define a language subset and, generally, aim to facilitate code safety, security,
portability, and, reliability.

A.20	Tools	with	increased	confidence	from	use	or	validation

Tools that are proven in use or that have been validated should be applied in order to avoid difficulties
due to tool failures which can arise during development, verification, and maintenance of software
packages. Software tools without operating history or with any serious known faults should be avoided
unless there is some other assurance of correct performance. If the software tool has shown small
deficiencies, the related language constructs are noted down and carefully avoided during a safety-
related project.

A software tool should only be argued as having increased confidence from use if evidence is provided
for the following:

a) the software tool has been used previously for the same purpose with comparable use cases, a
comparable determined operating environment, and with similar functional constraints;

b) the justification for increased confidence from use is based on sufficient and adequate data (at least
one project producing a software with at least one year or 1 000 hours of operation);

c) the specification of the software tool is unchanged;

d) the occurrence of malfunctions and corresponding erroneous outputs of the software tool acquired
during previous developments are accumulated in a systematic way.

A software tool should only be argued as having increased confidence from validation if evidence is
provided showing the validation meets the following criteria:

a) the validation measures demonstrate that the software tool complies with its specified
requirements (e.g. the standard for a programming language helps to define the requirements for
validating the associated compiler);

b) the malfunctions and their corresponding erroneous outputs of the software tool occurring during
validation have been analysed together with information on their possible consequences and with
measures to avoid or detect them;

c) the reaction of the software tool to anomalous (out of the specified type of application) operating
conditions has been examined.

© ISO 2020 – All rights reserved 25

ISO 19014-4:2020(E)

A.21	Certified	tools	and	certified	translators

Tools are necessary to help developers in the different phases of software development. Wherever
possible, tools should be certified so that some level of confidence can be assumed regarding the
correctness of the outputs.

The certification of a tool is generally carried out by an independent third party, against independently
set criteria, typically national or international standards. Ideally, the tools used in all development
phases (specification, design, coding, testing and validation) and those used in configuration
management should be subject to certification.

It is important to note that certified tools, and certified translators are usually certified only against
their respective language or process standards; they are usually not certified in any way with respect
to safety.

A.22 Boundary value analysis

Boundary value analysis should be used to detect software errors occurring at parameter limits or
boundaries. The input domain of the program is divided into a number of input classes (subsets of input
values/combinations) according to the equivalence relation (each value of a class results in the same
output value). The tests should cover the boundaries and extremes of the classes. The tests check that
the boundaries in the input domain of the specification coincide with those in the program.

Normally, the boundaries for input have a direct correspondence to the boundaries for the output
range. Test cases should be written to force the output to its limited values. Consider also if it is possible
to specify a test case which causes the output to exceed the specification boundary values.

If the output is a sequence of data (e.g. a printed table), special attention should be paid to the first and
the last elements, and to lists containing no elements, one element, and two elements.

A.23	Control	flow	analysis

Control flow analysis should be used to detect poor, and potentially incorrect, program structures.

Control flow analysis is a static testing method for finding suspect areas of code that do not follow
good programming practice. The program analysed produces a directed graph which can be further
analysed for

— inaccessible code, e.g. unconditional jumps which leave blocks of code unreachable;

— knotted code, where, in contrast to well-structured code with a control graph reducible by successive
graph reductions to a single node, poorly structured code can only be reduced to a knot composed
of several nodes.

A.24	Data	flow	analysis

Data flow analysis should be used to detect poor, and potentially incorrect, program structures.

Data flow analysis is a static testing method that combines the information obtained from the control
flow analysis with information about which variables are read or written in different portions of code.
The analysis can check for the following types of variables:

— those that can be read before they are assigned a value, which can be avoided by always assigning a
value when declaring a new variable;

— those written more than once without being read, which could indicate omitted code;

— those written but never read, which could indicate redundant code.

26 © ISO 2020 – All rights reserved

ISO 19014-4:2020(E)

A data flow anomaly does not always directly correspond to a program fault; however, if anomalies are
avoided, the code is less likely to contain faults.

A.25 Test case execution from boundary value analysis

Test case execution from boundary value analysis (see A.22) should be used to detect software errors
occurring at parameter limits or boundaries.

A.26 Functional/Black box testing

Functional testing should be used to reveal failures during the specification and design phases, and to
avoid failures during implementation and the integration of software and hardware.

During the functional tests, reviews should be carried out to determine whether the specified
characteristics of the system have been achieved and that the system input data which adequately
characterize the normally expected operation have been given. The outputs are observed and their
response is compared with that given by the specification. Deviations from the specification and
indications of an incomplete specification should be documented. Functional testing of electronic
components designed for a multi-channel architecture usually involves the manufactured components
being tested with pre-validated partner components.

In addition, it is recommended that the manufactured components be tested in combination with other
partner components of the same batch, in order to reveal common mode software faults which would
otherwise have remained masked.

A.27 Structure-based testing

Structure-based testing exercises certain subsets of the program structure. Based on analysis of the
program, a set of input data is chosen so that a large (and often pre-specified target) percentage of
the program code is exercised. Measures of code coverage vary as follows, depending upon the level of
rigour required.

In all cases, 100 % of the selected coverage metric should be the aim; if it is not possible to achieve
100 % coverage, the reasons why 100 % cannot be achieved should be documented in the test report
(for example, defensive code which can only be entered if a hardware problem arises). The methods in
the following list are widely supported by testing tools:

— Entry point (call graph) coverage: ensure that every subprogram (subroutine or function) has been
called at least once (this is the least rigorous structural coverage measurement).

In object-oriented languages, there can be several subprograms of the same name which apply
to different variants of a polymorphic type (overriding subprograms) which can be invoked by
dynamic dispatching. In these cases, every such overriding subprogram should be tested.

— Statements: ensure that all statements in the code have been executed at least once.

— Branches: both sides of every branch should be checked. This can be impractical for some types of
defensive code.

A.28 Equivalence classes and input partition testing

Equivalence classes and input partition testing permits to test the software adequately using a
minimum of test data. The test data is obtained by selecting the partitions of the input domain required
to exercise the software.

This testing strategy is based on the equivalence relation of the inputs, which determines a partition of
the input domain. Test cases are selected with the aim of covering all the partitions previously specified.
At least one test case is taken from each equivalence class.

© ISO 2020 – All rights reserved 27

ISO 19014-4:2020(E)

There are two basic possibilities for input partitioning which are

— equivalence classes derived from the specification – the interpretation of the specification can
be either input orientated, for example the values selected are treated in the same way, or output
orientated, for example the set of values lead to the same functional result;

— equivalence classes derived from the internal structure of the program – the equivalence class
results are determined from static analysis of the program, for example the set of values leading to
the same path being executed.

A.29 Test case execution from model-based test case generation

Test case execution from model-based test case generation is to facilitate efficient automatic test case
generation from system models and to generate highly repeatable test suites.

Model-based testing (MBT) is an approach in which common testing tasks such as test case generation
(TCG) and test results evaluation are based on a model of the system (application) under test (SUT).
Additionally, model-based testing can be combined with source code level test coverage measurement;
functional models can be based on existing source code.

Since testing is very expensive, there is a huge demand for automatic test case generation tools.
Therefore, model-based testing is currently a very active field of research, resulting in a large number
of available TCG tools. These tools typically extract a test suite from the behavioural part of the model,
guaranteeing to meet certain coverage requirements.

The model is an abstract, partial representation of the desired behaviour of the SUT. From this model,
test models are derived, building an abstract test suite. Test cases are derived from this abstract test
suite and executed against the system; tests can be run against the system model as well.

Model-based testing is specifically targeting recently the safety critical domain; it allows for early
exposure of ambiguities in specification, and design. Model-based testing also provides the capability
to automatically generate many non-repetitive efficient tests, evaluate regression test suites,
assess software reliability and quality, and eases updating of test suites. provides the capability to
automatically generate many non-repetitive efficient tests, to evaluate regression test suites and to
assess software reliability and quality, and eases updating of test suites.

A.30 Performance testing

Performance testing should be used to ensure that the working capacity of the system is sufficient to
meet the specified requirements.

The requirements specification shall include throughput and response time requirements for safety-
related functions. The requirements specification should include constraints on the use of total system
resources. The proposed system design is compared with the stated requirements by:

— producing a model of the system processes and their interactions;

— determining the use of resources by each process (stack, processor time, communications bandwidth,
storage devices, etc.);

— determining the distribution of demands placed upon the system under average and worst-case
conditions; and

— computing the mean and worst-case throughput and response times for the individual system
functions.

Response timing and memory constraints testing can be performed to ensure that the system meets its
temporal and memory requirements. Response time is the total time it takes from when a user/system
makes a request until a response is received. When testing response time, one needs to find out how the
application handles all the requests and how the response time increases/decreases with the load and

28 © ISO 2020 – All rights reserved

ISO 19014-4:2020(E)

execution through time. Moreover, memory constraints testing verifies that all memory is explicitly
initialized before it is used and blocked from other processes for use. An analysis is performed to
determine the distribution demands under average and worst-case conditions. This analysis requires
estimates of the resource usage and elapsed time of each system function. These estimates can be
obtained in several ways; for example, comparison with an existing system or the prototyping and
benchmarking of time critical systems.

Performance requirements testing are performed to establish demonstrable performance requirements
of a software system. An analysis is performed of both the system and the software requirements
specifications to specify all general and specific, explicit and implicit performance requirements. Each
performance requirement is examined in turn to determine

— the success criteria to be achieved;

— whether a measure against the success criteria can be achieved;

— the potential accuracy of such measurements;

— the project stages at which the measurements can be estimated; and

— the project stages at which the measurements can be made.

Avalanche/stress testing can be performed to burden the test object with an exceptionally high
workload in order to show that the test object would stand normal workloads easily. It helps developers
to determine if the system performs sufficiently if the use load goes well above the expected maximum.
This kind of test is normally used to understand the upper limits of capacity within the system. There
are a variety of test conditions applicable to avalanche/stress testing, including the following.

— If working in a polling mode, then the test object gets many more input changes per time unit than
under normal conditions.

— If working on demands, then the number of demands per time unit to the test object is increased
beyond normal conditions.

— If the size of a database plays an important role, then it is increased beyond normal conditions.

— Influential devices are tuned to their maximum speed or lowest speed respectively.

— For the extreme cases, all influential factors, as far as is possible, are put to the boundary conditions
at the same time.

Under these test conditions, the time behaviour of the test object can be evaluated, the influence of load
changes observed, and the correct dimension of internal buffers or dynamic variables, stacks, etc., can
be checked.

A.31 SW module interface testing

Module interface testing is used to detect errors in the interfaces of software components and modules.

Several levels of detail or completeness of testing are feasible. The most important levels are tests for

— all interface variables at their extreme values;

— all interface variables individually at their extreme values with other interface variables at
normal values;

— all values of the domain of each interface variable with other interface variables at normal values;

— all values of all variables in combination (this is only feasible for small interfaces);

— the specified test conditions relevant to each call of each subroutine.

© ISO 2020 – All rights reserved 29

ISO 19014-4:2020(E)

These tests are particularly important if the interfaces do not contain assertions that detect incorrect
parameter values; they are also important after new configurations of pre-existing software
components and modules have been generated.

A.32 Back-to-back comparison testing

Back-to-back comparison testing is to determine whether or not an implementation and model
both produce the same outputs when given the same input; this is only applicable for model-based
development.

30 © ISO 2020 – All rights reserved

ISO 19014-4:2020(E)

Annex B
(normative)

Software validation test environments

B.1 Machine network testing

The software shall be integrated with its host microprocessor in its associated ECU; this ECU shall
be integrated with the remaining ECUs that are part of the complete machine electrical system. The
software shall then be tested at the interface to the ECU network, in order to demonstrate that the
software performs according to specification.

The software shall be exercised as shown in Figure B.1 by simulation of

— input signals present during normal operation;

— anticipated occurrences;

— undesired conditions requiring system action.

Key
1 complete E/E/PES system
2 real ECU with real software to be tested
3 real signals to be monitored
4 signal simulated
5 test bench

Figure B.1 — Machine network testing

B.2 Hardware-in-the-loop testing

The software shall be integrated with its host microprocessor in its associated ECU, while the rest of
the associated machine electrical system and its environment shall be simulated. The software shall
then be tested in this simulated environment to demonstrate that the software performs according to
specification.

© ISO 2020 – All rights reserved 31

ISO 19014-4:2020(E)

The software shall be exercised as shown in Figure B.2 by simulation of:

— input signals present during normal operation;

— anticipated occurrences; and

— undesired conditions requiring system action.

Key
1 complete E/E/PES system
2 real ECU with real software to be tested
3 real signals to be monitored
4 signal simulated
6 ECU simulated
7 simulated environment (plant model and test vector)

Figure B.2 — Hardware-in-the-loop testing

B.3 Machine level testing

The software and the associated machine electrical system shall be integrated into the associated
machine architecture. The system shall then be tested in the machine to demonstrate that the software
performs according to specification.

The software shall be exercised as shown in Figure B.3 by:

— input signals present during normal operation;

— anticipated occurrences;

— undesired conditions requiring system action.

32 © ISO 2020 – All rights reserved

ISO 19014-4:2020(E)

Key
1 complete E/E/PES system
2 real ECU with real software to be tested
3 real signals to be monitored
8 real machine

Figure B.3 — Machine level testing

© ISO 2020 – All rights reserved 33

ISO 19014-4:2020(E)

Annex C
(informative)

Data integrity assurance calculation

The data integrity assurance during data transmission can be calculated to verify if the MPLr is ensured
by the measures implemented on the network communication.

The residual error rate Δ should be calculated from the residual error probability R(p) (see Table C.1)
of the supervising safety-related data integrity assurance mechanism and the transmission rate ν of
safety-related messages. Use the following formula to calculate the residual error rate from the residual
error probability:

Δ = 3 600 R(p) ν m 100 [transmission errors per hour]

Table	C.1	—	Data	integrity	parameter	definition

Parameter Definition
3 600 Factor used to calculate the transmissions per hour
R(p) Residual dangerous error probability.

It is the probability to receive a dangerous error message undetected by the protections of the
standard bus.
For the estimation of R(p), based on the manufacturer’s information, the bit error probability
should be assumed as p = 0,01, as long as no other proof is given.

 R p
n

k
p p

r
k d

n
k n k()≅ ×

× × −()

=

−∑1

2

1

where
 r CRC bit length
 d Hamming distance
 n the number of bits in the block, including its CRC signature;

ν Required rate (1/s) of safety-related messages to reach the required reaction time
m Number of messages required to realize the safety function
100 The factor 100 ensures that the transmissions contribute only 1 % (safety margin) of the recom-

mended safety integrity. This leads to the conclusion that the transmission is sufficiently safe.
The manufacturer can choose to use a less conservative safety margin (i.e.>1 %) taking into
account the residual error rate in the safety path.

IEC 61784-3-2:2016, 9.5.3 states the following: “IEC 61784-3 requires a bit error rate (BER) of 0,01
be used in PDF/PFH calculations unless evidence is given that this BER is not practical. A BER of 0,01
means that 1 of every 100 bits transmitted is transmitted incorrectly. This of course, is an unrealistic
condition for an industrial control system network where availability needs to be maintained.”

NOTE 1 BER is equivalent to p in this document.

NOTE 2 Industrial control system network is equivalent to EMM network.

A different BER/p may be used if there is sufficient data (e.g. actual measured BER values); the use of
measured p values is preferred.

34 © ISO 2020 – All rights reserved

ISO 19014-4:2020(E)

The required residual error rate Δreq depends on the correlation between the performance level and
the residual error rate, as specified Table C.2:

Table C.2 — Data integrity vs. MPL

Machine performance level Required	residual	error	rate	-	Δreq [h-1]
a 10–5 ≤ Δ < 10–4

b 3 × 10–6 ≤ Δ < 10–5

c 10–6 ≤ Δ < 3 × 10–6

d 10–7 ≤ Δ < 10–6

e 10–8 ≤ Δ < 10–7

© ISO 2020 – All rights reserved 35

ISO 19014-4:2020(E)

Annex D
(informative)

Methods and measures for transmission protection

D.1 Keep alive messages

A message is sent periodically to inform other units on the network that the unit is powered and
communicating on the network. The receiver checks whether the delay between two messages exceeds
a predetermined value; in this case, an error is considered by the receiver.

D.2 Alive counter

Accounting component is initialized with “0” when the object to be monitored is created. A message
is sent with this running number being defined as an additional data field containing a counter that
increases from time t–1 to time t as long as the object is alive from one message to the next. Receiver
checks for consistency of the pattern and, if failing, triggers an error.

D.3 CRC

Cyclic Redundancy Check permits to identify a difference in the content of a message between the
sender and the receiver. The content of the message is compressed using an algorithm. A typical
CRC algorithm treats the whole contents of the block as byte-serial or bit-serial data flow, on which
a continued polynomial division is carried out using a polynomial generator. The remainder of the
division represents the compressed informative contents and is added to the related message by the
sender. The signature is computed by the receiver and compared with one already stored. A behaviour
for failure message is produced if there is a difference.

Using CRC, it shall be taken into account that the residual error rate of the CRC implemented in the bus
system might not be sufficient, in which case an additional CRC at the application level is recommended.

D.4 Sequence number

A running number is embedded in the safety-related message exchanged between the sender and
receiver. This running number is defined as an additional data field containing a number that changes
in a predetermined way from one message to the next. Receiver checks for consistency of the pattern
and, if failing, triggers an error.

D.5 Message repetition

Safety-related Information is sent more than once. Hazardous actions are actuated only at confirmation
of consistency.

D.6 Watchdog

More commonly referred as time-out. During the transmission of a message, the receiver checks
whether the delay between two messages exceeds a predetermined value. In this case, an error is
considered by the receiver.

36 © ISO 2020 – All rights reserved

ISO 19014-4:2020(E)

D.7 Time-triggered data bus

Time-triggered communication means that activities are triggered by the elapsing of time segments. In
a time-triggered communication system all points of time of message transmission are defined during
the development of a system. A time-triggered communication system is ideal for applications in which
the data traffic is of a periodic nature.

D.8 Bus guardian

Independent component between a node and the bus that allows its node to transmit on the bus only
when it is allowed to do so; this prevents bus monopolization by a defective.

NOTE The guardian needs to know when its node is allowed to access the bus; this is difficult to achieve in
an event-triggered system, but conceptually simple in a time-triggered system.

D.9 Minislotting

Bus scheduling method in which each node connected to the bus waits a certain period of time before
it is permitted to access the bus again. It is a time-controlled medium access strategy, where the time
is partitioned into a sequence of minislots, each longer than the length of the propagation delay of the
channel. Every node is assigned a unique number of minislots that elapse, with silence on the channel,
before it is allowed to transmit.

© ISO 2020 – All rights reserved 37

ISO 19014-4:2020(E)

Annex E
(informative)

Methods and measures for data protection internal to

microcontroller

E.1 Unambiguous bidirectional communication object

Exactly one bi-directional communication object (e.g software global variable) is used between two
partitions respectively for data exchange.

E.2 Strictly two unidirectional communication objects

Exactly two uni-directional communication objects (e.g software local variables) are used between two
partitions respectively for data exchange.

E.3	 IDs	for	identification	and	acknowledgement

Use of unique numbers for identifying communication peers or receipt of message acknowledgement by
the communication peer.

E.4 Asynchronous data communication

In using asynchronous data communication, there is no waiting state completed by the
communication itself.

E.5 Strict priority-based scheduling

With a strict priority-based scheduling, the safety relevant partitions can have precedence in allocating
processor execution time. Regarding the allocation of processor time, some spare time/buffer in each
processor cycle can be foreseen to manage incoming interrupts.

E.6 Time slicing method

The time slicing method specifies a scheduling algorithm based on a predetermined fixed schedule,
repetitive with a fixed period. Using the time slicing method, the allocation of processor execution
time takes place through a static allocation table. Thus for each system task, a fixed point in time is
predetermined for activating the system task.

E.7 Memory protection mechanisms

The memory protection mechanisms referred to specify processors with, for example, MMU (memory
management unit) or MPU (memory protection unit)

An MMU can provide virtual addressing of memory. This prevents a system task of one partition from
corrupting the memory space of another system task by unintended writing into that memory space,
since every partition has its own address space.

Usage of MMU requires support of the operating system for that feature. Provisions shall be made so
that the MMU cannot be ignored. Therefore, the system tasks run in a so-called user mode and real

38 © ISO 2020 – All rights reserved

ISO 19014-4:2020(E)

addressing mode is not used. This memory protection mechanism can prevent unintended writing to
I/O interfaces.

E.8	 Verification	of	safety	critical	data

Random access memory (RAM) locations containing safety critical data are verified by additional
measures. This can be accomplished by, for example, using CRC or redundant storage. The effectiveness
of this measure depends very heavily on the verification quality.

E.9 Static analysis

Static analysis methods are used for reviewing pieces of code that access memory locations containing
safety-related data.

E.10 Static allocation

Resources are allocated statically during initialization.

© ISO 2020 – All rights reserved 39

ISO 19014-4:2020(E)

Bibliography

[1] ISO 6165, Earth-moving machinery — Basic types — Identification and terms and definitions

[2] IEC 61508-7:2010, Functional safety of electrical/electronic/programmable electronic safety-
related systems — Part 7: Overview of Techniques and Measures

[3] ISO 22448:2010, Earth-moving machinery — Anti-theft systems — Classification and performance

[4] ISO 26262-1:2018, Functional safety — Part 1: Vocabulary

[5] IEC 61784-3-2:2016, Industrial communication networks — Profiles — Part 3-2: Functional safety
fieldbuses — Additional specifications for CPF 2

[6] SAE J1939, Recommended Practice for a Serial Control and Communications Vehicle Network

40 © ISO 2020 – All rights reserved

ISO 19014-4:2020(E)

© ISO 2020 – All rights reserved

ICS 53.100
Price based on 40 pages

	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Software development
	4.1 General
	4.2 Planning
	4.3 Artifacts
	4.4 Software safety requirements specification
	4.5 Software architecture design
	4.6 Software module design and coding
	4.7 Language and tool selection
	4.8 Software module testing
	4.9 Software module integration and testing
	4.10 Software validation
	5 Software-based parameterization
	5.1 General
	5.2 Data integrity
	5.3 Software-based parameterization verification
	6 Transmission protection of safety-related messages on bus systems
	7 Independence by software partitioning
	7.1 General
	7.2 Several partitions within a single microcontroller
	7.3 Several partitions within the scope of an ECU network
	8 Information for use
	8.1 General
	8.2 Instruction handbook
	Annex A (informative) Description of software methods/measures
	Annex B (normative) Software validation test environments
	Annex C (informative) Data integrity assurance calculation
	Annex D (informative) Methods and measures for transmission protection
	Annex E (informative) Methods and measures for data protection internal to microcontroller
	Bibliography

