
© ISO 2020

Geographic information — Geography
Markup Language (GML) —
Part 1:
Fundamentals

INTERNATIONAL
STANDARD

ISO
19136-1

First edition
2020-01

Reference number
ISO 19136-1:2020(E)

ISO 19136-1:2020(E)

ii © ISO 2020 – All rights reserved

COPYRIGHT PROTECTED DOCUMENT

© ISO 2020
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

ISO 19136-1:2020(E)

Foreword ..x
Introduction ..xii
1 Scope ... 1
2 Normative references .. 1
3	 Terms,	definitions,	symbols	and	abbreviated	terms ... 2

3.1 Terms and definitions ... 2
3.2 Abbreviated terms ... 9

4 Conformance ..10
4.1 Conformance requirements .. 10
4.2 Conformance classes related to GML application schemas ...10
4.3 Conformance classes related to GML profiles ... 11
4.4 Conformance classes related to GML documents ..12
4.5 Conformance classes related to software implementations ...12

5 Conventions ..13
5.1 XML namespaces .. 13
5.2 Versioning... 13
5.3 Deprecated parts of previous versions of GML .. 13
5.4 UML notation ... 13
5.5 XML Schema ... 15

6 Overview of the GML schema ..15
6.1 GML schema ... 15
6.2 GML application schemas ... 15
6.3 Relationship between the ISO 19100 series of International Standards, the GML

schema and GML application schemas .. 16
6.4 Organization of this document ... 17
6.5 Deprecated and experimental schema components ...18

7	 GML	schema	—	General	rules	and	base	schema	components ..19
7.1 GML model and syntax .. 19

7.1.1 GML instance documents .. 19
7.1.2 Lexical conventions ..20
7.1.3 XML Schema definition of GML language ..20

7.2 gmlBase schema components ... 21
7.2.1 Goals of base schema components ..21
7.2.2 Base objects ... 21
7.2.3 GML properties...22
7.2.4 Standard properties of GML objects ..27
7.2.5 Collections of GML objects ... 27
7.2.6 Metadata .. 28

8	 GML	schema	—	Xlinks	and	basic	types ...31
8.1 Xlinks — Object associations and remote properties ..31
8.2 Basic types ... 33

8.2.1 Overview .. 33
8.2.2 Relationship with ISO 19103 ... 33
8.2.3 Simple types .. 33
8.2.4 Lists ..38

9 GML schema — Features ..40
9.1 General concepts .. 40
9.2 Relationship with ISO 19109 ... 40
9.3 Features .. 41

9.3.1 AbstractFeatureType ...41
9.3.2 AbstractFeature ...41

© ISO 2020 – All rights reserved iii

Contents Page

ISO 19136-1:2020(E)

9.4 Standard feature properties ... 41
9.4.1 boundedBy, BoundingShapeType, EnvelopeWithTimePeriod,

EnvelopeWithTimePeriodType .. 41
9.4.2 locationName, locationReference ... 42
9.4.3 FeaturePropertyType, FeatureArrayPropertyType ..43

9.5 Geometry properties ... 43
9.6 Topology properties .. 44
9.7 Temporal properties ... 45
9.8 Defining application-specific feature types ... 46
9.9 Feature collections .. 47

9.9.1 GML feature collections .. 47
9.9.2 AbstractFeatureMemberType and derived property types ...48

9.10 Spatial reference system used in a feature or feature collection ..48
10 GML schema — Geometric primitives ...49

10.1 General concepts .. 49
10.1.1 Overview .. 49
10.1.2 Relationship with ISO 19107 ... 49
10.1.3 Abstract geometry ...50
10.1.4 Coordinate geometry, vectors and envelopes ..52

10.2 Abstract geometric primitives .. 54
10.2.1 AbstractGeometricPrimitiveType, AbstractGeometricPrimitive ...54
10.2.2 GeometricPrimitivePropertyType ... 55

10.3 Geometric primitives (0-dimensional).. 55
10.3.1 PointType, Point ..55
10.3.2 PointPropertyType, pointProperty ...55
10.3.3 PointArrayPropertyType, pointArrayProperty ..56

10.4 Geometric primitives (1-dimensional).. 56
10.4.1 AbstractCurveType, AbstractCurve ..56
10.4.2 CurvePropertyType, curveProperty ...56
10.4.3 CurveArrayPropertyType, curveArrayProperty ..57
10.4.4 LineStringType, LineString .. 57
10.4.5 CurveType, Curve ...57
10.4.6 OrientableCurveType, OrientableCurve, baseCurve ..58
10.4.7 Curve segments ..58

10.5 Geometric primitives (2-dimensional).. 67
10.5.1 AbstractSurfaceType, AbstractSurface ..67
10.5.2 SurfacePropertyType, surfaceProperty ..68
10.5.3 SurfaceArrayPropertyType, surfaceArrayProperty ..68
10.5.4 PolygonType, Polygon...68
10.5.5 exterior, interior ..68
10.5.6 AbstractRingType, AbstractRing ... 69
10.5.7 AbstractRingPropertyType .. 69
10.5.8 LinearRingType, LinearRing ... 69
10.5.9 LinearRingPropertyType ... 70
10.5.10 SurfaceType, Surface ...70
10.5.11 OrientableSurfaceType, OrientableSurface, baseSurface ..70
10.5.12 Surface patches ..72

10.6 Geometric primitives (3-dimensional).. 76
10.6.1 AbstractSolidType, AbstractSolid ... 76
10.6.2 SolidPropertyType, solidProperty ... 76
10.6.3 SolidArrayPropertyType, solidArrayProperty ..77
10.6.4 SolidType, Solid ..77
10.6.5 ShellType, Shell ..77
10.6.6 ShellPropertyType ...78

11 GML schema — Geometric complex, geometric composites and geometric aggregates78
11.1 Overview ... 78
11.2 Geometric complex and geometric composites ...79

iv © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

11.2.1 Geometric complex ...79
11.2.2 Composite geometries ...79

11.3 Geometric aggregates ... 81
11.3.1 Aggregates of unspecified dimensionality ..81
11.3.2 0-Dimensional aggregates .. 82
11.3.3 1-Dimensional aggregates .. 83
11.3.4 2-Dimensional aggregates .. 84
11.3.5 3-Dimensional aggregates .. 85

12 GML schema — Coordinate reference systems schemas..85
12.1 Overview ... 85

12.1.1 General... 85
12.1.2 Relationship with ISO 19111 ... 86
12.1.3 Important XML elements ... 86

12.2 Reference systems ... 87
12.2.1 Overview .. 87
12.2.2 IdentifiedObjectType ..88
12.2.3 Abstract coordinate reference system..88

12.3 Coordinate reference systems .. 89
12.3.1 Overview .. 89
12.3.2 Abstract coordinate reference systems ...89
12.3.3 Concrete coordinate reference systems ..90

12.4 Coordinate systems .. 96
12.4.1 Overview .. 96
12.4.2 Coordinate system axes .. 96
12.4.3 Abstract coordinate system ... 97
12.4.4 Concrete coordinate systems ... 98

12.5 Datums ...103
12.5.1 Overview ...103
12.5.2 Abstract datum ..103
12.5.3 Geodetic datum ...104
12.5.4 Other concrete datums ...106

12.6 Coordinate operations ..108
12.6.1 Overview ...108
12.6.2 Abstract coordinate operations ..109
12.6.3 Concrete coordinate operations ...112
12.6.4 Parameter values and groups ...115
12.6.5 Operation method ...117
12.6.6 Operation parameters and groups ...118

13 GML schema — Topology .. 120
13.1 General concepts ...120

13.1.1 Overview ...120
13.1.2 Relationship with ISO 19107 ..120

13.2 Abstract topology ..121
13.3 Topological primitives ..121

13.3.1 Abstract topological primitives ...121
13.3.2 Topological primitives (0-dimensional) ..121
13.3.3 Topological primitives (1-dimensional) ..122
13.3.4 Topological primitives (2-dimensional) ..123
13.3.5 Topological primitives (3-dimensional) ..124

13.4 Topological collections ...125
13.4.1 Topological collection (0-dimensional) ...125
13.4.2 Topological collection (1-dimensional) ...126
13.4.3 Topological collection (2-dimensional) ...126
13.4.4 Topological collection (3-dimensional) ...127

13.5 Topology complex ...127
13.5.1 TopoComplexType, TopoComplex ..127
13.5.2 Maximal, sub- and super-complexes ..128

© ISO 2020 – All rights reserved v

ISO 19136-1:2020(E)

13.5.3 topoPrimitiveMember ...128
13.5.4 topoPrimitiveMembers ..128
13.5.5 TopoComplexPropertyType, topoComplexProperty ..128

14 GML schema — Temporal information and dynamic features .. 129
14.1 General concepts ...129

14.1.1 Overview ...129
14.1.2 Relationship with ISO 19108 ..130

14.2 Temporal schema ..130
14.2.1 Abstract temporal objects ..130
14.2.2 Temporal geometry ...132

14.3 Temporal topology schema ..137
14.3.1 General..137
14.3.2 Temporal topology objects ..137

14.4 Temporal reference systems ...140
14.4.1 Overview ...140
14.4.2 Basic temporal reference system, TimeReferenceSystem ..140
14.4.3 TimeCoordinateSystem ..141
14.4.4 Calendars and clocks ..142
14.4.5 Ordinal temporal reference systems ..144

14.5 Representing dynamic features ..146
14.5.1 Overview ...146
14.5.2 dataSource ...146
14.5.3 Dynamic properties ...147
14.5.4 DynamicFeature ...147
14.5.5 DynamicFeatureCollection ..147
14.5.6 AbstractTimeSlice ...148
14.5.7 history ...149

15	 GML	schema	—	Definitions	and	dictionaries ... 150
15.1 Overview ..150
15.2 Dictionary schema ...151

15.2.1 Definition, DefinitionType, remarks ...151
15.2.2 Dictionary, DictionaryType ...151
15.2.3 dictionaryEntry, DictionaryEntryType ...152
15.2.4 Using definitions and dictionaries ..152

16 GML schema — Units, measures and values ... 153
16.1 Introduction ..153
16.2 Units schema ...154

16.2.1 Overview ...154
16.2.2 Using unit definitions...154
16.2.3 unitOfMeasure, UnitOfMeasureType ..154
16.2.4 UnitDefinition, UnitDefinitionType ...155
16.2.5 quantityType, quantityTypeReference ...155
16.2.6 catalogSymbol ..155
16.2.7 BaseUnit, BaseUnitType, unitsSystem ...155
16.2.8 DerivedUnit, DerivedUnitType ..156
16.2.9 derivationUnitTerms, DerivationUnitTermType ..156
16.2.10 ConventionalUnit, ConventionalUnitType ...156
16.2.11 conversionToPreferredUnit, roughConversionToPreferredUnit,

ConversionToPreferredUnitType, FormulaType ..157
16.2.12 Example of units dictionary <informative> ..158

16.3 Measures schema ..159
16.3.1 Overview ...159
16.3.2 measure ...159
16.3.3 Scalar measure types ...159
16.3.4 angle..160

16.4 Value objects schema ...160
16.4.1 Introduction ...160

vi © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

16.4.2 Value element hierarchy ..160
16.4.3 Boolean, BooleanList ..161
16.4.4 Category, CategoryList ..161
16.4.5 Count, CountList ...162
16.4.6 Quantity, QuantityList ...162
16.4.7 AbstractValue, AbstractScalarValue, AbstractScalarValueList..163
16.4.8 Value ...163
16.4.9 valueProperty, valueComponent, valueComponents ...163
16.4.10 CompositeValue ..164
16.4.11 ValueArray ...165
16.4.12 Typed ValueExtents: CategoryExtent, CountExtent, QuantityExtent166
16.4.13 BooleanPropertyType, CategoryPropertyType, CountPropertyType,

QuantityPropertyType ..167
17 GML schema — Directions ... 167

17.1 Direction schema ..167
17.2 direction, DirectionPropertyType ..167
17.3 DirectionVectorType ..167
17.4 DirectionDescriptionType ...168

18	 GML	schema	—	Observations ... 169
18.1 Observations ...169
18.2 Observation schema ...169

18.2.1 Overview ...169
18.2.2 Observation ..169
18.2.3 using ...170
18.2.4 target ..170
18.2.5 resultOf ...171
18.2.6 DirectedObservation ..171
18.2.7 DirectedObservationAtDistance ...172

19 GML schema — Coverages .. 173
19.1 The coverage model and representations ...173

19.1.1 General remarks ...173
19.1.2 Formal description of a coverage ..174
19.1.3 Coverage in GML...174
19.1.4 Relationship with ISO 19123 ..175

19.2 Grids schema...175
19.2.1 Overview ...175
19.2.2 Grid ..175
19.2.3 RectifiedGrid ..176

19.3 Coverage schema ...178
19.3.1 AbstractCoverageType, AbstractCoverage ..178
19.3.2 DiscreteCoverageType, AbstractDiscreteCoverage ..178
19.3.3 AbstractContinuousCoverageType, AbstractContinuousCoverage178
19.3.4 domainSet, DomainSetType ...179
19.3.5 rangeSet, RangeSetType ..179
19.3.6 DataBlock ...180
19.3.7 rangeParameters..180
19.3.8 tupleList ...180
19.3.9 doubleOrNilReasonTupleList..181
19.3.10 File, FileType ...181
19.3.11 coverageFunction, CoverageFunctionType ...182
19.3.12 CoverageMappingRule ..183
19.3.13 GridFunction, GridFunctionType ...184
19.3.14 sequenceRule, SequenceRuleType, SequenceRuleEnumeration184
19.3.15 Specific Coverage Types in GML ...185
19.3.16 MultiPointCoverage ...185
19.3.17 MultiCurveCoverage..186
19.3.18 MultiSurfaceCoverage..187

© ISO 2020 – All rights reserved vii

ISO 19136-1:2020(E)

19.3.19 MultiSolidCoverage ..189
19.3.20 GridCoverage ...189
19.3.21 RectifiedGridCoverage ..190

20	 Profiles ... 191
20.1 Profiles of GML and application schemas ..191
20.2 Definition of profile ...191
20.3 Relation to application schema ...191
20.4 Rules for elements and types in a profile ...192
20.5 Rules for referencing GML profiles from application schemas ...192
20.6 Recommendations for application schemas using GML profiles ...193
20.7 Summary of rules for GML profiles ...193

21 Rules for GML application schemas ... 194
21.1 Instances of GML objects ..194

21.1.1 GML documents ..194
21.1.2 GML object elements in other XML documents ..194

21.2 GML application schemas ..194
21.2.1 General..194
21.2.2 Target namespace ...196
21.2.3 Import GML schema ..196
21.2.4 Object type derivation ...196
21.2.5 Elements representing objects ..196
21.2.6 Property type derivation...196
21.2.7 Elements representing properties..197

21.3 Schemas defining Features and Feature Collections ..197
21.3.1 General..197
21.3.2 Import GML schema components ...197
21.3.3 Elements representing features..198
21.3.4 Application features are features ..198

21.4 Schemas defining spatial geometries ..198
21.4.1 Import GML geometry schema components ...198
21.4.2 User-defined geometry types and geometry property types ..198

21.5 Schemas defining spatial topologies ..199
21.5.1 Import GML topology schema components ...199
21.5.2 User-defined topology types and topology property types ..200

21.6 Schemas defining time ...200
21.6.1 Import GML temporal schema components ...200
21.6.2 User-defined temporal types and temporal property types ..200

21.7 Schemas defining coordinate reference systems ..201
21.7.1 General..201
21.7.2 Import GML coordinate reference system schema components202

21.8 Schemas defining coverages ..202
21.8.1 General..202
21.8.2 Import GML coverage schema components ...202
21.8.3 User-defined coverage types ...202
21.8.4 Range parameters shall be substitutable for AbstractValue ..202
21.8.5 Coverage document ...203

21.9 Schemas defining observations ..203
21.9.1 General..203
21.9.2 Import GML observation schema components ...203
21.9.3 User-defined observation types ...204
21.9.4 Observation collections ..204
21.9.5 Observations are features ..204
21.9.6 Observation collection document ...204

21.10 Schemas defining dictionaries and definitions ...204
21.10.1 General..204
21.10.2 Import GML dictionary schema components ..204
21.10.3 User-defined definition types ...204

viii © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

21.10.4 User-defined dictionary types ..205
21.11 Schemas defining values ...205

21.11.1 General..205
21.11.2 Import GML value objects schema components ...205
21.11.3 Construction of new value types ..205

21.12 GML profiles of the GML schema ...205
Annex A (normative)	Abstract	test	suites	for	GML	application	schemas,	GML	profiles	and	

GML documents .. 208
Annex B (normative)	Abstract	test	suite	for	software	implementations ...222
Annex C (informative) GML schema .. 226
Annex D (normative)	Implemented	profile	of	the	ISO	19100	series	of	International	

Standards and extensions .. 228
Annex E (normative) UML-to-GML application schema encoding rules ...289
Annex F (normative) GML-to-UML application schema encoding rules ...308
Annex G (informative)	Guidelines	for	subsetting	the	GML	schema ... 317
Annex H (informative) Default styling ... 329
Annex I (informative)	Backwards	compatibility	with	earlier	versions	of	GML ...339
Annex J (informative) Modularization and dependencies .. 355
Bibliography ... 357

© ISO 2020 – All rights reserved ix

ISO 19136-1:2020(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/ directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/ patents).

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www .iso .org/
iso/ foreword .html.

This document was prepared by Technical Committee ISO/TC 211, Geographic information/Geomatics.

This first edition of ISO 19136-1 cancels and replaces ISO 19136:2007 which has been technically
revised.

The main changes compared to the previous edition are as follows:

— The Geography Markup Language (GML) was originally developed within the Open Geospatial
Consortium, Inc. (OGC). ISO 19136 was prepared by ISO/TC 211 jointly with the OGC. This edition
of this document is a revision to GML 3.2.1 (ISO 19136:2007). It addresses the OGC Change Request
12-092 (gml:id attribute on LinearRing) by applying the following changes:

— the XML attribute gml:id in gml: AbstractGMLType has been made optional;

— the elements gml: AbstractRing and gml: Shell have been added to the substitutionGroups gml:
AbstractCurve and gml: AbstractSurface respectively;

— the types gml: AbstractRingType and gml: ShellType are now extended from base types gml:
AbstractCurveType and gml: AbstractSurfaceType respectively;

These changes correct inconsistencies with ISO 19107 without breaking the validity of instance
documents created using the GML 3.2.1 schema. i.e. all GML 3.2 instance documents that are valid
against the GML 3.2.1 schema are also valid against the GML 3.2.2 schema.

The corrected GML 3.2 schema is available at http:// schemas .opengis .net/ gml/ 3 .2 .1/ . Note that the use
of “3.2.1” in the URL is unchanged since this version (3.2.2) replaces the GML 3.2.1 schema. Previous
versions of the GML 3.2.1 schema are available at http:// schemas .opengis .net/ gml/ gml -3 _2 _1 .zip.

The change to the gml:id attribute reverts a change that has been made between GML 3.1.1 and GML
3.2.1. Reverting this change also addresses comments raised by several communities since the release
of GML 3.2.1 / ISO 19136:2007.

x © ISO 2020 – All rights reserved

https://www.iso.org/directives-and-policies.html
https://www.iso.org/iso-standards-and-patents.html
https://www.iso.org/foreword-supplementary-information.html
https://www.iso.org/foreword-supplementary-information.html
http://schemas.opengis.net/gml/3.2.1/
http://schemas.opengis.net/gml/gml-3_2_1.zip

ISO 19136-1:2020(E)

As the correction relaxes a constraint in the XML schema, not all instance documents created based on
the GML 3.2.2 schema will be valid against the GML 3.2.1 schema:

— all GML 3.2 instance documents that include a gml:id attribute on a ring or shell element are not
valid against the GML 3.2.1 schema;

— all GML 3.2 instance documents that include a feature, a spatial object or a temporal object without
a gml:id attribute are not valid against the GML 3.2.1 schema.

Local copies of the GML 3.2.1 schema documents have to be replaced by the GML 3.2.2 schema
documents – or be replaced by links to http:// schemas .opengis .net/ gml/ 3 .2 .1/ gml .xsd.

— URIs have been updated, mainly in examples, where OGC policies have changed since the release of
GML 3.2.1 (location of the Xlink schema document, use of OGC HTTP URIs for coordinate reference
systems).

— The reference to the normative schema documents in Annex C now refers to the OGC schema
repository. Previously, copies of the GML schema were also published on ISO servers, but the schema
documents were not always synchronized. Going forward, all references to the normative GML
schema document should go to http:// schemas .opengis .net/ gml/ .

A list of all parts in the ISO 19136 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www .iso .org/ members .html.

© ISO 2020 – All rights reserved xi

http://schemas.opengis.net/gml/3.2.1/gml.xsd
http://schemas.opengis.net/gml/
https://www.iso.org/members.html

ISO 19136-1:2020(E)

Introduction

Geography Markup Language (GML) is an XML grammar written in XML Schema for the description of
application schemas as well as the transport and storage of geographic information.

The key concepts used by GML to model the world are drawn from the ISO 19100 series of International
Standards and the OpenGIS Abstract Specification.

A feature is an “abstraction of real world phenomena” (ISO 19101); it is a geographic feature if it is
associated with a location relative to the Earth so a digital representation of the real world may be
thought of as a set of features. The state of a feature is defined by a set of properties, where each
property may be thought of as a {name, type, value} triple.

The number of properties a feature may have, together with their names and types, is determined by its
type definition. Geographic features with geometry are those with properties that may be geometry-
valued. A feature collection is a collection of features that may itself be regarded as a feature; as a
consequence a feature collection has a feature type and thus may have distinct properties of its own, in
addition to the features it contains.

Following ISO 19109, the feature types of an application or application domain is usually captured in an
application schema. A GML application schema is specified in XML Schema and can be constructed in
two different and alternative ways:

— by adhering to the rules specified in ISO 19109 for application schemas in UML, and conforming to
both the constraints on such schemas and the rules for mapping them to GML application schemas
specified in this document;

— by adhering to the rules for GML application schemas specified in this document for creating a GML
application schema directly in XML Schema.

Both ways are supported by this document. To ensure proper use of the conceptual modelling
framework of the ISO 19100 series of International Standards, all application schemas are expected
to be modelled in accordance with the General Feature Model as specified in ISO 19109. Within the
ISO 19100 series, UML is the preferred language by which to model conceptual schemas.

GML specifies XML encodings, conformant with ISO 19118, of several of the conceptual classes defined
in the ISO 19100 series of International Standards and the OpenGIS Abstract Specification. These
conceptual models include those defined in:

— ISO/TS 19103 — Conceptual schema language (units of measure, basic types);

— ISO 19107 — Spatial schema (geometry and topology objects);

— ISO 19108 — Temporal schema (temporal geometry and topology objects, temporal reference
systems);

— ISO 19109 — Rules for application schemas (features);

— ISO 19111 — Spatial referencing by coordinates (coordinate reference systems);

— ISO 19123 — Schema for coverage geometry and functions.

The aim is to provide a standardized encoding (i.e. a standardized implementation in XML) of types
specified in the conceptual models specified by the International Standards listed above. If every
application schema were encoded independently and the encoding process included the types from,
for example, ISO 19108, then, without unambiguous and completely fixed encoding rules, the XML
encodings would be different. Also, since every implementation platform has specific strengths and
weaknesses, it is helpful to standardize XML encodings for core geographic information concepts
modelled in the ISO 19100 series of International Standards and commonly used in application schemas.

xii © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

In many cases, the mapping from the conceptual classes is straightforward, while in some cases the
mapping is more complex (a detailed description of the mapping is part of this document).

In addition, GML provides XML encodings for additional concepts not yet modelled in the ISO 19100 series
of International Standards or the OpenGIS Abstract Specification, for example, dynamic features, simple
observations or value objects.

Predefined types of geographic features in GML include coverages and simple observations.

A coverage is a subtype of feature that has a coverage function with a spatiotemporal domain and a
value set range of homogeneous 1- to n-dimensional tuples. A coverage may represent one feature
or a collection of features “to model and make visible spatial relationships between, and the spatial
distribution of, Earth phenomena” (OGC Abstract Specification Topic 6[18]) and a coverage “acts as a
function to return values from its range for any direct position within its spatiotemporal domain”
(ISO 19123).

An observation models the act of observing, often with a camera or some other procedure, a person
or some form of instrument (Merriam-Webster Dictionary: “an act of recognizing and noting a fact or
occurrence often involving measurement with instruments”). An observation is considered to be a GML
feature with a time at which the observation took place, and with a value for the observation.

A reference system provides a scale of measurement for assigning values to a position, time or other
descriptive quantity or quality.

A coordinate reference system consists of a set of coordinate system axes that is related to the Earth
through a datum that defines the size and shape of the Earth.

A temporal reference system provides standard units for measuring time and describing temporal
length or duration.

A reference system dictionary provides definitions of reference systems used in spatial or temporal
geometries.

Spatial geometries are the values of spatial feature properties. They indicate the coordinate reference
system in which their measurements have been made. The “parent” geometry element of a geometric
complex or geometric aggregate makes this indication for its constituent geometries.

Temporal geometries are the values of temporal feature properties. Like their spatial counterparts,
temporal geometries indicate the temporal reference system in which their measurements have
been made.

Spatial or temporal topologies are used to express the different topological relationships between
features.

A units of measure dictionary provides definitions of numerical measures of physical quantities, e.g.
length, temperature and pressure, and of conversions between units.

NOTE This document makes reference to ISO 19107:2003 and ISO 19111:2007 (withdrawn standards,
replaced by 2019 versions) because this edition of ISO 19136-1 is still an XML implementation of the previous
edition of ISO 19107 and other standards.

© ISO 2020 – All rights reserved xiii

Geographic information — Geography Markup Language
(GML) —

Part 1:
Fundamentals

1 Scope

The Geography Markup Language (GML) is an XML encoding in accordance with ISO 19118 for the
transport and storage of geographic information modelled in accordance with the conceptual modelling
framework used in the ISO 19100 series of International Standards and including both the spatial and
non-spatial properties of geographic features.

This document defines the XML Schema syntax, mechanisms and conventions that:

— provide an open, vendor-neutral framework for the description of geospatial application schemas
for the transport and storage of geographic information in XML;

— allow profiles that support proper subsets of GML framework descriptive capabilities;

— support the description of geospatial application schemas for specialized domains and information
communities;

— enable the creation and maintenance of linked geographic application schemas and datasets;

— support the storage and transport of application schemas and datasets;

— increase the ability of organizations to share geographic application schemas and the information
they describe.

Implementers can decide to store geographic application schemas and information in GML, or they can
decide to convert from some other storage format on demand and use GML only for schema and data
transport.

NOTE If an ISO 19109 conformant application schema described in UML is used as the basis for the storage
and transportation of geographic information, this document provides normative rules for the mapping of such
an application schema to a GML application schema in XML Schema and, as such, to an XML encoding for data
with a logical structure in accordance with the ISO 19109 conformant application schema.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 8601-1, Date and time — Representations for information interchange — Part 1: Basic rules

ISO/IEC 11404:2007, Information technology — General-Purpose Datatypes (GPD)

ISO 19108:2002, Geographic information — Temporal schema

ISO 19123:2005, Geographic information — Schema for coverage geometry and functions

ISO/IEC 19757-3, Information technology — Document Schema Definition Languages (DSDL) — Part 3:
Rule-based validation — Schematron

INTERNATIONAL STANDARD ISO 19136-1:2020(E)

© ISO 2020 – All rights reserved 1

ISO 19136-1:2020(E)

ISO 80000-3, Quantities and units — Part 3: Space and time

IETF RFC 2396, Uniform Resource Identifiers (URI): Generic Syntax (August 1998)

W3C XLink, XML Linking Language (XLink) Version 1.1, W3C Recommendation (6 May 2010)

W3C XML, Extensible Markup Language (XML) 1.0 (Fith Edition), W3C Recommendation
(26 November 2008)

W3C XML Namespaces, Namespaces in XML 1.0 (Third Edition), W3C Recommendation (8 December
2009)

W3C XML Schema Part 1, XML Schema Part 1: Structures, W3C Recommendation (28 October 2004)

W3C XML Schema Part 2, XML Schema Part 2: Datatypes, W3C Recommendation (28 October 2004)

3	 Terms,	definitions,	symbols	and	abbreviated	terms

3.1	 Terms	and	definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at https:// www .iso .org/ obp

— IEC Electropedia: available at http:// www .electropedia .org/

3.1.1
application schema
conceptual schema (3.1.52) for data required by one or more applications

[SOURCE: ISO 19101-1:2014, 4.1.2]

3.1.2
association
<UML> semantic relationship that can occur between typed instances

[SOURCE: ISO 19103:2015, 4.4, modified — Note 1 to entry has been deleted.]

3.1.3
attribute
<XML> name-value pair contained in an element (3.1.23)

Note 1 to entry: In this document an attribute is an XML attribute unless otherwise specified. The syntax of
an XML attribute is “Attribute::= Name = AttValue”. An attribute typically acts as an XML element modifier (e.g.
<Road gml:id = “r1” />; here gml:id is an attribute).

3.1.4
boundary
set that represents the limit of an entity

[SOURCE: ISO 19107:2019, 3.6, modified — Note 1 to entry has been deleted.]

3.1.5
child element
<XML> immediate descendant element of an element (3.1.23)

2 © ISO 2020 – All rights reserved

https://www.iso.org/obp/ui
http://www.electropedia.org/

ISO 19136-1:2020(E)

3.1.6
closure
union of the interior (3.1.39) and boundary (3.1.4) of a topological object (3.1.59) or geometric object
(3.1.30)

[SOURCE: ISO 19107:2019, 3.8]

3.1.7
codelist
value domain including a code for each permissible value

3.1.8
codespace
rule or authority for a code, name, term or category

EXAMPLE Dictionaries, authorities, codelists, etc.

3.1.9
composite curve
sequence of curves (3.1.17) such that each curve (except the first) starts at the end point of the previous
curve in the sequence

Note 1 to entry: A composite curve, as a set of direct positions, has all the properties of a curve.

3.1.10
composite solid
connected set of solids adjoining one another along shared boundary (3.1.4) surfaces

Note 1 to entry: A composite solid, as a set of direct positions, has all the properties of a solid.

3.1.11
composite surface
connected set of surfaces (3.1.57) adjoining one another along shared boundary (3.1.4) curves

Note 1 to entry: A composite surface, as a set of direct positions, has all the properties of a surface.

3.1.12
coordinate
one of a sequence of numbers designating the position of a point (3.1.47)

Note 1 to entry: In a spatial coordinate reference system, the coordinate numbers are qualified by units.

[SOURCE: ISO 19111:2019, 3.1.5]

3.1.13
coordinate reference system
coordinate system (3.1.14) that is related to an object by a datum (3.1.19)

[SOURCE: ISO 19111:2019, 3.1.9, modified — Note 1 to entry has been deleted.]

3.1.14
coordinate system
set of mathematical rules for specifying how coordinates (3.1.12) are to be assigned to points (3.1.47)

[SOURCE: ISO 19111:2019, 3.1.11]

3.1.15
coordinate tuple
tuple (3.1.60) composed of coordinates (3.1.12)

[SOURCE: ISO 19111:2019, 3.1.13, modified — Note 1 to entry has been deleted.]

© ISO 2020 – All rights reserved 3

ISO 19136-1:2020(E)

3.1.16
coverage
feature (3.1.26) that acts as a function (3.1.28) to return values from its range (3.1.50) for any direct
position (3.1.20) within its spatial, temporal or spatiotemporal domain (3.1.21)

[SOURCE: ISO 19123:2005, 4.1.7, modified —Example and Note to entry have been deleted.]

3.1.17
curve
1-dimensional geometric primitive (3.1.31), representing the continuous image of a line

Note 1 to entry: The boundary of a curve is the set of points at either end of the curve. If the curve is a cycle, the
two ends are identical, and the curve (if topologically closed) is considered to not have a boundary. The first point
is called the start point, and the last is the end point. Connectivity of the curve is guaranteed by the “continuous
image of a line” clause. A topological theorem states that a continuous image of a connected set is connected.

3.1.18
data type
specification of a value domain (3.1.21) with operations allowed on values in this domain

EXAMPLE Integer, Real, Boolean, String, Date (conversion of data into a series of codes).

Note 1 to entry: Data types include primitive predefined types and user-definable types. All instances of a data
type lack identity.

[SOURCE: ISO 19103:2015, 4.14, modified — Supplementary information has been added to Example
and Note 1 to entry.]

3.1.19
datum
parameter or set of parameters that realize the position of the origin, the scale, and the orientation of a
coordinate system (3.1.14)

[SOURCE: ISO 19111:2019, 3.1.15]

3.1.20
direct position
position described by a single set of coordinates (3.1.12) within a coordinate reference system (3.1.13)

3.1.21
domain
well-defined set

Note 1 to entry: A mathematical function (3.1.28) may be defined on this set, i.e. in a function f:A→B, A is the
domain of the function f.

Note 2 to entry: A domain as in domain of discourse refers to a subject or area of interest.

[SOURCE: ISO 19109:2015, 4.8]

3.1.22
edge
<topology> 1-dimensional topological primitive

Note 1 to entry: The geometric realization of an edge is a curve. The boundary of an edge is the set of one or two
nodes associated with the edge within a topological complex.

[SOURCE: ISO 19107:2019, 3.29]

4 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

3.1.23
element
<XML> basic information item of an XML document containing child elements (3.1.5), attributes (3.1.3)
and character data

Note 1 to entry: The Extensible Markup Language (XML) 1.0 (Fifth Edition), Clause 3, uses the following
definition: “Each XML document contains one or more elements, the boundaries of which are either delimited by
start-tags and end-tags, or, for empty elements, by an empty-element tag. Each element has a type, identified by
name, sometimes called its ‘generic identifier’ (GI), and may have a set of attribute specifications. Each attribute
specification has a name and a value.”

3.1.24
exterior
<geometry, topology> difference between the universe and the closure (3.1.6)

Note 1 to entry: The concept of exterior is applicable to both topological object and geometric object.

[SOURCE: ISO 19107:2019, 3.37]

3.1.25
face
<topology> 2-dimensional topological primitive

Note 1 to entry: The geometric realization of a face is a surface. The boundary of a face is the set of directed edges
within the same topology complex that are associated with the face via the boundary relations. These can be
organized as rings.

[SOURCE: ISO 19107:2019, 3.38]

3.1.26
feature
abstraction of real world phenomena

Note 1 to entry: A feature may occur as a type or an instance. Feature type or feature instance will be used when
only one is meant.

[SOURCE: ISO 19101-1:2014, 4.1.11]

3.1.27
feature association
relationship that links instances of one feature (3.1.26) type with instances of the same or a different
feature type

[SOURCE: ISO 19110:2016, 3.3]

3.1.28
function
<mathematics, programming> rule that associates each element (3.1.23) from a domain (3.1.21)
("source domain," or "domain" of the function) to a unique element in another domain ("target domain,"
"co-domain," or "range" (3.1.50) of the function)

[SOURCE: ISO 19107:2019, 3.41]

3.1.29
geodetic datum
datum (3.1.19) describing the relationship of a 2- or 3-dimensional coordinate system (3.1.14) to the Earth

[SOURCE: ISO 19111:2007, 4.24]

© ISO 2020 – All rights reserved 5

ISO 19136-1:2020(E)

3.1.30
geometric	object
<geometry> spatial object (3.1.56) representing a geometric set (3.1.32)

[SOURCE: ISO 19107:2019, 3.49, modified — Note 1 to entry has been deleted.]

3.1.31
geometric primitive
<geometry> geometric object (3.1.30) representing a single, connected, homogeneous (isotropic)
element of space

[SOURCE: ISO 19107:2019, 3.50, modified — Note 1 to entry has been deleted.]

3.1.32
geometric set
set of direct positions (3.1.20)

Note 1 to entry: This definition is taken from the definition in ISO 19107:2003 rather than ISO 19107:2019 since
the 2019 version uses the term "point" with a broader meaning than in this document.

[SOURCE: ISO 19107:2003, 4.50]

3.1.33
geometry property
<GML> property (3.1.49) of a GML feature (3.1.26) that describes some aspect of the geometry of
the feature

Note 1 to entry: The geometry property name is the role of the geometry in relation to the feature.

3.1.34
GML application schema
application schema (3.1.1) written in XML Schema in accordance with the rules specified in this
document

3.1.35
GML document
XML document with a root element that is one of the elements AbstractFeature, Dictionary or
TopoComplex specified in the GML schema (3.1.37) or any element of a substitution group of any of
these elements

3.1.36
GML	profile
subset of the GML schema (3.1.37)

3.1.37
GML schema
schema (3.1.52) components in the XML namespace (3.1.43) “http:// www .opengis .net/ gml/ 3 .2” as
specified in this document

3.1.38
grid
network composed of two or more sets of curves (3.1.17) in which the members of each set intersect the
members of the other sets in an algorithmic way

Note 1 to entry: The curves partition a space into grid cells.

[SOURCE: ISO 19123:2005, 4.1.23]

3.1.39
interior
set of all direct positions (3.1.20) that are on a geometric object (3.1.30) but which are not on its
boundary (3.1.4)

6 © ISO 2020 – All rights reserved

http://www.opengis.net/gml/3.2

ISO 19136-1:2020(E)

3.1.40
line string
curve (3.1.17) composed of straight-line segments

3.1.41
measure
<GML> value described using a numeric amount with a scale or using a scalar reference system

Note 1 to entry: When used as a noun, measure is a synonym for physical quantity.

3.1.42
measurand
particular quantity subject to measurement

[SOURCE: VIM: 1993, 2.6]

3.1.43
namespace
<XML> collection of names, identified by a URI (3.1.62) reference, which are used in XML documents as
element names and attribute names (W3C XML Namespaces)

3.1.44
node
<topology> 0-dimensional topological primitive

Note 1 to entry: The boundary of a node is the empty set.

[SOURCE: ISO 19107:2019, 3.69]

3.1.45
observable	type
data type (3.1.18) to indicate the physical quantity (3.1.46) as a result of an observation

3.1.46
physical quantity
quantity used for the quantitative description of physical phenomena

Note 1 to entry: In GML, a physical quantity is always a value described using a numeric amount with a scale or
using a scalar reference system. Physical quantity is a synonym for measure when the latter is used as a noun.

3.1.47
point
0-dimensional geometric primitive (3.1.31), representing a position

Note 1 to entry: The boundary of a point is the empty set.

3.1.48
polygon
planar surface (3.1.57) defined by 1 exterior (3.1.24) boundary (3.1.4) and 0 or more interior (3.1.39)
boundaries (3.1.4)

3.1.49
property
<GML> child element (3.1.5) of a GML object

Note 1 to entry: It corresponds to feature attribute and feature association role in ISO 19109. If a GML property of
a feature has an xlink: href attribute that references a feature, the property represents a feature association role.

© ISO 2020 – All rights reserved 7

ISO 19136-1:2020(E)

3.1.50
range
co-domain
<mathematics> acceptable target values of a function (3.1.28)

[SOURCE: ISO 19107:2019, 3.80]

3.1.51
rectified	grid
grid (3.1.38) for which there is an affine transformation between the grid coordinates and the
coordinates (3.1.12) of an external coordinate reference system (3.1.13)

[SOURCE: ISO 19123:2005, 4.1.32, modified — The NOTE has been deleted.]

3.1.52
schema
formal description of a model

Note 1 to entry: In general, a schema is an abstract representation of an object's characteristics and relationship to
other objects. An XML schema represents the relationship between the attributes and elements of an XML object.

EXAMPLE A document or a portion of a document.

[SOURCE: ISO 19101-1:2014, 4.1.34, modified — Note 1 to entry and EXAMPLE have been added.]

3.1.53
schema
<XML> collection of schema (3.1.52) components within the same target namespace (3.1.43)

EXAMPLE Schema components of W3C XML Schema are types, elements, attributes, groups, etc.

3.1.54
schema document
<XML> XML document containing schema (3.1.52) component definitions and declarations

Note 1 to entry: The W3C XML Schema provides an XML interchange format for schema information. A single
schema document provides descriptions of components associated with a single XML namespace, but several
documents may describe components in the same schema, i.e. the same target namespace.

3.1.55
semantic type
category of objects that share some common characteristics and are thus given an identifying type
name in a particular domain of discourse

3.1.56
spatial	object
<topology, geometry> object used for representing a spatial characteristic of a feature (3.1.26)

[SOURCE: ISO 19107:2019, 3.87]

3.1.57
surface
2-dimensional geometric primitive (3.1.31), locally representing a continuous image of a region of a plane

Note 1 to entry: The boundary of a surface is the set of oriented, closed curves that delineate the limits of the
surface. Surfaces that are isomorphic to a sphere, or to an n-torus (a topological sphere with n “handles”) have no
boundary. Such surfaces are called cycles.

3.1.58
tag
<XML> markup in an XML document delimiting the content of an element (3.1.23)

EXAMPLE <Road>

8 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

Note 1 to entry: A tag with no forward slash (e.g. <Road>) is called a start-tag (also opening tag), and one with a
forward slash (e.g. </Road> is called an end-tag (also closing tag).

3.1.59
topological	object
spatial object (3.1.56) representing spatial characteristics that are invariant under continuous
transformations

[SOURCE: ISO 19107:2019, 3.99, modified — Note 1 to entry has been deleted.]

3.1.60
tuple
ordered list of values

Note 1 to entry: The number of values in a tuple is immutable.

3.1.61
UML application schema
application schema (3.1.1) written in UML in accordance with ISO 19109

3.1.62
Uniform	Resource	Identifier
URI
unique identifier for a resource, structured in conformance with IETF RFC 2396

Note 1 to entry: The general syntax is <scheme>::<scheme-specific-part>. The hierarchical syntax with a
namespace is <scheme>://<authority><path>?<query> — see RFC 2396.

3.2	 Abbreviated	terms

CRS Coordinate Reference System

CS Coordinate System

CSV Comma Separated Values

CT Coordinate Transformation

DTD Document Type Definition

EPSG European Petroleum Survey Group

GIS Geographic Information System

GML Geography Markup Language

NOTE The abbreviated term GML was previously used also as Generalized Markup
Language (which led to SGML, Standard Generalized Markup Language, ISO 8879).

HTTP Hypertext Transfer Protocol

IETF Internet Engineering Task Force

ISO International Organization for Standardization

OGC Open Geospatial Consortium

RDF Resource Description Framework

RFC Request for Comments

© ISO 2020 – All rights reserved 9

ISO 19136-1:2020(E)

SMIL Synchronized Multimedia Integration Language

SOAP Simple Object Access Protocol

SVG Scalable Vector Graphics

UML Unified Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Uniform Resource Name

W3C World Wide Web Consortium

WFS Web Feature Service

XML eXtensible Markup Language

XSLT eXtensible Stylesheet Language — Transformations

0D zero-dimensional

1D one-dimensional

2D two-dimensional

3D three-dimensional

4 Conformance

4.1 Conformance requirements

Clauses 7 to 19 of this document specify XML Schema components, i.e. the GML schema, which shall
be used in GML application schemas in accordance with Clause 21. Clause 20 specifies rules for the
specification of a GML profile that may be defined for use in a GML application schema.

Few applications will require the full range of capabilities described by the GML schema. This clause,
therefore, defines a set of conformance classes that will support applications whose requirements range
from the minimum necessary to define simple feature types to full use of the GML schema.

Most of the schema components specified in this document implement concepts defined in the ISO 19100
series of International Standards. In these cases, the conformance classes defined in this document are
based on the conformance classes defined in the corresponding standard.

Any GML application schema, GML profile or software implementation claiming conformance with one
of the conformance classes shall pass all test cases of the corresponding abstract test suite.

Any software implementation claiming conformance to this document shall document the GML profile
supported by the implementation. The GML profile shall pass all mandatory test cases of the abstract
test suite corresponding to GML profiles.

4.2 Conformance classes related to GML application schemas

GML application schemas claiming conformance to this document shall conform to the rules specified
in Clauses 7 to 21 and pass all relevant test cases of the abstract test suite in A.1.

Depending on the characteristics of a GML application schema, 12 conformance classes are
distinguished. Table 1 lists these classes and the corresponding subclause of the abstract test suite.

10 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

Table	1	—	Conformance	classes	related	to	GML	application	schemas

Conformance class Subclause	of	the	
abstract	test	suite

All GML application schemas A.1.1
GML application schemas converted from an ISO 19109 application schema in UML A.1.2
GML application schemas to be converted to an ISO 19109 application schema in
UML

A.1.3

GML application schemas defining features and feature collections A.1.4
GML application schemas defining spatial geometries A.1.5
GML application schemas defining spatial topologies A.1.6
GML application schemas defining time A.1.7
GML application schemas defining coordinate reference systems A.1.8
GML application schemas defining coverages A.1.9
GML application schemas defining observations A.1.10
GML application schemas defining dictionaries and definitions A.1.11
GML application schemas defining values A.1.12

4.3	 Conformance	classes	related	to	GML	profiles

The requirements of an application schema determine the XML Schema components from the GML
schema that shall be included in a GML profile. GML profiles claiming conformance to this document
shall satisfy the requirements of the abstract test suite in A.2.

Depending on the contents and requirements concerning a specific GML profile, 31 conformance classes
are distinguished. Table 2 lists these classes and the corresponding subclause of the abstract test suite.

Table	2	—	Conformance	classes	related	to	GML	profiles

Conformance class Subclause	of	the	
abstract	test	suite

All GML profiles A.2.1
Geometric primitives (spatial) — 0-dimensional A.2.2.1.1
Geometric primitives (spatial) — 0/1-dimensional A.2.2.1.2
Geometric primitives (spatial) — 0/1/2-dimensional A.2.2.1.3
Geometric primitives (spatial) — 0/1/2/3-dimensional A.2.2.1.4
Geometric complexes (spatial) — 0/1-dimensional A.2.3.1.1
Geometric complexes (spatial) — 0/1/2-dimensional A.2.3.1.2
Geometric complexes (spatial) — 0/1/2/3-dimensional A.2.3.1.3
Topologic complexes (spatial) — 0/1-dimensional A.2.4.1.1
Topologic complexes (spatial) — 0/1/2-dimensional A.2.4.1.2
Topologic complexes (spatial) — 0/1/2/3-dimensional A.2.4.1.3
Topologic complexes with geometric realization (spatial) — 1-dimensional A.2.5.1.1
Topologic complexes with geometric realization (spatial) — 2-dimensional A.2.5.1.2
Topologic complexes with geometric realization (spatial) — 3-dimensional A.2.5.1.3
Coordinate reference systems A.2.6
Coordinate operations between two coordinate reference systems A.2.7
Temporal geometry — 0-dimensional A.2.8.1
Temporal geometry — 0/1-dimensional A.2.8.2
Temporal topology A.2.9

© ISO 2020 – All rights reserved 11

ISO 19136-1:2020(E)

Conformance class Subclause	of	the	
abstract	test	suite

Temporal reference systems A.2.10
Dynamic features A.2.11
Dictionaries A.2.12
Units dictionaries A.2.13
Observations A.2.14
Abstract coverage A.2.15.1
Discrete point coverage A.2.15.2
Discrete curve coverage A.2.15.3
Discrete surface coverage A.2.15.4
Discrete solid coverage A.2.15.5
Grid coverage A.2.15.6
Continuous coverage A.2.15.7

Curve implementations, for those GML profiles including 1-dimensional spatial geometry objects, shall
always include a “linear” interpolation technique. Surface implementations, for those GML profiles
including 2-dimensional spatial geometry objects, shall always include a “planar” interpolation
technique. Additional curve and surface interpolation mechanisms are optional but, if implemented,
they shall follow the definition included in this document.

NOTE 1 Compare these conformance classes with ISO 19107:2003, Clause 2, ISO 19108:2002, 2.2, and
ISO 19123:2005, Clause 2.

NOTE 2 A GML profile conforming to the three conformance classes “Geometric primitives (spatial) —
0-dimensional”, “Geometric primitives (spatial) — 0/1-dimensional”, and “Geometric primitives (spatial) —
0/1/2-dimensional” (in addition to conformance class “All GML profiles”) conforms to the spatial profile defined
in ISO 19137:2007 and the respective conformance tests in ISO 19137:2007, B.1, B.2 and B.3.

4.4 Conformance classes related to GML documents

GML documents claiming conformance to this document shall conform to the rules specified in
Clauses 7 to 21 and pass all relevant test cases of the abstract test suite in A.3.

4.5 Conformance classes related to software implementations

Software implementations reading or writing GML or GML application schemas claiming conformance
to this document shall pass all of the corresponding abstract test suites described in the abstract test
suite in Annex B.

Depending on the capabilities of the implementation, 11 conformance classes are distinguished. Table 3
lists these classes and the corresponding subclause of the abstract test suite.

Table	3	—	Conformance	classes	related	to	implementations

Conformance class Subclause	of	the	
abstract	test	suite

All software implementations B.1
Support for remote simple Xlinks B.2.1
Support for extended Xlinks B.2.2
Support for nillable properties B.2.3
Support for units of measurement B.2.4
Support for ownership semantics of properties B.2.5

Table	2	(continued)

12 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

Conformance class Subclause	of	the	
abstract	test	suite

Metadata properties B.2.6
Support for GML profiles in instance validation B.2.7
Writing GML B.3
Reading GML B.4
Writing GML application schemas B.5
Reading GML application schemas B.6

5 Conventions

5.1 XML namespaces

All components of the GML schema are defined in the namespace with the identifier "http:// www
.opengis .net/ gml/ 3 .2", for which the prefix gml or the default namespace is used within this document.

All components described by the W3C Xlink Recommendation are defined in the namespace with the
identifier "http:// www .w3 .org/ 1999/ xlink", for which the prefix xlink is used within this document.

NOTE The schema components in both namespaces are documented in XML Schema documents in Annex C.

5.2 Versioning

Each schema document specifying components of the GML schema shall carry a version attribute as
defined in the XML Schema Recommendation. The format of the version attribute string is x.y.z where x
denotes the major version number, y denotes a minor version number and z denotes a bug fix release for
that document. The version described by this document is 3.2.2.

NOTE GML 3.2 is the first version of GML as an ISO standard. Previous versions of GML have been developed
and published by the Open Geospatial Consortium (OGC).

5.3 Deprecated parts of previous versions of GML

The verb “deprecate” provides notice that the referenced portion of this document is being retained
for backwards compatibility with earlier versions but may be removed from a future version without
further notice.

Sections of this document that describe or refer to deprecated GML components are written in italics.

NOTE 1 This document is published by the Open Geospatial Consortium as GML 3.2.2, the previous adopted
version of GML in the Open Geospatial Consortium was 3.1.1.

NOTE 2 All schema components that were part of version 2.1 of GML but were deprecated in version 3.0 of
GML have been removed and are not supported by this document.

5.4 UML notation

Many diagrams that appear in this document are presented using the Unified Modeling Language (UML)
static structure diagram. The UML notations used in this document are described in Figure 1.

Table	3	(continued)

© ISO 2020 – All rights reserved 13

http://www.opengis.net/gml
http://www.opengis.net/gml
http://www.w3.org/1999/xlink

ISO 19136-1:2020(E)

Figure 1 — UML notation

In this document, the following stereotypes of UML class are used:

— <<DataType>> is a set of properties that lack identity (independent existence and the possibility
of side effects). A DataType is a class with no operations whose primary purpose is to hold the
information.

— <<Union>> is a set of properties. The semantics is that only one of the properties may be present at
any time.

— <<FeatureType>> is a feature as defined in ISO 19109.

— <<CodeList>> is a flexible enumeration that uses string values for expressing a list of potential values.

— <<Enumeration>> is a fixed list of valid identifiers of named literal values. Attributes of an
enumerated type may only take values from this list.

— <<Abstract>> is an abstract object type (the stereotype is used in addition to formatting the class
name in italics).

— <<Type>> is a set of abstract attributes and associations. Abstract means that their specification
does not imply that they have to be concretely implemented as instance variables.

In this document, the following standard data types are used:

— CharacterString — A sequence of characters (in general this data type is mapped to “string” in XML
Schema).

— Integer — An integer number (in general this data type is mapped to “integer” in XML Schema).

— Real — A floating point number (in general this data type is mapped to “double” in XML Schema).

14 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

— Boolean — A value specifying TRUE or FALSE (in general this data type is mapped to “boolean” in
XML Schema).

5.5 XML Schema

The normative parts of this document use the W3C XML Schema language to describe the grammar of
conformant GML data instances. XML Schema is a rich language with many capabilities and subtleties.
While a reader who is unfamiliar with XML Schema may be able to follow the description in a general
fashion, this document is not intended to serve as an introduction to XML Schema. In order to have a
full understanding of this document it is necessary for the reader to have a reasonable knowledge of
XML Schema.

6 Overview of the GML schema

6.1 GML schema

GML specifies XML encodings of a number of the conceptual classes defined in the ISO 19100 series of
International Standards and the OpenGIS Abstract Specification in conformance with these standards
and specifications.

The relevant conceptual models include those defined in:

— ISO 19103 — Conceptual schema language (units of measure, basic types);

— ISO 19107 — Spatial schema (spatial geometry and topology);

— ISO 19108 — Temporal schema (temporal geometry and topology, temporal reference systems);

— ISO 19109 — Rules for application schemas (features);

— ISO 19111 — Spatial referencing by coordinates (coordinate reference systems);

— ISO 19123 — Schema for coverage geometry and functions (coverages, grids).

In many cases, the mapping from the conceptual classes to XML is straightforward, while in some cases
the mapping is more complex. For both cases, the mapping is documented in detail in Annex D.

In addition, GML provides XML encodings for additional concepts not yet modelled in the ISO 19100
series of International Standards or the OpenGIS Abstract Specification. Examples include moving
objects, simple observations or value objects. Additional conceptual classes corresponding to these
extensions are also specified in Annex D.

The GML schema comprises the components (e.g. XML elements, attributes, simple types, complex
types, attribute groups, groups) that are described in this document. The XML encoding conforms to
ISO 19118.

6.2 GML application schemas

Designers of GML application schemas may extend or restrict the types defined in the GML schema to
define appropriate types for an application domain. Non-abstract elements, attributes and types from
the GML schema may be used directly in an application schema, if no changes are required.

Following ISO 19109, the feature types of an application or application domain are specified in an
application schema. A GML application schema shall be specified in XML Schema and import the GML
schema. It may be constructed in one of two different ways:

— By adhering to the rules for GML application schemas specified in Clause 21 for creating a GML
application schema directly in XML Schema.

© ISO 2020 – All rights reserved 15

ISO 19136-1:2020(E)

— By adhering to the rules specified in ISO 19109 for application schemas in UML, and conforming to
both the constraints on such schemas and the rules for mapping them to GML application schemas
specified in Annex E of this document. The mapping from an ISO 19109 conformant Application
Schema in UML to the corresponding GML application schema is based on a set of encoding rules.
These encoding rules conform with the rules for GML application schemas and ISO 19118.

Both ways are valid approaches to construct GML application schemas. All application schemas shall be
modelled in accordance with the General Feature Model specified in ISO 19109. Within the ISO 19100
series of International Standards, UML is the preferred language to describe conceptual schemas.

The second approach is recommended in general to ensure proper use of the conceptual modelling
framework of the ISO 19100 series of International Standards. However, the following reasons are
examples where it may be justified to apply the first approach:

— Additional capabilities of the GML schema may be required in addition to the capabilities that are
accessible by using the encoding rules specified in Annex E.

— Only an XML representation may be required and the application schema may be relatively simple,
so the use of a conceptual schema language may be considered an unjustified overhead.

— The application may need a more optimized or compact XML encoding than the one that is the result
of the encoding rules specified in Annex E.

NOTE Annex F provides rules for mapping a GML application schema to an ISO 19109 conformant Application
Schema in UML.

In both cases, GML application schemas conformant with this document shall use all of the applicable
GML schema components, either directly or by specialization, and are valid in accordance with the rules
for XML Schema. How the GML application schemas were produced is not relevant for conformance to
the requirements of this document.

6.3	 Relationship	between	the	ISO	19100	series	of	International	Standards,	the	GML	
schema and GML application schemas

The approach taken by this document is shown in Figure 2. The two main aspects are:

— Clear documentation of the conceptual model of GML: The profile of the ISO 19100 series of
International Standards that is implemented by GML is documented as well as the extensions to this
profile.

— Support for application schema development either in UML or XML Schema: In order to achieve this
two-way mapping between UML (i.e. ISO 19109 conformant application schemas in UML) and XML
Schema (i.e. GML application schemas in XML Schema) the constructs used in both representations
have been limited. While this reduces the expressiveness of the schema descriptions to some extent,
this also reduces their complexity and may make them easier to implement.

NOTE While the mapping from UML to XML Schema is discussed in ISO 19118:2011, Annex A, the reverse
mapping is not discussed in any other standard in the ISO 19100 series of International Standards.

16 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

Figure	2	—	Relationship	between	the	ISO	19100	series	of	International	Standards	and	
ISO 19136/GML

6.4 Organization of this document

GML defines the various entities, e.g. features, geometries, topologies, through a hierarchy of GML
object types. The mapping between GML object types and classes in the conceptual model of the
ISO 19100 series of International Standards and the OGC Abstract Specification is shown in Table D.2.
The normative GML schema is organized around these object types.

Subclause 7.2 describes basic schema components of GML. It defines the root object, gml:AbstractObject,
and the root of the GML class hierarchy, gml:AbstractGML.

Subclause 8.1 describes the Xlink schema. This schema is an OGC implementation of the XLink
specification using XML Schema. It may be replaced in some future release by an equivalent schema
from the W3C.

NOTE 1 Within this document an XML Schema description is provided for xlink components. This is provided
for convenience in the context of an XML Schema-based environment. The normative definitions are given a non-
XML Schema form in the XLink Recommendation.

Subclause 8.2 defines the GML representation of some basic data types that are used in the GML schema.
Most of these types are simple types or simple content types.

Clause 9 describes the feature schema components which defines gml:AbstractFeature and some
derived components.

Clause 10, 10.5.10 and Clause 11 describe the geometry schema components that define
gml:AbstractGeometry, gml:AbstractGeometricPrimitive, gml:AbstractGeometricAggregate,
gml:GeometricComplex and some derived components.

© ISO 2020 – All rights reserved 17

ISO 19136-1:2020(E)

Clause 12 describes the coordinate reference system schema components that define the subtypes of
gml:IdentifiedObject, gml:AbstractCRS, gml:AbstractCoordinateReferenceSystem, and the elements
and types required to construct specific coordinate reference systems.

Clause 13 describes the schema components for topology which define gml:AbstractTopology,
gml:AbstractTopoPrimitive, gml:TopoComplex and some derived components.

Clause 14 describes the schema components for temporal constructs defining gml:AbstractTimeObject,
gml:AbstractTimePrimitive, gml:AbstractTimeGeometricPrimitive, gml:AbstractTimeTopolog
yPrimitive, gml:AbstractTimeComplex and derived components as well as gml:DynamicFeature and
derived components.

Clause 15 describes the schema components for definitions and dictionaries including gml:Definition
and gml:Dictionary.

Clause 16 describes the schema components for the construction of units of measure
(gml:UnitDefinition and derived components), measures and value objects (gml:AbstractValue,
gml:AbstractScalarValue, gml:AbstractScalarValueList and derived components).

Clause 17 describes the schema components for the description of direction.

Clause 18 describes the schema components for simple observations (gml:Observation and derived
components).

Clause 19 describes the schema components for grids and coverages. This describes gml:Grid,
gml:AbstractCoverage, gml:AbstractDiscreteCoverage, gml:AbstractContinuousCoverage and
derived components.

These clauses describe the normative GML schema and explain their contents, structure and
dependencies.

The representation of the GML schema presented in this document uses the XML interchange
format provided by W3C XML Schema. The descriptions of the set of components are factored into
schema documents, where each document gathers together components that correspond broadly
to the classification shown in Figure 2. However, while the XML representation of each GML schema
component in this document is normative, the packaging into schema documents is not. Clause 20
(profiles) and Annex G (subsetting) describe principles and methods for alternative packaging of the
XML representation of GML schema components.

All components defined or declared in this document use the same target namespace of http:// www
.opengis .net/ gml/ 3 .2.

NOTE 2 XML namespaces provide a mechanism for avoiding ambiguity arising from name clashes within XML
documents. All components described in a single schema document are in a single target namespace, but more
than one schema document can describe components in a namespace. Within the XML development community
there are precedents for assigning either one or several namespaces to a set of schema components for a single
application. The use of a single namespace for GML schema components is consistent with the non-normative
factoring of the XML representation of GML components between schema documents.

UML uses packages to collect related components. Furthermore, within the ISO 19100 series of
International Standards, prefixes following the pattern "AA_" are used to distinguish classes from
different packages in a way that resembles XML namespaces. However, for the reasons given above,
packaging of GML components is non-normative and all GML components are in a single namespace, so
no correspondence between the two letter prefixes in the ISO 19100 series of International Standards
and XML namespaces in GML is possible.

6.5 Deprecated and experimental schema components

Experimental, informative schema components dealing with rules for a default styling of GML objects
are described in Annex H.

Deprecated global schema components (elements, attributes, types) are included in Annex I.

18 © ISO 2020 – All rights reserved

http://www.opengis.net/gml/3.2
http://www.opengis.net/gml/3.2

ISO 19136-1:2020(E)

7	 GML	schema	—	General	rules	and	base	schema	components

7.1 GML model and syntax

7.1.1 GML instance documents

GML uses an explicit syntax to instantiate a GML application schema conformant with the General
Feature Model defined in ISO 19109 in an XML document.

A feature is encoded as an XML element with the name of the feature type. Other identifiable objects
are encoded as XML elements with the name of the object type.

Each feature attribute and feature association role is a property of a feature. Feature properties are
encoded in an XML element.

NOTE 1 The term "attribute" in XML refers to a specific syntactic component in XML documents, so to avoid
confusion when describing the XML encoding, GML follows RDF (W3C, 1999) terminology and uses the term
property rather than attribute or association role. The General Feature Model (ISO 19109) also uses the term
"property" as a generalization for "attribute", "association role" or "operation".

Furthermore, the property semantics, which is indicated by the name of the element representing
the property, is distinguished from the property value, which is given by the content of the property
element. A property element may contain its value as content encoded inline, or reference its value with
a simple XLink. The value of a property may be simple, or it may be a feature or other complex object.
When recorded inline, the value of a simple property is recorded as a literal value with no embedded
markup (text), while if the value is complex it appears as a subtree using XML markup (i.e. an XML
element with sub-structure).

NOTE 2 The GML model has a straightforward representation using the UML profile used in the ISO 19100
series of International Standards (defined in ISO 19103). This is described in detail in Annex D and Annex E, but
can be summarized approximately and briefly as follows.

Features are represented

— in UML by objects, where the name of the feature type is used as the name of the object class;

— in GML instances by XML elements, where the name of the feature type is used as the name of the
element.

Feature properties are represented

— in UML by association roles with feature type classes, and attributes of feature type classes, where
the property semantics are given by the association role name or attribute name;

— in GML instances by sub-elements (known as property elements) of feature elements, where the
property semantics are given by the property element name.

The property value has a type indicated

— in UML by the class of the association target, or by the data type of the attribute;

— in GML, in the case of properties with complex values, by the name of the object element contained
within the property element and in case of a property with simple value by the type of the literal
value containing no embedded XML markup.

The result is a layered XML document, in which XML elements corresponding to features, objects or
values occur interleaved with XML elements corresponding to the properties that relate them. The

© ISO 2020 – All rights reserved 19

ISO 19136-1:2020(E)

function of a feature, object or value in context can always be determined by inspecting the name of the
property element which directly contains it, or which carries the reference to it.

NOTE 3 This encoding pattern is sometimes referred to as the “object-property model” and has been the basis
of the GML encoding model since the first version was adopted by OGC. While in some cases this encoding pattern
adds extra levels of elements in instance documents it also provides significant benefits: It helps to make a GML
instance document understandable on its own, provides a predictable structure and avoids too heavy reliance
on XML Schema as it is expected that GML instance documents can outlive the common use of W3C XML Schema
language.

7.1.2 Lexical conventions

There are several lexical conventions used in the GML schema for the names of elements and complex
types to assist in human comprehension of GML instances and schemas:

— objects are instantiated as XML elements with a conceptually meaningful name in UpperCamelCase;

— properties are instantiated as XML elements whose name is in lowerCamelCase;

— abstract elements have a prefix “Abstract” (objects) or “abstract” (properties) prepended to
their name;

— the names of XML Schema complex types are in UpperCamelCase ending in the word “Type”;

— abstract XML Schema complex types have the word “Abstract” prepended.

It is strongly recommended to follow these conventions also in GML application schemas. The rules are
only applicable in languages that distinguish between upper and lower case.

NOTE UpperCamelCase is a naming convention in which a name is formed of multiple words that are joined
together as a single word with the first letter of each of the multiple words capitalized within the new word that
forms the name. lowerCamelCase is a variation in which the first letter of the new word is lower case, allowing it
to be easily distinguished from an UpperCamelCase name.

7.1.3	 XML	Schema	definition	of	GML	language

The GML schema consists of W3C XML Schema components that define types and declare

— XML elements to encode GML objects with identity,

— XML elements to encode GML properties of those objects, and

— XML attributes qualifying those properties.

A GML object is an XML element of a type derived directly or indirectly from gml:AbstractGMLType.
From this derivation, a GML object may have a gml:id attribute.

A GML property shall not be derived from gml:AbstractGMLType, shall not have a gml:id attribute, or
any other attribute of XML type ID.

An element is a GML property if and only if it is a child element of a GML object.

A GML object shall not appear as the immediate child of a GML object.

Consequently, no element may be both a GML object and a GML property.

All XML attributes declared in the GML schema are defined without namespace, the only exception is
the gml:id XML attribute.

The use of additional XML attributes in a GML application schema is discouraged.

20 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

7.2 gmlBase schema components

7.2.1	 Goals	of	base	schema	components

The gmlBase schema components establish the GML model and syntax, in particular

— a root XML type from which XML types for all GML objects should be derived,

— a pattern and components for GML properties,

— patterns for collections and arrays, and components for generic collections and arrays,

— components for associating metadata with GML objects,

— components for constructing definitions and dictionaries.

NOTE The corresponding schema document in Annex C is identified by the following location-independent
name (using URN syntax):

— urn: ogc: specification: gml: schema -xsd: gmlBase: 3 .2 .1

7.2.2	 Base	objects

7.2.2.1	 AbstractObject

An abstract convenience element gml:AbstractObject is declared as follows:

<element name="AbstractObject" abstract="true"/>

This element has no type defined, and is therefore implicitly (in accordance with the rules of W3C XML
Schema) an XML Schema anyType. It is used as the head of an XML Schema substitution group which
unifies complex content and certain simple content elements used for datatypes in GML, including the
gml:AbstractGML substitution group.

NOTE gml:AbstractObject is defined primarily to act as a variable in certain aggregate patterns where it
is necessary to allow either elements in the gml:AbstractGML substitution group, or certain complex content or
simple content elements to be valid in an instance.

A GML dataset (also called a data instance or data document) is represented by an object element. This
object may in turn be a collection of GML objects.

7.2.2.2	 AbstractGML,	AbstractGMLType

The most basic components for representations of identifiable objects are described in the schema as
follows:

<element name="AbstractGML" type="gml:AbstractGMLType" abstract="true" substitutionGroup="
gml:AbstractObject"/>

<complexType name="AbstractGMLType" abstract="true">
 <sequence>
 <group ref="gml:StandardObjectProperties"/>
 </sequence>
 <attribute ref="gml:id"/>
</complexType>

<group name="StandardObjectProperties">
 <sequence>
 <element ref="gml:metaDataProperty" minOccurs="0" maxOccurs="unbounded"/>
 <element ref="gml:description" minOccurs="0"/>
 <element ref="gml:descriptionReference" minOccurs="0"/>
 <element ref="gml:identifier" minOccurs="0"/>
 <element ref="gml:name" minOccurs="0" maxOccurs="unbounded"/>

© ISO 2020 – All rights reserved 21

ISO 19136-1:2020(E)

 </sequence>
</group>
The abstract element gml:AbstractGML is “any GML object having identity”. It acts as the head of an XML
Schema substitution group, which may include any element which is a GML feature, or other object,
with identity. This is used as a variable in content models in GML core and application schemas. It is
effectively an abstract superclass for all GML objects.

The pairing of gml:AbstractGML and gml:AbstractGMLType shows a basic pattern used in the GML
schema, whereby each GML object type is represented by a global element declaration, which has an
associated XML Schema type definition. The name of an element representing a GML object indicates
the conceptual meaning of the object. Generic element names in GML include gml:AbstractObject,
gml:AbstractGML, gml:AbstractFeature, gml:AbstractValue, gml:AbstractCoverage,
gml:AbstractTopology and gml:AbstractCRS. These other generic elements representing objects are
defined elsewhere in this document.

The child XML elements and XML attributes of a GML object are properties of that object. Thus an object
represented by an gml:AbstractGML element has five non-deprecated properties: gml:identifier,
gml:description, gml:descriptionReference, gml:name and gml:id. These are described in 7.2.4.

NOTE The group gml:StandardObjectProperties is provided for convenience in the construction
of application schema, particularly when it is desired to define types derived by restriction from
gml:AbstractGMLType and gml:AbstractFeatureType. Derivation by restriction requires that all components
that are used unchanged are copied down into the new type definition. As an alternative to including element
declarations for all the standard object properties, a one line reference to gml:StandardObjectProperties can
be used instead:

 <group ref="gml:StandardObjectProperties"/>

7.2.3 GML properties

7.2.3.1 General

The term “property” is used to refer to a GML property, which is any characteristic of a GML object.
An element in a GML document or data stream is a GML property if and only if it is a child element of a
GML object element. The meaning of each property shall be indicated by the name of the element that
instantiates it.

GML objects may have an unlimited number of properties, in addition to those inherited from
gml:AbstractGMLType. A property may be defined to have either simple or complex content. A property
with simple content has an XML Schema simple content type, as illustrated by the case of the standard
property elements gml:description and gml:name. A property with complex content has an XML
Schema complex content type.

Property elements may use two modes:

— inline: the value of the property is represented directly, as the content of the property element.
This method is used by the standard property gml:name and may be used for gml:description (see
7.2.4.2).

— by reference: the value of the property is available elsewhere, and is identified by the value of
an xlink:href attribute on the property element. This alternative method shall be used for the
standard property gml:descriptionReference (see 7.2.4.3).

EXAMPLE See 8.1 for examples on the use of xlink references.

NOTE The roles of feature associations as defined in ISO 19109 (General Feature Model) and OpenGIS
Abstract Specification Topic 8 can be represented in several ways in a GML application schema:

— By implementing only one role of the association as navigable, i.e. representing it in the XML encoding. This
is the usual representation in the GML schema itself with some exceptions, for example, the boundary and
co-boundary association roles between the topology objects.

22 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

— By specifying individual properties in the feature types participating in the association. However in this
case, the consistency constraints implied by the association cannot be enforced by XML Schema validation.
This encoding style is, for example, used for the boundary and co-boundary association roles between the
topology objects and in Annex E. See also 7.2.3.9.

— By creating an association object as a GML object. This also allows n-ary associations and associations with
properties to be modelled.

— By using extended Xlinks. This encoding is similar to the “association object” representation.

7.2.3.2	 AssociationAttributeGroup

XLink components are the standard method to support hypertext referencing in XML. An XML Schema
attribute group, gml:AssociationAttributeGroup, is provided to support the use of Xlinks as the
method for indicating the value of a property by reference in a uniform manner in GML. This attribute
group is defined as follows:

 <attributeGroup name="AssociationAttributeGroup">
 <attributeGroup ref="xlink:simpleLink"/>
 <attribute name="nilReason" type="gml:NilReasonType"/>
 <attribute ref="gml:remoteSchema"/>
 </attributeGroup>
with the following definitions from Xlink (see 8.1):

 <attributeGroup name="simpleLink">
 <attribute name="type" type="string" fixed="simple" form="qualified"/>
 <attribute ref="xlink:href"/>
 <attribute ref="xlink:role"/>
 <attribute ref="xlink:arcrole"/>
 <attribute ref="xlink:title"/>
 <attribute ref="xlink:show"/>
 <attribute ref="xlink:actuate"/>
 </attributeGroup>
The value of a GML property that carries an xlink:href attribute is the resource returned by traversing
the link.

The nilReason attribute may be used in a property element that is nillable to indicate a reason for a
nil value.

NOTE All components in the attribute group are optional.

7.2.3.3	 abstractAssociationRole,	AssociationRoleType

To support the encoding of properties that may have complex content, a basic pattern for property
elements is provided in the GML schema as follows:

 <element name="abstractAssociationRole" type="gml:AssociationRoleType"
abstract="true"/>

 <complexType name="AssociationRoleType">
 <sequence minOccurs="0">
 <any namespace=”##any”/>
 </sequence>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
Applying this pattern shall restrict the multiplicity of objects in a property element using this content
model to exactly one. An instance of this type shall contain an element representing an object, or serve
as a pointer to a remote object.

Applying the pattern to define an application schema specific property type allows to restrict

— the inline object to specified object types,

— the encoding to "by reference only“ (see 7.2.3.7),

© ISO 2020 – All rights reserved 23

ISO 19136-1:2020(E)

— the encoding to "inline only“ (see 7.2.3.8).

NOTE 1 The declaration of gml:abstractAssociationRole and its accompanying type definition is provided
for convenience, to act as a template or pattern for the construction of property elements in application schemas.
There is no requirement for specific properties to use XML Schema type derivation from gml: AssociationType
to create properties in a conformant GML application schema. This contrasts with the requirement that the
content model for all identifiable objects has to derive from gml: AbstractGMLType, and for all features from gml:
AbstractFeatureType.

NOTE 2 While gml:abstractAssociationRole is abstract, its type gml:AssociationRoleType is not,
because the same type is used by the instantiable gml:member property (see 7.2.3.10). Note also that this
property has been deprecated.

7.2.3.4	 Inline	or	by	reference?

The any element in the content model for properties is optional. In combination with the component
cardinalities in gml:AssociationAttributeGroup this means that an element of this type may have a
content element or xlink attributes. GML property elements which follow this pattern may be used to
attach values either inline or by-reference.

EXAMPLE A utility property provided for features is “centerOf”. This may be used to indicate a spatial
location inline as follows:

<gml:centerOf>
 <gml:Point gml:id="point96" srsName="http://www.opengis.net/def/crs/EPSG/0/4326">
 <gml:pos>-31.936 15.834</gml:pos>
 </gml:Point>
</gml:centerOf>

which uses the gml: Point object as defined in the GML geometry schemas (described in 10.2). The same
property element may be used to indicate a location by reference as follows:

<gml:centerOf xlink:href="http://my.big.org/locations/point53"/>

where “http:// my .big .org/ location/ point53” identifies a point (a gml:Point element) supplied by the
service indicated.

However, a property element following this pattern may have no content or attributes, or it may have
both content and attributes, and still be XML Schema-valid. It is not possible to constrain the co-
occurrence of content or attributes, so it is not possible to use W3C XML Schema to restrict a property
to be either inline or by-reference only.

If both a link and content are present in an instance of a property element, then the object found by
traversing the xlink:href link shall be the normative value of the property. The object included as
content shall be used by the data recipient only if the remote instance cannot be resolved; this may be
considered to be a "cached" version of the object.

NOTE Most GML-Object-valued properties in the GML schema can be encoded either inline or by-
reference. However, using a GML profile (see Clause 20) it is possible to restrict the usage to “inline only” or
“by-reference only”.

7.2.3.5 Ownership of property values

Encoding a GML property inline vs. by-reference shall not imply anything about the “ownership”
of the contained or referenced GML object, i.e. the encoding style shall not imply any “deep-copy”
or “deep-delete” semantics. To express ownership over the contained or referenced GML object, the
gml:OwnershipAttributeGroup attribute group may be added to object-valued property elements. If the
attribute group is not part of the content model of such a property element, then the value may not be
“owned”.

The attribute group is defined as follows:

24 © ISO 2020 – All rights reserved

http://my.big.org/location/point53

ISO 19136-1:2020(E)

 <attributeGroup name="OwnershipAttributeGroup">
 <attribute name="owns" type="boolean" default="false"/>
 </attributeGroup>
When the value of the owns attribute is “true”, the existence of inline or referenced object(s) depends
upon the existence of the parent object.

EXAMPLE If a property “hasOwner” is represented in an instance document as

 <Parcel gml:id=”p123”>
 <hasOwner xlink:href=”urn:x-abc:id:o123”/>
 </Parcel>
then the referenced object, e.g. a person, is not “owned” by the parcel feature, i.e. the person feature will
not be deleted, if the parcel is deleted. However, if a property is encoded with an attribute owns=”true”,
for example

 <Car gml:id=”c123”>
 <hasParts owns=”true” xlink:href=”urn:x-abc:id:x123”/>
 <!-- … -->
 </Car>
then the referenced object is “owned” by the car feature, i.e. the part will be deleted, if the car is deleted.

7.2.3.6	 abstractStrictAssociationRole

The constraint that the value of a property may be either embedded inline or specified by an
xlink reference may be described precisely using the auxiliary constraint language Schematron
(ISO/IEC 19757-3). The abstract, global elements gml:abstractAssociationRole and gml:abstractSt
rictAssociationRole both use gml:AssociationRoleType, but the following schema fragments shows
how an element declaration may accompanied by a Schematron constraint to limit the property to act
in either inline or by-reference mode, but not both.

 <element name="abstractAssociationRole" type="gml:AssociationRoleType"
abstract="true"/>

 <element name="abstractStrictAssociationRole" type="gml:AssociationRoleType"
abstract="true"/>

 <sch:schema xmlns:sch="http://purl.oclc.org/dsdl/schematron" xmlns:gml="http://www.
opengis.net/gml/3.2" xmlns:xlink="http://www.w3.org/1999/xlink" xml:lang="en">
 <sch:title>Schematron constraints for GML / ISO 19136</sch:title>
 <sch:ns prefix="sch" uri="http://purl.oclc.org/dsdl/schematron"/>
 <sch:ns prefix="gml" uri="http://www.opengis.net/gml/3.2"/>
 <sch:ns prefix="xlink" uri="http://www.w3.org/1999/xlink"/>
 <sch:pattern>
 <sch:rule context="gml:abstractStrictAssociationRole">
 <sch:assert test="not(@xlink:href and (*|text()))">Property element may not
carry both a reference to an object and contain an object.</sch:assert>
 <sch:assert test="@xlink:href | (*|text())">Property element shall either
carry a reference to an object or contain an object.</sch:assert>
 </sch:rule>
 </sch:pattern>
 </sch:schema>
NOTE Some XML validators will process the Schematron constraints automatically. Otherwise, the
Schematron code can be seen as a formal description of a constraint. It is included here primarily as an illustration
of how this can be used for specific purposes by application schema developers.

7.2.3.7	 abstractReference,	ReferenceType

In order to support the encoding of properties whose value is provided remotely by-reference, the
following components are provided:

 <element name="abstractReference" type="gml:ReferenceType" abstract="true"/>

 <complexType name="ReferenceType">
 <sequence/>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>

© ISO 2020 – All rights reserved 25

ISO 19136-1:2020(E)

 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
The element gml:abstractReference is abstract, and thus may be used as the head of a substitution
group of more specific elements providing a value by-reference.

NOTE While gml:abstractReference is abstract, its type gml:ReferenceType is not, because the type
is intended to be used in application schemas directly, if a property element is intended to always use a “by-
reference only” encoding.

7.2.3.8	 abstractInlineProperty,	InlinePropertyType

In order to support the encoding of properties whose value is provided inline, the following components
are provided:

 <element name="abstractInlineProperty" type="gml:InlinePropertyType" abstract="true"/>

 <complexType name="InlinePropertyType">
 <sequence>
 <any namespace=”##any”/>
 </sequence>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>
The element gml:abstractInlineProperty is abstract, and thus may be used as the head of a substitution
group of more specific elements providing a value inline.

7.2.3.9 Properties representing the same relationship

If the value of an object property is another object and that object contains also a property for the
association between the two objects, then this name of the reverse property may be encoded in a
gml:reversePropertyName element in an appinfo annotation of the property element to document the
constraint between the two properties. The value of the element shall contain the qualified name of the
property element.

 <element name="reversePropertyName" type="string"/>
EXAMPLE

<element name="owner" type="ex:PersonPropertyType" minOccurs=”0”>
 <annotation>
 <appinfo>
 <gml:reversePropertyName>ex:owns</gml:reversePropertyName>
 </appinfo>
 </annotation>
</element>
…
<complexType name="PersonPropertyType">
 <sequence minOccurs="0">
 <element ref="ex:Person"/>
 </sequence>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
</complexType>

7.2.3.10	 Properties	of	value	objects

Value objects, see 16.4, are special objects in the sense that in the case of a single property that can be
represented by a single literal value, the value appears as the direct content of object element without
an extra element for the property.

EXAMPLE <gml: Integer>5</gml: Integer> is used instead of, for example, <gml: Integer> <gml: value>5</
gml: value> </gml: Integer>.

26 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

7.2.4	 Standard	properties	of	GML	objects

7.2.4.1	 Derivation	from	AbstractGMLType

XML Schema types for all GML objects derive directly or indirectly from gml:AbstractGMLType. This
means that all GML objects inherit certain standard properties that are included in the content model of
gml:AbstractGMLType.

7.2.4.2 description

The value of this property is a text description of the object. gml:description uses gml:StringOrRefType
(see 0) as its content model, i.e. it should contain a simple text string content.

 <element name="description" type="gml:StringOrRefType"/>
NOTE The use of gml: description to reference an external description has been deprecated and replaced by
the gml: descriptionReference property (see 7.2.4.3).

7.2.4.3 descriptionReference

The value of this property is a remote text description of the object. The xlink: href attribute of the
gml:descriptionReference property references the external description.

 <element name="descriptionReference" type="gml:ReferenceType"/>

7.2.4.4	 name,	identifier

The gml:name property provides a label or identifier for the object, commonly a descriptive name.

An object may have several names, typically assigned by different authorities. gml:name uses the
gml:CodeType content model. The authority for a name is indicated by the value of its (optional)
codeSpace attribute. The name may or may not be unique, as determined by the rules of the organization
responsible for the codeSpace. In common usage there will be one name per authority, so a processing
application may select the name from the codeSpace that it prefers.

 <element name="name" type="gml:CodeType"/>
Often, a special identifier is assigned to an object by the authority that maintains the feature with the
intention that it is used in references to the object. For such cases, the codeSpace shall be provided.
That identifier is usually unique either globally or within an application domain. gml:identifier is a
predefined property for such identifiers.

EXAMPLE UUIDs and URNs are commonly used globally unique identifiers.

 <element name="identifier" type="gml:CodeWithAuthorityType"/>

7.2.4.5 id

The attribute gml:id supports provision of a handle for the XML element representing a GML object. Its
use is recommended for all GML objects. In particular, all GML objects that are intended to be referenced
should carry an attribute gml:id. For some GML object types, the attribute gml:id is mandatory.

 <attribute name="id" type="ID"/>
It is of XML type ID, so is constrained to be unique in the XML document within which it occurs. An
external identifier for the XML element representing the GML object in the form of a URI may be
constructed using standard methods (IETF RFC 2396). This is done by concatenating the URI for the
document, a fragment separator “#”, and the value of the attribute of XML type ID.

7.2.5	 Collections	of	GML	objects

7.2.5.1	 AbstractMemberType	and	derived	property	types

To create a collection of GML objects that are not all features, a property type shall be derived by
extension from gml:AbstractMemberType.

© ISO 2020 – All rights reserved 27

ISO 19136-1:2020(E)

 <complexType name="AbstractMemberType" abstract="true">
 <sequence/>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>
The derived property type shall follow one of the patterns specified in 7.2.3 and may set the multiplicity
of the objects in the collection as required for its intended use.

This abstract property type is intended to be used only in object types where software shall be able to
identify that an instance of such an object type is to be interpreted as a collection of objects.

EXAMPLE See gml:DictionaryEntryType in 15.2.3 for such a property type.

By default, this abstract property type does not imply any ownership of the objects in the collection.
The owns attribute of gml:OwnershipAttributeGroup may be used on a property element instance to
assert ownership of an object in the collection. A collection shall not own an object already owned by
another object.

7.2.5.2	 GML	object	collections,	AggregationAttributeGroup

A GML object collection is any gml:AbstractObject with a property element in its content model whose
content model is derived by extension from gml:AbstractMemberType.

EXAMPLE gml:Dictionary is a GML object collection, because the content model of property
gml:dictionaryEntry specified in 15.2.3 is derived by extension from gml:AbstractMemberType.

In addition, the complex type describing the content model of the GML object collection may also include
a reference to the attribute group gml:AggregationAttributeGroup to provide additional information
about the semantics of the object collection. This information may be used by applications to group
GML objects, and optionally to order and index them.

 <attributeGroup name="AggregationAttributeGroup">
 <attribute name="aggregationType" type="gml:AggregationType"/>
 </attributeGroup>
The allowed values for the aggregationType attribute are defined by gml:AggregationType. See
ISO/IEC 11404:2007, 8.4 for the meaning of the values in the enumeration.

 <simpleType name="AggregationType" final="#all">
 <restriction base="string">
 <enumeration value="set"/>
 <enumeration value="bag"/>
 <enumeration value="sequence"/>
 <enumeration value="array"/>
 <enumeration value="record"/>
 <enumeration value="table"/>
 </restriction>
 </simpleType>
If a collection of aggregation type “array” is implemented in an application schema, then the array type
in the application schema needs to model the additional information to cope with indexing.

If a collection of aggregation type “table” is implemented in an application schema, then the table type
in the application schema needs to model the additional information to add the required information
about the fields and their structure.

7.2.6 Metadata

To associate metadata described by any XML Schema with a GML object, a property element shall be
defined whose content model is derived by extension from gml:AbstractMetadataPropertyType.

The value of such a property shall be metadata. The content model of such a property type, i.e. the
metadata application schema shall be specified by the GML application schema.

 <complexType name="AbstractMetadataPropertyType" abstract="true">
 <sequence/>

28 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>
The property type derived from gml:AbstractMetadataPropertyType shall follow one of the patterns
specified for GML property types in 7.2.3.

By default, this abstract property type does not imply any ownership of the metadata. The owns
attribute of gml:OwnershipAttributeGroup may be used on a metadata property element instance to
assert ownership of the metadata.

If metadata following the conceptual model of ISO 19115 is to be encoded in a GML document, the
corresponding Implementation Specification specified in ISO/TS 19139 shall be used to encode the
metadata information.

EXAMPLE 1 Assume that a feature type "Road" can be associated with two metadata elements, a data quality
property "horizontalAbsolutAccuracy" and a generic ISO/TS 19139 "metadata" property.

This may be mapped in the application schema as follows by bundling the metadata properties in a
complex property:

<complexType name="RoadType">
 <complexContent>
 <extension base="gml:AbstractFeatureType">
 <sequence>
 <!-- ... -->
 <element name="roadMetadata" type="ex:RoadMetadataPropertyType"/>
 <!-- ... -->
 </sequence>
 </extension>
 </complexContent>
</complexType>

<complexType name="RoadMetadataPropertyType">
 <complexContent>
 <extension base="gml:AbstractMetadataPropertyType">
 <sequence>
 <element ref="ex:RoadMetadata"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

<complexType name="RoadMetadataType">
 <complexContent>
 <extension base="gmx:AbstractObjectMetadata_Type">
 <sequence>
 <element name="horizontalAbsoluteAccuracy" minOccurs="0"
 type="gmd:DQ_AbsoluteExternalPositionalAccuracy_PropertyType"/>
 <element name="metadata" minOccurs="0" type="gmd:MD_Metadata_
PropertyType"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

<element name="RoadMetadata" type="myAs:RoadMetadataType" substitutionGroup="gmx:AbstractO
bjectMetadata"/>
Then, an instance of a Road feature could look like:

<ex:Road>
 <!-- … -->
 <ex:roadMetadata>
 <ex:RoadMetadata>
 <ex:horizontalAbsoluteAccuracy>
 <gmd:DQ_AbsoluteExternalPositionalAccuracy>
 <!-- The DQ_Element subelements are not detailed -->
 </gmd:DQ_AbsoluteExternalPositionalAccuracy>
 </ex:horizontalAbsoluteAccuracy>
 <ex:metadata>
 <gmd:MD_Metadata>

© ISO 2020 – All rights reserved 29

ISO 19136-1:2020(E)

 <!-a full set of ISO/TS 19139 metadata elements -->
 </gmd:MD_Metadata>
 </ex:metadata>
 </ex:RoadMetadata>
 </ex:roadMetadata>
 <!-- … -->
</myAs:Road>
An alternative encoding representing the metadata properties as separate properties of the feature
would be:

<complexType name="RoadType">
 <complexContent>
 <extension base="gml:AbstractFeatureType">
 <sequence>
 <!-- ... -->
 <element name="horizontalAbsoluteAccuracy" minOccurs="0">
 <complexType>
 <complexContent>
 <extension base="gml:AbstractMetadataPropertyType">
 <sequence>
 <element ref="gmd:DQ_AbsoluteExternalPositionalAccuracy"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 </element>
 <!-- ... -->
 <element name="metadata" minOccurs="0">
 <complexType>
 <complexContent>
 <extension base="gml:AbstractMetadataPropertyType">
 <sequence>
 <element ref="gmd:MD_Metadata"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 </element>
 <!-- ... -->
 </sequence>
 </extension>
 </complexContent>
</complexType>
The instance example would then look like this:

<ex:Road>
 <!-- ... -->
 <ex:horizontalAbsoluteAccuracy>
 <gmd:DQ_AbsoluteExternalPositionalAccuracy>
 <!-- The DQ_Element subelements are not detailed here -->
 </gmd:DQ_AbsoluteExternalPositionalAccuracy>
 </ex:horizontalAbsoluteAccuracy>
 <!-- ... -->
 <ex:metadata>
 <gmd:MD_Metadata>
 <!-a full set of ISO/TS 19139 metadata elements -->
 </gmd:MD_Metadata>
 </ex:metadata>
 <!-- ... -->
</ex:Road>
EXAMPLE 2 Assume that a dataset shall be enabled to contain Dublin Core metadata elements. This may be
mapped in the application schema as follows:

<import namespace="http://www.purl.org/dc/terms/" schemaLocation="http://schemas.opengis.
net/csw/2.0.0/rec-dcterms.xsd"/>

<complexType name="DatasetType">
 <complexContent>
 <extension base="gml:AbstractFeatureType">
 <sequence>

30 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

 <!-- ... -->
 <element name="generalMetadata" type="ex:DublinCoreMetadataPropertyType"/>
 <!-- ... -->
 </sequence>
 </extension>
 </complexContent>
</complexType>

<complexType name="GeneralMetadataPropertyType">
 <complexContent>
 <extension base="gml:AbstractMetadataPropertyType">
 <sequence>
 <element ref="ex:DublinCoreMetadata"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

<element name="DublinCoreMetadata">
 <complexType name="DublinCoreMetadataType">
 <sequence>
 <group ref="dct:DCMI-terms" xmlns:dct="http://www.purl.org/dc/terms/"/>
 </sequence>
 </complexType>
</element>
An instance example could look like this:

<ex:Dataset>
 <!-- ... -->
 <ex:generalMetadata>
 <ex:DublinCoreMetadata>
 <dc:title>Vector Smart Map Level 0</dc:title>
 <dct:abstract>Vector Map: a general purpose database design to support GIS
applications</dct:abstract>
 <dc:publisher>US National Geospatial-Intelligence Agency</dc:publisher>
 <dc:format>VPF</dc:format>
 <dc:coverage>world</dc:coverage>
 <dc:language>en</dc:language>
 <!-- … -->
 </ex:DublinCoreMetadata>
 </ex:generalMetadata>
 <!-- ... -->
</ex:Dataset>

8	 GML	schema	—	Xlinks	and	basic	types

8.1	 Xlinks	—	Object	associations	and	remote	properties

The normative Xlink specification is available from W3C.

NOTE A schema document xlinks.xsd is provided as part of the GML schema documents in Annex C.

Xlink components are used in GML to implement associations between objects by reference. GML
property elements (see 7.2.3) may carry Xlink attributes, which support the encoding of an association
relationship by reference, the name of the property element denoting the target role in the association.
The most important Xlink component is:

xlink:href identifier of the resource which is the target of the association, given as a URI

The appearance of an xlink:href on a GML property indicates that the value of the property shall be
found by traversing the link, that is the value is pointed to by the value of the xlink:href attribute.
Following the terminology of Xlink, GML properties with xlink:href attributes are sometimes referred
to as remote properties.

The other Xlink components are used to indicate additional semantics of the relationship. The most
useful of these are

© ISO 2020 – All rights reserved 31

ISO 19136-1:2020(E)

xlink:role description of the nature of the target resource, given as a URI

xlink:arcrole description of the role or purpose of the target resource in relation to the present
resource, given as a URI

xlink:title description of the association or the target resource, given as text

For complete definitions of these and other Xlink components, including their use in extended Xlink
association maps, refer to the Xlink specification.

A URI reference [URI] is defined as an optional choice between an absolute or relative URI, followed by
fragment identifier that consists of a crosshatch ("#") and additional reference information. For GML
object properties and remote associations, this additional reference information shall be one of the
following:

— a shorthand (formerly called "barename") XPointer [XPointer Framework] consisting of the value of
the gml:id attribute of a GML object, or

— an element() scheme based XPointer [XPointer element()], or

— an xpointer() scheme based XPointer [XPointer xpointer()] containing an XPath [XPath] expression
that selects a GML object, optionally preceded by one or more xmlns() scheme based XPointer(s)
[XPointer xmlns()] that define the namespace prefixes used in the XPath expression.

A URI that does not contain an absolute or relative URI, but that consists entirely of a fragment identifier,
refers to a GML object elsewhere in the same GML document.

Absolute and relative URIs may include a query component that consists of a question mark ("?") followed
by a query to be interpreted by the resource. For GML object properties and remote associations, any
such query shall be a request to a service that returns a GML object. The URI containing such a query
may or may not make use of a fragment identifier, depending on the request syntax defined by the
service.

In the GML schema, simple Xlinks are used exclusively to denote association roles of GML objects and to
denote remotely referenced property values.

EXAMPLE 1 A reference to an object element in the same GML document can be encoded as:

 <myProperty xlink:href="#o1"/>
EXAMPLE 2 A reference to an object element in a remote XML document using the gml:id value of that object
can be encoded as:

 <myProperty xlink:href="http://my.big.org/test.xml#o1"/>
EXAMPLE 3 A reference to an object element in a remote XML document (or GML object repository) using the
gml: identifier property value of that object can be encoded as:

 <myProperty xlink:href="http://my.big.org/test.xml#element (//gml:GeodeticCRS[./
gml:identifier[@codeSpace="http://www.opengis.net/def/crs/EPSG/0/"]="4326"])"/>

EXAMPLE 4 A reference to an object element with a uniform resource name can be encoded as follows (note
that a URN resolver is required to resolve the URN and access the referenced object):

 <myProperty xlink:href="urn:ogc:def:crs:EPSG::4326"/>
The IDREF data type and the unique, key, and keyref elements defined in the XML and XML Schema
specifications provide alternative identification and linking mechanisms to the ID data type and Xlink
reference for use within a single XML document. Although these XML components may be used in XML
Schemas, they have no normative role in GML, and shall not be used to denote association roles of GML
objects or remotely referenced property values.

32 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

8.2 Basic types

8.2.1 Overview

W3C XML Schema provides a set of built-in “simple” types which define methods for representing values
as literals without internal markup. These are described in W3C XML Schema Part 2:2001. Because
GML is an XML encoding in which instances are described using XML Schema, these simple types shall
be used as far as possible and practical for the representation of data types. W3C XML Schema also
provides methods for defining

— new simple types by restriction and combination of the built-in types, and

— complex types, with simple content, but which also have XML attributes.

In many places where a suitable built-in simple type is not available, simple content types derived using
the XML Schema mechanisms are used for the representation of data types in GML.

A set of these simple content types that are required by several GML components are defined in
the basicTypes schema, as well as some elements based on them. These are primarily based around
components needed to record amounts, counts, flags and terms, together with support for exceptions
or null values.

NOTE The basic types and elements are described in the basicTypes schema document in Annex C. The
schema is identified by the following location-independent name (using URN syntax):

— urn: ogc: specification: gml: schema -xsd: basicTypes: 3 .2 .1

8.2.2 Relationship with ISO 19103

ISO 19103 defines basic types for the conceptual schemas in the ISO 19100 series of International
Standards. GML implements a subset of these basic types as described in D.2.2.

NOTE Some of the ISO 19103 basic types are specified in other schema documents of the GML schema: units
of measure are specified in Clause 16 and vector in 10.1.4.5.

8.2.3 Simple types

8.2.3.1 NilReasonType

gml:NilReasonType defines a content model that allows recording of an explanation for a void value or
other exception.

<simpleType name="NilReasonEnumeration">
 <union>
 <simpleType>
 <restriction base="string">
 <enumeration value="inapplicable"/>
 <enumeration value="missing"/>
 <enumeration value="template"/>
 <enumeration value="unknown"/>
 <enumeration value="withheld"/>
 </restriction>
 </simpleType>
 <simpleType>
 <restriction base="string">
 <pattern value="other:\w{2,}"/>
 </restriction>
 </simpleType>
 </union>
</simpleType>

<simpleType name="NilReasonType">
 <union memberTypes="gml:NilReasonEnumeration anyURI"/>
</simpleType>

© ISO 2020 – All rights reserved 33

ISO 19136-1:2020(E)

gml:NilReasonType is a union of the following enumerated values:

— "inapplicable": there is no value

— "missing": the correct value is not readily available to the sender of this data. Furthermore, a correct
value may not exist

— "template": the value will be available later

— "unknown": the correct value is not known to, and not computable by, the sender of this data.
However, a correct value probably exists

— "withheld": the value is not divulged

— "other:"+text: other brief explanation, where text is a string of two or more characters with no
included spaces

and

— anyURI which should refer to a resource which describes the reason for the exception

A particular community may choose to assign more detailed semantics to the standard values provided.
Alternatively, the URI method enables a specific or more complete explanation for the absence of a value
to be provided elsewhere and indicated by-reference in an instance document.

gml:NilReasonType is used as a member of a union in a number of simple content types defined below
(see 8.2.3.4, 8.2.4.1, 8.2.4.2, 8.2.4.3) where it is necessary to permit a value from the NilReasonType
union as an alternative to the primary type.

8.2.3.2	 Elements	declared	to	be	“nillable”

The XML Schema attribute nillable may be included in any element declaration within a schema.

NOTE 1 By default the schema attribute nillable has a value of “false”.

EXAMPLE 1 The following element declarations illustrate the use of the nillable attribute:

 <element name=”amount” type=”double” nillable=”true”/>
 <element ref=”my:amount” nillable=”true”/>
By declaring an element as nillable (nillable="true"), an instance of that element may omit its content
in cases where an empty value would normally not be schema valid by supplying an attribute nil from
the XML Schema Instance namespace with the value “true”.

EXAMPLE 2 Elements that have been declared with this nillable="true" in the schema can appear in instance
documents as follows:

 <my:amount>34.567</my:amount>
 <my:amount xsi:nil=”true”/>
Declaring an element to be nil is an implementation of the “Void” data type of ISO/IEC 11404, i.e.
represents “an object whose presence is syntactically or semantically required, but carries no
information in a given instance” [ISO/IEC 11404].

NOTE 2 This is different to an element declaration with the cardinality attribute set to make the element
optional, such as:

 <element name=”amount” type=”double” minOccurs=”0”/>
which allows the element to be omitted in the instance entirely.

In some situations where it is required to declare an element in an application schema nillable, it may be
convenient to also add an attribute of type gml: NilReasonType.

EXAMPLE 3 The application schema components

34 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

 <element name="amount" nillable=”true”>
 <complexType>
 <simpleContent>
 <extension base="double">
 <attribute name="nilReason" type="gml:NilReasonType"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>

 <element name=”money” type=my:NRMeasureType” nillable=”true”/>

 <complexType name=”NRMeasureType”>
 <simpleContent>
 <extension base="decimal">
 <attribute name=”uom” type=”token” use=”required”/>
 <attribute name="nilReason" type="gml:NilReasonType"/>
 </extension>
 </simpleContent>
 </complexType>
would allow the instances to be augmented with an additional attribute explaining the absence of a
value, such as

 <my:amount xsi:nil=”true” nilReason=”unknown”/>
 <my:money xsi:nil=”true” nilReason=”other:myDaughterSpentIt” uom=”AUD”/>
In the GML schema and in GML application schemas, the “nillable” and “nilReason” construction may be
used on elements representing GML properties (see 7.2.3). This allows properties that are part of the
content of objects and features in GML and GML application languages to be declared to be mandatory,
while still permitting them to appear in an instance document with no value.

NOTE 3 Both simple content and complex content elements can be declared as nillable, so this construction
allows a uniform syntax for properties with void values.

8.2.3.3 SignType

gml:SignType is a convenience type with values “+” (plus) and “−” (minus).

 <simpleType name="SignType">
 <restriction base="string">
 <enumeration value="-"/>
 <enumeration value="+"/>
 </restriction>
 </simpleType>
NOTE Elements or attributes of this type are used in various places, e.g. to indicate the direction of
topological objects with "+" for forwards, or "−" for backwards.

8.2.3.4	 booleanOrNilReason,	doubleOrNilReason,	integerOrNilReason,	NameOrNilReason,	
stringOrNilReason

The types gml:booleanOrNilReason, gml:doubleOrNilReason, gml:integerOrNilReason,
gml:NameOrNilReason, gml:stringOrNilReason provide extensions to the respective XML Schema built-
in simple types to allow a choice of either a value of the built-in simple type or a reason for a nil value.
They are constructed as follows:

 <simpleType name="booleanOrNilReason">
 <union memberTypes="gml:NilReasonEnumeration boolean anyURI"/>
 </simpleType>

 <simpleType name="doubleOrNilReason">
 <union memberTypes="gml:NilReasonEnumeration double anyURI"/>
 </simpleType>

 <simpleType name="integerOrNilReason">
 <union memberTypes="gml:NilReasonEnumeration integer anyURI"/>
 </simpleType>

 <simpleType name="NameOrNilReason">

© ISO 2020 – All rights reserved 35

ISO 19136-1:2020(E)

 <union memberTypes="gml:NilReasonEnumeration Name anyURI"/>
 </simpleType>

 <simpleType name="stringOrNilReason">
 <union memberTypes="gml:NilReasonEnumeration string anyURI"/>
 </simpleType>

8.2.3.5 CodeType, CodeWithAuthorityType

gml:CodeType is a generalized type to be used for a term, keyword or name.

 <complexType name="CodeType">
 <simpleContent>
 <extension base="string">
 <attribute name="codeSpace" type="anyURI"/>
 </extension>
 </simpleContent>
 </complexType>
It adds an XML attribute codeSpace to a term, where the value of the codeSpace attribute (if present)
shall indicate a dictionary, thesaurus, classification scheme, authority, or pattern for the term.

EXAMPLE The gmlBase schema contains an element declaration using this type (see 8.2.3.5):

 <element name="name" type="gml:CodeType"/>
so a corresponding element might appear in an instance document as follows:

 <gml:name codeSpace = “http://www.ukusa.gov/placenames”>St Paul</gml:name>
In this example “St Paul” is asserted to be a meaningful name in accordance with http:// www .ukusa
.gov/ placenames. Note that in all cases the rules for the values, including such things as uniqueness
constraints, are set by the authority responsible for the codeSpace.

The derived type gml:CodeWithAuthorityType requires that the codeSpace attribute is provided in an
instance.

 <complexType name="CodeWithAuthorityType">
 <simpleContent>
 <restriction base="gml:CodeType">
 <attribute name="codeSpace" type="anyURI" use="required"/>
 </restriction>
 </simpleContent>
 </complexType>

8.2.3.6	 MeasureType,	UomIdentifier

gml:MeasureType supports recording an amount encoded as a value of XML Schema double, together
with a units of measure indicated by an attribute uom, short for “units of measure”. The value of the uom
attribute identifies a reference system for the amount, usually a ratio or interval scale.

gml:MeasureType is defined as follows:

 <complexType name="MeasureType">
 <simpleContent>
 <extension base="double">
 <attribute name="uom" type="gml:UomIdentifier" use="required"/>
 </extension>
 </simpleContent>
 </complexType>
EXAMPLE An application schema can contain an element declaration using this type

 <element name = “height” type = “gml:MeasureType”/>
Elements corresponding to this might appear in a data instance document as follows:

 <height uom=“m">1.4224</height>

 <height uom=“http://www.equestrian.org/units/hands">14</height>
where the value of the uom attribute identifies the unit of measure or a resource that defines the unit of
measure.

36 © ISO 2020 – All rights reserved

http://www.ukusa.gov/placenames
http://www.ukusa.gov/placenames

ISO 19136-1:2020(E)

The simple type gml:UomIdentifer defines the syntax and value space of the unit of measure identifier.
This is a union type defined as follows:

 <simpleType name="UomIdentifier">
 <union memberTypes="gml:UomSymbol gml:UomURI"/>
 </simpleType>
The first member of the union type, gml:UomSymbol, is defined as follows:

 <simpleType name="UomSymbol">
 <restriction base="string">
 <pattern value="[^: \n\r\t]+"/>
 </restriction>
 </simpleType>
This type specifies a character string of length at least one, and restricted such that it shall not contain
any of the following characters: “:” (colon), “ ” (space), (new line), (carriage return), (tab). This allows
values corresponding to familiar abbreviations, such as “kg”, “m/s”, etc.

It is recommended that the symbol be an identifier for a unit of measure as specified in the “Unified
Code of Units of Measure” (UCUM) (https:// unitsofmeasure .org/). This provides a set of symbols and
a grammar for constructing identifiers for units of measure that are unique, and may be easily entered
with a keyboard supporting the limited character set known as 7-bit ASCII. ISO 2955 formerly provided
a specification with this scope, but was withdrawn in 2001. UCUM largely follows ISO 2955 with
modifications to remove ambiguities and other problems.

The second member of the union type, gml:UomURI, is defined as follows:

 <simpleType name="UomURI">
 <restriction base="anyURI">
 <pattern value="([a-zA-Z][a-zA-Z0-9\-\+\.]*:|\.\./|\./|#).*"/>
 </restriction>
 </simpleType>
This type specifies a URI, restricted such that it shall start with one of the following sequences: “#”, “./”,
“../”, or a string of characters followed by a “:”. These patterns ensure that the most common URI forms
are supported, including absolute and relative URIs and URIs that are simple fragment identifiers, but
prohibits certain forms of relative URI that could be mistaken for unit of measure symbol1).

NOTE It is possible to re-write such a relative URI to conform to the restriction (e.g. “./m/s”).

In an instance document, on elements of type gml:MeasureType the mandatory uom attribute shall
carry a value corresponding to either

— a conventional unit of measure symbol,

— a link to a definition of a unit of measure that does not have a conventional symbol, or when it is
desired to indicate a precise or variant definition.

GML components for the latter purpose are defined in 16.2.

8.2.3.7 CoordinatesType

 <complexType name="CoordinatesType">
 <simpleContent>
 <extension base="string">
 <attribute name="decimal" type="string" default="."/>
 <attribute name="cs" type="string" default=","/>
 <attribute name="ts" type="string" default=" "/>
 </extension>
 </simpleContent>
 </complexType>
This type is deprecated for tuples with ordinate values that are numbers.

gml:CoordinatesType is a text string, intended to be used to record an array of tuples or coordinates.

1) e.g. “m/s”.

© ISO 2020 – All rights reserved 37

https://unitsofmeasure.org/

ISO 19136-1:2020(E)

While it is not possible to enforce the internal structure of the string through schema validation, some
optional attributes have been provided in previous versions of GML to support a description of the
internal structure. These attributes are deprecated. The attributes were intended to be used as follows:

Decimal symbol used for a decimal point
(default=”.” a stop or period)

cs symbol used to separate components within a tuple or coordinate string
(default=”,” a comma)

ts symbol used to separate tuples or coordinate strings
(default=” ” a space)

Since it is based on the XML Schema string type, gml:CoordinatesType may be used in the construction
of tables of tuples or arrays of tuples, including ones that contain mixed text and numeric values.

EXAMPLE

 <my:tupleList>bettong,357.,2.3 skink,140.,0.75 wombat,770.,17.5</my:tupleList>

8.2.4 Lists

8.2.4.1	 booleanList,	doubleList,	integerList,	NameList,	NCNameList,	QNameList,	
booleanOrNilReasonList,	NameOrNilReasonList,	doubleOrNilReasonList,	integerOrNilReasonList

A set of types for lists of simple values are constructed in accordance with the following patterns as
follows:

 <simpleType name="booleanList">
 <list itemType="boolean"/>
 </simpleType>

 <simpleType name="doubleList">
 <list itemType="double"/>
 </simpleType>

 <simpleType name="integerList">
 <list itemType="integer"/>
 </simpleType>

 <simpleType name="NameList">
 <list itemType="Name"/>
 </simpleType>

 <simpleType name="NCNameList">
 <list itemType="NCName"/>
 </simpleType>

 <simpleType name="QNameList">
 <list itemType="QName"/>
 </simpleType>

 <simpleType name="booleanOrNilReasonList">
 <list itemType="gml:booleanOrNilReason"/>
 </simpleType>

 <simpleType name="NameOrNilReasonList">
 <list itemType="gml:NameOrNilReason"/>
 </simpleType>

 <simpleType name="doubleOrNilReasonList">
 <list itemType="gml:doubleOrNilReason"/>
 </simpleType>

 <simpleType name="integerOrNilReasonList">

38 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

 <list itemType="gml:integerOrNilReason"/>
 </simpleType>
These types are defined as a list of values of the respective XML Schema built-in simple types, or of
the union types specified in previous subclauses. The …OrNilReasonList types support reasons for nil
values interspersed within a list.

NOTE 1 These types are provided as convenience types. They can be helpful in cases where a simple content
type is to be defined that is a union of such a list and another simple content type.

NOTE 2 Some of the types start with an upper case letter, some with a lower case letter. The reason is that the
case of the XML Schema base type has been preserved in the GML types for clarity.

NOTE 3 An element which uses one of these types will contain a whitespace-separated list of members of
the relevant type (see http:// www .w3 .org/ TR/ xmlschema -2/ #atomic -vs -list for more details of the XML list
structure).

NOTE 4 None of the list types defined here use an XML Schema string as an item. The reason for this is that
a string can include embedded spaces, linefeeds, etc (http:// www .w3 .org/ TR/ xmlschema -2/ #string). Since
whitespace acts as the item separator in a list instance, there would be ambiguity in identifying items that
potentially contain whitespace. On the other hand, an instance of the XML Schema Name type may not contain
whitespace (http:// www .w3 .org/ TR/ 2000/ WD -xml -2e -20000814 #NT -Name), so this can be used safely in a
list context. The corollary of this is that if a term contains whitespace, then such a term can not occur in a list
instance.

8.2.4.2 CodeListType, CodeOrNilReasonListType

The two types gml:CodeListType and gml:CodeOrNilReasonListType provide for lists of terms. The
schema definitions are as follows:

 <complexType name="CodeListType">
 <simpleContent>
 <extension base="gml:NameList">
 <attribute name="codeSpace" type="anyURI"/>
 </extension>
 </simpleContent>
 </complexType>

 <complexType name="CodeOrNilReasonListType">
 <simpleContent>
 <extension base="gml:NameOrNilReasonList">
 <attribute name="codeSpace" type="anyURI"/>
 </extension>
 </simpleContent>
 </complexType>
The values in an instance element of gml:CodeListType shall all be valid in accordance with the rules
of the dictionary, classification scheme, or authority identified by the value of its codeSpace attribute.

EXAMPLE An application schema can contain an element declaration using this type

 <element name = “species” type = “gml:CodeListType”/>

so a corresponding element might appear in an instance document as follows:

 <species codeSpace=”http://my.big.org/florelegium”>dryandra banksia hardenbergia
lavender</species>

where the listed items are from “http:// my .big .org/ florelegium” which is a (hypothetical) list of flowers.

An instance element of gml:CodeOrNilReasonListType may also include embedded values from
gml:NilReasonType. It is intended to be used in situations where a term or classification is expected, but
the value may be absent for some reason.

© ISO 2020 – All rights reserved 39

http://www.w3.org/TR/xmlschema-2/#atomic-vs-list
http://www.w3.org/TR/xmlschema-2/#string
http://www.w3.org/TR/2000/WD-xml-2e-20000814#NT-Name
http://my.big.org/florelegium

ISO 19136-1:2020(E)

8.2.4.3 MeasureListType, MeasureOrNilReasonListType

The two types gml:MeasureListType and gml:MeasureOrNilReasonListType provide for lists of
quantities. The schema definitions are as follows:

 <complexType name="MeasureListType">
 <simpleContent>
 <extension base="gml:doubleList">
 <attribute name="uom" type="gml:UomIdentifier" use="required"/>
 </extension>
 </simpleContent>
 </complexType>

 <complexType name="MeasureOrNilReasonListType">
 <simpleContent>
 <extension base="gml:doubleOrNilReasonList">
 <attribute name="uom" type="gml:UomIdentifier" use="required"/>
 </extension>
 </simpleContent>
 </complexType>

EXAMPLE An application schema can contain element declarations using these types

 <element name = “heights” type = “gml:MeasureListType”/>
 <element name = “weights” type = “gml:MeasureOrNilReasonListType”/>

so corresponding elements might appear in an instance document as follows:

 <heights uom=”m”>1.76 1.85 1.56 1.98</heights>
 <weights uom=”kg”>67.0 73.4 withheld 85.1</weights>

In both examples all of the values in the list are described using the same scale.

In the second example a value describing the reason for a nil value appears where a measure is normally
expected, but the value may be absent for some reason.

9 GML schema — Features

9.1 General concepts

A GML feature is a feature encoded using GML.

EXAMPLE A road, a river, a person, a vehicle, an administrative area, an event, etc.

The feature schema provides a framework for the creation of GML features and feature collections.

NOTE The feature schema document feature.xsd (see Annex C) is identified by the following location-
independent name (using URN syntax):

— urn: ogc: specification: gml: schema -xsd: feature: 3 .2 .1

9.2 Relationship with ISO 19109

The GML feature model follows the principles specified in ISO 19109:2005, Clause 7. It provides a
conformant, partial implementation of the ISO 19109 General Feature Model. The relationship is
discussed in detail in D.2.6.

NOTE The GML feature model also draws the feature collection concept from OGC Abstract Specification
Topics 5 and 10.

40 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

9.3 Features

9.3.1	 AbstractFeatureType

The basic feature model is given by the gml:AbstractFeatureType, defined in the schema as follows:

 <complexType name="AbstractFeatureType" abstract="true">
 <complexContent>
 <extension base="gml:AbstractGMLType">
 <sequence>
 <element ref="gml:boundedBy" minOccurs="0"/>
 <element ref="gml:location" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

The content model for gml:AbstractFeatureType adds two specific properties suitable for geographic
features to the content model defined in gml:AbstractGMLType.

The value of the gml:boundedBy property describes an envelope that encloses the entire feature instance,
and is primarily useful for supporting rapid searching for features that occur in a particular location.

The value of the gml:location property describes the extent, position or relative location of the feature.
gml:location is deprecated as part of the standard content model of gml:AbstractFeatureType.

9.3.2	 AbstractFeature

The element gml:AbstractFeature is declared as follows:

 <element name="AbstractFeature" type="gml:AbstractFeatureType" abstract="true"
 substitutionGroup="gml:AbstractGML"/>
This abstract element serves as the head of a substitution group which may contain any elements
whose content model is derived from gml:AbstractFeatureType. This may be used as a variable in the
construction of content models.

gml:AbstractFeature may be thought of as “anything that is a GML feature” and may be used to define
variables or templates in which the value of a GML property is “any feature”. This occurs in particular in
a GML feature collection (see 9.9) where the feature member properties contain one or multiple copies
of gml:AbstractFeature respectively.

9.4 Standard feature properties

9.4.1	 boundedBy,	BoundingShapeType,	EnvelopeWithTimePeriod,	
EnvelopeWithTimePeriodType

This property describes the minimum bounding box or rectangle that encloses the entire feature. Its
content model is as follows:

 <element name="boundedBy" type="gml:BoundingShapeType" nillable="true"/>

 <complexType name="BoundingShapeType">
 <sequence>
 <choice>
 <element ref="gml:Envelope"/>
 <element ref="gml:Null"/>
 </choice>
 </sequence>
 <attribute name="nilReason" type="gml:NilReasonType"/>
 </complexType>
The gml:Envelope element is defined in 10.1.4.6.

© ISO 2020 – All rights reserved 41

ISO 19136-1:2020(E)

A nil value shall be encoded as described in 8.2.3.2. The attribute nilReason may be used in such cases
to specify the reason for the nil value.

The value of gml:Null, used in previous versions of GML to encode that an extent is not applicable or not
available for some reason, has been deprecated.

NOTE 1 Since an envelope is defined simply by the positions of two diagonally opposing corners, the exact
footprint of an envelope depends on the coordinate reference system used. If the feature being described has
zero extent, then the two corners will coincide and the envelope has zero size. The gml:boundedBy property
is provided by a data supplier for convenience. The value of the envelope is usually computable by the data
consumer from the spatio-temporal properties of a feature. As for all properties, it is the responsibility of the
data provider to ensure that the value is correct.

For envelopes that include a temporal extent, gml:EnvelopeWithTimePeriod is provided, defined as
follows:

 <element name="EnvelopeWithTimePeriod" type="gml:EnvelopeWithTimePeriodType"
substitutionGroup="gml:Envelope"/>

 <complexType name="EnvelopeWithTimePeriodType">
 <complexContent>
 <extension base="gml:EnvelopeType">
 <sequence>
 <element name="beginPosition" type="gml:TimePositionType"/>
 <element name="endPosition" type="gml:TimePositionType"/>
 </sequence>
 <attribute name="frame" type="anyURI" default="#ISO-8601"/>
 </extension>
 </complexContent>
 </complexType>
This adds two time position properties, gml:beginPosition and gml:endPosition, which describe the
extent of a time-envelope.

Since gml:EnvelopeWithTimePeriod is assigned to the substitution group headed by gml:Envelope, it
may be used whenever gml:Envelope is valid.

NOTE 2 In common with all geometry elements derived from gml:AbstractGeometryType (see 10.1.3.1),
the coordinate reference system used for the positions defining the gml:Envelope can be indicated using
the optional XML attribute srsName. If the coordinate reference system being used includes a time axis, then
gml:Envelope can be used directly to describe a spatio-temporal extent.

9.4.2 locationName, locationReference

The gml:locationName property element is a convenience property where the text value describes the
location of the feature. It is defined as follows:

 <element name="locationName" type="gml:CodeType"/>
If the location names are selected from a controlled list, then the list shall be identified in the codeSpace
attribute.

The gml:locationReference property element is a convenience property where the text value
referenced by the xlink: href attribute describes the location of the feature. It is defined as follows:

 <element name="locationReference" type="gml:ReferenceType"/>
EXAMPLE The following instances illustrate the different ways that a gml:locationName or
gml:locationReference may appear in a data instance.

Location given using a name from a controlled source:

<Feature>
 <gml:locationName codeSpace="http://www.icsm.gov.au/icsm/cgna/index.html">Leederville</
gml:locationName>
</Feature>
Location given using a text string:

42 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

<Feature>
 <gml:locationName>Nigel Foster’s town of residence</gml:locationName>
</Feature>
Location given by another service:

<Feature>
 <gml:locationReference
 xlink:href="http://www.ga.gov.au/bin/gazm01?placename=leederville&placetype=R&state
=WA+"/>
</Feature>

9.4.3 FeaturePropertyType, FeatureArrayPropertyType

A particular class of properties defines associations between features. These use the
gml:AssociationRoleType pattern as follows:

 <complexType name="FeaturePropertyType">
 <sequence minOccurs="0">
 <element ref="gml:AbstractFeature"/>
 </sequence>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
At times it is useful to define a property containing an array of other features. This is done using a
feature array property type as defined by the following content model:

 <complexType name="FeatureArrayPropertyType">
 <sequence minOccurs="0" maxOccurs="unbounded">
 <element ref="gml:AbstractFeature" />
 </sequence>
 </complexType>

9.5 Geometry properties

Application-specific names shall be chosen for geometry properties in GML application schemas. The
names of the properties should be chosen to express the semantics of the value. Using application
specific names is the preferred method for names of properties including geometry properties.

There are no inherent restrictions in the type of geometry property a feature type may have as long as
the property value is a geometry object substitutable for gml:AbstractGeometry.

EXAMPLE 1 A RadioTower feature type could have a location that returns a point geometry to identify its
location through a representative point, and have another geometry property called floorSpace that returns a
surface geometry describing its physical structure, and have yet a third geometry property called serviceArea
that returns a surface geometry describing the area in which its transmissions can be received reliably.

 <complexType name="RadioTowerType">
 <complexContent>
 <extension base="gml:AbstractFeatureType">
 <sequence>
 <element name="location" type="gml:PointPropertyType"/>
 <element name="floorSpace" type="gml:SurfacePropertyType"/>
 <element name="serviceArea" type="gml:SurfacePropertyType"/>
 <!-- … -->
 </sequence>
 </extension>
 </complexContent>
 </complexType>
The GML schema includes predefined property types that may be used as types of geometry property
element.

© ISO 2020 – All rights reserved 43

ISO 19136-1:2020(E)

Table	4	—	Predefined	geometry	property	types

XML Schema property type Associated	geometry	object	
types (element names)

PointPropertyType Point

CurvePropertyType

AbstractCurve
LineString
Curve
OrientableCurve
CompositeCurve

SurfacePropertyType

AbstractSurface
Polygon
Surface
OrientableSurface
CompositeSurface

SolidPropertyType
AbstractSolid
Solid
CompositeSolid

MultiPointPropertyType MultiPoint
MultiCurvePropertyType MultiCurve
MultiSurfacePropertyType MultiSurface
MultiSolidPropertyType MultiSolid
MultiGeometryPropertyType MultiGeometry
PointArrayPropertyType Point(s)
CurveArrayPropertyType AbstractCurve(s)

LineString(s)
Curve(s)
OrientableCurve(s)
CompositeCurve(s)

SurfaceArrayPropertyType AbstractSurface(s)
Polygon(s)
Surface(s)
OrientableSurface(s)
CompositeSurface(s)

SolidArrayPropertyType AbstractSolid(s)
Solid(s)
CompositeSolid(s)

9.6 Topology properties

Like with geometry properties, application-specific names shall be chosen for topology properties in GML
application schemas. The names of the properties should be chosen to express the semantics of the value.

EXAMPLE A StatisticalArea feature type could have one or more boundary properties that return a
TopoCurve to represent the boundary of the Statistical Area, and one or more surface properties that return a
TopoSurface to represent the Statistical Area itself.

44 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

 <complexType name="StatisticalAreaType">
 <complexContent>
 <extension base="gml:AbstractFeatureType">
 <sequence>
 <element name="boundary" type="gml:TopoCurvePropertyType" maxOccurs="unbounded"/>
 <element name="surface" type="gml:TopoSurfacePropertyType" maxOccurs="unbounded"/>
 <!-- … -->
 </sequence>
 </extension>
 </complexContent>
 </complexType>
The GML schema includes predefined property types that may be used as types of topology property
element. The first four of these properties express direction, whereas the others do not.

Table	5	—	Predefined	formal	topology	property	types

XML Schema property type Associated	topology	object	types	
(element names)

DirectedNodePropertyType Node
DirectedEdgePropertyType Edge
DirectedFacePropertyType Face
DirectedTopoSolidPropertyType TopoSolid
TopoPointPropertyType TopoPoint
TopoCurvePropertyType TopoCurve
TopoSurfacePropertyType TopoSurface
TopoVolumePropertyType TopoVolume
TopoComplexPropertyType TopoComplex

9.7 Temporal properties

Like for geometry and topology properties, the definition of temporal property elements is in the
responsibility of the application schema designer.

EXAMPLE A feature type Building can have a constructionTime property whose XML type is “gml:
TimePeriodPropertyType”, a completionTime property whose XML type is “gml: TimeInstantPropertyType”, and
an age whose XML type is “duration” or “gml: TimeIntervalLengthType”.

 <complexType name="BuildingType">
 <complexContent>
 <extension base="gml:AbstractFeatureType">
 <sequence>
 <element name="constructionTime" type="gml:TimePeriodPropertyType"/>
 <element name="completionTime" type="gml:TimeInstantPropertyType"/>
 <element name="age" type="gml:TimeIntervalLengthType"/>
 <!-- … -->
 </sequence>
 </extension>
 </complexContent>
 </complexType>
The types shown in Table 6 are provided for direct use in declaring property elements.

© ISO 2020 – All rights reserved 45

ISO 19136-1:2020(E)

Table	6	—	Predefined	formal	temporal	property	types

XML Schema property type Associated	temporal	object	types	
(element names)

TimePrimitivePropertyType

AbstractTimePrimitive
AbstractTimeGeometricPrimitive
TimeInstant
TimePeriod
AbstractTimeTopologyPrimitive
TimeEdge
TimeNode

TimeGeometricPrimitivePropertyType
AbstractTimeGeometricPrimitive
TimeInstant
TimePeriod

TimeInstantPropertyType TimeInstant
TimePeriodPropertyType TimePeriod
TimeTopologyPrimitivePropertyType AbstractTimeTopologyPrimitive

TimeEdge
TimeNode

TimeEdgePropertyType TimeEdge
TimeNodePropertyType TimeNode
TimeTopologyComplexPropertyType TimeTopologyComplex
TimeOrdinalEraPropertyType TimeOrdinalEra
TimeCalendarPropertyType TimeCalendar
TimeCalendarEraPropertyType TimeCalendarEra
TimeClockPropertyType TimeClock
TimePositionType - (simple type)
xsd: duration - (simple type)
TimeIntervalLengthType - (simple type)

The temporal property types listed above provide a relatively comprehensive set of components for
associating temporal information with features and other objects.

9.8	 Defining	application-specific	feature	types

All specific feature types defined in application schemas shall be implemented as global XML
elements whose content model (XML Schema types) are derived from gml:AbstractFeatureType,
and thus all GML features inherit the optional gml:boundedBy property, as well as the standard
gml:identifier, gml:description, gml:descriptionReference and gml:name properties inherited
in turn from gml:AbstractGMLType, unless any property is suppressed in a derivation by restriction.
gml:AbstractFeatureType also inherits gml:id from gml:AbstractGMLType and this is the preferred
means of supporting database identifiers in GML. Features should carry a gml:id attribute.

NOTE 1 The deprecated properties have been omitted in this list of inherited properties.

NOTE 2 Every feature accessible via an OGC Web Feature Service will always carry a persistent gml:id
attribute.

This type derivation requirement means that general purpose software designed to process arbitrary
GML data shall be able to traverse the XML Schema derivation tree in order to determine whether or
not a given element in the data stream is a GML feature.

46 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

A GML feature has a set of properties, where the specific set of properties defines the feature type.
Properties have simple values, using XML Schema simple content types, or properties may have complex
values, in which case they should be declared using the patterns described in 7.2.3.

In the application schema defining a feature there shall be a global element declared whose name is the
semantic type of the feature in the domain of discourse. The global element shall be made a member of
the gml:AbstractFeature substitution group (directly or indirectly).

 <element name="<<featureName>>" type = “<<contentModel >>” substitutionGroup=”gml:Abst
ractFeature” />
The content model of the feature may be a named or anonymous complex type.

9.9 Feature collections

9.9.1 GML feature collections

A GML feature collection is a collection of GML feature instances.

A GML feature collection is any GML feature with a property element in its content model whose content
model is derived by extension from gml:AbstractFeatureMemberType (see 9.9.2).

In addition, the complex type describing the content model of the GML feature collection may also
include a reference to the attribute group gml:AggregationAttributeGroup to provide additional
information about the semantics of the object collection as specified in 7.2.5.1.

EXAMPLE The following schema components model a simple collection of arbitrary features; the collection
is called MyFeatures:

<element name=“MyFeatures” type=“ex:MyFeaturesType” substitutionGroup="gml:AbstractFeat
ure"/>
<complexType name="MyFeaturesType">
 <complexContent>
 <extension base="gml:AbstractFeatureType">
<sequence>
 <element name="myMember" type="ex:MyFeaturesMemberType"
minOccurs="0" maxOccurs="unbounded"/>
</sequence>
<attributeGroup ref="gml:AggregationAttributeGroup"/>
 </extension>
 </complexContent>
</complexType>

<complexType name="MyFeaturesMemberType">
 <complexContent>
 <extension base="gml:AbstractFeatureMemberType">
 <sequence minOccurs="0">
 <element ref="gml:AbstractFeature"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </extension>
 </complexContent>
</complexType>
An instance example encoding a collection with set semantics where the bounding envelope is
provided, too:

<MyFeatures aggregationType=”set”>
 <gml:boundedBy>
 <gml:Envelope srsName="http://www.opengis.net/def/crs/EPSG/0/4326">
 <gml:lowerCorner>50.23 9.23</gml:lowerCorner>
 <gml:upperCorner>50.31 9.27</gml:upperCorner>
 </gml:Envelope>
 </gml:boundedBy>
 <myMember>
 <MyFeature gml:id=”f1”/>
 </myMember>

© ISO 2020 – All rights reserved 47

ISO 19136-1:2020(E)

 <myMember>
 <MyFeature gml:id=”f2”/>
 </myMember>
 <myMember xlink:href=”#f3”/>
</MyFeatures>
EXAMPLE 2 Often, the feature collection will contain instances of a specific type. In the example below, the
feature collection is a road that consists of road segments.

<element name=“Road” type=“ex:RoadType” substitutionGroup="gml:AbstractFeature"/>
<complexType name="RoadType">
 <complexContent>
 <extension base="gml:AbstractFeatureType">
<sequence>
 <element name="segment" type="ex:RoadMemberType" minOccurs="0" maxOccurs="unbounded"/>
</sequence>
<attributeGroup ref="gml:AggregationAttributeGroup"/>
 </extension>
 </complexContent>
</complexType>

<complexType name="RoadMemberType">
 <complexContent>
 <extension base="gml:AbstractFeatureMemberType">
 <sequence minOccurs="0">
 <element ref="ex:RoadSegments"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </extension>
 </complexContent>
</complexType>
An example instance fragment encoding a ordered collection of road segments is shown below:

<Road gml:id="r1" aggregationType=”sequence”>
 <segment>
 <RoadSegment gml:id=”s1”/>
 </segment>
 <segment xlink:href="#s8"/>
 <segment>
 <RoadSegment gml:id=”s4”/>
 </segment>
</Road>

9.9.2	 AbstractFeatureMemberType	and	derived	property	types

To create a collection of GML features, a property type shall be derived by extension from
gml:AbstractFeatureMemberType.

 <complexType name="AbstractFeatureMemberType" abstract="true">
 <sequence/>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>
The derived property type shall follow one of the patterns specified in 7.2.3 and may set the multiplicity
of the objects in the collection as required for its intended use.

By default, this abstract property type does not imply any ownership of the features in the collection.
The owns attribute of gml:OwnershipAttributeGroup may be used on a property element instance to
assert ownership of a feature in the collection. A collection shall not own a feature already owned by
another object.

9.10 Spatial reference system used in a feature or feature collection

The value of the gml:boundedBy property for a feature or feature collection is usually a gml:Envelope.
In common with all geometry elements derived from gml:AbstractGeometryType (see 10.1.3.1), the
coordinate reference system used for the positions defining the gml:Envelope may be indicated using
the optional XML attribute srsName.

48 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

For convenience in constructing feature and feature collection instances, the value of the srsName
attribute on the gml:Envelope which is the value of the gml:boundedBy property of the feature shall
be inherited by all directly expressed geometries in all properties of the feature or members of the
collection, unless overruled by the presence of a local srsName. Thus it is not necessary for a geometry to
carry a srsName attribute, if it uses the same coordinate reference system as given on the gml:boundedBy
property of its parent feature. Inheritance of the coordinate reference system continues to any depth
of nesting, but if overruled by a local srsName declaration, then the new coordinate reference system is
inherited by all its children in turn.

Notwithstanding this rule, all the geometries used in a feature or feature collection may carry srsName
attributes, in order to indicate the reference system used locally, even if they are the same as the parent.

10 GML schema — Geometric primitives

10.1 General concepts

10.1.1 Overview

NOTE 1 The geometry model of GML complies with ISO 19107. The underlying concepts of the types and
elements of the GML geometry model are discussed in this document in more detail.

This clause describes the schema components for geometric primitives as specified by GML.

NOTE 2 The corresponding geometry schema documents, geometryBasic0d1d.xsd, geometryBasic2d.xsd and
geometryPrimitives.xsd (see Annex C), are identified by the following location-independent names (using URN
syntax):

— urn: ogc: specification: gml: schema -xsd: geometryBasic0d1d: 3 .2 .1

— urn: ogc: specification: gml: schema -xsd: geometryBasic2d: 3 .2 .1

— urn: ogc: specification: gml: schema -xsd: geometryPrimitives: 3 .2 .1

Any geometry element that inherits the semantics of gml:AbstractGeometryType may be viewed as a set
of direct positions.

All of the classes derived from gml:AbstractGeometryType inherit an optional association to a
coordinate reference system. All direct positions shall directly or indirectly be associated with a
coordinate reference system. When geometry elements are aggregated in another geometry element
(such as a gml:MultiGeometry or gml:GeometricComplex), which already has a coordinate reference
system specified, then these elements are assumed to be in that same coordinate reference system
unless otherwise specified.

The geometry model distinguishes geometric primitives, aggregates and complexes.

Geometric primitives, i.e. instances of a subtype of gml:AbstractGeometricPrimitiveType, will be open,
that is, they will not contain their boundary points; curves will not contain their end points, surfaces
will not contain their boundary curves, and solids will not contain their bounding surfaces.

10.1.2 Relationship with ISO 19107

The spatial geometry components of the GML schema specified in Clauses 10 and 11 provide a
conformant, partial implementation of the ISO 19107 spatial schema (geometry). The relationship is
discussed in detail in D.2.3.

The ISO 19107 geometry types implemented in GML are specified in ISO 19107; some additional
constraints are specified in ISO 19107 for these types, which are also constraints on the spatial
geometry components of the GML schema.

© ISO 2020 – All rights reserved 49

ISO 19136-1:2020(E)

In addition, GML specifies complementary spatial geometry schema components as described in D.3.5
to D.3.8.

10.1.3	 Abstract	geometry

10.1.3.1	 AbstractGeometryType

 <complexType name="AbstractGeometryType" abstract="true">
 <complexContent>
 <extension base="gml:AbstractGMLType">
 <attributeGroup ref="gml:SRSReferenceGroup"/>
 </extension>
 </complexContent>
 </complexType>
All geometry elements are derived directly or indirectly from this abstract supertype. A geometry element
may have an identifying attribute (gml:id), may have one or more names (elements gml:identifier
and gml:name) and a description (elements gml:description and gml:descriptionReference)2). It may
be associated with a spatial reference system (attribute group gml:SRSReferenceGroup).

The following rules shall be adhered to:

— Every geometry type shall derive from this abstract type.

— Every geometry element (i.e. an element of a geometry type) shall be directly or indirectly in the
substitution group of AbstractGeometry.

10.1.3.2 SRSReferenceGroup

 <attributeGroup name="SRSReferenceGroup">
 <attribute name="srsName" type="anyURI" />
 <attribute name="srsDimension" type="positiveInteger" />
 <attributeGroup ref="gml:SRSInformationGroup"/>
 </attributeGroup>
The attribute group gml:SRSReferenceGroup is an optional reference to the CRS used by this geometry,
with optional additional information to simplify the processing of the coordinates when a more
complete definition of the CRS is not needed.

In general the attribute srsName points to a CRS instance of gml:AbstractCoordinateReferenceSystem
(see 12.2.3). For well-known references it is not required that the CRS description exists at the location
the URI points to.

If no srsName attribute is given, the CRS shall be specified as part of the larger context this geometry
element is part of.

EXAMPLE A geometric aggregate or a feature collection are typical “larger contexts”.

NOTE The name “srsName” has been chosen deliberately. In the current version of GML “crsName” would be
more appropriate, however, in future versions other types of spatial reference system, i.e. those using geographic
identifiers, could be supported by GML, too.

The optional attribute srsDimension is the number of coordinate values in a position. This dimension
is derived from the coordinate reference system. When the srsName attribute is omitted, this attribute
shall be omitted.

10.1.3.3 SRSInformationGroup

 <attributeGroup name="SRSInformationGroup">
 <attribute name="axisLabels" type="gml:NCNameList" />
 <attribute name="uomLabels" type="gml:NCNameList" />
 </attributeGroup>

2) Deprecated properties have been omitted from this list. Nevertheless, they are still valid content.

50 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

The attributes uomLabels and axisLabels, defined in the gml:SRSInformationGroup attribute group, are
optional additional and redundant information for a CRS to simplify the processing of the coordinate
values when a more complete definition of the CRS is not needed. This information shall be the same as
included in the complete definition of the CRS, referenced by the srsName attribute. When the srsName
attribute is included, either both or neither of the axisLabels and uomLabels attributes shall be
included. When the srsName attribute is omitted, both of these attributes shall be omitted.

The attribute axisLabels is an ordered list of labels for all the axes of this CRS. The gml:axisAbbrev
value should be used for these axis labels, after spaces and forbidden characters are removed. When
the srsName attribute is included, this attribute is optional. When the srsName attribute is omitted, this
attribute shall also be omitted.

The attribute uomLabels is an ordered list of unit of measure (uom) labels for all the axes of this CRS.
The value of the string in the gml:catalogSymbol should be used for this uom labels, after spaces and
forbidden characters are removed. When the axisLabels attribute is included, this attribute shall also
be included. When the axisLabels attribute is omitted, this attribute shall also be omitted.

10.1.3.4	 AbstractGeometry

 <element name="AbstractGeometry" type="gml:AbstractGeometryType" abstract="true"
 substitutionGroup="gml:AbstractGML" />
The gml:AbstractGeometry element is the abstract head of the substitution group for all geometry
elements of GML. This includes predefined and user-defined geometry elements. Any geometry element
shall be a direct or indirect extension/restriction of gml:AbstractGeometryType and shall be directly or
indirectly in the substitution group of gml:AbstractGeometry.

D.2.3.2 specifies the implementation of ISO 19107 GM_Object by this GML object.

10.1.3.5 GeometryPropertyType

 <complexType name="GeometryPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:AbstractGeometry"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>
A geometric property may either be any geometry element encapsulated in an element of this type or
an XLink reference to a remote geometry element (where remote includes geometry elements located
elsewhere in the same or another document). Note that either the reference or the contained element
shall be given, but not both or none, see 7.2.3.

If a feature has a property that takes a geometry element as its value, this is called a geometry property.
A generic type for such a geometry property is gml:GeometryPropertyType which follows the general
rules described in 7.2.3.

10.1.3.6 GeometryArrayPropertyType

 <complexType name="GeometryArrayPropertyType">
 <sequence minOccurs="0" maxOccurs="unbounded">
 <element ref="gml:AbstractGeometry" />
 </sequence>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>
If a feature has a property which takes an array of geometry elements as its value, this is called a geometry
array property. A generic type for such a geometry property is gml:GeometryArrayPropertyType which
follows the general rules described in 7.2.3.

© ISO 2020 – All rights reserved 51

ISO 19136-1:2020(E)

The elements are always contained inline in the array property. Referencing geometry elements or
arrays of geometry elements via XLinks is not supported.

EXAMPLE All elements in a gml:GeometryArrayPropertyType are of the type gml:AbstractGeometryType
(including types derived from this abstract base type) as long as the element is directly or indirectly substitutable
for gml:AbstractGeometry.

10.1.4 Coordinate geometry, vectors and envelopes

10.1.4.1 DirectPositionType, pos

 <complexType name="DirectPositionType">
 <simpleContent>
 <extension base="gml:doubleList">
 <attributeGroup ref="gml:SRSReferenceGroup"/>
 </extension>
 </simpleContent>
 </complexType>

 <element name="pos" type="gml:DirectPositionType"/>

 <sch:pattern>
 <sch:rule context="gml:pos">
 <sch:assert test="not(@srsDimension) or @srsName">The presence of a dimension
attribute implies the presence of the srsName attribute.</sch:assert>
 <sch:assert test="not(@axisLabels) or @srsName">The presence of an axisLabels
attribute implies the presence of the srsName attribute.</sch:assert>
 <sch:assert test="not(@uomLabels) or @srsName">The presence of an uomLabels
attribute implies the presence of the srsName attribute.</sch:assert>
 <sch:assert test="(not(@uomLabels) and not(@axisLabels)) or (@uomLabels and @
axisLabels)">The presence of an uomLabels attribute implies the presence of the axisLabels
attribute and vice versa.</sch:assert>
 </sch:rule>
 </sch:pattern>
Direct position instances hold the coordinates for a position within some coordinate reference system
(CRS). Since direct positions, as data types, will often be included in larger objects (such as geometry
elements) that have references to CRS, the srsName attribute will in general be missing, if this particular
direct position is included in a larger element with such a reference to a CRS. In this case, the CRS is
implicitly assumed to take on the value of the containing object's CRS.

The attribute group gml:SRSReferenceGroup is described in 10.1.3.2. If no srsName attribute is given,
the CRS shall be specified as part of the larger context this geometry element is part of, typically a
geometric object like a point, curve, etc.

NOTE It is expected that the attribute will be specified at the direct position level only in rare cases.

D.2.3.4 specifies the implementation of ISO 19107 DirectPosition by these schema components.

10.1.4.2 DirectPositionListType, posList

 <complexType name="DirectPositionListType">
 <simpleContent>
 <extension base="gml:doubleList">
 <attributeGroup ref="gml:SRSReferenceGroup"/>
 <attribute name="count" type="positiveInteger" />
 </extension>
 </simpleContent>
 </complexType>

 <element name="posList" type="gml:DirectPositionListType" />
gml:posList instances (and other instances with the content model specified by DirectPositionListType)
hold the coordinates for a sequence of direct positions within the same coordinate reference system (CRS).

52 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

The attribute group “SRSReferenceGroup” is described in 10.1.3.2. If no srsName attribute is given,
the CRS shall be specified as part of the larger context this geometry element is part of, typically a
geometric object like a point, curve, etc.

NOTE It is expected that the attribute srsName will be specified at the direct position level only in rare cases.

The optional attribute count specifies the number of direct positions in the list. If the attribute count is
present then the attribute srsDimension shall be present, too.

The number of entries in the list is equal to the product of the dimensionality of the coordinate reference
system (i.e. it is a derived value of the coordinate reference system definition) and the number of direct
positions.

D.2.3.4 specifies the implementation of ISO 19107 GM_PointArray using direct positions only by these
schema components.

10.1.4.3 geometricPositionGroup

 <group name="geometricPositionGroup">
 <choice>
 <element ref="gml:pos"/>
 <element ref="gml:pointProperty"/>
 </choice>
 </group>
GML supports two different ways to specify a geometric position: either by a direct position (a data
type) or a point (a geometric object).

gml:pos elements are positions that are “owned” by the geometric primitive encapsulating this
geometric position.

gml:pointProperty elements contain a point that may be referenced from other geometry elements or
reference another point defined elsewhere (reuse of existing points).

D.2.3.4 specifies the implementation of ISO 19107 GM_Position by this choice group.

10.1.4.4 geometricPositionListGroup

 <group name="geometricPositionListGroup">
 <choice>
 <element ref="gml:posList"/>
 <group ref="gml:geometricPositionGroup" maxOccurs="unbounded"/>
 </choice>
 </group>
GML supports two different ways to specify a list of geometric positions: either by a sequence of
geometric positions (by reusing the group definition) or a sequence of direct positions (element
gml:posList).

The gml:posList element allows for a compact way to specify the coordinates of the positions, if all
positions are represented in the same coordinate reference system.

D.2.3.4 specifies the implementation of ISO 19107 GM_PointArray by this choice group.

NOTE The definition of this group can be used as a pattern in the definition of geometric primitives instead
of using this group definition directly. The main change will typically be a change in the multiplicity of the
referenced group. A LineString, for example, requires at least two positions.

Also, to support deprecated elements, i.e. gml:coordinates (superceded by gml:posList) and
gml:pointRep (superseded by gml:pointProperty), the current encodings of point arrays in GML, e.g. in
curve segments, uses this group as a pattern and adds the deprecated elements.

© ISO 2020 – All rights reserved 53

ISO 19136-1:2020(E)

10.1.4.5 VectorType, Vector

 <complexType name="VectorType">
 <simpleContent>
 <restriction base="gml:DirectPositionType"/>
 </simpleContent>
 </complexType>

 <element name="vector" type="gml:VectorType" />
gml:vector implements ISO/TS 19103 Vector (see D.2.3.2 and ISO/TS 19103:2005, 6.5.2.6).

For some applications the components of the position may be adjusted to yield a unit vector.

NOTE This definition allows VectorType to be used elsewhere when appropriate — e.g. for offsetVector in
grids.xsd, and vector to be used directly when appropriate — e.g. in DirectionVector in direction.xsd.

10.1.4.6 EnvelopeType, Envelope

 <complexType name="EnvelopeType">
 <choice>
 <sequence>
 <element name="lowerCorner" type="gml:DirectPositionType"/>
 <element name="upperCorner" type="gml:DirectPositionType"/>
 </sequence>
 <element ref="gml:pos" minOccurs="2" maxOccurs="2"/>
 <element ref="gml:coordinates"/>
 </choice>
 <attributeGroup ref="gml:SRSReferenceGroup"/>
 </complexType>

 <element name="Envelope" type="gml:EnvelopeType" substitutionGroup="gml:AbstractObject"/>
gml:Envelope implements ISO 19107 GM_Envelope (see D.2.3.4 and ISO 19107:2003, 6.4.3).

Envelope defines an extent using a pair of positions defining opposite corners in arbitrary dimensions.
The first direct position is the "lower corner" (a coordinate position consisting of all the minimal
ordinates for each dimension for all points within the envelope), the second one the "upper corner" (a
coordinate position consisting of all the maximal ordinates for each dimension for all points within the
envelope).

The use of the properties “coordinates” and “pos” in Envelope has been deprecated. The explicitly named
properties “lowerCorner” and “upperCorner” shall be used instead.

NOTE Regardless of dimension, an envelope can be represented without ambiguity as two direct positions
(coordinate points) provided the ordering of those points adheres to the specified rule. Envelope is often referred
to as a minimum bounding box or rectangle. However, this Envelope will not always specify the MINIMUM
rectangular bounding region, if the referenced CRS is a Geodetic CRS, or uses an Ellipsoidal, Spherical, Polar, or
Cylindrical coordinate system, as those terms are specified in 12.4. Specifically, this Envelope will not specify
the MINIMUM rectangular bounding region of a geometry whose set of points span the value discontinuity in an
angular coordinate axis. Such axes include the Longitude and Latitude of Ellipsoidal and Spherical coordinate
systems. That geometry could lie within a small region on the surface of the ellipsoid or sphere, or could extend
completely around the ellipsoid or sphere.

10.2	Abstract	geometric	primitives

10.2.1	 AbstractGeometricPrimitiveType,	AbstractGeometricPrimitive

 <complexType name="AbstractGeometricPrimitiveType" abstract="true">
 <complexContent>
 <extension base="gml:AbstractGeometryType" />
 </complexContent>
 </complexType>

 <element name="AbstractGeometricPrimitive" type="gml:AbstractGeometricPrimitiveType"
abstract="true"
 substitutionGroup="gml:AbstractGeometry" />

54 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

gml:AbstractGeometricPrimitiveType is the abstract root type of the geometric primitives. A geometric
primitive is a geometric object that is not decomposed further into other primitives in the system. All
primitives are oriented in the direction implied by the sequence of their coordinate tuples.

The gml:AbstractGeometricPrimitive element is the abstract head of the substitution group for all
(pre- and user-defined) geometric primitives.

gml:AbstractGeometricPrimitive implements ISO 19107 GM_Primitive (see D.2.3.3 and ISO 19107:2003,
6.3.10).

10.2.2 GeometricPrimitivePropertyType

 <complexType name="GeometricPrimitivePropertyType">
 <sequence minOccurs="0">
 <element ref="gml:AbstractGeometricPrimitive" />
 </sequence>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 <attributeGroup ref="gml:AssociationAttributeGroup" />
 </complexType>
A property that has a geometric primitive as its value domain may either be an appropriate geometry
element encapsulated in an element of this type or an XLink reference to a remote geometry element
(where remote includes geometry elements located elsewhere in the same document). Either the
reference or the contained element shall be given, but neither both nor none.

10.3 Geometric primitives (0-dimensional)

10.3.1 PointType, Point

 <complexType name="PointType">
 <complexContent>
 <extension base="gml:AbstractGeometricPrimitiveType">
 <sequence>
 <choice>
 <element ref="gml:pos" />
 <element ref="gml:coordinates" />
 </choice>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <element name="Point" type="gml:PointType" substitutionGroup="gml:AbstractGeometricPrim
itive" />
A gml:Point is defined by a single coordinate tuple. The direct position of a point is specified by the
gml:pos element which is of type gml:DirectPositionType.

gml:Point implements ISO 19107 GM_Point (see D.2.3.3 and ISO 19107:2003, 6.3.11).

The use of the element “coordinates” is deprecated. Use “pos” instead.

10.3.2 PointPropertyType, pointProperty

 <complexType name="PointPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:Point"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>

 <element name="pointProperty" type="gml:PointPropertyType" />
A property that has a point as its value domain may either be an appropriate geometry element
encapsulated in an element of this type or an XLink reference to a remote geometry element (where

© ISO 2020 – All rights reserved 55

ISO 19136-1:2020(E)

remote includes geometry elements located elsewhere in the same document). Either the reference or
the contained element shall be given, but neither both nor none.

This property element either references a point via the XLink-attributes or contains the point element.
pointProperty is the predefined property which may be used by GML application schemas whenever a
GML feature has a property with a value that is substitutable for gml:Point.

10.3.3 PointArrayPropertyType, pointArrayProperty

 <complexType name="PointArrayPropertyType">
 <sequence minOccurs="0" maxOccurs="unbounded">
 <element ref="gml:Point" />
 </sequence>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>

 <element name="pointArrayProperty" type="gml:PointArrayPropertyType" />
gml:PointArrayPropertyType is a container for an array of points. The elements are always contained
inline in the array property. Referencing geometry elements or arrays of geometry elements via XLinks
is not supported.

This property element contains a list of point elements. pointArrayProperty is the predefined property
which may be used by GML application schemas whenever a GML feature has a property with a value
that is substitutable for a list of points.

10.4 Geometric primitives (1-dimensional)

10.4.1	 AbstractCurveType,	AbstractCurve

 <complexType name="AbstractCurveType" abstract="true">
 <complexContent>
 <extension base="gml:AbstractGeometricPrimitiveType"/>
 </complexContent>
 </complexType>

 <element name="AbstractCurve" type="gml:AbstractCurveType" abstract="true"
 substitutionGroup="gml:AbstractGeometricPrimitive" />
gml:AbstractCurveType is an abstraction of a curve to support the different levels of complexity. The
curve may always be viewed as a geometric primitive, i.e. is continuous.

The gml:AbstractCurve element is the abstract head of the substitution group for all (continuous) curve
elements.

10.4.2 CurvePropertyType, curveProperty

 <complexType name="CurvePropertyType">
 <sequence minOccurs="0">
 <element ref="gml:AbstractCurve"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>

 <element name="curveProperty" type="gml:CurvePropertyType" />
A property that has a curve as its value domain may either be an appropriate geometry element
encapsulated in an element of this type or an XLink reference to a remote geometry element (where
remote includes geometry elements located elsewhere in the same document). Either the reference or
the contained element shall be given, but neither both nor none.

This property element either references a curve via the XLink-attributes or contains the curve element.
curveProperty is the predefined property which may be used by GML application schemas whenever a
GML feature has a property with a value that is substitutable for gml:AbstractCurve.

56 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

10.4.3 CurveArrayPropertyType, curveArrayProperty

 <complexType name="CurveArrayPropertyType">
 <sequence minOccurs="0" maxOccurs="unbounded">
 <element ref="gml:AbstractCurve" />
 </sequence>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>

 <element name="curveArrayProperty" type="gml:CurveArrayPropertyType" />
A container for an array of curves. The elements are always contained inline in the array property.
Referencing geometry elements or arrays of geometry elements via XLinks is not supported.

This property element contains a list of curve elements. curveArrayProperty is the predefined property
which may be used by GML application schemas whenever a GML feature has a property with a value
that is substitutable for a list of curves.

10.4.4 LineStringType, LineString

 <complexType name="LineStringType">
 <complexContent>
 <extension base="gml:AbstractCurveType">
 <sequence>
 <choice>
 <choice minOccurs="2" maxOccurs="unbounded">
 <element ref="gml:pos"/>
 <element ref="gml:pointProperty"/>
 <element ref="gml:pointRep"/>
 </choice>
 <element ref="gml:posList"/>
 <element ref="gml:coordinates"/>
 </choice>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <element name="LineString" type="gml:LineStringType" substitutionGroup="gml:AbstractC
urve" />
A gml:LineString is a special curve that consists of a single segment with linear interpolation (see
D.3.5). It is defined by two or more coordinate tuples, with linear interpolation between them.

The encoding of the control points follows the pattern described in 10.1.4.4. The number of direct
positions in the list shall be at least two.

NOTE ISO 19107 GM_LineString is implemented by gml:LineStringSegment.

10.4.5 CurveType, Curve

 <complexType name="CurveType">
 <complexContent>
 <extension base="gml:AbstractCurveType">
 <sequence>
 <element ref="gml:segments" />
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <element name="Curve" type="gml:CurveType" substitutionGroup="gml:AbstractCurve" />
gml:Curve implements ISO 19107 GM_Curve (see D.2.3.3 and ISO 19107:2003, 6.3.16).

A curve is a 1-dimensional primitive. Curves are continuous, connected, and have a measurable length
in terms of the coordinate system.

© ISO 2020 – All rights reserved 57

ISO 19136-1:2020(E)

A curve is composed of one or more curve segments. Each curve segment within a curve may be defined
using a different interpolation method. The curve segments are connected to one another, with the end
point of each segment except the last being the start point of the next segment in the segment list.

The orientation of the curve is positive.

The element gml:segments encapsulates the segments of the curve.

10.4.6	 OrientableCurveType,	OrientableCurve,	baseCurve

 <complexType name="OrientableCurveType">
 <complexContent>
 <extension base="gml:AbstractCurveType">
 <sequence>
 <element ref="gml:baseCurve" />
 </sequence>
 <attribute name="orientation" type="gml:SignType" default="+" />
 </extension>
 </complexContent>
 </complexType>

 <element name="baseCurve" type="gml:CurvePropertyType" />

 <element name="OrientableCurve" type="gml:OrientableCurveType" substitutionGroup="gml:A
bstractCurve" />
gml:OrientableCurve implements ISO 19107 GM_OrientableCurve (see D.2.3.3 and ISO 19107:2003,
6.3.14).

gml:OrientableCurve consists of a curve and an orientation. If the orientation is "+", then
the gml:OrientableCurve is identical to the gml:baseCurve. If the orientation is "−", then the
gml:OrientableCurve is related to another gml:AbstractCurve with a parameterization that reverses
the sense of the curve traversal.

The property gml:baseCurve references or contains the base curve, i.e. it either references the base
curve via the XLink-attributes or contains the curve element. A curve element is any element which is
substitutable for gml:AbstractCurve. The base curve has positive orientation.

NOTE This definition allows for a nested structure, i.e. an gml:OrientableCurve can use another
gml:OrientableCurve as its base curve.

10.4.7 Curve segments

10.4.7.1	 AbstractCurveSegmentType,	AbstractCurveSegment

 <complexType name="AbstractCurveSegmentType" abstract="true">
 <attribute name="numDerivativesAtStart" type="integer" default="0" />
 <attribute name="numDerivativesAtEnd" type="integer" default="0" />
 <attribute name="numDerivativeInterior" type="integer" default="0" />
 </complexType>

 <element name="AbstractCurveSegment" type="gml:AbstractCurveSegmentType"
abstract="true"
substitutionGroup="gml:AbstractObject" />
gml:AbstractCurveSegment implements ISO 19107 GM_CurveSegment (see D.2.3.3 and
ISO 19107:2003, 6.4.9).

A curve segment defines a homogeneous segment of a curve.

The attributes numDerivativesAtStart, numDerivativesAtEnd and numDerivativesInterior specify the
type of continuity as specified in ISO 19107:2003, 6.4.9.3.

The gml:AbstractCurveSegment element is the abstract head of the substitution group for all curve
segment elements, i.e. continuous segments of the same interpolation mechanism.

58 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

The encoding of the control points in a curve segment shall follow the pattern described in 10.1.4.4.

All curve segments shall have an attribute interpolation with type gml:CurveInterpolationType
specifying the curve interpolation mechanism used for this segment. This mechanism uses the control
points and control parameters to determine the position of this curve segment.

10.4.7.2 CurveSegmentArrayPropertyType, segments

 <complexType name="CurveSegmentArrayPropertyType">
 <sequence minOccurs="0" maxOccurs="unbounded">
 <element ref="gml:AbstractCurveSegment" />
 </sequence>
 </complexType>

gml:CurveSegmentArrayPropertyType is a container for an array of curve segments.
 <element name="segments" type="gml:CurveSegmentArrayPropertyType" />
This property element contains a list of curve segments. The order of the elements is significant and
shall be preserved when processing the array.

10.4.7.3 CurveInterpolationType

 <simpleType name="CurveInterpolationType">
 <restriction base="string">
 <enumeration value="linear" />
 <enumeration value="geodesic" />
 <enumeration value="circularArc3Points" />
 <enumeration value="circularArc2PointWithBulge" />
 <enumeration value="circularArcCenterPointWithRadius" />
 <enumeration value="elliptical" />
 <enumeration value="clothoid" />
 <enumeration value="conic" />
 <enumeration value="polynomialSpline" />
 <enumeration value="cubicSpline" />
 <enumeration value="rationalSpline" />
 </restriction>
 </simpleType>
gml:CurveInterpolationType is a list of codes that may be used to identify the interpolation mechanisms
specified by an application schema.

This type implements ISO 19107 GM_CurveInterpolation (see D.2.3.4 and ISO 19107:2003, 6.4.8).

10.4.7.4 LineStringSegmentType, LineStringSegment

 <complexType name="LineStringSegmentType">
 <complexContent>
 <extension base="gml:AbstractCurveSegmentType">
 <sequence>
 <choice>
 <choice minOccurs="2" maxOccurs="unbounded">
 <element ref="gml:pos" />
 <element ref="gml:pointProperty" />
 <element ref="gml:pointRep"/>
 </choice>
 <element ref="gml:posList" />
 <element ref="gml:coordinates" />
 </choice>
 </sequence>
 <attribute name="interpolation" type="gml:CurveInterpolationType"
fixed="linear" />
 </extension>
 </complexContent>
 </complexType>

 <element name="LineStringSegment" type="gml:LineStringSegmentType"
substitutionGroup="gml:AbstractCurveSegment" />
gml:LineStringSegment implements ISO 19107 GM_LineString (see D.2.3.4 and ISO 19107:2003, 6.4.10).

© ISO 2020 – All rights reserved 59

ISO 19136-1:2020(E)

A gml:LineStringSegment is a curve segment that is defined by two or more control points including
the start and end point, with linear interpolation between them.

The content model follows the general pattern for the encoding of curve segments (see 10.4.7).

10.4.7.5 ArcStringType, ArcString

 <complexType name="ArcStringType">
 <complexContent>
 <extension base="gml:AbstractCurveSegmentType">
 <sequence>
 <choice>
 <choice minOccurs="3" maxOccurs="unbounded">
 <element ref="gml:pos" />
 <element ref="gml:pointProperty" />
 <element ref="gml:pointRep" />
 </choice>
 <element ref="gml:posList" />
 <element ref="gml:coordinates" />
 </choice>
 </sequence>
 <attribute name="interpolation" type="gml:CurveInterpolationType"
fixed="circularArc3Points" />
 <attribute name="numArc" type="integer" />
 </extension>
 </complexContent>
 </complexType>

 <element name="ArcString" type="gml:ArcStringType" substitutionGroup="gml:AbstractCurve
Segment" />
gml:ArcString implements ISO 19107 GM_ArcString (see D.2.3.4 and ISO 19107:2003, 6.4.14).

A gml:ArcString is a curve segment that uses three-point circular arc interpolation
(“circularArc3Points”). The number of arcs in the arc string may be explicitly stated in the attribute
numArc. The number of control points in the arc string shall be 2 * numArc + 1.

The content model follows the general pattern for the encoding of curve segments (see 10.4.7).

10.4.7.6 ArcType, Arc

 <complexType name="ArcType">
 <complexContent>
 <restriction base="gml:ArcStringType">
 <sequence>
 <choice>
 <choice minOccurs="3" maxOccurs="3">
 <element ref="gml:pos" />
 <element ref="gml:pointProperty" />
 <element ref="gml:pointRep" />
 </choice>
 <element ref="gml:posList" />
 <element ref="gml:coordinates" />
 </choice>
 </sequence>
 <attribute name="numArc" type="integer" fixed="1" />
 </restriction>
 </complexContent>
 </complexType>

 <element name="Arc" type="gml:ArcType" substitutionGroup="gml:ArcString" />
gml:Arc implements ISO 19107 GM_Arc (see D.2.3.4 and ISO 19107:2003, 6.4.15).

An Arc is an arc string with only one arc unit, i.e. three control points including the start and end point.
As arc is an arc string consisting of a single arc, the attribute “numArc” is fixed to "1".

60 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

10.4.7.7 CircleType, Circle

 <complexType name="CircleType">
 <complexContent>
 <extension base="gml:ArcType" />
 </complexContent>
 </complexType>

 <element name="Circle" type="gml:CircleType" substitutionGroup="gml:Arc" />
gml:Circle implements ISO 19107 GM_Circle (see D.2.3.4 and ISO 19107:2003, 6.4.16).

A Circle is an arc whose ends coincide to form a simple closed loop. The three control points shall be
distinct non-co-linear points for the circle to be unambiguously defined. The arc is simply extended
past the third control point until the first control point is encountered.

10.4.7.8 ArcStringByBulgeType, ArcStringByBulge

 <complexType name="ArcStringByBulgeType">
 <complexContent>
 <extension base="gml:AbstractCurveSegmentType">
 <sequence>
 <choice>
 <choice minOccurs="2" maxOccurs="unbounded">
 <element ref="gml:pos" />
 <element ref="gml:pointProperty" />
 <element ref="gml:pointRep" />
 </choice>
 <element ref="gml:posList" />
 <element ref="gml:coordinates" />
 </choice>
 <element name="bulge" type="double" maxOccurs="unbounded"/>
 <element name="normal" type="gml:VectorType" maxOccurs="unbounded" />
 </sequence>
 <attribute name="interpolation" type="gml:CurveInterpolationType"
 fixed="circularArc2PointWithBulge" />
 <attribute name="numArc" type="integer" />
 </extension>
 </complexContent>
 </complexType>

 <element name="ArcStringByBulge" type="gml:ArcStringByBulgeType"
 substitutionGroup="gml:AbstractCurveSegment" />
gml:ArcStringByBuldge implements ISO 19107 GM_ArcStringByBuldge (see D.2.3.4 and ISO 19107:2003,
6.4.17).

This variant of the arc computes the mid points of the arcs instead of storing the coordinates directly.
The control point sequence consists of the start and end points of each arc plus the gml:bulge (see
ISO 19107:2003, 6.4.17.2). The gml:normal is a vector normal (perpendicular) to the chord of the arc
(see ISO 19107:2003, 6.4.17.4).

The interpolation is fixed as "circularArc2PointWithBulge".

The number of arcs in the arc string may be explicitly stated in the attribute numArc. The number of
control points in the arc string shall be numArc + 1.

The content model follows the general pattern for the encoding of curve segments (see 10.4.7).

10.4.7.9 ArcByBulgeType, ArcByBulge

 <complexType name="ArcByBulgeType">
 <complexContent>
 <restriction base="gml:ArcStringByBulgeType">
 <sequence>
 <choice>
 <choice minOccurs="2" maxOccurs="2">
 <element ref="gml:pos" />
 <element ref="gml:pointProperty" />

© ISO 2020 – All rights reserved 61

ISO 19136-1:2020(E)

 <element ref="gml:pointRep" />
 </choice>
 <element ref="gml:posList" />
 <element ref="gml:coordinates" />
 </choice>
 <element name="bulge" type="double" />
 <element name="normal" type="gml:VectorType"/>
 </sequence>
 <attribute name="numArc" type="integer" fixed="1" />
 </restriction>
 </complexContent>
 </complexType>

 <element name="ArcByBulge" type="gml:ArcByBulgeType"
 substitutionGroup="gml:ArcStringByBulge" />
gml:ArcByBuldge implements ISO 19107 GM_ArcByBuldge (see D.2.3.4 and ISO 19107:2003, 6.4.18).

An ArcByBulge is an arc string with only one arc unit, i.e. two control points, one bulge and one
normal vector.

As arc is an arc string consisting of a single arc, the attribute “numArc” is fixed to "1".

10.4.7.10 ArcByCenterPointType, ArcByCenterPoint

 <complexType name="ArcByCenterPointType">
 <complexContent>
 <extension base="gml:AbstractCurveSegmentType">
 <sequence>
 <choice>
 <choice>
 <element ref="gml:pos" />
 <element ref="gml:pointProperty" />
 <element ref="gml:pointRep" />
 </choice>
 <element ref="gml:posList" />
 <element ref="gml:coordinates" />
 </choice>
 <element name="radius" type="gml:LengthType" />
 <element name="startAngle" type="gml:AngleType" minOccurs="0" />
 <element name="endAngle" type="gml:AngleType" minOccurs="0" />
 </sequence>
 <attribute name="interpolation" type="gml:CurveInterpolationType"
 fixed="circularArcCenterPointWithRadius" />
 <attribute name="numArc" type="integer" use="required" fixed="1" />
 </extension>
 </complexContent>
 </complexType>

 <element name="ArcByCenterPoint" type="gml:ArcByCenterPointType"
 substitutionGroup="gml:AbstractCurveSegment" />
This variant of the arc requires that the points on the arc shall be computed instead of storing the
coordinates directly. The single control point is the center point of the arc plus the radius and the
bearing at start and end. This representation can be used only in 2D.

The element gml:radius specifies the radius of the arc.

The element gml:startAngle specifies the bearing of the arc at the start.

The element gml:endAngle specifies the bearing of the arc at the end.

The interpolation is fixed as "circularArcCenterPointWithRadius".

Since this type describes always a single arc, the attribute “numArc” is fixed to "1".

The content model follows the general pattern for the encoding of curve segments (see 10.4.7).

62 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

10.4.7.11 CircleByCenterPointType, CircleByCenterPoint

 <complexType name="CircleByCenterPointType">
 <complexContent>
 <restriction base="gml:ArcByCenterPointType">
 <sequence>
 <choice>
 <choice>
 <element ref="gml:pos" />
 <element ref="gml:pointProperty" />
 <element ref="gml:pointRep" />
 </choice>
 <element ref="gml:posList" />
 <element ref="gml:coordinates" />
 </choice>
 <element name="radius" type="gml:LengthType" />
 </sequence>
 </restriction>
 </complexContent>
 </complexType>

 <element name="CircleByCenterPoint" type="gml:CircleByCenterPointType"
 substitutionGroup="gml:ArcByCenterPoint" />
A gml:CircleByCenterPoint is an gml:ArcByCenterPoint with identical start and end angle to form a
full circle. Again, this representation can be used only in 2D.

10.4.7.12	 CubicSplineType,	CubicSpline

 <complexType name="CubicSplineType">
 <complexContent>
 <extension base="gml:AbstractCurveSegmentType">
 <sequence>
 <choice>
 <choice minOccurs="2" maxOccurs="unbounded">
 <element ref="gml:pos" />
 <element ref="gml:pointProperty" />
 <element ref="gml:pointRep" />
 </choice>
 <element ref="gml:posList" />
 <element ref="gml:coordinates" />
 </choice>
 <element name="vectorAtStart" type="gml:VectorType" />
 <element name="vectorAtEnd" type="gml:VectorType" />
 </sequence>
 <attribute name="interpolation" type="gml:CurveInterpolationType"
fixed="cubicSpline" />
 <attribute name="degree" type="integer" fixed="3" />
 </extension>
 </complexContent>
 </complexType>

 <element name="CubicSpline" type="gml:CubicSplineType"
 substitutionGroup="gml:AbstractCurveSegment" />
gml:CubicSpline implements ISO 19107 GM_CubicSpline (see D.2.3.4 and ISO 19107:2003, 6.4.28).

The number of control points shall be at least three.

gml:vectorAtStart is the unit tangent vector at the start point of the spline. gml:vectorAtEnd is the unit
tangent vector at the end point of the spline. Only the direction of the vectors shall be used to determine
the shape of the cubic spline, not their length.

interpolation is fixed as "cubicSpline".

degree shall be the degree of the polynomial used for the interpolation in this spline. Therefore the
degree for a cubic spline is fixed to "3".

The content model follows the general pattern for the encoding of curve segments (see 10.4.7).

© ISO 2020 – All rights reserved 63

ISO 19136-1:2020(E)

10.4.7.13 BSplineType, BSpline

 <complexType name="BSplineType">
 <complexContent>
 <extension base="gml:AbstractCurveSegmentType">
 <sequence>
 <choice>
 <choice minOccurs="0" maxOccurs="unbounded">
 <element ref="gml:pos" />
 <element ref="gml:pointProperty" />
 <element ref="gml:pointRep" />
 </choice>
 <element ref="gml:posList" />
 <element ref="gml:coordinates" />
 </choice>
 <element name="degree" type="nonNegativeInteger" />
 <element name="knot" type="gml:KnotPropertyType" minOccurs="2"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="interpolation" type="gml:CurveInterpolationType"
default="polynomialSpline" />
 <attribute name="isPolynomial" type="boolean" />
 <attribute name="knotType" type="gml:KnotTypesType" />
 </extension>
 </complexContent>
 </complexType>

 <element name="BSpline" type="gml:BSplineType"
 substitutionGroup="gml:AbstractCurveSegment" />
gml:BSpline implements ISO 19107 GM_BSplineCurve (see D.2.3.4 and ISO 19107:2003, 6.4.30).

A B-Spline is a piecewise parametric polynomial or rational curve described in terms of control
points and basis functions as specified in ISO 19107:2003, 6.4.30. Therefore, interpolation may
be either "polynomialSpline" or "rationalSpline" depending on the interpolation type; default is
"polynomialSpline".

degree shall be the degree of the polynomial used for interpolation in this spline.

gml:knot shall be the sequence of distinct knots used to define the spline basis functions (see
ISO 19107:2003, 6.4.26.2).

The attribute isPolynomial shall be set to “true” if this is a polynomial spline (see ISO 19107:2003,
6.4.30.5).

The attribute knotType shall provide the type of knot distribution used in defining this spline (see
ISO 19107:2003, 6.4.30.4).

The content model follows the general pattern for the encoding of curve segments (see 10.4.7).

10.4.7.14 KnotType, KnotPropertyType

 <complexType name="KnotType">
 <sequence>
 <element name="value" type="double" />
 <element name="multiplicity" type="nonNegativeInteger" />
 <element name="weight" type="double" />
 </sequence>
 </complexType>
gml:Knot implements ISO 19107 GM_Knot (see D.2.3.4 and ISO 19107:2003, 6.4.24).

A knot is a breakpoint on a piecewise spline curve.

gml:value is the value of the parameter at the knot of the spline (see ISO 19107:2003, 6.4.24.2).

gml:multiplicity is the multiplicity of this knot used in the definition of the spline (with the same
weight).

64 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

gml:weight is the value of the averaging weight used for this knot of the spline.

 <complexType name="KnotPropertyType">
 <sequence>
 <element name="Knot" type="gml:KnotType" />
 </sequence>
 </complexType>
gml:KnotPropertyType encapsulates a knot to use it in a geometric type.

10.4.7.15 KnotTypesType

 <simpleType name="KnotTypesType">
 <restriction base="string">
 <enumeration value="uniform" />
 <enumeration value="quasiUniform" />
 <enumeration value="piecewiseBezier" />
 </restriction>
 </simpleType>
gml:KnotTypesType implements ISO 19107 GM_KnotType (see D.2.3.4 and ISO 19107:2003, 6.4.25).

This enumeration type specifies values for the knots’ type (see ISO 19107:2003, 6.4.25).

10.4.7.16 BezierType, Bezier

 <complexType name="BezierType">
 <complexContent>
 <restriction base="gml:BSplineType">
 <sequence>
 <choice>
 <choice minOccurs="0" maxOccurs="unbounded">
 <element ref="gml:pos" />
 <element ref="gml:pointProperty" />
 <element ref="gml:pointRep" />
 </choice>
 <element ref="gml:posList" />
 <element ref="gml:coordinates" />
 </choice>
 <element name="degree" type="nonNegativeInteger" />
 <element name="knot" type="gml:KnotPropertyType"
 minOccurs="2" maxOccurs="2" />
 </sequence>
 <attribute name="interpolation" type="gml:CurveInterpolationType"
 fixed="polynomialSpline" />
 <attribute name="isPolynomial" type="boolean" fixed="true" />
 <attribute name="knotType" type="gml:KnotTypesType" use="prohibited" />
 </restriction>
 </complexContent>
 </complexType>

 <element name="Bezier" type="gml:BezierType" substitutionGroup="gml:BSpline" />
gml:Bezier implements ISO 19107 GM_Bezier (see D.2.3.4 and ISO 19107:2003, 6.4.31).

Bezier curves are polynomial splines that use Bezier or Bernstein polynomials for interpolation
purposes. It is a special case of the B-Spline curve with two knots.

gml:degree shall be the degree of the polynomial used for interpolation in this spline.

gml:knot shall be the sequence of distinct knots used to define the spline basis functions.

interpolation is fixed as "polynomialSpline".

isPolynomial is fixed as “true”.

knotType is not relevant for Bezier curve segments.

© ISO 2020 – All rights reserved 65

ISO 19136-1:2020(E)

10.4.7.17 OffsetCurveType, OffsetCurve

 <complexType name="OffsetCurveType">
 <complexContent>
 <extension base="gml:AbstractCurveSegmentType">
 <sequence>
 <element name="offsetBase" type="gml:CurvePropertyType"/>
 <element name="distance" type="gml:LengthType"/>
 <element name="refDirection" type="gml:VectorType" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <element name="OffsetCurve" type="gml:OffsetCurveType"
 substitutionGroup="gml:AbstractCurveSegment"/>
An offset curve is a curve at a constant distance from the basis curve.

gml:OffsetCurve implements ISO 19107 GM_OffsetCurve (see D.2.3.4 and ISO 19107:2003, 6.4.23).
gml:offsetBase is the base curve from which this curve is defined as an offset. gml:distance and
gml:refDirection have the same meaning as specified in ISO 19107:2003, 6.4.23.

The content model follows the general pattern for the encoding of curve segments (see 10.4.7).

10.4.7.18	 AffinePlacementType,	AffinePlacement

 <complexType name="AffinePlacementType">
 <sequence>
 <element name="location" type="gml:DirectPositionType"/>
 <element name="refDirection" type="gml:VectorType" maxOccurs="unbounded"/>
 <element name="inDimension" type="positiveInteger"/>
 <element name="outDimension" type="positiveInteger"/>
 </sequence>
 </complexType>

 <element name="AffinePlacement" type="gml:AffinePlacementType"
 substitutionGroup="gml:AbstractObject"/>
gml:AffinePlacement implements ISO 19107 GM_AffinePlacement (see D.2.3.4 and ISO 19107:2003,
6.4.21 and 6.4.20.1). gml:location, gml:refDirection, gml:inDimension and gml:outDimension have
the same meaning as specified in ISO 19107:2003, 6.4.21.

10.4.7.19 ClothoidType, Clothoid

 <complexType name="ClothoidType">
 <complexContent>
 <extension base="gml:AbstractCurveSegmentType">
 <sequence>
 <element name="refLocation">
 <complexType>
 <sequence>
 <element ref="gml:AffinePlacement"/>
 </sequence>
 </complexType>
 </element>
 <element name="scaleFactor" type="decimal"/>
 <element name="startParameter" type="double"/>
 <element name="endParameter" type="double"/>
 </sequence>
 <attribute name="interpolation" type="gml:CurveInterpolationType"
 fixed="clothoid"/>
 </extension>
 </complexContent>
 </complexType>

 <element name="Clothoid" type="gml:ClothoidType"
 substitutionGroup="gml:AbstractCurveSegment"/>
A clothoid, or Cornu's spiral, is plane curve whose curvature is a fixed function of its length.

66 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

gml:Clothoid implements ISO 19107 GM_Clothoid (see D.2.3.4 and ISO 19107:2003, 6.4.22).
gml:refLocation, gml:startParameter, gml:endParameter and gml:scaleFactor have the same meaning
as specified in ISO 19107:2003, 6.4.22.

interpolation is fixed as "clothoid".

The content model follows the general pattern for the encoding of curve segments (see 10.4.7).

10.4.7.20 GeodesicStringType, GeodesicString

 <complexType name="GeodesicStringType">
 <complexContent>
 <extension base="gml:AbstractCurveSegmentType">
 <choice>
 <element ref="gml:posList"/>
 <group ref="gml:geometricPositionGroup"
 minOccurs="2" maxOccurs="unbounded"/>
 </choice>
 <attribute name="interpolation" type="gml:CurveInterpolationType"
 fixed="geodesic"/>
 </extension>
 </complexContent>
 </complexType>

 <element name="GeodesicString" type="gml:GeodesicStringType"
 substitutionGroup="gml:AbstractCurveSegment"/>
gml:GeodesicString implements ISO 19107 GM_GeodesicString (see D.2.3.4 and ISO 19107:2003,
6.4.12), a sequence of geodesic segments.

The number of control points shall be at least two.

interpolation is fixed as "geodesic".

The content model follows the general pattern for the encoding of curve segments (see 10.4.7).

10.4.7.21 GeodesicType, Geodesic

 <complexType name="GeodesicType">
 <complexContent>
 <extension base="gml:GeodesicStringType"/>
 </complexContent>
 </complexType>

 <element name="Geodesic" type="gml:GeodesicType" substitutionGroup="gml:GeodesicString"/>
gml:Geodesic implements ISO 19107 GM_Geodesic (see D.2.3.4 and ISO 19107:2003, 6.4.13).

10.5 Geometric primitives (2-dimensional)

10.5.1	 AbstractSurfaceType,	AbstractSurface

 <complexType name="AbstractSurfaceType" abstract="true">
 <complexContent>
 <extension base="gml:AbstractGeometricPrimitiveType"/>
 </complexContent>
 </complexType>

 <element name="AbstractSurface" type="gml:AbstractSurfaceType" abstract="true"
 substitutionGroup="gml:AbstractGeometricPrimitive" />
gml:AbstractSurfaceType is an abstraction of a surface to support the different levels of complexity. A
surface is always a continuous region of a plane.

The gml:AbstractSurface element is the abstract head of the substitution group for all (continuous)
surface elements.

© ISO 2020 – All rights reserved 67

ISO 19136-1:2020(E)

10.5.2 SurfacePropertyType, surfaceProperty

 <complexType name="SurfacePropertyType">
 <sequence minOccurs="0">
 <element ref="gml:AbstractSurface"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>

 <element name="surfaceProperty" type="gml:SurfacePropertyType" />
A property that has a surface as its value domain may either be an appropriate geometry element
encapsulated in an element of this type or an XLink reference to a remote geometry element (where
remote includes geometry elements located elsewhere in the same document). Either the reference or
the contained element shall be given, but neither both nor none.

This property element either references a surface via the XLink-attributes or contains the surface
element. surfaceProperty is the predefined property which may be used by GML application schemas
whenever a GML feature has a property with a value that is substitutable for gml:AbstractSurface.

10.5.3 SurfaceArrayPropertyType, surfaceArrayProperty

 <complexType name="SurfaceArrayPropertyType">
 <sequence minOccurs="0" maxOccurs="unbounded">
 <element ref="gml:AbstractSurface" />
 </sequence>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>
gml:SurfaceArrayPropertyType is a container for an array of surfaces. The elements are always
contained in the array property, referencing geometry elements or arrays of geometry elements via
XLinks is not supported.

 <element name="surfaceArrayProperty" type="gml:SurfaceArrayPropertyType" />
This property element contains a list of surface elements. surfaceArrayProperty is the predefined
property which may be used by GML application schemas whenever a GML feature has a property with
a value that is substitutable for a list of AbstractSurfaces.

10.5.4 PolygonType, Polygon

 <complexType name="PolygonType">
 <complexContent>
 <extension base="gml:AbstractSurfaceType">
 <sequence>
 <element ref="gml:exterior" minOccurs="0" />
 <element ref="gml:interior" minOccurs="0" maxOccurs="unbounded" />
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <element name="Polygon" type="gml:PolygonType" substitutionGroup="gml:AbstractSurface" />
A gml:Polygon is a special surface that is defined by a single surface patch (see D.3.6). The boundary of
this patch is coplanar and the polygon uses planar interpolation in its interior.

NOTE ISO 19107 GM_Polygon is implemented by gml:PolygonPatch.

The elements gml:exterior and gml:interior describe the surface boundary of the polygon and are
specified below.

10.5.5 exterior, interior

 <element name="exterior" type="gml:AbstractRingPropertyType" />

68 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

A boundary of a surface consists of a number of rings. In the normal 2D case, one of these rings is
distinguished as being the exterior boundary. In a general manifold this is not always possible, in which
case all boundaries shall be listed as interior boundaries, and the exterior will be empty.

 <element name="interior" type="gml:AbstractRingPropertyType" />
A boundary of a surface consists of a number of rings. The "interior" rings separate the surface/surface
patch from the area enclosed by the rings.

10.5.6	 AbstractRingType,	AbstractRing

 <complexType name="AbstractRingType" abstract="true">
 <complexContent>
 <extension base="gml:AbstractCurveType">
 <sequence/>
 </extension>
 </complexContent>
 </complexType>

 <element name="AbstractRing" type="gml:AbstractRingType" abstract="true"
 substitutionGroup="gml:AbstractCurve"/>
An abstraction of a ring to support surface boundaries of different complexity.

The gml:AbstractRing element is the abstract head of the substitution group for all closed boundaries
of a surface patch.

10.5.7	 AbstractRingPropertyType

 <complexType name="AbstractRingPropertyType">
 <sequence>
 <element ref="gml:AbstractRing"/>
 </sequence>
 </complexType>
A property with the content model of gml:AbstractRingPropertyType encapsulates a ring to represent
the surface boundary property of a surface.

10.5.8 LinearRingType, LinearRing

 <complexType name="LinearRingType">
 <complexContent>
 <extension base="gml:AbstractRingType">
 <sequence>
 <choice>
 <choice minOccurs="4" maxOccurs="unbounded">
 <element ref="gml:pos" />
 <element ref="gml:pointProperty" />
 <element ref="gml:pointRep"/>
 </choice>
 <element ref="gml:posList" />
 <element ref="gml:coordinates" />
 </choice>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <element name="LinearRing" type="gml:LinearRingType"
 substitutionGroup="gml:AbstractRing" />
A gml:LinearRing is defined by four or more coordinate tuples, with linear interpolation between them;
the first and last coordinates shall be coincident.

The encoding of the control points follows the pattern described in 10.1.4.4. The number of direct
positions in the list shall be at least four.

© ISO 2020 – All rights reserved 69

ISO 19136-1:2020(E)

10.5.9 LinearRingPropertyType

 <complexType name="LinearRingPropertyType">
 <sequence>
 <element ref="gml:LinearRing"/>
 </sequence>
 </complexType>
A property with the content model of gml:LinearRingPropertyType encapsulates a linear ring to
represent a component of a surface boundary.

10.5.10 SurfaceType, Surface

 <complexType name="SurfaceType">
 <complexContent>
 <extension base="gml:AbstractSurfaceType">
 <sequence>
 <element ref="gml:patches" />
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <element name="Surface" type="gml:SurfaceType" substitutionGroup="gml:AbstractSurface" />
A Surface is a 2-dimensional primitive and is composed of one or more surface patches as specified in
ISO 19107:2003, 6.3.17.1. The surface patches are connected to one another.

gml:Surface implements ISO 19107 GM_Surface (see D.2.3.4 and ISO 19107:2003, 6.3.17).

gml:patches encapsulates the patches of the surface.

10.5.11	OrientableSurfaceType,	OrientableSurface,	baseSurface

 <complexType name="OrientableSurfaceType">
 <complexContent>
 <extension base="gml:AbstractSurfaceType">
 <sequence>
 <element ref="gml:baseSurface" />
 </sequence>
 <attribute name="orientation" type="gml:SignType" default="+" />
 </extension>
 </complexContent>
 </complexType>

 <element name="baseSurface" type="gml:SurfacePropertyType" />

 <element name="OrientableSurface" type="gml:OrientableSurfaceType"
 substitutionGroup="gml:AbstractSurface" />
gml:OrientableSurface implements ISO 19107 GM_OrientableSurface (see D.2.3.4 and ISO 19107:2003,
6.3.15).

gml:OrientableSurface consists of a surface and an orientation. If the orientation is "+", then the
gml:OrientableSurface is identical to the gml:baseSurface. If the orientation is "-", then the
gml:OrientableSurface is a reference to a gml:AbstractSurface with an up-normal that reverses the
direction for this gml:OrientableSurface, the sense of "the top of the surface".

The property gml:baseSurface references or contains the base surface. The property gml:baseSurface
either references the base surface via the XLink-attributes or contains the surface element. A surface
element is any element which is substitutable for gml:AbstractSurface. The base surface has positive
orientation.

NOTE This definition allows for a nested structure, i.e. a gml:OrientableSurface can use another
gml:OrientableSurface as its base surface.

70 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

10.5.11.1	 Ring,	RingType,	curveMember

 <complexType name="RingType">
 <complexContent>
 <extension base="gml:AbstractRingType">
 <sequence>
 <element ref="gml:curveMember" maxOccurs="unbounded" />
 </sequence>
 <attributeGroup ref="gml:AggregationAttributeGroup"/>
 </extension>
 </complexContent>
 </complexType>

 <element name="Ring" type="gml:RingType" substitutionGroup="gml:AbstractRing" />

 <element name="curveMember" type="gml:CurvePropertyType" />
gml:Ring implements ISO 19107 GM_Ring (see D.2.3.4 and ISO 19107:2003, 6.3.6).

A ring is used to represent a single connected component of a surface boundary as specified in
ISO 19107:2003, 6.3.6.

Every gml:curveMember references or contains one curve, i.e. any element which is substitutable for
gml:AbstractCurve. In the context of a ring, the curves describe the boundary of the surface. The
sequence of curves shall be contiguous and connected in a cycle.

If provided, the aggregationType attribute shall have the value “sequence”.

NOTE This definition allows for a nested structure, i.e. a gml:curveMember may be a gml:CompositeCurve
which in turn can be constructed from other gml:CompositeCurves as a curve members.

10.5.11.2 RingPropertyType

 <complexType name="RingPropertyType">
 <sequence>
 <element ref="gml:Ring"/>
 </sequence>
 </complexType>
A property with the content model of gml:RingPropertyType encapsulates a ring to represent a
component of a surface boundary.

10.5.11.3 PolyhedralSurface

 <element name="PolyhedralSurface" type="gml:SurfaceType"
substitutionGroup="gml:Surface"/>
gml:PolyhedralSurface implements ISO 19107 GM_PolyhedralSurface (see D.2.3.4 and ISO 19107:2003,
6.4.35).

A polyhedral surface is a surface composed of polygon patches connected along their common
boundary curves.

gml:patches encapsulates the polygon patches of the polyhedral surface. All patches shall be polygon
patches.

10.5.11.4 TriangulatedSurface

 <element name="TriangulatedSurface" type="gml:SurfaceType"
substitutionGroup="gml:Surface"/>
gml:TriangultedSurface implements ISO 19107 GM_TriangulatedSurface (see D.2.3.4 and
ISO 19107:2003, 6.4.37).

A triangulated surface is a polyhedral surface that is composed only of triangles. There is no restriction
on how the triangulation is derived.

gml:patches encapsulates the triangles of the triangulated surface. All patches shall be triangle patches.

© ISO 2020 – All rights reserved 71

ISO 19136-1:2020(E)

10.5.11.5 TinType, Tin

 <complexType name="TinType">
 <complexContent>
 <extension base="gml:TriangulatedSurfaceType">
 <sequence>
 <element name="stopLines" type="gml:LineStringSegmentArrayPropertyType"
 minOccurs="0" maxOccurs="unbounded"/>
 <element name="breakLines" type="gml:LineStringSegmentArrayPropertyType"
 minOccurs="0" maxOccurs="unbounded"/>
 <element name="maxLength" type="gml:LengthType"/>
 <element name="controlPoint">
 <complexType>
 <choice>
 <element ref="gml:posList"/>
 <group ref="gml:geometricPositionGroup" minOccurs="3"
 maxOccurs="unbounded"/>
 </choice>
 </complexType>
 </element>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <element name="Tin" type="gml:TinType" substitutionGroup="gml:TriangulatedSurface"/>
gml:Tin implements ISO 19107 GM_Tin (see D.2.3.4 and ISO 19107:2003, 6.4.39).

A tin is a triangulated surface that uses the Delauny algorithm or a similar algorithm complemented
with consideration of stoplines (gml:stopLines), breaklines (gml:breakLines), and maximum length of
triangle sides (gml:maxLength). gml:controlPoint shall contain a set of the positions (three or more)
used as posts for this TIN (corners of the triangles in the TIN). See ISO 19107:2003, 6.4.39 for details.

10.5.11.6 LineStringSegmentArrayPropertyType

 <complexType name="LineStringSegmentArrayPropertyType">
 <sequence minOccurs="0" maxOccurs="unbounded">
 <element ref="gml:LineStringSegment" />
 </sequence>
 </complexType>
gml:LineStringSegmentArrayPropertyType provides a container for line strings.

10.5.12 Surface patches

10.5.12.1	 AbstractSurfacePatchType,	gml	:	AbstractSurfacePatch

 <complexType name="AbstractSurfacePatchType" abstract="true" />

 <element name="AbstractSurfacePatch" type="gml:AbstractSurfacePatchType"
 abstract="true" />
A surface patch defines a homogenous portion of a surface.

gml:AbstractSurfacePatch implements ISO 19107 GM_SurfacePatch (see D.2.3.4 and ISO 19107:2003,
6.4.34).

The gml:AbstractSurfacePatch element is the abstract head of the substitution group for all surface
patch elements describing a continuous portion of a surface.

All surface patches shall have an attribute interpolation (declared in the types derived from
gml:AbstractSurfacePatchType) specifying the interpolation mechanism used for the patch using
gml:SurfaceInterpolationType (see 10.5.12.3).

72 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

10.5.12.2 SurfacePatchArrayPropertyType, patches

 <complexType name="SurfacePatchArrayPropertyType">
 <sequence minOccurs="0" maxOccurs="unbounded">
 <element ref="gml:AbstractSurfacePatch" />
 </sequence>
 </complexType>
gml:SurfacePatchArrayPropertyType is a container for a sequence of surface patches.

 <element name="patches" type="gml:SurfacePatchArrayPropertyType" />
The gml:patches property element contains the sequence of surface patches. The order of the elements
is significant and shall be preserved when processing the array.

10.5.12.3 SurfaceInterpolationType

 <simpleType name="SurfaceInterpolationType">
 <restriction base="string">
 <enumeration value="none" />
 <enumeration value="planar" />
 <enumeration value="spherical" />
 <enumeration value="elliptical" />
 <enumeration value="conic" />
 <enumeration value="tin" />
 <enumeration value="parametricCurve" />
 <enumeration value="polynomialSpline" />
 <enumeration value="rationalSpline" />
 <enumeration value="triangulatedSpline" />
 </restriction>
 </simpleType>
gml:SurfaceInterpolationType is a list of codes that may be used to identify the interpolation
mechanisms specified by an application schema.

This type implements ISO 19107 GM_SurfaceInterpolation (see D.2.3.4 and ISO 19107:2003, 6.4.32).

10.5.12.4 PolygonPatchType, PolygonPatch

 <complexType name="PolygonPatchType">
 <complexContent>
 <extension base="gml:AbstractSurfacePatchType">
 <sequence>
 <element ref="gml:exterior" minOccurs="0" />
 <element ref="gml:interior" minOccurs="0" maxOccurs="unbounded" />
 </sequence>
 <attribute name="interpolation" type="gml:SurfaceInterpolationType"
 fixed="planar" />
 </extension>
 </complexContent>
 </complexType>

 <element name="PolygonPatch" type="gml:PolygonPatchType"
 substitutionGroup="gml:AbstractSurfacePatch" />
gml:PolygonPatch implements ISO 19107 GM_Polygon (see D.2.3.4 and ISO 19107:2003, 6.4.36).

A gml:PolygonPatch is a surface patch that is defined by a set of boundary curves and an underlying
surface to which these curves adhere. The curves shall be coplanar and the polygon uses planar
interpolation in its interior.

interpolation is fixed to "planar", i.e. an interpolation shall return points on a single plane. The
boundary of the patch shall be contained within that plane.

10.5.12.5 TriangleType, Triangle

 <complexType name="TriangleType">
 <complexContent>
 <extension base="gml:AbstractSurfacePatchType">
 <sequence>

© ISO 2020 – All rights reserved 73

ISO 19136-1:2020(E)

 <element ref="gml:exterior" />
 </sequence>
 <attribute name="interpolation" type="gml:SurfaceInterpolationType"
 fixed="planar" />
 </extension>
 </complexContent>
 </complexType>

 <element name="Triangle" type="gml:TriangleType"
 substitutionGroup="gml:AbstractSurfacePatch" />
gml:Triangle represents a triangle as a surface patch with an outer boundary consisting of a linear
ring. Note that this is a polygon (subtype) with no inner boundaries. The number of points in the linear
ring shall be four.

The ring (element gml:exterior) shall be a gml:LinearRing and shall form a triangle, the first and the
last position shall be coincident.

interpolation is fixed to "planar", i.e. an interpolation shall return points on a single plane. The
boundary of the patch shall be contained within that plane.

10.5.12.6 RectangleType, Rectangle

 <complexType name="RectangleType">
 <complexContent>
 <extension base="gml:AbstractSurfacePatchType">
 <sequence>
 <element ref="gml:exterior" />
 </sequence>
 <attribute name="interpolation" type="gml:SurfaceInterpolationType"
 fixed="planar" />
 </extension>
 </complexContent>
 </complexType>

 <element name="Rectangle" type="gml:RectangleType"
 substitutionGroup="gml:AbstractSurfacePatch" />
gml:Rectangle represents a rectangle as a surface patch with an outer boundary consisting of a linear
ring. Note that this is a polygon (subtype) with no inner boundaries. The number of points in the linear
ring shall be five.

NOTE While conceptually a rectangle is a subtype of a polygon, defining gml:RectangleType as a type
derived by restriction from gml:PolygonType is problematic due to the way the restriction construct is defined
in XML Schema and has thus been avoided in this case.

The ring (element gml:exterior) shall be a gml:LinearRing and shall form a rectangle; the first and the
last position shall be coincident.

interpolation is fixed to "planar", i.e. an interpolation shall return points on a single plane. The
boundary of the patch shall be contained within that plane.

10.5.12.7 PointGrid

 <group name="PointGrid">
 <sequence>
 <element name="rows">
 <complexType>
 <sequence>
 <element name="Row" maxOccurs="unbounded">
 <complexType>
 <group ref="gml:geometricPositionListGroup"/>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>

74 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

 </sequence>
 </group>
gml:PointGrid implements ISO 19107 GM_PointGrid (see D.2.3.4 and ISO 19107:2003, 6.4.6).

A gml:PointGrid group contains or references points or positions which are organized into sequences
or grids. All gml:rows shall have the same number of positions (columns).

10.5.12.8	 AbstractParametricCurveSurfaceType,	AbstractParametricCurveSurface

 <complexType name="AbstractParametricCurveSurfaceType" abstract="true">
 <complexContent>
 <extension base="gml:AbstractSurfacePatchType">
 <attributeGroup ref="gml:AggregationAttributeGroup"/>
 </extension>
 </complexContent>
 </complexType>

 <element name="AbstractParametricCurveSurface"
 type="gml:AbstractParametricCurveSurfaceType" abstract="true"
 substitutionGroup="gml:AbstractSurfacePatch"/>
gml:AbstractParametricCurveSurface implements ISO 19107 GM_ParametricCurveSurface (see D.2.3.4
and ISO 19107:2003, 6.4.40).

The element provides a substitution group head for the surface patches based on parametric curves. All
properties are specified in the derived subtypes. All derived subtypes shall conform to the constraints
specified in ISO 19107:2003, 6.4.40.

If provided, the aggregationType attribute shall have the value “set”.

10.5.12.9	 AbstractGriddedSurfaceType,	AbstractGriddedSurface

 <complexType name="AbstractGriddedSurfaceType" abstract="true">
 <complexContent>
 <extension base="gml:AbstractParametricCurveSurfaceType">
 <sequence>
 <group ref="gml:PointGrid"/>
 </sequence>
 <attribute name="rows" type="integer"/>
 <attribute name="columns" type="integer"/>
 </extension>
 </complexContent>
 </complexType>

 <element name="AbstractGriddedSurface" type="gml:AbstractGriddedSurfaceType"
 abstract="true" substitutionGroup="gml:AbstractParametricCurveSurface"/>
gml:AbstractGriddedSurface implements ISO 19107 GM_GriddedSurface (see D.2.3.4 and
ISO 19107:2003, 6.4.41). If provided, rows gives the number of rows, columns gives the number of columns
in the parameter grid. The parameter grid is represented by an instance of the gml:PointGrid group.

The element provides a substitution group head for the surface patches based on a grid. All derived
subtypes shall conform to the constraints specified in ISO 19107:2003, 6.4.41.

10.5.12.10 ConeType, Cone

 <complexType name="ConeType">
 <complexContent>
 <extension base="gml:AbstractGriddedSurfaceType">
 <attribute name="horizontalCurveType" type="gml:CurveInterpolationType"
 fixed="circularArc3Points"/>
 <attribute name="verticalCurveType" type="gml:CurveInterpolationType"
 fixed="linear"/>
 </extension>
 </complexContent>
 </complexType>

© ISO 2020 – All rights reserved 75

ISO 19136-1:2020(E)

 <element name="Cone" type="gml:ConeType"
 substitutionGroup="gml:AbstractGriddedSurface"/>
gml:Cone implements ISO 19107 GM_Cone (see D.2.3.4 and ISO 19107:2003, 6.4.42).

10.5.12.11 CylinderType, gmlCylinder

 <complexType name="CylinderType">
 <complexContent>
 <extension base="gml:AbstractGriddedSurfaceType">
 <attribute name="horizontalCurveType" type="gml:CurveInterpolationType"
 fixed="circularArc3Points"/>
 <attribute name="verticalCurveType" type="gml:CurveInterpolationType"
 fixed="linear"/>
 </extension>
 </complexContent>
 </complexType>

 <element name="Cylinder" type="gml:CylinderType"
 substitutionGroup="gml:AbstractGriddedSurface"/>
gml:Cylinder implements ISO 19107 GM_Cylinder (see D.2.3.4 and ISO 19107:2003, 6.4.43).

10.5.12.12 SphereType, Sphere

 <complexType name="SphereType">
 <complexContent>
 <extension base="gml:AbstractGriddedSurfaceType">
 <attribute name="horizontalCurveType" type="gml:CurveInterpolationType"
 fixed="circularArc3Points"/>
 <attribe name="verticalCurveType" type="gml:CurveInterpolationType"
 fixed="circularArc3Points"/>
 </extension>
 </complexContent>
 </complexType>

 <element name="Sphere" type="gml:SphereType"
 substitutionGroup="gml:AbstractGriddedSurface"/>
gml:Sphere implements ISO 19107 GM_Sphere (see D.2.3.4 and ISO 19107:2003, 6.4.44).

10.6 Geometric primitives (3-dimensional)

10.6.1	 AbstractSolidType,	AbstractSolid

 <complexType name="AbstractSolidType">
 <complexContent>
 <extension base="gml:AbstractGeometricPrimitiveType"/>
 </complexContent>
 </complexType>

 <element name="AbstractSolid" type="gml:AbstractSolidType" abstract="true"
 substitutionGroup="gml:AbstractGeometricPrimitive" />
gml:AbstractSolidType is an abstraction of a solid to support the different levels of complexity. The
solid may always be viewed as a geometric primitive, i.e. is contiguous.

The gml:AbstractSolid element is the abstract head of the substitution group for all (continuous) solid
elements.

10.6.2 SolidPropertyType, solidProperty

 <complexType name="SolidPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:AbstractSolid"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>

76 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

A property that has a solid as its value domain may either be an appropriate geometry element
encapsulated in an element of this type or an XLink reference to a remote geometry element (where
remote includes geometry elements located elsewhere in the same document). Either the reference or
the contained element shall be given, but neither both nor none.

 <element name="solidProperty" type="gml:SolidPropertyType"/>
This property element either references a solid via the XLink-attributes or contains the solid element.
gml:solidProperty is the predefined property which may be used by GML application schemas
whenever a GML feature has a property with a value that is substitutable for gml:AbstractSolid.

10.6.3 SolidArrayPropertyType, solidArrayProperty

 <complexType name="SolidArrayPropertyType">
 <sequence minOccurs="0" maxOccurs="unbounded">
 <element ref="gml:AbstractSolid" />
 </sequence>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>
gml:SolidArrayPropertyType is a container for an array of solids. The elements are always contained
in the array property, referencing geometry elements or arrays of geometry elements is not supported.

 <element name="solidArrayProperty" type="gml:SolidArrayPropertyType"/>
This property element contains a list of solid elements. solidArrayProperty is the predefined property
which may be used by GML application schemas whenever a GML feature has a property with a value
that is substitutable for a list of gml:AbstractSolid.

10.6.4 SolidType, Solid

 <complexType name="SolidType">
 <complexContent>
 <extension base="gml:AbstractSolidType">
 <sequence>
 <element name="exterior" type="gml:ShellPropertyType" minOccurs="0"/>
 <element name="interior" type="gml:ShellPropertyType" minOccurs="0"
 maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <element name="Solid" type="gml:SolidType" substitutionGroup="gml:AbstractSolid" />
gml:Solid implements ISO 19107 GM_Solid (see D.2.3.3 and ISO 19107:2003, 6.3.18).

A solid is the basis for 3-dimensional geometry. The extent of a solid is defined by the boundary surfaces
as specified in ISO 19107:2003, 6.3.18. gml:exterior specifies the outer boundary, gml:interior the
inner boundary of the solid.

10.6.5 ShellType, Shell

 <complexType name="ShellType">
 <complexContent>
 <extension base="gml:AbstractSurfaceType">
 <sequence>
 <element ref="gml:surfaceMember" maxOccurs="unbounded"/>
 </sequence>
 <attributeGroup ref="gml:AggregationAttributeGroup"/>
 </extension>
 </complexContent>
 </complexType>

 <element name="Shell" type="gml:ShellType" substitutionGroup="gml:AbstractSurface"/>

 <element name="surfaceMember" type="gml:SurfacePropertyType"/>
gml:Shell implements ISO 19107 GM_Shell (see D.2.3.3 and ISO 19107:2003, 6.3.8).

© ISO 2020 – All rights reserved 77

ISO 19136-1:2020(E)

A shell is used to represent a single connected component of a solid boundary as specified in
ISO 19107:2003, 6.3.8.

Every gml:surfaceMember references or contains one surface, i.e. any element which is substitutable for
gml:AbstractSurface. In the context of a shell, the surfaces describe the boundary of the solid.

If provided, the aggregationType attribute shall have the value “set”.

NOTE This definition allows for a nested structure, i.e. a gml:surfaceMember can be a
gml:CompositeSurface which in turn can be constructed from other gml:CompositeSurfaces as a surface
members.

10.6.6 ShellPropertyType

 <complexType name="ShellPropertyType">
 <sequence>
 <element ref="gml:Shell"/>
 </sequence>
 </complexType>
A property with the content model of gml:ShellPropertyType encapsulates a shell to represent a
component of a solid boundary.

11 GML schema — Geometric complex, geometric composites and geometric
aggregates

11.1 Overview

This clause describes the geometry schema components for geometric complexes and aggregates.

NOTE The geometry schema documents, geometryAggregates.xsd and geometryComplexes.xsd (see
Annex C), are identified by the following location-independent name (using URN syntax):

— urn: ogc: specification: gml: schema -xsd: geometryAggregates: 3 .2 .1

— urn: ogc: specification: gml: schema -xsd: geometryComplexes: 3 .2 .1

Geometric aggregates (i.e. instances of a subtype of gml:AbstractGeometricAggregateType) are
arbitrary aggregations of geometry elements. They are not assumed to have any additional internal
structure and are used to "collect" pieces of geometry of a specified type. Application schemas may use
aggregates for features that use multiple geometric objects in their representations.

Geometric complexes (i.e. instances of gml:GeometricComplexType) are closed collections of geometric
primitives, i.e. they will contain their boundaries.

A geometric complex (gml:GeometricComplex) is defined by ISO 19107:2003, 6.6.1 as “a set of primitive
geometric objects (in a common coordinate system) whose interiors are disjoint. Further, if a primitive
is in a geometric complex, then there exists a set of primitives in that complex whose point-wise union
is the boundary of this first primitive.”

A geometric composite (gml:CompositeCurve, gml:CompositeSurface and gml:CompositeSolid)
represents a geometric complex with an underlying core geometry that is isomorphic to a primitive, i.e.
it can be viewed as a primitive and as a complex. See ISO 19107:2003, 6.1 and 6.6.3 for more details on
the nature of composite geometries.

Geometric complexes and composites are intended to be used in application schemas where the sharing
of geometry is important.

78 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

11.2 Geometric complex and geometric composites

11.2.1 Geometric complex

11.2.1.1 GeometricComplexType, GeometricComplex

 <complexType name="GeometricComplexType">
 <complexContent>
 <extension base="gml:AbstractGeometryType">
 <sequence>
 <element name="element" type="gml:GeometricPrimitivePropertyType"
 maxOccurs="unbounded" />
 </sequence>
 <attributeGroup ref="gml:AggregationAttributeGroup"/>
 </extension>
 </complexContent>
 </complexType>

 <element name="GeometricComplex" type="gml:GeometricComplexType"
 substitutionGroup="gml:AbstractGeometry" />
gml:GeometricComplex implements ISO 19107 GM_Complex (see ISO 19107:2003, 6.6.2 and 6.6.1) as
specified in D.2.3.6.

gml:element references or contains inline one geometric primitive (this includes composite geometries).

11.2.1.2 GeometricComplexPropertyType

 <complexType name="GeometricComplexPropertyType">
 <sequence minOccurs="0">
 <choice>
 <element ref="gml:GeometricComplex"/>
 <element ref="gml:CompositeCurve"/>
 <element ref="gml:CompositeSurface"/>
 <element ref="gml:CompositeSolid"/>
 </choice>
 </sequence>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
A property that has a geometric complex as its value domain may either be an appropriate geometry
element encapsulated in an element of this type or an XLink reference to a remote geometry element
(where remote includes geometry elements located elsewhere in the same document). Either the
reference or the contained element shall be given, but neither both nor none.

NOTE The allowed geometry elements contained in such a property (or referenced by it) are modelled by
an XML Schema choice element since the composites (conceptually) inherit both from geometric complex and
geometric primitive and are already part of the gml:AbstractGeometricPrimitive substitution group.

11.2.2 Composite geometries

11.2.2.1 General representation of composites in GML

The members of a geometric composite shall represent a homogeneous collection of geometric
primitives whose union would be the core geometry of the composite. The complex would include all
member primitives and all primitives on the boundary of these primitives, and so forth until gml:Points
are included. Thus the "member” properties in gml:CompositeCurve, gml:CompositeSurface and
gml:CompositeSolid represent a subset of the gml:element property of gml:GeometricComplex.

As XML Schema does not support the concept of “multiple inheritance” which is used in ISO 19107 to
express the duality of the geometric composites (as an open primitive and as a closed complex) in the
GML schema, the composites derive from gml:AbstractGeometricPrimitiveType only. However, by
using a <choice> element in the property type gml:GeometricComplexPropertyType, a composite can be
used in any property which expects a gml:GeometricComplex as its value.

© ISO 2020 – All rights reserved 79

ISO 19136-1:2020(E)

11.2.2.2 CompositeCurveType, CompositeCurve

 <complexType name="CompositeCurveType">
 <complexContent>
 <extension base="gml:AbstractCurveType">
 <sequence>
 <element ref="gml:curveMember" maxOccurs="unbounded" />
 </sequence>
 <attributeGroup ref="gml:AggregationAttributeGroup"/>
 </extension>
 </complexContent>
 </complexType>

 <element name="CompositeCurve" type="gml:CompositeCurveType"
 substitutionGroup="gml:AbstractCurve" />
gml:CompositeCurve implements ISO 19107 GM_CompositeCurve (see ISO 19107:2003, 6.6.5) as
specified in D.2.3.6.

A gml:CompositeCurve is represented by a sequence of (orientable) curves such that each curve in the
sequence terminates at the start point of the subsequent curve in the list.

gml:curveMember references or contains inline one curve in the composite curve.

The curves are contiguous, the collection of curves is ordered. Therefore, if provided, the
aggregationType attribute shall have the value “sequence”.

NOTE This definition allows for a nested structure, i.e. a gml:CompositeCurve can use, for example, another
gml:CompositeCurve as a curve member.

11.2.2.3 CompositeSurfaceType, CompositeSurface

 <complexType name="CompositeSurfaceType">
 <complexContent>
 <extension base="gml:AbstractSurfaceType">
 <sequence>
 <element ref="gml:surfaceMember" maxOccurs="unbounded" />
 </sequence>
 <attributeGroup ref="gml:AggregationAttributeGroup"/>
 </extension>
 </complexContent>
 </complexType>

 <element name="CompositeSurface" type="gml:CompositeSurfaceType"
 substitutionGroup="gml:AbstractSurface" />
gml:CompositeSurface implements ISO 19107 GM_CompositeSurface (see ISO 19107:2003, 6.6.6) as
specified in D.2.3.6.

A gml:CompositeSurface is represented by a set of orientable surfaces. It is a geometry type with all the
geometric properties of a (primitive) surface. Essentially, a composite surface is a collection of surfaces
that join in pairs on common boundary curves and which, when considered as a whole, form a single
surface.

gml:surfaceMember references or contains inline one surface in the composite surface.

The surfaces are contiguous.

NOTE This definition allows for a nested structure, i.e. a gml:CompositeSurface can use, for example,
another gml:CompositeSurface as a surface member.

11.2.2.4 CompositeSolidType, CompositeSolid

 <complexType name="CompositeSolidType">
 <complexContent>
 <extension base="gml:AbstractSolidType">
 <sequence>
 <element ref="gml:solidMember" maxOccurs="unbounded" />

80 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

 </sequence>
 <attributeGroup ref="gml:AggregationAttributeGroup"/>
 </extension>
 </complexContent>
 </complexType>

 <element name="CompositeSolid" type="gml:CompositeSolidType"
 substitutionGroup="gml:AbstractSolid" />
gml:CompositeSolid implements ISO 19107 GM_CompositeSolid (see ISO 19107:2003, 6.6.7) as specified
in D.2.3.6.

A gml:CompositeSolid is represented by a set of orientable surfaces. It is a geometry type with all the
geometric properties of a (primitive) solid. Essentially, a composite solid is a collection of solids that
join in pairs on common boundary surfaces and which, when considered as a whole, form a single solid.

gml:solidMember references or contains one solid in the composite solid. The solids are contiguous.

NOTE This definition allows for a nested structure, i.e. a gml:CompositeSolid can use, for example, another
gml:CompositeSolid as a member.

11.3 Geometric aggregates

11.3.1	 Aggregates	of	unspecified	dimensionality

11.3.1.1	 AbstractGeometricAggregateType,	AbstractGeometricAggregate

 <complexType name="AbstractGeometricAggregateType" abstract="true">
 <complexContent>
 <extension base="gml:AbstractGeometryType">
 <attributeGroup ref="gml:AggregationAttributeGroup"/>
 </extension>
 </complexContent>
 </complexType>

 <element name="AbstractGeometricAggregate" type="gml:AbstractGeometricAggregateType"
 abstract="true" substitutionGroup="gml:AbstractGeometry" />
gml:AbstractGeometricAggregate implements ISO 19107 GM_Aggregate (see ISO 19107:2003, 6.5.2) as
specified in D.2.3.5. It is the abstract head of the substitution group for all geometric aggregates.

11.3.1.2	 MultiGeometryType,	MultiGeometry,	geometryMember,	geometryMembers

 <complexType name="MultiGeometryType">
 <complexContent>
 <extension base="gml:AbstractGeometricAggregateType">
 <sequence>
 <element ref="gml:geometryMember" minOccurs="0" maxOccurs="unbounded" />
 <element ref="gml:geometryMembers" minOccurs="0" />
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <element name="MultiGeometry" type="gml:MultiGeometryType"
 substitutionGroup="gml:AbstractGeometricAggregate" />
gml:MultiGeometry is a collection of one or more GML geometry objects of arbitrary type (see D.3.8).

The members of the geometric aggregate may be specified either using the "standard" property
(gml:geometryMember) or the array property (gml:geometryMembers). It is also valid to use both the
"standard" and the array properties in the same collection.

NOTE Array properties cannot reference remote geometry elements via XLinks.

 <element name="geometryMember" type="gml:GeometryPropertyType" />
This property element either references a geometry element via the XLink-attributes or contains the
geometry element.

© ISO 2020 – All rights reserved 81

ISO 19136-1:2020(E)

 <element name="geometryMembers" type="gml:GeometryArrayPropertyType" />
This property element contains a list of geometry elements. The order of the elements is significant and
shall be preserved when processing the array.

11.3.1.3 MultiGeometryPropertyType, multiGeometryProperty

 <complexType name="MultiGeometryPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:AbstractGeometricAggregate"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>
A property that has a geometric aggregate as its value domain may either be an appropriate geometry
element encapsulated in an element of this type or an XLink reference to a remote geometry element
(where remote includes geometry elements located elsewhere in the same document). Either the
reference or the contained element shall be given, but neither both nor none.

 <element name="multiGeometryProperty" type="gml:MultiGeometryPropertyType" />
This property element either references a geometric aggregate via the XLink-attributes or contains the
"multi geometry" element. gml:multiGeometryProperty is the predefined property, which may be used
by GML application schemas whenever a GML feature has a property with a value that is substitutable
for gml:AbstractGeometricAggregate.

11.3.2 0-Dimensional aggregates

11.3.2.1	 MultiPointType,	MultiPoint,	pointMember,	pointMembers

 <complexType name="MultiPointType">
 <complexContent>
 <extension base="gml:AbstractGeometricAggregateType">
 <sequence>
 <element ref="gml:pointMember" minOccurs="0" maxOccurs="unbounded" />
 <element ref="gml:pointMembers" minOccurs="0" />
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <element name="MultiPoint" type="gml:MultiPointType"
 substitutionGroup="gml:AbstractGeometricAggregate" />
gml:MultiPoint implements ISO 19107 GM_MultiPoint (see ISO 19107:2003, 6.5.4) as specified in
D.2.3.5. A gml:MultiPoint consists of one or more gml:Points.

The members of the geometric aggregate may be specified either using the "standard" property
(gml:pointMember) or the array property (gml:pointMembers). It is also valid to use both the "standard"
and the array properties in the same collection.

NOTE Array properties cannot reference remote geometry elements via XLinks.

 <element name="pointMember" type="gml:PointPropertyType" />

This property element either references a Point via the XLink-attributes or contains the Point element.

 <element name="pointMembers" type="gml:PointArrayPropertyType" />

This property element contains a list of points. The order of the elements is significant and shall be
preserved when processing the array.

11.3.2.2 MultiPointPropertyType, multiPointProperty

 <complexType name="MultiPointPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:MultiPoint"/>

82 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>
A property that has a collection of points as its value domain may either be an appropriate geometry
element encapsulated in an element of this type or an XLink reference to a remote geometry element
(where remote includes geometry elements located elsewhere in the same document). Either the
reference or the contained element shall be given, but neither both nor none.

 <element name="multiPointProperty" type="gml:MultiPointPropertyType" />
This property element either references a point aggregate via the XLink-attributes or contains the
"multi point" element. gml:multiPointProperty is the predefined property, which may be used by
GML application schemas whenever a GML feature has a property with a value that is substitutable for
gml:MultiPoint.

11.3.3 1-Dimensional aggregates

11.3.3.1	 MultiCurveType,	multiCurve,	curveMembers

 <complexType name="MultiCurveType">
 <complexContent>
 <extension base="gml:AbstractGeometricAggregateType">
 <sequence>
 <element ref="gml:curveMember" minOccurs="0" maxOccurs="unbounded" />
 <element ref="gml:curveMembers" minOccurs="0" />
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <element name="MultiCurve" type="gml:MultiCurveType"
 substitutionGroup="gml:AbstractGeometricAggregate" />
gml:MultiCurve implements ISO 19107 GM_MultiCurve (see ISO 19107:2003, 6.5.5) as specified in
D.2.3.5. A gml:MultiCurve is defined by one or more gml:AbstractCurves.

The members of the geometric aggregate may be specified either using the "standard" property
(gml:curveMember) or the array property (gml:curveMembers). It is also valid to use both the "standard"
and the array properties in the same collection.

NOTE 1 Array properties cannot reference remote geometry elements via XLinks.

 <element name="curveMembers" type="gml:CurveArrayPropertyType" />
This property element contains a list of curves. The order of the elements is significant and shall be
preserved when processing the array.

NOTE 2 gml:curveMember is declared in 10.5.11.1.

11.3.3.2 MultiCurvePropertyType, multiCurveProperty

 <complexType name="MultiCurvePropertyType">
 <sequence minOccurs="0">
 <element ref="gml:MultiCurve"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>
A property that has a collection of curves as its value domain may either be an appropriate geometry
element encapsulated in an element of this type or an XLink reference to a remote geometry element
(where remote includes geometry elements located elsewhere in the same document). Either the
reference or the contained element shall be given, but neither both nor none.

 <element name="multiCurveProperty" type="gml:MultiCurvePropertyType" />

© ISO 2020 – All rights reserved 83

ISO 19136-1:2020(E)

This property element either references a curve aggregate via the XLink-attributes or contains the
"multi curve" element. gml:multiCurveProperty is the predefined property, which may be used by
GML application schemas whenever a GML feature has a property with a value that is substitutable for
gml:MultiCurve.

11.3.4 2-Dimensional aggregates

11.3.4.1	 MultiSurfaceType,	MultiSurface,	surfaceMember,	surfaceMembers

 <complexType name="MultiSurfaceType">
 <complexContent>
 <extension base="gml:AbstractGeometricAggregateType">
 <sequence>
 <element ref="gml:surfaceMember" minOccurs="0" maxOccurs="unbounded" />
 <element ref="gml:surfaceMembers" minOccurs="0" />
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <element name="MultiSurface" type="gml:MultiSurfaceType"
 substitutionGroup="gml:AbstractGeometricAggregate" />
gml:MultiSurface implements ISO 19107 GM_MultiSurface (see ISO 19107:2003, 6.5.6) as specified in
D.2.3.5. A gml:MultiSurface is defined by one or more gml: AbstractSurfaces.

The members of the geometric aggregate may be specified either using the "standard" property
(gml:surfaceMember) or the array property (gml:surfaceMembers). It is also valid to use both the
"standard" and the array properties in the same collection.

NOTE Array properties cannot reference remote geometry elements via XLinks.

 <element name="surfaceMember" type="gml:SurfacePropertyType" />
This property element either references a surface via the XLink-attributes or contains the surface
element. A surface element is any element, which is substitutable for gml:AbstractSurface.

 <element name="surfaceMembers" type="gml:SurfaceArrayPropertyType" />
This property element contains a list of surfaces. The order of the elements is significant and shall be
preserved when processing the array.

11.3.4.2 MultiSurfacePropertyType, multiSurfaceProperty

 <complexType name="MultiSurfacePropertyType">
 <sequence minOccurs="0">
 <element ref="gml:MultiSurface"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>
A property that has a collection of surfaces as its value domain may either be an appropriate geometry
element encapsulated in an element of this type or an XLink reference to a remote geometry element
(where remote includes geometry elements located elsewhere in the same document). Either the
reference or the contained element shall be given, but neither both nor none.

 <element name="multiSurfaceProperty" type="gml:MultiSurfacePropertyType" />
This property element either references a surface aggregate via the XLink-attributes or contains the
"multi surface" element. gml:multiSurfaceProperty is the predefined property, which may be used by
GML application schemas whenever a GML feature has a property with a value that is substitutable for
gml:MultiSurface.

84 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

11.3.5 3-Dimensional aggregates

11.3.5.1	 MultiSolidType,	MultiSolid,	solidMember,	solidMembers

 <complexType name="MultiSolidType">
 <complexContent>
 <extension base="gml:AbstractGeometricAggregateType">
 <sequence>
 <element ref="gml:solidMember" minOccurs="0" maxOccurs="unbounded" />
 <element ref="gml:solidMembers" minOccurs="0" />
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <element name="MultiSolid" type="gml:MultiSolidType"
 substitutionGroup="gml:AbstractGeometricAggregate" />
gml:MultiSolid implements ISO 19107 GM_MultiSolid (see ISO 19107:2003, 6.5.7) as specified in
D.2.3.5. A gml:MultiSolid is defined by one or more gml:AbstractSolids.

The members of the geometric aggregate may be specified either using the "standard" property
(gml:solidMember) or the array property (gml:solidMembers). It is also valid to use both the "standard"
and the array properties in the same collection.

NOTE Array properties cannot reference remote geometry elements via XLinks.

 <element name="solidMember" type="gml:SolidPropertyType" />
This property element either references a solid via the XLink-attributes or contains the solid element. A
solid element is any element, which is substitutable for gml:AbstractSolid.

 <element name="solidMembers" type="gml:SolidArrayPropertyType" />
This property element contains a list of solids. The order of the elements is significant and shall be
preserved when processing the array.

11.3.5.2 MultiSolidPropertyType, multiSolidProperty

 <complexType name="MultiSolidPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:MultiSolid"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>
A property that has a collection of solids as its value domain may either be an appropriate geometry
element encapsulated in an element of this type or an XLink reference to a remote geometry element
(where remote includes geometry elements located elsewhere in the same document). Either the
reference or the contained element shall be given, but neither both nor none.

 <element name="multiSolidProperty" type="gml:MultiSolidPropertyType" />
This property element either references a solid aggregate via the XLink-attributes or contains the
"multi solid" element. gml:multiSolidProperty is the predefined property, which may be used by
GML application schemas whenever a GML feature has a property with a value that is substitutable for
gml:MultiSolid.

12 GML schema — Coordinate reference systems schemas

12.1 Overview

12.1.1 General

This clause describes the GML schema components for encoding the definitions of coordinate reference
systems and coordinate operations, explaining their contents, structure, and dependencies.

© ISO 2020 – All rights reserved 85

ISO 19136-1:2020(E)

12.1.2 Relationship with ISO 19111

The schema components of the GML schema specified in this clause provide a conformant, full
implementation of the conceptual schema specified in ISO 19111:2007. The relationship is discussed in
detail in D.2.7. Additional components for temporal reference systems are specified in D.3.9.

The ISO 19111 types implemented in GML are specified in ISO 19111:2007; some additional constraints
are specified in ISO 19111:2007 for these types, which are also constraints on the schema components
of the GML schema.

NOTE The corresponding five schema documents are referenceSystems.xsd, coordinateReferenceSystems.
xsd, datums.xsd, coordinateSystems.xsd, and coordinateOperations.xsd. These schema documents implement
the UML package with a similar name in the conceptual model.

12.1.3 Important XML elements

These XML Schema components encode definition data for both Coordinate Reference Systems (CRSs)
and Coordinate Operations (including coordinate Transformations and Conversions). This definition
data includes identification and specification data, both included as needed. See ISO 19111:2007 for the
semantics of the schema components.

The specified XML encoding includes multiple alternative top-level XML elements that can be used where
needed. (That is, there is not a single top-level element that may be the basis for all XML documents.)
Most of these top-level XML elements are GML objects that include identification information, allowing
it to be referenced. The alternative top-level XML elements include:

— All concrete XML elements in the substitution group headed by the abstract SingleCRS XML element.
These elements may each be used to transfer the definition of one coordinate reference system of
that type. These eight concrete XML elements are named:

— CompoundCRS;

— GeodeticCRS;

— ProjectedCRS;

— EngineeringCRS;

— ImageCRS;

— VerticalCRS;

— TemporalCRS;

— DerivedCRS.

— All concrete XML elements that are substitutable for the abstract CoordinateOperation XML
element, namely:

— ConcatenatedOperation;

— PassThroughOperation;

— Transformation;

— Conversion.

The concrete XML elements that are substitutable for SingleCRS use multiple lower-level XML elements
containing data structures. These lower-level elements include all five concrete elements that are
substitutable for the abstract Datum XML element, named:

— GeodeticDatum;

86 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

— VerticalDatum;

— TemporalDatum;

— EngineeringDatum;

— ImageDatum.

These lower-level XML elements also include all ten concrete elements that are substitutable for the
abstract CoordinateSystem XML element, named:

— EllipsoidalCS;

— VerticalCS;

— CartesianCS;

— AffineCS;

— LinearCS;

— PolarCS;

— SphericalCS;

— CylindricalCS;

— TimeCS;

— UserDefinedCS.

The concrete XML elements that are substitutable for the CoordinateOperation element use multiple
lower-level elements containing data structures, including the elements named:

— OperationMethod;

— OperationParameter;

— OperationParameterGroup;

— ParameterValue;

— ParameterValueGroup.

12.2 Reference systems

12.2.1 Overview

The reference systems schema components have two logical parts, which define elements and types for
XML encoding of the definitions of:

— Identified Object, inherited by the ten types of GML object used for coordinate reference systems
and coordinate operations;

— High-level part of the definitions of coordinate reference systems.

This schema encodes the Identified Object and Reference System packages of the UML Model for
ISO 19111:2007.

NOTE The referenceSystems schema includes the dictionary.xsd GML schema document, and imports
the metadataEntitySet.xsd schema document from ISO/TS 19139. This schema document is identified by the
following location-independent name (using URN syntax):

— urn: ogc: specification: gml: schema -xsd: referenceSystems: 3 .2 .1

© ISO 2020 – All rights reserved 87

ISO 19136-1:2020(E)

12.2.2	 IdentifiedObjectType

 <complexType name="IdentifiedObjectType" abstract="true">
 <complexContent>
 <extension base="gml:DefinitionType"/>
 </complexContent>
 </complexType>
gml:IdentifiedObjectType provides identification properties of a CRS-related object. In
gml:DefinitionType, the gml:identifier element shall be the primary name by which this object is
identified, encoding the "name" attribute in the UML model.

Zero or more of the gml:name elements can be an unordered set of "identifiers", encoding the "identifier"
attribute in the UML model. Each of these gml:name elements can reference elsewhere the object's
defining information or be an identifier by which this object can be referenced.

Zero or more other gml:name elements can be an unordered set of "alias" alternative names by which
this CRS related object is identified, encoding the "alias" attributes in the UML model. An object may
have several aliases, typically used in different contexts. The context for an alias is indicated by the
value of its (optional) codeSpace attribute.

Any needed version information shall be included in the codeSpace attribute of a gml:identifier
and gml:name elements. In this use, the gml:remarks element in the gml:DefinitionType shall contain
comments on or information about this object, including data source information.

12.2.3	 Abstract	coordinate	reference	system

12.2.3.1	 AbstractCRS

 <element name="AbstractCRS" type="gml:AbstractCRSType" abstract="true"
 substitutionGroup="gml:Definition"/>

 <complexType name="AbstractCRSType" abstract="true">
 <complexContent>
 <extension base="gml:IdentifiedObjectType">
 <sequence>
 <element ref="gml:domainOfValidity" minOccurs="0" maxOccurs="unbounded"/>
 <element ref="gml:scope" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
gml:AbstractCRS specifies a coordinate reference system which is usually single but may be compound.
This abstract complex type shall not be used, extended, or restricted, in a GML application schema, to
define a concrete subtype with a meaning equivalent to a concrete subtype specified in this document.

12.2.3.2 domainOfValidity

 <element name="domainOfValidity">
 <complexType>
 <sequence minOccurs="0">
 <element ref="gmd:EX_Extent"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
 </element>
The gml:domainOfValidity property implements an association role to an EX_Extent object as encoded
in ISO/TS 19139, either referencing or containing the definition of that extent.

12.2.3.3 scope

 <element name="scope" type="string"/>

The gml:scope property provides a description of the usage, or limitations of usage, for which this CRS-
related object is valid. If unknown, enter "not known".

88 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

12.2.3.4 CRSPropertyType

 <complexType name="CRSPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:AbstractCRS"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:CRSPropertyType is a property type for association roles to a CRS abstract coordinate reference
system, either referencing or containing the definition of that CRS.

12.3 Coordinate reference systems

12.3.1 Overview

The spatial-temporal coordinate reference systems schema components are divided into two logical
parts. One part defines elements and types for XML encoding of abstract coordinate reference systems
definitions. The larger part defines specialized constructs for XML encoding of definitions of the
multiple concrete types of spatial-temporal coordinate reference system.

These schema components encode the Coordinate Reference System packages of the UML Models of
ISO 19111:2007, Clause 8, and D.3.9 of this document, with the exception of the abstract "SC_CRS" class.

NOTE The coordinateReferenceSystems schema document includes the coordinateSystems.xsd, datums.
xsd, and coordinateOperations.xsd GML schema documents. This schema document is identified by the following
location-independent name (using URN syntax):

— urn: ogc: specification: gml: schema -xsd: coordinateReferenceSystems: 3 .2 .1

12.3.2	 Abstract	coordinate	reference	systems

12.3.2.1	 AbstractSingleCRS

 <element name="AbstractSingleCRS" type="gml:AbstractCRSType" abstract="true" substituti
onGroup="gml:AbstractCRS"/>
gml:AbstractSingleCRS implements a coordinate reference system consisting of one coordinate system
and one datum (as opposed to a Compound CRS).

12.3.2.2 SingleCRSPropertyType

 <complexType name="SingleCRSPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:AbstractSingleCRS"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:SingleCRSPropertyType is a property type for association roles to a single coordinate reference
system, either referencing or containing the definition of that coordinate reference system.

12.3.2.3	 AbstractGeneralDerivedCRS

 <element name="AbstractGeneralDerivedCRS" type="gml:AbstractGeneralDerivedCRSType"
 abstract="true" substitutionGroup="gml:AbstractSingleCRS"/>

 <complexType name="AbstractGeneralDerivedCRSType" abstract="true">
 <complexContent>
 <extension base="gml:AbstractCRSType">
 <sequence>
 <element ref="gml:conversion"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

© ISO 2020 – All rights reserved 89

ISO 19136-1:2020(E)

gml:AbstractGeneralDerivedCRS is a coordinate reference system that is defined by its coordinate
conversion from another coordinate reference system. This abstract complex type shall not be used,
extended, or restricted, in a GML application schema, to define a concrete subtype with a meaning
equivalent to a concrete subtype specified in this document.

12.3.2.4 Conversion

 <element name="conversion" type="gml:GeneralConversionPropertyType"/>
gml:conversion is an association role to the coordinate conversion used to define the derived CRS.

12.3.3 Concrete coordinate reference systems

12.3.3.1 CompoundCRS

 <element name="CompoundCRS" type="gml:CompoundCRSType"
 substitutionGroup="gml:AbstractCRS"/>

 <complexType name="CompoundCRSType">
 <complexContent>
 <extension base="gml:AbstractCRSType">
 <sequence>
 <element ref="gml:componentReferenceSystem" minOccurs="2"
 maxOccurs="unbounded"/>
 </sequence>
 <attributeGroup ref="gml:AggregationAttributeGroup"/>
 </extension>
 </complexContent>
 </complexType>
gml:CompundCRS is a coordinate reference system describing the position of points through two or more
independent coordinate reference systems. It is associated with a non-repeating sequence of two or
more instances of SingleCRS.

12.3.3.2 ComponentReferenceSystem

 <element name="componentReferenceSystem" type="gml:SingleCRSPropertyType"/>
The gml:componentReferenceSystem elements are an ordered sequence of associations to all the
component coordinate reference systems included in this compound coordinate reference system. The
gml:AggregationAttributeGroup should be used to specify that the gml:componentReferenceSystem
properties are ordered.

12.3.3.3 CompoundCRSPropertyType

 <complexType name="CompoundCRSPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:CompoundCRS"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:CompoundCRSPropertyType is a property type for association roles to a compound coordinate
reference system, either referencing or containing the definition of that reference system.

12.3.3.4 GeodeticCRS

 <element name="GeodeticCRS" type="gml:GeodeticCRSType"
 substitutionGroup="gml:AbstractSingleCRS"/>

 <complexType name="GeodeticCRSType">
 <complexContent>
 <extension base="gml:AbstractCRSType">
 <sequence>
 <choice>
 <element ref="gml:ellipsoidalCS"/>
 <element ref="gml:cartesianCS"/>

90 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

 <element ref="gml:sphericalCS"/>
 </choice>
 <element ref="gml:geodeticDatum"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
gml:GeodeticCRS is a coordinate reference system based on a geodetic datum.

12.3.3.5 EllipsoidalCS

 <element name="ellipsoidalCS" type="gml:EllipsoidalCSPropertyType"/>
gml:ellipsoidalCS is an association role to the ellipsoidal coordinate system used by this CRS.

12.3.3.6 cartesianCS

 <element name="cartesianCS" type="gml:CartesianCSPropertyType"/>
gml:cartesianCS is an association role to the Cartesian coordinate system used by this CRS.

12.3.3.7 sphericalCS

 <element name="sphericalCS" type="gml:SphericalCSPropertyType"/>
gml:sphericalCS is an association role to the spherical coordinate system used by this CRS.

12.3.3.8 geodeticDatum

 <element name="geodeticDatum" type="gml:GeodeticDatumPropertyType"/>
gml:geodeticDatum is an association role to the geodetic datum used by this CRS.

12.3.3.9 GeodeticCRSPropertyType

 <complexType name="GeodeticCRSPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:GeodeticCRS"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:GeodeticCRSPropertyType is a property type for association roles to a geodetic coordinate
reference system, either referencing or containing the definition of that reference system.

12.3.3.10 VerticalCRS

 <element name="VerticalCRS" type="gml:VerticalCRSType" substitutionGroup="gml:AbstractS
ingleCRS"/>

 <complexType name="VerticalCRSType">
 <complexContent>
 <extension base="gml:AbstractCRSType">
 <sequence>
 <element ref="gml:verticalCS"/>
 <element ref="gml:verticalDatum"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
gml:VerticalCRS is a 1D coordinate reference system used for recording heights or depths. Vertical
CRSs make use of the direction of gravity to define the concept of height or depth, but the relationship
with gravity may not be straightforward. By implication, ellipsoidal heights (h) cannot be captured in
a vertical coordinate reference system. Ellipsoidal heights cannot exist independently, but only as an
inseparable part of a 3D coordinate tuple defined in a geographic 3D coordinate reference system.

© ISO 2020 – All rights reserved 91

ISO 19136-1:2020(E)

12.3.3.11 verticalCS

 <element name="verticalCS" type="gml:VerticalCSPropertyType"/>
gml:verticalCS is an association role to the vertical coordinate system used by this CRS.

12.3.3.12 verticalDatum

 <element name="verticalDatum" type="gml:VerticalDatumPropertyType"/>
gml:verticalDatum is an association role to the vertical datum used by this CRS.

12.3.3.13 VerticalCRSPropertyType

 <complexType name="VerticalCRSPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:VerticalCRS"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:VerticalCRSPropertyType is a property type for association roles to a vertical coordinate reference
system, either referencing or containing the definition of that reference system.

12.3.3.14	 ProjectedCRS

 <element name="ProjectedCRS" type="gml:ProjectedCRSType"
substitutionGroup="gml:AbstractGeneralDerivedCRS"/>

 <complexType name="ProjectedCRSType">
 <complexContent>
 <extension base="gml:AbstractGeneralDerivedCRSType">
 <sequence>
 <choice>
 <element ref="gml:baseGeodeticCRS"/>
 <element ref="gml:baseGeographicCRS"/>
 </choice>
 <element ref="gml:cartesianCS"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
gml:ProjectedCRS is a 2D coordinate reference system used to approximate the shape of the Earth on
a planar surface, but in such a way that the distortion that is inherent to the approximation is carefully
controlled and known. Distortion correction is commonly applied to calculated bearings and distances
to produce values that are a close match to actual field values.

12.3.3.15	 baseGeodeticCRS

 <element name="baseGeodeticCRS" type="gml:GeodeticCRSPropertyType"/>
gml:baseGeodeticCRS is an association role to the geodetic coordinate reference system used by this
projected CRS.

12.3.3.16	 ProjectedCRSPropertyType

 <complexType name="ProjectedCRSPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:ProjectedCRS"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:ProjectedCRSPropertyType is a property type for association roles to a projected coordinate
reference system, either referencing or containing the definition of that reference system.

92 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

12.3.3.17 DerivedCRS

 <element name="DerivedCRS" type="gml:DerivedCRSType" substitutionGroup="gml:AbstractGen
eralDerivedCRS"/>

 <complexType name="DerivedCRSType">
 <complexContent>
 <extension base="gml:AbstractGeneralDerivedCRSType">
 <sequence>
 <element ref="gml:baseCRS"/>
 <element ref="gml:derivedCRSType"/>
 <element ref="gml:coordinateSystem"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
gml:DerivedCRS is a single coordinate reference system that is defined by its coordinate conversion
from another single coordinate reference system known as the base CRS. The base CRS can be a
projected coordinate reference system, if this DerivedCRS is used for a georectified grid coverage as
described in ISO 19123:2005, Clause 8.

12.3.3.18	 baseCRS

 <element name="baseCRS" type="gml:SingleCRSPropertyType"/>
gml:baseCRS is an association role to the coordinate reference system used by this derived CRS.

12.3.3.19 derivedCRSType

 <element name="derivedCRSType" type="gml:CodeWithAuthorityType"/>
The gml:derivedCRSType property describes the type of a derived coordinate reference system. The
required codeSpace attribute shall reference a source of information specifying the values and meanings
of all the allowed string values for this property.

12.3.3.20 coordinateSystem

 <element name="coordinateSystem" type="gml:CoordinateSystemPropertyType"/>

gml:usesCS is an association role to the coordinate system used by this CRS.

12.3.3.21 DerivedCRSPropertyType

 <complexType name="DerivedCRSPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:DerivedCRS"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:DerivedCRSPropertyType is a property type for association roles to a non-projected derived
coordinate reference system, either referencing or containing the definition of that reference system.

12.3.3.22 EngineeringCRS

 <element name="EngineeringCRS" type="gml:EngineeringCRSType" substitutionGroup="gml:Abs
tractSingleCRS"/>

 <complexType name="EngineeringCRSType">
 <complexContent>
 <extension base="gml:AbstractCRSType">
 <sequence>
 <choice>
 <element ref="gml:affineCS"/>
 <element ref="gml:cartesianCS"/>
 <element ref="gml:cylindricalCS"/>
 <element ref="gml:linearCS"/>
 <element ref="gml:polarCS"/>

© ISO 2020 – All rights reserved 93

ISO 19136-1:2020(E)

 <element ref="gml:sphericalCS"/>
 <element ref="gml:userDefinedCS"/>
 <element ref="gml:coordinateSystem"/>
 </choice>
 <element ref="gml:engineeringDatum"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
gml:EngineeringCRS is a contextually local coordinate reference system which can be divided into two
broad categories:

— Earth-fixed systems applied to engineering activities on or near the surface of the Earth;

— CRSs on moving platforms such as road vehicles, vessels, aircraft, or spacecraft, see
ISO 19111:2007, 8.3.

12.3.3.23 cylindricalCS

 <element name="cylindricalCS" type="gml:CylindricalCSPropertyType"/>
gml: cylindricalCS is an association role to the cylindrical coordinate system used by this CRS.

12.3.3.24 linearCS

 <element name="linearCS" type="gml:LinearCSPropertyType"/>
gml: linearCS is an association role to the linear coordinate system used by this CRS.

12.3.3.25 polarCS

 <element name="polarCS" type="gml:PolarCSPropertyType"/>
gml: polarCS is an association role to the polar coordinate system used by this CRS.

12.3.3.26	 userDefinedCS

 <element name="userDefinedCS" type="gml:UserDefinedCSPropertyType"/>
gml: userDefinedCS is an association role to the user defined coordinate system used by this CRS.

12.3.3.27 engineeringDatum

 <element name="engineeringDatum" type="gml:EngineeringDatumPropertyType"/>
gml: engineeringDatum is an association role to the engineering datum used by this CRS.

12.3.3.28 EngineeringCRSPropertyType

 <complexType name="EngineeringCRSPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:EngineeringCRS"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:EngineeringCRSPropertyType is a property type for association roles to an engineering coordinate
reference system, either referencing or containing the definition of that reference system.

12.3.3.29 ImageCRS

 <element name="ImageCRS" type="gml:ImageCRSType" substitutionGroup="gml:AbstractSingle
CRS"/>

 <complexType name="ImageCRSType">
 <complexContent>
 <extension base="gml:AbstractCRSType">
 <sequence>
 <choice>

94 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

 <element ref="gml:cartesianCS"/>
 <element ref="gml:affineCS"/>
 <element ref="gml:usesObliqueCartesianCS"/>
 </choice>
 <element ref="gml:imageDatum"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
gml:ImageCRS is an engineering coordinate reference system applied to locations in images. Image
coordinate reference systems are treated as a separate subtype because the definition of the associated
image datum contains two attributes not relevant to other engineering datums.

12.3.3.30	 affineCS

 <element name="affineCS" type="gml:AffineCSPropertyType"/>
gml:affineCS is an association role to the affine coordinate system used by this CRS.

12.3.3.31 imageDatum

 <element name="imageDatum" type="gml:ImageDatumPropertyType"/>
gml:imageDatum is an association role to the image datum used by this CRS.

12.3.3.32 ImageCRSPropertyType

 <complexType name="ImageCRSPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:ImageCRS"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:ImageCRSPropertyType is a property type for association roles to an image coordinate reference
system, either referencing or containing the definition of that reference system.

12.3.3.33 TemporalCRS

 <element name="TemporalCRS" type="gml:TemporalCRSType" substitutionGroup="gml:AbstractS
ingleCRS"/>

 <complexType name="TemporalCRSType">
 <complexContent>
 <extension base="gml:AbstractCRSType">
 <sequence>
 <choice>
 <element ref="gml:timeCS"/>
 <element ref="gml:usesTemporalCS"/>
 </choice>
 <element ref="gml:temporalDatum"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
gml:TemporalCRS is a 1D coordinate reference system used for the recording of time.

12.3.3.34 timeCS

 <element name="timeCS" type="gml:TimeCSPropertyType"/>

gml:timeCS is an association role to the time coordinate system used by this CRS.

12.3.3.35 temporalDatum

 <element name="temporalDatum" type="gml:TemporalDatumPropertyType"/>

gml:temporalDatum is an association role to the temporal datum used by this CRS.

© ISO 2020 – All rights reserved 95

ISO 19136-1:2020(E)

12.3.3.36 TemporalCRSPropertyType

 <complexType name="TemporalCRSPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:TemporalCRS"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>

gml:TemporalCRSPropertyType is a property type for association roles to a temporal coordinate
reference system, either referencing or containing the definition of that reference system.

12.4 Coordinate systems

12.4.1 Overview

The coordinate systems schema components can be divided into three logical parts, which define
elements and types for XML encoding of the definitions of:

— coordinate system axes;

— abstract coordinate system;

— multiple concrete types of spatial-temporal coordinate system.

These schema components encode the Coordinate System packages of the UML Models of ISO 19111:2007,
Clause 9, and D.3.9 of this document.

NOTE The coordinateSystems schema document includes the referenceSystems.xsd GML schema document.
This schema is identified by the following location-independent name (using URN syntax):

— urn: ogc: specification: gml: schema -xsd: coordinateSystems: 3 .2 .1

12.4.2 Coordinate system axes

12.4.2.1 CoordinateSystemAxis

 <element name="CoordinateSystemAxis" type="gml:CoordinateSystemAxisType"
 substitutionGroup="gml:Definition"/>

 <complexType name="CoordinateSystemAxisType">
 <complexContent>
 <extension base="gml:IdentifiedObjectType">
 <sequence>
 <element ref="gml:axisAbbrev"/>
 <element ref="gml:axisDirection"/>
 <element ref="gml:minimumValue" minOccurs="0"/>
 <element ref="gml:maximumValue" minOccurs="0"/>
 <element ref="gml:rangeMeaning" minOccurs="0"/>
 </sequence>
 <attribute name="uom" type="gml:UomIdentifier" use="required"/>
 </extension>
 </complexContent>
 </complexType>
gml:CoordinateSystemAxis is a definition of a coordinate system axis.

12.4.2.2	 axisAbbrev

 <element name="axisAbbrev" type="gml:CodeType"/>
gml:axisAbbrev is the abbreviation used for this coordinate system axis; this abbreviation is also used
to identify the coordinates in the coordinate tuple. The codeSpace attribute may reference a source of
more information on a set of standardized abbreviations, or on this abbreviation.

EXAMPLE Typical abbreviations are “X” and “Y”.

96 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

12.4.2.3 axisDirection

 <element name="axisDirection" type="gml:CodeWithAuthorityType”/>
gml:axisDirection is the direction of this coordinate system axis (or in the case of Cartesian projected
coordinates, the direction of this coordinate system axis at the origin).

EXAMPLE Typical directions can be "north" or "south", "east" or "west", "up" or "down".

Within any set of coordinate system axes, only one of each pair of terms may be used. For Earth-fixed
CRSs, this direction is often approximate and intended to provide a human interpretable meaning to
the axis. When a geodetic datum is used, the precise directions of the axes may therefore vary slightly
from this approximate direction.

NOTE A gml:EngineeringCRS often requires specific descriptions of the directions of its coordinate
system axes.

The codeSpace attribute shall reference a source of information specifying the values and meanings of
all the allowed string values for this property.

12.4.2.4 minimumValue, maximumValue, rangeMeaning

 <element name="minimumValue" type="double"/>
 <element name="maximumValue" type="double"/>
The gml:minimumValue and gml:maximumValue properties allow the specification of minimum and
maximum value normally allowed for this axis, in the unit of measure for the axis. For a continuous
angular axis such as longitude, the values wrap-around at this value. Also, values beyond this minimum/
maximum can be used for specified purposes, such as in a bounding box. A value of minus infinity shall
be allowed for the gml:minimumValue element, a value of plus infinity for the gml:maximumValue element.
If these elements are omitted, the value is unspecified.

 <element name="rangeMeaning" type="gml:CodeWithAuthorityType"/>
gml:rangeMeaning describes the meaning of axis value range specified by gml:minimumValue and
gml:maximumValue. This element shall be omitted when both gml:minimumValue and gml:maximumValue
are omitted. This element should be included when gml: minimumValue and/or gml:maximumValue are
included. If this element is omitted when the gml:minimumValue and/or gml:maximumValue are included,
the meaning is unspecified. The codeSpace attribute shall reference a source of information specifying
the values and meanings of all the allowed string values for this property.

12.4.2.5 uom

The uom attribute provides an identifier of the unit of measure used for this coordinate system axis. The
value of this coordinate in a coordinate tuple shall be recorded using this unit of measure, whenever
those coordinates use a coordinate reference system that uses a coordinate system that uses this axis.

12.4.2.6 CoordinateSystemAxisPropertyType

 <complexType name="CoordinateSystemAxisPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:CoordinateSystemAxis"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:CoordinateSystemAxisPropertyType is a property type for association roles to a coordinate system
axis, either referencing or containing the definition of that axis.

12.4.3	 Abstract	coordinate	system

12.4.3.1	 AbstractCoordinateSystem

 <element name="AbstractCoordinateSystem" type="gml:AbstractCoordinateSystemType"
 abstract="true" substitutionGroup="gml:Definition"/>

© ISO 2020 – All rights reserved 97

ISO 19136-1:2020(E)

 <complexType name="AbstractCoordinateSystemType" abstract="true">
 <complexContent>
 <extension base="gml:IdentifiedObjectType">
 <sequence>
 <element ref="gml:axis" maxOccurs="unbounded"/>
 </sequence>
 <attributeGroup ref="gml:AggregationAttributeGroup"/>
 </extension>
 </complexContent>
 </complexType>
gml:AbstractCoordinateSystem is the non-repeating sequence of coordinate system axes that spans a
given coordinate space. A CS is derived from a set of mathematical rules for specifying how coordinates
in a given space are to be assigned to points. The coordinate values in a coordinate tuple shall be
recorded in the order in which the coordinate system axes associations are recorded. This abstract
complex type shall not be used, extended, or restricted, in an Application Schema, to define a concrete
subtype with a meaning equivalent to a concrete subtype specified in this document.

12.4.3.2 axis

 <element name="axis" type="gml:CoordinateSystemAxisPropertyType"/>
The gml:axis property is an association role (ordered sequence) to the coordinate system axes included
in this coordinate system. The coordinate values in a coordinate tuple shall be recorded in the order
in which the coordinate system axes associations are recorded, whenever those coordinates use a
coordinate reference system that uses this coordinate system. The gml:AggregationAttributeGroup
should be used to specify that the axis objects are ordered.

12.4.3.3 CoordinateSystemPropertyType

 <complexType name="CoordinateSystemPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:AbstractCoordinateSystem"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:CoordinateSystemPropertyType is a property type for association roles to a coordinate system,
either referencing or containing the definition of that coordinate system.

12.4.4 Concrete coordinate systems

12.4.4.1 EllipsoidalCS

 <element name="EllipsoidalCS" type="gml:EllipsoidalCSType" substitutionGroup="gml:Abstr
actCoordinateSystem"/>

 <complexType name="EllipsoidalCSType">
 <complexContent>
 <extension base="gml:AbstractCoordinateSystemType"/>
 </complexContent>
 </complexType>
gml:EllipsoidalCS is a two- or three-dimensional coordinate system in which position is specified
by geodetic latitude, geodetic longitude, and (in the three-dimensional case) ellipsoidal height. An
EllipsoidalCS shall have two or three gml:axis property elements; the number of associations shall
equal the dimension of the CS.

12.4.4.2 EllipsoidalCSPropertyType

 <complexType name="EllipsoidalCSPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:EllipsoidalCS"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>

98 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

gml:EllipsoidalCSPropertyType is a property type for association roles to an ellipsoidal coordinate
system, either referencing or containing the definition of that coordinate system.

12.4.4.3 CartesianCS

 <element name="CartesianCS" type="gml:CartesianCSType"
 substitutionGroup="gml:AbstractCoordinateSystem"/>

 <complexType name="CartesianCSType">
 <complexContent>
 <extension base="gml:AbstractCoordinateSystemType"/>
 </complexContent>
 </complexType>
gml:CartesianCS is a 1-, 2-, or 3-dimensional coordinate system. In the 1-dimensional case, it contains
a single straight coordinate axis. In the 2- and 3-dimensional cases gives the position of points relative
to orthogonal straight axes. In the multi-dimensional case, all axes shall have the same length unit of
measure. A CartesianCS shall have one, two, or three gml:axis property elements.

12.4.4.4 CartesianCSPropertyType

 <complexType name="CartesianCSPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:CartesianCS"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:CartesianCSPropertyType is a property type for association roles to a Cartesian coordinate system,
either referencing or containing the definition of that coordinate system.

12.4.4.5 VerticalCS

 <element name="VerticalCS" type="gml:VerticalCSType"
 substitutionGroup="gml:AbstractCoordinateSystem"/>

 <complexType name="VerticalCSType">
 <complexContent>
 <extension base="gml:AbstractCoordinateSystemType"/>
 </complexContent>
 </complexType>
gml:VerticalCS is a one-dimensional coordinate system used to record the heights or depths of points.
Such a coordinate system is usually dependent on the Earth's gravitational field, perhaps loosely as
when atmospheric pressure is the basis for the vertical coordinate system axis. A VerticalCS shall have
one gml:axis property element.

12.4.4.6 VerticalCSPropertyType

 <complexType name="VerticalCSPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:VerticalCS"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:VerticalCSPropertyType is a property type for association roles to a vertical coordinate system,
either referencing or containing the definition of that coordinate system.

12.4.4.7 TimeCS

 <element name="TimeCS" type="gml:TimeCSType"
 substitutionGroup="gml:AbstractCoordinateSystem"/>

 <complexType name="TimeCSType">
 <complexContent>
 <extension base="gml:AbstractCoordinateSystemType"/>

© ISO 2020 – All rights reserved 99

ISO 19136-1:2020(E)

 </complexContent>
 </complexType>
gml:TimeCS is a one-dimensional coordinate system containing a time axis, used to describe the
temporal position of a point in the specified time units from a specified time origin. A TimeCS shall have
one gml:axis property element.

12.4.4.8 TimeCSPropertyType

 <complexType name="TimeCSPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:TimeCS"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:TimeCSPropertyType is a property type for association roles to a time coordinate system, either
referencing or containing the definition of that coordinate system.

12.4.4.9 LinearCS

 <element name="LinearCS" type="gml:LinearCSType"
 substitutionGroup="gml:AbstractCoordinateSystem"/>

 <complexType name="LinearCSType">
 <complexContent>
 <extension base="gml:AbstractCoordinateSystemType"/>
 </complexContent>
 </complexType>
gml:LinearCS is a one-dimensional coordinate system that consists of the points that lie on the single
axis described. The associated coordinate is the distance — with or without offset — from the specified
datum to the point along the axis. A LinearCS shall have one gml:axis property element.

EXAMPLE Usage of the line feature representing a pipeline to describe points on or along that pipeline.

NOTE gml:LinearCS can only be used for simple continuous linear systems. Linear Reference Systems
(LRS), particularly as applied to the transportation industry, are specified in ISO 19133 and are not implemented
by this document.

12.4.4.10 LinearCSPropertyType

 <complexType name="LinearCSPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:LinearCS"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:LinearCSPropertyType is a property type for association roles to a linear coordinate system, either
referencing or containing the definition of that coordinate system.

12.4.4.11	 UserDefinedCS

 <element name="UserDefinedCS" type="gml:UserDefinedCSType"
 substitutionGroup="gml:AbstractCoordinateSystem"/>

 <complexType name="UserDefinedCSType">
 <complexContent>
 <extension base="gml:AbstractCoordinateSystemType"/>
 </complexContent>
 </complexType>
gml:UserDefinedCS is a two- or three-dimensional coordinate system that consists of any
combination of coordinate axes not covered by any other coordinate system type. A UserDefinedCS

100 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

shall have two or three gml:axis property elements; the number of property elements shall equal
the dimension of the CS.

EXAMPLE A multilinear coordinate system which contains one coordinate axis that may have any 1D shape
which has no intersections with itself. This non-straight axis is supplemented by one or two straight axes to complete
a 2 or 3 dimensional coordinate system. The non-straight axis is typically incrementally straight or curved.

12.4.4.12	 UserDefinedCSPropertyType

 <complexType name="UserDefinedCSPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:UserDefinedCS"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:UserDefinedCSPropertyType is a property type for association roles to a user-defined coordinate
system, either referencing or containing the definition of that coordinate system.

12.4.4.13 SphericalCS

 <element name="SphericalCS" type="gml:SphericalCSType"
 substitutionGroup="gml:AbstractCoordinateSystem"/>

 <complexType name="SphericalCSType">
 <complexContent>
 <extension base="gml:AbstractCoordinateSystemType"/>
 </complexContent>
 </complexType>
gml:SphericalCS is a three-dimensional coordinate system with one distance measured from the origin
and two angular coordinates.

It should not be confused with an ellipsoidal coordinate system based on an ellipsoid "degenerated"
into a sphere.

A SphericalCS shall have three gml:axis property elements.

12.4.4.14 SphericalCSPropertyType

 <complexType name="SphericalCSPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:SphericalCS"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:SphericalCSPropertyType is property type for association roles to a spherical coordinate system,
either referencing or containing the definition of that coordinate system.

12.4.4.15 PolarCS

 <element name="PolarCS" type="gml:PolarCSType"
 substitutionGroup="gml:AbstractCoordinateSystem"/>

 <complexType name="PolarCSType">
 <complexContent>
 <extension base="gml:AbstractCoordinateSystemType"/>
 </complexContent>
 </complexType>
gml:PolarCS is a two-dimensional coordinate system in which position is specified by the distance from
the origin and the angle between the line from the origin to a point and a reference direction. A PolarCS
shall have two gml:axis property elements.

© ISO 2020 – All rights reserved 101

ISO 19136-1:2020(E)

12.4.4.16 PolarCSPropertyType

 <complexType name="PolarCSPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:PolarCS"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:PolarCSPropertyType is a property type for association roles to a polar coordinate system, either
referencing or containing the definition of that coordinate system.

12.4.4.17 CylindricalCS

 <element name="CylindricalCS" type="gml:CylindricalCSType"
 substitutionGroup="gml:AbstractCoordinateSystem"/>

 <complexType name="CylindricalCSType">
 <complexContent>
 <extension base="gml:AbstractCoordinateSystemType"/>
 </complexContent>
 </complexType>
gml:CylindricalCS is a three-dimensional coordinate system consisting of a polar coordinate system
extended by a straight coordinate axis perpendicular to the plane spanned by the polar coordinate
system. A CylindricalCS shall have three gml:axis property elements.

12.4.4.18 CylindricalCSPropertyType

 <complexType name="CylindricalCSPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:CylindricalCS"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:CylindricalCSPropertyType is a property type for association roles to a cylindrical coordinate
system, either referencing or containing the definition of that coordinate system.

12.4.4.19	 AffineCS

 <element name="AffineCS" type="gml:AffineCSType"
 substitutionGroup="gml:AbstractCoordinateSystem"/>

 <complexType name="AffineCSType">
 <complexContent>
 <extension base="gml:AbstractCoordinateSystemType"/>
 </complexContent>
 </complexType>
gml:AffineCS is a two- or three-dimensional coordinate system with straight axes that are not
necessarily orthogonal. An AffineCS shall have two or three gml:axis property elements; the number of
property elements shall equal the dimension of the CS.

12.4.4.20	 AffineCSPropertyType

 <complexType name="AffineCSPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:AffineCS"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:AffineCSPropertyType is a property type for association roles to an affine coordinate system,
either referencing or containing the definition of that coordinate system.

102 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

12.5 Datums

12.5.1 Overview

The datums schema components can be divided into three logical parts, which define elements and
types for XML encoding of the definitions of:

— abstract datum;

— geodetic datums, including ellipsoid and prime meridian;

— multiple other concrete types of spatial or temporal datum.

These schema components encode the Datum packages of the UML Models of ISO 19111:2007, Clause 10,
and D.3.9 of this document.

NOTE The datums schema document includes the referenceSystems.xsd GML schema. This schema is
identified by the following location-independent name (using URN syntax):

— urn: ogc: specification: gml: schema -xsd: datums: 3 .2 .1

12.5.2	 Abstract	datum

12.5.2.1	 AbstractDatum

 <element name="AbstractDatum" type="gml:AbstractDatumType" abstract="true"
 substitutionGroup="gml:Definition"/>

 <complexType name="AbstractDatumType" abstract="true">
 <complexContent>
 <extension base="gml:IdentifiedObjectType">
 <sequence>
 <element ref="gml:domainOfValidity" minOccurs="0"/>
 <element ref="gml:scope" maxOccurs="unbounded"/>
 <element ref="gml:anchorDefinition" minOccurs="0"/>
 <element ref="gml:realizationEpoch" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
A gml:AbstractDatum specifies the relationship of a coordinate system to the Earth, thus creating a
coordinate reference system. A datum uses a parameter or set of parameters that determine the
location of the origin of the coordinate reference system. Each datum subtype may be associated with
only specific types of coordinate system. This abstract complex type shall not be used, extended, or
restricted, in a GML application schema, to define a concrete subtype with a meaning equivalent to a
concrete subtype specified in this document.

12.5.2.2	 anchorDefinition

 <element name="anchorDefinition" type="gml:CodeType"/>
gml:anchorDefinition is a description, possibly including coordinates, of the definition used to anchor
the datum to the Earth, also known as the “origin”, especially for engineering and image datums. The
codeSpace attribute may be used to reference a source of more detailed on this point or surface, or on a
set of such descriptions.

— For a geodetic datum, this point is also known as the fundamental point, which is traditionally the
point where the relationship between geoid and ellipsoid is defined. In some cases, the "fundamental
point" may consist of a number of points. In those cases, the parameters defining the geoid/ellipsoid
relationship have been averaged for these points, and the averages adopted as the datum definition.

— For an engineering datum, the anchor definition may be a physical point, or it may be a point with
defined coordinates in another CRS.

© ISO 2020 – All rights reserved 103

ISO 19136-1:2020(E)

— For an image datum, the anchor definition is usually either the centre of the image or the corner of
the image.

— For a temporal datum, this attribute is not defined. Instead of the anchor definition, a temporal
datum carries a separate time origin of type DateTime.

12.5.2.3 realizationEpoch

 <element name="realizationEpoch" type="date"/>
gml:realizationEpoch is the time after which this datum definition is valid. See ISO 19111:2007,
Table 33, for details.

12.5.2.4 DatumPropertyType

 <complexType name="DatumPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:AbstractDatum"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:DatumPropertyType is a property type for association roles to a datum, either referencing or
containing the definition of that datum.

12.5.3 Geodetic datum

12.5.3.1 GeodeticDatum

 <element name="GeodeticDatum" type="gml:GeodeticDatumType"
 substitutionGroup="gml:AbstractDatum"/>

 <complexType name="GeodeticDatumType">
 <complexContent>
 <extension base="gml:AbstractDatumType">
 <sequence>
 <element ref="gml:primeMeridian"/>
 <element ref="gml:ellipsoid"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
gml:GeodeticDatum is a geodetic datum defines the precise location and orientation in 3-dimensional
space of a defined ellipsoid (or sphere), or of a Cartesian coordinate system centred in this ellipsoid (or
sphere).

12.5.3.2 primeMeridian

 <element name="primeMeridian" type="gml:PrimeMeridianPropertyType"/>
gml:primeMeridian is an association role to the prime meridian used by this geodetic datum.

12.5.3.3 ellipsoid

 <element name="ellipsoid" type="gml:EllipsoidPropertyType"/>
gml:ellipsoid is an association role to the ellipsoid used by this geodetic datum.

12.5.3.4 GeodeticDatumPropertyType

 <complexType name="GeodeticDatumPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:GeodeticDatum"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>

104 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

gml:GeodeticDatumPropertyType is a property type for association roles to a geodetic datum, either
referencing or containing the definition of that datum.

12.5.3.5	 Ellipsoid,	semiMajorAxis,	secondDefiningParameter

 <element name="Ellipsoid" type="gml:EllipsoidType" substitutionGroup="gml:Definition"/>

 <complexType name="EllipsoidType">
 <complexContent>
 <extension base="gml:IdentifiedObjectType">
 <sequence>
 <element ref="gml:semiMajorAxis"/>
 <element ref="gml:secondDefiningParameter"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
A gml:Ellipsoid is a geometric figure that may be used to describe the approximate shape of the Earth.
In mathematical terms, it is a surface formed by the rotation of an ellipse about its minor axis.

 <element name="semiMajorAxis" type="gml:MeasureType"/>
gml:semiMajorAxis specifies the length of the semi-major axis of the ellipsoid, with its units. Uses the
MeasureType with the restriction that the unit of measure referenced by uom shall be suitable for a
length, such as metres or feet.

 <element name="secondDefiningParameter">
 <complexType>
 <sequence>
 <element ref="gml:SecondDefiningParameter"/>
 </sequence>
 </complexType>
 </element>

 <element name="SecondDefiningParameter">
 <complexType>
 <choice>
 <element name="inverseFlattening" type="gml:MeasureType"/>
 <element name="semiMinorAxis" type="gml:LengthType"/>
 <element name="isSphere" type="boolean" default="true"/>
 </choice>
 </complexType>
 </element>
gml:secondDefiningParameter is a property containing the definition of the second parameter that
defines the shape of an ellipsoid. An ellipsoid requires two defining parameters: semi-major axis and
inverse flattening or semi-major axis and semi-minor axis. When the reference body is a sphere rather
than an ellipsoid, only a single defining parameter is required, namely the radius of the sphere; in that
case, the semi-major axis "degenerates" into the radius of the sphere.

The gml:inverseFlattening element contains the inverse flattening value of the ellipsoid. This value is
a scale factor (or ratio). It uses gml:LengthType with the restriction that the unit of measure referenced
by the uom attribute shall be suitable for a scale factor, such as percent, permil, or parts-per-million.

The gml:semiMinorAxis element contains the length of the semi-minor axis of the ellipsoid. When the
gml:isSphere element is included, the ellipsoid is degenerate and is actually a sphere. The sphere is
completely defined by the semi-major axis, which is the radius of the sphere.

12.5.3.6 EllipsoidPropertyType

 <complexType name="EllipsoidPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:Ellipsoid"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>

© ISO 2020 – All rights reserved 105

ISO 19136-1:2020(E)

gml:EllipsoidPropertyType is a property type for association roles to an ellipsoid, either referencing
or containing the definition of that ellipsoid.

12.5.3.7 PrimeMeridian, greenwichLongitude

 <element name="PrimeMeridian" type="gml:PrimeMeridianType"
 substitutionGroup="gml:Definition"/>

 <complexType name="PrimeMeridianType">
 <complexContent>
 <extension base="gml:IdentifiedObjectType">
 <sequence>
 <element ref="gml:greenwichLongitude"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
A gml:PrimeMeridian defines the origin from which longitude values are determined. The default value
for the prime meridian gml:identifier value is "Greenwich".

 <element name="greenwichLongitude" type="gml:AngleType"/>
gml:greenwichLongitude is the longitude of the prime meridian measured from the Greenwich
meridian, positive eastward. If the value of the prime meridian “name” is "Greenwich" then the value of
greenwichLongitude shall be 0 degrees. The property uses gml:AngleType.

12.5.3.8 PrimeMeridianPropertyType

 <complexType name="PrimeMeridianPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:PrimeMeridian"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:PrimeMeridianPropertyType is a property type for association roles to a prime meridian, either
referencing or containing the definition of that meridian.

12.5.4 Other concrete datums

12.5.4.1 EngineeringDatum

 <element name="EngineeringDatum" type="gml:EngineeringDatumType"
 substitutionGroup="gml:AbstractDatum"/>

 <complexType name="EngineeringDatumType">
 <complexContent>
 <extension base="gml:AbstractDatumType"/>
 </complexContent>
 </complexType>
gml:EngineeringDatum defines the origin of an engineering coordinate reference system, and is used in
a region around that origin. This origin may be fixed with respect to the Earth (such as a defined point
at a construction site), or be a defined point on a moving vehicle (such as on a ship or satellite).

12.5.4.2 EngineeringDatumPropertyType

 <complexType name="EngineeringDatumPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:EngineeringDatum"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:EngineeringDatumPropertyType is a property type for association roles to an engineering datum,
either referencing or containing the definition of that datum.

106 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

12.5.4.3 ImageDatum

 <element name="ImageDatum" type="gml:ImageDatumType"
 substitutionGroup="gml:AbstractDatum"/>

 <complexType name="ImageDatumType">
 <complexContent>
 <extension base="gml:AbstractDatumType">
 <sequence>
 <element ref="gml:pixelInCell"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
gml:ImageDatum defines the origin of an image coordinate reference system, and is used in a local
context only. For an image datum, the anchor definition is usually either the centre of the image or the
corner of the image. For more information, see ISO 19111:2007, B.3.5.

12.5.4.4 pixelInCell

 <element name="pixelInCell" type="gml:CodeWithAuthorityType"/>
gml:pixelInCell is a specification of the way an image grid is associated with the image data attributes.
The required codeSpace attribute shall reference a source of information specifying the values and
meanings of all the allowed string values for this property.

12.5.4.5 ImageDatumPropertyType

 <complexType name="ImageDatumPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:ImageDatum"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:ImageDatumPropertyType is a property type for association roles to an image datum, either
referencing or containing the definition of that datum.

12.5.4.6 VerticalDatum

 <element name="VerticalDatum" type="gml:VerticalDatumType"
 substitutionGroup="gml:AbstractDatum"/>

 <complexType name="VerticalDatumType">
 <complexContent>
 <extension base="gml:AbstractDatumType"/>
 </complexContent>
 </complexType>
gml:VerticalDatum is a textual description and/or a set of parameters identifying a particular reference
level surface used as a zero-height surface, including its position with respect to the Earth for any of the
height types recognized by this document.

12.5.4.7 VerticalDatumPropertyType

 <complexType name="VerticalDatumPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:VerticalDatum"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:VerticalDatumPropertyType is property type for association roles to a vertical datum, either
referencing or containing the definition of that datum.

© ISO 2020 – All rights reserved 107

ISO 19136-1:2020(E)

12.5.4.8 TemporalDatum, origin

 <element name="TemporalDatum" type="gml:TemporalDatumType"
 substitutionGroup="gml:AbstractDatum"/>

 <complexType name="TemporalDatumType">
 <complexContent>
 <extension base="gml:TemporalDatumBaseType">
 <sequence>
 <element ref="gml:origin"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="TemporalDatumBaseType" abstract="true">
 <complexContent>
 <restriction base="gml:AbstractDatumType">
 <sequence>
 <element ref="gml:metaDataProperty" minOccurs="0" maxOccurs="unbounded"/>
 <element ref="gml:description" minOccurs="0"/>
 <element ref="gml:descriptionReference" minOccurs="0"/>
 <element ref="gml:identifier"/>
 <element ref="gml:name" minOccurs="0" maxOccurs="unbounded"/>
 <element ref="gml:remarks" minOccurs="0"/>
 <element ref="gml:domainOfValidity" minOccurs="0"/>
 <element ref="gml:scope" maxOccurs="unbounded"/>
 </sequence>
 <attribute ref="gml:id" use="required"/>
 </restriction>
 </complexContent>
 </complexType>
A gml:TemporalDatum defines the origin of a Temporal Reference System. This type omits the
"anchorDefinition" and "realizationEpoch" elements and adds the "origin" element with the
dateTime type.

The TemporalDatumBaseType partially defines the origin of a temporal coordinate reference system.
This type restricts the AbstractDatumType to remove the "anchorDefinition" and "realizationEpoch"
elements.

 <element name="origin" type="dateTime"/>
gml:origin is the date and time origin of this temporal datum.

The metaDataProperty element has been deprecated, and the gml: description element has been partially
deprecated.

12.5.4.9 TemporalDatumPropertyType

 <complexType name="TemporalDatumPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:TemporalDatum"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:TemporalDatumPropertyType is a property type for association roles to a temporal datum, either
referencing or containing the definition of that datum.

12.6 Coordinate operations

12.6.1 Overview

The spatial or temporal coordinate operations schema components can be divided into five logical
parts, which define elements and types for XML encoding of the definitions of:

— Multiple abstract coordinate operations;

108 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

— Multiple concrete types of coordinate operation, including Transformations and Conversions;

— Abstract and concrete parameter values and groups;

— Operation methods;

— Abstract and concrete operation parameters and groups.

These schema components encode the Coordinate Operation package of the UML Model for
ISO 19111:2007, Clause 11.

NOTE The coordinateOperations schema includes the coordinateOperations.xsd GML schema document.
This schema document is identified by the following location-independent name (using URN syntax):

— urn: ogc: specification: gml: schema -xsd: coordinateOperations: 3 .2 .1

12.6.2	 Abstract	coordinate	operations

12.6.2.1	 AbstractCoordinateOperation

 <element name="AbstractCoordinateOperation" type="gml:AbstractCoordinateOperationType"
 abstract="true" substitutionGroup="gml:Definition"/>

 <complexType name="AbstractCoordinateOperationType" abstract="true">
 <complexContent>
 <extension base="gml:IdentifiedObjectType">
 <sequence>
 <element ref="gml:domainOfValidity" minOccurs="0"/>
 <element ref="gml:scope" maxOccurs="unbounded" />
 <element ref="gml:operationVersion" minOccurs="0"/>
 <element ref="gml:coordinateOperationAccuracy" minOccurs="0"
 maxOccurs="unbounded"/>
 <element ref="gml:sourceCRS" minOccurs="0"/>
 <element ref="gml:targetCRS" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
gml:AbstractCoordinateOperation is a mathematical operation on coordinates that transforms or
converts coordinates to another coordinate reference system. Many but not all coordinate operations
(from CRS A to CRS B) also uniquely define the inverse operation (from CRS B to CRS A). In some cases,
the operation method algorithm for the inverse operation is the same as for the forward algorithm, but
the signs of some operation parameter values shall be reversed. In other cases, different algorithms are
required for the forward and inverse operations, but the same operation parameter values are used. If
(some) entirely different parameter values are needed, a different coordinate operation shall be defined.

The optional gml:coordinateOperationAccuracy property elements provide estimates of the impact of
this coordinate operation on point position accuracy.

12.6.2.2 operationVersion

 <element name="operationVersion" type="string"/>
gml:operationVersion is the version of the coordinate transformation (i.e., instantiation due to the
stochastic nature of the parameters). Mandatory when describing a transformation, and should not be
supplied for a conversion.

12.6.2.3 coordinateOperationAccuracy

 <element name="coordinateOperationAccuracy">
 <complexType>
 <sequence minOccurs="0">
 <element ref="gmd:AbstractDQ_PositionalAccuracy"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>

© ISO 2020 – All rights reserved 109

ISO 19136-1:2020(E)

 </complexType>
 </element>
gml:coordinateOperationAccuracy is an association role to a DQ_PositionalAccuracy object as encoded
in ISO/TS 19139, either referencing or containing the definition of that positional accuracy. That object
contains an estimate of the impact of this coordinate operation on point positional accuracy. That is,
it gives position error estimates for the target coordinates of this coordinate operation, assuming no
errors in the source coordinates.

12.6.2.4 sourceCRS

 <element name="sourceCRS" type="gml:CRSPropertyType"/>
gml:sourceCRS is an association role to the source CRS (coordinate reference system) of this coordinate
operation.

12.6.2.5 targetCRS

 <element name="targetCRS" type="gml:CRSPropertyType"/>
gml:targetCRS is an association role to the target CRS (coordinate reference system) of this coordinate
operation.

12.6.2.6 CoordinateOperationPropertyType

 <complexType name="CoordinateOperationPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:AbstractCoordinateOperation"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:CoordinateOperationPropertyType is a property type for association roles to a coordinate
operation, either referencing or containing the definition of that coordinate operation.

12.6.2.7	 AbstractSingleOperation

 <element name="AbstractSingleOperation" type="gml:AbstractCoordinateOperationType"
 abstract="true" substitutionGroup="gml:AbstractCoordinateOperation"/>
gml:AbstractSingleOperation is a single (not concatenated) coordinate operation.

12.6.2.8 SingleOperationPropertyType

 <complexType name="SingleOperationPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:AbstractSingleOperation"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:SingleOperationPropertyType is a property type for association roles to a single operation, either
referencing or containing the definition of that single operation.

12.6.2.9	 AbstractGeneralConversion

 <element name="AbstractGeneralConversion" type="gml:AbstractGeneralConversionType"
 abstract="true" substitutionGroup="gml:AbstractOperation"/>

 <complexType name="AbstractGeneralConversionType" abstract="true">
 <complexContent>
 <restriction base="gml:AbstractCoordinateOperationType">
 <sequence>
 <element ref="gml:metaDataProperty" minOccurs="0" maxOccurs="unbounded"/>
 <element ref="gml:description" minOccurs="0"/>
 <element ref="gml:descriptionReference" minOccurs="0"/>
 <element ref="gml:identifier"/>
 <element ref="gml:name" minOccurs="0" maxOccurs="unbounded"/>
 <element ref="gml:remarks" minOccurs="0"/>
 <element ref="gml:domainOfValidity" minOccurs="0"/>

110 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

 <element ref="gml:scope" maxOccurs="unbounded"/>
 <element ref="gml:coordinateOperationAccuracy" minOccurs="0"
 maxOccurs="unbounded"/>
 </sequence>
 <attribute ref="gml:id" use="required"/>
 </restriction>
 </complexContent>
 </complexType>
gm:AbstractGeneralConversion is an abstract operation on coordinates that does not include any
change of datum. The best-known example of a coordinate conversion is a map projection. The
parameters describing coordinate conversions are defined rather than empirically derived. Note that
some conversions have no parameters. The gml:operationVersion, gml:sourceCRS, and gml:targetCRS
elements are omitted in a coordinate conversion.

This abstract complex type is expected to be extended for well-known operation methods with many
Conversion instances, in GML application schemas that define operation-method-specialized element
names and contents. This conversion uses an operation method, usually with associated parameter
values. However, operation methods and parameter values are directly associated with concrete
subtypes, not with this abstract type. All concrete types derived from this type shall extend this type to
include a "usesMethod" element that references the "OperationMethod" element. Similarly, all concrete
types derived from this type shall extend this type to include zero or more elements each named "uses...
Value" that each use the type of an element substitutable for the "AbstractGeneralParameterValue"
element.

The metaDataProperty element has been deprecated, and the gml: description element has been partially
deprecated.

12.6.2.10 GeneralConversionPropertyType

 <complexType name="GeneralConversionPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:AbstractGeneralConversion"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:GeneralConversionPropertyType is a property type for association roles to a general conversion,
either referencing or containing the definition of that conversion.

12.6.2.11	 AbstractGeneralTransformation

 <element name="AbstractGeneralTransformation"
 type="gml:AbstractGeneralTransformationType" abstract="true"
 substitutionGroup="gml:AbstractOperation"/>

 <complexType name="AbstractGeneralTransformationType" abstract="true">
 <complexContent>
 <restriction base="gml:AbstractCoordinateOperationType">
 <sequence>
 <element ref="gml:metaDataProperty" minOccurs="0" maxOccurs="unbounded"/>
 <element ref="gml:description" minOccurs="0"/>
 <element ref="gml:descriptionReference" minOccurs="0"/>
 <element ref="gml:identifier"/>
 <element ref="gml:name" minOccurs="0" maxOccurs="unbounded"/>
 <element ref="gml:remarks" minOccurs="0"/>
 <element ref="gml:domainOfValidity" minOccurs="0"/>
 <element ref="gml:scope" maxOccurs="unbounded"/>
 <element ref="gml:operationVersion"/>
 <element ref="gml:coordinateOperationAccuracy" minOccurs="0"
 maxOccurs="unbounded"/>
 <element ref="gml:sourceCRS"/>
 <element ref="gml:targetCRS"/>
 </sequence>
 <attribute ref="gml:id" use="required"/>
 </restriction>
 </complexContent>
 </complexType>

© ISO 2020 – All rights reserved 111

ISO 19136-1:2020(E)

gml:AbstractGeneralTransformation is an abstract operation on coordinates that usually includes a
change of Datum. The parameters of a coordinate transformation are empirically derived from data
containing the coordinates of a series of points in both coordinate reference systems. This computational
process is usually "over-determined", allowing derivation of error (or accuracy) estimates for the
transformation. Also, the stochastic nature of the parameters may result in multiple (different) versions
of the same coordinate transformation. The gml:operationVersion, gml:sourceCRS, and gml:targetCRS
property elements are mandatory in a coordinate transformation.

This abstract complex type is expected to be extended for well-known operation methods with many
Transformation instances, in Application Schemas that define operation-method-specialized value
element names and contents. This transformation uses an operation method with associated parameter
values. However, operation methods and parameter values are directly associated with concrete
subtypes, not with this abstract type. All concrete types derived from this type shall extend this type to
include a "usesMethod" element that references one "OperationMethod" element. Similarly, all concrete
types derived from this type shall extend this type to include one or more elements each named "uses...
Value" that each use the type of an element substitutable for the "AbstractGeneralParameterValue"
element.

The metaDataProperty element has been deprecated, and the gml: description element has been partially
deprecated.

12.6.2.12 GeneralTransformationPropertyType

 <complexType name="GeneralTransformationPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:AbstractGeneralTransformation"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:GeneralTransformationPropertyType is a property type for association roles to a general
transformation, either referencing or containing the definition of that transformation.

12.6.3 Concrete coordinate operations

12.6.3.1 ConcatenatedOperation

 <element name="ConcatenatedOperation" type="gml:ConcatenatedOperationType"
 substitutionGroup="gml:AbstractCoordinateOperation"/>

 <complexType name="ConcatenatedOperationType">
 <complexContent>
 <extension base="gml:AbstractCoordinateOperationType">
 <sequence>
 <element ref="gml:coordOperation" minOccurs="2" maxOccurs="unbounded"/>
 </sequence>
 <attributeGroup ref="gml:AggregationAttributeGroup"/>
 </extension>
 </complexContent>
 </complexType>
gml:ConcatenatedOperation is an ordered sequence of two or more coordinate operations. This
sequence of operations is constrained by the requirement that the source coordinate reference system
of step (n+1) shall be the same as the target coordinate reference system of step (n). The source
coordinate reference system of the first step and the target coordinate reference system of the last step
are the source and target coordinate reference system associated with the concatenated operation.
Instead of a forward operation, an inverse operation may be used for one or more of the operation steps
mentioned above, if the inverse operation is uniquely defined by the forward operation.

The gml:coordOperation property elements are an ordered sequence of associations to the two or more
operations used by this concatenated operation. The gml:AggregationAttributeGroup should be used
to specify that the gml:coordOperation associations are ordered.

112 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

12.6.3.2 CoordOperation

 <element name="coordOperation" type="gml:CoordinateOperationPropertyType"/>
gml:coordOperation is an association role to a coordinate operation.

12.6.3.3 ConcatenatedOperationPropertyType

 <complexType name="ConcatenatedOperationPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:ConcatenatedOperation"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:ConcatenatedOperationPropertyType is a property type for association roles to a concatenated
operation, either referencing or containing the definition of that concatenated operation.

12.6.3.4 PassThroughOperation

 <element name="PassThroughOperation" type="gml:PassThroughOperationType"
 substitutionGroup="gml:AbstractSingleOperation"/>

 <complexType name="PassThroughOperationType">
 <complexContent>
 <extension base="gml:AbstractCoordinateOperationType">
 <sequence>
 <element ref="gml:modifiedCoordinate" maxOccurs="unbounded"/>
 <element ref="gml:coordOperation"/>
 </sequence>
 <attributeGroup ref="gml:AggregationAttributeGroup"/>
 </extension>
 </complexContent>
 </complexType>
gml:PassThroughOperation specifies that a subset of a coordinate tuple is subject to a specific
coordinate operation.

The gml:modifiedCoordinate property elements are an ordered sequence of positive integers defining
the positions in a coordinate tuple of the coordinates affected by this pass-through operation. The
gml:AggregationAttributeGroup should be used to specify that the gml:modifiedCoordinate elements
are ordered.

12.6.3.5	 modifiedCoordinate

 <element name="modifiedCoordinate" type="positiveInteger"/>
gml:modifiedCoordinate is a positive integer defining a position in a coordinate tuple.

12.6.3.6 PassThroughOperationPropertyType

 <complexType name="PassThroughOperationPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:PassThroughOperation"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:PassThroughOperationPropertyType is a property type for association roles to a pass through
operation, either referencing or containing the definition of that pass through operation.

12.6.3.7 Conversion

 <element name="Conversion" type="gml:ConversionType"
 substitutionGroup="gml:AbstractGeneralConversion"/>

 <complexType name="ConversionType">
 <complexContent>
 <extension base="gml:AbstractGeneralConversionType">
 <sequence>

© ISO 2020 – All rights reserved 113

ISO 19136-1:2020(E)

 <element ref="gml:method"/>
 <element ref="gml:parameterValue" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
gml:Conversion is a concrete operation on coordinates that does not include any change of Datum.
The best-known example of a coordinate conversion is a map projection. The parameters describing
coordinate conversions are defined rather than empirically derived. Note that some conversions have
no parameters.

This concrete complex type can be used without using a GML application schema that defines operation-
method-specialized element names and contents, especially for methods with only one Conversion
instance.

12.6.3.8 method

 <element name="method" type="gml:OperationMethodPropertyType"/>
gml:method is an association role to the operation method used by a coordinate operation.

12.6.3.9 parameterValue

 <element name="parameterValue" type="gml:AbstractGeneralParameterValuePropertyType"/>
gml:parameterValue is a composition association to a parameter value or group of parameter values
used by a coordinate operation.

12.6.3.10 ConversionPropertyType

 <complexType name="ConversionPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:Conversion"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:ConversionPropertyType is a property type for association roles to a concrete general-purpose
conversion, either referencing or containing the definition of that conversion.

12.6.3.11 Transformation

 <element name="Transformation" type="gml:TransformationType"
 substitutionGroup="gml:AbstractGeneralTransformation"/>

 <complexType name="TransformationType">
 <complexContent>
 <extension base="gml:AbstractGeneralTransformationType">
 <sequence>
 <element ref="gml:method"/>
 <element ref="gml:parameterValue" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
gml:Transformation is a concrete object element derived from gml:AbstractGeneralTransformation
(12.6.2.11).

This concrete object can be used for all operation methods, without using a GML application schema
that defines operation-method-specialized element names and contents, especially for methods with
only one Transformation instance.

The gml:parameterValue elements are an unordered list of composition associations to the set of
parameter values used by this conversion operation.

114 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

12.6.3.12 TransformationPropertyType

 <complexType name="TransformationPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:Transformation"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:TransformationPropertyType is a property type for association roles to a transformation, either
referencing or containing the definition of that transformation.

12.6.4 Parameter values and groups

12.6.4.1	 AbstractGeneralParameterValue

 <element name="AbstractGeneralParameterValue"
 type="gml:AbstractGeneralParameterValueType" abstract="true"
 substitutionGroup="gml:AbstractObject"/>

 <complexType name="AbstractGeneralParameterValueType" abstract="true">
 <sequence/>
 </complexType>
gml:AbstractGeneralParameterValue is an abstract parameter value or group of parameter values.

This abstract complexType is expected to be extended and restricted for well-known operation
methods with many instances, in Application Schemas that define operation-method-specialized
element names and contents. Specific parameter value elements are directly contained in concrete
subtypes, not in this abstract type. All concrete types derived from this type shall extend this type
to include one "...Value" element with an appropriate type, which should be one of the element types
allowed in the ParameterValueType. In addition, all derived concrete types shall extend this type to
include a "operationParameter" property element that references one element substitutable for the
"OperationParameter" object element.

12.6.4.2	 AbstractGeneralParameterValuePropertyType

 <complexType name="AbstractGeneralParameterValuePropertyType">
 <sequence>
 <element ref="gml:AbstractGeneralParameterValue" />
 </sequence>
 </complexType>
gml:AbstractGeneralParameterValuePropertyType is a property type for inline association roles to a
parameter value or group of parameter values, always containing the values.

12.6.4.3 ParameterValue

 <element name="ParameterValue" type="gml:ParameterValueType"
 substitutionGroup="gml:AbstractGeneralParameterValue"/>
 <complexType name="ParameterValueType">
 <complexContent>
 <extension base="gml:AbstractGeneralParameterValueType">
 <sequence>
 <choice>
 <element ref="gml:value"/>
 <element ref="gml:dmsAngleValue"/>
 <element ref="gml:stringValue"/>
 <element ref="gml:integerValue"/>
 <element ref="gml:booleanValue"/>
 <element ref="gml:valueList"/>
 <element ref="gml:integerValueList"/>
 <element ref="gml:valueFile"/>
 </choice>
 <element ref="gml:operationParameter"/>
 </sequence>
 </extension>

© ISO 2020 – All rights reserved 115

ISO 19136-1:2020(E)

 </complexContent>
 </complexType>
gml:ParameterValue is a parameter value, an ordered sequence of values, or a reference to a file of
parameter values. This concrete complex type may be used for operation methods without using an
Application Schema that defines operation-method-specialized element names and contents, especially
for methods with only one instance. This complex type may be used, extended, or restricted for well-
known operation methods, especially for methods with many instances.

The dmsAngleValue element is deprecated.

12.6.4.4 value

 <element name="value" type="gml:MeasureType"/>
gml:value is a numeric value of an operation parameter, with its associated unit of measure.

12.6.4.5 stringValue

 <element name="stringValue" type="string"/>
gml:stringValue is a character string value of an operation parameter. A string value does not have an
associated unit of measure.

12.6.4.6 integerValue

 <element name="integerValue" type="positiveInteger"/>
gml:integerValue is a positive integer value of an operation parameter, usually used for a count. An
integer value does not have an associated unit of measure.

12.6.4.7	 booleanValue

 <element name="booleanValue" type="boolean"/>
gml:booleanValue is a boolean value of an operation parameter. A Boolean value does not have an
associated unit of measure.

12.6.4.8 valueList

 <element name="valueList" type="gml:MeasureListType"/>
gml:valueList is an ordered sequence of two or more numeric values of an operation parameter list,
where each value has the same associated unit of measure. An element of this type contains a space-
separated sequence of double values.

12.6.4.9 integerValueList

 <element name="integerValueList" type="gml:integerList"/>
gml:integerValueList is an ordered sequence of two or more integer values of an operation parameter
list, usually used for counts. These integer values do not have an associated unit of measure. An element
of this type contains a space-separated sequence of integer values.

12.6.4.10 valueFile

 <element name="valueFile" type="anyURI"/>
gml:valueFile is a reference to a file or a part of a file containing one or more parameter values, each
numeric value with its associated unit of measure. When referencing a part of a file, that file shall
contain multiple identified parts, such as an XML encoded document. Furthermore, the referenced file
or part of a file may reference another part of the same or different files, as allowed in XML documents.

12.6.4.11 operationParameter

 <element name="operationParameter" type="gml:OperationParameterPropertyType"/>
gml:operationParameter is an association role to the operation parameter of which this is a value.

116 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

12.6.4.12 ParameterValueGroup

 <element name="ParameterValueGroup" type="gml:ParameterValueGroupType"
substitutionGroup="gml:AbstractGeneralParameterValue"/>

 <complexType name="ParameterValueGroupType">
 <complexContent>
 <extension base="gml:AbstractGeneralParameterValueType">
 <sequence>
 <element ref="gml:parameterValue" minOccurs="2" maxOccurs="unbounded"/>
 <element ref="gml:group"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
gml:ParameterValueGroup is a group of related parameter values. The same group can be repeated more
than once in a Conversion, Transformation, or higher-level ParameterValueGroup, if those instances
contain different values of one or more parameterValues which suitably distinguish among those
groups. This concrete complex type can be used for operation methods without using an Application
Schema that defines operation-method-specialized element names and contents. This complex type
may be used, extended, or restricted for well-known operation methods, especially for methods with
only one instance.

The gml:parameterValue elements are an unordered set of composition association roles to the
parameter values and groups of values included in this group.

12.6.4.13 group

 <element name="group" type="gml:OperationParameterGroupPropertyType"/>
gml:group is an association role to the operation parameter group for which this element provides
parameter values.

12.6.5 Operation method

12.6.5.1 OperationMethod

 <element name="OperationMethod" type="gml:OperationMethodType"
 substitutionGroup="gml:Definition"/>

 <complexType name="OperationMethodType">
 <complexContent>
 <extension base="gml:IdentifiedObjectType">
 <sequence>
 <choice>
 <element ref="gml:formulaCitation"/>
 <element ref="gml:formula"/>
 </choice>
 <element ref="gml:sourceDimensions" minOccurs="0"/>
 <element ref="gml:targetDimensions" minOccurs="0"/>
 <element ref="gml:parameter" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
gml:OperationMethod is a method (algorithm or procedure) used to perform a coordinate operation.
Most operation methods use a number of operation parameters, although some coordinate conversions
use none. Each coordinate operation using the method assigns values to these parameters.

The gml:parameter elements are an unordered list of associations to the set of operation parameters
and parameter groups used by this operation method.

12.6.5.2 formula, formulaCitation

 <element name="formula" type="gml:CodeType"/>

© ISO 2020 – All rights reserved 117

ISO 19136-1:2020(E)

gml:formula Formula(s) or procedure used by an operation method.

The use of the codespace attribute has been deprecated. The property value shall be a character string.

 <element name="formulaCitation">
 <complexType>
 <sequence minOccurs="0">
 <element ref="gmd:CI_Citation"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
 </element>
gml:formulaCitation provides a reference to a publication giving the formula(s) or procedure used by
an coordinate operation method.

12.6.5.3 sourceDimensions

 <element name="sourceDimensions" type="positiveInteger"/>
gml:sourceDimensions is the number of dimensions in the source CRS of this operation method.

12.6.5.4 targetDimensions

 <element name="targetDimensions" type="positiveInteger"/>
gml:targetDimensions is the number of dimensions in the target CRS of this operation method

12.6.5.5 parameter

 <element name="parameter " type="gml:AbstractGeneralOperationParameterPropertyType"/>
gml:parameter is an association to an operation parameter or parameter group.

12.6.5.6 OperationMethodPropertyType

 <complexType name="OperationMethodPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:OperationMethod"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:OperationMethodPropertyType is a property type for association roles to a concrete general-
purpose operation method, either referencing or containing the definition of that method.

12.6.6 Operation parameters and groups

12.6.6.1 GeneralOperationParameter

 <element name="AbstractGeneralOperationParameter" type="gml:AbstractGeneralOperationPar
ameterType"
 abstract="true" substitutionGroup="gml:Definition"/>

 <complexType name="AbstractGeneralOperationParameterType" abstract="true">
 <complexContent>
 <extension base="gml:IdentifiedObjectType">
 <sequence>
 <element ref="gml:minimumOccurs" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
gml:GeneralOperationParameter is the abstract definition of a parameter or group of parameters used
by an operation method.

12.6.6.2 minimumOccurs

 <element name="minimumOccurs" type="nonNegativeInteger"/>

118 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

gml:minimumOccurs is the minimum number of times that values for this parameter group or parameter
are required. If this attribute is omitted, the minimum number shall be one.

12.6.6.3	 AbstractGeneralOperationParameterPropertyType

 <complexType name="AbstractGeneralOperationParameterPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:AbstractGeneralOperationParameter"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:AbstractGeneralOperationParameterPropertyType is a property type for association roles to an
operation parameter or group, either referencing or containing the definition of that parameter or group.

12.6.6.4 OperationParameter

 <element name="OperationParameter" type="gml:OperationParameterType"
 substitutionGroup="gml:AbstractGeneralOperationParameter"/>

 <complexType name="OperationParameterType">
 <complexContent>
 <extension base="gml:AbstractGeneralOperationParameterType">
 <sequence/>
 </extension>
 </complexContent>
 </complexType>
gml:OperationParameter is the definition of a parameter used by an operation method. Most
parameter values are numeric, but other types of parameter value are possible. This complex type
is expected to be used or extended for all operation methods, without defining operation-method-
specialized element names.

12.6.6.5 OperationParameterPropertyType

 <complexType name="OperationParameterPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:OperationParameter"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:OperationParameterPropertyType is a property type for association roles to an operation
parameter, either referencing or containing the definition of that parameter.

12.6.6.6 OperationParameterGroup

 <element name="OperationParameterGroup" type="gml:OperationParameterGroupType"
 substitutionGroup="gml:AbstractGeneralOperationParameter"/>

 <complexType name="OperationParameterGroupType">
 <complexContent>
 <extension base="gml:AbstractGeneralOperationParameterType">
 <sequence>
 <element ref="gml:maximumOccurs" minOccurs="0"/>
 <element ref="gml:parameter" minOccurs="2" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
gml:OperationParameterGroup is the definition of a group of parameters used by an operation method.
This complex type is expected to be used or extended for all applicable operation methods, without
defining operation-method-specialized element names.

The gml:parameter elements are an unordered list of associations to the set of operation parameters
that are members of this group.

© ISO 2020 – All rights reserved 119

ISO 19136-1:2020(E)

12.6.6.7 maximumOccurs

 <element name="maximumOccurs" type="positiveInteger"/>
gml:maximumOccurs is the maximum number of times that values for this parameter group may be
included. If this attribute is omitted, the maximum number shall be one.

12.6.6.8 OperationParameterPropertyType

 <complexType name="OperationParameterGroupPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:OperationParameterGroup"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:OperationParameterPropertyType is a property type for association roles to an operation
parameter group, either referencing or containing the definition of that parameter group.

13 GML schema — Topology

13.1 General concepts

13.1.1 Overview

Topology is the branch of mathematics describing the properties of objects which are invariant under
continuous deformation. For example, a circle is topologically equivalent to an ellipse because one can
be transformed into the other by stretching. In geographic modelling, the foremost use of topology is in
accelerating computational geometry. The constructs of topology allow characterization of the spatial
relationships between objects using simple combinatorial or algebraic algorithms. Topology, realized by
the appropriate geometry, also allows a compact and unambiguous mechanism for expressing shared
geometry among geographic features.

NOTE 1 The topology model of GML complies with ISO 19107. The underlying concepts of the types and
elements of the GML topology model are discussed in this document in more detail.

This clause describes the topology schema components as specified by GML.

NOTE 2 The corresponding topology schema document, topology.xsd (see Annex C), is identified by the
following location-independent name (using URN syntax):

— urn: ogc: specification: gml: schema -xsd: topology: 3 .2 .1

There are four instantiable classes of primitive topology objects, one for each dimension up to 3D. In
addition, topology complexes are supported.

There is strong symmetry in the (topological boundary and coboundary) relationships between
topology primitives of adjacent dimensions. Topology primitives are bounded by directed primitives
of one lower dimension. The coboundary of each topology primitive is formed from directed topology
primitives of one higher dimension.

13.1.2 Relationship with ISO 19107

The spatial topology components of the GML schema specified in this clause provide a conformant,
partial implementation of the ISO 19107 spatial schema (topology). The relationship is discussed in
detail in D.2.3.

The ISO 19107 topology types implemented in GML are specified in ISO 19107; some additional
constraints are specified in ISO 19107 for these types, which are also constraints on the spatial topology
components of the GML schema.

In addition, GML specifies complementary spatial topology schema components as described in D.3.10.

120 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

13.2	Abstract	topology
 <complexType name="AbstractTopologyType" abstract="true">
 <complexContent>
 <extension base="gml:AbstractGMLType"/>
 </complexContent>
 </complexType>

 <element name="AbstractTopology" type="gml:AbstractTopologyType" abstract="true"
 substitutionGroup="gml:AbstractGML"/>
This abstract type supplies the root or base type for all topological elements including primitives and
complexes. It inherits AbstractGMLType and hence can be identified using the gml:id attribute.

gml:AbstractTopology implements ISO 19107 TP_Object (see D.2.4.2 and ISO 19107:2003, 7.2.2).

13.3 Topological primitives

13.3.1	 Abstract	topological	primitives

13.3.1.1	 AbstractTopoPrimitive,	AbstractTopoPrimtive

 <complexType name="AbstractTopoPrimitiveType" abstract="true">
 <complexContent>
 <extension base="gml:AbstractTopologyType">
 <sequence/>
 </extension>
 </complexContent>
 </complexType>

 <element name="AbstractTopoPrimitive" type="gml:AbstractTopoPrimitiveType"
abstract="true"
 substitutionGroup="gml:AbstractTopology"/>
gml:AbstractTopoPrimitive implements ISO 19107 TP_Primitive (see D.2.4.3 and ISO 19107:2003,
7.3.10). This abstract type acts as the base type for all topological primitives. Topological primitives are
the atomic (smallest possible) units of a topology complex.

Each topological primitive may contain references to other topology primitives of codimension 2 or
more (gml:isolated, implemented in subtypes).

EXAMPLE Faces can contain isolated nodes and solids can contain isolated nodes and edges.

Conversely, nodes may have faces as containers and nodes and edges may have solids as containers
(gml:container, implemented in subtypes).

13.3.2 Topological primitives (0-dimensional)

13.3.2.1 NodeType, Node

 <complexType name="NodeType">
 <complexContent>
 <extension base="gml:AbstractTopoPrimitiveType">
 <sequence>
 <element name="container" type="gml:FaceOrTopoSolidPropertyType" minOccurs="0"/>
 <element ref="gml:directedEdge" minOccurs="0" maxOccurs="unbounded"/>
 <element ref="gml:pointProperty" minOccurs="0"/>
 </sequence>
 <attributeGroup ref="gml:AggregationAttributeGroup"/>
 </extension>
 </complexContent>
 </complexType>

 <element name="Node" type="gml:NodeType" substitutionGroup="gml:AbstractTopoPrimitive"/>
gml:Node represents the 0-dimensional primitive and implements ISO 19107 TP_Node (see D.2.4.3 and
ISO 19107:2003, 7.3.12).

© ISO 2020 – All rights reserved 121

ISO 19136-1:2020(E)

The gml:container property element implements the role of the same name of the ISO 19107 “Isolated
In” association (see ISO 19107:2003, 7.3.10.4 and D.2.4.3).

 <complexType name="FaceOrTopoSolidPropertyType">
 <choice minOccurs="0">
 <element ref="gml:Face"/>
 <element ref="gml:TopoSolid"/>
 </choice>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>
The optional coboundary of a node (gml:directedEdge) is a sequence of directed edges which are
incident on this node. Edges emanating from this node appear in the node coboundary with a negative
orientation.

In the case of planar topology, the sequence of gml:directedEdges shall be clockwise to ensure a lossless
topology representation.

If provided, the aggregationType attribute shall have the value “sequence”.

A node may optionally be realized by a 0-dimensional geometric primitive (gml:pointProperty).

13.3.2.2 DirectedNodePropertyType, directedNode

 <element name="directedNode" type="gml:DirectedNodePropertyType"/>

 <complexType name="DirectedNodePropertyType">
 <sequence minOccurs="0">
 <element ref="gml:Node"/>
 </sequence>
 <attribute name="orientation" type="gml:SignType" default="+"/>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>
A gml:directedNode property element describes the boundary of topology edges and is used in the
support of topological point features via the gml:TopoPoint expression, see below. The orientation
attribute of type gml:SignType expresses the sense in which the included node is used: start (“-”) or end
(“+”) node.

13.3.3 Topological primitives (1-dimensional)

13.3.3.1 EdgeType, Edge

 <complexType name="EdgeType">
 <complexContent>
 <extension base="gml:AbstractTopoPrimitiveType">
 <sequence>
 <element name="container" type="gml:TopoSolidPropertyType" minOccurs="0"/>
 <element ref="gml:directedNode" minOccurs="2" maxOccurs="2"/>
 <element ref="gml:directedFace" minOccurs="0" maxOccurs="unbounded"/>
 <element ref="gml:curveProperty" minOccurs="0"/>
 </sequence>
 <attributeGroup ref="gml:AggregationAttributeGroup"/>
 </extension>
 </complexContent>
 </complexType>

 <element name="Edge" type="gml:EdgeType" substitutionGroup="gml:AbstractTopoPrimitive"/>
gml:Edge represents the 1-dimensional primitive and implements ISO 19107 TP_Edge (see D.2.4.3 and
ISO 19107:2003, 7.3.14).

The gml:container property element implements the role of the same name of the ISO 19107 “Isolated
In” association (see ISO 19107:2003, 7.3.10.4 and D.2.4.3).

122 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

The topological boundary of an Edge (gml:directedNode) consists of a negatively directed start Node
and a positively directed end Node.

The optional coboundary of an edge (gml:directedFace) is a circular sequence of directed faces which
are incident on this edge in document order. In the 2D case, the orientation of the face on the left of the
edge is "+"; the orientation of the face on the right on its right is "−".

If provided, the aggregationType attribute shall have the value “sequence”.

An edge may optionally be realized by a 1-dimensional geometric primitive (gml:curveProperty).

13.3.3.2 DirectedEdgePropertyType, directedEdge

 <element name="directedEdge" type="gml:DirectedEdgePropertyType"/>

 <complexType name="DirectedEdgePropertyType">
 <sequence minOccurs="0">
 <element ref="gml:Edge"/>
 </sequence>
 <attribute name="orientation" type="gml:SignType" default="+"/>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>
A gml:directedEdge property element describes the boundary of topology faces, the coBoundary of
topology nodes and is used in the support of topological line features via the gml:TopoCurve expression,
see below. The orientation attribute of type gml:SignType expresses the sense in which the included
edge is used, i.e. forward or reverse.

13.3.4 Topological primitives (2-dimensional)

13.3.4.1 FaceType, Face

 <complexType name="FaceType">
 <complexContent>
 <extension base="gml:AbstractTopoPrimitiveType">
 <sequence>
 <element name="isolated" type="gml:NodePropertyType" minOccurs="0"
 maxOccurs="unbounded"/>
 <element ref="gml:directedEdge" maxOccurs="unbounded"/>
 <element ref="gml:directedTopoSolid" minOccurs="0" maxOccurs="2"/>
 <element ref="gml:surfaceProperty" minOccurs="0"/>
 </sequence>
 <attributeGroup ref="gml:AggregationAttributeGroup"/>
 <attribute name="universal" type="boolean" use="optional" default="false"/>
 </extension>
 </complexContent>
 </complexType>

 <element name="Face" type="gml:FaceType" substitutionGroup="gml:AbstractTopoPrimitive"/>
gml:Face represents the 2-dimensional topology primitive and implements ISO 19107 TP_Face (see
D.2.4.3 and ISO 19107:2003, 7.3.16).

The gml:isolated property element implements the role of the same name of the ISO 19107 “Isolated
In” association (see ISO 19107:2003, 7.3.10.4 and D.2.4.3).

The topological boundary of a face (gml:directedEdge) consists of a sequence of directed edges. If
provided, the aggregationType attribute shall have the value “sequence”.

NOTE 1 All edges associated with the face, including dangling edges, appear in the boundary. A dangling edge
has the same face on both sides. Consequently, a dangling edge has two different nodes in its boundary. A dangling
edge can share zero, one or two bounding nodes with other edges in the boundary of a face. Two directedEdge
elements with opposite orientations reference each dangling edge in the boundary of a face. The non-dangling
edges in the boundary of a face comprise one or more topological rings. Each such ring consists of directedEdges
connected in a cycle, and is oriented with the face on its left.

© ISO 2020 – All rights reserved 123

ISO 19136-1:2020(E)

The optional coboundary of a face (gml:directedTopoSolid) is a pair of directed solids which are
bounded by this face. A positively directed solid corresponds to a solid which lies in the direction of the
negatively directed normal to the face in any geometric realization.

A face may optionally be realized by a 2-dimensional geometric primitive (gml:surfaceProperty).

If the topological representation exists an unbounded manifold (e.g. Euclidean plane), a gml:Face shall
indicate whether it is a universal face or not, to ensure a lossless topology representation. The optional
universal attribute of type boolean is used to indicate this.

NOTE 2 The universal face is normally not part of any feature, and is used to represent the unbounded portion
of the data set. Its interior boundary (it has no exterior boundary) would normally be considered the exterior
boundary of the map represented by the data set.

13.3.4.2 DirectedFacePropertyType, directedFace

 <element name="directedFace" type="gml:DirectedFacePropertyType"/>

 <complexType name="DirectedFacePropertyType">
 <sequence minOccurs="0">
 <element ref="gml:Face"/>
 </sequence>
 <attribute name="orientation" type="gml:SignType" default="+"/>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>
The gml:directedFace property element describes the boundary of topology solids, in the coBoundary
of topology edges and is used in the support of surface features via the gml:TopoSurface expression, see
below. The orientation attribute of type gml:SignType expresses the sense in which the included face is
used i.e. inward or outward with respect to the surface normal in any geometric realization.

13.3.5 Topological primitives (3-dimensional)

13.3.5.1 TopoSolidType, TopoSolid

 <complexType name="TopoSolidType">
 <complexContent>
 <extension base="gml:AbstractTopoPrimitiveType">
 <sequence>
 <element name="isolated" type="gml:NodeOrEdgePropertyType" minOccurs="0"
maxOccurs="unbounded"/>
 <element ref="gml:directedFace" maxOccurs="unbounded"/>
 <element ref="gml:solidProperty" minOccurs="0"/>
 </sequence>
 <attributeGroup ref="gml:AggregationAttributeGroup"/>
 <attribute name="universal" type="boolean" use="optional" default="false"/>
 </extension>
 </complexContent>
 </complexType>

 <element name="TopoSolid" type="gml:TopoSolidType" substitutionGroup="gml:AbstractTopoPr
imitive"/>
gml:TopoSolid represents the 3-dimensional topology primitive and implements ISO 19107 TP_Solid
(see D.2.4.3 and ISO 19107:2003, 7.3.18).

The gml:isolated property element implements the role of the same name of the ISO 19107 “Isolated
In” association (see ISO 19107:2003, 7.3.10.4 and D.2.4.3).

 <complexType name="NodeOrEdgePropertyType">
 <choice minOccurs="0">
 <element ref="gml:Node"/>
 <element ref="gml:Edge"/>
 </choice>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>

124 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>
The topological boundary of a solid (gml:directedFace) consists of a set of directed faces.

NOTE 1 All faces associated with the solid, including dangling faces, appear in the boundary. A dangling face
has the same solid on both sides. Two directedFace elements with opposite orientations reference each dangling
face in the boundary of a topological solid.

A solid may optionally be realized by a 3-dimensional geometric primitive (gml:solidProperty).

A gml:TopoSolid shall indicate whether it is a universal topo solid or not, to ensure a lossless topology
representation. The optional universal attribute of type boolean is used to indicate this and the default
is false.

NOTE 2 The universal topo solid is normally not part of any feature, and is used to represent the unbounded
portion of the data set. Its interior boundary (it has no exterior boundary) would normally be considered the
exterior boundary of the data set.

13.3.5.2 DirectedTopoSolidPropertyType, directedTopoSolid

 <element name="directedTopoSolid" type="gml:DirectedTopoSolidPropertyType"/>

 <complexType name="DirectedTopoSolidPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:TopoSolid"/>
 </sequence>
 <attribute name="orientation" type="gml:SignType" default="+"/>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>
The gml:directedSolid property element describes the coBoundary of topology faces and is used in the
support of volume features via the gml:TopoVolume expression, see below. The orientation attribute of
type gml:SignType expresses the sense in which the included solid appears in the face coboundary. In
the context of a gml:TopoVolume the orientation attribute has no meaning.

13.4 Topological collections

13.4.1 Topological collection (0-dimensional)

13.4.1.1 TopoPointType, TopoPoint

 <complexType name="TopoPointType">
 <complexContent>
 <extension base="gml:AbstractTopologyType">
 <sequence>
 <element ref="gml:directedNode"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <element name="TopoPoint" type="gml:TopoPointType"/>
The intended use of gml:TopoPoint is to appear within a point feature to express the structural and
possibly geometric relationships of this feature to other features via shared node definitions.

NOTE The orientation assigned to the gml:directedNode has no meaning in this context. It is preserved
for symmetry with the corresponding elements of other dimensions, see below.

13.4.1.2 TopoPointPropertyType, topoPointProperty

<complexType name="TopoPointPropertyType">
 <sequence>
 <element ref="gml:TopoPoint"/>
 </sequence>

© ISO 2020 – All rights reserved 125

ISO 19136-1:2020(E)

 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>

 <element name="topoPointProperty" type="gml:TopoPointPropertyType"/>
The gml:topoPointProperty property element may be used in features to express their relationship to
the referenced topology node.

13.4.2 Topological collection (1-dimensional)

13.4.2.1 TopoCurveType, TopoCurve

 <complexType name="TopoCurveType">
 <complexContent>
 <extension base="gml:AbstractTopologyType">
 <sequence>
 <element ref="gml:directedEdge" maxOccurs="unbounded"/>
 </sequence>
 <attributeGroup ref="gml:AggregationAttributeGroup"/>
 </extension>
 </complexContent>
 </complexType>

 <element name="TopoCurve" type="gml:TopoCurveType"/>
gml:TopoCurve represents a homogeneous topological expression, a sequence of directed edges, which
if realized are isomorphic to a geometric curve primitive. The intended use of gml:TopoCurve is to
appear within a line feature to express the structural and geometric relationships of this feature to
other features via the shared edge definitions.

If provided, the aggregationType attribute shall have the value “sequence”.

13.4.2.2 TopoCurvePropertyType, topoCurveProperty

 <complexType name="TopoCurvePropertyType">
 <sequence>
 <element ref="gml:TopoCurve"/>
 </sequence>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>

 <element name="topoCurveProperty" type="gml:TopoCurvePropertyType"/>
The gml:topoCurveProperty property element may be used in features to express their relationship to
the referenced topology edges.

13.4.3 Topological collection (2-dimensional)

13.4.3.1 TopoSurfaceType, TopoSurface

 <complexType name="TopoSurfaceType">
 <complexContent>
 <extension base="gml:AbstractTopologyType">
 <sequence>
 <element ref="gml:directedFace" maxOccurs="unbounded"/>
 </sequence>
 <attributeGroup ref="gml:AggregationAttributeGroup"/>
 </extension>
 </complexContent>
 </complexType>

 <element name="TopoSurface" type="gml:TopoSurfaceType"/>
gml:TopoSurface represents a homogeneous topological expression, a set of directed faces, which if
realized are isomorphic to a geometric surface primitive. The intended use of gml:TopoSurface is to
appear within a surface feature to express the structural and possibly geometric relationships of this
surface feature to other features via the shared face definitions.

126 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

13.4.3.2 TopoSurfacePropertyType, topoSurfaceProperty

 <complexType name="TopoSurfacePropertyType">
 <sequence>
 <element ref="gml:TopoSurface"/>
 </sequence>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>

 <element name="topoSurfaceProperty" type="gml:TopoSurfacePropertyType"/>
The gml:topoSurfaceProperty property element may be used in features to express their relationship
to the referenced topology faces.

13.4.4 Topological collection (3-dimensional)

13.4.4.1 TopoVolumeType, TopoVolume

 <complexType name="TopoVolumeType">
 <complexContent>
 <extension base="gml:AbstractTopologyType">
 <sequence>
 <element ref="gml:directedTopoSolid" maxOccurs="unbounded"/>
 </sequence>
 <attributeGroup ref="gml:AggregationAttributeGroup"/>
 </extension>
 </complexContent>
 </complexType>

 <element name="TopoVolume" type="gml:TopoVolumeType"/>
gml:TopoVolume represents a homogeneous topological expression, a set of directed topologic solids,
which if realized are isomorphic to a geometric solid primitive. The intended use of gml:TopoVolume
is to appear within a solid feature to express the structural and geometric relationships of this solid
feature to other features via the shared solid definitions.

NOTE The orientation assigned to the gml:directedSolid has no meaning in three dimensions. It is
preserved for symmetry with the corresponding elements of other dimensions, see above.

13.4.4.2 TopoVolumePropertyType, topoVolumeProperty

 <complexType name="TopoVolumePropertyType">
 <sequence>
 <element ref="gml:TopoVolume"/>
 </sequence>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>

 <element name="topoVolumeProperty" type="gml:TopoVolumePropertyType"/>
The gml:topoVolumeProperty element may be used in features to express their relationship to the
referenced topology volume.

13.5 Topology complex

13.5.1 TopoComplexType, TopoComplex

 <complexType name="TopoComplexType">
 <complexContent>
 <extension base="gml:AbstractTopologyType">
 <sequence>
 <element ref="gml:maximalComplex"/>
 <element ref="gml:superComplex" minOccurs="0" maxOccurs="unbounded"/>
 <element ref="gml:subComplex" minOccurs="0" maxOccurs="unbounded"/>
 <element ref="gml:topoPrimitiveMember" minOccurs="0"
 maxOccurs="unbounded"/>
 <element ref="gml:topoPrimitiveMembers" minOccurs="0"/>
 </sequence>

© ISO 2020 – All rights reserved 127

ISO 19136-1:2020(E)

 <attribute name="isMaximal" type="boolean" default="false"/>
 <attributeGroup ref="gml:AggregationAttributeGroup"/>
 </extension>
 </complexContent>
 </complexType>

<element name="TopoComplex" type="gml:TopoComplexType" substitutionGroup="gml:AbstractTop
ology"/>
gml:TopoComplex is a collection of topological primitives and implements ISO 19107 TP_Complex (see
D.2.4.4 and ISO 19107:2003, 7.4.2).

Each complex holds a reference to its maximal complex (gml:maximalComplex) and optionally to sub- or
super-complexes (gml:subComplex, gml:superComplex).

A topology complex contains its primitive and sub-complex members.

NOTE The maximal complex is the complex which has no super-complex. There is one and only one maximal
complex per topological manifold.

13.5.2	 Maximal,	sub-	and	super-complexes

 <element name="subComplex" type="gml:TopoComplexPropertyType"/>
 <element name="superComplex" type="gml:TopoComplexPropertyType"/>
 <element name="maximalComplex" type="gml:TopoComplexPropertyType"/>
The property elements gml:subComplex, gml:superComplex and gml:maximalComplex provide an
encoding for relationships between topology complexes as described for gml:TopoComplex above.

13.5.3	 topoPrimitiveMember

 <element name="topoPrimitiveMember" type="gml:TopoPrimitivePropertyType"/>

 <complexType name="TopoPrimitivePropertyType">
 <sequence minOccurs="0">
 <element ref="gml:AbstractTopoPrimitive" />
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>
The gml:topoPrimitiveMember property element encodes for the relationship between a topology
complex and a single topology primitive.

13.5.4	 topoPrimitiveMembers

 <element name="topoPrimitiveMembers" type="gml:TopoPrimitiveArrayAssociationType"/>

 <complexType name="TopoPrimitiveArrayAssociationType">
 <sequence minOccurs="0" maxOccurs="unbounded">
 <element ref="gml:AbstractTopoPrimitive" />
 </sequence>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>
The gml:topoPrimitiveMembers property element encodes the relationship between a topology complex
and an arbitrary number of topology primitives.

NOTE Because the property value can be multiple topological primitives, the elements representing the
topology primitives are always encoded inline.

13.5.5 TopoComplexPropertyType, topoComplexProperty

 <complexType name="TopoComplexPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:TopoComplex" />
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>

128 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

<element name="topoComplexProperty" type="gml:TopoComplexPropertyType"/>
The gml:topoComplexProperty property element encodes the relationship between a GML object and a
topology complex.

EXAMPLE This allows a feature collection to contain or reference a topology complex that contains topology
objects referenced by members of the feature collection.

14 GML schema — Temporal information and dynamic features

14.1 General concepts

14.1.1 Overview

The GML temporal schemas include components for describing temporal geometry and topology,
temporal reference systems, and the temporal characteristics of geographic data. The model
underlying the representation constitutes a profile of the conceptual schema described in ISO 19108.
The underlying spatiotemporal model strives to accommodate both feature-level and attribute-level
time stamping; basic support for tracking moving objects is also included.

Time is measured on two types of scale: interval and ordinal. An interval scale offers a basis for
measuring duration, an ordinal scale provides information only about relative position in time.

EXAMPLE A stratigraphic sequence or the geological time scale are examples of ordinal scales.

Two other ISO standards are relevant to describing temporal objects: ISO 8601-1 describes encodings
for time instants and time periods, as text strings with particular structure and punctuation;
ISO/IEC 11404 provides a detailed description of time intervals as part of a general discussion of
language independent datatypes.

The temporal schemas cover two interrelated topics and provide basic schema components for
representing temporal instants and periods, temporal topology, and reference systems; more
specialized schema components defines components used for dynamic features. Instances of temporal
geometric types are used as values for the temporal properties of geographic features.

NOTE The main temporal schema document is identified by the following location-independent name (using
URN syntax):

 urn: ogc: specification: gml: schema -xsd: temporal: 3 .2 .1

The temporal topology schema document is identified by the following location-independent name (using URN
syntax):

 urn: ogc: specification: gml: schema -xsd: temporalTopology: 3 .2 .1

The schema document for temporal reference systems is identified by the following location-independent name
(using URN syntax):

 urn: ogc: specification: gml: schema -xsd: temporalReferenceSystems: 3 .2 .1

The dynamic feature schema document for representing time-varying properties of geographic features is
identified by the following location-independent name (using URN syntax):

 urn: ogc: specification: gml: schema -xsd: dynamicFeature: 3 .2 .1

All schema documents are listed in Annex C.

© ISO 2020 – All rights reserved 129

ISO 19136-1:2020(E)

14.1.2 Relationship with ISO 19108

The temporal geometry and topology components of the GML schema specified in this clause provide a
conformant, partial implementation of the ISO 19108 temporal schema. The relationship is discussed in
detail in D.2.5.

The ISO 19108 geometry and topology types implemented in GML are specified in ISO 19108; some
additional constraints are specified in ISO 19108 for these types, which are also constraints on the
temporal geometry and topology components of the GML schema.

In addition, GML specifies complementary temporal schema components as described in D.3.11.

14.2 Temporal schema

14.2.1	 Abstract	temporal	objects

14.2.1.1	 AbstractTimeObject

gml:AbstractTimeObject implements ISO 19108 TM_Object (see D.2.5.2 and ISO 19108:2002, 5.2.2) and
acts as the head of a substitution group for all temporal primitives and complexes. It is declared as
follows:

 <element name="AbstractTimeObject" type="gml:AbstractTimeObjectType" abstract="true"
 substitutionGroup="gml:AbstractGML"/>
A gml:AbstractTimeObject may be used in any position that a gml:AbstractGML is valid. Its content
model is defined as follows:

 <complexType name="AbstractTimeObjectType" abstract="true">
 <complexContent>
 <extension base="gml:AbstractGMLType"/>
 </complexContent>
 </complexType>
NOTE The content model of gml:AbstractTimeObject is a vacuous extension of AbstractGMLType. Types
derived from this have the standard GML object properties available: abstractMetadataProperty, description,
descriptionReference, name.

14.2.1.2	 AbstractTimePrimitive

gml:AbstractTimePrimitive implements ISO 19108 TM_Primitive (see D.2.5.2 and ISO 19108:2002,
5.2.3) and acts as the head of a substitution group for geometric and topological temporal primitives. It
is declared as follows:

<element name="AbstractTimePrimitive" type="gml:AbstractTimePrimitiveType"
abstract="true" substitutionGroup="gml:AbstractTimeObject"/>
A gml:AbstractTimePrimitive may be used in any position that a gml:AbstractTimeObject is valid. Its
content model is defined as follows:

 <complexType name="AbstractTimePrimitiveType" abstract="true">
 <complexContent>
 <extension base="gml:AbstractTimeObjectType">
 <sequence>
 <element name="relatedTime" type="gml:RelatedTimeType" minOccurs="0"
 maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
This extends the model for generic temporal objects with properties indicating relationships between
this temporal primitive and other temporal primitives. The definition of gml:RelatedTimeType is
provided in 14.2.1.4.

130 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

14.2.1.3 TimePrimitivePropertyType, validTime

gml:TimePrimitivePropertyType provides a standard content model for associations between an arbitrary
member of the substitution group whose head is gml:AbstractTimePrimitive and another object:

 <complexType name="TimePrimitivePropertyType">
 <sequence minOccurs="0">
 <element ref="gml:AbstractTimePrimitive"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>
gml:validTime is a convenience property element declared as follows:

 <element name="validTime" type="gml:TimePrimitivePropertyType"/>

14.2.1.4 RelatedTimeType

gml:RelatedTimeType provides a content model for indicating the relative position of an arbitrary
member of the substitution group whose head is gml:AbstractTimePrimitive. It extends the generic
gml:TimePrimitivePropertyType with an XML attribute relativePosition, whose value is selected
from the set of 13 temporal relationships identified by Allen (1983):

 <complexType name="RelatedTimeType">
 <complexContent>
 <extension base="gml:TimePrimitivePropertyType">
 <attribute name="relativePosition">
 <simpleType>
 <restriction base="string">
 <enumeration value="Before"/>
 <enumeration value="After"/>
 <enumeration value="Begins"/>
 <enumeration value="Ends"/>
 <enumeration value="During"/>
 <enumeration value="Equals"/>
 <enumeration value="Contains"/>
 <enumeration value="Overlaps"/>
 <enumeration value="Meets"/>
 <enumeration value="OverlappedBy"/>
 <enumeration value="MetBy"/>
 <enumeration value="BegunBy"/>
 <enumeration value="EndedBy"/>
 </restriction>
 </simpleType>
 </attribute>
 </extension>
 </complexContent>
 </complexType>

14.2.1.5	 AbstractTimeComplex

gml:AbstractTimeComplex is a collection of temporal primitives and implements ISO 19108 TM_Complex
(see D.2.5.2 and ISO 19108:2002, 5.2.2) and acts as the head of a substitution group for temporal
complexes. It is declared as follows:

 <element name="AbstractTimeComplex" type="gml:AbstractTimeComplexType" abstract="true"
 substitutionGroup="gml:AbstractTimeObject"/>
A gml:AbstractTimeComplex may be used in any position that a gml:AbstractTimeObject is valid. Its
content model is defined as follows:

 <complexType name="AbstractTimeComplexType" abstract="true">
 <complexContent>
 <extension base="gml:AbstractTimeObjectType"/>
 </complexContent>
 </complexType>
NOTE 1 This document only specifies a temporal topology complex. A temporal geometric complex is not
specified.

© ISO 2020 – All rights reserved 131

ISO 19136-1:2020(E)

NOTE 2 This document does not distinguish a temporal linear graph from a temporal non-linear graph.

14.2.2 Temporal geometry

14.2.2.1 General

Temporal geometry is described in terms of time instants, periods, positions and lengths.

14.2.2.2	 AbstractTimeGeometricPrimitive

gml:TimeGeometricPrimitive implements ISO 19108 TM_GeometricPrimitive (see D.2.5.2 and
ISO 19108:2002, 5.2.3) and acts as the head of a substitution group for geometric temporal primitives.
It is declared as follows:

 <element name="AbstractTimeGeometricPrimitive"
 type="gml:AbstractTimeGeometricPrimitiveType" abstract="true"
 substitutionGroup="gml:AbstractTimePrimitive"/>
A gml:AbstractTimeGeometricPrimitive may be used in any position that a gml:AbstractTimePrimitive
is valid. Its content model is defined as follows:

 <complexType name="AbstractTimeGeometricPrimitiveType" abstract="true">
 <complexContent>
 <extension base="gml:AbstractTimePrimitiveType">
 <attribute name="frame" type="anyURI" default="#ISO-8601"/>
 </extension>
 </complexContent>
 </complexType>
A temporal geometry shall be associated with a temporal reference system through the frame attribute
that provides a URI reference that identifies a description of the reference system. Following ISO 19108,
the Gregorian calendar with UTC is the default reference system, but others may also be used.

The two geometric primitives in the temporal dimension are the instant and the period. GML
components are defined to support these as follows.

14.2.2.3 TimeInstant

gml:TimeInstant implements ISO 19108 TM_Instant (see D.2.5.2 and ISO 19108:2002, 5.2.3.2) and acts
as a zero-dimensional geometric primitive that represents an identifiable position in time. It is declared
as follows:

 <element name="TimeInstant" type="gml:TimeInstantType"
 substitutionGroup="gml:AbstractTimeGeometricPrimitive"/>
A gml:TimeInstant may be used in any position that a gml:AbstractTimeGeometricPrimitive is valid.
Its content model is defined as follows:

 <complexType name="TimeInstantType" final="#all">
 <complexContent>
 <extension base="gml:AbstractTimeGeometricPrimitiveType ">
 <sequence>
 <element ref="gml:timePosition"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
EXAMPLE In an instance document, a gml:TimeInstant contains a gml:timePosition as follows:

 <gml:TimeInstant gml:id="t11">
 <gml:description>Abby's birthday</gml:description>
 <gml:timePosition>2001-05-23</gml:timePosition>
 </gml:TimeInstant>

132 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

14.2.2.4 TimeInstantPropertyType

gml:TimeInstantPropertyType is a specialization of gml:TimePrimitivePropertyType that provides for
associating a gml:TimeInstant with an object:

 <complexType name="TimeInstantPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:TimeInstant"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>

14.2.2.5 TimePeriod

gml:TimePeriod implements ISO 19108 TM_Period (see D.2.5.2 and ISO 19108:2002, 5.2.3.3) and acts as
a one-dimensional geometric primitive that represents an identifiable extent in time. It is declared as
follows:

 <element name="TimePeriod" type="gml:TimePeriodType"
 substitutionGroup="gml:AbstractTimeGeometricPrimitive"/>
gml:TimePeriod may be used in any position that a gml:AbstractTimeGeometricPrimitive is valid. Its
content model is defined as follows:

 <complexType name="TimePeriodType">
 <complexContent>
 <extension base="gml:AbstractTimeGeometricPrimitiveType">
 <sequence>
 <choice>
 <element name="beginPosition" type="gml:TimePositionType"/>
 <element name="begin" type="gml:TimeInstantPropertyType"/>
 </choice>
 <choice>
 <element name="endPosition" type="gml:TimePositionType"/>
 <element name="end" type="gml:TimeInstantPropertyType"/>
 </choice>
 <group ref="gml:timeLength" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
The location in time of a gml:TimePeriod is described by the temporal positions of the instants at which
it begins and ends. The length of the period is equal to the temporal distance between the two bounding
temporal positions.

Both beginning and end may be described in terms of their direct position using gml:TimePositionType
(see 14.2.2.7) which is an XML Schema simple content type, or by reference to an identifiable time
instant using gml:TimeInstantPropertyType (see 14.2.2.4).

EXAMPLE 1 Within a gml:TimePeriod, a gml: TimeInstant may appear directly as the value of the begin and
end as follows:

 <gml:TimePeriod gml:id="p22">
 <gml:begin>
 <gml:TimeInstant gml:id="t11">
 <gml:timePosition>2001-05-23</gml:timePosition>
 </gml:TimeInstant>
 </gml:begin>
 <gml:end>
 <gml:TimeInstant gml:id="t12">
 <gml:timePosition>2001-06-23</gml:timePosition>
 </gml:TimeInstant>
 </gml:end>
 </gml:TimePeriod>

© ISO 2020 – All rights reserved 133

ISO 19136-1:2020(E)

Alternatively a limit of a gml:TimePeriod may use the conventional GML property model to make a
reference to a time instant described elsewhere, or a limit may be indicated as a direct position.

EXAMPLE 2 The following mixed example shows both of these, as well as including the optional gml:duration
property:

 <gml:TimePeriod gml:id="p22">
 <gml:begin xlink:href="#t11"/>
 <gml:endPosition>2002-05-23</gml:endPosition>
 <gml:duration>P1Y</gml:duration>
 </gml:TimePeriod>

14.2.2.6 TimePeriodPropertyType

gml:TimePeriodPropertyType is a specialization of gml:TimePrimitivePropertyType that provides for
associating a gml:TimePeriod with an object:

 <complexType name="TimePeriodPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:TimePeriod"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>

14.2.2.7 TimePositionType, timePosition

The method for identifying a temporal position is specific to each temporal reference system.
gml:TimePositionType supports the description of temporal position in accordance with the subtypes
described in ISO 19108. It implements ISO 19108 TM_Position (see D.2.5.5 and ISO 19108:2002, 5.4.2).

Values based on calendars and clocks use lexical formats that are based on ISO 8601-1, as described in
XML Schema Part 2:2001. A decimal value may be used with coordinate systems such as GPS time or
UNIX time. A URI may be used to provide a reference to some era in an ordinal reference system3).

In common with many of the components modelled as data types in the ISO 19100 series of International
Standards, the corresponding GML component has simple content. However, the content model
gml:TimePositionType is defined in several steps (the details of the mapping to ISO 19108 TM_Position
are described in D.2.5.5):

 <complexType name="TimePositionType" final="#all">
 <simpleContent>
 <extension base="gml:TimePositionUnion">
 <attribute name="frame" type="anyURI" default="#ISO-8601"/>
 <attribute name="calendarEraName" type="string" />
 <attribute name="indeterminatePosition" type="gml:TimeIndeterminateValueType" />
 </extension>
 </simpleContent>
 </complexType>
Three XML attributes appear on gml:TimePositionType:

A time value shall be associated with a temporal reference system through the frame attribute that
provides a URI reference that identifies a description of the reference system. Following ISO 19108, the
Gregorian calendar with UTC is the default reference system, but others may also be used. Components
for describing temporal reference systems are described in 14.4, but it is not required that the reference
system be described in this manner, as the reference may refer to any resource that may be identified
with a URI.

For time values using a calendar containing more than one era, the (optional) calendarEraName attribute
provides the name of the calendar era.

Inexact temporal positions may be expressed using the optional indeterminatePosition attribute.
This takes a value from an enumeration defined as follows:

3) e.g. a geological epoch.

134 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

 <simpleType name="TimeIndeterminateValueType">
 <restriction base="string">
 <enumeration value="after"/>
 <enumeration value="before"/>
 <enumeration value="now"/>
 <enumeration value="unknown"/>
 </restriction>
 </simpleType>
These values are interpreted as follows:

— “unknown” indicates that no specific value for temporal position is provided;

— “now” indicates that the specified value shall be replaced with the current temporal position
whenever the value is accessed;

— “before” indicates that the actual temporal position is unknown, but it is known to be before the
specified value;

— “after” indicates that the actual temporal position is unknown, but it is known to be after the
specified value.

A value for indeterminatePosition may

— be used either alone, or

— qualify a specific value for temporal position4).

The simple type gml:TimePositionUnion is a union of XML Schema simple types which instantiate the
subtypes for temporal position described in ISO 19108.

<simpleType name="TimePositionUnion">
 <union memberTypes="gml:CalDate time dateTime anyURI decimal"/>
 </simpleType>
An ordinal era may be referenced via URI. A decimal value may be used to indicate the distance from
the scale origin5). time is used for a position that recurs daily (see ISO 19108:2002 5.4.4.2).

Finally, calendar and clock forms that support the representation of time in systems based on years,
months, days, hours, minutes and seconds, in a notation following ISO 8601-1, are assembled as follows:

 <simpleType name="CalDate">
 <union memberTypes="date gYearMonth gYear"/>
 </simpleType>
NOTE 1 The XML Schema simpleType dateTime does not permit right-truncation, except for fractions of
seconds, which is why date, gYear and gYearMonth are required.

NOTE 2 Following ISO 19108, when used with non-Gregorian calendars based on years, months, days, use the
same lexical representation. Following XML Schema Part 2, add leading zeros, if the year value would otherwise
have fewer than four digits.

The element gml:timePosition is declared as follows:

 <element name="timePosition" type="gml:TimePositionType"/>
This element is used directly as a property of gml:TimeInstant (see 14.2.2.3), and may also be used in
application schemas.

EXAMPLE The following examples illustrate how gml:timePosition or other elements of this type may
appear in a data instance:

<gml:timePosition>2002-11-25T13:20:20Z</gml:timePosition>

<gml:timePosition indeterminatePosition="after">1994</gml:timePosition>

<gml:timePosition indeterminatePosition="now">1994-07-10</gml:timePosition>

4) e.g. before 2002-12, after 1019624400.
5) e.g. UNIX time, GPS calendar.

© ISO 2020 – All rights reserved 135

ISO 19136-1:2020(E)

<gml:timePosition frame=”http://my.big.org/TRS/GPS”>25876321.01</gml:timePosition>

<gml:timePosition frame="http://my.big.org/TRS/archaeology"> http://my.history.org/eras/
bronzeAge</gml:timePosition>

<gml:timePosition frame=”http://my.big.org/TRS/calendars/japanese” calendarEraName="Me
iji">0025-03</gml:timePosition>

14.2.2.8 timeLength, duration, timeInterval, TimeUnitType

The length of a time period is described using the group gml:timeLength, which is declared in the
schema as follows:

 <group name="timeLength">
 <choice>
 <element ref="gml:duration"/>
 <element ref="gml:timeInterval"/>
 </choice>
 </group>
Its content model is a choice of two property elements:

 <element name="duration" type="duration"/>
gml:duration conforms to the ISO 8601-1 syntax for temporal length as implemented by the XML
Schema duration type. The other alternative is gml:timeInterval which conforms to ISO/IEC 11404
which is based on floating point values for temporal length.

 <element name="timeInterval" type="gml:TimeIntervalLengthType"/>

 <complexType name="TimeIntervalLengthType" final="#all">
 <simpleContent>
 <extension base="decimal">
 <attribute name="unit" type="gml:TimeUnitType" use="required"/>
 <attribute name="radix" type="positiveInteger"/>
 <attribute name="factor" type="integer"/>
 </extension>
 </simpleContent>
 </complexType>
ISO/IEC 11404 syntax specifies the use of a positiveInteger together with appropriate values for radix
and factor. The resolution of the time interval is to one radix ^(-factor) of the specified time unit.

EXAMPLE 1 unit="second", radix="10", factor="3" specifies a resolution of milliseconds

The value of the unit is either selected from the units for time intervals from ISO 80000-3, or is another
suitable unit. The encoding is defined for GML in gml:TimeUnitType:

 <simpleType name="TimeUnitType">
 <union>
 <simpleType>
 <restriction base="string">
 <enumeration value="year"/>
 <enumeration value="month"/>
 <enumeration value="day"/>
 <enumeration value="hour"/>
 <enumeration value="minute"/>
 <enumeration value="second"/>
 </restriction>
 </simpleType>
 <simpleType>
 <restriction base="string">
 <pattern value="other:\w{2,}"/>
 </restriction>
 </simpleType>
 </union>
 </simpleType>

136 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

The second component of this union type provides a method for indicating time units other than the six
standard units given in the enumeration.

EXAMPLE 2 To express a period length of 5 days, 14 hours and 30 minutes, any of the following instances are
acceptable:

<duration>P5DT14H30M</duration>

<timeInterval unit=“hour” radix=“10” factor=“0”>134.5</timeInterval>

<timeInterval unit=“other:week” radix=“10” factor=“0”> 0.800595</timeInterval>

14.3 Temporal topology schema

14.3.1 General

Temporal topology is described in terms of time complexes, nodes, and edges, and the connectivity
between these. Temporal topology does not directly provide information about temporal position. It is
used in the case of describing a lineage or a history (e.g. a family tree expressing evolution of species, an
ecological cycle, a lineage of lands or buildings, or a history of separation and merger of administrative
boundaries). The following subclause specifies the temporal topology as temporal characteristics of
features in compliance with ISO 19108.

14.3.2	 Temporal	topology	objects

14.3.2.1 Overview

A temporal topology object shall be a temporal element that describes the order of features or feature
properties as temporal characteristics of features. The two temporal topology objects are primitive
and complex.

As time is a one dimensional topological space, temporal topology primitives shall be a time node
corresponding to an instant, and a time edge corresponding to a period. A time node is an abstraction
of an event that happened at a certain instant as a start or an end of one or more states. A state is
a condition — a characteristic of a feature or data set that persists for a period. A “static feature” in
this document means a feature that holds a consistent identifier during its life span. Time edge is an
abstraction of a state, and associates with time nodes representing its start and end. However, temporal
topology primitives do not directly indicate “when” or “how long.” A time node need not be a start or an
end of a time edge in the case of describing the event not associating with states. Such a node is called
an isolated node.

A topology complex is a collection of topological primitives that is closed under the boundary operation.
A temporal topology complex shall be a connected acyclic directed graph composed of time edges and
time nodes. A minimum temporal topology complex is a time edge with two time nodes at its both ends.

EXAMPLE A lifecycle of a building can be described as a sequence of stages: plan, designing, construction,
utilization, disposal and demolition. Each stage can be represented as a time edge. The boundary of each stage
describing as a time node represents an event of decision-making, which terminates the stage and also originates
the next stage. Thus, a lifecycle of a building is described as a temporal topology complex composed of a sequence
of time edges connected with time nodes.

14.3.2.2	 AbstractTimeTopologyPrimitive

Temporal topology primitives shall imply the ordering information between features or feature
properties. The temporal connection of features can be examined if they have temporal topology
primitives as values of their properties. Usually, an instantaneous feature associates with a time node,
and a static feature associates with a time edge. A feature with both modes associates with the temporal
topology primitive: a supertype of time nodes and time edges.

© ISO 2020 – All rights reserved 137

ISO 19136-1:2020(E)

gml:TimeTopologyPrimitive implements ISO 19108 TM_TopologicalPrimitive (see D.2.5.6 and
ISO 19108:2002, 5.2.4.2) and acts as the head of a substitution group for temporal topology primitives.
It is defined in the schema as follows:

 <element name="AbstractTimeTopologyPrimitive" type="gml:AbstractTimeTopologyPrimitiveT
ype"
 abstract="true" substitutionGroup="gml:AbstractTimePrimitive"/>
gml:AbstractTimeTopologyPrimitive may be used in any position that a gml:AbstractTimePrimitive is
valid. Its content model is defined as follows:

 <complexType name="AbstractTimeTopologyPrimitiveType" abstract="true">
 <complexContent>
 <extension base="gml:AbstractTimePrimitiveType">
 <sequence>
 <element name="complex" type="gml:ReferenceType" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
A topological primitive is always connected to one or more other topological primitives, and is, therefore,
always a member of a topology complex. In a GML instance, this will often be indicated by the primitives
being described by elements that are descendents of an element describing a complex. However, in order
to support the case where a temporal topology primitive is described in another context, the optional
gml:complex property is provided, which carries a reference to the parent temporal topology complex.

14.3.2.3 TimeTopologyPrimitivePropertyType

gml:TimeTopologyPrimitivePropertyType provides for associating a gml:AbstractTimeTopologyPrimit
ive with an object:

 <complexType name="TimeTopologyPrimitivePropertyType">
 <sequence minOccurs="0">
 <element ref="gml:AbstractTimeTopologyPrimitive"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>

14.3.2.4 TimeTopologyComplex

A temporal topology complex shall be the connected acyclic directed graph composed of temporal
topology primitives, i.e. time nodes and time edges. Because a time edge may not exist without two
time nodes on its boundaries, static features have time edges from a temporal topology complex as the
values of their temporal properties, regardless of explicit declarations.

A temporal topology complex expresses a linear or a non-linear graph. A temporal linear graph,
composed of a sequence of time edges, provides a lineage described only by “substitution” of feature
instances or feature element values. A time node as the start or the end of the graph connects with
at least one time edge. A time node other than the start and the end shall connect to at least two time
edges: one of starting from the node, and another ending at the node.

gml:TimeTopologyComplex implements ISO 19108 TM_TopologicalComplex (see D.2.5.6 and
ISO 19108:2002, 5.2.4.5) and is declared as follows:

 <element name="TimeTopologyComplex" type="gml:TimeTopologyComplexType"
 substitutionGroup="gml:AbstractTimeComplex"/>
gml:TimeTopologyComplex may be used in any position that a gml:AbstractTimeComplex is valid. Its
content model is defined as follows:

 <complexType name="TimeTopologyComplexType" abstract="true">
 <complexContent>
 <extension base="gml:AbstractTimeComplexType">
 <sequence>
 <element name="primitive" type="gml:TimeTopologyPrimitivePropertyType"
 maxOccurs="unbounded"/>

138 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

 </sequence>
 </extension>
 </complexContent>
 </complexType>
A temporal topology complex is a set of connected temporal topology primitives. The member primitives
are indicated, either by reference or by value, using the gml:primitive property.

14.3.2.5 TimeTopologyComplexPropertyType

gml:TimeTopologyComplexPropertyType provides for associating a gml:TimeTopologyComplex with
an object:

 <complexType name="TimeTopologyComplexPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:TimeTopologyComplex"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>

14.3.2.6 TimeNode

A time node is a zero-dimensional topology primitive that represents an identifiable node in time (it is
equivalent to a point in space). A node may act as the termination or initiation of any number of time
edges. A time node may be realized as a geometry, its position, whose value is a time instant.

gml:TimeNode implements ISO 19108 TM_Node (see D.2.5.6 and ISO 19108:2002, 5.2.4.3) and is declared
as follows:

 <element name="TimeNode" type="gml:TimeNodeType"
 substitutionGroup="gml:AbstractTimeTopologyPrimitive"/>
gml:TimeNode may be used in any position that a gml:AbstractTimeTopologyPrimitive is valid. Its
content model is defined as follows:

 <complexType name="TimeNodeType">
 <complexContent>
 <extension base="gml:AbstractTimeTopologyPrimitiveType">
 <sequence>
 <element name="previousEdge" type="gml:TimeEdgePropertyType" minOccurs="0"
 maxOccurs="unbounded"/>
 <element name="nextEdge" type="gml:TimeEdgePropertyType" minOccurs="0"
 maxOccurs="unbounded"/>
 <element name="position" type="gml:TimeInstantPropertyType" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

14.3.2.7 TimeNodePropertyType

gml:TimeNodePropertyType provides for associating a gml:TimeNode with an object:

 <complexType name="TimeNodePropertyType">
 <sequence minOccurs="0">
 <element ref="gml:TimeNode"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>

14.3.2.8 TimeEdge

A time edge is a one-dimensional topology primitive. It is an open interval that starts and ends at a
node. The edge may be realized as a geometry whose value is a time period.

gml:TimeEdge implements ISO 19108 TM_Edge (see D.2.5.6 and ISO 19108:2002, 5.2.4.4) and is declared
as follows:

© ISO 2020 – All rights reserved 139

ISO 19136-1:2020(E)

 <element name="TimeEdge" type="gml:TimeEdgeType"
 substitutionGroup="gml:AbstractTimeTopologyPrimitive"/>
gml:TimeEdge may be used in any position that a gml:AbstractTimeTopologyPrimitive is valid. Its
content model is defined as follows:

 <complexType name="TimeEdgeType">
 <complexContent>
 <extension base="gml:AbstractTimeTopologyPrimitiveType">
 <sequence>
 <element name="start" type="gml:TimeNodePropertyType"/>
 <element name="end" type="gml:TimeNodePropertyType"/>
 <element name="extent" type="gml:TimePeriodPropertyType" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

14.3.2.9 TimeEdgePropertyType

gml:TimeEdgePropertyType provides for associating a gml:TimeEdge with an object:

 <complexType name="TimeEdgePropertyType">
 <sequence minOccurs="0">
 <element ref="gml:TimeEdge"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>

14.4 Temporal reference systems

14.4.1 Overview

A value in the time domain is measured relative to a temporal reference system. Common types of
reference system include calendars, ordinal temporal reference systems, and temporal coordinate
systems (time elapsed since some epoch). The primary temporal reference system for use with
geographic information is the Gregorian Calendar and 24 hour local or Coordinated Universal Time
(UTC), but special applications may entail the use of alternative reference systems. The Julian day
numbering system is a temporal coordinate system that has an origin earlier than any known calendar,
at noon on 1 January 4713 BC in the Julian proleptic calendar, and is useful in transformations between
dates in different calendars.

In GML seven concrete elements are used to describe temporal reference systems:
gml:TimeReferenceSystem, gml:TimeCoordinateSystem, gml:TimeCalendar, gml:TimeCalendarEra,
gml:TimeClock, gml:TimeOrdinalReferenceSystem, and gml:TimeOrdinalEra.

14.4.2 Basic temporal reference system, TimeReferenceSystem

A reference system is characterized in terms of its domain of validity: the spatial and temporal
extent over which it is applicable. The basic GML element for temporal reference systems is
gml:TimeReferenceSystem. Its content model extends gml:DefinitionType (see 15.2.1) with one
additional property, gml:domainOfValidity. It is implemented as follows:

 <element name="TimeReferenceSystem" type="gml:TimeReferenceSystemType"
 substitutionGroup="gml:Definition"/>
gml:TimeReferenceSystem may be used in any position that a gml:Definition is valid. Its content model
is defined as follows:

 <complexType name="TimeReferenceSystemType">
 <complexContent>
 <extension base="gml:DefinitionType">
 <sequence>
 <element name="domainOfValidity" type="string"/>
 </sequence>
 </extension>

140 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

 </complexContent>
 </complexType>
EXAMPLE This element might appear in an instance document as follows:

<gml:TimeReferenceSystem gml:id="JulianCalendar">
 <gml:description xlink:href="http://aa.usno.navy.mil/data/docs/JulianDate.html"/>
 <gml:name>Julian Calendar</gml:name>
 <gml:domainOfValidity>Western Europe</gml:domainOfValidity>
</gml:TimeReferenceSystem>

14.4.3 TimeCoordinateSystem

A temporal coordinate system shall be based on a continuous interval scale defined in terms of a single
time interval.

gml:TimeCoordinateSystem implements ISO 19108 TM_CoordinateSystem (see D.2.5.9 and
ISO 19108:2002, 5.3.3) with the exceptions specified below and is declared as follows:

 <element name="TimeCoordinateSystem" type="gml:TimeCoordinateSystemType"
 substitutionGroup="gml:TimeReferenceSystem"/>
gml:TimeCoordinateSystem may be used in any position that a gml:TimeReferenceSystem is valid. Its
content model is defined as follows:

 <complexType name="TimeCoordinateSystemType">
 <complexContent>
 <extension base="gml:TimeReferenceSystemType">
 <sequence>
 <choice>
 <element name="originPosition" type="gml:TimePositionType"/>
 <element name="origin" type="gml:TimeInstantPropertyType"/>
 </choice>
 <element name="interval" type="gml:TimeIntervalLengthType"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
The differences to ISO 19108 TM_CoordinateSystem are:

— the origin is specified either using the property gml:originPosition whose value is a direct time
position (see 14.2.2.7), or using the property gml:origin whose model is gml:TimeInstantPropertyType
(see 14.2.2.4); this permits more flexibility in representation and also supports referring to a value
fixed elsewhere;

— the interval uses gml:TimeIntervalLengthType, defined in 14.2.2.8.

EXAMPLE Coordinate systems might be described in data instances as follows:

<gml:TimeCoordinateSystem gml:id="Laser36">
 <gml:description>Time scale used during a laser experiment</gml:description>
 <gml:name>Laser timescale 36</gml:name>
 <gml:domainOfValidity>Laser laboratory</gml:domainOfValidity>
 <gml:origin>
 <gml:TimeInstant>
 <gml:timePosition>2002-11-28T12:50:00+08:00</gml:timePosition>
 </gml:TimeInstant>
 </gml:origin>
 <gml:interval unit=“second” radix=“10” factor=“12”>1.0</gml:interval>
</gml:TimeCoordinateSystem>
<gml:TimeCoordinateSystem gml:id="geologyMa">
 <gml:name>Geological time system</gml:name>
 <gml:domainOfValidity>Earth</gml:domainOfValidity>
 <gml:origin>
 <gml:TimeInstant>
 <gml:description xlink:href="http://www.c14dating.com/agecalc.html">Conventional
origin used for carbon dating. Equivalent to "present" for other radiometric dating
techniques which have much lower precision.</gml:description>
 <gml:timePosition>1950</gml:timePosition>
 </gml:TimeInstant>
 </gml:origin>

© ISO 2020 – All rights reserved 141

ISO 19136-1:2020(E)

 <gml:interval unit=“year” radix=“10” factor=“-6”>1.0</gml:interval>
</gml:TimeCoordinateSystem>

14.4.4 Calendars and clocks

14.4.4.1 Overview

Calendars and clocks are both based on interval scales. A calendar is a discrete temporal reference
system that provides a basis for defining temporal position to a resolution of one day. A clock provides
a basis for defining temporal position within a day. A clock shall be used with a calendar in order to
provide a complete description of a temporal position within a specific day.

Calendars have a variety of complex internal structures. This schema defines a simple external calendar
interface. Every calendar provides a set of rules for composing a calendar date from a set of elements
such as year, month, and day. In every calendar, years are numbered relative to the date of a reference
event that defines a calendar era. A single calendar may reference more than one calendar era.

14.4.4.2 TimeCalendar, TimeCalendarEra

A calendar is a discrete temporal reference system that provides a basis for defining temporal position
to a resolution of one day. gml:TimeCalendar implements ISO 19108 TM_Calender (see D.2.5.8 and
ISO 19108:2002, 5.3.2.3) and is declared as follows:

 <element name="TimeCalendar" type="gml:TimeCalendarType"
 substitutionGroup="gml:TimeReferenceSystem"/>
gml:TimeCalendar may be used in any position that a gml:TimeReferenceSystem is valid. Its content
model is defined as follows:

 <complexType name="TimeCalendarType">
 <complexContent>
 <extension base="gml:TimeReferenceSystemType">
 <sequence>
 <element name="referenceFrame" type="gml:TimeCalendarEraPropertyType"
 maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
gml:TimeCalendar adds one property to those inherited from gml:TimeReferenceSystem. A
gml:referenceFrame provides a link to a gml:TimeCalendarEra that it uses. A gml:TimeCalendar may
reference more than one calendar era.

The referenceFrame element follows the standard GML property model, allowing the association to be
instantiated either using an inline description using the gml:TimeCalendarEra element, or a link to a
gml:TimeCalendarEra which is explicit elsewhere.

gml:TimeCalendarEra implements ISO 19108 TM_CalenderEra (see D.2.5.8 and ISO 19108:2002, 5.3.2.1)
and is declared as follows:

 <element name="TimeCalendarEra" type="gml:TimeCalendarEraType" />
Its content model is defined as follows:

 <complexType name="TimeCalendarEraType">
 <complexContent>
 <extension base="gml:DefinitionType">
 <sequence>
 <element name="referenceEvent" type="gml:StringOrRefType"/>
 <element name="referenceDate" type="gml:CalDate"/>
 <element name="julianReference" type="decimal"/>
 <element name="epochOfUse" type="gml:TimePeriodPropertyType"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

142 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

gml:TimeCalendarEra inherits basic properties from gml:DefinitionType (see 15.2.1) and has the
following additional properties:

— gml:referenceEvent is the name or description of a mythical or historic event which fixes the
position of the base scale of the calendar era. This is given as text or using a link to description held
elsewhere.

— gml:referenceDate specifies the date of the referenceEvent expressed as a date in the given calendar.
In most calendars, this date is the origin (i.e., the first day) of the scale, but this is not always true.

— gml:julianReference specifies the Julian date that corresponds to the reference date. The Julian
day number is an integer value; the Julian date is a decimal value that allows greater resolution.
Transforming calendar dates to and from Julian dates provides a relatively simple basis for
transforming dates from one calendar to another.

— gml:epochOfUse is the period for which the calendar era was used as a basis for dating.

14.4.4.3 TimeCalendarPropertyType, TimeCalendarEraPropertyType

gml:TimeCalendarPropertyType provides for associating a gml:TimeCalendar with an object:

 <complexType name="TimeCalendarPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:TimeCalendar"/>
 </sequence>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>

gml:TimeCalendarEraPropertyType provides for associating a gml:TimeCalendarEra with an object:

 <complexType name="TimeCalendarEraPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:TimeCalendarEra"/>
 </sequence>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>

14.4.4.4 TimeClock

A clock provides a basis for defining temporal position within a day. A clock shall be used with a calendar
in order to provide a complete description of a temporal position within a specific day. gml:TimeClock
implements ISO 19108 TM_Clock (see D.2.5.8 and ISO 19108:2002, 5.3.2.4) and is declared as follows:

 <element name="TimeClock" type="gml:TimeClockType"
 substitutionGroup="gml:TimeReferenceSystem"/>
gml:TimeClock may be used in any position that a gml:TimeReferenceSystem is valid. Its content model
is defined as follows:

 <complexType name="TimeClockType" final="#all">
 <complexContent>
 <extension base="gml:TimeReferenceSystemType">
 <sequence>
 <element name="referenceEvent" type="gml:StringOrRefType"/>
 <element name="referenceTime" type="time"/>
 <element name="utcReference" type="time"/>
 <element name="dateBasis" type="gml:TimeCalendarPropertyType" minOccurs="0"
 maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

© ISO 2020 – All rights reserved 143

ISO 19136-1:2020(E)

gml:TimeClock adds the following properties to those inherited from gml:TimeReferenceSystemType:

— gml:referenceEvent is the name or description of an event, such as solar noon or sunrise, which
fixes the position of the base scale of the clock.

— gml:referenceTime specifies the time of day associated with the reference event expressed as a
time of day in the given clock. The reference time is usually the origin of the clock scale.

— gml:utcReference specifies the 24 hour local or UTC time that corresponds to the reference time.

— gml:dateBasis contains or references the calendars that use this clock.

14.4.4.5 TimeClockPropertyType

gml:TimeClockPropertyType provides for associating a gml:TimeClock with an object:

 <complexType name="TimeClockPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:TimeClock"/>
 </sequence>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>

14.4.5 Ordinal temporal reference systems

14.4.5.1 Overview

In some applications of geographic information — such as geology and archaeology — relative position
in time is known more precisely than absolute time or duration. The order of events in time can be well
established, but the magnitude of the intervals between them cannot be accurately determined; in such
cases, the use of an ordinal temporal reference system is appropriate. An ordinal temporal reference
system is composed of a sequence of named coterminous eras, which may in turn be composed of
sequences of member eras at a finer scale, giving the whole a hierarchical structure of eras of varying
resolution.

An ordinal temporal reference system whose component eras are not further subdivided is effectively
a temporal topology complex constrained to be a linear graph. An ordinal temporal reference system
some or all of whose component eras are subdivided is effectively a temporal topology complex with
the constraint that parallel branches may only be constructed in pairs where one is a single temporal
ordinal era and the other is a sequence of temporal ordinal eras that are called "members" of the "group".
This constraint means that within a single temporal ordinal reference system, the relative position of
all temporal ordinal eras is unambiguous.

The positions of the beginning and end of a given era may calibrate the relative time scale.

14.4.5.2 TimeOrdinalReferenceSystem, TimeOrdinalEra

gml:TimeOrdinalReferenceSystem implements ISO 19108 TM_OrdinalReferenceSystem (see D.2.5.10
and ISO 19108:2002, 5.3.4) by adding one or more gml:component properties to the generic temporal
reference system model. It is declared as follows:

 <element name="TimeOrdinalReferenceSystem" type="gml:TimeOrdinalReferenceSystemType"
 substitutionGroup="gml:TimeReferenceSystem"/>
gml:TimeOrdinalReferenceSystem may be used in any position that a gml:TimeReferenceSystem is valid.
Its content model is defined as follows:

 <complexType name="TimeOrdinalReferenceSystemType">
 <complexContent>
 <extension base="gml:TimeReferenceSystemType">
 <sequence>
 <element name="component" type="gml:TimeOrdinalEraPropertyType"
 maxOccurs="unbounded"/>

144 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

 </sequence>
 </extension>
 </complexContent>
 </complexType>
gml:TimeOrdinalEra implements ISO 19108 TM_OrdinalEra (see D.2.5.10 and ISO 19108:2002, 5.3.4).
Its content model follows the pattern of gml:TimeEdge (see 14.3.2.8), inheriting standard properties
from gml:DefinitionType (see 15.2.1), and adding gml:start, gml:end and gml:extent properties, a
set of gml:member properties which indicate ordered gml:TimeOrdinalEra elements, and a gml: group
property which points to the parent era. This is declared as follows:

<element name="TimeOrdinalEra" type="gml:TimeOrdinalEraType"/>

<complexType name="TimeOrdinalEraType">
 <complexContent>
 <extension base="gml:DefinitionType">
 <sequence>
 <element name="relatedTime" type="gml:RelatedTimeType" minOccurs="0"
 maxOccurs="unbounded"/>
 <element name="start" minOccurs="0" type="gml:TimeNodePropertyType"/>
 <element name="end" minOccurs="0" type="gml:TimeNodePropertyType"/>
 <element name="extent" type="gml:TimePeriodPropertyType" minOccurs="0"/>
 <element name="member" type="gml:TimeOrdinalEraPropertyType" minOccurs="0"
 maxOccurs="unbounded"/>
 <element name="group" type="gml:ReferenceType" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
The recursive inclusion of gml:TimeOrdinalEra elements allow the construction of an arbitrary depth
hierarchical ordinal reference schema, such that an ordinal era at a given level of the hierarchy includes
a sequence of shorter, coterminous ordinal eras.

EXAMPLE The example below shows a portion of the geological time scale depicted as an ordinal
reference system:

<gml:TimeOrdinalReferenceSystem gml:id="GeologicalTimeScale">
 <gml:description xlink:href="ftp://ftp.iugs.org/pub/iugs/iugs_intstratchart.pdf"/>
 <gml:name>Geological time scale</gml:name>
 <gml:domainOfValidity>Earth</gml:domainOfValidity>
 <!-- Earlier eras omitted -->
 <gml:component>
 <gml:TimeOrdinalEra gml:id="Cenozoic">
 <gml:name>Cenozoic Era</gml:name>
 <gml:start xlink:href="#basePaleocene"/>
 <gml:end xlink:href="#now"/>
 <gml:member>
 <gml:TimeOrdinalEra gml:id="Tertiary">
 <gml:name>Tertiary Period</gml:name>
 <gml:start xlink:href="#baseTertiary"/>
 <gml:end xlink:href="#basePleistocene"/>
 <gml:member>
 <gml:TimeOrdinalEra gml:id="Paleogene">
 <gml:name>Paleogene sub-period</gml:name>
 <gml:start>
 <gml:TimeInstant gml:id="basePaleogene">
 <gml:timePosition frame="#geologyMa">65.0</gml:timePosition>
 </gml:TimeInstant>
 </gml:start>
 <gml:end xlink:href="#baseNeogene"/>
 <gml:member>
 <gml:TimeOrdinalEra gml:id="Paleocene">
 <gml:name>Paleocene Epoch</gml:name>
 <gml:start xlink:href="#basePaleogene"/>
 <gml:end xlink:href="#baseEocene"/>
 </gml:TimeOrdinalEra>
 </gml:member>
 <gml:member>
 <gml:TimeOrdinalEra gml:id="Eocene">
 <gml:name>Paleocene Epoch</gml:name>

© ISO 2020 – All rights reserved 145

ISO 19136-1:2020(E)

 <gml:start >
 <gml:TimeInstant gml:id="baseEocene">
 <gml:timePosition frame="#geologyMa">57.8</gml:timePosition>
 </gml:TimeInstant>
 </gml:start >
 <gml:end xlink:href="#baseOligocene"/>
 </gml:TimeOrdinalEra>
 </gml:member>
 <gml:member>
 <gml:TimeOrdinalEra gml:id="Oligocene">
 <gml:name>Oligocene Epoch</gml:name>
 <gml:start >
 <gml:TimeInstant gml:id="baseOligocene">
 <gml:timePosition frame="#geologyMa">33.7</gml:timePosition>
 </gml:TimeInstant>
 </gml:start >
 <gml:end xlink:href="#baseNeogene"/>
 </gml:TimeOrdinalEra>
 </gml:member>
 </gml:TimeOrdinalEra>
 </gml:member>
 <!-- Neogene sub-period and Quaternerary period omitted -->
 </gml:TimeOrdinalEra>
 </gml:member>
 </gml:TimeOrdinalEra>
 </gml:component>
</gml:TimeOrdinalReferenceSystem>
Note that the use of references on various begin and end elements allows the position of the boundaries
between eras to be recorded once and then re-used many times as appropriate, corresponding to a non-
linear graph when appropriate. All positions refer to a frame “geologyMa” which would be defined as a
temporal coordinate system (e.g. see Clause 12).

14.4.5.3 TimeOrdinalEraPropertyType

gml:TimeOrdinalEraPropertyType provides for associating a gml:TimeOrdinalEra with an object:

 <complexType name="TimeOrdinalEraPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:TimeOrdinalEra"/>
 </sequence>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>

14.5 Representing dynamic features

14.5.1 Overview

A number of types and relationships are defined to represent the time-varying properties of geographic
features.

In a comprehensive treatment of spatiotemporal modelling, Langran (see Bibliography) distinguished
three principal temporal entities: states, events, and evidence; the schema specified in the following
subclauses incorporates elements for each. The conceptual model is shown in D.3.11.

14.5.2 dataSource

In GML, evidence is represented by a simple gml:dataSource or gml:dataSourceReference property that
indicates the source of the temporal data.

 <element name="dataSource" type="gml:StringOrRefType"/>
 <element name="dataSourceReference" type="gml:ReferenceType"/>
The remote link attributes of the gml:dataSource element have been deprecated along with its current
type. To refer to a remote data source, use the remote link attributes of gml:dataSourceReference instead.

EXAMPLE A human observer or an in situ sensor.

146 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

14.5.3 Dynamic properties

A convenience group gml:dynamicProperties is defined as follows:

 <group name="dynamicProperties">
 <sequence>
 <element ref="gml:validTime" minOccurs="0"/>
 <element ref="gml:history" minOccurs="0"/>
 <element ref="gml:dataSource" minOccurs="0"/>
 <element ref="gml:dataSourceReference" minOccurs="0"/>
 </sequence>
 </group>
This allows an application schema developer to include dynamic properties in a content model in
a standard fashion. The gml:validTime property is specified in 14.2.1.3. The other properties are
specified elsewhere in 14.5.

14.5.4 DynamicFeature

States are captured by time-stamped instances of a feature. gml:DynamicFeature implements
DynamicFeature as shown in D.3.11 and is declared as follows:

 <element name="DynamicFeature" type="gml:DynamicFeatureType"
 substitutionGroup="gml:AbstractFeature"/>
The content model extends the standard gml:AbstractFeatureType with the gml:dynamicProperties
model group:

 <complexType name="DynamicFeatureType">
 <complexContent>
 <extension base="gml:AbstractFeatureType">
 <group ref="gml:dynamicProperties"/>
 </extension>
 </complexContent>
 </complexType>
Each time-stamped instance represents a ‘snapshot’ of a feature. The dynamic feature classes will
normally be extended to suit particular applications. A dynamic feature bears either a time stamp or a
history.

NOTE A history consists of a set of gml:AbstractTimeSlices and such time slices can contain any time
varying properties. One can, for example, use such a mechanism to describe a feature with one property that
varies in time.

14.5.5 DynamicFeatureCollection

gml:DynamicFeatureCollection implements DynamicFeatureCollection as shown in D.3.11 and is
declared as follows:

 <element name="DynamicFeatureCollection" type="gml:DynamicFeatureCollectionType"
 substitutionGroup="gml:DynamicFeature"/>
The content model extends gml:DynamicFeatureType with the gml:dynamicMembers property:

 <complexType name="DynamicFeatureCollectionType">
 <complexContent>
 <extension base="gml:DynamicFeatureType">
 <sequence>
 <element ref="gml:dynamicMembers"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <element name="dynamicMembers" type="gml:DynamicFeatureMemberType"/>

 <complexType name="DynamicFeatureMemberType">
 <complexContent>
 <extension base="gml:AbstractFeatureMemberType">
 <sequence>

© ISO 2020 – All rights reserved 147

ISO 19136-1:2020(E)

 <element ref="gml:DynamicFeature" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </extension>
 </complexContent>
 </complexType>
A gml:DynamicFeatureCollection is a feature collection that has a gml:validTime property (i.e. is
a snapshot of the feature collection) or which has a gml:history property that contains one or more
gml:AbstractTimeSlices each of which contain values of the time varying properties of the feature
collection. Note that the gml:DynamicFeatureCollection may be one of the following:

1. A feature collection which consists of static feature members (members do not change in time) but
which has properties of the collection object as a whole that do change in time6).

EXAMPLE 1 A Train: The Train is a feature collection. The position and speed of the train are time varying and
could be captured in the history of the Train. The featureMembers of the Train are the individual cars including
the locomotive. The properties of the cars are static such as the position of the car in the train (we ignore any re-
organization of the train in this example), the cargo, the make of the car and its type (e.g. grain car, oil car etc.).

2. A feature collection which consists of dynamic feature members (the members are
gml:DynamicFeatures) but which also has properties of the collection as a whole that vary in time.

EXAMPLE 2 A collection of sail boats in a yachting race. The sail boats may disappear from the race or
reappear. The area encompassing the boats in the race (think of a race like the Vendée Globe) would be time
variant.

NOTE One can also have a feature collection with dynamic feature members but such that the properties of
the collection as a whole are static. This can also be applied to the sail boat race where we only have properties
like the organization committee, and the location of the starting point and finish line.

14.5.6	 AbstractTimeSlice

To describe an event — an action that occurs at an instant or over an interval of time — GML provides
the gml:AbstractTimeSlice element, which is declared as follows:

 <element name="AbstractTimeSlice" type="gml:AbstractTimeSliceType" abstract="true"
 substitutionGroup="gml:AbstractGML"/>

 <complexType name="AbstractTimeSliceType" abstract="true">
 <complexContent>
 <extension base="gml:AbstractGMLType">
 <sequence>
 <element ref="gml:validTime"/>
 <element ref="gml:dataSource" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
A timeslice encapsulates the time-varying properties of a dynamic feature − it shall be extended to
represent a time stamped projection of a specific feature. The gml:dataSource property describes how
the temporal data was acquired.

A gml:AbstractTimeSlice instance is a GML object that encapsulates updates of the dynamic—or
volatile—properties that reflect some change event; it thus includes only those feature properties that
have actually changed due to some process.

EXAMPLE 1 Suppose that ownership of a building changes and it is renamed. If no other building properties
have changed, then the event will only include the updated name.

gml:AbstractTimeSlice basically provides a facility for attribute-level time stamping, in contrast to the
object-level time stamping of dynamic feature instances.

6) e.g. described by a history.

148 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

The time slice can thus be viewed as event or process-oriented, whereas a snapshot is more state or
structure-oriented. A timeslice has richer causality, whereas a snapshot merely portrays the status of
the whole.

EXAMPLE 2 A feature collection might have a 'life cycle' represented by a sequence of snapshots, see Figure 3.

Figure 3 — Life cycle of a feature collection

At instant t1, feature A, feature B, and feature C are all members of the collection. However, at instant t2
only feature A and feature C are members. Closer examination of the history of feature B will reveal its
ephemeral nature (e.g. a building is dismantled and reconstructed on a seasonal basis).

14.5.7 history

A generic sequence of events constitute a gml:history of an object. This property element is declared
as follows:

 <element name="history" type="gml:HistoryPropertyType"/>

 <complexType name="HistoryPropertyType">
 <sequence>
 <element ref="gml:AbstractTimeSlice" maxOccurs="unbounded"/>
 </sequence>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>
The gml:history element contains a set of elements in the substitution group headed by the abstract
element gml:AbstractTimeSlice, representing the time-varying properties of interest. The history
property of a dynamic feature associates a feature instance with a sequence of time slices (i.e. change
events) that encapsulate the evolution of the feature.

The gml:history property is intended to capture time varying properties of a feature whose identity is
invariant over the lifetime of the temporal model. In this way the detailed evolution of a feature can be
described such as its motion in space or changes in its shape. The gml:history property can be related
to temporal topology objects specified in 14.3. Every gml:AbstractTimeSlice in the gml:history of a
dynamic feature can correspond to a gml:TimeEdge in the temporal topology model, if the topology of
the valid times of different time slices shall be expressed explicitly. In temporal topology one constructs
a temporal topology complex that provides a framework to which one can attach the lineage of a feature
or temporal collection of features including dynamic features.

EXAMPLE gml:MovingObjectStatus (see I.7.2) is one example of how gml:AbstractTimeSlice may be
extended to capture the status of a moving object at certain times. The type has been deprecated due to the
overlap with ISO 19141 (Schema for moving features).

If a feature represents a moving object such as a ground vehicle or a ship, then the gml:history property
comprises a sequence of gml:MovingObjectStatus elements. For example, a dynamic feature such as a
cyclone may have a gml:history property such as shown in the following fragment:

© ISO 2020 – All rights reserved 149

ISO 19136-1:2020(E)

 <app:Cyclone gml:id="c1">
<gml:history>
 <gml:MovingObjectStatus>
 <gml:validTime>
 <gml:TimeInstant>
 <gml:timePosition>2005-11-28T13:00:00Z</gml:timePosition>
 </gml:TimeInstant>
 </gml:validTime>
 <gml:location>
 <gml:Point gml:id="p1" srsName="http://www.opengis.net/def/crs/EPSG/0/4326">
 <gml:pos>-35 140</gml:pos>
 </gml:Point>
 </gml:location>
 <gml:speed uom="#kph">12</gml:speed>
 <gml:bearing>
 <gml:CompassPoint>SE</gml:CompassPoint>
 </gml:bearing>
 </gml:MovingObjectStatus>
 <gml:MovingObjectStatus>
 <gml:validTime>
 <gml:TimeInstant>
 <gml:timePosition>2005-11-28T14:00:00Z</gml:timePosition>
 </gml:TimeInstant>
 </gml:validTIme>
 <gml:location>
 <gml:Point gml:id="p1" srsName="http://www.opengis.net/def/crs/EPSG/0/4326">
 <gml:pos>-34.9 140.1</gml:pos >
 </gml:Point>
 </gml:location>
 <gml:speed uom="#kph">23</gml:speed>
 <gml:bearing>
 <gml:CompassPoint>ESE</gml:CompassPoint>
 </gml:bearing>
 </gml:MovingObjectStatus>
</gml:history>
 </app:Cyclone>

15	GML	schema	—	Definitions	and	dictionaries

15.1 Overview

Many applications require definitions of terms which are used within instance documents as the values
of certain properties or as reference information to tie properties to standard information values in
some way. Units of measure and descriptions of measurable phenomena are two particular examples.

It will often be convenient to use definitions provided by external authorities. These may already be
packaged for delivery in various ways, both online and offline. In order that they may be referred to
from GML documents it is generally necessary that a URI be available for each definition. Where this is
the case then it is usually preferable to refer to these directly.

Alternatively, it may be convenient or necessary to capture definitions in XML, either embedded
within an instance document containing features or as a separate document. The definitions may
be transcriptions from an external source, or may be new definitions for a local purpose. In order to
support this case, some simple components are provided in GML in the form of

— a generic gml:Definition, which may serve as the basis for more specialized definitions

— a generic gml:Dictionary, which allows a set of definitions or references to definitions to be collected

These components may be used directly, but also serve as the basis for more specialized definition
elements in GML, in particular: coordinate operations (Clause 12), coordinate reference systems
(Clause 12), datums (Clause 12), temporal reference systems (Clause 14), and units of measure
(Clause 16).

Note that the GML definition and dictionary components implement a simple nested hierarchy of
definitions with identifiers. The latter provide handles which may be used in the description of more

150 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

complex relationships between terms. However, the GML dictionary components are not intended
to provide direct support for complex taxonomies, ontologies or thesauri. Specialized XML tools are
available to satisfy the more sophisticated requirements.

NOTE The dictionary schema document is identified by the following location-independent name (using
URN syntax):

— urn: ogc: specification: gml: schema -xsd: dictionary: 3 .2 .1

15.2 Dictionary schema

15.2.1	 Definition,	DefinitionType,	remarks

The basic gml:Definition element specifies a definition, which can be included in or referenced by a
dictionary. It is declared as follows:

 <element name="Definition" type="gml:DefinitionType"
 substitutionGroup="gml:AbstractGML"/>

 <complexType name="DefinitionBaseType">
 <complexContent>
 <restriction base="gml:AbstractGMLType">
 <sequence>
 <element ref="gml:metaDataProperty" minOccurs="0" maxOccurs="unbounded"/>
 <element ref="gml:description" minOccurs="0"/>
 <element ref="gml:descriptionReference" minOccurs="0"/>
 <element ref="gml:identifier"/>
 <element ref="gml:name" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute ref="gml:id" use="required"/>
 </restriction>
 </complexContent>
 </complexType>

 <complexType name="DefinitionType">
 <complexContent>
 <extension base="gml:DefinitionBaseType">
 <sequence>
 <element ref="gml:remarks" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <element name="remarks" type="string"/>
The content model for a generic definition is a derivation from gml:AbstractGMLType. The gml:id
attribute is mandatory for all definitions.

The gml:description property element shall hold the definition if this can be captured in a simple text
string, or the gml:descriptionReference property element may carry a link to a description elsewhere.

The gml:identifier element shall provide one identifier identifying this definition. The identifier shall
be unique within the dictionaries using this definition.

The gml:name elements shall provide zero or more terms and synonyms for which this is the definition.

The gml:remarks element shall be used to hold additional textual information that is not conceptually
part of the definition but is useful in understanding the definition.

15.2.2 Dictionary, DictionaryType

Sets of definitions may be collected into dictionaries or collections. These are declared in the schema as
follows:

© ISO 2020 – All rights reserved 151

ISO 19136-1:2020(E)

 <element name="Dictionary" type="gml:DictionaryType" substitutionGroup="gml:Definit
ion"/>

 <complexType name="DictionaryType">
 <complexContent>
 <extension base="gml:DefinitionType">
 <choice minOccurs="0" maxOccurs="unbounded">
 <element ref="gml:dictionaryEntry"/>
 <element ref="gml:indirectEntry"/>
 </choice>
 <attributeGroup ref="gml:AggregationAttributeGroup"/>
 </extension>
 </complexContent>
 </complexType>
A gml:Dictionary is a non-abstract collection of definitions.

The gml:Dictionary content model adds a list of gml:dictionaryEntry and gml:indirectEntry
(deprecated) properties that contain or reference gml:Definition objects. A database handle (gml:id
attribute) is required, in order that this collection may be referred to. The standard gml:identifier,
gml:description, gml:descriptionReference and gml:name properties are available to reference or
contain more information about this dictionary. The gml:description and gml:descriptionReference
property elements may be used for a description of this dictionary. The derived gml:name element may
be used for the name(s) of this dictionary.

15.2.3 dictionaryEntry, DictionaryEntryType

These elements contain or refer to the definitions which are members of a dictionary. The element
gml:dictionaryEntry is declared as follows:

 <element name="dictionaryEntry" type="gml:DictionaryEntryType"/>

 <complexType name="DictionaryEntryType">
 <complexContent>
 <extension base="gml:AbstractMemberType">
 <sequence minOccurs="0">
 <element ref="gml:Definition"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </extension>
 </complexContent>
 </complexType>
The content model follows the standard GML property pattern, so a gml:dictionaryEntry may either
contain or refer to a single gml:Definition. Since gml:Dictionary is substitutable for gml:Definition,
the content of an entry may itself be a lower-level dictionary.

Note that if the value is provided by reference, this definition does not carry a handle (gml:id) in this
context, so does not allow external references to this specific definition in this context. When used in
this way the referenced definition will usually be in a dictionary in the same XML document.

15.2.4	 Using	definitions	and	dictionaries

Dictionaries and definitions are GML objects, so may be found in independent GML data instance
documents.

In application schemas it might be useful to attach a gml:Dictionary or gml:Definitions to a feature
collection in order to record definitions used in properties of members of the collection.

EXAMPLE The following example shows two instances of dictionaries:

<gml:Dictionary gml:id="rockTypes">
 <gml:description>A simple dictionary of rock types using components from gmlBase</
gml:description>
 <gml:identifier codeSpace="http://www.abc.org/terms">Rock Types</gml:identifier>
 <gml:dictionaryEntry>
 <gml:Definition gml:id="granite">
 <gml:description>A igneous rock normally composed of quartz, two feldspars and

152 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

optional mica</gml:description>
 <gml:identifier codeSpace="http://www.abc.org/terms">Granite</gml:identifier>
 </gml:Definition>
 </gml:dictionaryEntry>
 <gml:dictionaryEntry>
 <gml:Definition gml:id="sst">
 <gml:description>A detrital sedimentary rock normally composed of siliceous grains</
gml:description>
 <gml:identifier codeSpace="http://www.abc.org/terms">Sandstone</gml:identifier>
 </gml:Definition>
 </gml:dictionaryEntry>
 <gml:dictionaryEntry xlink:href=”http://my.big.org/definitions/geology/limestone”/>
</gml:Dictionary>

<gml:Dictionary gml:id="AbridgedGMLdictionary">
 <gml:description>Abridged GML dictionary.</gml:description>
 <gml:identifier codeSpace="http://www.opengis.net/gml/3.2">GML Dictionary</
gml:identifier>
 <gml:dictionaryEntry>
 <gml:Definition gml:id="term4.1">
 <gml:description>conceptual schema for data required by one or more applications</
gml:description>
 <gml:identifier codeSpace="http://www.isotc211.org/19101">application schema</
gml:identifier>
 </gml:Definition>
 </gml:dictionaryEntry>
 <gml:dictionaryEntry>
 <gml:Definition gml:id="term4.2">
 <gml:description>application schema written in XML Schema in accordance with the
rules specified in ISO 19136</gml:description>
 <gml:identifier codeSpace="http://www.opengis.net/gml/3.2">GML application schema</
gml:identifier>
 </gml:Definition>
 </gml:dictionaryEntry>
 <gml:dictionaryEntry>
 <gml:Definition gml:id="term4.3">
 <gml:description>semantic relationship between two or more classifiers that
specifies connections among their instances </gml:description>
 <gml:identifer codeSpace="http://www.uml.org/1.3">association</gml:identifier>
 </gml:Definition>
 </gml:dictionaryEntry>
 <gml:dictionaryEntry>
 <gml:Definition gml:id="term4.4">
 <gml:description>name-value pair contained in an element</gml:description>
 <gml:identifer codeSpace="http://www.w3.org/XML/1998/namespace">attribute</
gml:identifier>
 </gml:Definition>
 </gml:dictionaryEntry>
 <!-- … -->
</gml:Dictionary>

16 GML schema — Units, measures and values

16.1 Introduction

Several GML schema components concern or require quantitative values which use a reference
scale or units of measure. In 8.2 the types gml:MeasureType, gml:MeasureListType and
gml:MeasureOrNilReasonListType are defined to enable GML properties and objects to carry units of
measure, in accordance with the following pattern:

 <abc:length uom=“m”>100</abc:length>
The attribute uom means “unit of measure” and holds a gml:UomIdentifier (see 8.2.3.6).

This clause describes schema components concerning three topics:

— a set of components for defining units of measure,

© ISO 2020 – All rights reserved 153

ISO 19136-1:2020(E)

— a set of typed measures,

— structures for aggregates and lists of measures.

16.2 Units schema

16.2.1 Overview

Several GML schema components concern or require a reference scale or units of measure. Units
are required for quantities that may occur as values of properties of feature types, as the results of
observations, in the range parameters of a coverage, and for measures used in Coordinate Reference
System definitions.

NOTE The schema document units.xsd defines components to support the definition of units of measure.
The units schema is listed in Annex C; it is identified by the following location-independent name (using URN
syntax):

— urn: ogc: specification: gml: schema -xsd: units: 3 .2 .1

The basic unit definition is an extension of the general gml:Definition element defined in 15.2.1. Three
specialized elements for unit definition are further derived from this.

This model is based on the SI system of units, which distinguishes between base units and derived units.

— Base units are the preferred units for a set of orthogonal fundamental quantities which define the
particular system of units, which may not be derived by combination of other base units.

— Derived units are the preferred units for other quantities in the system, which may be defined by
algebraic combination of the base units.

In some application areas, conventional units are used, which may be converted to the preferred units
using a scaling factor or a formula which defines a re-scaling and offset. The set of preferred units for
all physical quantity types in a particular system of units is composed of the union of its base units and
derived units.

16.2.2	 Using	unit	definitions

Unit definitions are substitutable for the gml:Definition element declared as part of the dictionary
model. A dictionary that contains only unit definitions and references to unit definitions is a units
dictionary.

16.2.3 unitOfMeasure, UnitOfMeasureType

The element gml:unitOfMeasure is a property element to refer to a unit of measure. It is declared in the
schema as follows:

 <element name="unitOfMeasure" type="gml:UnitOfMeasureType"/>

 <complexType name="UnitOfMeasureType">
 <sequence/>
 <attribute name="uom" type="gml:UomIdentifier" use="required"/>
 </complexType>
This is an empty element which carries a reference to a unit of measure definition (see 8.2.3.6).

EXAMPLE This element may appear in a data instance as follows:

 <unitOfMeasure uom="m"/>
 <unitOfMeasure uom="http://my.standards.org/units/length/metre"/>

154 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

16.2.4	 UnitDefinition,	UnitDefinitionType

A gml:UnitDefinition is a general definition of a unit of measure. This generic element is used only for
units for which no relationship with other units or units systems is known. It is declared in the schema
as follows:

 <element name="UnitDefinition" type="gml:UnitDefinitionType"
 substitutionGroup="gml:Definition"/>

 <complexType name="UnitDefinitionType">
 <complexContent>
 <extension base="gml:DefinitionType">
 <sequence>
 <element ref="gml:quantityType" minOccurs="0"/>
 <element ref="gml:quantityTypeReference" minOccurs="0"/>
 <element ref="gml:catalogSymbol" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
The content model of gml:UnitDefinition adds three additional properties to gml:Definition
(described in 15.2.1), gml:quantityType, gml:quantityTypeReference and gml:catalogSymbol.

The gml:catalogSymbol property optionally gives the short symbol used for this unit. This element is
usually used when the relationship of this unit to other units or units systems is unknown.

16.2.5 quantityType, quantityTypeReference

The gml:quantityType and gml:quantityTypeReference properties indicate the phenomenon to which
the units apply. They are declared as follows:

 <element name="quantityType" type="gml:StringOrRefType"/>
 <element name="quantityTypeReference" type="gml:ReferenceType"/>
This element contains an informal description of the phenomenon or type of physical quantity that is
measured or observed.

EXAMPLE "length", "angle", "time", "pressure", or "temperature".

When the physical quantity is the result of an observation or measurement, this term is known as
observable type or measurand.

The use of gml:quantityType for references to remote values is deprecated. gml:quantityTypeReference
shall be used instead.

16.2.6	 catalogSymbol

The catalogSymbol is the preferred lexical symbol used for this unit of measure. It is declared as follows:

 <element name="catalogSymbol" type="gml:CodeType"/>
The codeSpace attribute in gml:CodeType identifies a namespace for the catalog symbol value, and might
reference the external catalog. The string value in gml:CodeType contains the value of a symbol that
should be unique within this catalog namespace. This symbol often appears explicitly in the catalog,
but it could be a combination of symbols using a specified algebra of units.

EXAMPLE The symbol "cm" might indicate that it is the "m" symbol combined with the "c" prefix.

16.2.7 BaseUnit, BaseUnitType, unitsSystem

A base unit is a unit of measure that cannot be derived by combination of other base units within a
particular system of units. For example, in the SI system of units, the base units are metre, kilogram,
second, Ampere, Kelvin, mole, and candela, for the physical quantity types length, mass, time
interval, electric current, thermodynamic temperature, amount of substance and luminous intensity,
respectively.

© ISO 2020 – All rights reserved 155

ISO 19136-1:2020(E)

This is supported using the gml:BaseUnit element which is declared as follows:

 <element name="BaseUnit" type="gml:BaseUnitType" substitutionGroup="gml:UnitDefinit
ion"/>

 <complexType name="BaseUnitType">
 <complexContent>
 <extension base="gml:UnitDefinitionType">
 <sequence>
 <element name="unitsSystem" type="gml:ReferenceType"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
gml:BaseUnit extends generic gml:UnitDefinition with the property gml:unitsSystem, which carries a
reference to the units system to which this base unit is asserted to belong.

16.2.8 DerivedUnit, DerivedUnitType

Derived units are defined by combination of other units. Derived units are used for quantities
other than those corresponding to the base units, such as hertz (s–1) for frequency, Newton (kg.m/
s2) for force. Derived units based directly on base units are usually preferred for quantities other
than the fundamental quantities within a system. If a derived unit is not the preferred unit, the
gml:ConventionalUnit element (see 16.2.10) should be used instead. The gml:DerivedUnit element is
declared as follows:

<element name="DerivedUnit" type="gml:DerivedUnitType"
 substitutionGroup="gml:UnitDefinition"/>

 <complexType name="DerivedUnitType">
 <complexContent>
 <extension base="gml:UnitDefinitionType">
 <sequence>
 <element ref="gml:derivationUnitTerm" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
The gml:DerivedUnit extends gml:UnitDefinition with the property gml:derivationUnitTerms.

16.2.9 derivationUnitTerms, DerivationUnitTermType

A set of gml:derivationUnitTerm elements describes a derived unit of measure. Each element carries an
integer exponent. The terms are combined by raising each referenced unit to the power of its exponent
and forming the product. The element gml:derivationUnitTerm is declared as follows:

 <element name="derivationUnitTerm" type="gml:DerivationUnitTermType"/>

 <complexType name="DerivationUnitTermType">
 <complexContent>
 <extension base="gml:UnitOfMeasureType">
 <attribute name="exponent" type="integer"/>
 </extension>
 </complexContent>
 </complexType>
This unit term references another unit of measure (uom) and provides an integer exponent applied to
that unit in defining the compound unit. The exponent may be positive or negative, but not zero.

16.2.10 ConventionalUnit, ConventionalUnitType

Conventional units that are neither base units nor defined by direct combination of base units are used
in many application domains. For example electronVolt for energy, feet and nautical miles for length. In
most cases there is a known, usually linear, conversion to a preferred unit which is either a base unit or
derived by direct combination of base units. The gml:ConventionalUnit element is declared as follows:

156 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

 <element name="ConventionalUnit" type="gml:ConventionalUnitType"
 substitutionGroup="gml:UnitDefinition"/>

 <complexType name="ConventionalUnitType">
 <complexContent>
 <extension base="gml:UnitDefinitionType">
 <sequence>
 <choice>
 <element ref="gml:conversionToPreferredUnit"/>
 <element ref="gml:roughConversionToPreferredUnit"/>
 </choice>
 <element ref="gml:derivationUnitTerm" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
The gml:ConventionalUnit extends gml:UnitDefinition with a property that describes a
conversion to a preferred unit for this physical quantity. When the conversion is exact, the element
gml:conversionToPreferredUnit should be used, or when the conversion is not exact the element gml:r
oughConversionToPreferredUnit is available. Both of these elements have the same content model. The
gml:derivationUnitTerm property defined above is included to allow a user to optionally record how
this unit may be derived from other ("more primitive") units.

16.2.11 conversionToPreferredUnit, roughConversionToPreferredUnit,
ConversionToPreferredUnitType, FormulaType

The elements gml:conversionToPreferredUnit and gml:roughConversionToPreferredUnit represent
parameters used to convert conventional units to preferred units for this physical quantity type.
A preferred unit is either a Base Unit or a Derived Unit that is selected for all values of one physical
quantity type. These conversions are declared in the schema as follows:

 <element name="conversionToPreferredUnit" type="gml:ConversionToPreferredUnitType"/>

 <element name="roughConversionToPreferredUnit"
 type="gml:ConversionToPreferredUnitType"/>

 <complexType name="ConversionToPreferredUnitType">
 <complexContent>
 <extension base="gml:UnitOfMeasureType">
 <choice>
 <element name="factor" type="double"/>
 <element name="formula" type="gml:FormulaType"/>
 </choice>
 </extension>
 </complexContent>
 </complexType>
The inherited attribute uom references the preferred unit that this conversion applies to. The conversion
of a unit to the preferred unit for this physical quantity type is specified by an arithmetic conversion
(scaling and/or offset). The content model extends gml:UnitOfMeasureType, which has a mandatory
attribute uom which identifies the preferred unit for the physical quantity type that this conversion
applies to. The conversion is specified by a choice of

— gml:factor, which defines the scale factor, or

— gml:formula, which defines a formula

by which a value using the conventional unit of measure can be converted to obtain the corresponding
value using the preferred unit of measure. The model for the formula is given as follows:

 <complexType name="FormulaType">
 <sequence>
 <element name="a" type="double" minOccurs="0"/>
 <element name="b" type="double"/>
 <element name="c" type="double"/>
 <element name="d" type="double" minOccurs="0"/>

© ISO 2020 – All rights reserved 157

ISO 19136-1:2020(E)

 </sequence>
 </complexType>
This formula defines the parameters of a simple formula by which a value using the conventional
unit of measure can be converted to the corresponding value using the preferred unit of measure.
The formula element contains elements a, b, c and d, whose values use the XML Schema type double.
These values are used in the formula y = (a + bx) / (c + dx), where x is a value using this unit, and y is
the corresponding value using the base unit. The elements a and d are optional, and if values are not
provided, those parameters are considered to be zero. If values are not provided for both a and d, the
formula is equivalent to a fraction with numerator and denominator parameters.

16.2.12 Example of units dictionary <informative>

This dictionary contains definitions corresponding to all the base and derived units defined by in the SI
system [SI], plus a selection of conventional units to illustrate the usage of these components.

<gml:Dictionary gml:id="unitsDictionary">
 <gml:description>A dictionary of units of measure</gml:description>
 <gml:identifier codeSpace="http://www.opengeospatial.org/initiatives/?iid=79">OWS-1.2
Units</gml:identifier>
 <gml:dictionaryEntry>
 <gml:Dictionary gml:id="SIBaseUnits">
 <gml:description>The Base Units from the SI units system.</gml:description>
 <gml:identifier codeSpace="http://www.opengeospatial.org/
initiatives/?iid=79">OWS-1.2 SI Base Units</gml:identifier>
 <gml:dictionaryEntry>
 <gml:BaseUnit gml:id="m">
 <gml:description>The metre is the length of the path travelled by light in
vacuum during a time interval of 1/299 792 458 of a second.</gml:description>
 <gml:identifier codeSpace="http://www.bipm.fr/en/3_SI/base_units.html">metre</
gml:identifier>
 <gml:name xml:lang="en/US">meter</gml:name>
 <gml:quantityType>length</gml:quantityType>
 <gml:catalogSymbol codeSpace="http://www.bipm.fr/en/3_SI/base_units.html">m</
gml:catalogSymbol>
 <gml:unitsSystem xlink:href="http://www.bipm.fr/en/3_SI"/>
 </gml:BaseUnit>
 </gml:dictionaryEntry>
 <!-- … -->
 </gml:Dictionary>
 </gml:dictionaryEntry>
 <gml:dictionaryEntry>
 <gml:Dictionary gml:id="SIDerivedUnits">
 <gml:description>The Derived Units from the SI units system. These are all derived
as a product of SI Base Units, except degrees Celsius in which the conversion formaula to
the SI Base Unit (kelvin) involves an offset. </gml:description>
 <gml:identifier codeSpace="http://www.opengeospatial.org/
initiatives/?iid=79">OWS-1.2 SI Derived Units</gml:identifier>
 <gml:dictionaryEntry>
 <gml:DerivedUnit gml:id="rad">
 <gml:identifier codeSpace="http://www.bipm.fr/en/3_SI">radian</gml:identifier>
 <gml:quantityType>plane angle</gml:quantityType>
 <gml:catalogSymbol codeSpace="http://www.bipm.fr/en/3_SI">rad</
gml:catalogSymbol>
 <gml:derivationUnitTerm uom="#m" exponent="1"/>
 <gml:derivationUnitTerm uom="#m" exponent="-1"/>
 </gml:DerivedUnit>
 </gml:dictionaryEntry>
 <!-- … -->
 </gml:Dictionary>
 </gml:dictionaryEntry>
 <gml:dictionaryEntry>
 <gml:Dictionary gml:id="ConventionalUnitsDictionary">
 <gml:description>A collection of Conventional Units. These are units of measure
which are either widely used or important within a specific community. For most of these
there is
1. a known derivation from more primitive units, which may or may not be SI Base Units, or
2. a known conversion to a preferred unit, which may or may not be an SI Base or Derived
unit, through rescaling and offset,

158 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

or both.</gml:description>
 <gml:identifier codeSpace="http://www.opengeospatial.org/
initiatives/?iid=79">OWS-1.2 Conventional units.</gml:identifier>
 <gml:dictionaryEntry>
 <gml:DerivedUnit gml:id="m3">
 <gml:identifier codeSpace="http://www.opengeospatial.org/
initiatives/?iid=79">cubic metre</gml:identifier>
 <gml:quantityType>Volume</gml:quantityType>
 <gml:derivationUnitTerm uom="#m" exponent="3"/>
 </gml:DerivedUnit>
 </gml:dictionaryEntry>
 <gml:dictionaryEntry>
 <gml:ConventionalUnit gml:id="l">
 <gml:identifier codeSpace="http://www.opengeospatial.org/
initiatives/?iid=79">litre</gml:identifier>
 <gml:quantityType>Volume</gml:quantityType>
 <gml:conversionToPreferredUnit uom="#m3">
 <gml:factor>0.001</gml:factor>
 </gml:conversionToPreferredUnit>
 </gml:ConventionalUnit>
 </gml:dictionaryEntry>
 <!-- … -->
 </gml:Dictionary>
 </gml:dictionaryEntry>
</gml:Dictionary>

16.3 Measures schema

16.3.1 Overview

gml:MeasureType is defined in the basicTypes schema. The measure types defined here correspond
with a set of convenience measure types described in ISO 19103. The XML implementation is based
on the XML Schema simple type “double” which supports both decimal and scientific notation, and
includes an XML attribute “uom” which refers to the units of measure for the value. Note that, there is
no requirement to store values using any particular format, and applications receiving elements of this
type may choose to coerce the data to any other type as convenient.

NOTE The schema document for specific measure types is identified by the following location-independent
name (using URN syntax):

— urn: ogc: specification: gml: schema -xsd: measures: 3 .2 .1

16.3.2 measure

This is the value of a physical quantity, together with its units. It is declared as follows:

 <element name="measure" type="gml:MeasureType"/>
See 8.2.3.6 for the definition of gml:MeasureType.

16.3.3 Scalar measure types

A set of specific measure types are defined as vacuous extensions (i.e. aliases) of gml:MeasureType. A
prototypical definition is as follows:

 <complexType name="LengthType">
 <simpleContent>
 <extension base="gml:MeasureType"/>
 </simpleContent>
 </complexType>
This content model supports the description of a length (or distance) quantity, with its units. The unit
of measure referenced by uom shall be suitable for a length, such as metres or feet.

The other measure types that are defined following this pattern are: gml:ScaleType, gml:GridLengthType,
gml:AreaType, gml:VolumeType, gml:SpeedType, gml:TimeType, and gml:AngleType.

EXAMPLE Elements using these content models can appear in a data instance as follows:

© ISO 2020 – All rights reserved 159

ISO 19136-1:2020(E)

<my:length uom="m">1.76</my:length>

<my:scale uom="#percent">20.</my:scale>

<my:gridLength uom="#pixelSpacing">480</my:gridLength>
<my:gridLength uom="#imageHeight">0.00208333333333</my:gridLength>

<my:area uom="#ha">1.76</my:area>

<my:volume uom="l">0.45</my:volume>

<gml:angle uom="#gradians">95.</gml:angle>

<my:time uom="#minutes">30.</my:time>
NOTE Note that the last element in the example addresses the same functional requirements as the elements
in the gml:AbstractTimeLength substitution group, defined in Clause 14.

16.3.4 angle

The gml:angle property element is used to record the value of an angle quantity as a single number,
with its units. It is declared as follows:

 <element name="angle" type="gml:AngleType"/>

16.4	Value	objects	schema

16.4.1 Introduction

The elements declared in this clause build on other GML schema components, in particular
gml:AbstractTimeObject, gml:AbstractGeometry, and the following types: gml:MeasureType,
gml:MeasureListType, gml:CodeType, gml:CodeOrNilReasonListType, gml:BooleanOrNilReasonListType,
gml:IntegerOrNilReasonList.

Of particular interest are elements that are the heads of substitution groups, and one named choice
group. These are the primary reasons for the value objects schema, since they may act as variables in
the definition of content models, such as Observations, when it is desired to permit alternative value
types to occur some of which may have complex content such as arrays, geometry and time objects,
and where it is useful not to prescribe the actual value type in advance. The members of the groups
include quantities, category classifications, boolean, count, temporal and spatial values, and aggregates
of these.

NOTE 1 The schema document valueObjects.xsd describing the components for generic values is listed in
Annex C. It is identified by the following location-independent name (using URN syntax):

— urn: ogc: specification: gml: schema -xsd: valueObjects: 3 .2 .1

NOTE 2 The elements declared in this schema are used for the direct representation of values. Their content
models are in general not derived from gml:AbstractGMLType and they do not carry an identifier.

16.4.2 Value element hierarchy

The value objects are defined in a hierarchy. The conceptual model is shown in D.3.15.

The following relationships are defined:

— Concrete elements gml:Quantity, gml:Category, gml:Count and gml:Boolean are substitutable for
the abstract element gml:AbstractScalarValue.

— Concrete elements gml:QuantityList, gml:CategoryList, gml:CountList and gml:BooleanList are
substitutable for the abstract element gml:AbstractScalarValueList.

— Concrete element gml:ValueArray is substitutable for the concrete element gml: CompositeValue.

160 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

— Abstract elements gml:AbstractScalarValue and gml:AbstractScalarValueList, and concrete
elements gml:CompositeValue, gml:ValueExtent, gml:CategoryExtent, gml:CountExtent and
gml:QuantityExtent are substitutable for abstract element gml:AbstractValue.

— Abstract elements gml:AbstractValue, gml:AbstractTimeObject and gml:AbstractGeometry, and
concrete element gml: Null (deprecated) are all in a choice group named gml:Value, which is used for
compositing in gml:CompositeValue and gml:ValueExtent.

— Schemas which need values may use the abstract element gml:AbstractValue in a content model
in order to permit any of the gml:AbstractScalarValues, gml:AbstractScalarValueLists,
gml:CompositeValue or gml:ValueExtent to occur in an instance, or the named group gml:Value to
also permit gml:AbstractTimeObjects, gml:AbstractGeometrys, and gml:Nulls (deprecated).

16.4.3 Boolean, BooleanList

For recording a value or list of values from two-valued logic, using the XML Schema boolean type; these
elements use the following schema declarations:

 <element name="Boolean" substitutionGroup="gml:AbstractScalarValue" nillable="true">
 <complexType>
 <simpleContent>
 <extension base="boolean">
 <attribute name="nilReason" type="gml:NilReasonType"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="BooleanList" type="gml:booleanOrNilReasonList"
 substitutionGroup="gml:AbstractScalarValueList"/>
gml:booleanOrNilReasonList is described in 8.2.4.1.

EXAMPLE In an instance the following examples can be found:

<gml:Boolean>1</gml:Boolean>

<gml:Boolean>false</gml:Boolean>

<gml:Boolean xsi:nil=”true” nilReason=”missing”/>

<gml:BooleanList>1 missing 0 1 1 http://my.big.org/explanations/theDogAteIt01</
gml:BooleanList>

NOTE These examples illustrate the use of the various Boolean values {1, 0, true, false} and also the fact that
nilReason values such as “missing” or a URI can be embedded within a list.

16.4.4 Category, CategoryList

For recording terms representing a classification. These elements use the following schema declarations:

 <element name="Category" substitutionGroup="gml:AbstractScalarValue" nillable="true">
 <complexType>
 <simpleContent>
 <extension base="gml:CodeType">
 <attribute name="nilReason" type="gml:NilReasonType"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>

 <element name="CategoryList" type="gml:CodeOrNilReasonListType"
 substitutionGroup="gml:AbstractScalarValueList"/>
A gml:Category has an optional XML attribute codeSpace, whose value is a URI which identifies a
dictionary, codelist or authority for the term.

EXAMPLE In an instance the following examples can be found:

© ISO 2020 – All rights reserved 161

ISO 19136-1:2020(E)

<gml:Category>good</gml:Category>

<gml:Category xsi:nil=”true” nilReason=”missing”/>

<gml:Category codeSpace="http://my.big.org/dictionaries/rocktypes">Syenite</gml:Category>

<gml:CategoryList codeSpace="http://my.big.org/dictionaries/rocktypes">Syenite Granite
missing Tuff</gml:CategoryList>

<gml:CategoryList codeSpace=“http://my.big.org/species“>bettong numbat phasogale wallaby
possum</ gml:CategoryList>

16.4.5 Count, CountList

For recording integers representing a rate of occurrence. These elements use the following schema
declarations:

 <element name="Count" substitutionGroup="gml:AbstractScalarValue" nillable="true">
 <complexType>
 <simpleContent>
 <extension base="integer">
 <attribute name="nilReason" type="gml:NilReasonType"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="CountList" type="gml:integerOrNilReasonList"
 substitutionGroup="gml:AbstractScalarValueList"/>
EXAMPLE In an instance the following examples can be found:

<gml:Count>513</gml:Count>

<gml:Count xsi:nil=”true” nilReason=”missing”/>

<gml:CountList>34 56 2 inapplicable 153</gml:CountList>

16.4.6	 Quantity,	QuantityList

For recording numeric values with a scale. The content of the element is an amount using the XML
Schema type double which permits decimal or scientific notation. These elements use the following
schema declarations:

 <element name="Quantity" substitutionGroup="gml:AbstractScalarValue" nillable="true">
 <complexType>
 <simpleContent>
 <extension base="gml:MeasureType">
 <attribute name="nilReason" type="gml:NilReasonType"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="QuantityList" type="gml:MeasureOrNilReasonListType"
 substitutionGroup="gml:AbstractScalarValueList"/>
An XML attribute uom (“unit of measure”) is required, whose value is a URI which identifies the definition
of a ratio scale or units by which the numeric value shall be multiplied, or an interval or position scale
on which the value occurs.

EXAMPLE In an instance the following examples can be found:

<gml:Quantity uom="m">4.32e-4</gml:Quantity>

<gml:Quantity xsi:nil=”true” nilReason=”withheld”/>

<gml:QuantityList uom="#C">21. 37. withheld 25.</gml:QuantityList>

162 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

16.4.7	 AbstractValue,	AbstractScalarValue,	AbstractScalarValueList

gml:AbstractValue is an abstract element which acts as the head of a substitution group which contains
gml:AbstractScalarValue, gml:AbstractScalarValueList, gml:CompositeValue and gml:ValueExtent,
and (transitively) the elements in their substitution groups.

gml:AbstractScalarValue is an abstract element which acts as the head of a substitution group which
contains gml:Boolean, gml:Category, gml:Count and gml:Quantity, and (transitively) the elements in
their substitution groups.

gml:AbstractScalarValueList is an abstract element which acts as the head of a substitution group
which contains gml:BooleanList, gml:CategoryList, gml:CountList and gml:QuantityList, and
(transitively) the elements in their substitution groups.

These elements use the following schema declarations:

 <element name="AbstractValue" type="anyType" abstract="true"
 substitutionGroup="gml:AbstractObject"/>
 <element name="AbstractScalarValue" type="anyType" abstract="true"
 substitutionGroup="gml:AbstractValue"/>
 <element name="AbstractScalarValueList" type="anyType" abstract="true"
 substitutionGroup="gml:AbstractValue"/>
These elements may be used in an application schema as variables, so that in an XML instance document
any member of its substitution group may occur.

16.4.8 Value

This is a convenience choice group which unifies generic values defined in this clause with spatial and
temporal objects and the measures described above, so that any of these may be used within aggregate
values. This element uses the following schema declaration:

 <group name="Value">
 <choice>
 <element ref="gml:AbstractValue"/>
 <element ref="gml:AbstractGeometry"/>
 <element ref="gml:AbstractTimeObject"/>
 <element ref="gml:Null"/>
 </choice>
 </group>

16.4.9 valueProperty, valueComponent, valueComponents

Elements that instantiates a GML property which refers to, or contains, a Value or Values; these elements
use the following schema declarations:

<element name="valueProperty" type="gml:ValuePropertyType"/>

<element name="valueComponent" type="gml:ValuePropertyType"/>

<complexType name="ValuePropertyType">
 <sequence minOccurs="0">
 <group ref="gml:Value"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
</complexType>

<element name="valueComponents" type="gml:ValueArrayPropertyType"/>

<complexType name="ValueArrayPropertyType">
 <sequence maxOccurs="unbounded">
 <group ref="gml:Value" />
 </sequence>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
</complexType>

© ISO 2020 – All rights reserved 163

ISO 19136-1:2020(E)

Note that both gml:ValuePropertyType and gml:ValueArrayPropertyType have the group named
gml:Value as their content. This means that any of the elements in the gml:Value choice group, or in the
substitution groups of the members of the choice group may occur as the content of a value property.

The gml:valueProperty element is a convenience element for general use. The gml:valueComponent and
gml:valueComponents elements are specifically used in compositing.

16.4.10 CompositeValue

gml:CompositeValue is an aggregate value built from other values . It contains zero or an arbitrary
number of gml:valueComponent elements, and zero or one gml:valueComponents property elements. It
may be used for strongly coupled aggregates (vectors, tensors) or for arbitrary collections of values.
This element uses the following schema declarations:

 <element name="CompositeValue" type="gml:CompositeValueType"
 substitutionGroup="gml:AbstractValue"/>

 <complexType name="CompositeValueType">
 <complexContent>
 <extension base="gml:AbstractGMLType">
 <sequence>
 <element ref="gml:valueComponent" minOccurs="0" maxOccurs="unbounded"/>
 <element ref="gml:valueComponents" minOccurs="0"/>
 </sequence>
 <attributeGroup ref="gml:AggregationAttributeGroup"/>
 </extension>
 </complexContent>
 </complexType>
EXAMPLE In an instance a gml:CompositeValue can appear as in the following examples:

<gml:CompositeValue>
 <gml:valueComponent>
 <gml:QuantityList uom="#C">21. 37. withheld 25.</gml:QuantityList>
 </gml:valueComponent>
 <gml:valueComponent>
 <gml:Category>good</gml:Category>
 </gml:valueComponent>
 <gml:valueComponent>
 <gml:Count xsi:nil=”true” nilReason=”missing”/>
 </gml:valueComponent>
 <gml:valueComponents>
 <gml:Point srsName="http://www.opengis.net/def/crs/EPSG/0/4326">
 <gml:pos>71. -32.</gml:pos>
 </gml:Point>
 <gml:Point srsName="http://www.opengis.net/def/crs/EPSG/0/4326">
 <gml:pos>70. -35.</gml:pos>
 </gml:Point>
 <gml:Point srsName="http://www.opengis.net/def/crs/EPSG/0/4326">
 <gml:pos>74. -37.</gml:pos>
 </gml:Point>
 </gml:valueComponents>
</gml:CompositeValue>

<gml:CompositeValue>

 <gml:valueComponents>
 <gml:Point srsName="http://www.opengis.net/def/crs/EPSG/0/4326">
 <gml:pos>-67.563 -13.834</gml:pos>
 </gml:Point>
 <gml:Quantity uom="#km">632.</gml:Quantity>
 <gml:TimeInstant>
 <gml:timePosition>1994-06-09T00:33:16.4</gml:timePosition>
 </gml:TimeInstant>
 <gml:Quantity uom="#mom">-1.00</gml:Quantity>
 <gml:Quantity uom="#mom">0.92</gml:Quantity>
 <gml:Quantity uom="#mom">0.09</gml:Quantity>
 <gml:Quantity uom="#mom">-1.69</gml:Quantity
 <gml:Quantity uom="#mom">-0.09</gml:Quantity>

164 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

 <gml:Quantity uom="#mom">-0.37</gml:Quantity>
 </gml:valueComponents>
</gml:CompositeValue>

16.4.11 ValueArray

A Value Array is used for homogeneous arrays of primitive and aggregate values.

The member values may be scalars, composites, arrays or lists. This element uses the following schema
declarations:

<element name="ValueArray" type="gml:ValueArrayType"
substitutionGroup="gml:CompositeValue"/>

<sch:schema xmlns:sch="http://purl.oclc.org/dsdl/schematron" xmlns:gml="http://www.
opengis.net/gml/3.2" xmlns:xlink="http://www.w3.org/1999/xlink" xml:lang="en">
 <sch:title>Schematron constraints for GML / ISO 19136</sch:title>
 <sch:ns prefix="sch" uri="http://purl.oclc.org/dsdl/schematron"/>
 <sch:ns prefix="gml" uri="http://www.opengis.net/gml/3.2"/>
 <sch:pattern>
 <sch:rule context="gml:ValueArray">
 <sch:assert test="not(@codeSpace and @uom)">ValueArray may not carry both a
reference to a codeSpace and a uom</sch:assert>
 </sch:rule>
 </sch:pattern>
 <sch:pattern>
 <sch:rule context="gml:ValueArray">
 <sch:assert test="count(gml:valueComponent/*) = count(gml:valueComponent/*[name()
= name(../../gml:valueComponent[1]/*[1])])">All components shall be of the same type</
sch:assert>
 <sch:assert test="count(gml:valueComponents/*) = count(gml:valueComponents/*[name
() = name(../*[1])])">All components shall be of the same type</sch:assert>
 </sch:rule>
 </sch:pattern>
 </sch:schema>

<complexType name="ValueArrayType">
 <complexContent>
 <extension base="gml:CompositeValueType">
 <attributeGroup ref="gml:referenceSystem"/>
 </extension>
 </complexContent>
</complexType>

<attributeGroup name="referenceSystem">
 <attribute name="codeSpace" type="anyURI" />
 <attribute name="uom" type="gml:UomIdentifier" />
</attributeGroup>
ValueArray has the same content model as CompositeValue, but the member values shall be
homogeneous. The element declaration contains a Schematron constraint which expresses this
restriction precisely. Since the members are homogeneous, the gml:referenceSystem (uom, codeSpace)
may be specified on the gml:ValueArray itself and inherited by all the members if desired.

EXAMPLE 1 The gml:ValueArray element can appear in instances as follows. In the first example a set of
points are each the value of a gml:valueComponent property. One of the values is provided by-reference, using
the standard xlink: href syntax:

<gml:ValueArray>
 <gml:valueComponent>
 <gml:Point srsName="http://www.opengis.net/def/crs/EPSG/0/4326">
 <gml:pos>-32. 71.</gml:pos>
 </gml:Point>
 </gml:valueComponent>
 <gml:valueComponent>
 <gml:Point srsName="http://www.opengis.net/def/crs/EPSG/0/4326">
 <gml:pos>-35. 70.</gml:pos>
 </gml:Point>
 </gml:valueComponent>
 <gml:valueComponent xlink:href="http://my.big.org/locations/points/point456"/>
</gml:ValueArray>

© ISO 2020 – All rights reserved 165

ISO 19136-1:2020(E)

EXAMPLE 2 In the second example a set of quantities are contained within a gml:valueComponents property.
One of the values is not available, indicated by a nil value:

<gml:ValueArray>
 <gml:valueComponents>
 <gml:Quantity uom="#C">21.</gml:Quantity>
 <gml:Quantity uom="#C">37.</gml:Quantity>
 <gml:Quantity xsi:nil="true" nilReason=”missing”/>
 </gml:valueComponents>
</gml:ValueArray>
EXAMPLE 3 Note that a gml:AbstractScalarValueList is usually preferred for arrays of scalar values
since this is a more efficient encoding. The information in the previous example may be expressed:

<gml:QuantityList uom="#C">21. 37. missing</gml:QuantityList>
However, if the values of the components are not scalars, then the explicit form is required.

16.4.12	Typed	ValueExtents:	CategoryExtent,	CountExtent,	QuantityExtent

Three elements are provided for typed value extents, for categories, counts and quantities. Their
content models are defined by restricting the relevant scalar list types to contain exactly two items as
follows:

<element name="CategoryExtent" type="gml:CategoryExtentType"
 substitutionGroup="gml:AbstractValue"/>

 <complexType name="CategoryExtentType">
 <simpleContent>
 <restriction base="gml:CodeOrNilReasonListType">
 <length value="2"/>
 </restriction>
 </simpleContent>
 </complexType>

 <element name="CountExtent" type="gml:CountExtentType"
 substitutionGroup="gml:AbstractValue"/>

 <simpleType name="CountExtentType">
 <restriction base="gml:integerOrNilReasonList">
 <length value="2"/>
 </restriction>
 </simpleType>

 <element name="QuantityExtent" type="gml:QuantityExtentType"
 substitutionGroup="gml:AbstractValue"/>

 <complexType name="QuantityExtentType">
 <simpleContent>
 <restriction base="gml:MeasureOrNilReasonListType">
 <length value="2"/>
 </restriction>
 </simpleContent>
 </complexType>
A gml:QuantityExtent element or another element using this type will contain two values and a scale.

EXAMPLE 1 <gml: QuantityExtent uom=”#mm”>0. 9.5</gml: QuantityExtent>

An element of gml:CategoryExtentType is useful if the codeSpace defines a set of ordered terms.

EXAMPLE 2

 <my:AgeRange codeSpace=”http://iugg.org/geologicalPeriods”>
 Cambrian Devonian
 </my:AgeRange>
Any value extent may describe a single-ended interval by using a NilReason value for one of the limits.

EXAMPLE 3

 <gml:CountExtent>53 inapplicable</gml:CountExtent>

166 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

describes the integers starting with 53.

16.4.13 BooleanPropertyType, CategoryPropertyType, CountPropertyType,
QuantityPropertyType

A set of convenience types (gml:BooleanPropertyType, gml:CategoryPropertyType,
gml:CountPropertyType, gml:QuantityPropertyType) are provided for properties whose content is a
specific member of the gml:AbstractScalarValue substitution group. Their definitions follow the same
pattern, as exemplified by the definition of gml:BooleanPropertyType:

 <complexType name="BooleanPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:Boolean"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>

17 GML schema — Directions

17.1 Direction schema

The direction schema components provide the GML application schema developer with a standard
property element to describe direction, and associated objects that may be used to express orientation,
direction, heading, bearing or other directional aspects of geographic features.

NOTE The corresponding schema document is identified by the following location-independent name (using
URN syntax):

— urn: ogc: specification: gml: schema -xsd: direction: 3 .2 .1

17.2 direction, DirectionPropertyType

The property gml:direction is intended as a predefined property expressing a direction to be assigned
to features defined in a GML application schema. It is declared as follows:

 <element name="direction" type="gml:DirectionPropertyType"/>

 <complexType name="DirectionPropertyType">
 <sequence minOccurs="0">
 <choice>
 <element name="DirectionVector" type="gml:DirectionVectorType"/>
 <element name="DirectionDescription" type="gml:DirectionDescriptionType"/>
 <element name="CompassPoint" type="gml:CompassPointEnumeration"/>
 <element name="DirectionKeyword" type="gml:CodeType"/>
 <element name="DirectionString" type="gml:StringOrRefType"/>
 </choice>
 </sequence>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
The two alternative kinds of direction specifications, a vector or a description, are specified in the
following subclauses.

17.3 DirectionVectorType

Direction vectors are specified by providing components of a vector as follows:

 <complexType name="DirectionVectorType">
 <choice>
 <element ref="gml:vector"/>
 <sequence>
 <element name="horizontalAngle" type="gml:AngleType"/>
 <element name="verticalAngle" type="gml:AngleType"/>
 </sequence>

© ISO 2020 – All rights reserved 167

ISO 19136-1:2020(E)

 </choice>
 </complexType>
The gml:vector element is described in 10.1.4.5.

EXAMPLE This form can appear in a data instance as follows:

<gml:direction>
 <gml:DirectionVector>
 <gml:vector srsName="#wgs84">0.0 45.0</gml:vector>
 </gml:DirectionVector>
</gml:direction>
The use of the alternative representation via angles has been deprecated, gml: vector shall be used instead.

17.4 DirectionDescriptionType

Direction descriptions are specified by a compass point code, a keyword, a textual description or a
reference to a description. The gml:DirectionDescriptionType element is declared as follows:

 <complexType name="DirectionDescriptionType">
 <choice>
 <element name="compassPoint" type="gml:CompassPointEnumeration"/>
 <element name="keyword" type="gml:CodeType"/>
 <element name="description" type="string"/>
 <element name="reference" type="gml:ReferenceType"/>
 </choice>
 </complexType>
A gml:compassPoint is specified by a simple enumeration string type that is declared as follows:

 <simpleType name="CompassPointEnumeration">
 <restriction base="string">
 <enumeration value="N"/>
 <enumeration value="NNE"/>
 <enumeration value="NE"/>
 <enumeration value="ENE"/>
 <enumeration value="E"/>
 <enumeration value="ESE"/>
 <enumeration value="SE"/>
 <enumeration value="SSE"/>
 <enumeration value="S"/>
 <enumeration value="SSW"/>
 <enumeration value="SW"/>
 <enumeration value="WSW"/>
 <enumeration value="W"/>
 <enumeration value="WNW"/>
 <enumeration value="NW"/>
 <enumeration value="NNW"/>
 </restriction>
 </simpleType>
These directions are necessarily approximate, giving direction with a precision of 22.5°. It is thus
generally unnecessary to specify the reference frame, though this may be detailed in the definition of a
GML application language.

EXAMPLE 1 This form can appear in a data instance as follows:

<gml:direction>
 <gml:DirectionDescription>
 <gml:compassPoint>WNW</gml:compassPoint>
 </gml:DirectionDescription>
</gml:direction>
In addition, the elements to contain text-based descriptions of direction are provided.

If the direction is specified using a term from a list, gml:keyword should be used, and the list indicated
using the value of the codeSpace attribute.

EXAMPLE 2 This form can appear in a data instance as follows:

<gml:direction>
 <gml:DirectionDescription>

168 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

 <gml:keyword codeSpace="http://my.big.org/terms/direction">onshore</gml:keyword>
 </gml:DirectionDescription>
</gml:direction>
If the direction is described in prose, gml:direction or gml: reference should be used, allowing the value
to be included inline or by reference.

EXAMPLE 3 This form can appear in a data instance as follows:

<gml:direction>
 <gml:DirectionDescription>
 <gml:direction>Towards the lighthouse</gml:direction>
 </gml:DirectionDescription>
</gml:direction>

<gml:direction>
 <gml:DirectionDescription>
 <gml:reference xlink:href="http://my.big.org/logbook/20021127/paragraph6"/>
 </gml:DirectionDescription>
</gml:direction>

18	GML	schema	—	Observations

18.1	Observations

A GML observation models the act of observing, often with a camera, a person or some form of
instrument. An observation feature describes the “metadata” associated with an information capture
event, together with a value for the result of the observation. This covers a broad range of cases,
including tourist photos (not the photo but the act of taking the photo).

NOTE This schema is primarily intended to serve for "simple" observations. Schemas for scientific, technical
and engineering observations and measurements will typically require the development of a GML application
schema for such observations. See, for example, the Observations and Measurements specification from the Open
Geospatial Consortium.

18.2	Observation	schema

18.2.1 Overview

This clause describes two kinds of observations, gml:Observation and gml:DirectedObservation.

NOTE Observations are described in the schema document observations.xsd. The schema is identified by the
following location-independent name (using URN syntax):

— urn: ogc: specification: gml: schema -xsd: observation: 3 .2 .1

18.2.2	 Observation

The gml:Observation element is declared in the schema as follows:

 <element name="Observation" type="gml:ObservationType"
 substitutionGroup="gml:AbstractFeature"/>

 <complexType name="ObservationType">
 <complexContent>
 <extension base="gml:AbstractFeatureType">
 <sequence>
 <element ref="gml:validTime"/>
 <element ref="gml:using" minOccurs="0"/>
 <element ref="gml:target" minOccurs="0"/>
 <element ref="gml:resultOf"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

© ISO 2020 – All rights reserved 169

ISO 19136-1:2020(E)

The content model is a straightforward extension of gml:AbstractFeatureType; it automatically has
the gml:identifier, gml:description, gml:descriptionReference, gml:name, and gml:boundedBy
properties.

The gml:validTime element is declared in 14.2.1.3. In this context it describes the time of the
observation. Note that this may be a time instant or a time period.

EXAMPLE Some examples of simple observations are as follows:

<gml:Observation>
 <gml:validTime>
 <gml:TimeInstant>
 <gml:timePosition>2002-11-12T09:12:00</gml:timePosition>
 </gml:TimeInstant>
 </gml:validTime>
 <gml:using xlink:href="http://www.my.org/sensors/thermometer4"/>
 <gml:target xlink:href="http://www.environment.org/stations/l456"/>
 <gml:resultOf>
 <gml:Quantity uom="#C">18.4</gml:Quantity>
 </gml:resultOf>
</gml:Observation>

<gml:Observation>
 <gml:validTime>
 <gml:TimeInstant>
 <gml:timePosition>2002-11-12T09:12:00</gml:timePosition>
 </gml:TimeInstant>
 </gml:validTime>
 <gml:using xlink:href="http://www.my.org/cameras/leica2"/>
 <gml:subject xlink:href="http://www.tourist.org/sights/mountain3"/>
 <gml:resultOf xlink:href="http://www.my.org/photos/landscape1.jpg"/>
</gml:Observation>

<gml:Observation>
 <gml:validTime>
 <gml:TimeInstant>
 <gml:timePosition>2002-10-25T11:37:25</gml:timePosition>
 </gml:TimeInstant>
 </gml:validTime>
 <gml:subject xlink:href="http://www.people.org/kids/abby"/>
 <gml:resultOf xlink:href="myDaughtersPortrait.jpg"/>
</gml:Observation>

18.2.3 using

The gml:using property contains or references a description of a procedure (such as a camera) used for
the observation. It is declared as follows:

 <element name="using" type="gml:ProcedurePropertyType"/>

 <complexType name="ProcedurePropertyType">
 <sequence minOccurs="0">
 <element ref="gml:AbstractFeature"/>
 </sequence>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>

18.2.4 target

The gml:target property contains or references the specimen, region or station which is the object of
the observation. This property element is declared in the schema as follows:

 <element name="target" type="gml:TargetPropertyType"/>

 <element name="subject" type="gml:TargetPropertyType" substitutionGroup="gml:target"/>

 <complexType name="TargetPropertyType">
 <choice minOccurs="0">

170 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

 <element ref="gml:AbstractFeature"/>
 <element ref="gml:AbstractGeometry"/>
 </choice>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
This property is particularly useful for remote observations, such as photographs, where a generic
location property might apply to the location of the camera or the location of the field of view, and thus
may be ambiguous.

The gml:subject element is provided as a convenient synonym for gml:target. This is the term
commonly used in photography.

gml:Observation does not contain a predefined location property. If the schema developer wishes to
specify a concrete location for the observation point (location of the sensor) would do so through a location
property, e.g. with a point as a value. In the case where the target has a known direction but unknown
distance to the observation point (remote sensing) gml:DirectedObservation should be used. Where the
relative direction and distance are known, gml:DirectedObservationAtDistance should be used.

EXAMPLE An application defined observation feature type with a location of the observation point could be
specified as

<element name="ObservationWithSensorLocation" type="app:ObservationWithSensorLocationType"
 substitutionGroup="gml:Observation"/>
 <complexType name="ObservationWithSensorLocationType">
 <complexContent>
 <extension base="gml:ObservationType">
 <sequence>
 <element name="positionOfSensor" type="gml:PointPropertyType"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

18.2.5 resultOf

The gml:resultOf property indicates the result of the observation. The value may be inline, or a
reference to a value elsewhere. It is declared in the schema as follows:

 <element name="resultOf" type="gml:ResultType"/>

 <complexType name="ResultType">
 <sequence minOccurs="0">
 <any namespace=”##any”/>
 </sequence>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>

EXAMPLE A result property with a gml: DataBlock recording the observation of a temperature and a
pressure measurement.

 <gml:DataBlock>
 <gml:rangeParameters>
 <gml:CompositeValue>
 <gml:valueComponents>
 <Temperature uom="Cel">template</Temperature>
 <Pressure uom= kPa">template</Pressure>
 </gml:valueComponents>
 </gml:CompositeValue>
 </gml:rangeParameters>
 <gml:tupleList>3,101.2</gml:tupleList>
 </gml:DataBlock>

18.2.6	 DirectedObservation

A gml:DirectedObservation is the same as an observation except that it adds an additional
gml:direction property. This is the direction in which the observation was acquired. Clearly this

© ISO 2020 – All rights reserved 171

ISO 19136-1:2020(E)

applies only to certain types of observation such as visual observations by people, or observations
obtained from terrestrial cameras.

 <element name="DirectedObservation" type="gml:DirectedObservationType"
 substitutionGroup="gml:Observation"/>

 <complexType name="DirectedObservationType">
 <complexContent>
 <extension base="gml:ObservationType">
 <sequence>
 <element ref="gml:direction"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

EXAMPLE

<gml:DirectedObservation>
 <gml:validTime>
 <gml:TimeInstant>
 <gml:timePosition>2002-11-12T09:12:00</gml:timePosition>
 </gml:TimeInstant>
 </gml:validTime>
 <gml:using xlink:href="http://www.my.org/cameras/leica2"/>
 <gml:target xlink:href="http://www.tourist.org/sights/mountain3"/>
 <gml:resultOf xlink:href="http://www.my.org/photos/landscape1.jpg"/>
 <gml:direction>
 <gml:DirectionVector>
 <gml:vector srsName="http://www.opengis.net/def/crs/EPSG/0/4326">0.0 45.0</
gml:vector>
 </gml:DirectionVector>
 </gml:direction>
</gml:DirectedObservation>

18.2.7	 DirectedObservationAtDistance

gml:DirectedObservationAtDistance adds an additional distance property. This is the distance from
the observer to the subject of the observation. Clearly this applies only to certain types of observation
such as visual observations by people, or observations obtained from terrestrial cameras.

<element name="DirectedObservationAtDistance" type="gml:DirectedObservationAtDistanceType"
 substitutionGroup="gml:DirectedObservation "/>

 <complexType name="DirectedObservationAtDistanceType">
 <complexContent>
 <extension base="gml:DirectedObservationType">
 <sequence>
 <element name="distance" type="gml:MeasureType"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
EXAMPLE

<gml:DirectedObservationAtDistance>
 <gml:validTime>
 <gml:TimeInstant>
 <gml:timePosition>2002-11-12T09:12:00</gml:timePosition>
 </gml:TimeInstant>
 </gml:validTime>
 <gml:using xlink:href="http://www.my.org/cameras/leica2"/>
 <gml:subject xlink:href="http://www.tourist.org/sights/mountain3"/>
 <gml:resultOf xlink:href="http://www.my.org/photos/landscape1.jpg"/>
 <gml:direction>
 <gml:DirectionVector>
 <gml:vector srsName="http://www.opengis.net/def/crs/EPSG/0/4326">0.0 45.0</
gml:vector>
 </gml:DirectionVector>
 </gml:direction>

172 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

 <gml:distance uom="m">16500.</gml:distance>
</gml:DirectedObservationAtDistance>

19 GML schema — Coverages

19.1 The coverage model and representations

19.1.1 General remarks

This clause defines the GML encoding for coverages and is in agreement with the conceptual model
outlined in ISO 19123.

The Scope of ISO 19123:2005 provides a definition:

Coverages support mapping from a spatial, temporal or spatiotemporal domain to feature attribute values
where feature attribute types are common to all geographic positions within the domain. A coverage domain
consists of a collection of direct positions in a coordinate space that may be defined in terms of up to three
spatial dimensions as well as a temporal dimension. Examples of coverages include rasters, triangulated
irregular networks, point coverages and polygon coverages. Coverages are the prevailing data structures in
a number of application areas, such as remote sensing, meteorology and mapping of bathymetry, elevation,
soil and vegetation.

The information describing a coverage is conventionally represented in one of two ways:

a) As a set of discrete location-value pairs.

b) As a description of the spatio-temporal domain (multi-geometry, grid) and a description of the set
of values from the range, together with a method or rule (which may be implicit) that assigns a
value from the range set to each position within the domain.

The first method only applies to domains that are partitioned into discrete components. This
representation may be realized in GML as a homogeneous feature collection (i.e. all the features have
the same set of properties), where the set of locations from the features compose the domain and the
set of property values compose the range. The mapping from domain to range is trivial: the properties
on each feature are assigned to the location of that feature. For coverages whose domain is composed of
a large set of locations this explicit representation may, however, be bulky.

The second method is more flexible in a number of ways.

— Since the domain and range are homogeneous sets, there may be efficiencies in the representation
of either or both domain and range.

— The values in the range may be represented in an analytic form rather than as discrete explicit
values, which is also related to the fact that as discrete explicit values.

— When the attribute values vary continuously across the domain, a functional form covering the
complete domain is required to be able to provide values of the range at arbitrary locations. The
function typically involves interpolation, possibly using a process model.

The first representation is typically used during data collection where a set or properties relating to a
single location are managed together, or update of a datastore where only a small number of features
are manipulated at one time. The second representation is more suitable for analysis, where spatio-
temporal patterns and anomalies within a specific property are of interest.

It is the second method, using a functional map over the whole domain, which is the subject of the GML
coverage encoding.

© ISO 2020 – All rights reserved 173

ISO 19136-1:2020(E)

19.1.2 Formal description of a coverage

A coverage incorporates a mapping from a spatiotemporal domain to a range set, the latter providing
the set in which the attribute values live. The range set may be an arbitrary set including discrete
lists, integer or floating point ranges, and multi-dimensional vector spaces. This conceptual model of a
coverage is described in Figure 4.

Figure 4 — Conceptual model of a coverage

A coverage can be viewed as the graph of the coverage function f:A → B, that is as the set of ordered pairs

{(x, f(x)) | where x is in A}

This view is especially applicable to the GML encoding of a coverage. In the case of a discrete coverage,
the domain set A is partitioned into a collection of subsets (typically a disjoint collection) A = UAi and
the function f is constant on each Ai. For a spatial domain, the Ai are geometry elements, hence the
coverage can be viewed as a collection of (geometry,value) pairs, where the value is an element of the
range set. If the spatial domain A is a topological space then the coverage can be viewed as a collection
of (topology,value) pairs, where the topology element in the pair is a topological n-chain (in GML terms
this is a gml:TopoPoint, gml:TopoCurve, gml:TopoSurface or gml:TopoSolid).

19.1.3 Coverage in GML

A coverage is implemented as a GML feature. We can thus speak of a “temperature distribution feature”,
or a “remotely sensed image feature”, or a “soil distribution feature”.

As is the case for any GML object, a coverage object may also be the value of a property of a feature.

EXAMPLE The temperature distribution might be a property of a city feature (abc:City), so a description
of the city of Ottawa might be represented in GML as follows (here, abc:TempratureCoverage is a coverage
feature that is a property of the city feature):

<abc:City gml:id = “Ottawa”>
 <abc:population>500000</abc:population>
 <abc:temperatureDistribution>
 <abc:TemperatureCoverage> … </abc:TemperatureCoverage>
 </abc:temperatureDistribution>
</abc:City>
NOTE Coverages in GML are supported by two schemas documents, coverage.xsd and grids.xsd. Coverages.
xsd provides the basic GML coverage model. Grids.xsd provides grid geometry structures that are used in the
description of gridded coverages but which could be employed for other applications.

The schema document grids.xsd is identified by the following location-independent name (using URN syntax):

— urn: ogc: specification: gml: schema -xsd: grids: 3 .2 .1

The coverage.xsd schema document is identified by the following location-independent name (using URN syntax):

— urn: ogc: specification: gml: schema -xsd: coverage: 3 .2 .1

All schema documents are listed in Annex C.

174 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

19.1.4 Relationship with ISO 19123

The coverage components of the GML schema specified in this clause provide a conformant, partial
implementation of the ISO 19123 coverage schema. The relationship is discussed in detail in D.2.11.

The ISO 19123 coverage types implemented in GML are specified in ISO 19123; additional constraints
specified in ISO 19123 for these types are also constraints on the coverage components of the GML schema.

19.2 Grids schema

19.2.1 Overview

An implicit description of geometry is one in which the items of the geometry do not explicitly appear
in the encoding. Instead, a compact notation records a set of parameters, and a set of objects may be
generated using a rule with these parameters. This clause provides grid geometries that are used in the
description of gridded coverages and other applications.

In GML two grid structures are defined, namely gml:Grid and gml:RectifiedGrid.

19.2.2 Grid

gml:Grid implements ISO 19123 CV_Grid (see D.2.11 and ISO 19123:2005, 8.3) and is defined as follows:

<element name="Grid" type="gml:GridType" substitutionGroup="gml:AbstractImplicitGeome
try"/>

<element name="AbstractImplicitGeometry" type="gml:AbstractGeometryType" abstract="true"
substitutionGroup="gml:AbstractGeometry"/>

 <complexType name="GridType">
 <complexContent>
 <extension base="gml:AbstractGeometryType">
 <sequence>
 <element name="limits" type="gml:GridLimitsType"/>
 <choice>
 <element name="axisLabels" type="gml:NCNameList"/>
 <element name="axisName" type="string" maxOccurs="unbounded"/>
 </choice>
 </sequence>
 <attribute name="dimension" type="positiveInteger" use="required"/>
 </extension>
 </complexContent>
 </complexType>
The gml:Grid implicitly defines an unrectified grid, which is a network composed of two or more sets of
curves in which the members of each set intersect the members of the other sets in an algorithmic way.
The region of interest within the grid is given in terms of its gml:limits, being the grid coordinates of
diagonally opposed corners of a rectangular region. gml:axisLabels is provided with a list of labels of the
axes of the grid (gml:axisName has been deprecated). gml:dimension specifies the dimension of the grid.

In GML the gml:limits element contains a single gml:GridEnvelope, in accordance with the following
schema definitions:

 <complexType name="GridLimitsType">
 <sequence>
 <element name="GridEnvelope" type="gml:GridEnvelopeType"/>
 </sequence>
 </complexType>

 <complexType name="GridEnvelopeType">
 <sequence>
 <element name="low" type="gml:integerList"/>
 <element name="high" type="gml:integerList"/>
 </sequence>
 </complexType>

© ISO 2020 – All rights reserved 175

ISO 19136-1:2020(E)

The gml:low and gml:high elements are each gml:integerLists, which are coordinate tuples, the
coordinates being measured as offsets from the origin of the grid along each axis, of the diagonally
opposing corners of a “rectangular” region of interest.

EXAMPLE The following example illustrates a simple Grid.

 <gml:Grid dimension="2">
 <gml:limits>
 <gml:GridEnvelope>
 <gml:low>0 0</gml:low>
 <gml:high>3 3</gml:high>
 </gml:GridEnvelope>
 </gml:limits>
 <gml:axisLabels>x y</gml:axisLabels>
 </gml:Grid>
In this example the Grid has posts (points) at locations (0,0), (0,1),(1,0),(1,1) through to (3,3).

When a grid point is used to represent a sample space (e.g. image pixel), the grid point represents the
center of the sample space (see ISO 19123:2005, 8.2.2).

19.2.3	 RectifiedGrid

A rectified grid is a grid for which there is an affine transformation between the grid coordinates and
the coordinates of an external coordinate reference system. It is defined by specifying the position (in
some geometric space) of the grid “origin” and of the vectors that specify the post locations.

gml:RectifiedGrid implements ISO 19123 CV_RectifiedGrid (see D.2.11 and ISO 19123:2005, 8.9) and is
declared as follows:

<element name="RectifiedGrid" type="gml:RectifiedGridType" substitutionGroup="gml:Grid"/>

 <complexType name="RectifiedGridType">
 <complexContent>
 <extension base="gml:GridType">
 <sequence>
 <element name="origin" type="gml:PointPropertyType"/>
 <element name="offsetVector" type="gml:VectorType" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
Note that the grid limits (post indexes) and axis name properties are inherited from gml:GridType and
that gml:RectifiedGrid adds a gml:origin property (contains or references a gml:Point) and a list of
gml:offsetVector properties (specified using gml:VectorType as its data type as described in 10.1.4.5).

NOTE gml:origin and the list of gml:offsetVector properties tie the grid to a position in geographic
space and indicate the offset of cells along each axis. See ISO 19123:2005, 8.9.6, for a list of constraints on these
properties.

EXAMPLE 1 Figure 5 shows the geometry of a rectified grid.

176 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

Key
O origin
p1, p2 offset vectors

Figure	5	—	RectifiedGrid	Geometry

EXAMPLE 2 An example instance of a gml:RectifiedGrid is as follows:

 <gml:RectifiedGrid dimension="2">
 <gml:limits>
 <gml:GridEnvelope>
 <gml:low>1 1</gml:low>
 <gml:high>4 4</gml:high>
 </gml:GridEnvelope>
 </gml:limits>
 <gml:axisLabels>u v</gml:axisLabels>
 <gml:origin>
 <gml:Point gml:id="palindrome"
 srsName="http://www.opengis.net/def/crs/EPSG/0/4326">
 <gml:pos>3 1.1</gml:pos>
 </gml:Point>
 </gml:origin>
 <gml:offsetVector srsName="http://www.opengis.net/def/crs/EPSG/0/4326">-0.2 1.25</
gml:offsetVector>
 <gml:offsetVector srsName="http://www.opengis.net/def/crs/EPSG/0/4326">1.3 0.2</
gml:offsetVector>
 </gml:RectifiedGrid>
Note that in this example the rectified grid starts at integer offset 1 1 (value of low property) relative to
the origin as shown in Figure 6.

Key
O origin
p1, p2 offset vectors

Figure	6	—	RectifiedGrid	with	non-zero	low	limit

© ISO 2020 – All rights reserved 177

ISO 19136-1:2020(E)

19.3 Coverage schema

19.3.1	 AbstractCoverageType,	AbstractCoverage

The base type for coverages is gml:AbstractCoverageType, defined in the schema as follows:

 <complexType name="AbstractCoverageType" abstract="true">
 <complexContent>
 <extension base="gml:AbstractFeatureType">
 <sequence>
 <element ref="gml:domainSet"/>
 <element ref="gml:rangeSet"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
The basic elements of a coverage can be seen in this content model: the coverage contains gml:domainSet
and gml:rangeSet properties. The gml:domainSet property describes the domain of the coverage and
the gml:rangeSet property describes the range of the coverage.

The abstract element gml:AbstractCoverage implements ISO 19123 CV_Coverage (see D.2.11 and
ISO 19123:2005, 5.3) and is declared as follows:

 <element name="AbstractCoverage" type="gml:AbstractCoverageType" abstract="true"
 substitutionGroup="gml:AbstractFeature"/>
This element serves as the head of a substitution group which may contain any coverage whose type
is derived from gml:AbstractCoverageType. It may act as a variable in the definition of content models
where it is required to permit any coverage to be valid.

19.3.2	 DiscreteCoverageType,	AbstractDiscreteCoverage

A discrete coverage consists of a domain set, range set and optionally a coverage function. The domain
set consists of either spatial or temporal geometry objects, finite in number. The range set is comprised
of a finite number of attribute values each of which is associated to every direct position within any
single spatiotemporal object in the domain. In other words, the range values are constant on each
spatiotemporal object in the domain. This coverage function maps each element from the coverage
domain to an element in its range. This definition conforms to ISO 19123. The base type for discrete
coverages is DiscreteCoverageType, defined in the schema as follows:

 <complexType name="DiscreteCoverageType">
 <complexContent>
 <extension base="gml:AbstractCoverageType">
 <sequence>
 <element ref="gml:coverageFunction" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
The coverageFunction element describes the mapping “f” as shown in Figure 4.

The abstract element gml:AbstractDiscreteCoverage implements ISO 19123 CV_DiscreteCoverage (see
D.2.11 and ISO 19123:2005, 5.7) and is declared as follows:

 <element name="AbstractDiscreteCoverage" type="gml:DiscreteCoverageType"
abstract="true"
 substitutionGroup="gml:AbstractCoverage"/>
This element serves as the head of a substitution group which may contain any discrete coverage.

19.3.3	 AbstractContinuousCoverageType,	AbstractContinuousCoverage

A continuous coverage as defined in ISO 19123 is a coverage that can return different values for
the same feature attribute at different direct positions within a single spatiotemporal object in its
spatiotemporal domain. The base type for continuous coverages is AbstractContinuousCoverageType,
defined in the schema as follows:

178 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

 <complexType name="AbstractContinuousCoverageType" abstract="true">
 <complexContent>
 <extension base="gml:AbstractCoverageType">
 <sequence>
 <element ref="gml:coverageFunction" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
The coverageFunction element describes the mapping “f” as shown in Figure 4.

The abstract element gml:AbstractContinuousCoverage is declared as follows:

 <element name="AbstractContinuousCoverage" type="gml:AbstractContinuousCoverageType"
 abstract="true" substitutionGroup="gml:AbstractFeature"/>
This element serves as the head of a substitution group which may contain any continuous coverage
whose type is derived from gml:AbstractContinuousCoverageType.

19.3.4 domainSet, DomainSetType

The gml:domainSet property element describes the spatio-temporal region of interest, within which the
coverage is defined. Its content model is given by gml:DomainSetType which is defined as follows:

 <element name="domainSet" type="gml:DomainSetType"/>

 <complexType name="DomainSetType">
 <sequence minOccurs="0">
 <choice>
 <element ref="gml:AbstractGeometry"/>
 <element ref="gml:AbstractTimeObject"/>
 </choice>
 </sequence>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
The value of the domain is thus a choice between a gml:AbstractGeometry and a gml:AbstractTimeObject.
In the instance these abstract elements will normally be substituted by a geometry complex or temporal
complex, to represent spatial coverages and time-series, respectively.

NOTE Spatiotemporal domains are supported if the domain is described using a compound coordinate
reference system, one of whose components is temporal. Otherwise, following the ISO 19100 series of
International Standards, GML does not support combined spatial-temporal domains.

The presence of the gml:AssociationAttributeGroup means that domainSet follows the usual GML
property model and may use the xlink: href attribute to point to the domain, as an alternative to describing
the domain inline. Ownership semantics may be provided using the gml:OwnershipAttributeGroup.

19.3.5 rangeSet, RangeSetType

The gml:rangeSet property element contains the values of the coverage (sometimes called the attribute
values). Its content model is given by gml:RangeSetType which is defined as follows::

 <element name="rangeSet" type="gml:RangeSetType"/>

 <complexType name="RangeSetType">
 <choice>
 <element ref="gml:ValueArray" maxOccurs="unbounded"/>
 <element ref="gml:AbstractScalarValueList" maxOccurs="unbounded"/>
 <element ref="gml:DataBlock"/>
 <element ref="gml:File"/>
 </choice>
 </complexType>
This content model supports a structural description of the range. The semantic information describing
the range set is embedded using a uniform method, as part of the explicit values, or as a template value
accompanying the representation using gml:DataBlock and gml:File.

© ISO 2020 – All rights reserved 179

ISO 19136-1:2020(E)

The values from each component (or “band”) in the range may be encoded within a gml:ValueArray
element or a concrete member of the gml:AbstractScalarValueList substitution group7). Use of these
elements satisfies the value-type homogeneity requirement.

19.3.6 DataBlock

gml:DataBlock describes the Range as a block of text encoded values similar to a Common Separated
Value (CSV) representation. The content model is as follows:

 <element name="DataBlock" type="gml:DataBlockType"
 substitutionGroup="gml:AbstractObject"/>

 <complexType name="DataBlockType">
 <sequence>
 <element ref="gml:rangeParameters"/>
 <choice>
 <element ref="gml:tupleList"/>
 <element ref="gml:doubleOrNilReasonTupleList"/>
 </choice>
 </sequence>
 </complexType>
The range set parameterization is described by the property gml:rangeParameters.

19.3.7 rangeParameters

The gml:rangeParameters property is declared as follows:

 <element name="rangeParameters" type="gml:AssociationRoleType"/>

gml:rangeParameters provides a slot for the description of the range parameters. This may be a local
description using a suitable record schema (see ISO 19103), or may carry a link to an external range
description that matches some standard. Specific range parameters for inline use may be defined
through the creation of a GML application schema that may be based on the value objects schema, as
described in 16.4.

19.3.8 tupleList

The gml:tupleList property is declared as follows:

 <element name="tupleList" type="gml:CoordinatesType"/>
gml:CoordinatesType is described in 9.1.4.5. It consists of a list of coordinate tuples, with each
coordinate tuple separated by the ts or tuple separator (whitespace), and each coordinate in the tuple
by the cs or coordinate separator (comma).

The gml:tupleList encoding is effectively “band-interleaved”.

EXAMPLE A set of pairs of temperature and pressure observations might be recorded in a gml:DataBlock
as follows:

 <gml:DataBlock>
 <gml:rangeParameters>
 <gml:CompositeValue>
 <gml:valueComponents>
 <Temperature uom="Cel">template</Temperature>
 <Pressure uom="kPa">template</Pressure>
 </gml:valueComponents>
 </gml:CompositeValue>
 </gml:rangeParameters>
 <gml:tupleList>3,101.2 5,101.3 7,101.4 11,101.5 13,101.6 17,101.7 19,101.7
23,101.8 29,101.9 31,102.0 37,102.1 41,102.2 43,102.3 47,102.4 53,102.5 59,102.6</
gml:tupleList>
 </gml:DataBlock>

7) e.g. gml: CategoryList, gml: QuantityList — see 16.4.

180 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

where Temperature and Pressure are elements defined in a local application schema, using
gml:MeasureOrNilReasonListType.

19.3.9	 doubleOrNilReasonTupleList

The gml:doubleOrNilReasonTupleList property is declared as follows:

 <element name="doubleOrNilReasonTupleList" type="gml:doubleOrNilReasonList"/>
gml:doubleOrNilReasonList is described in 8.2.4.1. It consists of a list of gml:doubleOrNilReason values,
each separated by a whitespace. The gml:doubleOrNilReason values are grouped into tuples where the
dimension of each tuple in the list is equal to the number of range parameters.

EXAMPLE An example of the use of gml:doubleOrNilReasonTupleList to record the same set of pairs of
temperature and pressure observations given in the gml:DataBlock example above is as follows:

 <gml:DataBlock>
 <gml:rangeParameters>
 <gml:CompositeValue>
 <gml:valueComponents>
 <Temperature uom="Cel">template</Temperature>
 <Pressure uom="kPa">template</Pressure>
 </gml:valueComponents>
 </gml:CompositeValue>
 </gml:rangeParameters>
 <gml:doubleOrNilReasonTupleList>3 101.2 5 101.3 7 101.4 11 101.5 13 101.6 17
101.7 19 101.7 23 101.8 29 101.9 31 102.0 37 102.1 41 102.2 43 102.3 47 102.4 53
102.5 59 102.6</gml:doubleOrNilReasonTupleList>
 </gml:DataBlock>

19.3.10 File, FileType

For efficiency reasons, GML also provides a means of encoding the range set in an arbitrary external
encoding, such as a binary file. This encoding may be “well-known” but this is not required. This mode
uses the gml:File element, which is declared as follows:

 <element name="File" type="gml:FileType" substitutionGroup="gml:AbstractObject"/>

 <complexType name="FileType">
 <sequence>
 <element ref="gml:rangeParameters"/>
 <choice>
 <element name="fileName" type="anyURI"/>
 <element name="fileReference" type="anyURI"/>
 </choice>
 <element name="fileStructure" type="gml:CodeType"/>
 <element name="mimeType" type="anyURI" minOccurs="0"/>
 <element name="compression" type="anyURI" minOccurs="0"/>
 </sequence>
 </complexType>
In this version of the coverage encoding, the values of the coverage (attribute values in the range set) are
transmitted in an external file that is referenced from the XML structure described by gml:FileType.
The external file is referenced by the gml:fileReference property that is an anyURI (the gml:fileName
property has been deprecated). This means that the external file may be located remotely from the
referencing GML instance.

EXAMPLE This can support, for example, both an http reference and a SOAP attachment.

The gml:compression property points to a definition of a compression algorithm through an anyURI.
This may be a retrievable, computable definition or simply a reference to an unambiguous name for the
compression method.

The gml:mimeType property points to a definition of the file mime type.

The gml:fileStructure property is defined by a codelist. An example of a values in the codelist could be
“Record Interleaved”. Note further that all values shall be enclosed in a single file. Multi-file structures
for values are not supported in GML.

© ISO 2020 – All rights reserved 181

ISO 19136-1:2020(E)

The semantics of the range set is described as above using the gml:rangeParameters property.

The referenced file structure shall be as shown in Figure 7.

Figure 7 — File Record Structure or Coverage File

Note that if any compression algorithm is applied, the structure above applies only to the pre-
compression or post-decompression structure of the file.

Note that the fields within a record match the gml:valueComponents of the gml:CompositeValue in
document order.

EXAMPLE An encoding of a binary file may look as follows:

 <gml:File>
 <gml:rangeParameters>
 <gml:CompositeValue>
 <gml:valueComponents>
 <Temperature uom="Cel">template</Temperature>
 <Pressure uom="kPa">template</Pressure>
 </gml:valueComponents>
 </gml:CompositeValue>
 </gml:rangeParameters>
 <gml:fileName>http://www.somedata.org/temp_pressure.dat</gml:fileName>
 <gml:fileStructure>Record Interleaved</gml:fileStructure>
 </gml:File>

19.3.11 coverageFunction, CoverageFunctionType

This subclause describes the gml:coverageFunction property, that is, the mapping “f” (see Figure 4)
from the domain to the range of the coverage. The content model for the coverage function is given by:

 <element name="coverageFunction" type="gml:CoverageFunctionType"
 substitutionGroup="gml:AbstractObject"/>

 <complexType name="CoverageFunctionType">
 <choice>
 <element ref="gml:MappingRule"/>
 <element ref="gml:CoverageMappingRule"/>
 <element ref="gml:GridFunction"/>
 </choice>
 </complexType>
Note that the value of the CoverageFunction is one of gml:MappingRule (deprecated),
gml:CoverageMappingRule and gml:GridFunction.

If the gml:coverageFunction property is omitted for a gridded coverage (including rectified gridded
coverages) the gml:startPoint is assumed to be the value of the gml: low property in the gml:Grid
geometry, and the gml:sequenceRule is assumed to be linear and the gml:axisOrder property is
assumed to be “+1 +2”.

EXAMPLE These defaults are best illustrated by a simple example as follows:

<AverageTempPressure
xmlns="http://www.opengis.net/app" xmlns:gml=”http://www.opengis.net/gml/3.2”

182 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/app./CoverageExamples.xsd">
 <gml:domainSet>
 <gml:Grid dimension="2">
 <gml:limits>
 <gml:GridEnvelope>
 <gml:low>0 0</gml:low>
 <gml:high>4 4</gml:high>
 </gml:GridEnvelope>
 </gml:limits>
 <gml:axisLabels>x y</gml:axisLabels>
 </gml:Grid>
 </gml:domainSet>
 <gml:rangeSet>
 <gml:DataBlock>
 <gml:rangeParameters>
 <gml:CompositeValue>
 <gml:valueComponents>
 <Temperature uom="Cel">template</Temperature>
 <Pressure uom="kPa">template</Pressure>
 </gml:valueComponents>
 </gml:CompositeValue>
 </gml:rangeParameters>
 <gml:tupleList>3,101.2 5,101.3 7,101.4 11,101.5 13,101.6 17,101.7 19,101.7
23,101.8 29,101.9 31,102.0 37,102.1 41,102.2 43,102.3 47,102.4 53,102.5 59,102.6</
gml:tupleList>
 </gml:DataBlock>
 </gml:rangeSet>
</AverageTempPressure>
Since no coverageFunction is specified the function is assumed to be that of linear scanning with “+1
+2” order starting at the location (0 0). If we look at the DataBlock, we see that we have the mapping
shown in Table 7.

Table	7	—	Data	block	example

Grid location Data value
0 0 3,101.2
1 0 5,101.3
2 0 7,101.4
3 0 11,101.5
0 1 13,101.6
1 1 17,101.7
2 1 19,101.7
3 1 23,101.8
0 2 29,101.9
1 2 31,102.0
2 2 37,102.1
3 2 41,102.2
0 3 43,102.3
1 3 47,102.4
2 3 53,102.5
3 3 59,102.6

19.3.12 CoverageMappingRule

gml:CoverageMappingRule provides a formal or informal description of the coverage function, per:

 <element name="CoverageMappingRule" type="gml:MappingRuleType"
 substitutionGroup="gml:AbstractObject"/>

© ISO 2020 – All rights reserved 183

ISO 19136-1:2020(E)

 <complexType name="MappingRuleType" final="#all">
 <choice>
 <element name="ruleDefinition" type="string"/>
 <element name="ruleReference" type="gml:ReferenceType"/>
 </choice>
 </complexType>
EXAMPLE MathML can be used for formal descriptions, informal ones may be any free text.

The mapping rule may be defined as an inline string (gml:ruleDefinition) or via a remote reference
through xlink: href (gml:ruleReference).

If no rule name is specified, the default is ‘Linear’ with respect to members of the domain in
document order.

19.3.13 GridFunction, GridFunctionType

gml:GridFunction provides an explicit mapping rule for grid geometries, i.e. the domain shall be a
geometry of type grid. It describes the mapping of grid posts (discrete point grid coverage) or grid cells
(discrete surface coverage) to the values in the range set. The content model is as follows:

 <element name="GridFunction" type="gml:GridFunctionType"
 substitutionGroup="gml:AbstractObject"/>

 <complexType name="GridFunctionType">
 <sequence>
 <element name="sequenceRule" type="gml:SequenceRuleType" minOccurs="0"/>
 <element name="startPoint" type="gml:integerList" minOccurs="0"/>
 </sequence>
 </complexType>
The gml:startPoint is the index position of a point in the grid that is mapped to the first point in
the range set (this is also the index position of the first grid post). If the gml:startPoint property is
omitted the gml:startPoint is assumed to be equal to the value of gml:low in the gml:Grid geometry.
Subsequent points in the mapping are determined by the value of the gml:sequenceRule.

19.3.14 sequenceRule, SequenceRuleType, SequenceRuleEnumeration

The sequenceRule is described by the content model:

 <complexType name="SequenceRuleType">
 <simpleContent>
 <extension base="gml:SequenceRuleEnumeration">
 <attribute name="order" type="gml:IncrementOrder"/>
 <attribute name="axisOrder" type="gml:AxisDirectionList"/>
 </extension>
 </simpleContent>
 </complexType>
The gml:SequenceRuleType is derived from the gml:SequenceRuleEnumeration through the addition of
an axisOrder attribute. The gml:SequenceRuleEnumeration is an enumerated type defined as:

 <simpleType name="SequenceRuleEnumeration">
 <restriction base="string">
 <enumeration value="Linear"/>
 <enumeration value="Boustrophedonic"/>
 <enumeration value="Cantor-diagonal"/>
 <enumeration value="Spiral"/>
 <enumeration value="Morton"/>
 <enumeration value="Hilbert"/>
 </restriction>
 </simpleType>
These rule names are defined in ISO 19123.

If no rule name is specified the default is “Linear”.

The axisOrder attribute has the following content model:

184 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

 <simpleType name="AxisDirectionList">
 <list itemType="gml:AxisDirection"/>
 </simpleType>

 <simpleType name="AxisDirection">
 <restriction base="string">
 <pattern value="[\+\-][1-9][0-9]*"/>
 </restriction>
 </simpleType>
The value of a gml:AxisDirection indicates the incrementation order to be used on an axis of the grid.

EXAMPLE 1 "+3" means that the points in the grid are to be traversed from lowest to highest on the 3rd axis.

The different values in a gml:AxisDirectionList indicate the incrementation order to be used on all
axes of the grid. Each axis shall be mentioned once and only once.

EXAMPLE 2 "+1 -2 +3" means that the points are to be traversed from lowest to highest on the 1st axis, starting
at the highest value on the 2nd axis and the lowest value on the 3rd axis points, incremented fastest on the 1st
axis before incrementing on the 2nd axis and finally the 3rd.

19.3.15	Specific	Coverage	Types	in	GML

GML supports all of the discrete coverage types defined in ISO 19123.

The supported types are substitutable from gml:AbstractDiscreteCoverage and include:

— gml:MultiPointCoverage (CV_DiscretePointCoverage)

— gml:MultiCurveCoverage (CV_DiscreteCurveCoverage)

— gml:MultiSurfaceCoverage (CV_DiscreteSurfaceCoverage)

— gml:MultiSolidCoverage (CV_DiscreteSolidCoverage)

— gml:GridCoverage (CV_DiscreteGridPointCoverage)

— gml:RectifiedGridCoverage (CV_DiscreteGridPointCoverage)

NOTE Concrete continuous coverage types can be anticipated in future releases of this document.

Users may also construct their own coverage types by using or deriving from gml:DiscreteCoverageType,
gml:AbstractContinuousCoverageType or by using or derivation from the specific concrete coverage
types above.

The same range set encodings apply for each of the different discrete coverage types as the latter are
specified by the geometry type of the domain.

19.3.16 MultiPointCoverage

In a gml:MultiPointCoverage the domain set is a gml:MultiPoint, which is a collection of arbitrarily
distributed geometric points. I.e., the value in gml:domainSet shall be a gml:MultiPoint.

 <element name="MultiPointCoverage" type="gml:DiscreteCoverageType"
 substitutionGroup="gml:AbstractDiscreteCoverage"/>
In a gml:MultiPointCoverage the mapping from the domain to the range is straightforward.

— For gml:DataBlock encodings the points of the gml:MultiPoint are mapped in document order to
the tuples of the data block.

— For gml:CompositeValue encodings the points of the gml:MultiPoint are mapped to the members of
the composite value in document order.

— For gml:File encodings the points of the gml:MultiPoint are mapped to the records of the file in
sequential order.

© ISO 2020 – All rights reserved 185

ISO 19136-1:2020(E)

EXAMPLE A gml:MultiPointCoverage using value encoding:

<AverageTempPressure
 xmlns="http://www.opengis.net/app"
 xmlns:gml="http://www.opengis.net/gml/3.2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/app CoverageExamples.xsd">
 <gml:boundedBy>
 <gml:Envelope srsName="http://www.opengis.net/def/crs/EPSG/0/4326">
 <gml:lowerCorner>1 1</gml:lowerCorner>
 <gml:upperCorner>4 4</gml:upperCorner>
 </gml:Envelope>
 </gml:boundedBy>
 <gml:domainSet>
 <gml:MultiPoint srsName="http://www.opengis.net/def/crs/EPSG/0/4326">
 <gml:pointMember>
 <gml:Point>
 <gml:pos>1 1</gml:pos>
 </gml:Point>
 </gml:pointMember>
 <gml:pointMember>
 <gml:Point>
 <gml:pos>2 2</gml:pos>
 </gml:Point>
 </gml:pointMember>
 <gml:pointMember>
 <gml:Point>
 <gml:pos>3 3</gml:pos>
 </gml:Point>
 </gml:pointMember>
 <gml:pointMember>
 <gml:Point>
 <gml:pos>4 4</gml:pos>
 </gml:Point>
 </gml:pointMember>
 </gml:MultiPoint>
 </gml:domainSet>
 <gml:rangeSet>
 <gml:ValueArray>
 <gml:valueComponents>
 <Temperature uom="Cel">3</Temperature>
 <Temperature uom="Cel">5</Temperature>
 <Temperature uom="Cel">7</Temperature>
 <Temperature uom="Cel">11</Temperature>
 </gml:valueComponents>
 </gml:ValueArray>
 </gml:rangeSet>
</AverageTempPressure>

19.3.17 MultiCurveCoverage

In a gml:MultiCurveCoverage the domain is partitioned into a collection of curves comprising a
gml:MultiCurve. The coverage function then maps each curve in the collection to a value in the range set.

 <element name="MultiCurveCoverage" type="gml:DiscreteCoverageType "
 substitutionGroup="gml:AbstractDiscreteCoverage"/>
The value in gml:domainSet shall be a gml:MultiCurve.

In a gml:MultiCurveCoverage the mapping from the domain to the range is straightforward.

— For gml:DataBlock encodings the curves of the gml:MultiCurve are mapped in document order to
the tuples of the data block.

— For gml:CompositeValue encodings the curves of the gml:MultiCurve are mapped to the members of
the composite value in document order.

— For gml:File encodings the curves of the gml:MultiCurve are mapped to the records of the file in
sequential order.

186 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

EXAMPLE A gml:MultiCurveCoverage using data block encoding:

<AverageTempPressure
 xmlns="http://www.opengis.net/app"
 xmlns:gml="http://www.opengis.net/gml/3.2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/app CoverageExamples.xsd">
 <gml:boundedBy>
 <gml:Envelope srsName="http://www.opengis.net/def/crs/EPSG/0/4326">
 <gml:lowerCorner>1.1 1.1</gml:lowerCorner>
 <gml:upperCorner>5.5 5.5</gml:upperCorner>
 </gml:Envelope>
 </gml:boundedBy>
 <gml:domainSet>
 <gml:MultiCurve srsName="http://www.opengis.net/def/crs/EPSG/0/4326">
 <gml:curveMember>
 <gml:LineString>
 <gml:posList dimension="2">1.1 1.1 2.2 2.2</gml:posList>
 </gml:LineString>
 </gml:curveMember>
 <gml:curveMember>
 <gml:LineString>
 <gml:posList dimension="2">2.2 2.2 3.3 3.3</gml:posList>
 </gml:LineString>
 </gml:curveMember>
 <gml:curveMember>
 <gml:LineString>
 <gml:posList dimension="2">3.3 3.3 4.4 4.4</gml:posList>
 </gml:LineString>
 </gml:curveMember>
 <gml:curveMember>
 <gml:LineString>
 <gml:posList dimension="2">4.4 4.4 5.5 5.5</gml:posList>
 </gml:LineString>
 </gml:curveMember>
 </gml:MultiCurve>
 </gml:domainSet>
 <gml:rangeSet>
 <gml:DataBlock>
 <gml:rangeParameters>
 <gml:CompositeValue>
 <gml:valueComponents>
 <Temperature uom="Cel">template</Temperature>
 <Pressure uom="kPa">template</Pressure>
 </gml:valueComponents>
 </gml:CompositeValue>
 </gml:rangeParameters>
 <gml:doubleOrNilReasonTupleList>3 101.2 5 101.3 7 101.4 11 101.5</
gml:doubleOrNilReasonTupleList>
 </gml:DataBlock>
 </gml:rangeSet>
</AverageTempPressure>

19.3.18 MultiSurfaceCoverage

In a gml:MultiSurfaceCoverage the domain is partitioned into a collection of surfaces comprising a
gml:MultiSurface. The coverage function than maps each surface in the collection to a value in the
range set.

 <element name="MultiSurfaceCoverage" type="gml:DiscreteCoverageType"
 substitutionGroup="gml:AbstractDiscreteCoverage"/>
The value in gml:domainSet shall be a gml:MultiSurface.

In a gml:MultiSurfaceCoverage the mapping from the domain to the range is straightforward.

— For gml:DataBlock encodings the surfaces of the gml:MultiSurface are mapped in document order
to the tuples of the data block.

© ISO 2020 – All rights reserved 187

ISO 19136-1:2020(E)

— For gml:CompositeValue encodings the surfaces of the gml:MultiSurface are mapped to the
members of the composite value in document order.

— For gml:File encodings the surfaces of the gml:MultiSurface are mapped to the records of the file
in sequential order.

EXAMPLE A gml:MultiSurfaceCoverage using file encoding:

<SoilData xmlns="http://www.opengis.net/app" xmlns:gml="http://www.opengis.net/gml/3.2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.
opengis.net/app./CoverageExamples.xsd">
 <gml:boundedBy>
 <gml:Envelope srsName="http://www.opengis.net/def/crs/EPSG/0/4329">
 <gml:lowerCorner>1 1 1</gml:lowerCorner>
 <gml:upperCorner>10 10 2</gml:upperCorner>
 </gml:Envelope>
 </gml:boundedBy>
 <gml:domainSet>
 <gml:MultiSurface srsName="http://www.opengis.net/def/crs/EPSG/0/4329">
 <gml:surfaceMember>
 <gml:Polygon gml:id="p1">
 <gml:exterior>
 <gml:LinearRing>
 <gml:posList dimension="3">1 1 1 1 5 1 5 5 1 5 1 1 1 1 1</
gml:posList>
 </gml:LinearRing>
 </gml:exterior>
 </gml:Polygon>
 </gml:surfaceMember>
 <gml:surfaceMember>
 <gml:Polygon gml:id="p6">
 <gml:exterior>
 <gml:LinearRing>
 <gml:posList dimension="3">10 1 2 5 1 1 5 5 1 10 5 2 10 1 2</
gml:posList>
 </gml:LinearRing>
 </gml:exterior>
 </gml:Polygon>
 </gml:surfaceMember>
 <gml:surfaceMember>
 <gml:Polygon gml:id="p11">
 <gml:exterior>
 <gml:LinearRing>
 <gml:posList dimension="3">5 5 1 1 5 1 1 10 1 5 10 1 5 5 1</
gml:posList>
 </gml:LinearRing>
 </gml:exterior>
 </gml:Polygon>
 </gml:surfaceMember>
 <gml:surfaceMember>
 <gml:Polygon gml:id="p16">
 <gml:exterior>
 <gml:LinearRing>
 <gml:posList dimension="3">10 5 2 5 5 1 5 10 1 10 10 2 10 5 2</
gml:posList>
 </gml:LinearRing>
 </gml:exterior>
 </gml:Polygon>
 </gml:surfaceMember>
 </gml:MultiSurface>
 </gml:domainSet>
 <gml:rangeSet>
 <gml:File>
 <gml:rangeParameters>
 <gml:CompositeValue>
 <gml:valueComponent>
 <SoilType codeSpace="http://my.big.org/classifications/soils">template</
SoilType>
 </gml:valueComponent>
 <gml:valueComponent>

188 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

 <SoilMoisture uom="http://my.big.org/units/percent">template</
SoilMoisture>
 </gml:valueComponent>
 </gml:CompositeValue>
 </gml:rangeParameters>
 <gml:fileReference>soil.dat</gml:fileReference>
 <gml:fileStructure>Record Interleaved</gml:fileStructure>
 </gml:File>
 </gml:rangeSet>

19.3.19 MultiSolidCoverage

In a gml:MultiSolidCoverage the domain is partitioned into a collection of solids comprising a
gml:MultiSolid. The coverage function than maps each solid in the collection to a value in the range set.

 <element name="MultiSolidCoverage" type="gml:DiscreteCoverageType"
 substitutionGroup="gml:AbstractDiscreteCoverage"/>
The value in gml:domainSet shall be a gml:MultiSolid.

In a gml:MultiSolidCoverage the mapping from the domain to the range is straightforward.

— For gml:DataBlock encodings the solids of the gml:MultiSolid are mapped in document order to the
tuples of the data block.

— For gml:CompositeValue encodings the solids of the gml:MultiSolid are mapped to the members of
the composite value in document order.

— For gml:File encodings the solids of the gml:MultiSolid are mapped to the records of the file in
sequential order.

19.3.20 GridCoverage

A gml:GridCoverage is a discrete point coverage in which the domain set is a geometric grid of points as
shown in Figure 8.

Figure 8 — Grid coverage domain is a grid of points

 <element name="GridCoverage" type="gml:DiscreteCoverageType"
 substitutionGroup="gml:AbstractDiscreteCoverage"/>
Note that this is the same as the gml:MultiPointCoverage except that the value in gml:domainSet shall
be a gml:Grid.

gml:Grid is defined in 19.2.2. Note that the simple grid coverage is not geometrically referenced and
hence no geometric positions are assignable to the points in the grid. Such geometric positioning is
introduced in the gml:RectifiedGridCoverage discussed in 19.3.21.

NOTE When a grid point is used to represent a sample space, the grid point represents the center of the
sample space, see 19.2.2.

EXAMPLE A gml:GridCoverage using a file encoding for its values:

<AverageTempPressure>
 <gml:domainSet>
 <gml:Grid dimension="2">
 <gml:limits>

© ISO 2020 – All rights reserved 189

ISO 19136-1:2020(E)

 <gml:GridEnvelope>
 <gml:low>0 0</gml:low>
 <gml:high>4 4</gml:high>
 </gml:GridEnvelope>
 </gml:limits>
 <gml:axisLabels>x y</gml:axisLabels>
 </gml:Grid>
 </gml:domainSet>
 <gml:rangeSet>
 <gml:File>
 <gml:rangeParameters>
 <gml:CompositeValue>
 <gml:valueComponents>
 <Temperature uom="Cel">template</Temperature>
 <Pressure uom="kPa">template</Pressure>
 </gml:valueComponents>
 </gml:CompositeValue>
 </gml:rangeParameters>
 <gml:fileReference>http://www.somedata.org/temp_pressure.dat</gml:fileReference>
 <gml:fileStructure>Record Interleaved</gml:fileStructure>
 </gml:File>
 </gml:rangeSet>
</AverageTempPressure>

19.3.21	RectifiedGridCoverage

The gml: RectifiedGridCoverage is a discrete point coverage based on a rectified grid. It is similar to the
grid coverage of 19.3.20 except that the points of the grid are geometrically referenced. The rectified
grid coverage has a domain that is a gml:RectifiedGrid geometry as defined in 19.2.3.

 <element name="RectifiedGridCoverage" type="gml:DiscreteCoverageType"
 substitutionGroup="gml:AbstractDiscreteCoverage"/>

The value in gml:domainSet shall be a gml:RectifiedGridRectifiedGrid.

gml:RectifiedGrid is defined in 19.2.3.

EXAMPLE A gml:RectifiedGridCoverage (using a data block):

<AveragePressure xmlns="http://www.opengis.net/app" xmlns:gml="http://www.opengis.net/
gml/3.2" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://
www.opengis.net/app
./CoverageExamples.xsd">
 <gml:boundedBy>
 <gml:Envelope srsName="http://www.opengis.net/def/crs/EPSG/0/4329">
 <gml:lowerCorner>1.2 3.3 2.1</gml:lowerCorner>
 <gml:upperCorner>13.6 12.1 15.3</gml:upperCorner>
 </gml:Envelope>
 </gml:boundedBy>
 <gml:domainSet>
 <gml:RectifiedGrid dimension="2">
 <gml:limits>
 <gml:GridEnvelope>
 <gml:low>1 1</gml:low>
 <gml:high>4 4</gml:high>
 </gml:GridEnvelope>
 </gml:limits>
 <gml:axisLabels>u v</gml:axisLabels>
 <gml:origin>
 <gml:Point gml:id="palindrome" srsName="http://www.opengis.net/def/crs/
EPSG/0/4329">
 <gml:pos>1.2 3.3 2.1</gml:pos>
 </gml:Point>
 </gml:origin>
 <gml:offsetVector srsName="http://www.opengis.net/def/crs/EPSG/0/4329">1.1 2.2
3.3</gml:offsetVector>
 <gml:offsetVector srsName="http://www.opengis.net/def/crs/EPSG/0/4329">2.0 1.0
0.0</gml:offsetVector>
 </gml:RectifiedGrid>
 </gml:domainSet>

190 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

 <gml:rangeSet>
 <gml:DataBlock>
 <gml:rangeParameters>
 <Pressure uom="kPa">template</Pressure>
 </gml:rangeParameters>
 <gml:doubleOrNilReasonTupleList>101.2 101.3 101.4 101.5 101.6 101.7 101.7 101.8
101.9 102.0 102.1 102.2 102.3 102.4 102.5 102.6</gml:doubleOrNilReasonTupleList>
 </gml:DataBlock>
 </gml:rangeSet>
</AveragePressure>

20	Profiles

20.1	Profiles	of	GML	and	application	schemas

GML is a complex standard that is richly expressive. In general, an application need not exploit the entire
GML schema, but may employ a subset of constructs corresponding to specific relevant requirements.

We use this definition of a profile (ISO/IEC TR 10000-1:1998 and ISO 19106:2004):

Profile: A set of one or more base standards and/or [profiles], and, where applicable, the identification
of chosen classes [(types, attributes and elements)], conforming subsets, options and parameters of
those base standards, or [profiles] necessary to accomplish a particular function.

This was defined for an OSI architecture model, so we translate ‘class’ to ‘types, attributes and elements’
to apply this definition to XML Schema. There are several ways to implement this, and GML profiles use
a “copy and delete” approach. To create a profile, a developer might copy the applicable schema files
from GML and simply delete any global types, elements and local optional particles that she does not
need for her application schema.

20.2	Definition	of	profile

A profile of GML may be defined to enhance interoperability and to curtail ambiguity by allowing
only a specific subset of GML. Application schemas may then conform to such a profile in order to
take advantage of any interoperability or performance advantages that it offers in comparison with
a complete GML. Such profiles may be defined for application schemas that are included in other
specifications.

There are cases where reduced functionality is acceptable, or where processing requirements compel
use of a logical subset of GML. For example, applications that do not need to handle XLink attributes in
any form may adhere to a specific profile that excludes them; the constraint in this case would be to not
use links. Other cases might include defining constraints on the level of nesting allowed inside tags (i.e.
tree depth), or only allowing features with homogeneous properties as members of a feature collection.
In many cases, such constraints may be enforced via new schemas; others may be enforced through
procedural agreements within an information community.

20.3 Relation to application schema

A profile may be the beginning of an application schema.

EXAMPLE A location based service profile may limit the types of geometry to that used in LBS applications,
and the LBS application schema may then add a “PointCircle,” “PointEllipse” and “PointArc” elements to
accommodate the LIF “CIRCLE,” “ELLIPSE” and “ARC” elements, which are used to describe error estimates of
mobile device location.

The building of such application schemas is thus a two-part process. The profile acts as a restriction of
GML to produce types and elements consistent with the complete GML but potentially lacking in some
optional particles. The application schema then uses these types as a common base, and uses them in
new types and elements by extensions or inclusion.

GML —selection & restriction→ GML profile —extension & inclusion→ application schema

© ISO 2020 – All rights reserved 191

ISO 19136-1:2020(E)

20.4	Rules	for	elements	and	types	in	a	profile

Global profiled elements in a GML profile shall:

— share the same name (and namespace) of a parent element in GML.

— include all mandatory particles (subelements and attributes) of the parent element in GML.

— include no particle that is not in the parent element in GML.

— have the same default values for attributes as the parent element in GML.

— have a parallel substitution group hierarchy for named elements in both schemas.

Global types in a GML profile shall:

— share the same name (and namespace) of a parent type in GML.

— include all mandatory particles (subelements and attributes) of the parent type in GML.

— include no particle that is not in the parent type in GML.

— have the same default values for attributes as the parent type in GML.

— have a parallel derivation tree for named types in both schemas.

Instance documents of a profile shall be valid against the full GML schema.

Using the “copy and delete” metaphor described above, our mythic developer may:

— delete global elements and global types.

— delete optional subelements from any types or elements.

— make optional subelements or attributes mandatory in any type or element (if a default value exists,
it shall be eliminated or the schema validation will report an error — default values are only valid
for optional particles).

— restrict cardinality of any particle.

None of the above will affect the validity of a document that is designed against the profile, but tested
against the full GML schema. Our mythic developer may not:

— delete mandatory subelements from any types or elements.

— make mandatory particles optional.

— relax cardinality restrictions of any particle.

— add or change a default or fixed value.

The last item is a bit subtler than the others are. Documents valid under the profile would still be valid
under the full GML schema, but the interpretation of those documents would change. For example, if a
profile specified a default coordinate reference system to be UTM, and the full schema specified a WGS
84 geodesic (latitude, longitude) as the default CRS, then the interpretation of the file would change
when moving from the profile to the full schema.

20.5	Rules	for	referencing	GML	profiles	from	application	schemas

A GML application schema shall reference the full GML schema in the schemaLocation attribute of the
<import> element.

A GML application schema document conforming to one or more GML Profiles shall provide an appInfo
annotation element <gml:gmlProfileSchema> for every profile in the root schema document <schema>

192 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

element where the value is a schema location of the profile schema. Note that an application schema
may conform to multiple profiles.

EXAMPLE

 <schema ...>
 <annotation>
 <appInfo>
 <gml:gmlProfileSchema>http://schemas.opengis.net/gml/3.2.1/profiles/
gmlSimpleFeatureProfile/1.1.0/gmlsf.xsd</gml:gmlProfileSchema>
 <gml:gmlProfileSchema>http://schemas.opengis.net/gml/3.2.1/profiles/
gmlPointProfile/1.1.0/gmlPointProfile.xsd</gml:gmlProfileSchema>
 </appInfo>
 </annotation>
 ...
 </schema>
The <gml:gmlProfileSchema> element is defined as

 <element name="gmlProfileSchema" type="anyURI"/>

20.6	Recommendations	for	application	schemas	using	GML	profiles

In order that the profile within an application schema may be later extended to include other profiled
GML elements, the following recommendations are made:

— Global elements that are not in a GML profile but are in an application schema using a GML profile
should not have the same name as any element in the GML schema.

— Global types that are not in a GML profile but are in an application schema using a GML profile
should not have the same name as any type in the GML schema.

If a type or element in an application schema is found to be of universal use, then the above
conventions will aid the application schema from migrating that type or element from its own
namespace to that of GML.

The following recommendations are made simply as a bookkeeping convenience to those trying to
understand the role of the profile in the application schema:

— Profiled elements and types should be included either in a single file for smaller profile or in a file
structure that parallels that of GML. The exact naming convention of the parallelism is left to the
application schema author.

— A reference to the appropriate GML schema document should be made in a comment near the
beginning of the file.

NOTE A method that has been found to be convenient is to package the required GML components into a
“stub” schema document called, e.g. “gmlForApplicationDomain.xsd”. This document can comprise a copy of the
necessary components assembled in a fine-grained manner (e.g. see Annex G), or it can merely <include> a subset
of the schema documents that comprise the standard GML distribution. The schema document gml.xsd is an
exhaustive superset following the latter approach.

20.7	 Summary	of	rules	for	GML	profiles

In summary, the rules for a profile:

— A profile of GML is a logical restriction of a subset of GML.

— A profile shall not change the name, definition, or data type of mandatory GML elements or attributes.

— The relevant schema or schemas that define a profile shall use in the core ‘gml’ namespace http://
www .opengis .net/ gml/ 3 .2.

— An application schema may extend and use types from the profile, but shall do so in its own
namespace, and not use http:// www .opengis .net/ gml/ 3 .2.

© ISO 2020 – All rights reserved 193

http://www.opengis.net/gml/3.2
http://www.opengis.net/gml/3.2
http://www.opengis.net/gml/3.2

ISO 19136-1:2020(E)

The functional test of these rules is:

Any instance document for an application schema using a GML profile will be valid against the
same application schema if the GML profile is replaced by the complete GML schema. Further, the
interpretation of that document would be the same regardless of which of the two schemas were used.

21 Rules for GML application schemas

21.1	 Instances	of	GML	objects

21.1.1 GML documents

An XML document contains a single XML element as its root. A GML document may be one of the
following elements:

— A gml:AbstractFeature or any element directly or indirectly in its substitution group.

NOTE 1 This includes feature collections and coverages as both are features, too.

— A gml:Dictionary or any element directly or indirectly in its substitution group.

NOTE 2 This includes coordinate reference system and units dictionaries.

— A gml:TopoComplex or any element directly or indirectly in its substitution group.

The standard methods for XML documents based on W3C XML Schema provide that the XML
namespaces used in a document are declared as attributes within the document, and the location of
schema documents that provide the source components for each namespace may be indicated.

For a GML document, the source of the components describing the primary components within the
document is a GML application schema. Both the document type and the associated GML application
schema are described in this Clause.

Note that this does not imply that all elements and attributes in the GML document are defined by a
single GML application schema. The schema components referenced from the GML document may be
contained in any number of GML application schemas or other XML Schemas.

21.1.2	 GML	object	elements	in	other	XML	documents

Elements of GML objects may occur in XML documents that are not GML documents, too. The XML
document shall validate against an XML Schema document that imports directly or indirectly the GML
schema or a GML profile and optionally one or more GML application schemas.

EXAMPLE GML object elements may be used in request and response messages of Web Services.

21.2 GML application schemas

21.2.1 General

A GML application schema is an XML Schema, conforming to the rules outlined in this clause, which
describes one or more types of geographic object, components of geographic objects or metadata,
including dictionaries and definitions, used in the definition of geographic objects. A GML application
schema defines a vocabulary for a particular domain of discourse by defining and describing the terms
of that vocabulary (see ISO 19109) as follows:

194 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

An application schema may reference directly concrete, global GML elements (including groups)
and attributes (including attributeGroups) whose names and content models accurately represent
components of the vocabulary it defines.

EXAMPLE 1 This includes property elements like gml:name or gml:description, object elements like
gml:Observation, gml:Dictionary, or gml:Point, and attributes like gml:id.

An application schema may declare new elements and attributes in its own namespace using GML
types when the vocabulary it defines needs to include different names for the same content models to
distinguish their semantic roles. The element declared in the application schema will be in a different
namespace, and may be used in an instance document.

EXAMPLE 2 gml:EnvelopeType may be used unmodified as the content model for an element xmml:Interval.

EXAMPLE 3 gml:LengthType may be used unmodified as the content model for an element ex:height.

EXAMPLE 4 gml:PointPropertyType may be used directly as the content model for a property element
ex:representativePoint.

An application schema may derive new types in its own namespace by extension of GML types when the
vocabulary it defines needs to include components with additional, domain-specific properties.

NOTE The definition of application-specific feature types requires that the content model of the feature
types is derived from gml:AbstractFeatureType, typically by extension.

EXAMPLE 5 The definition of new geometry types not specified in the GML schema, but required by an
application, e.g. an ellipse.

An application schema may derive new types in its own namespace by restriction of GML types when
the vocabulary it defines needs to include more specialized versions of GML types that restrict the
cardinality or type of their properties.

EXAMPLE 6 An application wants to prohibit the use of multiple names in their feature types. This may be
achieved by deriving an application-specific root feature type by restriction from gml:AbstractFeatureType
that sets the maximum occurrence of the gml:name to “1”.

An application schema may declare new elements that are assigned to a substitution group whose
head is an abstract or concrete GML element. The element declared in the application schema may
then appear in instance documents in place of the substitution group head and be conformant to the
content model that refers to the substitution group head. Note that in order to be a valid member of a
substitution group, the type of the element shall be validly derived from the type of the element which
is the head of the substitution group. All abstract elements in the GML schema are only useful acting as
the heads of substitution groups.

EXAMPLE 7 gml:AbstractGML, gml:AbstractFeature, gml:AbstractGeometry, gml:AbstractCoverage
may all serve as the head of a substitution group for elements in an application schema .

An application schema may declare new elements, attributes and types in its own namespace using
types it has defined to give vocabulary-specific names to their content models.

EXAMPLE 8 Application-specific data types or enumerations.

All GML application schemas are constructed, using the general rules of this Clause, from one or more of
the GML schema components defined in 6.5 to Clause 19.

GML allows the derivation of many other kinds of elements such as new units of measure, new geometry
properties and new geometries. While these elements may be packaged into separate schemas they are
viewed as subordinate to the schema categories of this Clause. Any GML application schema shall be of at
least one of the schema types described in 21.3 through 21.11, and comply to the rules from the respective
subclauses in addition to 21.2. It is thus permissible to create a GML application schema that defines
Features, Coverages and Values, so long as this schema satisfies the rules of 21.2, 21.3, 21.8 and 21.9.

© ISO 2020 – All rights reserved 195

ISO 19136-1:2020(E)

21.2.2 Target namespace

An application schema shall declare a target namespace. This is the namespace in which the terms for
objects and properties of the vocabulary defined by the application schema live. This shall not be the
GML namespace (http:// www .opengis .net/ gml/ 3 .2). It is conventional for the namespace identifier to
be a URL controlled by the application schema author’s organization. A target namespace is declared in
an application schema using the targetNamespace attribute of the schema element from XML Schema.

An application schema may be comprised of multiple schema documents that all declare the same target
namespace.

It is recommended that a top-level schema document in such a modularized application schema
directly or indirectly includes the other documents to avoid the XML application processing limitations
discussed in Annex J.

21.2.3 Import GML schema

A GML application schema shall import the full GML schema. It may identify GML profiles that include
all of the components from GML that it directly or indirectly uses to define its vocabulary as specified
in 20.5.

The required import of the GML schema components may be provided indirectly via the import of
another schema in the namespace of GML that includes the required GML schema documents.

EXAMPLE 1 The import of gml.xsd from Annex C would satisfy any of these schema import requirements.

 <import namespace="http://www.opengis.net/gml/3.2" schemaLocation="../gml.xsd"/>

The <import> element specifies that the components described in the imported GML schema document
are associated with the GML namespace http:// www .opengis .net/ gml/ 3 .2. This namespace identifier
shall match the target namespace specified in the schema being imported in order to ensure XML
Schema validity.

The path (schemaLocation) to the imported GML schema document shall be provided and may be to a
local copy of the document, or may be a URI reference to a copy of the schema document in some remote
repository.

EXAMPLE 2 An example for such a repository is http://schemas.opengis.net/ on the OGC web site.

NOTE According to the W3C XML Schema specification, the schemaLocation attribute is only a hint to the
physical location and XML parsers can disregarded this information.

21.2.4	 Object	type	derivation

An object type declared by a GML application schema shall not violate any XML Schema derivation
restrictions imposed by a final attribute on its base GML type nor any other XML Schema rules.

The content model of an object type defined by a GML application schema shall derive directly from
the most specialized GML object type that may serve as the base for its content model while preserving
semantic consistency and increasing type specialization.

21.2.5	 Elements	representing	objects

A GML application schema shall declare a global element for any object type that is to serve as the root
element in a GML document.

21.2.6 Property type derivation

A property type defined by a GML application schema to contain inline or reference a single GML object
may be derived from gml:AssociationRoleType or may follow the pattern of this type.

196 © ISO 2020 – All rights reserved

http://www.opengis.net/gml
http://www.opengis.net/gml
http://schemas.opengis.net/

ISO 19136-1:2020(E)

A property type defined by a GML application schema to contain inline a single GML object may be
derived from gml:InlinePropertyType or may follow the pattern of this type.

A property type defined by a GML application schema to reference a single GML object may be derived
from gml:ReferenceType or may follow the pattern of this type.

A property type defined by an application schema to contain a homogeneous collection of GML objects
shall follow the pattern of gml:InlinePropertyType, but may change the minOccurs and maxOccurs
values in the <sequence> element.

As derivation-by-restriction of property types has created problems with commonly used XML
parsers in the past, all instances of such derivations have been removed from the GML schema. It is
recommended to avoid derivation-by-restriction in property types in application schemas, too.

21.2.7 Elements representing properties

Elements representing properties of GML objects may be declared as global elements in an application
schema, or they may be declared locally within object content models (type definitions).

NOTE Elements in the content of complex types that are defined with local names in an application schema
will prevent derivation by restriction in another namespace. Such complex types are appropriate for elements
intended for use “as is” in their own namespace, and can be declared to be final="restriction". Elements in
the content of complex types defined by reference to global elements support derivation by restriction in another
namespace, allowing restriction of cardinality, and/or replacement by a member of a substitution group. Such
complex types designed for derivation by restriction are appropriate “library types” for elements in substitution
groups that cross namespaces.

If the value of the property is expected to be available elsewhere, the type of the property element shall
support referencing the GML object that is the value of the property (see 21.2.6).

If the value of the property is expected to be represented inline, the type of the property element
shall support this, either by having XML Schema simple content of the appropriate simple type or by
containing the GML object that is the value of the property inline (see 21.2.6).

If the value of the property is expected to be available either elsewhere, or represented inline, then the
type of the property element shall support both methods. In this case the type for the property element
shall have the gml:AssociationAttributeGroup, in which all members are optional, and the child
element shall have minOccurs="0" so that in an instance document the property element may be empty
if it carries an xlink (see 7.2.3). If it is desired to prohibit the possibility of both xlink attributes and
content, or neither, then this constraint should be recorded as a normative directive in an <annotation>
element on the element declaration in the GML application schema. The directive may be expressed as
prose, or it may be expressed using a formal notation such as Schematron.

21.3	 Schemas	defining	Features	and	Feature	Collections

21.3.1 General

Features and feature collections are the primary view of geospatial information supported by GML, and
are particularly useful in modelling real world geography or in defining message types for geographic
web services. A feature models a real world object or concept, see Clause 9.

Feature application schemas define geographic features and feature collections for a specific application
domain or community. These GML application schemas shall obey the additional rules described in the
following subclauses.

21.3.2 Import GML schema components

The application schema shall import the GML schema as described in 21.2.3. Any GML profile referenced
from the application schema shall include at least the gml:AbstractFeature element and all schema
components used by this element.

© ISO 2020 – All rights reserved 197

ISO 19136-1:2020(E)

21.3.3 Elements representing features

All geographic features and feature collections in the application schema shall be declared as global
elements in the schema, i.e. they shall be immediate child elements of the XML Schema <schema>
element.

The name of an element that instantiates a GML feature shall be its feature type, in the sense described
in ISO 19109.

An element representing a feature shall be either directly or indirectly in the substitution group of
gml:AbstractFeature.

An element representing a feature collection type shall be either directly or indirectly in the substitution
group of gml:AbstractFeature and have in its content model a property element whose content model
is derived by extension from gml:AbstractFeatureMemberType.

In a GML application schema, an object that is an abstraction of a real-world phenomenon shall be
modelled as a feature. All other objects shall be modelled as a GML object that is not a feature, i.e.
the element representing the object shall be either directly or indirectly in the substitution group of
gml:AbstractGML, but neither directly nor indirectly in the substitution group of gml:AbstractFeature.

21.3.4 Application features are features

A feature defined in an application schema shall conform to the rules respecting GML features as
described in Clause 9 and conform to the rules described in Clause 7.

NOTE 1 The name of a feature element is the semantic type of the feature.

NOTE 2 The children of a feature element are always property elements that describe the feature, and such
properties are always encoded as child elements. Properties are not encoded as XML attributes.

21.4	 Schemas	defining	spatial	geometries

21.4.1 Import GML geometry schema components

The application schema shall import the GML schema as described in 21.2.3. Any GML profile referenced
from the application schema shall include at least the gml:AbstractGeometry element and all schema
components used by this element.

NOTE Typically additional geometry schema components are required besides those required
by gml:AbstractGeometry. In practice, especially concrete elements and types like gml:Point and
gml:PointPropertyType will typically be part of the profile.

21.4.2	 User-defined	geometry	types	and	geometry	property	types

21.4.2.1	 User-defined	geometry	types

Authors of application schemas may create their own geometry types if GML lacks the desired construct.
To do this, authors shall ensure that the object elements of these concrete geometry and geometry
collection types are in the substitution group (either directly or indirectly) of the corresponding GML
object element: gml:AbstractGeometry.

EXAMPLE The following element and complex type definition in an application schema extends gml:Point
and adds a bearing (e.g. for the orientation of a symbol in portrayal).

 <element name="PointWithBearing" type="ex:PointWithBearingType"
 substitutionGroup="gml:Point">

 <complexType name="PointWithBearingType">
 <complexContent>
 <extension base="gml:PointType">

198 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

 <sequence>
 <element name="bearing" type="gml:AngleType"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
Any user-defined geometry subtypes shall inherit the elements and attributes of the base GML geometry
types without restriction, but may extend these base types to meet application requirements, such as
providing a finer degree of interoperability with legacy systems and data sets.

All rules specified in Clause 7, Clause 10, 10.5.10 and Clause 11 shall be followed.

21.4.2.2	 User-defined	geometry	property	types

Furthermore, authors of application schemas may create their own geometry property types that
encapsulate geometry types which are defined in Clause 10, 10.5.10 or Clause 11 or which they have
defined in accordance with 21.4.2.1. They shall ensure that these properties follow the pattern used
by gml:GeometryPropertyType for standard properties and gml:GeometryArrayPropertyType for array
properties. The target type shall be a bona fide geometry object element.

A geometry property type may be a restriction of gml:GeometryPropertyType, but this is not a
requirement. Nevertheless, every geometry property shall follow the pattern of this type. An application
schema may support the choice between an inline or a by-reference semantic or it may restrict the use
to either inline (prohibit the use of the Xlink attributes) or by-reference (prohibit the containment of
the geometry in the feature).

A geometry array property type may be a restriction of gml:GeometryArrayPropertyType, but this is
not a requirement. Nevertheless, every geometry property shall follow the pattern of this type. All
geometry elements in the array are contained inline in the containing object, only inline semantics is
supported by array properties.

EXAMPLE The following complex type definitions in an application schema define a “standard” property
type for a user-defined geometry type and an array property type for the same geometry type.

 <complexType name="MyGeometryPropertyType">
 <sequence>
 <element ref="foo:PointWithBearingType" minOccurs="0"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup" />
 <attributeGroup ref="gml:OwnershipAttributeGroup" />
 </complexType>

 <complexType name="MyGeometryArrayPropertyType">
 <sequence>
 <element ref="foo:PointWithBearingType" minOccurs="0" maxOccurs="unbounded" />
 </sequence>
 </complexType>

21.5	 Schemas	defining	spatial	topologies

21.5.1 Import GML topology schema components

The application schema shall import the GML schema as described in 21.2.3. Any GML profile referenced
from the application schema shall include at least the gml:AbstractTopology element and all schema
components used by this element.

Typically additional topology schema components are required besides those required by
gml:AbstractTopology. In practice, especially concrete elements and types like gml:Edge and
gml:DirectedEdgePropertyType will typically be part of the profile.

EXAMPLE Import the GML schema for example as follows using a schema document of Annex C:

 <import namespace="http://www.opengis.net/gml/3.2" schemaLocation="../gml.xsdgml.xsd"/>

© ISO 2020 – All rights reserved 199

ISO 19136-1:2020(E)

21.5.2	 User-defined	topology	types	and	topology	property	types

21.5.2.1	 User-defined	topology	types

Authors of application schemas may create their own topology types if GML lacks the desired
construct. To do this, authors shall ensure that the object elements of these concrete topology types
are in the substitution group (either directly or indirectly) of the corresponding GML object element:
gml:AbstractTopology.

Any user-defined topology subtypes shall inherit the elements and attributes of the base GML topology
types without restriction, but may extend these base types to meet application requirements, such as
providing a finer degree of interoperability with legacy systems and data sets.

All rules specified in Clauses 7 and 13 shall be followed.

21.5.2.2	 User-defined	topology	property	types

Furthermore, authors of application schemas may create their own (directed) topology property types
that encapsulate topology types they have defined in accordance with Clause 13. They shall ensure that
these properties follow the rules described in 21.2.6. In addition, the target type shall be a bona fide
topology construct.

A topology property type may be a restriction of an existing topology property type.

A topology property type may support the choice between an inline or a by-reference semantic or it
may restrict the use to either inline (prohibit the use of the Xlink attributes) or by-reference (prohibit
the containment of the geometry in the feature).

21.6	 Schemas	defining	time

21.6.1 Import GML temporal schema components

The application schema shall import the GML schema as described in 21.2.3. Any GML profile referenced
from the application schema shall include at least the gml:AbstractTimeObject element and all schema
components used by this element.

Typically additional temporal schema components are required besides those required by
gml:AbstractTimeObject. In practice, especially concrete elements and types like gml:TimeInstant and
gml:TimeInstantPropertyType will typically be part of the profile.

21.6.2	 User-defined	temporal	types	and	temporal	property	types

21.6.2.1	 User-defined	temporal	types

Authors of application schemas may create their own temporal types if GML lacks the desired
construct. To do this, authors shall ensure that the object elements of these concrete temporal types
are in the substitution group (either directly or indirectly) of the corresponding GML object element:
gml:AbstractTimeObject.

Any user-defined temporal subtype shall inherit the elements and attributes of the base GML temporal
types without restriction, but may extend these base types to meet application requirements, such as
providing a finer degree of interoperability with legacy systems and data sets.

All rules specified in Clauses 7 and 14 shall be followed.

21.6.2.2	 User-defined	temporal	property	types

Furthermore, authors of application schemas may create their own temporal property types that
encapsulate temporal types they have defined in accordance with Clause 14. They shall ensure that

200 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

these properties follow the rules described in 21.2.6. In addition, the target type shall be a bona fide
temporal construct.

A temporal property type may be a restriction of an existing temporal property type.

A temporal property type may support the choice between an inline or a by-reference semantic or it
may restrict the use to either inline (prohibit the use of the Xlink attributes) or by-reference (prohibit
the containment of the geometry in the feature).

21.7	 Schemas	defining	coordinate	reference	systems

21.7.1 General

Many of the concrete XML elements defined in the CRS Schemas may be used without Application
Schemas, whenever no content extensions or restrictions are needed. An Application Schema shall
be used whenever element contents extension is required, and should be used in most other cases to
specify needed restrictions. That is, an Application Schema should be defined to extend and/or restrict
elements as needed for a specific application, or a set of applications, to:

— Add elements to contents of existing elements, for recording additional data about that item needed
for that application.

— Restrict the multiplicity of current contents elements, to eliminate flexibility not needed and
perhaps confusing for that application.

— Use a different element name, to be more easily understood in that specific application, primarily
for elements that will be instantiated many times.

— Specify standard contents and contents patterns for selected elements and attributes, as needed to
improve interoperability.

— Specify standard XML and other documents to be referenced or otherwise used, as needed to
improve interoperability.

Application Schemas may thus be used for XML document contents extensions, restrictions, or both.
Contents extension is expected to be often used to record additional data needed for applications.
Contents restriction is expected to be frequently used to restrict contents, in order to increase
interoperability and reduce ambiguity when greater flexibility is not needed for applications.
Extensions of existing concrete elements may be defined by extending that concrete element. In many
cases, restrictions of existing concrete elements may be done by extending the abstract element from
which that concrete element is derived, by adding somewhat different but corresponding extensions.

An Application Schema may specify a single top-level element for use in an XML document, with the
XML elements and types that it uses. That single top-level XML element may be an object with identity,
but this is not required. Such an Application Schema will import and build upon the XML Schema
components specified in Clause 12.

Application Schemas could define additional concrete elements using or extending other abstract
elements, if needed. However, an additional concrete element using or extending an abstract element
should not be defined if that concrete element is largely similar to an existing element, and thus probably
should extend or use an existing concrete element. In many cases, the existing concrete elements that
use an abstract element are believed to be largely exhaustive. This is particularly true when the existing
concrete elements include one element that is quite general, such as the elements EngineeringCRS,
DerivedCRS, EngineeringDatum, UserDefinedCS, OperationParameter, and OperationParameterGroup.

The Conversion, Transformation, ParameterValue, and ParameterValueGroup elements may be used for
well-known coordinate operation methods, especially when only one instance of that element is needed
for that operation method. However, these elements should not be used for well-known coordinate
operation methods when many instances of that element are needed for one operation method. Instead,
an Application Schema that defines operation-method-specialized element names and contents should

© ISO 2020 – All rights reserved 201

ISO 19136-1:2020(E)

be prepared for each such operation method. For interoperability, a suitable geospatial information
community should standardize each such Application Schema.

NOTE This use of Application Schemas follows the patterns used in Feature Application Schemas.

21.7.2 Import GML coordinate reference system schema components

The application schema shall import the GML schema as described in 21.2.3. Any GML profile referenced
from the application schema shall include at least the gml:AbstractCoordinateReferenceSystem
element and all schema components used by this element.

Typically additional coordinate reference system schema components are required besides those
required by gml:AbstractCoordinateReferenceSystem. In practice, especially concrete elements and
types will typically be part of the profile, too.

21.8	 Schemas	defining	coverages

21.8.1 General

The following subclauses define the rules for the construction of GML application schemas for coverages.
Coverages are described in Clause 19. Note that coverages are features and hence the rules of 21.3 above
apply also to coverages.

21.8.2 Import GML coverage schema components

The application schema shall import the GML schema as described in 21.2.3. Any GML profile referenced
from the application schema shall include at least the gml:AbstractCoverage element and all schema
components used by this element.

Typically additional coverage schema components are required besides those required
by gml:AbstractCoverage. In practice, especially concrete elements and types like
gml:RectifiedGridCoverage will typically be part of the profile, too.

21.8.3	 User-defined	coverage	types

All geographic coverages in the GML application schema shall be declared as global elements in the
schema, i.e. they shall be child elements of the XML Schema <schema> element.

Authors of application schemas may create their own coverage types if GML lacks the desired
construct. To do this, authors shall ensure that the object elements of these coverage types are in the
substitution group (either directly or indirectly) of the corresponding GML object element: either
gml:AbstractDiscreteCoverage or gml:AbstractContinuousCoverage.

NOTE 1 These elements are indirectly in the substitution group of gml:AbstractFeature and hence the
condition of the feature model is satisfied.

NOTE 2 This document provides the concrete coverage types gml:MultiPointCoverage,
gml:MultiCurveCoverage, gml:MultiSurfaceCoverage, gml:MultiSolidCoverage, gml:GridCoverage, and
gml:RectifiedGridCoverage. Application coverages can derive from any of these as well.

Any user-defined coverage subtype shall inherit the elements and attributes of the base GML coverage
types without restriction, but may extend these base types to meet application requirements, such as
providing a finer degree of interoperability with legacy systems and data sets.

All rules specified in Clauses 7, 9 and 19 shall be followed.

21.8.4	 Range	parameters	shall	be	substitutable	for	AbstractValue

The coverage application schema shall define or import the definitions for all range parameters. Each
such range parameter shall be substitutable for gml:AbstractValue as defined in 16.4. Note that this

202 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

allows the range parameter to take on a wide range of types. Note further that the schema components
specified in 16.4 include several abstract subtypes that are substitutable for gml:AbstractValue,
including gml:AbstractScalarValue and gml:AbstractValueList. Concrete scalar and value list types,
and substitution group head elements, are also provided (substitutable for gml:AbstractScalarValue
or gml:AbstractValueList) and include:

— gml:Category (the content model is specified by gml:CodeType)

— gml:CategoryList (the content model is specified by gml:CodeOrNilReasonListType)

— gml:Quantity (the content model is specified by gml:MeasureType)

— gml:QuantityList (the content model is specified by gml:MeasureOrNilReasonListType)

— gml:Count (the content model is specified by gml:CountType)

— gml:Boolean (the content model is specified by gml:BooleanType)

To define the range parameters in a Coverage Application Schema, refer to 16.4.

EXAMPLE Typical examples of the use of the value types in the development of a GML coverage can be found
in 19.3, and are summarized in Table 8.

Table	8	—	Range	parameters	for	coverage	schemas

Coverage Range parameter Definition	in	GML
Temperature Distribution
(weather)

Temperature Would be derived from
gml:MeasureOrNilReasonListType and made
substitutable for gml: measure defined in 16.3.2.

Soil type distribution
(agronomy)

Soil type Would be derived from gml:CategoryType and
made substitutable for gml:Category. Weak
reference to an enumeration of soil types.

Multi-spectral optical image
(remote sensing)

Reflectance in each
spectral band.

Would be derived from gml:QuantityListType
and made substitutable for gml:QuantityList.

Distribution of West Nile
Virus cases.
(epidemiology)

CaseCount Would be derived from
gml:integerOrNilReasonList, and made sub-
stitutable for gml:CountList.

21.8.5 Coverage document

A coverage document is defined by a corresponding coverage schema. The root element of this document
shall be a coverage defined in this schema or may be a feature collection as described in 9.9 whose
members are coverages.

21.9	 Schemas	defining	observations

21.9.1 General

The following subclauses describe how to create an observation application schema. Observations are
described in Clause 18. An observation application schema defines one or more types of observation in
accordance with the following rules.

21.9.2	 Import	GML	observation	schema	components

The application schema shall import the GML schema as described in 21.2.3. Any GML profile referenced
from the application schema shall include at least the gml:Observation element and all schema
components used by this element.

© ISO 2020 – All rights reserved 203

ISO 19136-1:2020(E)

21.9.3	 User-defined	observation	types

All observation types defined in the GML application schema shall be declared as global elements in the
schema, i.e. they shall be child elements of the XML Schema <schema> element. The content model for
such global elements shall derive by extension either directly or indirectly from gml:ObservationType.

Authors of application schemas may create their own observation types if GML lacks the desired
construct. To do this, authors shall ensure that the object elements of these observation types are
in the substitution group (either directly or indirectly) of the corresponding GML object element:
gml:Observation.

NOTE 1 These elements are indirectly in the substitution group of gml:AbstractFeature and hence the
condition of the feature model is satisfied.

NOTE 2 This document provides the concrete simple observation types gml:Observation,
gml:DirectedObservation and gml:DirectedObservationAtDistance. Application observation types can
derive from any of these as well.

All rules specified in Clauses 7, 9 and 18 shall be followed.

21.9.4	 Observation	collections

All observation collections in the GML application schema shall be declared as global elements in
the schema, i.e. they shall be child elements of the XML Schema <schema> element. An observation
collection shall be a feature collection as described in 9.9 whose members are observations.

21.9.5	 Observations	are	features

An observation defined in an application schema shall conform to the rules respecting GML features as
described in Clause 9 and Clause 7. See also 21.3.4.

21.9.6	 Observation	collection	document

Following the rules for GML documents (see 21.1), an Observation Collection document may reference
observations that are defined in any number of GML application schemas and these may define
observations only, observation collections or any combination of the same.

21.10	 Schemas	defining	dictionaries	and	definitions

21.10.1 General

The following subclauses describe how to create an application schema for definitions. Definitions and
dictionaries are described in Clause 15. One set of specialized definitions is built in to GML, for units of
measure, and serves as an example of how to derive specialized definition components.

An application schema for definitions defines one or more types of definition in accordance with the
following rules.

21.10.2 Import GML dictionary schema components

The application schema shall import the GML schema as described in 21.2.3. Any GML profile referenced
from the application schema shall include at least the gml:Definition element and all schema
components used by this element.

21.10.3	User-defined	definition	types

All definitions in the application schema shall be declared as global elements in the schema, i.e. they
shall be immediate child elements of the XML Schema <schema> element. The content model for such
global elements shall derive either directly or indirectly from gml:DefinitionType.

204 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

Authors of application schemas may create their own definition types if GML lacks the desired construct.
To do this, authors shall ensure that the object elements of these definition types are in the substitution
group (either directly or indirectly) of the corresponding GML object element: gml:Definition.

All rules specified in Clauses 7 and 15 shall be followed.

21.10.4	User-defined	dictionary	types

A dictionary in the application schema shall be declared as a global element in the schema, that is it shall
be a child element of the XML Schema <schema> element. The content model for such global elements
shall derive either directly or indirectly from gml:DictionaryType.

Authors of application schemas may create their own dictionary types if GML lacks the desired construct.
To do this, authors shall ensure that the object elements of these definition types are in the substitution
group (either directly or indirectly) of the corresponding GML object element: gml:Dictionary.

All rules specified in Clauses 7 and 15 shall be followed.

21.11	 Schemas	defining	values

21.11.1 General

GML allows for user defined value types. Such value types may be used to express the property types
of feature and other types of GML object. The basic root types for user-defined values are defined in
7.2.2.1. An alternative form for the expression of values is contained in 16.4. This is used mainly to
provide values for the gml:resultOf parameter for an observation.

21.11.2	Import	GML	value	objects	schema	components

The application schema shall import the GML schema as described in 21.2.3. Any GML profile referenced
from the application schema shall include at least the gml:Value group and all schema components used
by this element.

21.11.3 Construction of new value types

New value types may be created by derivation (typically by restriction) from any of the root types
shown in Table 9.

Table	9	—	Construction	of	new	value	types

Content model Description
gml:MeasureType A numerical quantity with a unit of measure (uom)
gml:CategoryType A classification
gml:CountType A count of occurrences, incidences etc.

Some standard value types can be found in the schema components specified in 16.3.

21.12	 GML	profiles	of	the	GML	schema

Typically a GML application schema will only require a limited subset of the schema components of the
GML schema. It is recommended to identify and document the GML profile, see Clause 20, required by a
GML application schema. Subclauses 21.3 to 21.11 contain some guidelines which schema components
may be required depending on the type of the GML application schema.

NOTE 1 Annex G contains a method to automatically create a GML profile based on a list of schema components
explicitly required by a GML application schema.

© ISO 2020 – All rights reserved 205

ISO 19136-1:2020(E)

As a starting point, consider the following guidelines:

a) In an application schema modelling geographic features, gml:AbstractFeature and all schema
components required by this element are required. See Clause 9.

b) In an application schema modelling also feature collections, gml:AbstractFeatureMemberType and
gml:AggregationAttributeGroup are required, too, as well as all schema components required by
them. See Clause 7.

c) If the features have properties which make use of units of measure, gml:MeasureType and all
specific subtypes, e.g. gml:LengthType, are required as well as all schema components required
by them (see Clause 8). gml:BaseUnit, gml:DerivedUnit, and/or gml:ConventionalUnit (and all
schema components required by them, see Clause 16) are not required unless the application is
defining units of measure such as appear in a units of measure dictionary.

d) If the application schema uses 0-dimensional spatial geometries, gml:Point is required (and all
schema components required by it). See Clause 10.

e) If the application schema uses only simple 1-dimensional spatial geometries with linear
interpolation, only gml:LineString is required (and all schema components required by it). See
Clause 10.

f) If the application schema uses additional interpolation types, gml:Curve and any number of curve
segments depending on the application (but at least one) are required. Again, this includes all
schema components required by these elements. See 10.5.10.

g) If the application schema uses only simple 2-dimensional spatial geometries with linear
interpolation along their boundaries without sharing boundary elements, only gml:Polygon and
gml:LinearRing are required (and all schema components required by them). See Clause 10.

h) If the application schema uses additional interpolation types or surface patches, gml:Surface and
any number of surface patches depending on the application (but at least one) are required. If
surfaces shall share geometric primitives along their boundaries, gml:Ring is required, too. Again,
this includes all schema components required by these elements. See 10.5.10.

i) If the application schema uses 3-dimensional spatial geometries, gml:Solid is required (and all
schema components required by it). See 10.5.10.

j) The geometric aggregates schema components described in Clause 11 are required only, if
the features use geometric objects that are collections of geometric primitives in their spatial
properties.

k) The geometric complex and composites schema components described in Clause 11 are required
only, if the features use geometric complexes in their spatial properties.

l) The topology schema components described in Clause 13 are required only, if the features have
topology properties.

m) The Coordinate Reference System schema components described in Clause 12 are required only,
if the application requires constructing or processing Coordinate Reference System dictionary
entries (and their supporting components).

EXAMPLE 1 Prime Meridians, Geodetic Datums, etc. are supporting components.

n) The temporal schemas described in Clause 14 is required only, if the application schema is
concerned with time dependent feature properties or dynamic features.

o) The coverage schema components described in Clause 19 are required only, if the application
involves constructing or processing coverages.

EXAMPLE 2 Remotely sensed images, aerial photographs, soil distribution, digital elevation models are
typical coverages.

206 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

p) The observation schema components described in Clause 18 are required only, if the application
schema is concerned with modelling acts of observation such as taking photographs or making
measurements. In the latter case, value objects and measure schema components are in most cases
required, too.

q) The direction schema components described in Clause 17 are required only, if the application
schema requires direction constructs such as compass bearings. The direction schema is used by
gml:DirectedObservation.

r) Property elements whose content model is derived by extension from gml:AbstractMetadataPrope
rtyType, see 7.2.6, is used to specify application or object specific metadata application schemas.

NOTE 2 In many applications, you will only need to import the feature.xsd of Annex C as this transitively
imports the simple geometry schemas and gmlBase.xsd. For a thorough discussion of schema dependencies and
modularity see Annex J.

© ISO 2020 – All rights reserved 207

ISO 19136-1:2020(E)

Annex A
(normative)

Abstract	test	suites	for	GML	application	schemas,	GML	profiles	and	

GML documents

A.1	 Abstract	test	suite	for	GML	application	schemas

A.1.1 Test cases for mandatory conformance requirements

A.1.1.1 Use of XML namespaces

a) Test Purpose: Verify the correct use of XML namespaces in a GML application schema.

b) Test Method: Check that all schema components in the application schema are associated with an
XML namespace and that this namespace is not "http:// www .opengis .net/ gml/ 3 .2".

c) Reference: 21.2.2.

d) Test Type: Basic Test.

A.1.1.2 General rules

a) Test Purpose: Verify that the GML application schema obeys the general rules for constructing GML
application schemas.

b) Test Method: Inspect the application schema and check that it satisfies the general rules described
in 21.2.1.

c) Reference: 21.2.1.

d) Test Type: Capability Test.

A.1.1.3 Import of GML schema components

a) Test Purpose: Verify that the GML application schema imports the full GML schema and references
GML profiles correctly.

b) Test Method: Inspect the import statements in the application schema (the full GML schema has
to be imported directly or indirectly). In addition, if one or more GML profiles are referenced,
check that the XML Schema components specified in the gml: gmlProfileSchema elements satisfy all
mandatory conformance requirements of the Abstract Test Suite in A.2.1.

c) Reference: 20.5, 21.2.3.

d) Test Type: Capability Test.

A.1.1.4 Valid XML Schema

a) Test Purpose: Verify the validity of the GML application schema XML document against the XML
Schema specification.

b) Test Method: Validate the XML document of the GML application schema against the XML Schema
specification. The process may be using an appropriate software tool for validation or be a manual
process that checks all relevant definitions from the XML Schema specification.

208 © ISO 2020 – All rights reserved

http://www.opengis.net/gml/3.2

ISO 19136-1:2020(E)

c) Reference: 21.2; W3C XML Schema Part 1, W3C XML Schema Part 2 (see Clause 3).

d) Test Type: Capability Test.

A.1.1.5 Support for the GML model and syntax

a) Test Purpose: Verify that the GML application schema follows the rules for the encoding of objects
and properties.

b) Test Method: Check the application schema.

c) Reference: 7.1, Clause 21.

d) Test Type: Capability Test.

A.1.1.6	 Substitution	group	of	object	elements,	type	derivation

a) Test Purpose: Verify that all objects in the GML application schema are in the correct
substitution group.

b) Test Method: Check the application schema that all object elements with identity are (directly or
indirectly) in the substitution group of gml: AbstractGML. Check that the rules for derivation from
base types stated in A.1.1.6 c) are followed.

c) Reference: 6.2, 7.2.2, 21.2.4, 21.2.5.

d) Test Type: Capability Test.

A.1.1.7	 Property	elements	are	not	object	elements

a) Test Purpose: Verify that all property elements in the GML application schema are not objects.

b) Test Method: Check the application schema that every child element of every object element is
neither directly or indirectly in the substitution group of gml: AbstractObject.

c) Reference: 7.2.2, 21.2.5.

d) Test Type: Capability Test.

A.1.1.8 Content model of property elements

a) Test Purpose: Verify that all property elements in the GML application schema have a valid
content model.

b) Test Method: Check every child element of every object element in the application schema.

c) Reference: 7.2.3, 21.2.6, 21.2.7.

d) Test Type: Capability Test.

A.1.1.9 Metadata and data quality properties

a) Test Purpose: Verify that all properties where the value is metadata about an object can be
identified as a metadata property.

b) Test Method: Check the GML application schema that the content model of all metadata valued
property elements is derived by extension from gml: AbstractMetadataPropertyType.

c) Reference: 7.2.6.

d) Test Type: Capability Test.

© ISO 2020 – All rights reserved 209

ISO 19136-1:2020(E)

A.1.1.10 Spatial geometry properties

a) Test Purpose: Verify that all properties where the value is a spatial geometry object can be
identified as such.

b) Test Method: Check the GML application schema that all properties with a geometric object or a
collection of such objects are declared in accordance with 9.5.

c) Reference: 9.5.

d) Test Type: Capability Test.

A.1.1.11 Spatial topology properties

a) Test Purpose: Verify that all properties where the value is a spatial topology object can be identified
as such.

b) Test Method: Check the GML application schema that all properties with a topological object or a
collection of such objects are declared in accordance with 9.6.

c) Reference: 9.6.

d) Test Type: Capability Test.

A.1.1.12 Temporal properties

a) Test Purpose: Verify that all properties where the value is a temporal object can be identified as such.

b) Test Method: Check the GML application schema that all properties with a temporal object or a
collection of such objects are declared in accordance with 9.7.

c) Reference: 9.7.

d) Test Type: Capability Test.

A.1.1.13 Location properties

a) Test Purpose: Verify that all properties where the value is a location description or reference can be
identified as such.

b) Test Method: Check the GML application schema that all properties with spatial references by
geographic identifiers use the property elements gml: locationName or gml: locationReference.

c) Reference: 9.4.2.

d) Test Type: Capability Test.

A.1.1.14	 GML	object	collections

a) Test Purpose: Verify that all objects that are collections of GML objects can be identified as such.

b) Test Method: Check the GML application schema that such objects have one or more property
elements with a content model that extend gml: AbstractMemberType. Check also that, if
appropriate, the gml: aggregationType attribute is a child node of the object element.

c) Reference: 7.2.5.

d) Test Type: Capability Test.

210 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

A.1.1.15	 Substitution	group	of	feature	elements

a) Test Purpose: Verify that all features in the GML application schema are in the correct
substitution group.

b) Test Method: Check the application schema that all object elements representing features are
(directly or indirectly) in the substitution group of gml: AbstractFeature.

c) Reference: 9.3.

d) Test Type: Capability Test.

A.1.1.16 GML feature collections

a) Test Purpose: Verify that all features that are collections of GML Features can be identified as such.

b) Test Method: Check the GML application schema that such features have one or more property
elements with a content model that extends gml: AbstractFeatureMemberType. Check also that, if
appropriate, the gml: aggregationType attribute is a child node of the object element.

c) Reference: 9.9.

d) Test Type: Capability Test.

A.1.2 Test cases for GML application schemas converted from an ISO 19109 Application
Schema in UML

A.1.2.1 Valid ISO 19109 Application Schema

a) Test Purpose: If the GML application schema is mapped from an ISO 19109 Application Schema in
UML, verify that the UML application schema satisfies the requirements of ISO 19109.

b) Test Method: Check the conformance of the UML application schema with ISO 19109 and check that
the UML application schema has been constructed in accordance with E.2.1.

c) Reference: ISO 19109:2005, Clause 2, Annex A; ISO 19136:2007, E.2.1.

d) Test Type: Capability Test.

A.1.2.2 Mapping from an ISO 19109 Application Schema in UML

a) Test Purpose: If the ISO 19109 Application Schema in UML satisfies the requirements stated in
A.1.2, verify that the GML application schema has been derived from the UML application schema
correctly.

b) Test Method: Compare both descriptions of the application schema and check whether the
conversion from UML to XML Schema is in accordance with the conversion rules in E.2.4.

c) Reference: E.2.4.

d) Test Type: Capability Test.

A.1.3 Test cases for ISO 19109 Application Schemas in UML converted from a GML
application schema

A.1.3.1 Valid GML application schema

a) Test Purpose: If the GML application schema is mapped to an ISO 19109 Application Schema in UML,
verify that the GML application schema has been constructed correctly.

b) Test Method: Check that the GML application schema has been constructed in accordance with F.2.1.

© ISO 2020 – All rights reserved 211

ISO 19136-1:2020(E)

c) Reference: F.2.1.

d) Test Type: Capability Test.

A.1.3.2 Mapping to an ISO 19109 Application Schema in UML

a) Test Purpose: If the GML application schema satisfies the requirements stated in A.1.3, verify that
the ISO 19109 Application Schema in UML has been derived from the GML application schema
correctly.

b) Test Method: Compare both descriptions of the application schema and check whether the
conversion from XML Schema to UML is in accordance with the conversion rules in F.2.3.

c) Reference: F.2.3.

d) Test Type: Capability Test.

A.1.4	 GML	application	schemas	defining	features	and	feature	collections

a) Test Purpose: If the GML application schema defines features, verify that the GML application
schema has been constructed correctly.

b) Test Method: Check that the GML application schema has been constructed in accordance with 21.3.

c) Reference: 21.3.

d) Test Type: Capability Test.

A.1.5	 GML	application	schemas	defining	spatial	geometries

a) Test Purpose: If the GML application schema defines spatial geometric objects, verify that the GML
application schema has been constructed correctly.

b) Test Method: Check that the GML application schema has been constructed in accordance with 21.4.

c) Reference: 21.4.

d) Test Type: Capability Test.

A.1.6	 GML	application	schemas	defining	spatial	topologies

a) Test Purpose: If the GML application schema defines spatial topology objects, verify that the GML
application schema has been constructed correctly.

b) Test Method: Check that the GML application schema has been constructed in accordance with 21.5.

c) Reference: 21.5.

d) Test Type: Capability Test.

A.1.7	 GML	application	schemas	defining	time

a) Test Purpose: If the GML application schema defines temporal objects, verify that the GML
application schema has been constructed correctly.

b) Test Method: Check that the GML application schema has been constructed in accordance with 21.6.

c) Reference: 21.6.

d) Test Type: Capability Test.

212 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

A.1.8	 GML	application	schemas	defining	coordinate	reference	systems

a) Test Purpose: If the GML application schema defines coordinate reference system objects, verify
that the GML application schema has been constructed correctly.

b) Test Method: Check that the GML application schema has been constructed in accordance with 21.7.

c) Reference: 21.7.

d) Test Type: Capability Test.

A.1.9	 GML	application	schemas	defining	coverages

a) Test Purpose: If the GML application schema defines coverage features, verify that the GML
application schema has been constructed correctly.

b) Test Method: Check that the GML application schema has been constructed in accordance with 21.8.

c) Reference: 21.8.

d) Test Type: Capability Test.

A.1.10	GML	application	schemas	defining	observations

a) Test Purpose: If the GML application schema defines simple observation features, verify that the
GML application schema has been constructed correctly.

b) Test Method: Check that the GML application schema has been constructed in accordance with 21.9.

c) Reference: 21.9.

d) Test Type: Capability Test.

A.1.11	GML	application	schemas	defining	dictionaries	and	definitions

a) Test Purpose: If the GML application schema defines dictionary and definition objects, verify that
the GML application schema has been constructed correctly.

b) Test Method: Check that the GML application schema has been constructed in accordance with 21.10.

c) Reference: 21.10.

d) Test Type: Capability Test.

A.1.12	GML	application	schemas	defining	values

a) Test Purpose: If the GML application schema defines value objects, verify that the GML application
schema has been constructed correctly.

b) Test Method: Check that the GML application schema has been constructed in accordance with 21.11.

c) Reference: 21.11.

d) Test Type: Capability Test.

A.2	 Abstract	test	suite	for	GML	profiles

A.2.1	 Valid	GML	profile

a) Test Purpose: Verify that a profile is a GML profile in accordance with the rules and guidelines
stated in Clause 20 and 21.12.

© ISO 2020 – All rights reserved 213

ISO 19136-1:2020(E)

b) Test Method: Inspect the profile.

c) Reference: Clause 20, 21.12.

d) Test Type: Capability Test.

A.2.2 Geometric primitives (spatial)

A.2.2.1 Data types for geometric primitives

A.2.2.1.1 Data types for 0-dimensional geometry

a) Test Purpose: Verify that a GML profile includes gml: Point and gml: PointPropertyType. If the GML
profile also includes gml: MultiPoint, verify that it includes gml: MultiPointPropertyType. Verify that
all non-deprecated properties of the object elements are part of the profile with a maxOccurs value
of at least "1".

b) Test Method: Inspect the profile.

c) Reference: 10.3, 11.3.2.

d) Test Type: Capability Test.

A.2.2.1.2 Data types for 1-dimensional geometry

a) Test Purpose: Verify that the GML profile satisfies all the requirements of A.2.2.1.1 and includes
gml: Curve, gml: LineStringSegment, gml: LineString, and gml: CurvePropertyType. If the GML profile
also includes gml: MultiCurve, verify that it includes gml: MultiCurvePropertyType. Verify that all
non-deprecated properties of the object elements are part of the profile with a maxOccurs value of
at least "1".

b) Test Method: Inspect the profile.

c) Reference: A.2.2.1.1, 10.4.1, 10.4.2, 10.4.4, 10.4.5, 10.4.7, 10.4.7.4 to 10.4.7.21, 11.3.3.

d) Test Type: Capability Test.

A.2.2.1.3 Data types for 2-dimensional geometry

a) Test Purpose: Verify that the GML profile satisfies all the requirements of A.2.2.1.2 and includes
gml: Surface, gml: PolygonPatch, gml: Polygon, gml: SurfacePropertyType, gml: LinearRing,
and gml: Ring. If the GML profile also includes gml: MultiSurface, verify that it includes gml:
MultiSurfacePropertyType. Verify that all non-deprecated properties of the object elements are
part of the profile with a maxOccurs value of at least "1".

b) Test Method: Inspect the profile.

c) Reference: A.2.2.1.2, 10.5.1, 10.5.2, 10.5.4 to 10.5.9, 10.5.10, 10.5.11.1, 10.5.12.4 to 10.5.11.6, 11.3.4.

d) Test Type: Capability Test.

A.2.2.1.4 Data types for 3-dimensional geometry

a) Test Purpose: Verify that the GML profile satisfies all the requirements of A.2.2.1.3 and includes
gml: Solid, gml: SolidPropertyType, and gml: Shell. If the GML profile also includes gml: MultiSolid,
verify that it includes gml: MultiSolidPropertyType. Verify that all non-deprecated properties of the
object elements are part of the profile with a maxOccurs value of at least "1".

b) Test Method: Inspect the profile.

214 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

c) Reference: A.2.2.1.3, 10.6.1, 10.6.2, 10.6.4 to 10.6.6, 11.3.5.

d) Test Type: Capability Test.

A.2.3 Geometric complexes (spatial)

A.2.3.1 Data types for geometric complexes

A.2.3.1.1 Data types for 1-dimensional geometric complexes

a) Test Purpose: Verify that the GML profile satisfies all the requirements of A.2.2.1.2 and
includes gml: CompositeCurve, gml: OrientableCurve, gml: GeometricComplex, and gml:
GeometricComplexPropertyType. Verify that all non-deprecated properties of the object elements
are part of the profile with a maxOccurs value of at least "1".

b) Test Method: Inspect the profile.

c) Reference: A.2.2.1.2, 10.4.6, 11.2.1.1, 11.2.1.2, 11.2.2.1, 11.2.2.2.

d) Test Type: Capability Test.

A.2.3.1.2 Data types for 2-dimensional geometric complexes

a) Test Purpose: Verify that the GML profile satisfies all the requirements of A.2.2.1.3 and A.2.3.1.1
and includes gml: CompositeSurface and gml: OrientableSurface. Verify that all non-deprecated
properties of the object elements are part of the profile with a maxOccurs value of at least "1".

b) Test Method: Inspect the profile.

c) Reference: A.2.2.1.3, A.2.3.1.1, 10.5.11, 11.2.2.3.

d) Test Type: Capability Test.

A.2.3.1.3 Data types for 3-dimensional geometric complexes

a) Test Purpose: Verify that the GML profile satisfies all the requirements of A.2.2.1.4 and A.2.3.1.2
and includes gml: CompositeSolid. Verify that all non-deprecated properties of the object elements
are part of the profile with a maxOccurs value of at least "1".

b) Test Method: Inspect the profile.

c) Reference: A.2.2.1.4, A.2.3.1.2, 11.2.2.4.

d) Test Type: Capability Test.

A.2.4 Topologic complexes (spatial)

A.2.4.1 Data types for topologic complexes

A.2.4.1.1 Data types for 1-dimensional topologic complexes

a) Test Purpose: Verify that the GML profile includes gml: TopoComplex, gml: TopoComplexPropertyType,
gml: Node, gml: directedNode, gml: Edge, and gml: directedEdge. Verify that all non-deprecated
properties of the object elements are part of the profile with a maxOccurs value of at least "1"
except for gml: pointProperty in gml: Node and gml: curveProperty in gml: Edge.

b) Test Method: Inspect the profile.

c) Reference: 13.2, 13.3.1, 13.3.2, 13.3.3, 13.5.

© ISO 2020 – All rights reserved 215

ISO 19136-1:2020(E)

d) Test Type: Capability Test.

A.2.4.1.2 Data types for 2-dimensional topologic complexes

a) Test Purpose: Verify that the GML profile satisfies all requirements of A.2.4.1.1 and includes gml:
Face, and gml: directedFace. Verify that all non-deprecated properties of the object elements are part
of the profile with a maxOccurs value of at least "1" except for gml: surfaceProperty in gml: Face.

b) Test Method: Inspect the profile.

c) Reference: A.2.4.1.1, 13.3.4.

d) Test Type: Capability Test.

A.2.4.1.3 Data types for 3-dimensional topologic complexes

a) Test Purpose: Verify that the GML profile satisfies all requirements of A.2.4.1.2 and includes gml:
TopoSolid, and gml: directedTopoSolid. Verify that all non-deprecated properties of the object
elements are part of the profile with a maxOccurs value of at least "1" except for gml: solidProperty
in gml: TopoSolid.

b) Test Method: Inspect the profile.

c) Reference: A.2.4.1.2, 13.3.5.

d) Test Type: Capability Test.

A.2.5 Topologic complexes with geometric realization (spatial)

A.2.5.1 Data types for topologic complexes with geometric realization

A.2.5.1.1 Data types for 1-dimensional topologic complexes with geometric realization

a) Test Purpose: Verify that the GML profile satisfies all requirements of A.2.2.1.1, A.2.2.1.2
and A.2.4.1.1. Verify that it includes the properties gml: pointProperty in gml: Node and gml:
curveProperty in gml: Edge with a maxOccurs value of at least "1".

b) Test Method: Inspect the profile.

c) Reference: A.2.2.1.1, A.2.2.1.2, A.2.4.1.1, 13.3.2, 13.3.3.

d) Test Type: Capability Test.

A.2.5.1.2 Data types for 2-dimensional topologic complexes with geometric realization

a) Test Purpose: Verify that the GML profile satisfies all requirements of A.2.2.1.3 and A.2.4.1.2. Verify
that it includes the property gml: surfaceProperty in gml: Face with a maxOccurs value of at least "1".

b) Test Method: Inspect the profile.

c) Reference: A.2.2.1.3, A.2.4.1.2, 13.3.4.

d) Test Type: Capability Test.

A.2.5.1.3 Data types for 3-dimensional topologic complexes with geometric realization

a) Test Purpose: Verify that the GML profile satisfies all requirements of A.2.2.1.4 and A.2.4.1.3. Verify
that it includes the property gml: solidProperty in gml: TopoSolid with a maxOccurs value of at least
"1".

216 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

b) Test Method: Inspect the profile.

c) Reference: A.2.2.1.4, A.2.4.1.3, 13.3.5.

d) Test Type: Capability Test.

A.2.6 Coordinate reference systems

a) Test Purpose: Verify that the GML profile contains all schema components defined in Clause 12 that
are identified as mandatory or mandatory under the conditions in accordance with ISO 19111.

b) Test Method: Inspect the profile.

c) Reference: Clause 12, ISO 19111:2007, Tables 1 to 41 and, in the case of projected coordinate
reference systems, Tables 42 to 56.

d) Test Type: Capability Test.

A.2.7 Coordinate operations

a) Test Purpose: Verify that the GML profile contains all schema components defined in 12.6 that are
identified as mandatory or mandatory under the conditions in accordance with ISO 19111.

b) Test Method: Inspect the profile.

c) Reference: 12.6, ISO 19111:2007, Tables 42 to 56.

d) Test Type: Capability Test.

A.2.8 Temporal geometry

A.2.8.1 Data types for 0-dimensional geometry

a) Test Purpose: Verify that a GML profile includes gml: TimeInstant and gml: TimeInstantPropertyType.
Verify that all non-deprecated properties of the object elements are part of the profile with a
maxOccurs value of at least "1".

b) Test Method: Inspect the profile.

c) Reference: 14.2.1.1, 14.2.1.2, 14.2.1.4, 14.2.2.2, 14.2.2.3, 14.2.2.4, 14.2.2.7.

d) Test Type: Capability Test.

A.2.8.2 Data types for 1-dimensional geometry

a) Test Purpose: Verify that a GML profile satisfies the requirements of A.2.8.1 and includes gml:
TimePeriod and gml: TimePeriodPropertyType. Verify that all non-deprecated properties of the
object elements are part of the profile with a maxOccurs value of at least "1".

b) Test Method: Inspect the profile.

c) Reference: A.2.8.1, 14.2.2.5, 14.2.2.6.

d) Test Type: Capability Test.

A.2.9 Temporal topology

a) Test Purpose: Verify that a GML profile satisfies the requirements of A.2.8.2 and includes gml:
TimeNode, gml: TimeNodePropertyType, gml: TimeEdge, gml: TimeEdgePropertyType, gml:
TimeTopologyComplex, and gml: TimeTopologyComplexType. Verify that all non-deprecated
properties of the object elements are part of the profile with a maxOccurs value of at least "1".

© ISO 2020 – All rights reserved 217

ISO 19136-1:2020(E)

b) Test Method: Inspect the profile.

c) Reference: 14.3.2.

d) Test Type: Capability Test.

A.2.10 Temporal reference systems

a) Test Purpose: Verify that a GML profile includes gml: TimeReferenceSystem and at least one of gml:
TimeCoordinateSystem, gml: TimeCalendar, gml: TimeClock, gml: TimeOrdinalReferenceSystem.
Verify that all non-deprecated properties of the object elements are part of the profile with a
maxOccurs value of at least "1".

b) Test Method: Inspect the profile.

c) Reference: 14.4.

d) Test Type: Capability Test.

A.2.11 Dynamic features

a) Test Purpose: Verify that a GML profile satisfies the requirements of A.2.8.2 and includes gml:
DynamicFeature, gml: AbstractTimeSlice, and gml: history. Verify that all non-deprecated properties
of the object elements are part of the profile with a maxOccurs value of at least "1".

b) Test Method: Inspect the profile.

c) Reference: A.2.8.2, 14.5.

d) Test Type: Capability Test.

A.2.12 Dictionaries

a) Test Purpose: Verify that a GML profile includes gml: Dictionary. Verify that all non-deprecated
properties of the object elements are part of the profile with a maxOccurs value of at least "1".

b) Test Method: Inspect the profile.

c) Reference: Clause 15.

d) Test Type: Capability Test.

A.2.13 Units dictionaries

a) Test Purpose: Verify that a GML profile includes gml: UnitDictionary, gml: BaseUnit, gml: DerivedUnit,
and gml: ConventionalUnit. Verify that all non-deprecated properties of the object elements are part
of the profile with a maxOccurs value of at least "1".

b) Test Method: Inspect the profile.

c) Reference: 16.2.

d) Test Type: Capability Test.

A.2.14	Observations

a) Test Purpose: Verify that a GML profile includes gml: Observation and gml: DirectedObservation.
Verify that all non-deprecated properties of the object elements are part of the profile with a
maxOccurs value of at least "1".

b) Test Method: Inspect the profile.

218 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

c) Reference: 17.1, 18.2.

d) Test Type: Capability Test.

A.2.15 Coverages

A.2.15.1	 Abstract	coverage

a) Test Purpose: Verify that a GML profile includes gml: AbstractCoverage. Verify that all non-
deprecated properties of the object elements are part of the profile with a maxOccurs value of at
least "1".

b) Test Method: Inspect the profile.

c) Reference: 16.4, 19.3.1, 19.3.4 to 19.3.21.

d) Test Type: Capability Test.

A.2.15.2 Discrete point coverage

a) Test Purpose: Verify that a GML profile satisfies the requirements of A.2.15.1 and includes gml:
MultiPointCoverage. Verify that all non-deprecated properties of the object elements are part of the
profile with a maxOccurs value of at least "1".

b) Test Method: Inspect the profile.

c) Reference: A.2.15.1, 19.3.16.

d) Test Type: Capability Test.

A.2.15.3 Discrete curve coverage

a) Test Purpose: Verify that a GML profile satisfies the requirements of A.2.15.1 and includes gml:
MultiCurveCoverage. Verify that all non-deprecated properties of the object elements are part of
the profile with a maxOccurs value of at least "1".

b) Test Method: Inspect the profile.

c) Reference: A.2.15.1, 19.3.17.

d) Test Type: Capability Test.

A.2.15.4 Discrete surface coverage

a) Test Purpose: Verify that a GML profile satisfies the requirements of A.2.15.1 and includes gml:
MultiSurfaceCoverage. Verify that all non-deprecated properties of the object elements are part of
the profile with a maxOccurs value of at least "1".

b) Test Method: Inspect the profile.

c) Reference: A.2.15.1, 19.3.18.

d) Test Type: Capability Test.

A.2.15.5 Discrete solid coverage

a) Test Purpose: Verify that a GML profile satisfies the requirements of A.2.15.1 and includes gml:
MultiSurfaceCoverage. Verify that all non-deprecated properties of the object elements are part of
the profile with a maxOccurs value of at least "1".

b) Test Method: Inspect the profile.

© ISO 2020 – All rights reserved 219

ISO 19136-1:2020(E)

c) Reference: A.2.15.1, 19.3.19.

d) Test Type: Capability Test.

A.2.15.6 Grid coverage

a) Test Purpose: Verify that a GML profile satisfies the requirements of A.2.15.1 and includes gml:
GridCoverage and gml: RectifiedGridCoverage. Verify that all non-deprecated properties of the
object elements are part of the profile with a maxOccurs value of at least "1".

b) Test Method: Inspect the profile.

c) Reference: A.2.15.1, 19.3.20, 19.3.21.

d) Test Type: Capability Test.

A.2.15.7 Continuous coverage

a) Test Purpose: Verify that a GML profile satisfies the requirements of A.2.15.1 and includes gml:
AbstractContinuousCoverage. Verify that all non-deprecated properties of the object elements are
part of the profile with a maxOccurs value of at least "1".

b) Test Method: Inspect the profile.

c) Reference: A.2.15.1, 19.3.3.

d) Test Type: Capability Test.

A.3	 Abstract	test	suite	for	GML	documents

A.3.1	 Existence	of	a	reference	to	an	applicable	GML	application	schema

a) Test Purpose: To verify the existence of a reference to a GML application schema applicable to the
GML document.

b) Test Method: Check that an XML Schema file representing a GML application schema is referenced
in the xsi: schemaLocation attribute of the root element of the GML document.

c) Reference: 21.1.

d) Test Type: Basic Test.

A.3.2 Existence of the referenced GML application schema

a) Test Purpose: To verify the existence of a GML application schema applicable to the GML document.

b) Test Method: Check that the XML Schema file representing the GML application schema referenced
from the GML document can be accessed. Check that also all documents directly or indirectly
accessed by the referenced file can be accessed.

c) Reference: 21.1.

d) Test Type: Basic Test.

A.3.3 Conformance of the referenced GML application schema

a) Test Purpose: Verify that the GML application schema referenced from the GML document is
conformant to this document.

b) Test Method: Verify that the application schema has passed all of the applicable tests specified in A.1.

220 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

c) Reference: A.1.

d) Test Type: Capability Test.

A.3.4 Valid XML

a) Test Purpose: Verify the validity of the GML document against the XML Schema components of the
conformant GML application schema.

b) Test Method: Validate GML document against the referenced GML application schema. The process
may be using an appropriate software tool for validation or be a manual process that checks all
relevant definitions from the XML Schema specification.

c) Reference: 21.1.

d) Test Type: Capability Test.

A.3.5 Conformance of a GML document

a) Test Purpose: Verify that the GML document complies with all other constraints specified by this
document.

b) Test Method: Check that the requirements A.3.1 to A.3.3 are satisfied, that the GML document
satisfies the requirements of A.3.4 and that it complies with all other constraints specified by this
document.

c) Reference: Clauses 7 to 21, in particular 7.2.3.4, 10.1.3.2, 10.1.3.3, 10.1.4.2, 16.4.11.

d) Test Type: Capability Test.

© ISO 2020 – All rights reserved 221

ISO 19136-1:2020(E)

Annex B
(normative)

Abstract	test	suite	for	software	implementations

B.1 Test cases for mandatory conformance requirements

B.1.1	 GML	profile

a) Test Purpose: Verify that a GML profile has been documented that is fully supported by the software
implementation.

b) Test Method: Check the documentation of the software implementation to identify the profile.
Check the profile that is satisfies the requirements of the Abstract Test Suite in A.1.12. Check
further that the software implementation fully supports the profile and the semantics associated
with all schema components in the profile.

c) Reference: A.1.12.

d) Test Type: Capability Test.

B.1.2 Support for local simple Xlinks

a) Test Purpose: If the software implementation has the capability to process GML object elements in
XML format, verify that an implementation supports references to other objects within the same
GML document.

b) Test Method: Check that the implementation can process property instances that use the xlink:
href attribute with a content of a shorthand Xpointer pointing to a resource within the same XML
document.

c) Reference: 8.1.

d) Test Type: Capability Test.

B.1.3 Coordinate reference systems used in features (software implementation)

a) Test Purpose: If the software implementation has the capability to process GML object elements
in XML format and if the GML profile of the implementation includes features, verify that the
mechanism for setting the default coordinate reference system for all geometric objects within a
feature is followed.

b) Test Method: Check the Implementation that the srsName attribute of a gml: Envelope element that
is the value of the gml: boundedBy property of a feature is used as the default coordinate reference
system for all geometric objects encoded inline of the feature element.

c) Reference: 9.10.

d) Test Type: Capability Test.

222 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

B.2 Test cases for optional conformance requirements for software
implementations	with	the	capability	to	process	GML	object	elements	in	XML	format

B.2.1 Support for remote simple Xlinks

a) Test Purpose: Verify that an implementation supports references to other objects within or outside
the same GML document.

b) Test Method: Check that the implementation satisfies the requirements of A.1.1.1 and can process
property instances that use the xlink: href attribute with a content of an Xpointer pointing to a
resource outside the same XML document.

c) Reference: 8.1.

d) Test Type: Capability Test.

B.2.2 Support for extended Xlinks

a) Test Purpose: Verify that an implementation supports extended Xlinks.

b) Test Method: Check that the implementation can process extended Xlink attributes.

c) Reference: 8.1.

d) Test Type: Capability Test.

B.2.3	 Support	for	nillable	properties

a) Test Purpose: Verify that an implementation supports nillable properties.

b) Test Method: Check that the implementation can process GML application schemas with property
element declarations with the attribute xsi: nillable and that the implementation can process
instances with the attributes xsi: nil and gml: nilReason in these elements.

c) Reference: 8.2.3.1 to 8.2.3.2.

d) Test Type: Capability Test.

B.2.4 Support for units of measurement

a) Test Purpose: Verify that an implementation can convert between two units of the same kind.

b) Test Method: Check that the implementation can process values in the uom attribute of gml:
MeasureType as specified in 7.3.3.7 and convert measures to another unit of the same kind using a
units dictionary as specified in 16.2.

c) Reference: 8.2.3.6, 16.2.

d) Test Type: Capability Test.

B.2.5 Support for ownership semantics of properties

a) Test Purpose: Verify that an implementation supports the "owns" attribute.

b) Test Method: If an implementation is capable of deleting objects from a GML document, check that
the implementation deletes all objects that owned by another object as indicated by the owns
attribute, if that object is deleted.

c) Reference: 7.2.3.5.

d) Test Type: Capability Test.

© ISO 2020 – All rights reserved 223

ISO 19136-1:2020(E)

B.2.6 Metadata properties

a) Test Purpose: Verify that properties where the value is metadata about an object are identified as a
metadata property.

b) Test Method: Check the implementation that property elements whose content model is derived
from gml: AbstractMetadataPropertyType are identified as metadata properties.

c) Reference: 7.2.6.

d) Test Type: Capability Test.

B.2.7	 Support	for	GML	profiles	in	instance	validation

a) Test Purpose: Verify that an implementation can use GML profiles for instance validation.

b) Test Method: Check that the implementation uses the GML profiles for instance validation if the
profiles are referenced from an application schema using a gml:gmlProfileSchema annotation.

c) Reference: 20.5.

d) Test Type: Capability Test.

B.3 Test cases for writing GML

B.3.1	 Serialization	capability

a) Test Purpose: Verify the existence of the serialization operation of the implementation.

b) Test Method: Inspect the software implementation and its documentation to check that the
implementation implements a serialization operation that writes valid instances of GML objects in
XML format.

c) Reference: A.3.

d) Test Type: Basic Test.

B.3.2 Serialization validity

a) Test Purpose: Verify that the result of the serialization operation is conformant with this document.

b) Test Method: Write typical GML documents using the serialization operation and check that the
GML objects in XML format are valid.

c) Reference: A.3.

d) Test Type: Capability Test.

B.4 Test case for reading GML

a) Test Purpose: If the implementation has the capability to create implementation objects from GML
object elements in XML and to serialize these implementation objects back to GML objects in XML
format, verify that it does so validly.

b) Test Method: Check that successive actions of object creation and serialization (see B.1.2) produce
the result that is without loss of information.

c) Reference: A.3.

d) Test Type: Capability Test.

224 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

B.5 Test cases for writing GML application schemas

B.5.1	 Serialization	capability

a) Test Purpose: Verify the existence of the serialization operation of the implementation.

b) Test Method: Inspect the software implementation and its documentation to check that the
implementation implements a serialization operation that writes valid instances of GML application
schemas in XML Schema format.

c) Reference: A.1.

d) Test Type: Basic Test.

B.5.2 Serialization validity

a) Test Purpose: Verify that the result of the serialization operation is conformant with this document.

b) Test Method: Create typical GML application schemas using the serialization operation and check
that the GML application schemas conform to the GML profile of the implementation and to this
document.

c) Reference: A.1, B.1.1.

d) Test Type: Capability Test.

B.6 Test cases for reading GML application schemas

a) Test Purpose: If the implementation has the capability to create implementation objects from GML
application schema in XML and to serialize these implementation objects back to GML application
schemas in XML format, verify that it does so validly.

b) Test Method: Check that successive actions of object creation and serialization (see B.5) produce
the result that is without loss of information.

c) Reference: A.1, B.5.

d) Test Type: Capability Test.

© ISO 2020 – All rights reserved 225

ISO 19136-1:2020(E)

Annex C
(informative)

GML schema

XML Schema documents with the GML schema are available online at:

http:// schemas .opengis .net/ gml/ 3 .2 .1/

NOTE The use of “3.2.1” in the URL is unchanged since this version 3.2.2 is intended to replace the previous
GML 3.2.1 schema.

The schema components are modularized in the structure shown in Annex J, i.e. into the following
schema documents:

— basicTypes.xsd

— coordinateOperations.xsd

— coordinateReferenceSystems.xsd

— coordinateSystems.xsd

— coverage.xsd

— datums.xsd

— dictionary.xsd

— direction.xsd

— dynamicFeature.xsd

— feature.xsd

— geometryAggregates.xsd

— geometryBasic0d1d.xsd

— geometryBasic2d.xsd

— geometryComplexes.xsd

— geometryPrimitives.xsd

— gml.xsd

— gmlBase.xsd

— grids.xsd

— measures.xsd

— observation.xsd

— referenceSystems.xsd

— temporal.xsd

— temporalReferenceSystems.xsd

226 © ISO 2020 – All rights reserved

http://schemas.opengis.net/gml/3.2.0/

ISO 19136-1:2020(E)

— temporalTopology.xsd

— topology.xsd

— units.xsd

— valueObjects.xsd

The additional document defaultStyle.xsd contains informative schema components.

An Xlinks XML Schema document is located at http:// www .w3 .org/ 1999/ xlink .xsd.

© ISO 2020 – All rights reserved 227

http://www.w3.org/1999/xlink.xsd

ISO 19136-1:2020(E)

Annex D
(normative)

Implemented	profile	of	the	ISO	19100	series	of	International	

Standards and extensions

D.1 General remarks

The general relationship between the ISO 19100 series of International Standards and GML is discussed
in Clause 6. This annex describes in detail the profile of the conceptual model defined in the ISO 19100
series of International Standards implemented by GML (see D.2) as well as the extensions to this profile
(see D.3).

In this document “profile” means a pure subset.

D.2	 Profile	of	the	ISO	19100	series	of	International	Standards	used	by	GML

D.2.1 Overview

The following subclauses describe the profile of the ISO 19100 series of International Standards that is
used by GML. In the description of the class diagrams of the profile, the relationship and mapping to the
GML schema are discussed.

NOTE 1 In general the encoding rules discussed in Annex E were used also in the encoding of the GML
schema. However, since the GML schema was mostly handcrafted it exploits more of the specific capabilities of
the implementation environment, i.e. XML and XML Schema. Examples are a number of predefined basic types
(simple or complex types with simple content) or the use of global elements also for properties to be made
substitutable (e.g. to define aliases for deprecated property names). These cases are documented in the following
subclauses or are straightforward.

Only elements from International Standards discussed below are part of the profile. Elements from
other International Standards are not part of the profile.

Due to the nature of GML no operation of any class is part of the profile.

In addition, interface classes (stereotype <<Interface>>) without data structures and “Realization”
relationships to classes without data structures have been deleted.

Furthermore, the navigability of associations has been restricted to the directions in which GML
represents explicit object properties (most associations in the GML schema are navigable only in a
single direction).

NOTE 2 No deprecated types, elements and attributes of GML are considered in this annex.

NOTE 3 The general rules for the UML-to-XML-Schema mapping for GML application schemas are defined in
Annex E.

NOTE 4 In this annex the namespace "xsd:" is used to refer to the namespace of XML Schema, which is "http://
www .w3 .org/ 2001/ XMLSchema". The namespace “gml:” refers to the namespace of GML, which is “http:// www
.opengis .net/ gml/ 3 .2”.

Table D.1 provides a mapping between the high-level packages of the ISO 19100 series of International
Standards and the subclauses of this document defining GML schema components implementing types
from these packages.

228 © ISO 2020 – All rights reserved

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.opengis.net/gml/3.2
http://www.opengis.net/gml/3.2

ISO 19136-1:2020(E)

Table	D.1	—	Overview	of	the	implemented	packages	of	the	ISO	19100	series	of	International	
Standards

UML package UML class
prefix

ISO 19136
subclause

Annex D
subclause

ISO/TS 19103:Basic Types: Units of Measure — 8.2.3.6, 16.2 D.2.2
ISO 19107:Geometry: Geometric root GM 10.1.3 D.2.3.2
ISO 19107:Geometry: Geometric primitive GM 10.2, 10.3, 10.4,

10.5, 10.6
D.2.3.3

ISO 19107:Geometry: Geometric complex GM 11.2 D.2.3.6
ISO 19107:Geometry: Geometric aggregates GM 11.3 D.2.3.5
ISO 19107:Geometry: Coordinate geometry GM 10.1.4 D.2.3.4
ISO 19107:Topology: Topology root TP 13.2 D.2.4.2
ISO 19107:Topology: Topology primitive TP 13.3 D.2.4.3
ISO 19107:Topology: Topology complex TP 13.5 D.2.4.4
ISO 19108:Temporal Objects TM 14.2, 14.3 D.2.5.2 to D.2.5.6
ISO 19108:Temporal Reference System TM 14.4 D.2.5.7
ISO 19111:SC_CoordinateReferenceSystem SC 12.2, 12.3 D.2.7.3
ISO 19111:SC_CoordinateSystem CS 12.4 D.2.7.4
ISO 19111:SC_Datum CD 12.5 D.2.7.5
ISO 19111:SC_CoordinateOperation CC 12.6 D.2.7.6
ISO 19123 CV 19 D.2.11

Table D.2 provides a mapping between conceptual UML classes implemented by this document and the
associated GML object element, XML Schema type and GML property type.

The table consists of four columns. To provide a complete mapping from the UML type (first column) to
XML Schema as used by GML, three different mappings are required which are shown in the three other
columns. This is a result of the differences in mapping the General Feature Model to UML and to XML
Schema, mainly because XML Schema separates XML elements and their content model.

The table has to be read as follows:

— The first column ("UML class") lists a class from the ISO 19100 series which is implemented in the
GML schema.

In some cases, this column is empty ("—") which indicates that the GML elements and types
in the other columns implement a concept that is not specified in the ISO 19100 series but is
introduced in D.3.

— The second column ("GML object element") specifies the GML object element that implements
the type.

This information is in particular used in two situations in the encoding rules in Annex E:

— when no predefined property type for the object element is part of the GML schema (see the
fourth column) and a property type has to be created in the application schema,

— when a subtype of the type is specified in an application schema in which case the object element
representing the subtype is to be defined as part of the substitution group of the object element
of the type.

Where no corresponding object element exists in the GML schema, this is indicated by an empty
cell ("—").

© ISO 2020 – All rights reserved 229

ISO 19136-1:2020(E)

— The third column ("GML type") specifies the XML Schema type that defines the content model of the
GML object element in the second column.

This XML Schema type is in particular used in the encoding rules in Annex E when a subtype of
the type in the first column is modelled in an application schema; in this case, the XML Schema
implementation will specify a derived type of the XML Schema.

Where no corresponding XML Schema type exists in the GML schema, this is indicated by an empty
cell ("—").

— The fourth column ("GML property type") specifies the type that is used as the XML Schema type, if
the type is used as a value of a property in the application schema. In this case, this column provides
the value of the XML Schema type that is the implementation of that type in the GML schema.

EXAMPLE If a feature type has a property with a type of "GM_Point", then in the XML Schema
representation the corresponding GML property element declaration has gml: PointPropertyType as its type.

In case of a class with stereotype <<DataType>>, no XML Schema representation of the property
is provided as the data types specified in the GML schema are typically not intended to be used as
values of feature properties.

In some cases, the GML schema does not contain a predefined property type for that type and if
required by an application schema, the property type needs to be constructed in accordance with
the rules for GML property types (see 7.2.3) where the GML object element is given in the second
column of the same row.

If the value is annotated with "(group)", then the property is implemented by a reference to the
global group stated in the cell instead of a local property element.

Table	D.2	—	Implementation	of	types	from	the	ISO	19100	series	of	International	Standards

UML class GML	object	element GML type GML property type

GM_Object gml: AbstractGeometry gml: AbstractGeometryType gml: GeometryPropertyType

GM_Primitive gml: AbstractGeometricPrimtive gml:
AbstractGeometricPrimtiveType

gml:
GeometricPrimtivePropertyType

DirectPosition — — gml: DirectPositionType

GM_Position — — gml: geometricPositionGroup
(group)

GM_PointArray — — gml: geometricPositionListGroup
(group)

GM_Point gml: Point gml: PointType gml: PointPropertyType

GM_Curve gml: Curve gml: CurveType gml: CurvePropertyType

GM_Surface gml: Surface gml: SurfaceType gml: SurfacePropertyType

GM_PolyhedralSurface gml: PolyhedralSurface gml: PolyhedralSurfaceType anonymous property typea

GM_TriangulatedSurface gml: TriangulatedSurface gml: TriangulatedSurfaceType anonymous property type

GM_Tin gml: Tin gml: TinType anonymous property type

GM_Solid gml: Solid gml: SolidType gml: SolidPropertyType

GM_OrientableCurve gml: OrientableCurve gml: OrientableCurveType gml: CurvePropertyType

GM_OrientableSurface gml: OrientableSurface gml: OrientableSurfaceType gml: SurfacePropertyType

GM_Ring gml: Ring gml: RingType —

GM_Shell gml: Shell gml: ShellType —

— gml: LineString gml: LineStringType —

— gml: Polygon gml: PolygonType —

— gml: LinearRing gml: LinearRingType —
a An anonymous type following the pattern for GML property types. The object element referenced or embedded inline is the
element in the fourth column in the same row.
b Multiple values in the second column are given to support the reverse mapping described in Annex F.

230 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

UML class GML	object	element GML type GML property type

GM_CompositePoint gml: Point gml: PointType gml: PointPropertyType

GM_CompositeCurve gml: CompositeCurve gml: CompositeCurveType anonymous property type

GM_CompositeSurface gml: CompositeSurface gml: CompositeSurfaceType anonymous property type

GM_CompositeSolid gml: CompositeSolid gml: CompositeSolidType anonymous property type

GM_Complex gml: GeometricComplex gml: GeometricComplexType gml:
GeometricComplexPropertyType

GM_Aggregate gml: MultiGeometry gml: MultiGeometryType gml:
MultiGeometryPropertyType

GM_MultiPoint gml: MultiPoint gml: MultiPointType gml: MultiPointPropertyType

GM_MultiCurve gml: MultiCurve gml: MultiCurveType gml: MultiCurvePropertyType

GM_MultiSurface gml: MultiSurface gml: MultiSurfaceType gml: MultiSurfacePropertyType

GM_MultiSolid gml: MultiSolid gml: MultiSolidType gml: MultiSolidPropertyType

GM_MultiPrimitive gml: MultiGeometry gml: MultiGeometryType gml:
MultiGeometryPropertyType

GM_CurveSegment gml: AbstractCurveSegment gml: AbstractCurveSegmentType —

GM_Arc gml: Arc gml: ArcType —

GM_ArcByBulge gml: ArcByBulge gml: ArcByBulgeType —

— gml: ArcByCenterPoint gml: ArcByCenterPointType —

GM_ArcString gml: ArcString gml: ArcStringType —

GM_ArcStringByBulge gml: ArcStringByBulge gml: ArcStringByBulgeType —

GM_Bezier gml: Bezier gml: BezierType —

GM_BsplineCurve gml: BSpline gml: BSplineType —

GM_Circle gml: Circle gml: CircleType —

— gml: CircleByCenterPoint gml: CircleByCenterPointType —

GM_Clothoid gml: Clothoid gml: ClothoidType —

GM_CubicSpline gml: CubicSpline gml: CubicSplineType —

GM_GeodesicString gml: GeodesicString gml: GeodesicStringType —

GM_LineString gml: LineStringSegment gml: LineStringSegmentType —

GM_OffsetCurve gml: OffsetCurve gml: OffsetCurveType —

GM_SurfacePatch gml: AbstractSurfacePatch gml: AbstractSurfacePatchType —

GM_GriddedSurface gml: AbstractGriddedSurface gml:
AbstractGriddedSurfaceType

—

GM_ParametricCurveSurface gml:
AbstractParametricCurveSurface

gml: AbstractParametr
icCurveSurfaceType

—

GM_Cone gml: Cone gml: ConeType —

GM_Cylinder gml: Cylinder gml: CylinderType —

GM_Geodesic gml: Geodesic gml: GeodesicType —

GM_Polygon gml: PolygonPatch gml: PolygonPatchType —

— gml: Rectangle gml: RectangleType —

GM_Sphere gml: Sphere gml: SphereType —

GM_Triangle gml: Triangle gml: TriangleType —

TP_Object gml: AbstractTopology gml: AbstractTopologyType anonymous property type

TP_Node gml: Node gml: NodeType gml: DirectedNodePropertyType

TP_Edge gml: Edge gml: EdgeType gml: DirectedEdgePropertyType

TP_Face gml: Face gml: FaceType gml: DirectedFacePropertyType

TP_Solid gml: TopoSolid gml: TopoSolidType gml:
DirectedTopoSolidPropertyType

a An anonymous type following the pattern for GML property types. The object element referenced or embedded inline is the
element in the fourth column in the same row.
b Multiple values in the second column are given to support the reverse mapping described in Annex F.

Table	D.2	(continued)

© ISO 2020 – All rights reserved 231

ISO 19136-1:2020(E)

UML class GML	object	element GML type GML property type

TP_DirectedNode — — gml: DirectedNodePropertyType

TP_DirectedEdge — — gml: DirectedEdgePropertyType

TP_DirectedFace — — gml: DirectedFacePropertyType

TP_DirectedSolid — — gml:
DirectedTopoSolidPropertyType

TP_Complex gml: TopoComplex gml: TopoComplexType gml: TopoComplexPropertyType

— gml: TopoPoint gml: TopoPointType gml: TopoPointPropertyType

— gml: TopoCurve gml: TopoCurveType gml: TopoCurvePropertyType

— gml: TopoSurface gml: TopoSurfaceType gml: TopoSurfacePropertyType

— gml: TopoVolume gml: TopoVolumeType gml: TopoVolumePropertyType

TM_Object gml: AbstractTimeObject gml: AbstractTimeObjectType anonymous property type

TM_Complex gml: AbstractTimeComplex gml: AbstractTimeComplexType anonymous property type

TM_GeometricPrimitive gml:
AbstractTimeGeometricPrimtive

gml: AbstractTimeGeom
etricPrimtiveType

gml: TimeGeometricPri
mtivePropertyType

TM_Instant gml: TimeInstant gml: TimeInstantType gml: TimeInstantPropertyType

TM_Period gml: TimePeriod gml: TimePeriodType gml: TimePeriodPropertyType

TM_TopologicalComplex gml: TimeTopologyComplex gml: TimeTopologyComplexType gml: TimeTopologyCom
plexPropertyType

TM_TopologicalPrimitive gml:
AbstractTimeTopologyPrimtive

gml: AbstractTimeTop
ologyPrimtiveType

gml: TimeTopologyPri
mtivePropertyType

TM_Node gml: TimeNode gml: TimeNodeType gml: TimeNodePropertyType

TM_Edge gml: TimeEdge gml: TimeEdgeType gml: TimeEdgePropertyType

TM_PeriodDuration — — gml: duration (property ele-
ment), xsd: duration

TM_IntervalLength — — gml: timeInterval (group), gml:
TimeIntervalLengthType

TM_Duration — — gml: timeLength (group)

TM_Position — — gml: TimePositionType

TM_IndeterminateValue — — @TimeIndeterminateValue (at-
tribute on TimePositionType)

TM_Coordinate — — xsd: decimal

TM_CalDate — — gml: CalDate

TM_ClockTime — — xsd: time

TM_DateAndTime — — xsd: dateTime

TM_Calendar gml: TimeCalendar gml: TimeCalendarType gml: TimeCalendarPropertyType

TM_CalendarEra gml: TimeCalendarEra gml: TimeCalendarEraType gml:
TimeCalendarEraPropertyType

TM_Clock gml: TimeClock gml: TimeClockType gml: TimeClockPropertyType

TM_CoordinateSystem gml: TimeCoordinateSystem gml: TimeCoordinateSystemType anonymous property type

TM_OrdinalReferenceSystem gml:
TimeOrdinalReferenceSystem

gml:
TimeOrdinalReferenceSystemType

anonymous property type

TM_OrdinalEra gml: TimeOrdinalEra gml: TimeOrdinalEraType gml:
TimeOrdinalEraPropertyType

SC_CRS gml: AbstractCRS gml: AbstractCRSType gml: CRSPropertyType

SI_LocationInstance — — gml: LocationName

CV_Coverage gml: AbstractCoverage gml: AbstractCoverageType anonymous property type

CV_ContinuousCoverage gml:
AbstractContinuousCoverage

gml:
AbstractContinuousCoverageType

anonymous property type

CV_DiscreteCoverage gml: AbstractDiscreteCoverage gml: DiscreteCoverageType anonymous property type
a An anonymous type following the pattern for GML property types. The object element referenced or embedded inline is the
element in the fourth column in the same row.
b Multiple values in the second column are given to support the reverse mapping described in Annex F.

Table	D.2	(continued)

232 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

UML class GML	object	element GML type GML property type

CV_DiscretePointCoverage gml: MultiPointCoverage gml: MultiPointCoverageType anonymous property type

CV_DiscreteCurveCoverage gml: MultiCurveCoverage gml: MultiCurveCoverageType anonymous property type

CV_DiscreteSurfaceCoverage gml: MultiSurfaceCoverage gml: MultiSurfaceCoverageType anonymous property type

CV_DiscreteSolidCoverage gml: MultiSolidCoverage gml: MultiSolidCoverageType anonymous property type

CV_DiscreteGridPointCoverage gml: GridCoverage gml: GridCoverageType anonymous property type

CharacterString — — xsd: string

Boolean — — xsd: boolean

Real, Number — — xsd: double

Decimal — — xsd: decimal

Date — — xsd: date

Time — — xsd: time

DateTime — — xsd: dateTime

Integer — — xsd: integer, xsd:
nonPositiveInteger, xsd:
negativeInteger, xsd:
nonNegativeInteger, xsd:
positiveIntegerb

Vector — — gml: VectorType

GenericName, LocalName or
ScopeName

— — gml: CodeType

Length, Distance — — gml: LengthType

Angle — — gml: AngleType

Speed — — gml: SpeedType

Scale — — gml: ScaleType

Area — — gml: AreaType

Volume — — gml: VolumeType

Measure — — gml: MeasureType

Sign — — gml: SignType

UnitOfMeasure — — gml: UnitOfMeasureType
a An anonymous type following the pattern for GML property types. The object element referenced or embedded inline is the
element in the fourth column in the same row.
b Multiple values in the second column are given to support the reverse mapping described in Annex F.

D.2.2 ISO/TS 19103 Conceptual schema language

In this subclause the basic types defined in ISO/TS 19103 that are directly available in GML are
specified. In many cases simple types defined by XML Schema are used directly.

— “CharacterString” is implemented by xsd: string. The character encoding is defined in the processing
instruction of the XML document (the default for XML documents is UTF-8).

— “Date” is implemented by xsd: date.

— “DateTime” is implemented by xsd: dateTime.

— “Time” is implemented by xsd: time.

— “Real” is implemented by xsd: double.

— “Decimal” is in general implemented by xsd: decimal. For practical reasons, often decimal values will
also be represented in schemas by xsd: double.

— The generic basic type “Number” is in general implemented in GML schema by xsd: double.

— “Integer” is implemented by xsd: integer.

Table	D.2	(continued)

© ISO 2020 – All rights reserved 233

ISO 19136-1:2020(E)

— “Boolean” is implemented by xsd: boolean.

— “Measure” is implemented by the simple type gml: MeasureType. The value is of type xsd: double,
the uom-specifier is implemented by a URI which will normally resolve to a <gml: UnitDefinition>
element or to a well-known unit string. See 8.2.3.6.

“UnitOfMeasure” is implemented by gml: UnitDefinitionType.

The following subtypes of "Measure" are implemented by GML, each with a uom attribute that
points to a unit definition of a suitable type:

— “Length” → gml: LengthType

— “Scale” → gml: ScaleType

— “Area” → gml: AreaType

— “Volume” → gml: VolumeType

— “Speed” → gml: SpeedType

— “Time” → gml: TimeType

— “Angle” → gml: AngleType

— “Vector” is implemented by gml: VectorType.

NOTE ISO/TS 19103 describes vector as “an ordered set of numbers called coordinates that represent a
position in a coordinate system”. GML uses vector in this sense and provides a capability to explicitly state the
coordinate system associated with the vector.

— “GenericName“ and "LocalName“ are implemented by gml: CodeType where the name space
designator is a URI.

— "ScopedName“ is implemented by gml: CodeWithAuthorityType where the mandatory name space
designator is a URI.

ISO/TS 19103 specifies that all “NULL” values are equivalent. This document uses a more explicit
approach by providing a mechanism to specify the reason for the “nil” value. Whether an application
uses this added information or not is optional.

D.2.3 ISO 19107 Spatial schema (Geometry)

D.2.3.1 Overview

The UML model of the GML profile defined in this annex describes a conceptual model of the abstract
types defined in ISO 19107. The same names for the classes and their properties as in ISO 19107 are
used to document the GML profile for ease of comparison with that standard.

NOTE 1 See ISO 19107:2003, Clause 2, for more details.

The additional changes shown in Table D.3 have been applied to the geometry package of ISO 19107.

234 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

Table	D.3	—	Description	of	the	profile	of	ISO	19107	(geometry)

Change Explanation
GM_Primitive: association “Interior to” deleted Currently not supported by GML
GM_Polygon: attribute “spanningSurface” deleted Currently not supported by GML
GM_Solid: converted the operation “boundary()” to
an attribute

As the boundary of GM_Solid is accessible only via the
“boundary()” operation, an attribute of the same name
has been added. The attribute value is the result of the
“boundary()” operation as defined in ISO 19107.

GM_Complex: association “Contains” deleted Currently not supported by GML
Derived attributes deleted in GM_MultiPrimitive
subtypes

These attributes may be derived from the digital rep-
resentation of the objects, therefore the redundant infor-
mation has been omitted.

GM_CompositePoint: deleted GM_CompositePoint does not add any additional informa-
tion. The type has been added in ISO 19107 for complete-
ness only, but it is not expected that it would be used in in-
stance documents. Therefore, it has been omitted in GML.

GM_PolynomialSpline has been made abstract Currently not instantiable in GML, but the
subtype GM_CubicSpline is.

GM_LineSegment: deleted Not supported by GML, a GM_LineString with two control
points shall be used instead.

GM_CurveBoundary: deleted Only used in operations
GM_ComplexBoundary: deleted Only used in operations

NOTE 2 GM_OrientableCurve and GM_OrientableSurface are “not abstract” (in accordance with ISO 19107).

D.2.3.2 Geometry root

The UML class diagrams in Figures D.1 and D.2 illustrate the profile of the “Geometry root” package
(compare with ISO 19107:2003, Figures 5 and 6).

© ISO 2020 – All rights reserved 235

ISO 19136-1:2020(E)

Figure	D.1	—	Implemented	subtypes	of	GM_Object

236 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

Figure D.2 — Geometric primitives

The mapping of the different classes to the GML schema is explained in the subsequent subclauses
showing details of the class hierarchy.

“GM_Object” is represented by the “AbstractGeometry” object element, the “CRS” role is represented by
the “srsName” property.

The “AbstractGeometry” element may carry additional properties: an optional “description” element,
zero or more “name” elements, an optional “identifier” element, and an optional “gml:id” attribute. The
latter is particularly useful in supporting the re-use of geometry elements “by reference”, following the
compact XPointer syntax.

D.2.3.3 Geometry primitive

The UML class diagrams in Figures D.3 to D.9 illustrate the profile of the “Geometry primitive” package
(compare with ISO 19107:2003, Figures 7 to 13).

© ISO 2020 – All rights reserved 237

ISO 19136-1:2020(E)

Figure D.3 — Boundaries of geometric primitives

The boundary classes from ISO 19107 are not represented explicitly in GML. In ISO 19107 the boundary
types are usually the return value of an operation “boundary()”. As the boundary of all surface
(patches) or solids needs to be represented in GML explicitly as properties, the "exterior" and "interior"
properties have been defined in GML directly as properties of the surface (patch) or solid.

“GM_Ring” is represented by the “Ring” object element. While a “Ring” is not substitutable for a
“CompositeCurve” in GML it is structurally identical to a composite curve.

“GM_Shell” is represented by the “Shell” object element. While a “Shell” is not substitutable for a
“CompositeSurface” in GML it is structurally identical to a composite surface.

238 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

Figure D.4 — Geometric primitives

“GM_Primitive” is represented by the “AbstractGeometricPrimitive” object element (both are abstract).
The “complex” role is not navigable in GML.

Figure D.5 — Point

“GM_Point” is represented by a “Point” object element in GML. The “position” attribute is represented
by a “pos” property (the type of the value is “DirectPosition”).

© ISO 2020 – All rights reserved 239

ISO 19136-1:2020(E)

Figure D.6 — Curve and Surface

“GM_Curve” is represented by the “Curve” object element in GML. The orientation is not an explicit
property of a “Curve” and is implicitly fixed to “+”.

“GM_OrientableCurve” is represented by the “OrientableCurve” object element in GML. The “primitive”
role is represented by the “baseCurve” property.

“GM_Surface” is represented by the “Surface” object element in GML. The orientation is not an explicit
property of a “Surface” and is implicitly fixed to “+”.

“GM_Orientable Surface” is represented by the “OrientableSurface” object element in GML. The
“primitive” role is represented by the “baseSurface” property.

To enable that “CompositeCurve” may be used in GML where in general a geometric primitive is
expected, an abstract (and propertyless) object element “AbstractCurve” has been introduced and
may be substituted by either “Curve”, “OrientableCurve” or “CompositeCurve”. The same mechanism
is used with surfaces and solids. As a result, the “GM_OrientablePrimitive” class is not mapped to GML
explicitly, however as this type is not instantiable, this does not impose any restrictions.

NOTE This mapping is a consequence of the fact that the spatial schema uses multiple inheritance to express
that a composite geometry, which by definition is a complex geometry, can also represent a geometric primitive.
Since XML Schema is not capable of multiple inheritance (or more precisely: derivation from multiple types), the
abstract object elements “AbstractCurve”, “AbstractSurface” and “AbstractSolid” have been introduced in GML to
allow that both “true” geometric primitives (e.g. “Curve”) and composite geometries (e.g. “CompositeCurve”) can
be in a common substitution group, although both are structurally different.

240 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

Figure D.7 — Curve

As discussed above, “GM_Curve” is represented by the “Curve” object element in GML. The “segment”
role is represented as an array property “segments” in GML.

Figure D.8 — Surface

© ISO 2020 – All rights reserved 241

ISO 19136-1:2020(E)

As discussed above, “GM_Surface” is represented by a “Surface” object element in GML. The “patch” role
is represented as an array property “patches” in GML.

Figure D.9 — Solid

“GM_Solid” is represented by a “Solid” object element in GML. The boundary of a Solid is directly
expressed by “exterior” and “interior” properties of the solid as discussed above.

D.2.3.4 Coordinate Geometry

The UML class diagrams in Figures D.10 to D.19 illustrate the profile of the "Coordinate Geometry"
package (compare with ISO 19107:2003, Figures 14 to 21).

Figure D.10 — Coordinate geometry

“DirectPosition” is represented in GML as a type with simple content where the “coordinate” attribute
is mapped to a list of doubles. The “coordinateReferenceSystem” role is represented by a “srsName”
attribute property and “dimension” is represented by an optional attribute property of the same name
(type is positiveInteger).

242 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

“GM_Position” is mapped to a choice between a “pos” property (which is of type “DirectPosition”) and
a “pointProperty” property (which is “Point”-valued). A “GM_PointArray” is represented as a similar
choice element, but with appropriate settings for minimum and maximum occurrences.

A single “GM_Position” or a “GM_PointArray” can alternatively be represented by a “coordinates”
property (the type of the value is “Coordinates” which is a type with simple content that represents a
list of coordinates encoded as a string).

“GM_Envelope” is represented as the “Envelope” object element in GML. The two attributes
“upperCorner” and “lowerCorner” are mapped to properties of the same name. The additional attribute
“SRSReferenceGroup” in “gml: Envelope” has been added so that the coordinate reference system need
only be specified once in the typical case of corners in the same coordinate reference system.

Figure D.11 — Curve segments

“GM_CurveSegment” is represented in GML by the “AbstractCurveSegment” object element (both are
abstract). The three “numDerivatives…” attributes are mapped to properties with the same definition.
The “interpolation” attribute is not defined in “AbstractCurveSegment”, but is defined (and set with
appropriate initial values) in the instantiable subtypes.

GML currently supports a subset of all defined curve segments of ISO 19107.

© ISO 2020 – All rights reserved 243

ISO 19136-1:2020(E)

Most subtypes of “GM_CurveSegment” carry a “controlPoint” attribute that is represented in GML by
the choice element as described above (see discussion of the representation of a GM_PointArray).

The code list “GM_CurveInterpolation” has been mapped to GML as if it would be an enumeration, i.e. no
additional values are allowed beside the predefined values in the GML schema.

Figure D.12 — Line string

“GM_LineString” is represented by the “LineStringSegment” object element. The “Segment” suffix is
appended to the name in GML, because the name “LineString” is already reserved for another object
element in GML (see D.3.5). To maintain backwards compatibility with previous versions of GML it
was not possible to change the name of the existing element as even if the previous use of "LineString"
would have been deprecated, the name would not have been available for the implementation of GM_
LineString.

Figure D.13 — Arcs and circles

244 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

The curve segment types are mapped to object elements in GML with the same name (but without the
“GM_” prefix) and the same set of properties.

Figure D.14 — Splines

Again, these curve segment types are mapped to object elements in GML with the same name (but
without the “GM_” prefix8) and with the same properties9). The properties of the curve segment objects
in GML have been specified taking the OCL constraints into account.

The code list “GM_KnotType” has been mapped to GML as if it would be an enumeration, i.e. no additional
values are allowed beside the predefined values in the GML schema.

8) However, “GM_BSplineCurve” is represented by “BSpline”, i.e. without the “Curve” suffix. The name "BSpline"
has been kept to maintain backwards compatibility with previous versions of GML.
9) The “knotSpec” attribute has been renamed to “knotType” in GML.

© ISO 2020 – All rights reserved 245

ISO 19136-1:2020(E)

Figure D.15 — Curve segments

“GM_OffsetCurve” class is represented in GML by the “OffsetCurve” object element. The object carries
the same semantic interpretation as the class. The baseCurve property has been renamed to offsetBase.

“GM_AffinePlacement” is represented in GML by the “AffinePlacement” object element.

“GM_GeodesicString” is represented in GML by the “GeodesicString” object element.

“GM_Geodesic” is represented in GML by the “Geodesic” object element.

“GM_Clothoid” is represented in GML by the “Clothoid” object element.

246 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

Figure	D.16	—	Surface	patches	(first	figure)

“GM_SurfacePatch” is represented in GML by the “AbstractSurfacePatch” object element (both are
abstract). The “numDerivativesOnBoundary” attribute is currently not explicitly mapped in GML as
only planar interpolation is currently supported in GML. The “interpolation” attribute is not defined
in “AbstractSurfacePatch”, but it is defined (and set with appropriate initial values) in the instantiable
subtypes.

GML currently supports a subset of all defined surface types and surface patch types of ISO 19107.

The code list “GM_SurfaceInterpolation” has been mapped to GML as if it would be an enumeration, i.e.
no additional values are allowed beside the predefined values in the GML schema.

Figure	D.17	—	Surface	patches	(second	figure)

“GM_Polygon” is represented by the “PolygonPatch” object element. The “boundary” attribute is directly
expressed by “exterior” and “interior” properties of the “PolygonPatch”.

The “Patch” suffix has been appended to the name in GML, because the name “Polygon” is already
reserved for another object element in GML (see D.3.6). To maintain backwards compatibility with

© ISO 2020 – All rights reserved 247

ISO 19136-1:2020(E)

previous versions of GML it was not possible to change the name of the existing element as even if the
previous use of "Polygon" would have been deprecated, the name would not have been available for the
implementation of GM_Polygon.

Figure D.18 — Gridded surface patches

“GM_PointGrid” is represented in GML by the “PointGrid” group.

“GM_ParametricCurveSurface” is represented in GML by the “AbstractParametricCurveSurface” object
element (both are abstract).

“GM_GriddedSurface” is represented in GML by the “AbstractGriddedSurface” object element (both are
abstract).

“GM_Cone” is represented in GML by the “Cone” object element.

“GM_Cylinder” is represented in GML by the “Cylinder” object element.

“GM_Sphere” is represented in GML by the “Sphere” object element.

248 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

Figure D.19 — Polyhedral and triangulated surfaces

“GM_PolyhedralSurface” is represented in GML by the “PolyhedralSurface” object element.

“GM_TriangulatedSurface” is represented in GML by the “TriangulatedSurface” object element.

“GM_Tin” is represented in GML by the “Tin” object element.

D.2.3.5 Geometry aggregates

The UML class diagram in Figure D.20 illustrates the profile of the “Geometry aggregates” package
(compare with ISO 19107:2003, Figure 24).

© ISO 2020 – All rights reserved 249

ISO 19136-1:2020(E)

Figure D.20 — Geometric aggregates

“GM_Aggregate” is represented by the “AbstractGeometricAggregate” object element (both are
abstract). The “element” role is instantiated in GML in the instantiable subtypes. The general pattern is
that two properties are defined, one is a regular association property and the other an array association
property. The property names are “xMember” and “xMembers” respectively where the “x” is replaced
by “point”, “curve”, “surface” or “solid” depending on the elements of the collection. This represents the
OCL-constraints for type safety.

“GM_MultiPoint” is represented by the “MultiPoint” object element in GML.

“GM_MultiCurve” is represented by the “MultiCurve” object element in GML.

“GM_MultiSurface” is represented by the “MultiSurface” object element in GML.

“GM_MultiSolid” is represented by the “MultiSolid” object element in GML.

“GM_MultiPrimitive” is not explicitly represented in GML.

D.2.3.6 Geometry complex

The UML class diagrams in Figures D.21 and D.22 illustrate the profile of the “Geometry complex”
package (compare with ISO 19107:2003, Figures 25 to 30).

250 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

Figure	D.21	—	Geometric	composites	(first	figure)

“GM_Complex” is represented by the “GeometricComplex” object element. The “element” role is mapped
to a property of the same name in GML.

The fact that the composite geometry types are subtypes of “GM_Complex” is represented in GML by
the fact that every association property which takes a “GeometricComplex” accepts also one of the
composites (due to a choice element in “GeometricComplexPropertyType”). This special mapping to
XML Schema was necessary, because multiple inheritance, used in ISO 19107 to express the “dualism”
of the composite geometries, is not supported by the derivation mechanism of XML Schema.

© ISO 2020 – All rights reserved 251

ISO 19136-1:2020(E)

Figure	D.22	—	Geometric	composites	(second	figure)

“GM_Composite” is not explicitly represented by an object element in GML. However, the subtypes
“GM_CompositeCurve”, “GM_CompositeSurface” and “GM_CompositeSolid” are represented in GML by
object elements of the same name (without the “GM_” prefix). The “generator” role is instantiated in
GML in these subtypes by an association property with the name “xMember” where the “x” is replaced
by “curve”, “surface” or “solid” depending on the elements of the collection.

D.2.3.7 Conformance

The rules governing conformance of a profile of ISO 19107 are described in ISO 19107:2003, Clause 2 and
Annex A. Concerning the three criteria defined in Clause 2, GML geometry covers the following levels:

Data Complexity:

— geometric primitives;

— geometric complexes.

Dimensionality:

— 0-, 1-, 2- and 3-dimensional objects.

Functional Complexity:

— data types only.

Thus, the relevant conformance clauses of ISO 19107:2003 are:

— A.1.1.1 to A.1.1.4;

— A.2.1.1 to A.2.1.3.

252 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

The conditions of these conformance clauses are met.

Note that derived attributes are treated as operations and it is assumed that the derived attributes in
the aggregate geometries will be derived from the data by the application handling the GML instances.

A GM_CompositePoint is represented by a “Point” object element in GML. The value of the “generator”
association role is the same object, i.e. the “Point” object itself.

D.2.4 ISO 19107 spatial schema (topology)

D.2.4.1 Overview

The additional changes shown in Table D.4 have been applied to the topology package of ISO 19107.

Table	D.4	—	Description	of	the	profile	of	ISO	19107	(topology)

Change Explanation
TP_Complex: association “isMaximal()” added as a
derived attribute

The information was otherwise not accessible by
means of predefined data structures of TP_Complex.
The attribute is defined as a derived attribute repre-
senting the result of the “isMaximal()” operation as
defined in ISO 19107.

TP_Object has been changed from an interface class
to type class (however without any properties) and
the Realization relationships from TP_Primitive and
TP_Complex to TP_Object has been changed to Generali-
zation relationships

Maintaining TP_Object as a root for the different topo-
logical subtypes makes mapping to GML clearer.

The optional association “Realization” between TP_
Complex and GM_Complex has been deleted.

The realization can be derived from the realization of
the primitives contained in the topology complex.

The “maximalComplex” role has been deleted from
TP_Primitive.

Currently not supported in GML

TP_Boundary and subtypes as well as TP_Ring and
TP_Shell have been deleted.

Only used in operations

D.2.4.2 Topology root

The UML class diagrams in Figures D.23 and D.24 illustrate the profile of the “Topology root” package
(compare with ISO 19107:2003, Figures 32 and 33).

© ISO 2020 – All rights reserved 253

ISO 19136-1:2020(E)

Figure D.23 — Topologic primitives

Figure	D.24	—	Relationship	between	geometry	and	topology

The mapping of the different classes to the GML schema is explained in the subsequent subclauses
showing details of the class hierarchy.

254 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

“TP_Object” is represented by the “AbstractTopology” object element. The “AbstractTopology” element
may carry additional properties: an optional “description” element, zero or more “name” elements, an
optional “identifier” element, and an optional “gml:id” attribute.

D.2.4.3 Topology primitive

The UML class diagrams in Figures D.25 to D.28 illustrate the profile of the “Topology root” package
(compare with ISO 19107:2003, Figures 35 to 45).

Figure D.25 — Topology primitive

“TP_Primitive” is represented by the “AbstractTopoPrimitive” object element.

The “geometry” role is instantiated in the instantiable subtypes. This allows control of the geometry
types at the other association end (dimensionality constraint): “pointProperty”, “curveProperty”,
“surfaceProperty” and “solidProperty” respectively.

The “isolated” and “container” roles are represented as properties in “AbstractTopoPrimitive”.

© ISO 2020 – All rights reserved 255

ISO 19136-1:2020(E)

Figure D.26 — Topology primitives

Figure D.27 — Directed Topology primitives

“TP_Node” is represented by the “Node” object element in GML.

“TP_Edge” is represented by the “Edge” object element in GML.

“TP_Face” is represented by the “Face” object element in GML.

“TP_Solid” is represented by the “TopoSolid” object element in GML (the name “Solid” is already used for
the 3-dimensional geometry primitive).

256 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

“TP_DirectedTopo” is not explicitly represented in GML, only its instantiable subtypes. A notable
difference is that although the directed topology types are modelled as types they are represented as
properties with an “orientation” attribute in GML.

“TP_DirectedNode” is represented by the “directedNode” property element in GML. The “topo” role is
represented directly by the “Node” object element.

“TP_DirectedEdge” is represented by the “directedEdge” property element in GML. The “topo” role is
represented directly by the “Edge” object element.

“TP_DirectedFace” is represented by the “directedFace” property element in GML. The “topo” role is
represented directly by the “Face” object element.

“TP_DirectedSolid” is represented by the “directedTopoSolid” property element in GML. The “topo” role
is represented directly by the “TopoSolid” object element.

Figure	D.28	—	Boundary	and	co-boundary	relationships

The mapping of the “topo” role is already discussed above.

The “spoke” role is represented in GML by “directed Edge”, “directedFace” and “directedTopoSolid”
properties respectively.

The “boundary” role is represented in GML by “directed Node”, “directedEdge” and “directedFace”
properties respectively.

D.2.4.4 Topology complex

The UML class diagram in Figure D.29 illustrates the profile of the “Topology complex” package
(compare ISO 19107:2003, Figure 46).

© ISO 2020 – All rights reserved 257

ISO 19136-1:2020(E)

Figure D.29 — Topology complex

“TP_Complex” is represented by the “TopoComplex” object element.

The “element” role is mapped to two properties — one regular association property
“topoPrimitiveMember” and one array association property “topoPrimitiveMembers”.

The “subComplex” and “superComplex” roles are represented as association properties of the same
name. The minimum multiplicity, however, is “0” for both properties in GML instead of “1”. This reflects
that it is not required that this property is represented explicitly in a GML instance (note that it is a
derived association).

The “maximalComplex” role is represented as an association property of the same name in GML.

D.2.4.5 Conformance

The rules governing conformance of a profile with ISO 19107 are described in ISO 19107:2003, Clause 2
and Annex A. Concerning the three criteria defined in Clause 2, GML topology covers the following levels:

Data Complexity:

— topological complexes;

— topological complexes with geometric realizations.

Dimensionality:

— 0-, 1-, 2- and 3-dimensional objects.

Functional Complexity:

— data types only.

Thus, the relevant conformance clauses of ISO 19107 are:

— A.3.1.1 to A.3.1.3;

— A.4.1.1 to A.4.1.3.

The conditions of these conformance clauses are met.

258 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

Note that the association “Realization” between TP_Complex and GM_Complex is not an explicit part
of the profile, because the geometrical realization of the topology complex can be derived from the
geometrical realization of the topological primitives.

D.2.5 ISO 19108 Temporal schema

D.2.5.1 Overview

The GML temporal schemas provides an implementation of ISO 19108:2002, 5.2 to 5.4.

The changes shown in Table D.5 have been applied to the packages of ISO 19108.

Table	D.5	—	Description	of	the	profile	of	ISO	19108

Change Explanation
1 The Beginning and Ending associations are im-

plemented as unidirectional from TM_Period to
TM_Instant

Maintaining bi-directional pointers deemed unneces-
sary in a static data encoding.

2 The Beginning and Ending associations from
TM_Period are implemented as a choice of (a UML
association with TM_Instant or a UML attribute
of type TM_Position)

Allows a more compact encoding of the same infor-
mation when a TM_Instant object with identity is not
required.

3 The Termination and Initiation associations are
implemented as unidirectional from TM_Edge
to TM_Node

Maintaining bi-directional pointers deemed unneces-
sary in a static data encoding.

4 The Realization associations are implemented as
unidirectional from TM_Instant and TM_Period
to TM_Node and TM_Edge respectively

Maintaining bi-directional pointers deemed unneces-
sary in a static data encoding.

5 The Basis association is implemented as unidirec-
tional from TM_Calendar to TM_CalendarEra

Maintaining bi-directional pointers deemed unneces-
sary in a static data encoding.

7 The begin and end attributes of TM_OrdinalEra
are replaced by associations with TM_Node, with
rolenames start and end

Practice in historical and geological sciences is that the
termination points of an Ordinal Era are associated
with events whose position may not be known precise-
ly. This matches with the concept of TM_Node whose
position is available indirectly.

8 The origin attribute of TM_CoordinateSystem
is implemented as choice of (a UML association
with TM_Instant or a UML attribute of type
TM_Position)

Allows the origin to be specified in terms of an exter-
nal event.

9 The interval attribute of TM_CoordinateSystem is
implemented as TM_Interval Length

Allows the scale to be specified more precisely and
flexibly.

NOTE Change 2 takes advantage of the <choice> structure which is provided by the XML Schema
implementation language. This supports a more flexible and compact encoding, containing the same information,
than would have been gained by mechanical application of the standard encoding rules.

Of the classes dealing with temporal relationships between features, described in 5.5 of ISO 19108:2002,
only Feature Succession has been implemented directly. Components corresponding to the other
relationships may be defined in GML application schemas, but are not discussed further here.

The mapping of the different classes to the GML schema is explained in the subsequent subclauses
showing details of the class hierarchy.

The UML class diagrams in Figures D.30 to D.34 illustrate the profile of the “Temporal Objects” package
(compare with ISO 19108:2002, Figures 2 to 6 and 11).

© ISO 2020 – All rights reserved 259

ISO 19136-1:2020(E)

D.2.5.2	 Temporal	objects

Figure	D.30	—	Main	hierarchy	of	temporal	objects	from	ISO	19108

“TM_Object” is represented by the “AbstractTimeObject” object element. The “AbstractTimeObject”
element may carry additional properties: an optional “description” element, zero or more “name”
elements, an optional “identifier” element, and an optional “gml:id” attribute. These properties are
inherited by all the components that are substitutable for AbstractTimeObject.

“TM_Primitive” is represented by the “AbstractTimePrimitive” object element.

“TM_GeometricPrimitive” is represented by the “AbstractTimeGeometricPrimitive” object element.

“TM_TopologicalPrimitive” is represented by the “AbstractTimeTopologyPrimitive” object element.

“TM_Complex” is represented by the “AbstractTimeComplex” object element.

“TM_TopologicalComplex” is represented by the “AbstractTimeTopologyComplex” object element.

260 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

D.2.5.3 Concrete temporal geometric primitives

Figure	D.31	—	Profile	of	temporal	geometric	objects	adapted	from	ISO	19108

“TM_Primitive” is represented by the “AbstractTimePrimitive” object element. Additional properties
“relatedTime” representing the result of “relativePosition(other: TM _Primitive)” operations has
been added.

“TM_GeometricPrimitive” is represented by the “AbstractTimeGeometricPrimitive” object element.
An additional property “abstractTimeLength” representing the result of the “length()” operation has
been added.

“TM_Instant” is represented by the “TimeInstant” object element. The “position” attribute is represented
by the “timePosition” property.

“TM_Period” is represented by the “TimePeriod” object element. The “begin” and “end” roles are
represented by association properties of the same name in GML. These associations have an alternative
representation in GML as follows: “end” is in a choice block with “endPosition” and “begin” with
“beginPosition”, the latter in each case has simple content as discussed in 14.2.2.5.

© ISO 2020 – All rights reserved 261

ISO 19136-1:2020(E)

D.2.5.4 Temporal duration

Figure D.32 — DataTypes representing temporal duration ISO 19108

The GML property element “abstractTimeLength” is abstract, with either a “timeInterval or “duration”
element substituting. These have XML Schema types which implement the data types shown in
Figure D.32, as follows:

“TM_IntervalLength” is implemented using a simple content type constructed by adding the XML
attributes “unit”, “radix” and “factor” to the XML Schema built-in type “decimal”.

“TM_PeriodDuration” is implemented by the XML Schema built-in type “duration” (see discussion in
14.2.2.8). The XML Schema type “duration” prescribes a literal value with the lexical form described in
ISO 8601-1, which removes the need to implement the list of attributes of the TM_PeriodDuration class
separately.

262 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

D.2.5.5 Temporal position

Figure D.33 — Temporal position, from ISO 19108

Components represented as UML attributes of type TM_Position are represented as GML properties
with XML Schema type gml:TimePositionType. This is a simple content type the details of whose
derivation are described in 14.2.2.5. This represents the requirements shown in Figure D.33 as follows:

“TM_Coordinate”, which gives temporal position represented by a single number, is implemented by
XML Schema type “decimal”;

“TM_OrdinalPosition”, which carries an association with a TM_OrdinalEra, is implemented by XML
Schema type “anyURI”, which follows the pattern used in GML where associations are implemented
through references;

“TM_CalDate”, which carries attributes consisting of sequence of numbers for the calendar date,
and an era name, is implemented in gml: CalDate by a union (choice) of XML Schema types “date”,
“gYear”, “gYearMonth”, whose lexical representations follow ISO 8601-1, to which an XML attribute
“calendarEraName” is added;

“TM_ClockTime”, which carries a sequence of numbers describing an instant that recurs daily, is
implemented by XML Schema type “time”, whose lexical representation follows ISO 8601-1;

“TM_DateAndTime” is implemented by XML Schema type “dateTime”, whose lexical representation
follows ISO 8601-1;

The variants “date8601”, “time8601” and “dateTime8601”, shown in TM_Position, are implemented by
the XML Schema types “date”, “time” and “dateTime”, already introduced;

“IndeterminatePosition” is represented using an XML attribute of the same name;

The role “frame” is implemented using an XML attribute of the same name, whose value has type
“anyURI”, which follows the pattern used in GML where associations are implemented through
references.

© ISO 2020 – All rights reserved 263

ISO 19136-1:2020(E)

D.2.5.6 Temporal topology

Figure	D.34	—	Profile	of	temporal	topology	adapted	from	ISO	19108

“TM_TopologicalComplex” is represented by the “AbstractTimeTopologyComplex” object element. The
“primitive” role is implemented by a property element of the same name.

“TM_TopologicalPrimitive” is represented by the “AbstractTimeTopologyPrimitive” object element. The
“complex” role is implemented as a reference by a property element of the same name, though this is
made optional.

“TM_Node” is implemented by the “TimeNode” object element. The “previousEdge” and “nextEdge” roles
are implemented by property elements of the same name in GML. The “geometry” role is implemented
by the “position” property.

“TM_Edge” is implemented by the “TimeEdge” object element. The “start” and “end” roles are
implemented by property elements of the same name in GML. The “geometry” role is implemented by
the “extent” property.

D.2.5.7 Temporal reference systems

The UML class diagrams in Figures D.35 to D.38 illustrate the profile of the “Temporal Reference
Systems” package (compare with ISO 19108:2002, Figures 7 to 10).

Figure D.35 — Hierarchy of temporal reference systems from ISO 19108

264 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

“TM_ReferenceSystem” is implemented by the “AbstractTimeReferenceSystem” object element. The
“AbstractTimeReferenceSystem” element may carry additional properties: an optional “description”
element, one or more “name” elements, an optional “identifier” element, and a mandatory "gml:id"
attribute. The “domainOfValidity” attribute is implemented using an XML attribute of the same name.
This has XML Schema type “string” which implements the “description” attribute of EX_Extent (see
ISO 19115).

These properties are inherited by all the components that are substitutable for
AbstractTimeReferenceSystem.

D.2.5.8 Calendars and clocks

Figure D.36 — Model for calendar and clock, from ISO 19108

“TM_Calendar” is implemented by the “TimeCalendar” object element. The “referenceFrame” role is
implemented as a property element of the same name.

“TM_CalendarEra” is implemented by the “TimeCalendarEra” object element. The “referenceEvent”,
“referenceDate”, “julianReference” and “epochOfUse” attributes are implemented as property elements
of the same names.

“TM_Clock” is implemented by the “TimeClock” object element. The “referenceEvent”, “referenceTime”,
and “utcReference” attributes are implemented as property elements of the same names. The
“dateBasis” role is implemented as a property element of the same name.

D.2.5.9 Time coordinate systems

Figure D.37 — Model for temporal coordinate system, from ISO 19108

“TM_CoordinateSystem” is implemented by the “TimeCoordinateSystem” object element. The “origin”
attribute is implemented as a choice of property elements “origin”, which refers to a TimeInstant, or
“originPosition” which encodes a position directly. The “interval” attribute is implemented as a property
element of the same name, using TimeIntervalLengthType which follows ISO/IEC 11404.

© ISO 2020 – All rights reserved 265

ISO 19136-1:2020(E)

D.2.5.10 Temporal ordinal reference system

Figure D.38 — Model for temporal ordinal reference system, adapted from ISO 19108

“TM_OrdinalReferenceSystem” is implemented by the “TimeOrdinalReferenceSystem” object element.
The “component” role is implemented as a property element of the same name.

“TM_OrdinalEra” is implemented by the “TimeOrdinalEra” object element. The “name”, “begin” and “end”
attributes are implemented by the “name”, “start” and “end” properties inherited from TimeEdge. The
“member” role is implemented as property element of the same name. The “group” role is implemented
as a reference by a property element of the same name. An optional “description” and a mandatory
"gml:id" property are also inherited from TimeEdge.

D.2.5.11 Conformance

The rules governing conformance of a profile with ISO 19108 are described in ISO 19108:2002, Clause 2
and Annex A. Concerning the criteria defined in Clause 2, GML as an application schema for data
transfer targets conformance with A.1. The conditions of this conformance clause are met by the profile
specified above.

D.2.6 ISO 19109 rules for application schema

D.2.6.1	 GML	implements	a	subset	of	the	general	feature	model	defined	in	ISO	19109.

In addition extensions are implemented by GML. The general feature model is concerned only
with feature types whereas an application schema (in GML or UML) will often deal with additional
information types. Examples are data types, enumeration types, union types, etc. which are not
specified explicitly in the general feature model. ISO 19109 therefore specifies that only a one-way
mapping from the general feature model to the application schema is possible.

Like in the case of UML, the mapping from the general feature model to the GML feature model described
in XML Schema is in general straightforward.

The changes shown in Table D.6 have been applied to the general feature model of ISO 19109.

Table	D.6	—	Description	of	the	implementation	of	ISO	19109

Change Explanation
1 GF_FeatureOperation deleted Operation are not supported
2 Multiplicity of GF_InheritanceRelation/supertype

changed to “1”
Only single inheritance is supported and mapped to
the substitution group mechanism of XML Schema

Some additional comments on the metaclasses of the general feature model are shown in Table D.7.

266 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

Table	D.7	—	Remarks	on	the	implementation	of	ISO	19109

 Change Explanation
1 GF_AssociationType In general, the composition of association roles to asso-

ciations is not directly represented in GML application
schemas.
If the relationship between two association roles shall
be expressed explicitly in the GML application schema,
then the roles may be cross-referenced by
— representing the qualified element name of the

target object class in an appInfo annotation element
gml:targetElement which is of type xsd:string

— representing the qualified property name of the
inverse association roles in an appInfo annotation
element gml:reverseProperty which is of type
xsd:string

— optionally representing the name of the
association in an appInfo annotation element
gml:associationName which is of type
xsd:string

2 GF_Constraint Constraints may be mapped to schematron constraints
or may be just expressed as text in documentation
annotations.

The relationship between an application schema in UML and in GML is described as part of the Annexes E
and F dealing with the mapping between ISO 19109 and GML application schemas.

D.2.7	 ISO	19111	spatial	referencing	by	coordinates

D.2.7.1 Overview

The full conceptual model of ISO 19111:2007 is implemented in GML. The mapping is in general a
straightforward mapping from the conceptual model to the GML schema. Only, schema components
with a more complex mapping are detailed in D.2.7.

Wherever a GML object is associated with a Coordinate Reference System, this is implemented by an
attribute (srsName) pointing to a gml:AbstractCRS element.

Additional attributes are defined in the content model of the same element carrying redundant
information about the coordinate reference system. srsDimension is the dimension of the coordinate
reference system as stated in the coordinate reference system definition. The axisLabels and uomLabels
attributes are lists of the labels and units of measurement associated with the different axes of the
coordinate reference system.

D.2.7.2	 Identified	object	package

For the implementation in GML, the IO_IdentifiedObjectBase and the SC_CRS classes are merged into
the IO_IdentifiedObject class to support a simpler XML encoding of the IO_IdentifiedObject class. Note
that the “name” attribute of SC_CRS is mapped to the “name” attribute of IO_IdentifiedObject.

The IO_IdentifiedObject type is implemented by gml:IdentifiedObject element and its content model
is derived-by-extension from gml:DescriptionType.

RS_Identifier is implemented by gml:CodeType. If used, the "version [0..1]" attribute shall be represented
in the codeSpace attribute of gml:CodeType.

EXAMPLE A name for coordinate reference system "4326" of the International Association of Oil and Gas
Producers' EPSG dataset (EPSG) can be represented using an URI as:

© ISO 2020 – All rights reserved 267

ISO 19136-1:2020(E)

 <name>http://www.opengis.net/def/crs/EPSG/0/4326</name>

The use of the optional gml:description property is supported to allow encoding additional
information about each CRS object.

The "name" attribute is implemented by the gml:identifier property.

The "identifier" attribute is implemented by the gml:name property.

The "alias" attribute is implemented by the gml:name property, too.

NOTE In a reverse mapping, identifiers would be those gml:name with a value or codeSpace that could be
mapped to an RS_Identifier and all others would become aliases.

D.2.7.3 Coordinate reference system package

The SC_CRS class is implemented by gml:AbstractCRS.

The "coordinateSystem"/"…CS" association role to a concrete subclass of the CS_CoordinateSystem
class is implemented by gml:coordinateSystem/gml:…CS where the specific CS type name is substituted
for ellipses.

The "datum" association role to a concrete subclass of the CD_Datum class is implemented by gml:…
Datum where the specific datum type name is substituted for ellipses.

NOTE This name change is required because global names are used and otherwise the type of the target
class could not be specified in the GML schema.

The "componentReferenceSystem" association role from the SC_CompoundCRS class to the SC_
SingleCRS class, is implemented by the gml:componentReferenceSystem property.

The "baseCRS" association, from the SC_ProjectedCRS class to the SC_GeodeticCRS class, is implemented
by the gml:baseGeodeticCRS property.

D.2.7.4 Coordinate system package

Besides the implementation rules specified in D.2.7.2 and D.2.7.3 the mapping is straightforward with
the exception that the "axisUnitID" attribute of CS_CoordinateSystemAxis is implemented by the uom
XML attribute.

D.2.7.5 Datum package

Besides the implementation rules specified in D.2.7.2 and D.2.7.3 the mapping is straightforward,
except for the fact that the order of the properties in the CD_Datum has been changed in the mapping to
gml:AbstractDatum.

D.2.7.6 Coordinate operation package

The CC_Conversion and CC_Transformation classes are implemented in two steps as separate abstract
and concrete elements.

The parameterValue and method association roles from the CC_Operation class are implemented in the
concrete gml:Conversion and gml:Transformation elements, to reduce the need to use XML Schema
restriction.

The order of the properties in the CC_CoordinateOperation has been changed in the mapping to gml:Ab
stractCoordinateOperation.

The "coordOperation" association role, from the CC_ConcatenatedOperation class to the CC_
CoordinateOperation class, is implemented by the gml:coordOperation property.

268 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

The "parameter" association roles to the CC_GeneralOperationParameter or CC_OperationParameter
class are implemented by the gml:generalOperationParameter or the gml:operationParameter
property depending on the target class.

D.2.8	 ISO	19112	spatial	referencing	by	geographic	identifiers

GML does not provide a predefined schema for gazetteers. However, it does provide predefined
properties for spatial references by geographic identifiers:

— The property <gml:locationName> contains a text that describes the location.

— The property <gml:locationReference> references a text that describes the location.

D.2.9 ISO 19115 metadata

GML does not provide an information model for metadata. Instead a mechanism to include or reference
metadata is provided for all object elements.

As specified in 7.2.6, if metadata following the conceptual model of ISO 19115 is to be encoded in a
GML document, the corresponding XML Schema specified in ISO/TS 19139 has to be used to encode the
metadata information.

D.2.10 ISO 19118 encoding

The encoding rules described in E.2 conforms to ISO 19118 Level 1.

D.2.11 ISO 19123 coverages

The UML model of the GML profile defined in this annex describes a conceptual model of the
abstract types defined in ISO 19123. Table D.8 maps GML Coverage object and property names to the
corresponding class names and their attributes in ISO 19123 to ease the comparison with that standard.

Table	D.8	—	Description	of	the	implementation	of	ISO	19123

ISO 19123 construct GML construct
CV_Coverage AbstractCoverage (AbstractCoverageType)
domainExtent (attribute) boundedBy (property)
domainElement (role name) domainSet (property)
rangeElement (role name) rangeSet (property)
AttributeValues ValueArray,

or
AbstractScalarValueList

CoverageFunction (association) coverageFunction (property)
CV_GridValuesMatrix GridFunction
sequencingRule (attribute) sequenceRule (property)
CV_SequenceRule SequenceRuleType
CV_SequenceType SequenceRuleNames
scanDirection (attribute) order (attribute)
startSequence (attribute) startPoint (property)
CV_Grid Grid
CV_GridEnvelope GridEnvelope
low (attribute) low (property)
high (attribute) high (property)
CV_RectifiedGrid RectifiedGrid

© ISO 2020 – All rights reserved 269

ISO 19136-1:2020(E)

ISO 19123 construct GML construct
origin (attribute) origin (property)
offsetVectors (attribute) (set of) offsetVector(s) (property)
CV_DiscretePointCoverage MultiPointCoverage
CV_DiscreteCurveCoverage MultiCurveCoverage
CV_DiscreteSurfaceCoverage MultiSurfaceCoverage
CV_DiscreteGridPointCoverage GridCoverage

or
RectifiedGridCoverage

The additional changes shown in Table D.9 have been applied to the coverage package of ISO 19123.

Table	D.9	—	Description	of	the	profile	of	ISO	19123

Change Rationale
All subclasses of CV_ContinuousCoverage deleted Currently not supported by GML.
Coordinate Reference System association deleted from
CV_Coverage

Replaced by srsName (or frame) attributes on the
Geometry or Temporal objects in the domain. The GML
coverage package allows for domain objects to be in
different coordinate reference systems (or reference
frames).

CV_CommonPointRule deleted Currently not supported by GML.
AttributeValues deleted Replaced by a choice between the GML analogues:

ValueArray or AbstractScalarValueList.
CV_GeometryValuePair deleted The GML coverage encodes only the domain-range

functional viewpoint.
CV_GridValuesMatrix deleted The mapping between grid points and range values

including sequence rule, etc. is contained in an object
(GridFunction) that does not inherit from Grid.

CV_GridCell Currently not supported by GML.

The UML class diagram in Figure D.39 illustrates the profile of the “Coverage root” package (compare
with ISO 19123:2005, Figure 2).

Figure D.39 — Coverages overview

The UML class diagram in Figure D.40 illustrates the discrete coverages (compare with ISO 19123:2005,
Figures 3, 4 and 5).

Table	D.8	(continued)

270 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

Figure D.40 — Discrete coverages

The rules governing conformance of a profile of ISO 19123 are described in ISO 19123:2005, Clause 2
and Annex A.

The conditions of the following conformance clauses are met:

— A.1.1 Simple coverage interface;

— A.1.2 Discrete coverage interface;

— A.1.4 Quadrilateral grid coverage interface.

Note that derived attributes are treated as operations and it is assumed that the derived attributes will
be derived from the data by the application handling the GML instances.

D.3	 Extension	of	the	profile	of	the	ISO	19100	series	of	International	Standards

D.3.1 Overview

The following subclauses define the additional parts of GML that are not covered by the profile of
the ISO 19100 series defined in D.2. UML is used as the conceptual schema language to describe the
additional elements in accordance with ISO/TS 19103. For details on the semantics of the additional
classes see Clauses 7 to 19.

The GML schema components have been grouped semantically based on the structure of the Clauses 7
to 19 and a package for each grouping is created. The required additional classes not documented in D.2
are defined in the corresponding package. The packages are part of a package “GML”.

D.3.2	 Package	“basicTypes”

In addition to the types from ISO/TS 19103:2005, 8.2 defines a number of additional types that are used
and required by other GML schema documents.

© ISO 2020 – All rights reserved 271

ISO 19136-1:2020(E)

Most of these additions are the result of the capability to provide information about void information
(nilReason attributes). It has been added to the GML schema based on user requirements and since the
concept was considered to be of general utility (see Figures D.41 and D.42).

The list types are just convenience types to simplify the writing of the GML schema.

Figure D.41 — Simple types

272 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

Figure D.42 — Lists

D.3.3	 Package	“gmlBase”

In addition to the types from ISO/TS 19103:2005, 7.2 defines few additional types that are used by other
GML schema documents besides those that are part of the mapping from the conceptual schema to the
XML Schema implementation. The representation of object types, association roles, etc. in XML Schema
is described in Annex E.

gml:AbstractObject, gml:AbstractGML and gml:AbstractFeature (see D.3.4) make general concepts
explicitly available for use in an application schema. This is required/useful, for example when a
property may carry a value that is any feature (see Figures D.43 and D.44).

© ISO 2020 – All rights reserved 273

ISO 19136-1:2020(E)

Figure D.43 — Base types

Figure D.44 — Aggregation types of collection

D.3.4	 Package	“feature”

This subclause specifies additional types used in Clause 9. The types clarify the representation of
feature types and common, predefined, optional property elements, namely names, an identifier, a
description and a bounding envelope (see Figure D.45).

274 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

Figure D.45 — Features

D.3.5	 Package	“geometryBasic0d1d”

This subclause specifies additional types used in 10.3 and 10.4.

Figure	D.46	—	GM_Curve	with	a	single	GM_LineString	segment

An additional subtype of GM_Curve is added in GML. “LineString” is a special curve that consists of
only GM_LineString segments. The XML representation of the “LineString” object element joins
all the segments into one segment and its control points are represented as direct properties of the
“LineString”. (See Figure D.46.)

© ISO 2020 – All rights reserved 275

ISO 19136-1:2020(E)

The "LineString" type as specified above was added as a convenience type since it represents a typical
case in practice.

D.3.6	 Package	“geometryBasic2d”

This subclause specifies additional types used in 10.4.5.

Figure	D.47	—	A	GM_Surface	with	a	single	GM_Polygon	patch

An additional subtype of GM_Surface is added in GML. “Polygon” is a special surface that consists of
a single GM_Polygon patch. Since only a single patch exists, the XML representation of the “Polygon”
object element skips the patch level and the exterior and interior boundary properties of the patch are
represented as direct properties of the “Polygon”.

In a similar way, “LinearRing” is a simple ring (a GM_Ring represented by a single line string).

The "Polygon" and "LinearRing" types as specified above were added as convenience types since they
represent a typical case in practice. (See Figure D.47.)

D.3.7	 Package	“geometryPrimitives”

This subclause specifies additional types used in 10.5.10.

276 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

Figure D.48 — Additional curve segments and surface patches

The curve segments “ArcByCenterPoint” and “CircleByCenterPoint” as well as the surface patch
“Rectangle” have been defined in GML since these representations of a circle or arc are commonly used
in several application domains (see Figure D.48).

D.3.8	 Package	“geometryAggregates”

This subclause specifies additional types used in 11.3.

Figure D.49 — Additional geometric aggregates

GML defines an instantiable geometric aggregate which is not restricted to elements of a single
dimension: “MultiGeometry”. This type has been added since such a collection of geometry objects is
used in several applications and it is considered a generally useful concept. (See Figure D.49.)

© ISO 2020 – All rights reserved 277

ISO 19136-1:2020(E)

D.3.9	 Packages	“coordinateOperations”,	“coordinateReferenceSystems”,	
“coordinateSystems”,	“dataQuality”,	“datums”,	“referenceSystems”

D.3.9.1 Overview

D.3.10 specifies temporal reference systems as an additional coordinate reference system subtype
along with types for temporal datums and time coordinate systems.

The mapping to the GML objects implementing these types (gml:TemporalCRS, gml:TimeCS and
gml:TemporalDatum) is straightforward and follows the rules described in D.2.7.

D.3.9.2 UML schema of package "coordinateReferenceSystems"

Figure D.50 shows the UML class diagram of the coordinateReferenceSystems package relevant to
temporal CRS.

Figure D.50 — TemporalCRS

Table	D.10	—	Defining	elements	of	TemporalCRS	class

Description: A 1D coordinate reference system used for the recording of time.
Stereotype: (none)
Derived from SC_SingleCRS
Association roles: datum to TemporalDatum[1]

coordinateSystem to CS_TimeCS[1]
(associations inherited from SC_SingleCRS)

Public attributes: 6 attributes inherited from IO_IdentifiedObjectBase, RS_ReferenceSystem and SC_CRS.

D.3.9.3 UML schema of package "coordinateSystems"

A time coordinate system is a 1-dimensional coordinate system containing a single time axis and is
used to describe the temporal position of a point in the specified time units from a specified time origin.

Figure D.51 shows the UML class diagram of the coordinateSystems package relevant to time coordinate
systems. A restriction on the association between SC_SingleCRS and CS_CoordinateSystem is shown in
the UML class diagram in Figure D.52.

There are restrictions on associations between Coordinate Reference System subtypes and Coordinate
System subtypes are shown in the UML class diagram in Figure D.52.

278 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

Figure D.51 — TimeCS

Figure	D.52	—	Association	between	TemporalCRS	and	TimeCS

Table	D.11	—	Defining	elements	of	TimeCS	class

Description: A one-dimensional coordinate system containing a time axis, used to describe the tempo-
ral position of a point in the specified time units from a specified time origin. A TimeCS
shall have one axis association.

Stereotype: (none)
Derived from CS_CoordinateSystem
Association roles: coordinateSystem from TemporalCRS[1]

(associations inherited from CS_CoordinateSystem)
Public attributes: 4 attributes inherited from IO_IdentifiedObject and IO_IdentifiedObjectBase.

Table	D.12	—	Defining	elements	of	CS_AxisDirection	class

Description: The direction of positive increase in the coordinate value for a coordinate system axis.
Stereotype: CodeList
Derived from (none)
Association roles: (none)
Used by: CS_CoordinateSystemAxis
Public attributes:
Attribute	

name
UML	identifier Data type Obligation Maximum

occurrence
Attribute	description

future Future CharacterString C 1 Axis positive direction is to-
wards the future.

Condition: One and only one of the listed attributes shall be supplied.

© ISO 2020 – All rights reserved 279

ISO 19136-1:2020(E)

past Past CharacterString C 1 Axis positive direction is to-
wards the past.

Condition: One and only one of the listed attributes shall be supplied.

D.3.9.4 UML schema of package "datums"

Figure D.53 shows the UML class diagram of the datums package relevant to temporal datums. A
restriction on the association between SC_SingleCRS and CD_Datum is shown in the UML class diagram
in Figure D.54.

Figure D.53 — TemporalDatum

Figure	D.54	—	Association	between	TemporalCRS	and	TemporalDatum

Table	D.12	(continued)

280 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

Table	D.13	—	Defining	elements	of	TemporalDatum	class

Description: A temporal datum defines the origin of a temporal reference system.
Stereotype: (none)
Derived from CD_Datum
Association roles: datum from TemporalCRS[1]
Public attributes: 8 attributes inherited from CD_Datum, IO_IdentifiedObject and IO_IdentifiedObjectBase, plus:
Attribute	

name
UML	identifier Data type Obligation Maximum

occurrence
Attribute	description

Origin origin DateTime M 1 The date and time origin of this
temporal datum.

Of the 8 inherited attributes the following two are modified:
Anchor

definition
anchorDefinition CharacterString M 0 This attribute is not used by a

temporal datum.
Realization

epoch
realizationEpoch Date M 0 This attribute is not used by a

temporal datum.

D.3.10	Package	“topology”

This subclause specifies additional types used in Clause 13.

Figure D.55 — Topological expressions

GML defines several data types containing (or referencing) directed topological primitives, one per
dimension: “TopoPoint”, “TopoCurve”, “TopoSurface” and “TopoVolume”. These are convenience types
which are intended to be used in properties of features in applications. (See Figure D.55.)

D.3.11	Package	“dynamicFeature”

This subclause specifies additional types used in 14.5.

© ISO 2020 – All rights reserved 281

ISO 19136-1:2020(E)

The dynamic feature concept has been added to GML, because a capability to express time varying
properties has been considered a fundamental concept of geographic information. (See Figure D.56.)

Figure D.56 — Dynamic features

D.3.12	Package	“dictionary”

This subclause specifies additional types used in Clause 15. The dictionary concept has been added to
GML, because a capability to encode dictionaries of code lists, units and coordinate reference systems is
fundamental for working with instance data and application schemas. (See Figure D.57.)

Figure D.57 — Dictionaries

NOTE The “Dictionary” class had to be named GMLDictionary to avoid a naming conflict with the class with
the same name in ISO/TS 19103.

282 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

D.3.13	Package	“units”

This subclause specifies additional types used in 16.2. The schema has been specified as part of GML,
because the model used in ISO/TS 19103 was not sufficient to express the information required about
units of measurement (see Figure D.58).

Figure	D.58	—	Unit	definitions

D.3.14	Package	“measures”

This subclause specifies additional types used in 16.3. In addition to the subtypes of "Measure" as
specified in ISO/TS 19103, another subtype has been used in the context of grids and thus has been
specified as part of the GML schema (see Figure D.59).

© ISO 2020 – All rights reserved 283

ISO 19136-1:2020(E)

Figure D.59 — Additional measures

D.3.15	Package	“valueObjects”

This subclause specifies additional types used in 16.4. These types are used in the observations schema
(see D.3.17).

The component hierarchy is illustrated in the UML class diagrams in Figures D.60 to D.64. UML
generalization relationships are used to indicate XML Schema substitution group and choice group
membership. UML composition relationships are used to indicate membership in an XML Schema type
content model.

Figure D.60 — Value expressions

284 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

Figure D.61 — Scalar values

NOTE To avoid a naming conflict with the class Boolean in ISO/TS 19103, the boolean value object class has
been named BooleanValue.

© ISO 2020 – All rights reserved 285

ISO 19136-1:2020(E)

Figure D.62 — Scalar value lists

Figure D.63 — Composite value

286 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

Figure D.64 — Extents

D.3.16	Package	“direction”

This subclause specifies additional types used in Clause 17 (see Figure D.65). These types are used in
the observations schema (see D.3.17).

Figure D.65 — Direction

D.3.17	Package	“observation”

This subclause specifies additional types used in Clause 18 (see Figure D.66).

The observation concept has been added to GML, because the concept of observations is considered a
fundamental concept of geographic information.

© ISO 2020 – All rights reserved 287

ISO 19136-1:2020(E)

Figure	D.66	—	Observation

288 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

Annex E
(normative)

UML-to-GML application schema encoding rules

E.1 General concepts

The mapping from an ISO 19109 conformant UML Application Schema to the corresponding GML
application schema is based on a set of encoding rules. These encoding rules are compliant with the
rules for GML application schemas and are based on ISO 19118.

The rules are derived from the rules for the GML model and syntax as described in Clauses 7 to 21,
especially Clause 7. The encoding rules of ISO 19118:2005, Annex A, are used whenever possible and
feasible.

The rules listed in this annex aim at an automatic mapping from an ISO 19109 and ISO/TS 19103
conformant UML application schema to a GML application schema (in accordance with the rules defined
in Clause 21). As a result of this automation, the resulting GML application schema will not make full
use of the capabilities of XML and XML Schema, but will provide an XML implementation conformant to
the ISO 19100 series of International Standards with a well-defined, predictable XML grammar.

These rules do not prescribe that all GML application schemas shall be generated by using these rules.
All schemas following the rules defined in Clause 21 are valid and conformant GML application schemas,
whether they are handcrafted, automatically derived from a UML application schema or produced by
some other means.

The schema encoding rules are based on the general idea that the class definitions in the application
schema are mapped to type and element declarations in XML Schema, so that the objects in the instance
model can be mapped to corresponding element structures in the XML document.

E.2 Encoding rules

E.2.1 General encoding requirements

E.2.1.1 Application schemas

E.2.1.1.1 General (application schema, packages)

To be a valid input into the mapping the UML Application Schema shall conform to all of the following
rules. See ISO 19118:2005, A.2.1, for additional requirements.

The UML Application Schema shall conform to the rules defined in ISO 19109 and ISO/TS 19103.

The UML Application Schema shall be represented by a package with the stereotype <<Application
Schema>>. This package shall contain (i.e. own directly or indirectly) all UML model elements to be
mapped to object types in the GML application schema. The package may include other packages
without the stereotype <<Application Schema>> to group the different UML model elements within the
application schema.

The UML model shall be complete and not contain external references unless exceptions are explicitly
stated below. Predefined classes may be imported from the standardized schemas of the ISO 19100
series of International Standards. The classes from the ISO 19100 series of International Standards that
are implemented by the GML schema and used by the UML application schema shall be specified in a
package with the name "ISO 19100" or any sub-package of a package with that name.

© ISO 2020 – All rights reserved 289

ISO 19136-1:2020(E)

Dependencies between packages shall be modelled explicitly. Permission elements with stereotype
<<import>> or unspecified dependency elements between packages shall be used to express the
dependency of elements in a package from elements in another package. All other dependency elements
shall be ignored, see Figure E.1.

Figure	E.1	—	Dependency	between	packages	<informative>

The visibility of all UML elements shall be set to “public”. Only publicly visible elements shall be part of
Application Schemas used for data interchange between applications.

Documentation of the elements in the UML model shall be stored in tagged values “documentation”.

A unique XML namespace shall be associated with the UML Application Schema. Tagged values
“targetNamespace“ for the target namespace URI and “xmlns“ for the abbreviation shall be set if and
only if the package represents a UML application schema.

The version number of a package representing a UML Application Schema shall be specified in a tagged
value “version”, if applicable.

A GML profile may be associated with the application schema by a tagged value “gmlProfileSchema”. If
provided, the value shall be a URL referencing the schema location of the GML profile.

If a package shall be mapped to its own XML Schema document, a tagged value "xsdDocument" shall be
set providing a valid relative file name of the schema document. The tagged value shall be set for every
package representing the UML Application Schema. All tagged values "xsdDocument" in a UML model
shall be unique.

EXAMPLE The value of an "xsdDocument" tagged value can be "GeodeticPoints.xsd" or "schemas/Parcels.xsd".

E.2.1.1.2 Classes

All class names within the same Application Schema shall be unique and an "NCName" as defined by
W3C XML Namespaces: 1999.

Feature types shall be modelled as UML classes with stereotype <<FeatureType>>, see Figure E.2.

NOTE 1 Neither ISO 19109 nor ISO 19118:2005, Annex A, distinguishes between feature types and object types
— ISO 19109 only considers feature types while ISO 19118:2005, Annex A, classifies all feature types as object
types. However, the distinction is meaningful in GML and in practice often required in application schemas. The
distinction made in this annex is a conformant refinement of ISO 19118:2005, Annex A.

290 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

Figure E.2 — A feature type <informative>

Object types shall be modelled as UML classes with no stereotype. Object types are types where the
instances shall have an identity, but which are not feature types10).

EXAMPLE Examples of such types are geometries, topologies, reference systems. Instances of these types
can have, for example, a name and an identifier.

UML classes with stereotype <<Type>> may have zero or more operations (these are not mapped to the
GML application schema), attributes or associations.

The stereotype <<Abstract>> shall not be used in an Application Schema, because its use may be
inconsistent with the use of correct UML notation, and thus misleading.

All instantiable subtypes of abstract types shall be either feature types, object types or data types.

Enumerations shall be modelled as UML classes with stereotype <<Enumeration>>.

Code lists shall be modelled as UML classes with stereotype <<CodeList>>, see Figure E.3.

Figure E.3 — A code list <informative>

Union types shall be modelled as UML classes with stereotype <<Union>> (as specified in ISO 19107).

All other data types shall be modelled as UML classes with stereotype <<DataType>>, see Figure E.4.

Figure E.4 — A data type <informative>

UML classes of the ISO 19100 series of International Standards that are part of the GML profile and for
which a GML base type has been provided in Table D.2 in the "GML type" column may be subclassed in

10) Object types are not considered explicitly in ISO 19109:2005. They appear only as value types of property types.

© ISO 2020 – All rights reserved 291

ISO 19136-1:2020(E)

the UML application schema. In the subclasses, additional properties may be added or properties of the
subtype may be redefined with a restricted multiplicity or domain of values.

NOTE 2 Although redefinition of properties is supported, these redefined properties will be ignored in
the conversion rules and it is the responsibility of the application to verify the constraints introduced by the
redefinition. All classes with other stereotypes than those mentioned above can be part of the UML Application
Schema, but will be ignored.

When an Application Schema refers to types defined by other standards of the ISO 19100 series which
are implemented by the GML schema, match the class names with those listed in the first column of
Table D.2.

A generalization relationship may be specified only between two classes that are either:

— both feature types,

— both object types, or

— both data types.

All generalization relationships between classes shall have no stereotype. All generalization
relationships with other stereotypes will be ignored. The discriminator property of the UML
generalization shall be blank.

If a class is a specialization of another class, then this class shall have only one supertype (no support
for multiple inheritance).

All classes shall have a stereotype specifying the meaning of the class. Classes without a stereotype are
treated as object types, see Figure E.5.

Figure	E.5	—	Generalization	relationship	between	feature	types	<informative>

E.2.1.1.3	 Attributes

Every UML attribute of an abstract type, feature type, object type, data type or union type shall have
a name and a type. The name shall be an "NCName" as defined by W3C XML Namespaces: 1999. If its
multiplicity is not “1”, the multiplicity shall be specified explicitly. An initial value may be specified for
attributes with a number, string or enumeration type.

The type shall either be a predefined type (see E.2.1.1.5) or a class defined in the UML model.

Every UML attribute of an enumeration class shall have a name. The type information is left empty. No
multiplicity, ordering or initial value information shall be attached to the attribute.

Every UML attribute of a code list class shall have a name. The type information is left empty. No
multiplicity or ordering information shall be attached to the attribute. An initial value may be specified

292 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

to document a code for the code list value. If it is omitted, the value (i.e. the attribute name) is used as
the code.

The properties of a UML class are not ordered. To support the consistent ordering of the properties
from the UML model in the conversion to XML Schema, a tagged value “sequenceNumber” (value
domain: integer) shall be specified for every attribute. The value shall be unique for all attributes and
association ends of a class.

E.2.1.1.4 Associations and association ends

Every UML association shall be an association with exactly two association ends. Both association
ends shall connect to a feature, object or data type and shall have no stereotype or the stereotype
<<association>> (otherwise the whole association will be ignored).

An association shall not contain any properties.

The rules for association ends are:

— If an association end is navigable it shall be marked as such and shall have a rolename. An association
end with no name shall be ignored, even if it marked as navigable. If a name is provided, it shall be
an "NCName" as defined by W3C XML Namespaces: 1999.

— The multiplicity shall be given explicitly.

— The aggregation kind shall be specified explicitly if it is not “none”.

— If the target class of an association end is a data type, then the aggregation kind shall be “composition”.

Figure E.6 shows two example associations; one association is navigable in both directions and the
other is an aggregation which is navigable in one direction only.

Figure E.6 — Associations <informative>

The properties of a UML class are not ordered. To support the consistent ordering of the properties from
the UML model in the conversion to XML Schema, a tagged value “sequenceNumber” (value domain:
integer) shall be specified for every association end. The value shall be unique for all attributes and
association ends of a class.

E.2.1.1.5	 Predefined	types

The predefined types from ISO/TS 19103 listed in E.2.4.4 are treated as “basic types” in the sense of
ISO 19118:2005, Annex A (i.e. a canonical XML Encoding is attached to them).

© ISO 2020 – All rights reserved 293

ISO 19136-1:2020(E)

E.2.1.1.6 OCL constraints

All OCL constraints are ignored. The assessment of the validity of the instance model with respect to
these constraints is the task of the application processing the GML instances.

NOTE The Schematron language can be used to express OCL constraints as part of the XML Schema
representing the GML application schema.

E.2.1.1.7 Other information

All other information in the UML Application Schema is not used in the encoding rules and is ignored.

E.2.1.2 Character repertoire and languages

“UTF-8” or “UTF-16” shall be used as the character encoding of the XML Schema files (with the associated
character repertoire) in accordance with XML.

E.2.1.3 Exchange metadata

Exchange metadata may be specified for every feature or feature collection in a GML instance document
by specifying in the application schema property elements whose content model is derived from "gml:A
bstractMetadataPropertyType" as described in E.2.4.11 and E.2.4.13.

No specific schema for the exchange metadata is added to the GML application schema.

E.2.1.4	 Dataset	and	object	identification

Unique identifiers in accordance with XML's ID mechanism are used to identify objects.

NOTE The XML ID mechanism only requires that these identifiers are unique identifiers within the XML
document in which they appear.

E.2.1.5 Update mechanism

No explicit update mechanism is defined for the features defined in the GML application schema. It is
assumed that other mechanisms are used to update a data store.

NOTE An example is the “Transaction” operation of the OpenGIS® Web Feature Service Implementation
Specification.

E.2.2 Input data structure

See ISO 19118:2005, A.3, for a description of the input data structure.

E.2.3 Output data structure

This encoding rule is based on the XML Recommendation 1.0 and the XML Linking Language (XLink)
Version 1.0. The schema for the output data structure that governs the structure of the exchange format
shall be a (set of) valid XML Schema(s) in accordance with XML Schema 1.0 and the Rules for Application
Schemas (see Clause 21).

The XML Schema conversion rules are defined in the following Subclause.

294 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

E.2.4 Conversion rules

E.2.4.1 General concepts

The schema conversion rules define how XML Schema documents (XSDs) shall be derived from an
application schema expressed in UML in accordance with ISO 19109. A number of general rules are
defined in E.2.4 to describe the mapping from a UML model that follows the guidelines described in E.2.1.

NOTE In this annex the namespace "xsd:" is used to refer to the namespace of XML Schema, which is "http://
www .w3 .org/ 2001/ XMLSchema". The namespace “gml:” refers to the namespace of GML, which is “http:// www
.opengis .net/ gml/ 3 .2”.

The rules are based on the GML model and syntax as described in Clauses 7 to 21 (especially Clauses 7,
9 and 21) and also on the encoding rules of ISO 19118:2005, Annex A.

The schema encoding rules are based on the general idea that the class definitions in the UML application
schema are mapped to type and element declarations in XML Schema, so that the objects in the instance
model can be mapped to corresponding element structures in the XML document.

Table E.1 gives an overview.

Table	E.1	—	Schema	encoding	overview

Table: UML → GML application schema overview
UML application schema GML application schema

Package One XML Schema document per package (default mapping)
<<Application Schema>> XML Schema document

<<DataType>> Global element, whose content model is a globally scoped XML Schema com-
plexType, property type

<<Enumeration>> Restriction of xsd: string with enumeration values

<<CodeList>> Union of an enumeration and a pattern (default mapping, an alternative
mapping is a reference to a dictionary)

<<Union>> Choice group whose members are GML objects or features, or objects corre-
sponding to DataTypes

<<FeatureType>>
Global element, whose content model is a globally scoped XML Schema
type derived by direct/indirect extension of gml: AbstractFeatureType,
property type

No stereotype or <<Type>> Global element, whose content model is a globally scoped XML Schema type
derived by direct/indirect extension of gml: AbstractGMLType, property type

Operations Not encoded

Attribute local xsd: element, the type is either a property type (if the type is a complex
type) or a simple type.

Association role local xsd: element, the type is always a property type (only named and navi-
gable roles)

General OCL constraints Not encoded

NOTE <<FeatureType>> is a new stereotype which does not appear in ISO/TS 19103 or ISO 19109, and is
used to indicate that the type is a realization of GF_FeatureType and a specialization from AbstractFeature.

The multiplicity of attributes and association roles is mapped to “minOccurs” and “maxOccurs”
attributes in <xsd: element> declarations. The detailed mapping rules are described below.

For different UML model elements, different tagged values are used to control the mapping from UML
to XML Schema. The following Table E.2 provides a list of these tagged values.

© ISO 2020 – All rights reserved 295

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.opengis.net/gml/3.2
http://www.opengis.net/gml/3.2

ISO 19136-1:2020(E)

Table	E.2	—	Tagged	values

UML model element Associated tagged values

Package

— documentation

— xsdDocument

— targetNamespace (only <<Application Schema>>)

— xmlns (only <<Application Schema>>)

— version (only <<Application Schema>>)

— gmlProfileSchema (only <<Application Schema>>)

Class

— documentation

— noPropertyType

— byValuePropertyType

— isCollection

— asDictionary (only <<CodeList>>)

— xmlSchemaType (only <<Type>>)

Attribute and association end

— documentation

— sequenceNumber

— inlineOrByReference

— isMetadata

E.2.4.2 UML packages

One XML Schema document is generated per package with the tagged value "xsdDocument" with the
file name specified by the tagged value.

If the tagged value "xsdDocument" is set for a package, then the schema document contains all the XML
Schema components resulting from the UML classes directly owned by the package. If the package is
not a UML application schema, the schema document shall be included by the schema document that
contains the schema components of the package that owns that package.

If the tagged value "xsdDocument" is not set for a package, all schema components are declared in the
schema document that contains the schema components of the package that owns that package.

NOTE The tagged value is mandatory for all packages with the stereotype <<Application Schema>>, but
optional for all other packages.

For every schema document, the "targetNamespace" and the "version" attributes of the root element
shall be set in accordance with the tagged values of the same name in the package representing the UML
Application Schema that owns the schema components within the schema document; if the "version"
tagged value is not specified, the value "unknown" shall be used. In addition an "xmlns" attribute shall
be specified for the target namespace with the value of the tagged value "xmlns" as the abbreviation.

EXAMPLE 1 “http:// www .myorg .com/ myns” can be a target namespace and “myns” can be the associated
abbreviation used in the schema documents.

For every tagged value "gmlProfileSchema" of a package with the stereotype <<Application Schema>>,
an element <gml: gmlProfileSchema> with the content of the tagged value shall be created in an appinfo
annotation of the <schema> element as specified in 20.5.

296 © ISO 2020 – All rights reserved

http://www.myorg.com/myns

ISO 19136-1:2020(E)

The dependencies between the packages shall be used to determine the required imports of other
schemas and additional includes of other schema documents:

— If the schema components specified by the target package of the dependency relationship are in the
same target namespace as those of the supplier package, then the schema document specifying the
schema components of the target package is "included".

— Otherwise the schema document representing the UML Application Schema package that contains
the target package is "imported".

EXAMPLE 2 Mapping the information from Figure E.1 can result in:

<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="http://www.myorg.com/parcels" xmlns="http://www.w3.org/2001/
XMLSchema" xmlns:gml="http://www.opengis.net/gml/3.2" xmlns:gp="http://www.myorg.
com/geodeticPoints" xmlns:pcl="http://www.myorg.com/parcels" xmlns:iso19115="http://
www.isotc211.org/iso19115/" xmlns:xlink="http://www.w3.org/1999/xlink"
elementFormDefault="qualified" version="2003-07-20">
 <include schemaLocation="Buildings.xsd"/>
 <import namespace="http://www.myorg.com/geodeticPoints" schemaLocation="GeodeticPoints.
xsd"/>
 <import namespace="http://www.opengis.net/gml/3.2" schemaLocation="base/gml.xsd"/>
 <!-- … -->
</schema>

E.2.4.3 UML classes (general rules)

Recognized stereotypes for UML classes are: no stereotype, <<FeatureType>>, <<Type>>, <<DataType>>,
<<Union>>, <<CodeList>>, and <<Enumeration>>. All classes will be mapped to the corresponding class
category. All UML classes with other stereotypes will be ignored.

All UML classes shall have zero or one supertype.

All UML classes are mapped to named types. A suffix “Type” is added to the name of the type.

E.2.4.4	 UML	classes	(basic	types)

The basic types from the GML profile of ISO/TS 19103 listed in the left column of Table D.2 (starting
with "CharacterString") are predefined and may be used as a data type of an attribute in an application
schema conforming to ISO 19109. The mapping to a built-in type of XML Schema (“xsd:”) or GML (“gml:”)
is specified. If multiple names are given in a cell of the table then the name in bold typeface shall be
used as the default type of the mapping.

NOTE 1 Multiple values in the right column are used to support also the reverse mapping in Annex F.

EXAMPLE ISO/TS 19103 Integer maps to “xsd: integer”.

If a class with the stereotype <<Type>> has a canonical XML Schema encoding (e.g. from XML Schema)
the XML Schema typename corresponding to the data type shall be given as the value of the tagged
value “xmlSchemaType”.

NOTE 2 Canonical encodings are often preferred to structured encodings that follow the standard UML-to-
GML encoding rules, for example where a compact structure based on “simpleContent” is already well known
within the application domain.

E.2.4.5 UML classes (data types)

UML classes with stereotype <<DataType>> shall be mapped to XML Schema complex types.

NOTE Data types with other stereotypes, i.e. <<Enumeration>>, <<CodeList>> and <<Union>>, and
predefined basic types are treated differently. See E.2.4.4, E.2.4.8, E.2.4.9, and E.2.4.10.

© ISO 2020 – All rights reserved 297

ISO 19136-1:2020(E)

If the class has no supertype, it is a non-derived type in XML Schema; otherwise it extends its supertype
which shall not be derived from gml:AbstractGMLType (directly or indirectly). Abstract superclasses
without any attribute or navigable association role are ignored.

Global XML elements with appropriate settings for name (name of the UML class), type (name of the
UML class plus “Type”), abstractness (if the class is abstract) and substitution groups (the qualified
element name of the superclass or gml:AbstractObject, if the class has no superclass) shall be defined
for these classes.

A named complex type shall be created for these classes (carrying the name of the class with a
“PropertyType” suffix), if the class does not carry a tagged value "noPropertyType" with the value
"true". The type follows the pattern for association properties as defined in GML (see 7.2.3), but without
allowing Xlink attributes.

EXAMPLE The data type “ParcelName” from Figure E.4 can be mapped to:

 <complexType name="ParcelNameType">
 <sequence>
 <element name="countryId" type="string"/>
 <element name="stateId" type="string"/>
 <element name="municipalityId" type="string"/>
 <element name="parcelIdPrefix" type="string"/>
 <element name="parcelIdSuffix" type="string" minOccurs=”0”/>
 </sequence>
 </complexType>

 <element name="ParcelName" type="ex:ParcelNameType" substitutionGroup="gml:AbstractObj
ect"/>
 <complexType name="ParcelNamePropertyType">
 <sequence>
 <element ref="ex:ParcelName"/>
 </sequence>
 <attributeGroup ref="gml:OwnershipAttributeGroup" />
 </complexType>

E.2.4.6 UML classes (feature types)

UML classes with stereotype <<FeatureType>> derive directly or indirectly from
gml:AbstractFeatureType. If the class is a class without supertype, it extends directly
gml:AbstractFeatureType; otherwise it extends its supertype which shall be derived from
gml:AbstractFeatureType (again, directly or indirectly).

— Global XML elements with appropriate settings for name (name of the UML class), type (name of the
UML class plus “Type”), abstractness (true, if the class is abstract) and substitution group (the name
of the superclass or gml:AbstractFeature) are defined for these classes.

— If the class has a single association which is an aggregation or composition of a target class, the
association role is converted to a property element, and the class carries a tagged value "isCollection"
with the value "true", the attribute group gml:AggregationAttributeGroup is added to the complex
type of the feature type.

— A named complex type shall be created for these classes (carrying the name of the class with a
“PropertyType” suffix), if the class does not carry a tagged value "noPropertyType" with the value
"true". The type follows the pattern for association properties as defined in GML (see 7.2.3).

— A named complex type shall be created for these classes (carrying the name of the class with a
“PropertyByValueType” suffix), if the class carries a tagged value "byValuePropertyType" with
the value "true". The type is a profile of the pattern for association properties as defined in GML
restricted to the “by value” form (again, see 7.2.3).

EXAMPLE “Building” from Figure E.2 can be mapped to:

<complexType name="BuildingType">
 <complexContent>
 <extension base="gml:AbstractFeatureType">

298 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

 <sequence>
 <element name="extent" type="gml:SurfacePropertyType"/>
 <element name="address" type="pcl:AddressPropertyType"/>
 <element name="type" type="pcl:BuildingTypeType"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

<complexType name="BuildingPropertyType">
 <sequence minOccurs="0">
 <element ref="pcl:Building"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 <attributeGroup ref="gml:OwnershipAttributeGroup" />
</complexType>

<complexType name="BuildingPropertyByValueType">
 <sequence>
 <element ref="pcl:Building"/>
 </sequence>
 <attributeGroup ref="gml:OwnershipAttributeGroup" />
</complexType>

<element name="Building" type="pcl:BuildingType" substitutionGroup="gml:AbstractFeature"/>

E.2.4.7	 UML	classes	(object	types)

UML classes with no stereotype or stereotype <<Type>> derive directly or indirectly from
gml:AbstractGMLType. If the class is a class without supertype it extends directly gml:AbstractGMLType,
otherwise it extends its supertype which shall be derived from gml:AbstractGMLType (again, directly or
indirectly), but not from gml:AbstractFeatureType (again, directly or indirectly).

— Global XML elements with appropriate settings for name (name of the UML class), type (name of the
UML class plus “Type”), abstractness (true, if the class is abstract) and substitution group (the name
of the supertype or “AbstractGML”) are defined for these classes.

— If the class has a single association which is an aggregation or composition of a target class, the
association role is converted to a property element, and the class carries a tagged value "isCollection"
with the value "true", the attribute group gml: AggregationAttributeGroup is added to the complex
type of the object type.

— A named complex type shall be created for these classes (carrying the name of the class with a
“PropertyType” suffix), if the class does not carry a tagged value "noPropertyType" with the value
"true". The type follows the pattern for association properties as defined in GML (see 7.2.3).

— A named complex type shall be created for these classes (carrying the name of the class with a
“PropertyByValueType” suffix), if the class carries a tagged value "byValuePropertyType" with
the value "true". The type is a profile of the pattern for association properties as defined in GML
restricted to the “by value” form (again, see 7.2.3).

EXAMPLE

<element name="Ellipse" type="ex:EllipseType" substitutionGroup="gml:AbstractCurveSegm
ent"/>

<complexType name="EllipseType">
 <complexContent>
 <extension base="gml:AbstractCurveSegmentType">
 <sequence>
 <element name="center" type="gml:DirectPositionType"/>
 <element name="semiminor" type="gml:VectorType"/>
 <element name="semimajor" type="gml:VectorType"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

© ISO 2020 – All rights reserved 299

ISO 19136-1:2020(E)

E.2.4.8 UML classes (enumerations)

UML classes with stereotype <<Enumeration>> are mapped to XML Schema simple types. The base
type is “string”, the domain of values is restricted to the set of literal values as specified by the attribute
names of the UML class.

EXAMPLE

 <simpleType name="SignType">
 <restriction base="string">
 <enumeration value="-"/>
 <enumeration value="+"/>
 </restriction>
 </simpleType>

E.2.4.9 UML classes (code lists)

A UML class with stereotype <<CodeList>> and without a tagged value "asDictionary" with the value
"true" shall be mapped like an enumeration, but with the following differences:

— A facet "<pattern value=’other: \w{2,}’/>" shall be added that allows for any text value beside the
predefined values; these free values are prefixed with “other: ”.

— If a code is specified for a code list value, only the code shall be represented as an enumeration facet.

— An encoded code value shall be qualified with an appinfo annotation with a gml:description
element specifying the text value of the enumerated value.

EXAMPLE 1 The code list “ParcelUsage” from Figure E.3 can be represented as:

<simpleType name="ParcelUsageType">
 <union memberTypes="pcl:ParcelUsageEnumerationType pcl: ParcelUsageOtherType"/>
</simpleType>

<simpleType name="ParcelUsageEnumerationType">
 <restriction base="string">
 <enumeration value="1">
 <annotation>
 <appinfo><gml:description>factory</gml:description></appinfo>
 </annotation>
 </enumeration>
 <enumeration value="2">
 <annotation>
 <appinfo><gml:description>road</gml:description></appinfo>
 </annotation>
 </enumeration>
 <enumeration value="3">
 <annotation>
 <appinfo><gml:description>residential</gml:description></appinfo>
 </annotation>
 </enumeration>
 <enumeration value="4">
 <annotation>
 <appinfo><gml:description>offices</gml:description></appinfo>
 </annotation>
 </enumeration>
 <enumeration value="5">
 <annotation>
 <appinfo><gml:description>sea, river</gml:description></appinfo>
 </annotation>
 </enumeration>
 </restriction>
</simpleType>

<simpleType name="ParcelUsageOtherType">
 <restriction base="string">
 <pattern value="other: \w{2,}"/>
 </restriction>
</simpleType>

300 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

Alternatively, if the class carries a tagged value "asDictionary" with the value "true", a gml:Dictionary
shall be used to represent a code list.

EXAMPLE 2 The code list “ParcelUsage” from Figure E.3 can be represented in a GML dictionary document as:

<gml:Dictionary gml:id="CodeList" xmlns:gml="http://www.opengis.net/gml/3.2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.
opengis.net/gml/3.2 gml.xsd">
 <gml:identifier codeSpace="http://www.someorg.de/cl.xml">My code lists</gml:identifier>
 <gml:dictionaryEntry>
 <gml:Dictionary gml:id="ParcelUsage">
 <gml:identifier codeSpace="http://www.someorg.de/cl.xml">ParcelUsage</
gml:identifier>
 <gml:dictionaryEntry>
 <gml:Definition gml:id="ParcelUsage_1">
 <gml:description>factory</gml:description>
 <gml:identifier codeSpace="http://www.someorg.de/cl.xml#ParcelUsage">1</
gml:identifier>
 </gml:Definition>
 </gml:dictionaryEntry>
 <gml:dictionaryEntry>
 <gml:Definition gml:id="ParcelUsage_2">
 <gml:description>road</gml:description>
 <gml:identifier codeSpace="http://www.someorg.de/cl.xml#ParcelUsage">2</
gml:identifier>
 </gml:Definition>
 </gml:dictionaryEntry>
 <gml:dictionaryEntry>
 <gml:Definition gml:id="ParcelUsage_3">
 <gml:description>residential</gml:description>
 <gml:identifier codeSpace="http://www.someorg.de/cl.xml#ParcelUsage">3</
gml:identifier>
 </gml:Definition>
 </gml:dictionaryEntry>
 <gml:dictionaryEntry>
 <gml:Definition gml:id="ParcelUsage_4">
 <gml:description>offices</gml:description>
 <gml:identifier codeSpace="http://www.someorg.de/cl.xml#ParcelUsage">4</
gml:identifier>
 </gml:Definition>
 </gml:dictionaryEntry>
 <gml:dictionaryEntry>
 <gml:Definition gml:id="ParcelUsage_5">
 <gml:description>sea, river</gml:description>
 <gml:identifier codeSpace="http://www.someorg.de/cl.xml#ParcelUsage">5</
gml:identifier>
 </gml:Definition>
 </gml:dictionaryEntry>
 </gml:Dictionary>
 </gml:dictionaryEntry>
</gml:Dictionary>

In an instance document the reference would then be encoded (using gml:CodeType as the content
model, see E.2.4.11) for example as:

 <usage codeSpace="http://www.someorg.de/example/cl.xml#ParcelUsage">1</usage>

The codeSpace attribute points to the dictionary, the value is the name of the entry in that dictionary.

The way a code list is encoded in a GML application schema also determines how property elements
that carry the code lists as its value domain shall be encoded; see E.2.4.11.

© ISO 2020 – All rights reserved 301

ISO 19136-1:2020(E)

E.2.4.10 UML classes (unions)

UML classes with stereotype <<Union>> are mapped as XML Schema complex types. These classes are
mapped like data types (see E.2.4.5), but instead of a <xsd: sequence> of the properties, a <xsd: choice>
is used so that exactly one of the properties is specified in an instance of a union.

EXAMPLE

 <complexType name="RemoteResourceType">
 <choice>
 < element name="name" type="string"/>
 < element name="uri" type="anyURI"/>
 </choice>
 </complexType>

E.2.4.11	 UML	attributes	and	association	roles

A UML attribute or association role of an object or feature type is mapped to a local element with
the same name in the complex type defining the content model of the object or feature type. The
minOccurs and maxOccurs attributes are set in accordance with the definitions in the UML model (see
ISO 19118:2005, Annex A, for details of the mapping). The type depends on the type of the value of the
property in UML:

If the type of the value of the property is of simple content, then the type is used directly.

EXAMPLE 1 <element name="count" type="integer"/>

If the type of the value of the property is of complex content, then a property type shall be used. The
default encoding of the property type allows both the inline or by-reference representation for feature
and object types and the inline representation for data and union types. For feature and object types the
representation may be restricted to inline or by-reference using a tagged value “inlineOrByReference”
with the values “inline” or “byReference” respectively. If the tagged value is missing or its value is
“inlineOrByReference” the default encoding shall be used.

If an attribute or association role is a metadata property, then the property type shall extend gm
l:AbstractMetadataPropertyType (see 7.2.6); a metadata property is a property with the tagged
value "isMetadata" with the value "true" or whose value is a class defined by ISO 19115:2003. If an
association role is the target end of an aggregation or composition, then the property type shall extend
gml:AbstractMemberType (see 7.2.5.1) unless it is a metadata property. If an association role is the target
end of a composition or an object-valued attribute, then the property element shall add a Schematron
constraint that asserts that the owns attribute of the gml:OwnershipAttributeGroup is “true”. The
Schematron constraint shall follow the following pattern:

 <sch:pattern>
 <sch:rule context="qualified name of the object element">
 <sch:report test="qualified property name/@owns='true'">This property is a
composition, values are owned</sch:report>
 </sch:rule>
 </sch:pattern>
EXAMPLE 2 For a property ex: representativeLocation of a feature type ex: MyFeature that controls the point
object describing the location this can be described as follows:

<element name="representativeLocation" type="gml:PointPropertyType">
 <annotation>
 <appinfo>
 <sch:pattern">
 <sch:rule context="ex:MyFeature">
 <sch:report test="ex:representativeLocation/@owns='true'">This property is a
composition, values are owned</sch:report>
 </sch:rule>
 </sch:pattern>
 </appinfo>
 </annotation>
</element>
If the property type is already specified in its application schema as a named type (this can be detected
by inspecting the tagged values "noPropertyType" and "byValuePropertyType"), this schema component

302 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

shall be referenced; otherwise, an anonymous property type shall be defined locally in the property
element.

If the encoded property is an association end and the other association end of the association is also
encoded in the GML application schema, the property name of the other association end shall be encoded
in a gml:reversePropertyName element in an appinfo annotation of the property element (see 7.2.3.9).

EXAMPLE 3 By-reference or inline:

<element name="owner" type="ex:PersonPropertyType" minOccurs=”0”>
 <annotation>
 <appinfo>
 <gml:reversePropertyName>ex:owns</gml:reversePropertyName>
 </appinfo>
 </annotation>
</element>
…
<complexType name="PersonPropertyType">
 <sequence minOccurs="0">
 <element ref="ex:Person"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 <attributeGroup ref="gml:OwnershipAttributeGroup" />
</complexType>
or

<element name="owner" minOccurs=”0”>
 <annotation>
 <appinfo>
 <gml:reversePropertyName>ex:owns</gml:reversePropertyName>
 </appinfo>
 </annotation>
 <complexType>
 <sequence minOccurs="0">
 <element ref="ex:Person"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
</complexType>
</element>
Alternatively, the property type may support only one of the representations, inline or by-reference,
depending on the tagged value "inlineOrByReference".

EXAMPLE 4 inline only:

<element name="owner" type="ex:PersonPropertyByValueType" minOccurs=”0”/>
…
<complexType name="PersonPropertyByValueType">
 <sequence>
 <element ref="ex:Person"/>
 </sequence>
</complexType>
or

<element name="owner" minOccurs=”0”>
 <complexType>
 <sequence>
 <element ref="ex:Person"/>
 </sequence>
 </complexType>
</element>
If only the by-reference representation is to be supported, then the property element shall be qualified
with an appinfo annotation element gml:targetElement specifying the qualified element name of the
target type.

 <element name="targetElement" type="string"/>

© ISO 2020 – All rights reserved 303

ISO 19136-1:2020(E)

If the encoded property is an association end and the other association end of the association is also
encoded in the GML application schema, the property name of the other association end shall be
encoded in another appinfo annotation element gml:reversePropertyName specified above.

EXAMPLE 5 By-reference only:

<element name="owner" type="gml:ReferenceType" minOccurs=”0”>
 <annotation>
 <appinfo>
 <gml:targetElement>ex:Person</gml:targetElement>
 <gml:reversePropertyName>ex:owns</gml:reversePropertyName>
 </appinfo>
 </annotation>
</element>
Depending on the encoding of the class, a UML attribute of a code list or enumeration type is mapped
to an element with either a string value (value domain: values of the enumeration or code list) or a
value referencing the corresponding dictionary entry. In an instance, the dictionary may be explicitly
referenced using the codeSpace attribute. A default value for the URI representing the dictionary may
be provided using an appinfo annotation element gml:defaultCodeSpace.

 <element name="defaultCodeSpace" type="anyURI"/>
EXAMPLE 6 The code list “BuildingType” may be represented as:

<element name="type" type="ex:BuildingTypeType"/>
or

<element name="type" type="gml:CodeType">
 <annotation>
 <appinfo>

 <gml:defaultCodeSpace>http://www.someorg.de/example/cl.xml#BuildingType</
gml:defaultCodeSpace>
 </appinfo>
 </annotation>
</element>

If a UML attribute or UML association role is redefined (i.e. a subclass contains an attribute or
association role with the same name as in a supertype) then this property is not part of the content
model of the subtype. It is the responsibility of an application to assert the compliance of instances with
such constraints expressed in the conceptual model.

All attributes and association roles of a class shall be converted in the ascending sort order of the tagged
value “sequenceNumber”.

E.2.4.12 Documentation

Tagged values “documentation” from elements in the UML model are mapped to annotation/
documentation elements in the XML Schema files.

EXAMPLE

 <element name="curveProperty" type="gml:CurvePropertyType">
 <annotation>
 <documentation>This property element either references a curve via the XLink-
attributes or contains the curve element. curveProperty is the predefined property which
can be used by GML application schemas whenever a GML feature has a property with a value
that is substitutable for AbstractCurve.</documentation>
 </annotation>
 </element>

E.2.4.13 Classes imported from the ISO 19100 series of International Standards

In addition to the rules defined above, the following rules apply when the UML Application Schema
imports classes from the ISO 19100 series of International Standards.

304 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

Classes from the ISO 19100 series of International Standards that are implemented by the GML
schema shall be recognized. The use of classes from the ISO 19100 series of International Standards
shall be conformant with ISO 19109. The mapping of the relevant classes from the ISO 19100 series of
International Standards is shown in Table D.2.

If a class from ISO 19115 and implemented in ISO/TS 19139 is used as the type of a property, then
an anonymous property type extending gml: AbstractMetadataPropertyType shall be defined. The
encapsulated object element is the corresponding object element for the metadata type as specified by
ISO/TS 19139.

E.2.4.14	 Classes	imported	from	other	conceptual	models	with	a	predefined	XML	encoding

In addition to the rules defined above, the following rules apply when the UML Application Schema
imports classes from another UML model for which a standard XML encoding has already been
specified.

Extensions to Table D.2 for the imported classes shall be specified. The table shall be distributed
together with the application schema in UML.

The mapping of the relevant classes from the imported model to XML Schema is normatively specified
by this table.

E.3 Example <informative>

Figure E.7 — Example application schema

The application schema shown in Figure E.7 may be encoded as

<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="http://www.someorg.de/example" xmlns="http://www.w3.org/2001/
XMLSchema" xmlns:ex="http://www.someorg.de/example" xmlns:gml="http://www.opengis.net/

© ISO 2020 – All rights reserved 305

ISO 19136-1:2020(E)

gml/3.2" elementFormDefault="qualified" version="1.0">
 <!-- ================================== -->
 <import namespace="http://www.opengis.net/gml/3.2" schemaLocation="./gml.xsd"/>
 <import namespace="http://www.w3.org/1999/xlink" schemaLocation="./xlinks.xsd"/>
 <!-- ================================== -->
 <element name="Parcel" substitutionGroup="gml:AbstractFeature">
 <complexType>
 <complexContent>
 <extension base="gml:AbstractFeatureType">
 <sequence>
 <element name="area" type="gml:AreaType"/>
 <element name="extent" type="gml:SurfacePropertyType"/>
 <element name="owner" type="ex:PersonPropertyType"
maxOccurs="unbounded">
 <annotation>
 <appinfo><gml:reverseProperty>ex:owns</gml:reverseProperty></
appinfo>
 </annotation>
 </element>
 <element name="hasBuilding" type="ex:BuildingPropertyType" minOccurs="0"
maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 </element>
 <complexType name="ParcelPropertyType">
 <sequence minOccurs="0">
 <element ref="ex:Parcel"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 <attributeGroup ref="gml:OwnershipAttributeGroup" />
 </complexType>
 <!-- ================================== -->
 <element name="Building" substitutionGroup="gml:AbstractFeature">
 <complexType>
 <complexContent>
 <extension base="gml:AbstractFeatureType">
 <sequence>
 <element name="extent" type="gml:SurfacePropertyType"/>
 <element name="address">
 <complexType>
 <sequence>
 <element name="Address" type="ex:AddressType"/>
 </sequence>
 </complexType>
 </element>
 <element name="type" type="ex:BuildingTypeType"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 </element>
 <complexType name="BuildingPropertyType">
 <sequence minOccurs="0">
 <element ref="ex:Building"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 <attributeGroup ref="gml:OwnershipAttributeGroup" />
 </complexType>
 <!-- ================================== -->
 <element name="Person" substitutionGroup="gml:AbstractFeature">
 <complexType>
 <complexContent>
 <extension base="gml:AbstractFeatureType">
 <sequence>
 <element name="firstName" type="string"/>
 <element name="lastName" type="string"/>
 <element name="owns" type="ex:ParcelPropertyType" minOccurs="0"
maxOccurs="unbounded">
 <annotation>

306 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

 <appinfo>
 <gml:reverseProperty>ex:owner</gml:reverseProperty>
 </appinfo>
 </annotation>
 </element>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 </element>
 <complexType name="PersonPropertyType">
 <sequence minOccurs="0">
 <element ref="ex:Person"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 <attributeGroup ref="gml:OwnershipAttributeGroup" />
 </complexType>
 <!-- ================================== -->
 <complexType name="AddressType">
 <sequence>
 <element name="street" type="string" minOccurs="0"/>
 <element name="housenumber" type="string" minOccurs="0"/>
 <element name="poBox" type="string" minOccurs="0"/>
 <element name="city" type="string"/>
 <element name="postalCode" type="string"/>
 <element name="country" type="ex:CountryCodeType" minOccurs="0" default="DE"/>
 </sequence>
 </complexType>
 <!-- ================================== -->
 <simpleType name="BuildingTypeType">
 <restriction base="string">
 <enumeration value="church"/>
 <enumeration value="school"/>
 <enumeration value="garage"/>
 <enumeration value="residential houses"/>
 <enumeration value="unknown"/>
 <enumeration value="mixed"/>
 </restriction>
 </simpleType>
 <!-- ================================== -->
 <simpleType name="CountryCodeType">
 <union memberTypes="ex:CountryCodeEnumerationType ex:CountryCodeOtherType"/>
 </simpleType>
 <simpleType name="CountryCodeEnumerationType">
 <restriction base="string">
 <enumeration value="DE"/>
 <enumeration value="US"/>
 <enumeration value="CA"/>
 <enumeration value="..."/>
 </restriction>
 </simpleType>
 <simpleType name="CountryCodeOtherType">
 <restriction base="string">
 <pattern value="other: \w{2,}"/>
 </restriction>
 </simpleType>
 <!-- ================================== -->
 <element name="Ellipse" type="ex:EllipseType"
 substitutionGroup="gml:AbstractCurveSegment"/>
 <complexType name="EllipseType">
 <complexContent>
 <extension base="gml:AbstractCurveSegmentType">
 <sequence>
 <element name="center" type="gml:DirectPositionType"/>
 <element name="semiminor" type="gml:VectorType"/>
 <element name="semimajor" type="gml:VectorType"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
</schema>

© ISO 2020 – All rights reserved 307

ISO 19136-1:2020(E)

Annex F
(normative)

GML-to-UML application schema encoding rules

F.1 General concepts

The mapping from a GML application schema to an ISO 19109 conformant application schema in
UML is based on a set of encoding rules. These encoding rules are conformant with the rules for GML
application schemas as described in Clauses 7 to 21, especially Clauses 7, 9 and 21.

The rules listed in F.2 aim at an automatic mapping from a GML application schema to an ISO 19109 and
ISO/TS 19103 conformant UML application schema.

These rules do not prescribe that all GML application schemas shall be generated to fulfil the encoding
requirements documented in this annex. All schemas following the rules defined in Clause 21 are valid
and conformant GML application schemas.

This annex shall be used if there is a requirement in the application domain to derive an ISO 19109
conformant Application Schema in UML from a GML application schema.

The XML namespace abbreviation "xsd" is used to refer to the namespace of XML Schema, which is
"http:// www .w3 .org/ 2001/ XMLSchema".

The XML namespace abbreviation “gml” refers to the XML namespace of GML, which is “http:// www
.opengis .net/ gml/ 3 .2”.

In addition, GML imports definitions from the following namespaces:

The XML namespace abbreviation “xlink” refers to the XML namespace for xlinks, which is “http://
www .w3 .org/ 1999/ xlink”.

The term “GML namespaces” is used below to refer to the namespaces “gml” and “xlink”.

F.2 Encoding rules

F.2.1 General encoding requirements

F.2.1.1 General remarks

The schema encoding rules are based on the general idea that the corresponding type and element
declarations in XML Schema are mapped to class definitions in the UML application schema, so that
element structures in the XML document can be mapped to the objects in the instance model.

F.2.1.2 GML schema

F.2.1.2.1 General

To be a valid input into the mapping, the GML application schema shall meet the requirements of the
relevant conformance classes in 2.2, at least "All GML application schemas", "GML application schema
to be converted to an ISO 19109 Application Schemas in UML" and "GML application schemas defining
Features and Feature Collections".

The GML application schema shall have and contain definitions for only one target namespace.

308 © ISO 2020 – All rights reserved

http://www.w3.org/2001/XMLSchema
http://www.opengis.net/gml/3.2
http://www.opengis.net/gml/3.2
http://www.w3.org/1999/xlink
http://www.w3.org/1999/xlink

ISO 19136-1:2020(E)

The GML application schema may import definitions from XML namespaces other than its target
namespace.

A GML application schema consists of a set of one or more XML schema documents such that:

— the documents have unique names;

— the documents contain xsd: include elements for other schema documents with the same target
namespace;

— one top-level schema document for the GML application schema target namespace is not included by
any other schema documents for the target namespace, but directly or indirectly includes all other
schema documents for the target namespace, if any;

— the schema documents contain xsd: import elements for XML namespaces other than the target
namespace, and for schema documents that contain definitions in those XML namespaces;

— all included and imported schema documents are accessible via the URI specified by the
schemaLocation attribute on the xsd: include and xsd: import elements that reference them;

— a validating XML parser resolves all of the dependencies among the definitions contained in the set
of schema documents;

— a validating XML parser validates the set of schema documents without error;

— a validating XML parser validates an XML instance document containing elements and attributes
that represent all of the definitions from the target namespace of the GML application schema
without error.

Documentation of the definitions contained in a GML application schema shall be stored in nested xsd:
annotation and xsd: documentation elements within the schema definition elements.

The version of a GML application schema, if applicable, shall be contained in the version attribute of the
xsd: schema element from the top-level schema for its target namespace.

All global type and element names within a GML application schema shall be unique.

The GML application schema shall not define any elements with anonymous types for objects.

The GML application schema shall not define any XML attributes or named groups.

Every complex type in a GML application schema shall either be a GML object type, a GML feature type,
a GML data type or a GML property type.

Complex types with simple content shall not be defined in the GML application schema.

The name of all types defined in a GML application schema shall end with the suffix “Type”.

A suffix “RestrictionType” in the name of a complex type shall only be used for an abstract type that
derives by restriction and which is a the base type of exactly one complex type that derives from
this type by extension and has the same name as the restricted type except that “RestrictionType” is
replaced by “Type”.

A suffix “PropertyType” in the name of a complex type shall only be used for an instantiable type that
follows the pattern for by-reference-or-value property types of GML. A complex type (GML object type
or GML feature type) with the same name shall exist that has “PropertyType” replaced by “Type”.

A suffix “PropertyByValueType” in the name of a complex type shall only be used for an instantiable
type that follows the pattern for by- value property types of GML. A complex type (GML data type, GML
object type or GML feature type) with the same name shall exist that has “PropertyByValueType” is
replaced by “Type”.

NOTE These rules severely restrict the possible forms of GML application schemas.

© ISO 2020 – All rights reserved 309

ISO 19136-1:2020(E)

F.2.1.2.2	 GML	object	types	including	GML	feature	types

Each GML object type defined in a GML application schema shall have a content model that directly or
indirectly derives from gml:AbstractGMLType.

Each GML object type of a particular kind defined in a GML application schema shall derive from the
most specialized GML object type from the “http:// www .opengis .net/ gml/ 3 .2” namespace of a similar
kind (with matching semantics) that could possibly be used to define its content model. So GML object
types defined in a GML application schema to represent geographic features (GML feature types) shall
derive from gml:AbstractFeatureType instead of from gml:AbstractGMLType, GML object types defined
in a GML application schema to represent geometric points shall derive from gml:PointType instead of
from gml:AbstractGeometryType, etc.

GML object types defined in the GML application schema that derive from GML object types outside
of the target namespace shall derive directly only from one of the GML object types listed in the third
column of Table D.2 where there first column in the same row provides a class name of a class defined by
the ISO 19100 series of International Standards or gml:AbstractGMLType or gml:AbstractFeatureType.

The schema definitions of abstract GML object types shall contain the attribute “abstract” with the
value “true”.

The name of abstract GML object types shall begin with the prefix “Abstract”.

The schema definitions of GML object types for which no subtypes may be defined shall contain the
attribute “final” with the value “all”.

The properties of the GML object type shall be specified in an xsd: sequence element.

F.2.1.2.3	 Global	elements	for	gml	object	types

One global XML element shall be defined for every GML object type defined in a GML application schema.

The name of this element shall be the name of the GML object type without the “Type”-suffix.

The element shall have a substitutionGroup attribute whose value is the name of a global XML element
whose type is the base type of the GML object type.

F.2.1.2.4	 Default	property	types	for	gml	object	types

A default GML property type may be defined in a GML application schema for every GML object type
defined in that GML application schema.

The GML property type shall either use or inherit directly or indirectly from one of the property types
specified in 7.2.3 or it shall be defined in accordance with the patterns specified in this subclause.

The name of this property type shall be the name of the GML object type with the “Type”-suffix replaced
by “PropertyType”.

If no default property type is specified for a GML object type, an application schema shall use
gml:ReferenceType as the default property type of the GML object type.

F.2.1.2.5	 Inline	property	types	for	gml	object	types

A default GML property type for inline properties may be defined in a GML application schema for every
GML object type defined in that GML application schema.

The GML property type shall either inherit directly or indirectly from gml:InlinePropertyType,
or it shall be defined in accordance with the patterns specified in 7.2.3.8. The use of the
gml:AsscociationAttributeGroup is prohibited in such properties.

310 © ISO 2020 – All rights reserved

http://www.opengis.net/gml

ISO 19136-1:2020(E)

The name of this property type shall be the name of the GML object type with the “Type”-suffix replaced
by “PropertyByValueType”.

If no default property type for inline properties is specified for a GML object type, an application
schema shall use gml:AssociationRoleType as the default property type for inline properties of the
GML object type.

F.2.1.2.6 GML data types including GML union types

A complex type defined in a GML application schema that does not directly or indirectly derive from
gml:AbstractGMLType is called a GML data type.

The properties of the GML data type shall take one of the following forms:

— The properties of the complex type as well as the properties of all of its base types are specified in
an xsd: sequence element with minOccurs and maxOccurs values of “1”.

— The GML data type is not derived from any base type. In this case, the properties may be specified
in either a single xsd: sequence element with minOccurs and maxOccurs values of “1” or a single xsd:
choice element with minOccurs and maxOccurs values of “1”.

The content model of the complex type shall not include a gml:id attribute.

F.2.1.2.7 Default property types for GML data types

A default GML property type for inline properties may be defined in a GML application schema for every
GML data type defined in that GML application schema.

The GML property type shall either inherit directly or indirectly from gml:InlinePropertyType,
or it shall be defined in accordance with the patterns specified in 7.2.3.8. The use of the
gml:AsscociationAttributeGroup is prohibited in such properties.

The name of this property type shall be the name of the GML data type with the “Type”-suffix replaced
by “PropertyByValueType”.

If no default property type for inline properties is specified for a GML data type, an application schema
shall use gml: AssociationRoleType as the default property type for inline properties of the GML data type.

F.2.1.2.8 Enumerations

A simple type defined in a GML application schema that is a restriction of xsd :string using only the xsd:
enumeration facet is called an enumeration.

F.2.1.2.9 Code lists

A simple type defined in a GML application schema that is a union of an enumeration and a simple type
that is a restriction of xsd: string using only one xsd: pattern facet with the value “other: \w{2,}” is called
a code list.

Enumeration values may be qualified with an appInfo annotation (element gml:codeListValue)
specifying that the enumeration value is the code value of another enumeration value; the associated
enumeration value is given as the text value of the gml:codeListValue element.

F.2.1.2.10	 Global	elements	for	GML	data	types,	enumerations	and	code	lists

No global XML element shall be defined for enumerations or code lists defined in a GML application
schema.

© ISO 2020 – All rights reserved 311

ISO 19136-1:2020(E)

F.2.1.2.11	 Predefined	basic	types

The simple types from the XML Schema and GML namespace listed in the fourth column of Table D.2
may be used in the GML application schema. No other simple types from these namespaces shall be
used in a GML application schema.

F.2.1.2.12 GML properties

Every property of a GML object or feature type (except properties defined in the GML namespace) or of
a GML data or union type shall be represented by a single, locally defined xsd: element. Locally defined
means that the name and type of the element shall be given explicitly in the element declaration (no
references to global XML elements). The element may carry minOccurs and maxOccurs values. The
name of this element shall be the name of the property; the type shall be either a simple type or a
property type.

F.2.1.2.13 Schematron constraints

All Schematron constraints are ignored.

F.2.1.2.14 Imported elements and types from other XML namespaces

If other XML Schema components are imported from other namespaces than XML Schema and GML,
define the relevant entries as extensions to Table D.2.

F.2.1.2.15 Other information

All other information in the GML application schema is not used in the encoding rules and is ignored.

F.2.1.3 Character repertoire and languages

The character encoding used for the schemas determines the available character repertoire.

F.2.1.4 Exchange metadata

Exchange metadata may be specified for every Feature or Feature Collection in a GML instance
document11). No specific schema for the exchange metadata is added to the GML application schema.

F.2.1.5	 Dataset	and	object	identification

Unique gml:id identifiers in accordance with 7.2.4.5 and XML's ID mechanism shall be used to identify
GML objects.

F.2.1.6 Update mechanism

No explicit update mechanism shall be defined for the feature types defined in a GML application
schema. It is assumed that other mechanisms are used to update an instance model data store.

F.2.1.7 Input data structure

The schema for the input data structure is defined by the XML Schema 1.0 Part 1: Structures, Part 2:
Datatypes W3C Recommendations, and the Rules for GML application schemas (see Clause 21).

F.2.2 Output data structure

See ISO 19118:2005, A.3, for a description of the output data structure.

11) By using the property elements whose content model has been derived from gml: AbstractMetadataPropertyType
and, for example, the ISO/TS 19139 XML Schema encoding of ISO 19115:2003.

312 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

F.2.3 Conversion rules

F.2.3.1 General concepts

The schema conversion rules defined in the following subclauses describe the mapping from a GML
application schema that follows the guidelines described in F.2.1 to a UML application schema
that conforms to the rules defined in ISO 19109 and ISO/TS 19103, using the encoding rules of
ISO 19118:2005, Annex A, and in particular the generic instance model described in A.3. These rules are
also based on the current rules for the GML model and syntax as described in Clauses 7 to 21 (especially
Clause 7).

The schema conversion rules map definitions from a (set of) valid GML application schema documents
(XSDs) to a set of UML packages. A top-level package with the stereotype <<Application Schema>> is
created to contain all the other packages in this set. By default, one package is created in this set for
each XSD in the GML application schema, including those directly or indirectly imported from XML
namespaces other than the target namespace for the GML application schema, except for XSDs for the
GML namespaces. The top-level package owns directly or indirectly all UML model elements mapped
from object types in the GML application schema.

The declarations of the GML application schema may be arranged in a different package structure as
long as the top-level package keeps its name and stereotype and all the model elements still belong
directly or indirectly to this package.

The type and element declarations in the GML application schema are mapped to class definitions in
the UML application schema, so that element structures in the GML XML document can be mapped to
corresponding objects in the instance model.

The UML model shall contain within a package with the name "ISO 19100" the applicable normative
packages of the ISO 19100 series of International Standards or a strict profile of this model.

The UML model shall contain the UML package of all other GML application schemas imported by the
GML application schema.

Table F.1 gives an overview; full details of the mapping are specified in the subsequent subclauses.

Table	F.1	—	Schema	encoding	overview

Table:	GML	→	UML	Application	Schema	Overview
GML application schema UML application schema

GML application schema Package <<ApplicationSchema>>
GML schema document {name} XSD Package named {name}
Object and property type and global element for any
object type that is a direct or indirect extension of
gml:AbstractFeatureType

Class with stereotype <<FeatureType>>

Object and property type and global element for any
object type that is a direct or indirect extension of
gml:AbstractGMLType, other than those that extend
gml:AbstractFeatureType

Class with no stereotype

Data and property type and global element for any
object type that is not a direct or indirect extension of
gml:AbstractGMLType and whose content model is a
sequence of properties

Class with stereotype <<DataType>>

Restriction of xsd:string with enumeration values Class with stereotype <<Enumeration>>
Union of an enumeration and a pattern Class with stereotype <<CodeList>>
Data and property type and global element for any
object type that is not a direct or indirect extension of
gml:AbstractGMLType and whose content model is a
choice of properties

Class with stereotype <<Union>>

© ISO 2020 – All rights reserved 313

ISO 19136-1:2020(E)

Table:	GML	→	UML	Application	Schema	Overview
GML application schema UML application schema

Local xsd: element of a simpleType or a complexType
with simpleContent or a type that does not directly or
indirectly inherit from gml: AbstractGMLType

UML Attribute

Local xsd: element of a type that contains
gml:AssociationAttributeGroup UML Association Role

Schematron constraints Not encoded

The multiplicity of attributes and association roles is derived from the minOccurs and maxOccurs
attributes in local xsd: element declarations.

F.2.3.2 GML schema documents

A top-level package with the stereotype <<Application Schema>> is created to contain all the other
packages generated for the GML application schema.

— The “targetNamespace” and “xmlns” tagged values are applied to the <<ApplicationSchema>>
package with corresponding values for the target namespace of the GML application schema

EXAMPLE “http:// www .myorg .com/ myns” and “myns”.

— The “version” tagged value is applied to the <<ApplicationSchema>> package with the default value
of “1.0”. If the “version” attribute of the xsd: schema element of the top-level schema document for
the GML application schema exists and contains a non-empty value, its value replaces the default
tagged value.

— The "xsdDocument" tagged value is set to the relative filename of the XML Schema document.

By default, one UML package is generated for each input schema document in the GML application
schema, including those directly or indirectly imported from XML namespaces other than the target
namespace of the GML application schema — except for XML Schema documents from the GML
namespaces. Alternatively, a single XML Schema document may also be split into several UML packages.

The packages are generated in the <<ApplicationSchema>> package for the GML application schema
with names that correspond to the names of the input schema documents.

The xsd: include and xsd: import statements in each input schema document are used to determine and
set the dependencies of the packages generated in the <<Application Schema>> package.

F.2.3.3	 GML	object	types

Every GML object type shall be mapped to a UML class.

If the object type directly or indirectly derives from gml:AbstractFeatureType, the stereotype of the
class shall be <<FeatureType>>, otherwise no stereotype shall be set.

The name of the class shall be the same as the name of the global element of the GML object type.

The class shall be abstract, if and only if the GML object type is abstract.

If the GML object type is derived from another GML object type, then the class inherits from the
corresponding superclass. If the base type is defined in the GML application schema or another imported
GML application schema, then the superclass is the class corresponding to this GML object type. If the
base type is defined in the GML namespace, then the superclass is determined by Table D.2. If the base
type is listed in the third column of that table, then the superclass is the class in the first column of the
same row.

Table	F.1	(continued)

314 © ISO 2020 – All rights reserved

http://www.myorg.com/myns

ISO 19136-1:2020(E)

The GML properties of the GML object type shall be mapped to attributes and association roles as
described in F.2.3.9. Assign a tagged value "sequenceNumber" to all UML attributes and association
roles created in this mapping with unique integer values in ascending order reflecting the order of the
properties in the sequence of the object type.

F.2.3.4	 GML	object	types	(imported	from	the	GML	schema)

The complex types from the GML namespace listed in the left hand column of Table D.2 shall be mapped
to the predefined UML classes implemented by the ISO geographic information standards profile of
GML in the second column of the table.

F.2.3.5 Basic types

The simple types from the XML Schema and GML namespace shown in the right hand column of Table D.2
shall be mapped to the predefined UML classes implemented by the ISO geographic information
standards profile of GML in the left hand column of the table.

F.2.3.6 GML data types

Every GML data type shall be mapped to a UML class. The name of the class shall be the same as the
name of the complex type without the “Type”-suffix.

If the GML data type is derived from another GML data type (base type), then the class inherits from the
corresponding superclass.

If the properties of the GML data type are embedded in an xsd: sequence element, the stereotype of the
class shall be <<DataType>>, if they are embedded in an xsd: choice element, the stereotype of the class
shall be set to <<Union>>.

The GML properties of the GML object type shall be mapped to attributes and association roles as
described in F.2.3.9. Assign a tagged value "sequenceNumber" to all UML attributes and association
roles created in this mapping with unique integer values in ascending order reflecting the order of the
properties in the sequence of the object type.

F.2.3.7 Enumerations

A simple type defined in the GML application schema as a restriction of xsd: string with enumeration
values shall be mapped to a class with the <<Enumeration>> stereotype in the UML application schema.

The name of the class shall be the name of the simple type.

Every xsd: enumeration facet without an xsd: appInfo annotation with a child element gml:codeListValue
shall be mapped to a UML attribute with the value as the attribute name.

Every xsd: enumeration facet with an xsd: appInfo annotation with a child element gml:codelistValue
shall be mapped to an initial value of the UML attribute with the same name as the value of the
gml:codelistValue element. If no such UML attribute exists in the class, the facet shall be ignored.

F.2.3.8 Code lists

A simple type defined an the GML application schema as a union of an xsd: pattern restriction with the
value “other:\w{2,}” and an enumeration shall be mapped to a class with the stereotype <<CodeList>>
in the UML application schema.

The name of the class shall be the name of the simple type.

Every xsd: enumeration facet of the enumeration without an xsd: appInfo annotation with a child element
gml:codelistValue shall be mapped to a UML attribute with the value as the attribute name.

© ISO 2020 – All rights reserved 315

ISO 19136-1:2020(E)

Every xsd: enumeration facet of the enumeration with an xsd: appInfo annotation with a child element
gml:codelistValue shall be mapped to an initial value of the UML attribute with the same name as the
value of the gml:codelistValue element. If no such UML attribute exists in the class, the facet shall be
ignored.

F.2.3.9 GML properties

If the type of a property element:

— is a simple type or the property type of GML data type, the property shall be mapped to a UML
attribute with the corresponding type as the data type;

— is a property type of a GML object type (inline and/or by-reference) whose content model is directly
or indirectly derived from gml: AbstractMemberType, the property shall be mapped to a UML
association role of a UML aggregation to the class representing the target GML object type; if the
content model of the property element contains an attribute "owns" with a fixed value of "true"
(through a Schematron constraint) then the UML aggregation shall be change to a UML composition;

— is a property type of a GML object type (inline and/or by-reference), the property shall be mapped
to a UML association role of a UML association to the class representing the target GML object type;
if the property type supports only by-reference, the target GML object type shall be determined
from the embedded xsd: appInfo annotation with a child element gml:targetElement specifying
the qualified element name of the target type. The tagged value "inlineOrByReference" shall be
set to "inline" for representations that allow only an inline encoding of the property value and to
"byReference" for representations that allow only a by-reference encoding of the property value;

— is a property type of a GML object type (inline and/or by-reference) whose content model is directly
or indirectly derived from gml: AbstractMetadataPropertyType, the UML attribute or association
role shall carry a tagged value "isMetadata" with the value "true".

The name of the UML attribute or association role shall be the name of the GML property element.

The multiplicity of the UML attribute or association role shall be derived from the minOccurs and
maxOccurs value of the GML property.

If the property element has an xsd: appInfo annotation with a child element gml: reversePropertyName
embedded, then the association role shall be defined as part of the association between the two classes
where the other association role has a name equal to the value of the gml:reversePropertyName element.

F.2.3.10 Documentation

XML Schema xsd: annotation/ xsd: documentation elements in GML application schemas are mapped to
“documentation” tagged values in the UML application schema.

316 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

Annex G
(informative)

Guidelines	for	subsetting	the	GML	schema

G.1 General

An automated approach is recommended for subsetting the GML schema. This annex contains an
informative XSLT reference implementation of a GML schema subset tool. The tool consists of three
XSLT stylesheets; the three stylesheets are shown in G.2, G.3 and G.4 below.

To create a GML subset schema using this tool:

a) Transform gml.xsd using depends.xslt and an XSLT processor to produce gml.dep.

EXAMPLE 1 Using Xalan the command could be

 $ java org.apache.xalan.xslt.Process -IN ../base/gml.xsd -XSL depends.xslt
 -OUT gml.dep
b) If the XSLT processor you are using cannot pass parameters to a stylesheet being processed, edit

gmlSubset.xslt, and change the “wanted” parameter to contain a comma separated list (with
a trailing comma) of the namespace-qualified global types and elements you want in your GML
subset schema.

EXAMPLE 2 For example, change

 <xsl:param name="wanted">,</xsl:param>
to

 <xsl:param name="wanted">
 gml:featureProperty,gml:lineStringProperty,gml:polygonProperty,
 </xsl:param>
c) Transform gml.dep using gmlSubset.xslt, a parameter named “wanted” set to a comma separated

list (with a trailing comma) of the namespace qualified global types and elements you want in your
GML subset schema, and an XSLT processor to produce gmlSubset.xsd, which will contain the global
types and elements specified in the “wanted” parameter and all of the global types and elements on
which they directly or indirectly use.

d) The generated gmlSubset.xsd will include imports for the namespaces named “xlink” if your
“wanted” list included or depended on any attribute from the corresponding namespace. Otherwise,
it is a stand-alone GML subset schema that conforms to the requirements for GML profiles.

G.2 depends.xslt
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 <!-- ===
 This stylesheet is designed to be used on gml.xsd to produce gml.dep
 for use by the gml schema subset utility gmlSubset.xslt to produce a specialized
 gmlSubset.xsd that contains only the specified types and elements, and the types
 and elements on which they depend.
 ===-->
 <xsl:output method="xml" encoding="UTF-8" indent="yes"/>
 <xsl:include href="utility.xslt"/>
 <!-- NEWLINE =
 -->
 <xsl:param name="schemas">gml.xsd,observation.xsd,dynamicFeature.xsd,coverage.

© ISO 2020 – All rights reserved 317

ISO 19136-1:2020(E)

xsd,topology.xsd,defaultStyle.xsd,coordinateReferenceSystems.xsd,feature.xsd,valueObjects.
xsd,grids.xsd,geometryComplexes.xsd,datums.xsd,coordinateSystems.xsd,coordinateOperations.
xsd,geometryAggregates.xsd,referenceSystems.xsd,dataQuality.xsd,geometryPrimitives.
xsd,geometryBasic2d.xsd,direction.xsd,geometryBasic0d1d.xsd,measures.xsd,temporal.
xsd,units.xsd,dictionary.xsd,gmlBase.xsd,basicTypes.xsd,</xsl:param>
 <xsl:param name="allSchemas">
 <xsl:call-template name="getUniqueSchemaList">
 <xsl:with-param name="list" select="$schemas"/>
 <xsl:with-param name="usePre"></xsl:with-param>
 </xsl:call-template>
 </xsl:param>
 <xsl:template match="/">
 <xsl:param name="docName">gml.xsd</xsl:param>
 <xsl:param name="top" select="true()"/>
 <xsl:param name="tns" select="//xsd:schema/@targetNamespace"/>
 <xsl:param name="vers" select="//xsd:schema/@version"/>
 <xsl:variable name="ltns">
 <xsl:for-each select="//xsd:schema/namespace::*">
 <xsl:if test="local-name() != 'targetNamespace' and string() = $tns">
 <xsl:value-of select="local-name()"/>
 </xsl:if>
 </xsl:for-each>
 </xsl:variable>
 <xsl:variable name="tnsp">
 <xsl:choose>
 <xsl:when test="$ltns = ''">
 <xsl:call-template name="getTargetNameSpacePrefix">
 <xsl:with-param name="list" select="$tns"/>
 </xsl:call-template>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="$ltns"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:variable>
 <xsl:text>
</xsl:text>
 <xsl:choose>
 <xsl:when test="$top">
 <xsl:text disable-output-escaping="yes"><depends version="</
xsl:text><xsl:value-of select="$vers"/><xsl:text disable-output-escaping="yes">"></
xsl:text>
 </xsl:when>
 <xsl:otherwise>
 <xsl:for-each select="/xsd:schema">
 <xsl:for-each select="xsd:complexType | xsd:group | xsd:simpleType |
xsd:element | xsd:attribute | xsd:attributeGroup">
 <xsl:variable name="type" select="local-name()"/>
 <xsl:choose>
 <xsl:when test="$type = 'complexType' ">
 <xsl:call-template name="complexType">
 <xsl:with-param name="docName" select="$docName"/>
 <xsl:with-param name="targetNamespace" select="$tnsp"/>
 </xsl:call-template>
 </xsl:when>
 <xsl:when test="$type = 'group' ">
 <xsl:call-template name="complexType">
 <xsl:with-param name="docName" select="$docName"/>
 <xsl:with-param name="targetNamespace" select="$tnsp"/>
 </xsl:call-template>
 </xsl:when>
 <xsl:when test="$type = 'simpleType' ">
 <xsl:call-template name="simpleType">
 <xsl:with-param name="docName" select="$docName"/>
 <xsl:with-param name="targetNamespace" select="$tnsp"/>
 </xsl:call-template>
 </xsl:when>
 <xsl:when test="$type = 'element' ">
 <xsl:call-template name="globalElement">
 <xsl:with-param name="docName" select="$docName"/>
 <xsl:with-param name="targetNamespace" select="$tnsp"/>
 </xsl:call-template>

318 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

 </xsl:when>
 <xsl:when test="$type = 'attribute' ">
 <xsl:call-template name="globalAtt">
 <xsl:with-param name="docName" select="$docName"/>
 <xsl:with-param name="targetNamespace" select="$tnsp"/>
 </xsl:call-template>
 </xsl:when>
 <xsl:when test="$type = 'attributeGroup' ">
 <xsl:call-template name="globalAtt">
 <xsl:with-param name="docName" select="$docName"/>
 <xsl:with-param name="targetNamespace" select="$tnsp"/>
 </xsl:call-template>
 </xsl:when>
 <xsl:otherwise/>
 </xsl:choose>
 </xsl:for-each>
 </xsl:for-each>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:if test="$top">
 <xsl:call-template name="dependSchemas">
 <xsl:with-param name="list" select="$allSchemas"/>
 </xsl:call-template>
 <xsl:text disable-output-escaping="yes">
</depends>
</xsl:text>
 </xsl:if>
 </xsl:template>
 <!-- === -->
 <xsl:template name="complexType">
 <xsl:param name="docName"/>
 <xsl:param name="targetNamespace"/>
 <xsl:variable name="name" select="@name"/>
 <xsl:if test="$name">
 <xsl:element name="def">
 <xsl:attribute name="name"><xsl:value-of select="$targetNamespace"/>:<xsl:valu
e-of select="$name"/></xsl:attribute>
 <xsl:attribute name="doc"><xsl:value-of select="$docName"/></xsl:attribute>
 <xsl:variable name="uses">
 <xsl:apply-templates select="./xsd:complexContent|./xsd:simpleContent"/>
 <xsl:call-template name="EltAndAtt"/>
 </xsl:variable>
 <!-- USES <xsl:value-of select="$uses"/> -->
 <xsl:call-template name="writeUses">
 <xsl:with-param name="list" select="$uses"/>
 </xsl:call-template>
 </xsl:element>
 </xsl:if>
 </xsl:template>
 <!-- === -->
 <xsl:template match="xsd:complexContent">
 <xsl:for-each select="descendant::xsd:extension">
 <xsl:value-of select="@base"/>
 <xsl:text>?extension|</xsl:text>
 </xsl:for-each>
 <xsl:for-each select="descendant::xsd:restriction">
 <xsl:value-of select="@base"/>
 <xsl:text>?restriction|</xsl:text>
 </xsl:for-each>
 </xsl:template>
 <!-- === -->
 <xsl:template match="xsd:simpleContent">
 <xsl:for-each select="descendant::xsd:extension">
 <xsl:value-of select="@base"/>
 <xsl:text>?extension|</xsl:text>
 </xsl:for-each>
 <xsl:for-each select="descendant::xsd:restriction">
 <xsl:value-of select="@base"/>
 <xsl:text>?restriction|</xsl:text>
 </xsl:for-each>
 </xsl:template>
 <!-- === -->
 <xsl:template name="EltAndAtt">

© ISO 2020 – All rights reserved 319

ISO 19136-1:2020(E)

 <xsl:for-each select="descendant::xsd:element | descendant::xsd:group |
descendant::xsd:attribute | descendant::xsd:attributeGroup">
 <xsl:variable name="name" select="@type | @ref"/>
 <xsl:if test="$name and contains($name,':')">
 <xsl:value-of select="$name"/>
 <xsl:text>|</xsl:text>
 </xsl:if>
 </xsl:for-each>
 </xsl:template>
 <!-- === -->
 <xsl:template name="simpleType">
 <xsl:param name="docName"/>
 <xsl:param name="targetNamespace"/>
 <xsl:variable name="name" select="@name"/>
 <xsl:if test="$name">
 <xsl:element name="def">
 <xsl:attribute name="name"><xsl:value-of select="$targetNamespace"/>:<xsl:valu
e-of select="$name"/></xsl:attribute>
 <xsl:attribute name="doc"><xsl:value-of select="$docName"/></xsl:attribute>
 <!-- SIMPLE <xsl:copy-of select="."/>-->
 <xsl:variable name="uses">
 <xsl:for-each select="xsd:union">
 <!-- UNION <xsl:value-of select="@memberTypes"/> -->
 <xsl:variable name="members" select="@memberTypes"/>
 <xsl:if test="$members">
 <xsl:value-of select="translate($members,' ','|')"/>
 <xsl:text>|</xsl:text>
 </xsl:if>
 </xsl:for-each>
 <xsl:for-each select="xsd:list">
 <xsl:variable name="items" select="@itemType"/>
 <xsl:if test="$items">
 <xsl:value-of select="$items"/>
 <xsl:text>|</xsl:text>
 </xsl:if>
 </xsl:for-each>
 </xsl:variable>
 <!-- USES <xsl:value-of select="$uses"/> -->
 <xsl:call-template name="writeUses">
 <xsl:with-param name="list" select="$uses"/>
 </xsl:call-template>
 </xsl:element>
 </xsl:if>
 </xsl:template>
 <!-- === -->
 <xsl:template name="globalElement">
 <xsl:param name="docName"/>
 <xsl:param name="targetNamespace"/>
 <xsl:variable name="name" select="@name"/>
 <xsl:if test="$name">
 <xsl:element name="def">
 <xsl:attribute name="name"><xsl:value-of select="$targetNamespace"/>:<xsl:valu
e-of select="$name"/></xsl:attribute>
 <xsl:attribute name="doc"><xsl:value-of select="$docName"/></xsl:attribute>
 <xsl:variable name="uses">
 <xsl:variable name="type" select="@type"/>
 <xsl:if test="$type and contains($type,':')">
 <xsl:value-of select="$type"/>
 <xsl:text>|</xsl:text>
 </xsl:if>
 <xsl:variable name="sub" select="@substitutionGroup"/>
 <xsl:if test="$sub">
 <xsl:value-of select="$sub"/>
 <xsl:text>|</xsl:text>
 </xsl:if>
 </xsl:variable>
 <!-- USES <xsl:value-of select="$uses"/> -->
 <xsl:call-template name="writeUses">
 <xsl:with-param name="list" select="$uses"/>
 </xsl:call-template>
 </xsl:element>

320 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

 </xsl:if>
 </xsl:template>
 <!-- === -->
 <xsl:template name="globalAtt">
 <xsl:param name="docName"/>
 <xsl:param name="targetNamespace"/>
 <xsl:variable name="name" select="@name"/>
 <xsl:if test="$name">
 <xsl:element name="def">
 <xsl:attribute name="name"><xsl:value-of select="$targetNamespace"/>:<xsl:valu
e-of select="$name"/></xsl:attribute>
 <xsl:attribute name="doc"><xsl:value-of select="$docName"/></xsl:attribute>
 <xsl:variable name="uses">
 <xsl:variable name="type" select="@type"/>
 <xsl:if test="$type and contains($type,':')">
 <xsl:value-of select="$type"/>
 <xsl:text>|</xsl:text>
 </xsl:if>
 <xsl:call-template name="EltAndAtt"/>
 </xsl:variable>
 <!-- USES <xsl:value-of select="$uses"/> -->
 <xsl:call-template name="writeUses">
 <xsl:with-param name="list" select="$uses"/>
 </xsl:call-template>
 </xsl:element>
 </xsl:if>
 </xsl:template>
 <!-- === -->
 <xsl:template name="writeUses">
 <xsl:param name="list"/>
 <xsl:if test="$list != ''">
 <xsl:variable name="first" select="substring-before($list, '|')"/>
 <xsl:variable name="eor" select="substring-after($first, '?')"/>
 <xsl:variable name="use">
 <xsl:choose>
 <xsl:when test="contains($first, '?')">
 <xsl:value-of select="substring-before($first, '?')"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="$first"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:variable>
 <xsl:variable name="testp">
 <xsl:value-of select="$use"/>
 <xsl:text>|</xsl:text>
 </xsl:variable>
 <xsl:variable name="testq">
 <xsl:value-of select="$use"/>
 <xsl:text>?</xsl:text>
 </xsl:variable>
 <xsl:variable name="rest" select="substring-after($list, '|')"/>
 <xsl:choose>
 <xsl:when test="contains($rest, $testp)"/>
 <xsl:when test="contains($rest, $testq)"/>
 <xsl:when test="$use = ''"/>
 <xsl:otherwise>
 <xsl:element name="uses">
 <xsl:attribute name="name"><xsl:value-of select="$use"/></xsl:attribute>
 <xsl:if test="$eor != ''">
 <xsl:attribute name="derivation"><xsl:value-of select="$eor"/> </
xsl:attribute>
 </xsl:if>
 </xsl:element>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:call-template name="writeUses">
 <xsl:with-param name="list" select="$rest"/>
 </xsl:call-template>
 </xsl:if>
 </xsl:template>

© ISO 2020 – All rights reserved 321

ISO 19136-1:2020(E)

 <!-- == -->
 <xsl:template name="dependSchemas">
 <xsl:param name="list"/>
 <xsl:if test="$list != ''">
 <xsl:variable name="first" select="substring-before($list, ',')"/>
 <xsl:variable name="rest" select="substring-after($list, ',')"/>
 <xsl:apply-templates select="document($first, /)">
 <xsl:with-param name="docName" select="$first"/>
 <xsl:with-param name="top" select="false()"/>
 </xsl:apply-templates>
 <xsl:choose>
 <xsl:when test="contains($rest,',')">
 <xsl:call-template name="dependSchemas">
 <xsl:with-param name="list" select="$rest"/>
 </xsl:call-template>
 </xsl:when>
 <xsl:otherwise/>
 </xsl:choose>
 </xsl:if>
 </xsl:template>
 <!-- === -->
 <!-- === -->
</xsl:stylesheet>

G.3	 gmlSubset.xslt
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 <xsl:output method="xml" encoding="UTF-8" indent="yes"/>
 <!-- ===
 This stylesheet is designed to be used on gml.dep (produced from
 gml.xsd by depends.xslt) to produce a specialized gmlSubset.xsd that
 contains only the types and elements specified in the "wanted" parameter,
 and the types and elements on which they depend. Note that the type and
 element items in the "wanted" parameter has to include namespace prefixes,
 and that they have to be separated by commas, including a trailing comma after
 the last item.
 ===-->
 <xsl:include href="utility.xslt"/>
 <xsl:param name="baseUri" select="document('../../base/gml.xsd')"/>
 <!-- sample1 <xsl:param name="wanted">gml:featureProperty,gml:lineStringProperty,gml:po
lygonProperty,</xsl:param> -->
 <!-- sample2 <xsl:param name="wanted">gml:GeodeticCRS,gml:AbstractCoverage,gml:track,</
xsl:param> -->
 <!-- sample3 <xsl:param name="wanted">gml:AbstractFeatureCollection,gml:ItemStyleDesc
riptorType,
 gml:FeatureConstraintType,</xsl:pa ram> -->
 <xsl:param name="wanted">gml:metaDataProperty,gml:Abstractassociation,gml:members,gml:A
rray,gml:curveProperty,
 gml:LineString,gml:LinearRing,gml:exterior,gml:interior,gml:surfaceMember,gml:surfacePr
operty,gml:multiSurfaceProperty,
 gml:directedNode,gml:directedEdge,gml:directedFace,gml:IsolatedProperty,gml:featureProp
erty,gml:featureMembers,
 gml:AbstractFeatureCollection,gml:featureMember,gml:BaseStyleDescriptorType,</
xsl:param>
 <xsl:template match="/">
 <xsl:variable name="wantedList">
 <xsl:call-template name="getWantedList">
 <xsl:with-param name="list" select="$wanted"/>
 <xsl:with-param name="from">BEGIN</xsl:with-param>
 <xsl:with-param name="depth">0</xsl:with-param>
 </xsl:call-template>
 </xsl:variable>
 <xsl:variable name="vers" select="//depends/@version"/>
 <schema targetNamespace="http://www.opengis.net/gml/3.2" xmlns="http://
www.w3.org/2001/XMLSchema" xmlns:sch="http://purl.oclc.org/dsdl/schematron"
xmlns:gml="http://www.opengis.net/gml/3.2" xmlns:xlink="http://www.w3.org/1999/xlink"
elementFormDefault="qualified" version="{$vers}">
 <annotation>

322 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

 <documentation>GML Subset schema for <xsl:value-of select="$wanted"/> written
by gmlSubset.xslt. </documentation>
 </annotation>

 <xsl:if test="contains($wantedList,'xlink:')">
 <import namespace="http://www.w3.org/1999/xlink" schemaLocation="../../xlink/
xlinks.xsd"/>
 </xsl:if>
 <xsl:call-template name="writeWantedList">
 <xsl:with-param name="list" select="$wantedList"/>
 </xsl:call-template>
 </schema>
 </xsl:template>
 <!-- === -->
 <xsl:template name="getDocName">
 <xsl:param name="wanted"/>
 <xsl:for-each select="//depends/def[@name=$wanted]">
 <xsl:value-of select="@doc"/>
 </xsl:for-each>
 </xsl:template>
 <!-- === -->
 <xsl:template name="getUses">
 <xsl:param name="wanted"/>
 <xsl:for-each select="//depends/def[@name=$wanted]">
 <xsl:for-each select="uses">
 <xsl:value-of select="@name"/>
 <xsl:text>,</xsl:text>
 </xsl:for-each>
 </xsl:for-each>
 </xsl:template>
 <!-- === -->
 <xsl:template name="writeWanted">
 <xsl:param name="wanted"/>
 <xsl:choose>
 <xsl:when test="contains($wanted,'xlink:') ">
 <!-- XLINK <xsl:value-of select="$wanted"/> -->
 </xsl:when>
 <xsl:otherwise>
 <!-- OTHER <xsl:value-of select="$wanted"/> -->
 <xsl:variable name="docName">
 <xsl:call-template name="getDocName">
 <xsl:with-param name="wanted" select="$wanted"/>
 </xsl:call-template>
 </xsl:variable>
 <xsl:variable name="localName">
 <xsl:call-template name="removePrefix">
 <xsl:with-param name="name" select="$wanted"/>
 <xsl:with-param name="pre">:</xsl:with-param>
 </xsl:call-template>
 </xsl:variable>
 <xsl:call-template name="Separator"/>
 <xsl:for-each select="document($docName,$baseUri)">
 <xsl:for-each select="//xsd:schema/*[@name = $localName]">
 <xsl:copy-of select="."/>
 </xsl:for-each>
 </xsl:for-each>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:template>
 <!-- === -->
 <xsl:template name="writeWantedList">
 <xsl:param name="list"/>
 <xsl:if test="$list != ''">
 <xsl:variable name="first" select="substring-before($list, ',')"/>
 <xsl:variable name="rest" select="substring-after($list, ',')"/>
 <xsl:call-template name="writeWanted">
 <xsl:with-param name="wanted" select="$first"/>
 </xsl:call-template>
 <xsl:if test="contains($rest,',')">
 <xsl:call-template name="writeWantedList">
 <xsl:with-param name="list" select="$rest"/>

© ISO 2020 – All rights reserved 323

ISO 19136-1:2020(E)

 </xsl:call-template>
 </xsl:if>
 </xsl:if>
 </xsl:template>
 <!-- === -->
 <xsl:template name="getWantedList">
 <xsl:param name="list"/>
 <xsl:param name="seen"/>
 <xsl:param name="from"/>
 <xsl:param name="depth"/>
 <xsl:if test="$list != ''">
 <xsl:variable name="first" select="substring-before($list, ',')"/>
 <xsl:variable name="firstSep" select="concat($first,',')"/>
 <xsl:variable name="rest" select="substring-after($list, ',')"/>
 <xsl:choose>
 <xsl:when test="contains($seen,$firstSep)">
 <xsl:call-template name="getWantedList">
 <xsl:with-param name="list" select="$rest"/>
 <xsl:with-param name="seen" select="$seen"/>
 <xsl:with-param name="from">REST</xsl:with-param>
 <xsl:with-param name="depth" select="$depth + 1"/>
 </xsl:call-template>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="$firstSep"/>
 <xsl:variable name="usesList">
 <xsl:call-template name="getUses">
 <xsl:with-param name="wanted" select="$first"/>
 </xsl:call-template>
 </xsl:variable>
 <xsl:variable name="toDo" select="concat($usesList,$rest)"/>
 <xsl:variable name="nowSeen" select="concat($seen,$firstSep)"/>
 <xsl:call-template name="getWantedList">
 <xsl:with-param name="list" select="$toDo"/>
 <xsl:with-param name="seen" select="$nowSeen"/>
 <xsl:with-param name="from">USES</xsl:with-param>
 <xsl:with-param name="depth" select="$depth + 1"/>
 </xsl:call-template>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:if>
 </xsl:template>
 <!-- === -->
</xsl:stylesheet>

G.4 utility.xslt
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsl:output method="xml" encoding="UTF-8" indent="yes"/>
 <!-- == -->
 <xsl:template name="getTargetNameSpacePrefix">
 <xsl:param name="list"/>
 <xsl:if test="$list != ''">
 <xsl:variable name="first" select="substring-before($list, '/')"/>
 <xsl:variable name="rest" select="substring-after($list, '/')"/>
 <xsl:choose>
 <xsl:when test="contains($rest,'/')">
 <xsl:call-template name="getTargetNameSpacePrefix">
 <xsl:with-param name="list" select="$rest"/>
 </xsl:call-template>
 </xsl:when>
 <xsl:when test="$rest =''">
 <xsl:value-of select="$first"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="$rest"/>

324 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

 </xsl:otherwise>
 </xsl:choose>
 </xsl:if>
 </xsl:template>
 <!-- == -->
 <xsl:template name="getPathPrefix">
 <xsl:param name="file"/>
 <xsl:if test="contains($file,'/')">
 <xsl:variable name="pre" select="substring-before($file,'/')"/>
 <xsl:variable name="suf" select="substring-after($file,'/')"/>
 <xsl:choose>
 <xsl:when test="contains($suf,'/')">
 <xsl:value-of select="$pre"/><xsl:text>/</xsl:text>
 <xsl:call-template name="getPathPrefix">
 <xsl:with-param name="file" select="$suf"/>
 </xsl:call-template>
 </xsl:when>
 <xsl:otherwise>
 <xsl:variable name="path">
 <xsl:call-template name="removeSuffix">
 <xsl:with-param name="name" select="$file"/>
 <xsl:with-param name="suf" select="$suf"/>
 </xsl:call-template>
 </xsl:variable>
 <xsl:value-of select="$path"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:if>
 </xsl:template>
 <!-- == -->
 <xsl:template name="removePrefix">
 <xsl:param name="name"/>
 <xsl:param name="pre"/>
 <xsl:variable name="npName">
 <xsl:choose>
 <xsl:when test="contains($name,$pre)">
 <xsl:value-of select="substring-after($name,$pre)"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="$name"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:variable>
 <xsl:value-of select="$npName"/>
 </xsl:template>
 <!-- == -->
 <xsl:template name="removeSuffix">
 <xsl:param name="name"/>
 <xsl:param name="suf"/>
 <xsl:variable name="nsName">
 <xsl:choose>
 <xsl:when test="contains($name,$suf)">
 <xsl:value-of select="substring-before($name,$suf)"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="$name"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:variable>
 <xsl:value-of select="$nsName"/>
 </xsl:template>
 <!-- == -->
 <xsl:template name="lowerLeading">
 <xsl:param name="name"/>
 <xsl:variable name="ch1" select="substring($name, 1, 1)"/>
 <xsl:variable name="lc1" select="translate($ch1,'ABCDEFGHIJKLMNOPQRSTUVWXYZ','abcdef
ghijklmnopqrstuvwxyz')"/>
 <xsl:value-of select="concat($lc1, substring($name, 2))"/>
 </xsl:template>
 <!-- == -->
 <xsl:template name="uniqueList">

© ISO 2020 – All rights reserved 325

ISO 19136-1:2020(E)

 <xsl:param name="list"/>
 <xsl:param name="sep"/>
 <xsl:param name="seen"/>
 <xsl:param name="pre">../base/</xsl:param>
 <xsl:if test="$list != ''">
 <xsl:variable name="first" select="substring-before($list, $sep)"/>
 <xsl:variable name="firstSep" select="concat($first,$sep)"/>
 <xsl:variable name="rest" select="substring-after($list, $sep)"/>
 <xsl:choose>
 <xsl:when test="contains($seen,$firstSep)">
 <xsl:call-template name="uniqueList">
 <xsl:with-param name="list" select="$rest"/>
 <xsl:with-param name="sep" select="$sep"/>
 <xsl:with-param name="seen" select="$seen"/>
 </xsl:call-template>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="$firstSep"/>
 <xsl:variable name="nowSeen" select="concat($seen, $firstSep)"/>
 <xsl:call-template name="uniqueList">
 <xsl:with-param name="list" select="$rest"/>
 <xsl:with-param name="sep" select="$sep"/>
 <xsl:with-param name="seen" select="$nowSeen"/>
 </xsl:call-template>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:if>
 </xsl:template>
 <!-- == -->
 <xsl:template name="getIncludedDocs">
 <xsl:param name="docName"/>
 <xsl:param name="usePre"/>
 <xsl:param name="seenList"/>
 <xsl:param name="sep">,</xsl:param>
 <xsl:value-of select="$docName"/>
 <xsl:text>,</xsl:text>
 <xsl:variable name="pathPre">
 <xsl:call-template name="getPathPrefix">
 <xsl:with-param name="file" select="$docName"/>
 </xsl:call-template>
 </xsl:variable>
 <xsl:variable name="callPathPre">
 <xsl:choose>
 <xsl:when test="$pathPre = '' or $pathPre = './' ">
 <xsl:value-of select="$usePre"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="$pathPre"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:variable>
 <xsl:for-each select="document($docName, /)">
 <xsl:for-each select="//xsd:include | //xsd:import">
 <xsl:variable name="iDoc" select="@schemaLocation"/>
 <xsl:variable name="iPathPre">
 <xsl:call-template name="getPathPrefix">
 <xsl:with-param name="file" select="$iDoc"/>
 </xsl:call-template>
 </xsl:variable>
 <xsl:variable name="iDocSuf">
 <xsl:call-template name="removePrefix">
 <xsl:with-param name="name" select="$iDoc"/>
 <xsl:with-param name="pre" select="$iPathPre"/>
 </xsl:call-template>
 </xsl:variable>
 <xsl:variable name="usePathPre">
 <xsl:choose>
 <xsl:when test="$iPathPre = '' or $iPathPre = './' ">
 <xsl:value-of select="$callPathPre"/>
 </xsl:when>
 <xsl:otherwise>

326 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

 <xsl:value-of select="$iPathPre"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:variable>
 <xsl:variable name="uDoc">
 <xsl:value-of select="concat($usePathPre,$iDocSuf)"/>
 </xsl:variable>
 <xsl:variable name="uDocSep">
 <xsl:value-of select="concat($uDoc,$sep)"/>
 </xsl:variable>
 <xsl:if test="not(contains($seenList,$uDocSep))">
 <xsl:variable name="seenListPlus" select="concat($seenList,$uDocSep)"/>
 <xsl:call-template name="getIncludedDocs">
 <xsl:with-param name="docName" select="$uDoc"/>
 <xsl:with-param name="usePre" select="$usePathPre"/>
 <xsl:with-param name="seenList" select="$seenListPlus"/>
 </xsl:call-template>
 </xsl:if>
 </xsl:for-each>
 </xsl:for-each>
 </xsl:template>
 <!-- == -->
 <xsl:template name="getDocumentList">
 <xsl:param name="list"/>
 <xsl:param name="seenList"/>
 <xsl:param name="usePre"/>
 <xsl:if test="$list != ''">
 <xsl:variable name="first" select="substring-before($list, ',')"/>
 <xsl:variable name="rest" select="substring-after($list, ',')"/>
 <xsl:variable name="included">
 <xsl:call-template name="getIncludedDocs">
 <xsl:with-param name="docName" select="$first"/>
 <xsl:with-param name="usePre" select="$usePre"/>
 <xsl:with-param name="seenList" select="$seenList"/>
 </xsl:call-template>
 </xsl:variable>
 <xsl:value-of select="$included"/>
 <xsl:variable name="seenListIncluded" select="concat($seenList,$included)"/>
 <xsl:if test="contains($rest,',')">
 <xsl:call-template name="getDocumentList">
 <xsl:with-param name="list" select="$rest"/>
 <xsl:with-param name="seenList" select="$seenListIncluded"/>
 <xsl:with-param name="usePre" select="$usePre"/>
 </xsl:call-template>
 </xsl:if>
 </xsl:if>
 </xsl:template>
 <!-- == -->
 <xsl:template name="getUniqueSchemaList">
 <xsl:param name="list"/>
 <xsl:param name="usePre"/>
 <xsl:variable name="allSchemas">
 <xsl:call-template name="getDocumentList">
 <xsl:with-param name="list" select="$list"/>
 <xsl:with-param name="usePre" select="$usePre"/>
 </xsl:call-template>
 </xsl:variable>
 <xsl:variable name="uniqueSchemas">
 <xsl:call-template name="uniqueList">
 <xsl:with-param name="list" select="$allSchemas"/>
 <xsl:with-param name="sep">,</xsl:with-param>
 </xsl:call-template>
 </xsl:variable>
 <xsl:value-of select="$uniqueSchemas"/>
 </xsl:template>
 <!-- === -->
 <xsl:template name="Separator">
 <xsl:param name="comment" select="'=========='"/>
 <xsl:text>
</xsl:text>
 <xsl:text disable-output-escaping="yes">
 <!-- ==================</xsl:text><xsl:value-of select="$comment"/><xsl:text

© ISO 2020 – All rights reserved 327

ISO 19136-1:2020(E)

disable-output-escaping="yes">===================== -->
 </xsl:text>
 <!-- === -->
 </xsl:template>
</xsl:stylesheet>

328 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

Annex H
(informative)

Default styling

H.1 General

GML has been designed to strictly separate data content from the graphical or other presentation of
that data. GML feature descriptions thus do not contain any information related to the presentation of
that feature.

This annex provides schema components for defining sets of styling rules that when applied to an
associated GML dataset generate a graphical visualization of that data using W3C Scalable Vector
Graphics (SVG). These styling rules enable the creation of SVG documents based on data elements
including feature type names, thematic or spatial feature properties, etc.

A capability that allows to define styles for GML data is considered to be essential for the portrayal of
GML data. The default styling schema components provide a means for this, however, there are known
issues, most notably that harmonization with the existing and more widely implemented OpenGIS
Implementation Specification Styled-Layer Descriptor (SLD) is required. Potentially also a revision of
ISO 19117 should be considered in this step. In addition, additional enhancements should be considered
in this process, e.g. the introduction of a style dictionary to separate features from their styling
information more clearly. Therefore, the default style schema components are not normative in this
document.

Note that it is not considered essential that these style description schema components “live” in the
GML namespace, however, it is important that a standardized style description capability exists. When
a generally accepted styling schema exists, this annex may be removed.

The default style schema components described in this annex are intended to be used as a separate
model that can be “plugged-in” to a GML dataset.

EXAMPLE A typical usage would be to provide a persistent style associated with a particular feature type.

The term “default” signifies a loose relationship to the associated GML data, and the style information
that is assigned to this data set may be used for styling but may also be completely ignored. The
utilization of the associated default styling rules is thus to be determined by the styling application.

The notion of style as defined in this annex is effectively an association between a GML object (e.g. a
feature, geometry, or topology) and a graphical presentation element expressed in SVG. For example, a
style may express that the default graphical presentation of a gml:Curve representing the centreline of
a road feature is to be an SVG path with a particular stroke-width and stroke-colour for the SVG path.

The default style schema components also depend on W3C Synchronized Multimedia Integration
Language (SMIL) schemas.

The relation of the default style information and GML data instances is achieved through the
gml:defaultStyle property. The property may be assigned to the instance by assigning it to the feature
type in the associated application schema. Since GML is a feature-based encoding, a default style always
applies to a feature, features or feature collections. Default styling enables the graphical presentation of
such features based on their properties.

NOTE The conceptual model for the default styling schema and the description of the implementation of
ISO 19117 is not part of this annex as it is informative in this document.

© ISO 2020 – All rights reserved 329

ISO 19136-1:2020(E)

H.2 Top-level styling elements

H.2.1 Overview

The connection between a GML data set and a styling description is established through the single
property, gml:defaultStyle. The value of this property, the gml:Style object, contains all styling
descriptions. The gml:defaultStyle property has to be specified in feature type definition in the
application schema so that it can be used to associate the feature element with the styling rules.

H.2.2 defaultStyle

The gml:defaultStyle property is a property defined as a global element and can be assigned to any
feature defined in an application schema. The definition of the property is as follows:

<element name="defaultStyle" type="gml:DefaultStylePropertyType"/>

<complexType name="DefaultStylePropertyType">
 <sequence minOccurs="0">
 <element ref="gml:AbstractStyle"/>
 </sequence>
 <attribute name="about" type="anyURI"/>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
</complexType>
The gml:defaultStyle property may contain an attribute about. This can be used in a feature collection
to assign default styles to features in the collection. In this case the gml:defaultStyle property is
attached to the collection (the application schema could permit any number of such properties), each
containing inline or referencing the styling rule information. If the about attribute is used, then it may
reference any feature (or feature collection); if it is not used then the feature style applies to the parent
feature of the gml:defaultStyle property to which the about attribute is attached.

This property can be included in a feature via the application schema defining the feature type.

EXAMPLE The following exp:Road feature type definition illustrates the inclusion of the gml:defaultStyle
property:

 <element name="Road" type="exp:RoadType" substitutionGroup="gml:AbstractFeature"/>

 <complexType name="RoadType">
 <complexContent>
 <extension base="gml:AbstractFeatureType">
 <sequence>
 <element ref="gml:centerLineOf"/>
 <element ref="gml:defaultStyle"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

H.2.3 Style

The gml:Style object is the default concrete value of the gml: defaultStyle property. It is the top-level
styling object that encapsulates all other, partial style descriptions. Its definition is as follows:

<element name="Style" type="gml:StyleType" substitutionGroup="gml:AbstractStyle"/>

<complexType name="StyleType">
 <complexContent>
 <extension base="gml:AbstractStyleType">
 <sequence>
 <element ref="gml:featureStyle" minOccurs="0" maxOccurs="unbounded"/>
 <element ref="gml:graphStyle" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

330 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

The content model of the gml:Style object is derived by extension from gml:AbstractStyleType. This
type serves as an abstract base type for extensibility purposes, i.e. creating custom style objects, and it
does not add any new content to the gml:AbstractGMLType from which it derives.

<element name="AbstractStyle" type="gml:AbstractStyleType" abstract="true"
 substitutionGroup="gml:AbstractGML"/>

<complexType name="AbstractStyleType" abstract="true">
 <complexContent>
 <extension base="gml:AbstractGMLType"/>
 </complexContent>
</complexType>
However, it is not assumed that creating custom style objects will be the usual practice since gml:Style
provides rich capabilities for describing styles.

The definition of the gml:Style object presented previously in the text is itself a proper example of
using the extensibility mechanism and shows how these rules can be applied in the schema:

— The content model of a concrete style object derives from gml:AbstractStyleType.

— The concrete style object is substitutable for gml:AbstractStyle.

The function of the styling elements in the gml:Style object, namely gml:featureStyle and
gml:graphStyle is to describe styles for two aspects of GML data: individual features and topology
graphs that consist of collections of features. Note that elements that describe styles for particular
aspects of features, namely, feature style, graph style, geometry style, topology style and label style are
often called style descriptors.

H.3 Feature style

H.3.1 FeatureStyle

A feature style descriptor is assigned to a gml:Style through the gml:featureStyle property. It allows,
like other GML properties, to specify the value inline or remotely.

<element name="featureStyle" type="gml:FeatureStylePropertyType"/>

<complexType name="FeatureStylePropertyType">
 <sequence minOccurs="0">
 <element ref="gml:FeatureStyle"/>
 </sequence>
 <attribute name="about" type="anyURI"/>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
</complexType>
Its value is a gml:FeatureStyle — the feature style descriptor. A feature style descriptor describes
the styling information for a set of feature instances. The set is defined by the selection mechanisms
that are part of this style descriptor. The style applies to each feature in the set independently — no
relations that might exist among features in the set are significant.

NOTE 1 The opposite case is graph style where the style applies to a set of features as a whole.

The definition of the feature style descriptor is as follows:

<element name="FeatureStyle" type="gml:FeatureStyleType" substitutionGroup="gml:Abstract
GML"/>

<complexType name="FeatureStyleType">
 <complexContent>
 <extension base="gml:AbstractGMLType">
 <sequence>
 <element name="featureConstraint" type="string" minOccurs="0"/>
 <element ref="gml:geometryStyle" minOccurs="0" maxOccurs="unbounded"/>
 <element ref="gml:topologyStyle" minOccurs="0" maxOccurs="unbounded"/>
 <element ref="gml:labelStyle" minOccurs="0"/>
 </sequence>

© ISO 2020 – All rights reserved 331

ISO 19136-1:2020(E)

 <attribute name="featureType" type="string"/>
 <attribute name="baseType" type="string"/>
 <attribute name="queryGrammar" type="gml:QueryGrammarEnumeration"/>
 </extension>
 </complexContent>
</complexType>
Feature instances to which the style applies are selected using one of the attributes featureType or
baseType and gml:featureConstraint element. These two attributes shall be used exclusively, with or
without the gml:featureConstraint element.

NOTE 2 In a revision, the gml:featureConstraint property elements should become an attribute.

H.3.2 featureType

The simplest and most common way of relating features and styles is by using this attribute. Its value
will be the declared name of a feature, instances of which we want to style.

EXAMPLE If the value is exp:Road, the gml:FeatureStyle object will simply apply to all Road features. The
value of this attribute is always the name of the element from the application schema that declares the feature.

H.3.3	 baseType

Another way of selecting the feature instances to which the style applies is to specify, as the value of
this attribute, the name of the base type from which feature or features derive. This is always the name
of an XML Schema complex type. Any complex type from the derivation chain can be used; the style
applies to any feature instance that ultimately derives from it.

EXAMPLE If gml:AbstractFeatureType is used as the value of the attribute, the style applies to all feature
instances in a data set.

H.3.4 featureConstraint

This property is used to further constrain the feature instance set to which the style applies. It is
optional and its value is an XPath expression. If the property does not exist, the style applies to all
feature instances selected by featureType or baseType attribute.

H.3.5 queryGrammar

The value of this property which is defined as an enumeration specifies the grammar that is used in
the content of the gml:featureConstraint element. The enumeration allows for three values: "Xpath",
"Xquery" and "other".

Styling features means styling a particular aspect or aspects of a feature. We can style feature geometry,
topology or display arbitrary text string. Feature style contains three style descriptors for respective
purposes: gml:GeometryStyle, gml:TopologyStyle and gml:LabelStyle.

H.4 Geometry style

The value of the gml:geometryStyle property is gml:GeometryStyle descriptor which describes the
style for one geometry of a feature. Any number of geometry style descriptors can be assigned to one
feature style. This is usually required for features with multiple geometry properties.

<element name="geometryStyle" type="gml:GeometryStylePropertyType"/>

<complexType name="GeometryStylePropertyType">
 <sequence minOccurs="0">
 <element ref="gml:GeometryStyle" />
 </sequence>
 <attribute name="about" type="anyURI"/>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
</complexType>

<element name="GeometryStyle" type="gml:GeometryStyleType" substitutionGroup="gml:Abstract

332 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

GML"/>

<complexType name="GeometryStyleType">
 <complexContent>
 <extension base="gml:BaseStyleDescriptorType">
 <sequence>
 <choice>
 <element ref="gml:symbol"/>
 <element name="style" type="string"/>
 </choice>
 <element ref="gml:labelStyle" minOccurs="0"/>
 </sequence>
 <attribute name="geometryProperty" type="string"/>
 <attribute name="geometryType" type="string"/>
 </extension>
 </complexContent>
</complexType>
The gml:geometryStyle is defined in the same manner as other GML properties which allow for
referencing the value remotely or inline.

The geometryProperty attribute on the gml:GeometryStyle specifies the name of the geometry property
of a feature to which this geometry style descriptor applies. It is necessary to specify the geometry type
using geometryType attribute as well since the application schema of the geometry property may allow
different geometries as its value.

The property gml:symbol is described in H.7.2.

The property style has been deprecated.

H.5 Topology style

The value of the gml:topologyStyle property is a gml:TopologyStyle descriptor which describes
the style for one topology property. Similarly to the gml:GeometryStyle, a feature can have multiple
topology properties, thus multiple topology style descriptors can be specified within one feature style.

<element name="topologyStyle" type="gml:TopologyStylePropertyType"/>

<complexType name="TopologyStylePropertyType">
 <sequence minOccurs="0">
 <element ref="gml:TopologyStyle"/>
 </sequence>
 <attribute name="about" type="anyURI"/>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
</complexType>

<element name="TopologyStyle" type="gml:TopologyStyleType" substitutionGroup="gml:Abstract
GML"/>

<complexType name="TopologyStyleType">
 <complexContent>
 <extension base="gml:BaseStyleDescriptorType">
 <sequence>
 <choice>
 <element ref="gml:symbol"/>
 <element name="style" type="string"/>
 </choice>
 <element ref="gml:labelStyle" minOccurs="0"/>
 </sequence>
 <attribute name="topologyProperty" type="string"/>
 <attribute name="topologyType" type="string"/>
 </extension>
 </complexContent>
</complexType>
The gml:topologyStyle property is defined in the same manner as other GML properties which allow
for referencing the value remotely or inline.

© ISO 2020 – All rights reserved 333

ISO 19136-1:2020(E)

The topologyProperty attribute on the gml:TopologyStyle descriptor specifies the name of the
topology property of a feature to which this topology style descriptor applies. It is necessary to specify
the topology type using topologyType attribute as well since the application schema of the topology
property may allow different topologies as its value.

The property gml:symbol is described in H.7.2.

The property style has been deprecated.

H.6	 Label	style

The value of the gml:labelStyle property is gml:LabelStyle descriptor which describes the style for
the text that is to be displayed along with the graphical representation of a feature. The content of
the label is not necessarily defined in the GML data set. More precisely, the content can be static text
specified in the style itself and the text from the GML data set.

Label style has two elements: gml:style that specifies the style and gml:label that is used to compose
the label content.

<element name="labelStyle" type="gml:LabelStylePropertyType"/>

<complexType name="LabelStylePropertyType">
 <sequence minOccurs="0">
 <element ref="gml:LabelStyle"/>
 </sequence>
 <attribute name="about" type="anyURI"/>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
</complexType>

<element name="LabelStyle" type="gml:LabelStyleType" substitutionGroup="gml:AbstractGML"/>

<complexType name="LabelStyleType">
 <complexContent>
 <extension base="gml:BaseStyleDescriptorType">
 <sequence>
 <element name="style" type="string"/>
 <element name="label" type="gml:LabelType"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>
The gml:labelStyle property is defined in the same manner as other GML properties which allow for
referencing the value remotely or inline.

The gml:style element is used to specify the style of the rendered text. The type of this element is
string and the CSS2 (Cascading Style Sheet Version 2.0) styling expressions grammar is used to express
graphic properties.

EXAMPLE 1 The following feature style shows the use of the gml:style element in a geometry style context.

<gml:FeatureStyle featureType="exp:City">
 <gml:GeometryStyle>
 <gml:style>fill:blue;stroke:white</gml:style>
 </gml:GeometryStyle>
</gml:FeatureStyle>
As noted, the gml:label property on the gml:LabelStyle descriptor holds the textual content that can
be composed of static text and the text extracted from the GML data.

<complexType name="LabelType" mixed="true">
 <sequence>
 <element name="LabelExpression" type="string" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute ref="gml:transform"/>
</complexType>

334 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

The content model is mixed to allow both text content and unbounded number of gml:LabelExpression
elements. The value of a gml:LabelExpression element is an XPath expression that selects the value of
some property of the feature.

EXAMPLE 2 Consider this GML data fragment and corresponding gml:label style:

<exp:City>
 <gml:name>Belgrade</gml:name>
 <exp:size>1,700,000</exp:size>
 <gml:extentOf>
 …
 </gml:extentOf>
</exp:City>

<gml:FeatureStyle featureType="exp:City">
 <gml:LabelStyle>
 <gml:style>font-family:Verdana;font-size:16;fill:red</gml:style>
 <gml:label>
 City:
 <gml:LabelExpression>//City/name</gml:LabelExpression>
 , Size:
 <gml:LabelExpression>//City/size</gml:LabelExpression>
 </gml:label>
 </gml:LabelStyle>
</gml:FeatureStyle>
This label style will result in the following text being displayed:

City: Belgrade, Size: 1,700,000

H.7 Common styling elements

H.7.1 Overview

Some common styling elements are used in multiple style descriptors. The gml:symbol element is used
by geometry and topology style descriptors. The spatialResolution, styleVariation and animation
attributes are declared in gml:BaseStyleDesriptorType, and inherited by geometry, topology, label and
graph style descriptors.

H.7.2	 symbol

The gml:symbol property element specifies a graphical symbol used to render a geometry or a topology.
A symbol is a description of graphical attributes of a graphical object without a particular, implicit
meaning. It can be a description of a line, circle, polygon or more complex drawing. Using the symbol
element, we can specify a particular symbol in two ways:

— Remote: Just like any other remote property, the symbol property has the gml:AssociationAttributeGroup
attributes that allow for specifying a link pointing to a remote object.

— Inline: The value of the gml:symbol property is the any specifier. This allows for specifying an
arbitrary grammar for the symbol.

This element has two additional attributes: symbolType and transform. The symbolType attribute is an
enumeration and can take one of three values: "svg", "xpath" or "other". Applications will rely on the
value of this attribute to decide how to interpret the symbol.

The transform attribute allows to specify a transformation expression that will be applied to the
symbol in the rendering phase. Its type is string and the value is specified in SVG (transform attribute).

© ISO 2020 – All rights reserved 335

ISO 19136-1:2020(E)

H.7.3 styleVariation

The function of then gml:styleVariation property element is manifold:

— Styling labels: Label style does not have a symbol associated with it since the content is not graphical
but is given textually. This property can be used to specify its style attributes.

— Styling symbol variations: One symbol is often used in different cases with slight modifications. It
would be cumbersome to create and manage large number of virtually identical symbols; it is easier
to create and use only one symbol and express minor differences in its style using this property.

— Parametrized styles: Parametrized styles are styles whose attributes depend on some property of
the feature being styled.

EXAMPLE 1 A city can be styled differently depending on its population. The gml:styleVariation
property allows for specifying such dependencies.

The content model of this property is:

<complexType name="StyleVariationType">
 <simpleContent>
 <extension base="string">
 <attribute name="styleProperty" type="string" use="required"/>
 <attribute name="featurePropertyRange" type="string" use="optional"/>
 </extension>
 </simpleContent>
</complexType>
It has two attributes: styleProperty and featurePropertyRange. The value of the styleProperty is
an SVG styling attribute name, such as “stroke”, “fill”, etc. It specifies what attribute of the style the
property sets or overrides. The value of the styleVariation element is the value of the styling attribute
specified by the styleProperty. The value may be a constant expression or an XPath expression.

The featurePropertyRange attribute defines the subset of features to which the variation applies. Its
value is an XPath expression.

EXAMPLE 2 The following shows two variations of the symbol style for a City feature. The feature is styled
using a circle symbol. The radius of the circle depends on the population of the city, and is also calculated
differently depending whether the population of the city is greater or less than 2 million.

<gml:FeatureStyle featureType="exp:City">
 <gml:GeometryStyle>
 <gml:styleVariation
 styleProperty="r"
 featurePropertyRange="population >= 2000000">population div 1000000</
gml:styleVariation>
 <gml:styleVariation
 styleProperty="r"
 featurePropertyRange="population < 2000000">population div 1000000</
gml:styleVariation>
 <gml:symbol xlink:href="http://www.opengis.org/symbols/City.xml#City"/>
 </gml:GeometryStyle>
</gml:FeatureStyle>

H.7.4 spatialResolution

The value of the gml:spatialResolution property element is a gml:MeasureType. In GML default styling,
the meaning of this element is based on the corresponding definition in ISO 19115, where it is defined as
a factor that provides a general understanding of the density of spatial data in the data set. Other than
this informal definition, GML does not specify the exact use of this attribute. Application developers can
use gml:spatialResolution in different ways.

EXAMPLE 1 It can be used as a map scale denominator (1:50,000, 1:25000, etc.).

336 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

EXAMPLE 2 Applications can also use its value to determine how to draw features in different scales. For
example, a city and its features are typically drawn in more detail on a large scale map, and perhaps only as a
single symbol on a small scale map or a coastline can be drawn in detail on a large scale map, while a small scale
map application can omit some coordinates for better performance.

H.7.5 animation

Animation attributes are used to describe the animation behaviour of the geometry, topology, label or
graph. These attributes are defined in W3C SMIL (SMIL 2.0 BasicAnimation Elements), see Table H.1.

Table	H.1	—	Attributes	used	for	animation

Attribute Used for
animate Generic attribute animation
animateMotion Moving an element along the path
animateColor Animating colour attributes
set Setting the value of an attribute for a specified duration

H.8 Graph style

The gml:graphStyle property of the gml:FeatureStyle descriptor has as its value the gml:GraphStyle
descriptor which describes style attributes of a graph formed by a set of features. The definitions of the
graph style property and descriptor are shown in the following listing:

<element name="graphStyle" type="gml:GraphStylePropertyType"/>

<complexType name="GraphStylePropertyType">
 <sequence minOccurs="0">
 <element ref="gml:GraphStyle"/>
 </sequence>
 <attribute name="about" type="anyURI"/>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
</complexType>

<element name="GraphStyle" type="gml:GraphStyleType" substitutionGroup="gml:AbstractGML"/>

<complexType name="GraphStyleType">
 <complexContent>
 <extension base="gml:BaseStyleDescriptorType">
 <sequence>
 <element name="planar" type="boolean" minOccurs="0"/>
 <element name="directed" type="boolean" minOccurs="0"/>
 <element name="grid" type="boolean" minOccurs="0"/>
 <element name="minDistance" type="double" minOccurs="0"/>
 <element name="minAngle" type="double" minOccurs="0"/>
 <element name="graphType" type="gml:GraphTypeType" minOccurs="0"/>
 <element name="drawingType" type="gml:DrawingTypeType" minOccurs="0"/>
 <element name="lineType" type="gml:LineTypeType" minOccurs="0"/>
 <element name="aestheticCriteria" type="gml:AesheticCriteriaType"
 minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

<simpleType name="GraphTypeType">
 <restriction base="string">
 <enumeration value="TREE"/>
 <enumeration value="BICONNECTED"/>
 </restriction>
</simpleType>

<simpleType name="DrawingTypeType">
 <restriction base="string">

© ISO 2020 – All rights reserved 337

ISO 19136-1:2020(E)

 <enumeration value="POLYLINE"/>
 <enumeration value="ORTHOGONAL"/>
 </restriction>
</simpleType>

<simpleType name="LineTypeType">
 <restriction base="string">
 <enumeration value="STRAIGHT"/>
 <enumeration value="BENT"/>
 </restriction>
</simpleType>

<simpleType name="AesheticCriteriaType">
 <restriction base="string">
 <enumeration value="MIN_CROSSINGS"/>
 <enumeration value="MIN_AREA"/>
 <enumeration value="MIN_BENDS"/>
 <enumeration value="MAX_BENDS"/>
 <enumeration value="UNIFORM_BENDS"/>
 <enumeration value="MIN_SLOPES"/>
 <enumeration value="MIN_EDGE_LENGTH"/>
 <enumeration value="MAX_EDGE_LENGTH"/>
 <enumeration value="UNIFORM_EDGE_LENGTH"/>
 <enumeration value="MAX_ANGULAR_RESOLUTION"/>
 <enumeration value="MIN_ASPECT_RATIO"/>
 <enumeration value="MAX_SYMMETRIES"/>
 </restriction>
</simpleType>
The gml:graphStyle property is defined in the same manner as other GML properties which allow for
referencing the value remotely or inline.

Graph style descriptor describes the style for a graph as a whole, not for individual graph elements. It
inherits from the base content model common styling properties described in the H.7.

This descriptor adds to the base content model a group of properties specific to graph styling — they
describe the graph in terms of its specific characteristics. The properties are described in Table H.2.

Table	H.2	—	Elements	used	in	graph	styling

Element Type Use
planar boolean If true, the graph edges do not cross (planar graph); if false they

may cross
directed boolean If true the graph is directed; if false it is not directed
grid boolean If true, the coordinates of vertices, crossings and bends have

integer values, otherwise they may have decimal values
minDistance double A recommendation for the minimum distance between vertices

and non-incident edges
minAngle double A recommendation for the minimum angle between consecutive

incident edges (angular resolution)
graphType An enumeration The type of the graph. The value may be TREE or BICONNECTED
drawingType An enumeration The type of the drawing with respect to the orthogonality of

edges. The value may be POLYLINE or ORTHOGONAL
lineType An enumeration Determines whether there will be any bent edges. The value

may be STRAIGHT or BENT
aestheticCriteria An enumeration A recommendation for the general outline of the graph in ac-

cordance with a particular aesthetic criteria. The value may be
one of the following: MIN_CROSSINGS, MIN_AREA, MIN_BENDS,
MAX_BENDS, UNIFORM_BENDS, MIN_SLOPES, MIN_EDGE_
LENGTH, MAX_EDGE_LENGTH, UNIFORM_EDGE_LENGTH,
MAX_ANGULAR_RESOLUTION, MIN_ASPECT_RATIO or MAX_
SYMMETRIES

338 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

Annex I
(informative)

Backwards	compatibility	with	earlier	versions	of	GML

I.1 Overview

This annex specifies the deprecated schema components and their replacements (see 5.3).

I.2 Base schema components

I.2.1 remoteSchema

The attribute remoteSchema was provided to indicate a schema which constrains the description of the
remote resource referenced by the xlink. The use of this attribute has been deprecated, xlink:role (see
8.1) may be used for the same purpose.

 <attribute name="remoteSchema" type="anyURI"/>

I.2.2	 member

A concrete property element named “member” was previously declared as follows:

 <element name="member" type="gml:AssociationRoleType"/>
Property elements defined in an application schema shall be used instead.

I.2.3 ArrayAssociationType

For a property that will only be encoded inline, the property type pattern was explicitly encoded as:

 <complexType name="ArrayAssociationType">
 <sequence>
 <element ref="gml:AbstractObject" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
 </complexType>
This type has been replaced by derived types of gml:AbstractMemberType (see 7.2.5.1).

I.2.4	 members

A concrete property element named “members” was previously declared as follows:

 <element name="members" type="gml:ArrayAssociationType"/>
Property elements defined in an application schema shall be used instead.

I.2.5	 featureProperty,	featureMember,	featureMembers

The concrete elements gml:featureMember and gml:featureProperty used the gml:AssociationRoleType
pattern in their content model, and were declared as follows:

 <element name="featureMember" type="gml:FeaturePropertyType"/>
 <element name="featureProperty" type="gml:FeaturePropertyType"/>
The concrete elements gml: featureMembers contains an array of features, and was declared as follows:

 <element name="featureMembers" type="gml:FeatureArrayPropertyType"/>
These property elements have been superseded by elements defined in application schemas.

© ISO 2020 – All rights reserved 339

ISO 19136-1:2020(E)

I.2.6 StringOrRefType

gml:StringOrRefType is a type provided to contain extended text values. It is defined as follows:

 <complexType name="StringOrRefType">
 <simpleContent>
 <extension base="string">
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </extension>
 </simpleContent>
 </complexType>
The use of remote references in this type has been deprecated. This type was previously available
wherever there was a need for a "text" type property. It is of string type, so the text can be included
inline, but the value could also have been referenced remotely via an xlink: href attribute. If the remote
reference was present, then the value obtained by traversing the link was considered to be the value.

To refer to a remote string value, the xlink: href attribute of an element of type gml: ReferenceType
(see 7.2.3.7), e.g. gml: descriptionReference, shall be used instead.

I.2.7 Array, ArrayType, Bag, BagType

Two concrete collections of objects were provided, but have been deprecated. GML object collections
shall be constructed in application schema as described in 7.2.5 instead.

A gml:Bag was for general collections with no implication about the type, order or uniqueness of the
member objects:

 <element name="Bag" type="gml:BagType" substitutionGroup="gml:AbstractGML"/>

 <complexType name="BagType">
 <complexContent>
 <extension base="gml:AbstractGMLType">
 <sequence>
 <element ref="gml:member" minOccurs="0" maxOccurs="unbounded"/>
 <element ref="gml:members" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
A gml:Array was intended to be used for a collection whose member objects are of homogeneous type
and where their order is significant:

 <element name="Array" type="gml:ArrayType" substitutionGroup="gml:AbstractGML"/>

 <complexType name="ArrayType">
 <complexContent>
 <extension base="gml:AbstractGMLType">
 <sequence>
 <element ref="gml:members" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

I.2.8	 metaDataProperty,	MetaDataPropertyType,	AbstractMetaData,	
AbstractMetaDataType

The schema components specified in this subclause are superseded by the schema components
specified in 7.2.6.

This property contains or refers to a metadata package that contains metadata properties in an
encoding used in a previous version of GML. This element has been deprecated and is superseded by
elements whose content model is derived from gml:AbstractMetadataPropertyType. More detail is
provided in 7.2.6.

340 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

 <element name="metaDataProperty" type="gml:MetaDataPropertyType"/>

 <complexType name="MetaDataPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:AbstractMetaData"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 <attribute name="about" type="anyURI"/>
 </complexType>
The optional “about” attribute carries a URI which points to an element or range of elements, or other
resource to which this metadata refers.

The value of the metaDataProperty is an abstract element gml:AbstractMetaData that acts as a
placeholder for “any package of metadata properties”, defined as follows:

 <element name="AbstractMetaData" type="gml:AbstractMetaDataType" abstract="true"
 substitutionGroup="gml:AbstractObject"/>

 <complexType name="AbstractMetaDataType" abstract="true" mixed="true">
 <sequence/>
 <attribute ref="gml:id"/>
 </complexType>

I.2.9 GenericMetaData, GenericMetaDataType

For convenience, a generic concrete MetaData element was provided in a previous version of GML. This
element has been deprecated and is superseded by the schema components specified in 7.2.6.

 <element name="GenericMetaData" type="gml:GenericMetaDataType" substitutionGroup="gml:A
bstractMetaData"/>

 <complexType name="GenericMetaDataType" mixed="true">
 <complexContent mixed="true">
 <extension base="gml:AbstractMetaDataType">
 <sequence>
 <any processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

I.3 Basic types, Null

gml: Null is superseded by nillable and nilReason attributes as specified in 8.2.3.2.

The gml: Null element was declared as follows:

 <element name="Null" type="gml:NilReasonType"/>
EXAMPLE 1 This element can appear in data instance documents as follows:

 <gml:Null>withheld</gml:Null>

 <gml:Null>http://my.big.org/explanations/theDogAteIt</gml:Null>
The first example uses one of the built-in values for Null. The second example contains a reference to an
explanation available elsewhere, identified by a URI.

The purpose in providing the gml: Null element was as follows: In order to construct a content
model where a value may be omitted, the cardinality constraint expressed in XML Schema using the
construction minOccurs=”0” might be used. However, this approach carries the risk that the reason
for the value not being present may be misinterpreted. As an alternative the element gml:Null may be
included as a member of a choice group, alongside an element of the data type of a “normal” value.

EXAMPLE 2 The content model described by the schema fragment

 <element name="footprint">
 <complexType>
 <choice>
 <element ref="gml:Envelope"/>

© ISO 2020 – All rights reserved 341

ISO 19136-1:2020(E)

 <element ref="gml:Null"/>
 </choice>
 </complexType>
 </element>
allows either of the following data instances to be valid:

 <footprint>
 <gml:Envelope> … </gml:Envelope>
 </footprint>

 <footprint>
 <gml:Null>inapplicable</gml:Null>
 </footprint>
This allows the hypothetical element “footprint” to appear in an instance document, optionally
containing an explicit marker indicate why it has no value, instead of having semantics inferred from
the absence of a value.

I.4 Features

I.4.1 location, LocationPropertyType, LocationKeyWord, LocationString

The gml:location element was a convenience property that described the generalized location of the
feature. It was defined as follows:

<element name="location" type="gml:LocationPropertyType"/>

<complexType name="LocationPropertyType">
 <sequence>
 <choice>
 <element ref="gml:AbstractGeometry"/>
 <element ref="gml:LocationKeyWord"/>
 <element ref="gml:LocationString"/>
 <element ref="gml:Null"/>
 </choice>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
</complexType>
The value of a location may be a geometry, a location string, a location keyword, or a null.

gml:location and gml:LocationPropertyType have been deprecated.

NOTE The flexible content model of the location property has proven to be difficult to implement in practice.

A location string is text which should describe the location. It was declared as follows:

 <element name="LocationString" type="gml:StringOrRefType"/>
gml:LocationKeyWord has been deprecated and is superseded by gml:locationName.

The location keyword is a code usually selected from a controlled list. It was declared as follows:

 <element name="LocationKeyWord" type="gml:CodeType"/>
gml:LocationString has been deprecated and is superseded by gml:locationReference and
gml:locationName (see 9.4.2).

I.4.2 priorityLocation, priorityLocationType

A property gml:priorityLocation was provided for GML application schema developers that wish to
provide prioritized locations for their features. A gml:priorityLocation has the following content model:

 <element name="priorityLocation" type="gml:PriorityLocationPropertyType"
 substitutionGroup="gml:location"/>

 <complexType name="PriorityLocationPropertyType">
 <complexContent>
 <extension base="gml:LocationPropertyType">

342 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

 <attribute name="priority" type="string" />
 </extension>
 </complexContent>
 </complexType>
Note that this simply adds a priority string to the base gml:location property to assign levels of
importance to the different locations.

I.4.3 BoundedFeatureType

A simple restriction of gml:AbstractFeatureType was previously offered making the optional
boundedBy property mandatory. gml:BoundedFeatureType was defined as follows:

 <complexType name="BoundedFeatureType" abstract="true">
 <complexContent>
 <restriction base="gml:AbstractFeatureType">
 <sequence>
 <group ref="gml:StandardObjectProperties"/>
 <element ref="gml:boundedBy"/>
 <element ref="gml:location" minOccurs="0"/>
 </sequence>
 </restriction>
 </complexContent>
 </complexType>

I.4.4	 AbstractFeatureCollectionType,	AbstractFeatureCollection,	FeatureCollection,	
FeatureCollectionType

GML feature collections in previous versions of GML were derived by extension or restriction from gml:
AbstractFeatureCollectionType, defined as follows:

 <complexType name="AbstractFeatureCollectionType" abstract="true">
 <complexContent>
 <extension base="gml:AbstractFeatureType">
 <sequence>
 <element ref="gml:featureMember" minOccurs="0" maxOccurs="unbounded"/>
 <element ref="gml:featureMembers" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
The gml:featureMember property (but not the gml:featureMembers property) follows the association
pattern and may thus refer to a “remote” feature by means of the xlink:ref attribute.

The compositing property gml:featureMembers encloses a set of members of the Feature Collection
regardless of their semantic type as features. gml:featureMember encloses or references a single feature
instance. gml:featureMember and gml:featureMembers properties may appear on the same Feature
Collection, but there may be only one gml:featureMembers property.

GML feature collections are themselves valid GML features and may have gml:location and other
properties as defined in their GML application schema.

 <element name="AbstractFeatureCollection" type="gml:AbstractFeatureCollectionType"
 abstract="true" substitutionGroup="gml:AbstractFeature"/>
This abstract element gml:AbstractFeatureCollection serves as the head of a substitution group
which may contain any elements whose content model is derived from gml:AbstractFeatureType. This
may be used as a variable in the construction of content models.

The schema also provides a concrete feature collection:

 <element name="FeatureCollection" type="gml:FeatureCollectionType"
 substitutionGroup="gml:AbstractFeature"/>

 <complexType name="FeatureCollectionType">
 <complexContent>
 <extension base="gml:AbstractFeatureCollectionType"/>
 </complexContent>
 </complexType>

© ISO 2020 – All rights reserved 343

ISO 19136-1:2020(E)

Users of the concrete gml:FeatureCollection should note that it allows any valid GML feature as a member.

The content model of a GML feature collection in previous versions of GML was derived from gml:A
bstractFeatureCollectionType. This in turn derives from gml:AbstractFeatureType. Hence feature
collections are features, and are in general substitutable for gml:AbstractFeature.

The schema components specified in this subclause are deprecated and superseded by the rules for
GML feature collections specified in 9.9.1.

I.4.5 Spatial properties

In general the definition of feature properties is the responsibility of the application schema designer.
GML previously had defined a set of predefined spatial property elements to associate instances of
these spatial types with features. These have been deprecated, application schema specific property
names shall be used instead.

a) Descriptive names that provide a set of property names that are often used in application schemas.
These are:

<element name="centerOf" type="gml:PointPropertyType"/>

<element name="position" type="gml:PointPropertyType"/>

<element name="extentOf" type="gml:SurfacePropertyType"/>

<element name="edgeOf" type="gml:CurvePropertyType"/>

<element name="centerLineOf" type="gml:CurvePropertyType"/>

<element name="multiLocation" type="gml:MultiPointPropertyType"/>

<element name="multiCenterOf" type="gml:MultiPointPropertyType"/>

<element name="multiPosition" type="gml:MultiPointPropertyType"/>

<element name="multiCenterLineOf" type="gml:MultiCurvePropertyType"/>

<element name="multiEdgeOf" type="gml:MultiCurvePropertyType"/>

<element name="multiCoverage" type="gml:MultiSurfacePropertyType"/>

<element name="multiExtentOf" type="gml:MultiSurfacePropertyType"/>

These property elements provide common role names for the geometry of geographic features.
However, the specific semantics of these role names is not defined.

b) Formal names that denote spatial properties in a manner based on the type of geometry or
topology allowed as a property value. These are names based on the name of the spatial type with
a suffix “Property”. These property types are usually defined for use within the GML schema itself.
They shall not be used for property elements in application schemas. All formal names that are not
used within the GML schema itself are deprecated:

 <element name="topoComplexProperty" type="gml:TopoComplexPropertyType"/>

 <element name="multiPointProperty" type="gml:MultiPointPropertyType"/>

 <element name="multiCurveProperty" type="gml:MultiCurvePropertyType"/>

 <element name="multiSurfaceProperty" type="gml:MultiSurfacePropertyType"/>

344 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

 <element name="multiSolidProperty" type="gml:MultiSolidPropertyType"/>

 <element name="multiGeometryProperty" type="gml:MultiGeometryPropertyType"/>

 <element name="pointArrayProperty" type="gml:PointArrayPropertyType"/>

 <element name="curveArrayProperty" type="gml:CurveArrayPropertyType"/>

 <element name="surfaceArrayProperty" type="gml:SurfaceArrayPropertyType"/>

 <element name="solidArrayProperty" type="gml:SolidArrayPropertyType"/>

The specific semantics of these role names (e.g. "What does multiPointProperty of an object
mean?") is not defined.

I.5 Coordinate geometry, geometric primitives

I.5.1 coordinates
 <element name="coordinates" type="gml:CoordinatesType" />
The gml:coordinates element is deprecated and replaced by gml:posList (see 10.1.4.2).

I.5.2 pos in EnvelopeType

The properties gml:lowerCorner and gml:upperCorner within gml:EnvelopeType shall be used instead
(see 10.1.4.6).

I.5.3 pointRep
 <element name="pointRep" type="gml:PointPropertyType"/>
This property element has been deprecated. Use gml:pointProperty instead, see 10.3.2.

I.5.4 polygonPatches
 <element name="polygonPatches" type="gml:SurfacePatchArrayPropertyType"
 substitutionGroup="gml:patches"/>
gml:polygonPatches encapsulates the polygon patches of the polyhedral surface. gml:patches shall be
used instead.

I.5.5 trianglePatches
 <element name="trianglePatches" type="gml:SurfacePatchArrayPropertyType"
 substitutionGroup="gml:patches"/>
gml:trianglePatches encapsulates the triangles of the triangulated surface. gml:patches shall be used
instead.

I.6 Coordinate reference systems

I.6.1	 baseGeographicCRS
 <element name="baseGeographicCRS" type="gml:GeographicCRSPropertyType"/>
gml: baseGeographicCRS is an association role to the geographic coordinate reference system used by
this projected CRS. This property element is deprecated and replaced by gml: baseGeodeticCRS (see
12.3.3.15).

© ISO 2020 – All rights reserved 345

ISO 19136-1:2020(E)

I.6.2 GeographicCRS
 <element name="GeographicCRS" type="gml:GeographicCRSType"
 substitutionGroup="gml:AbstractSingleCRS"/>

 <complexType name="GeographicCRSType">
 <complexContent>
 <extension base="gml:AbstractCRSType">
 <sequence>
 <element ref="gml:usesEllipsoidalCS"/>
 <element ref="gml:usesGeodeticDatum"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
gml:GeographicCRS is a coordinate reference system based on an ellipsoidal approximation of the geoid;
this provides an accurate representation of the geometry of geographic features for a large portion of
the Earth's surface. gml:GeographicCRS is deprecated and replaced by gml:GeodeticCRS (see 12.3.3.4).

 <complexType name="GeographicCRSPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:GeographicCRS"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:GeographicCRSPropertyType is a property type for association roles to a geographic coordinate
reference system, either referencing or containing the definition of that reference system. This property
type has been deprecated and replaced by gml:GeodeticCRSPropertyType (see 12.3.3.9).

I.6.3 GeocentricCRS
 <element name="GeocentricCRS" type="gml:GeocentricCRSType"
 substitutionGroup="gml:AbstractSingleCRS"/>

 <complexType name="GeocentricCRSType">
 <complexContent>
 <extension base="gml:AbstractCRSType">
 <sequence>
 <choice>
 <element ref="gml:usesCartesianCS"/>
 <element ref="gml:usesSphericalCS"/>
 </choice>
 <element ref="gml:usesGeodeticDatum"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
gml:GeocentricCRS is a 3D coordinate reference system with the origin at the approximate centre
of mass of the Earth. A geocentric CRS deals with the Earth's curvature by taking a 3D spatial view.
gml:GeocentricCRS is deprecated and replaced by gml:GeodeticCRS (see 12.3.3.4).

 <complexType name="GeocentricCRSPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:GeocentricCRS"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:GeocentricCRSPropertyType is a property type for association roles to a geocentric coordinate
reference system, either referencing or containing the definition of that reference system. This property
type has been deprecated and replaced by gml:GeodeticCRSPropertyType (see 12.3.3.9).

I.6.4 uom
 <attribute name="uom" type="anyURI"/>
The uom attribute provides an identifier of the unit of measure and has been deprecated. Local uom
attributes shall be used instead.

346 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

I.6.5	 ObliqueCartesianCS
 <element name="ObliqueCartesianCS" type="gml:ObliqueCartesianCSType"
substitutionGroup="gml:AbstractCoordinateSystem"/>

 <complexType name="ObliqueCartesianCSType">
 <complexContent>
 <extension base="gml:AbstractCoordinateSystemType"/>
 </complexContent>
 </complexType>
gml:ObliqueCartesianCS is a two- or three-dimensional coordinate system with straight axes that are
not necessarily orthogonal. An ObliqueCartesianCS shall have two or three gml:usesAxis associations.
This element and type have been deprecated and are replaced by gml:AffineCS and its type (see
12.4.4.19).

 <complexType name="ObliqueCartesianCSPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:ObliqueCartesianCS"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:ObliqueCartesianCSPropertyType is a property type for association roles to an oblique-Cartesian
coordinate system, either referencing or containing the definition of that coordinate system. This
property type has been deprecated and is replaced by gml:AffineCSPropertyType.

I.6.6 TemporalCS
 <element name="TemporalCS" type="gml:TemporalCSType"
 substitutionGroup="gml:AbstractCoordinateSystem"/>

 <complexType name="TemporalCSType">
 <complexContent>
 <extension base="gml:AbstractCoordinateSystemType"/>
 </complexContent>
 </complexType>
gml:TemporalCS is a one-dimensional coordinate system containing a single time axis, used to describe
the temporal position of a point in the specified time units from a specified time origin. A TemporalCS
shall have one gml:usesAxis property element. This element and type have been deprecated and are
replaced by gml:TimeCS and its type (see 12.4.4.7).

 <complexType name="TemporalCSPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:TemporalCS"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:TemporalCSPropertyType is a property type for association roles to a temporal coordinate system,
either referencing or containing the definition of that coordinate system. This property type has been
deprecated.

I.6.7 greenwichLongitude

The use of the deprecated gml: AngleChoiceType in gml: greenwichLongitude (see 12.5.3.7) has been
removed.

I.6.8	 AbstractOperation
 <element name="AbstractOperation" type="gml:AbstractCoordinateOperationType"
 abstract="true" substitutionGroup="gml:AbstractSingleOperation"/>
gml:AbstractOperation is a parameterized mathematical operation on coordinates that transforms
or converts coordinates to another coordinate reference system. This coordinate operation uses
an operation method, usually with associated parameter values. However, operation methods and
parameter values are directly associated with concrete subtypes, not with this abstract type. A GML

© ISO 2020 – All rights reserved 347

ISO 19136-1:2020(E)

application schema shall not extend or restrict this abstract complexType. This element has been
deprecated and replaced by gml:AbstractSingleOperation (see 12.6.2.7).

 <complexType name="OperationPropertyType">
 <sequence minOccurs="0">
 <element ref="gml:AbstractOperation"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
gml:OperationPropertyType is a property type for association roles to an abstract operation, either
referencing or containing the definition of that operation. This property type has been deprecated and
replaced by gml:AbstractSingleOperationPropertyType (see 12.6.2.8).

I.6.9 dmsAngleValue
 <element name="dmsAngleValue" type="gml:DMSAngleType"/>
gml:dmsAngleValue is a value of an angle operation parameter, in either degree-minute-second format
or single value format. This property element has been deprecated.

I.6.10 Renamed property elements

Previous versions of GML contained property elements that used a different naming convention than
recommended in ISO/TS 19103 and used elsewhere in GML or because the property name in the
underlying conceptual model has been changed. These property elements have been deprecated, and
the property elements that are mentioned in the substitution group shall be used instead.

 <element name="methodFormula" type="gml:CodeType" substitutionGroup="gml:formula"/>
 <element name="anchorPoint" type="gml:CodeType"
 substitutionGroup="gml:anchorDefinition"/>
 <element name="generalOperationParameter"
 type="gml:AbstractGeneralOperationParameterPropertyType"
 substitutionGroup="gml:parameter"/>
 <element name="valueOfParameter" type="gml:OperationParameterPropertyType"
 substitutionGroup="gml:operationParameter"/>
 <element name="valuesOfGroup" type="gml:OperationParameterGroupPropertyType"
 substitutionGroup="gml:group"/>
 <element name="includesParameter"
 type="gml:AbstractGeneralOperationParameterPropertyType"
 substitutionGroup="gml:parameter"/>
 <element name="definedByConversion" type="gml:GeneralConversionPropertyType"
 substitutionGroup="gml:conversion"/>
 <element name="includesSingleCRS" type="gml:SingleCRSPropertyType"
 substitutionGroup="gml:componentReferenceSystem"/>
 <element name="usesEllipsoidalCS" type="gml:EllipsoidalCSPropertyType"
 substitutionGroup="gml:ellipsoidalCS"/>
 <element name="usesCartesianCS" type="gml:CartesianCSPropertyType"
 substitutionGroup="gml:cartesianCS" />
 <element name="usesSphericalCS" type="gml:SphericalCSPropertyType"
 substitutionGroup="gml:sphericalCS"/>
 <element name="usesGeodeticDatum" type="gml:GeodeticDatumPropertyType"
 substitutionGroup="gml:geodeticDatum"/>
 <element name="usesVerticalCS" type="gml:VerticalCSPropertyType"
 substitutionGroup="gml:verticalCS"/>
 <element name="usesVerticalDatum" type="gml:VerticalDatumPropertyType"
 substitutionGroup="gml:verticalDatum"/>
 <element name="usesCS" type="gml:CoordinateSystemPropertyType"
 substitutionGroup="gml:coordinateSystem" />
 <element name="usesEngineeringDatum" type="gml:EngineeringDatumPropertyType"
 substitutionGroup="gml:engineeringDatum"/>
 <element name="usesAffineCS" type="gml:AffineCSPropertyType"
 substitutionGroup="gml:affineCS"/>
 <element name="usesImageDatum" type="gml:ImageDatumPropertyType"
 substitutionGroup="gml:imageDatum"/>
 <element name="usesObliqueCartesianCS" type="gml:ObliqueCartesianCSPropertyType"/>
 <element name="usesTimeCS" type="gml:TimeCSPropertyType" substitutionGroup="gml:tim
eCS"/>
 <element name="usesTemporalCS" type="gml:TemporalCSPropertyType"/> (use gml:timeCS
instead)

348 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

 <element name="usesTemporalDatum" type="gml:TemporalDatumPropertyType"
 substitutionGroup="gml:temporalDatum"/>
 <element name="usesAxis" type="gml:CoordinateSystemAxisPropertyType"
 substitutionGroup="gml:axis"/>
 <element name="usesPrimeMeridian" type="gml:PrimeMeridianPropertyType"
 substitutionGroup="gml:primeMeridian"/>
 <element name="usesEllipsoid" type="gml:EllipsoidPropertyType"
 substitutionGroup="gml:ellipsoid"/>
 <element name="usesSingleOperation" type="gml:CoordinateOperationPropertyType"
 substitutionGroup="gml:coordOperation"/>
 <element name="usesOperation" type="gml:CoordinateOperationPropertyType"
 substitutionGroup="gml:coordOperation"/>
 <element name="usesMethod" type="gml:OperationMethodPropertyType"
 substitutionGroup="gml:method"/>
 <element name="usesValue" type="gml:AbstractGeneralParameterValuePropertyType"
 substitutionGroup="gml:parameterValue"/>
 <element name="usesParameter" type="gml:AbstractGeneralOperationParameterPropertyType"
 substitutionGroup="gml:generalOperationParameter"/>
 <element name="includesValue" type="gml:AbstractGeneralParameterValueType"
 substitutionGroup="gml:parameterValue"/>

I.6.11 …Ref property elements

Previous versions of GML contained predefined property elements in the coordinate reference system
schema documents. These property elements have been deprecated, property elements should be
specified in the application schema.

 <element name="crsRef" type="gml:CRSPropertyType"/>
 <element name="singleCRSRef" type="gml:SingleCRSPropertyType"/>
 <element name="compoundCRSRef" type="gml:CompoundCRSPropertyType"/>
 <element name="verticalCRSRef" type="gml:VerticalCRSPropertyType"/>
 <element name="projectedCRSRef" type="gml:ProjectedCRSPropertyType"/>
 <element name="derivedCRSRef" type="gml:DerivedCRSPropertyType"/>
 <element name="engineeringCRSRef" type="gml:EngineeringCRSPropertyType"/>
 <element name="temporalCRSRef" type="gml:TemporalCRSPropertyType"/>
 <element name="imageCRSRef" type="gml:ImageCRSPropertyType"/>
 <element name="geocentricCRSRef" type="gml:GeocentricCRSPropertyType"/>
 <element name="coordinateSystemAxisRef" type="gml:CoordinateSystemAxisPropertyType"/>
 <element name="coordinateSystemRef" type="gml:CoordinateSystemPropertyType"/>
 <element name="ellipsoidalCSRef" type="gml:EllipsoidalCSPropertyType"/>
 <element name="cartesianCSRef" type="gml:CartesianCSPropertyType"/>
 <element name="temporalCSRef" type="gml:TemporalCSPropertyType"/>
 <element name="linearCSRef" type="gml:LinearCSPropertyType"/>
 <element name="userDefinedCSRef" type="gml:UserDefinedCSPropertyType"/>
 <element name="sphericalCSRef" type="gml:SphericalCSPropertyType"/>
 <element name="polarCSRef" type="gml:PolarCSPropertyType"/>
 <element name="cylindricalCSRef" type="gml:CylindricalCSPropertyType"/>
 <element name="datumRef" type="gml:DatumPropertyType"/>
 <element name="geodeticDatumRef" type="gml:GeodeticDatumPropertyType"/>
 <element name="ellipsoidRef" type="gml:EllipsoidPropertyType"/>
 <element name="primeMeridianRef" type="gml:PrimeMeridianPropertyType"/>
 <element name="engineeringDatumRef" type="gml:EngineeringDatumPropertyType"/>
 <element name="imageDatumRef" type="gml:ImageDatumPropertyType"/>
 <element name="verticalDatumRef" type="gml:VerticalDatumPropertyType"/>
 <element name="temporalDatumRef" type="gml:TemporalDatumPropertyType"/>
 <element name="coordinateOperationRef" type="gml:CoordinateOperationPropertyType"/>
 <element name="singleOperationRef" type="gml:SingleOperationPropertyType"/>
 <element name="referenceSystemRef" type="gml:CRSPropertyType"/>
 <element name="generalConversionRef" type="gml:GeneralConversionPropertyType"/>
 <element name="generalTransformationRef" type="gml:GeneralTransformationPropertyType"/>
 <element name="concatenatedOperationRef" type="gml:ConcatenatedOperationPropertyType"/>
 <element name="passThroughOperationRef" type="gml:PassThroughOperationPropertyType"/>
 <element name="conversionRef" type="gml:ConversionPropertyType"/>
 <element name="transformationRef" type="gml:TransformationPropertyType"/>
 <element name="abstractGeneralOperationParameterRef"
 type="gml:AbstractGeneralOperationParameterPropertyType"/>
 <element name="operationParameterGroupRef" type="gml:OperationParameterPropertyType"/>
 <element name="operationParameterRef" type="gml:OperationParameterPropertyType"/>
 <element name="operationMethodRef" type="gml:OperationMethodPropertyType"/>
 <element name="obliqueCartesianCSRef" type="gml:ObliqueCartesianCSPropertyType"/>

© ISO 2020 – All rights reserved 349

ISO 19136-1:2020(E)

 <element name="verticalCSRef" type="gml:VerticalCSPropertyType"/>
 <element name="operationRef" type="gml:OperationPropertyType"/>

I.7 Temporal information and dynamic features

I.7.1 SuccessionType

A temporal non-linear graph is a network composed of time edges. This provides a framework for
describing successions of feature instances or feature property values described by “substitution”,
“division”, “fusion” and "initiation". In support of application schemas that require this capability, the
gml:SuccessionType was provided in previous versions of GML to ensure a consistent terminology.
However, since it was an isolated concept the type has been deprecated. It is defined as follows:

 <simpleType name="SuccessionType">
 <restriction base="string">
 <enumeration value="substitution"/>
 <enumeration value="division"/>
 <enumeration value="fusion"/>
 <enumeration value="initiation"/>
 </restriction>
 </simpleType>

I.7.2	 MovingObjectStatus

gml:MovingObjectStatus is one example of how gml:AbstractTimeSlice may be extended. This element
provides a method to capture a record of the status of a moving object. It is declared as follows:

 <element name="MovingObjectStatus" type="gml:MovingObjectStatusType"
 substitutionGroup="gml:AbstractTimeSlice"/> <complexType
name="MovingObjectStatusType">
 <complexContent>
 <extension base="gml:AbstractTimeSliceType">
 <sequence>
 <choice>
 <element name="position" type="gml:GeometryPropertyType"/>
 <element ref="gml:pos"/>
 <element ref="gml:locationName"/>
 <element ref="gml:locationReference"/>
 <element ref="gml:location"/>
 </choice>
 <element name="speed" type="gml:MeasureType" minOccurs="0"/>
 <element name="bearing" type="gml:DirectionPropertyType" minOccurs="0"/>
 <element name="acceleration" type="gml:MeasureType" minOccurs="0"/>
 <element name="elevation" type="gml:MeasureType" minOccurs="0"/>
 <element ref="gml:status" minOccurs="0"/>
 <element ref="gml:statusReference" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
A gml:MovingObjectStatus element allows the user to describe the present location, along with the
speed, bearing, acceleration and elevation of an object in a particular time slice.

Additional information about the current status of the object may be recorded in the gml:status or
gml:statusReference property elements, declared as follows:

 <element name="status" type="gml:StringOrRefType"/>
 <element name="statusReference" type="gml:ReferenceType"/>

I.7.3 track

The gml:track property element has been deprecated, gml: history (see 14.5.7) should be used instead.
It is declared in the schema as follows:

 <element name="track" type="gml:HistoryPropertyType" substitutionGroup="gml:history"/>

350 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

I.8	 Definitions	and	dictionaries

I.8.1	 DefinitionCollection
 <element name="DefinitionCollection" type="gml:DictionaryType"
 substitutionGroup="gml:Definition"/>
The alias for dictionaries, gml:DefinitionCollection, has been deprecated, gml:Dictionary (see
15.2.2) shall be used instead.

For remote definition references gml: dictionaryEntry shall be used, gml: indirectEntry has been
deprecated. If a Definition object contained within a Dictionary uses the descriptionReference property
to refer to a remote definition, then this enables the inclusion of a remote definition in a local dictionary,
giving a handle and identifier in the context of the local dictionary.

I.8.2	 definitionMember
 <element name="definitionMember" type="gml:DictionaryEntryType"
 substitutionGroup="gml:dictionaryEntry"/>
The alias gml: definitionMember has been deprecated, gml: dictionaryEntry shall be used instead (see
15.2.3).

I.8.3	 indirectEntry,	IndirectEntryType,	DefinitionProxy,	DefinitionProxyType

If a definition is to be included by reference, in its context within the current collection, then the
deprecated gml:indirectEntry property element was to be used in previous versions of GML. This
element is declared as follows:

 <element name="indirectEntry" type="gml:IndirectEntryType"/>

 <complexType name="IndirectEntryType">
 <sequence>
 <element ref="gml:DefinitionProxy"/>
 </sequence>
 </complexType>

 <element name="DefinitionProxy" type="gml:DefinitionProxyType"
 substitutionGroup="gml:Definition"/>

 <complexType name="DefinitionProxyType">
 <complexContent>
 <extension base="gml:DefinitionType">
 <sequence>
 <element ref="gml:definitionRef"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
A gml:DefinitionProxy carries a mandatory handle (gml:id), and contains a reference to a definition
represented elsewhere. This entry is expected to be convenient in allowing multiple elements in one
XML document to contain short (abbreviated XPointer) references, which are resolved to an external
definition provided in a Dictionary element in the same XML document.

The reference is carried by a gml:definitionRef element which is declared as follows:

 <element name="definitionRef" type="gml:ReferenceType"/>
This uses the gml:ReferenceType. The remote entry referenced may be in a dictionary in the same or
different XML document.

© ISO 2020 – All rights reserved 351

ISO 19136-1:2020(E)

I.9 Units, measures and values

I.9.1 dmsAngle

The gml:dmsAngle element was used to record the value of an angle in degree-minute-second or degree-
minute format, but has been deprecated including all dependant schema component, because for
machine-to-machine communication decimal degrees shall be used (see 16.3.3). It uses the following
schema declarations:

 <element name="dmsAngle" type="gml:DMSAngleType"/>

 <complexType name="DMSAngleType">
 <sequence>
 <element ref="gml:degrees"/>
 <choice minOccurs="0">
 <element ref="gml:decimalMinutes"/>
 <sequence>
 <element ref="gml:minutes"/>
 <element ref="gml:seconds" minOccurs="0"/>
 </sequence>
 </choice>
 </sequence>
 </complexType>

 <element name="degrees" type="gml:DegreesType"/>

 <complexType name="DegreesType">
 <simpleContent>
 <extension base="gml:DegreeValueType">
 <attribute name="direction">
 <simpleType>
 <restriction base="string">
 <enumeration value="N"/>
 <enumeration value="E"/>
 <enumeration value="S"/>
 <enumeration value="W"/>
 <enumeration value="+"/>
 <enumeration value="-"/>
 </restriction>
 </simpleType>
 </attribute>
 </extension>
 </simpleContent>
 </complexType>

 <simpleType name="DegreeValueType">
 <restriction base="nonNegativeInteger">
 <maxInclusive value="359"/>
 </restriction>
 </simpleType>

 <element name="decimalMinutes" type="gml:DecimalMinutesType"/>

 <simpleType name="DecimalMinutesType">
 <restriction base="decimal">
 <minInclusive value="0.00"/>
 <maxExclusive value="60.00"/>
 </restriction>
 </simpleType>

 <element name="minutes" type="gml:ArcMinutesType"/>

 <simpleType name="ArcMinutesType">
 <restriction base="nonNegativeInteger">
 <maxInclusive value="59"/>
 </restriction>
 </simpleType>

 <element name="seconds" type="gml:ArcSecondsType"/>

352 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

 <simpleType name="ArcSecondsType">
 <restriction base="decimal">
 <minInclusive value="0.00"/>
 <maxExclusive value="60.00"/>
 </restriction>
 </simpleType>

I.9.2 degrees

The degrees element allows an integer number of degrees with identification of the angle direction.
This element is intended to be used within geographic positions, and has an XML attribute direction
that may take values

"N" or "S" for Latitude, meaning North or South of the equator;

"E" or "W" for Longitude, meaning East or West of the prime meridian;

"+" or "-" for other angles, in the specified rotational direction from a specified reference direction.

I.9.3 decimalMinutes

Decimal number of arc-minutes for use within a degree-minute angular value.

I.9.4 minutes

Integer number of arc-minutes for use within a degree-minute-second angular value.

I.9.5 seconds

Number of arc-seconds for use within a degree-minute-second angular value.

I.9.6 AngleChoiceType

To support the choice of either encoding for angles in a content model, a convenience type
gml:AngleChoiceType is provided. This element contains another element, either an angle or a
dmsAngle. It is declared in the schema as follows:

 <complexType name="AngleChoiceType">
 <choice>
 <element ref="gml:angle"/>
 <element ref="gml:dmsAngle"/>
 </choice>
 </complexType>

I.10 Directions

The properties gml:horizontalAngle and gml:verticalAngle in gml:DirectionVectorType (see 17.3)
have been deprecated and superseded by gml:vector (see 10.1.4.5).

I.11 Coverages

I.11.1 MappingRule

gml:CoverageMappingRule (see 19.3.12) is the replacement for the deprecated gml:MappingRule:

 <element name="MappingRule" type="gml:StringOrRefType"/>

I.11.2 IncrementOrder

The deprecated gml:order property has the content model (limited to 2-dimensional coverages):

 <simpleType name="IncrementOrder">
 <restriction base="string">

© ISO 2020 – All rights reserved 353

ISO 19136-1:2020(E)

 <enumeration value="+x+y"/>
 <enumeration value="+y+x"/>
 <enumeration value="+x-y"/>
 <enumeration value="-x-y"/>
 </restriction>
 </simpleType>
The enumeration value here indicates the incrementing order to be used on the first 2 axes, i.e. "+x-y"
means that the points on the first axis are to be traversed from lowest to highest and the points on the
second axis are to be traversed from highest to lowest. The points on all other axes (if any) beyond the
first 2 are assumed to increment from lowest to highest.

If the order attribute is omitted it is assumed to have the value “+x+y”.

The element has been superseded by gml:axisOrder (see 19.3.14).

I.11.3 Domain set properties
 <element name="multiPointDomain" type="gml:DomainSetType"
 substitutionGroup="gml:domainSet"/>
 <element name="multiCurveDomain" type="gml:DomainSetType"
 substitutionGroup="gml:domainSet"/>
 <element name="multiSurfaceDomain" type="gml:DomainSetType"
 substitutionGroup="gml:domainSet"/>
 <element name="multiSolidDomain" type="gml:DomainSetType"
 substitutionGroup="gml:domainSet"/>
 <element name="gridDomain" type="gml:DomainSetType"
 substitutionGroup="gml:domainSet"/>
 <element name="rectifiedGridDomain" type="gml:DomainSetType"
 substitutionGroup="gml:domainSet"/>

These properties have been deprecated, because all previous uses of derivation-by-restriction in
property elements have been removed. See the note in 21.2.6. gml:domainSet shall be used instead.

354 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

Annex J
(informative)

Modularization and dependencies

The GML schema described in this document has been modularized informatively in Annex C to help
creating profiles where only a topical subset of GML is required for a specific application. For example,
a GML 2.1 application schema migrating to this document without adding any new capabilities could
define a profile that includes the schema document feature.xsd. Such a profile would not contain the
new ISO 19136 definitions for coordinate reference systems, topology, coverages, dynamic features, and
observations. However, it would contain of all of the basic types that have been added since GML 2.1.

The default modularization of the GML schema creates the dependencies among the GML base
schemas shown in Figure J.1 below. A dashed arrow in the figure indicates that the schema at the
tail of the arrow depends upon the schema at the head of the arrow. A dependency may occur where
one schema <include>s another schema in the “gml” namespace. For example, feature.xsd <include>s
geometryBasic2d.xsd. A dependency may also occur where one schema <import>s another schema
for a namespace other than “gml”, for example, gmlBase.xsd <import>s xlinks.xsd from the “xlink”
namespace.

There are now seven schema documents in GML upon which no other GML schema documents depend.
These top-level schemas are the roots of partially overlapping hierarchies of GML schema documents:

— observation.xsd

— dynamicFeature.xsd

— coverage.xsd

— topology.xsd

— defaultStyle.xsd

— coordinateReferenceSystems.xsd

— temporalReferenceSystems.xsd.

A profile that needs definitions from more than one of these GML topical subset schema hierarchies
may use a custom top-level schema document that contains contain multiple <include>s for just the
appropriate schema documents, thereby excluding unwanted GML type definitions.

However, when an application schema will be used in a processing environment that lacks CPU, memory
and/or I/O bandwidth, for example, in a mobile hand-held device, an absolutely minimal import of GML
schema components is often desired. The custom top-level schema document approach described above
might bring in an unacceptably large number of unwanted definitions from each GML schema included
in the custom top-level schema document of the GML profile. The solution is to create a single GML
subset schema that contains exactly the required GML type and element definitions. However, creating
such a GML subset schema by hand using a text or XML editor to cut and paste definitions is a tedious
and error-prone process because it involves analyzing type definition dependencies across the many
GML schema documents. An automated approach is recommended instead. An informative sample
implementation of a GML schema subset tool is included in Annex G. Subset schemas, however they are
produced, are profiles of GML as described in Clause 20.

© ISO 2020 – All rights reserved 355

ISO 19136-1:2020(E)

Figure J.1 — Schema dependencies

356 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

Bibliography

[1] ISO 8879, Information processing — Text and office systems — Standard Generalized Markup
Language (SGML)

[2] ISO/IEC TR 10000-1:1998, Information technology — Framework and taxonomy of International
Standardized Profiles — Part 1: General principles and documentation framework

[3] ISO 19101:2002, Geographic information — Reference model

[4] ISO 19105, Geographic information — Conformance and testing

[5] ISO 19106:2004, Geographic information — Profiles

[6] ISO 19110:2005, Geographic information — Methodology for feature cataloguing

[7] ISO 19117, Geographic information — Portrayal

[8] ISO 19133, Geographic information — Location-based services — Tracking and navigation

[9] ISO 19137:2007, Geographic information — Core profile of the spatial schema

[10] ISO 19141, Geographic information — Schema for moving features

[11] ISO/IEC 19501:2005, Information technology — Open Distributed Processing — Unified Modeling
Language (UML) Version 1.4.2

[12] Cover Pages: Geography Markup Language (GML), available at <http:// xml .coverpages .org/
geographyML .html>

[13] Langran G., Time in Geographic Information Systems. London: Taylor & Francis Ltd. 1992

[14] Kaufman M., Wagner D., Drawing Graphs, Springer LNCS 2025, 1998

[15] Battista G., Eades P., Tamassia R., Tollis I., Graph Drawing, Prentice Hall 1999

[16] Abstract Specification Topic OGC, 5, The OpenGIS Feature, OGC document 99-105r2

[17] Abstract Specification Topic OGC, 6, The Coverage Type, OGC document 00-106

[18] Abstract Specification Topic OGC, 8, Relationships between Feature, OGC document 99-108r2

[19] Abstract Specification Topic OGC, 10, Feature Collections, OGC document 99-110

[20] Abstract Specification Topic OGC, 20, Observations and Measurements, OGC document
10-004r3

[21] UCUM, Unified Code for Units of Measure, Schadow, G., and McDonald, C.J. (eds.), available at
<https:// unitsofmeasure .org/ >

[22] W3C XML Base, XML Base, W3C Recommendation (27 June 2001)

[23] W3C XPath, W3C XML Path Language (XPath) Version 1.0, W3C Recommendation
(16 November, 1999)

[24] W3C XPointer Framework, XPointer Framework, W3C Recommendation (25 March 2003)

[25] W3C XPointer element() Scheme, XPointer element(), W3C Recommendation (25 March 2003)

[26] W3C XPointer xmlns() Scheme, XPointer xmlns(), W3C Recommendation (25 March 2003)

[27] W3C XPointer xpointer() Scheme, XPointer xpointer(), W3C Working Draft (19 December 2002)

© ISO 2020 – All rights reserved 357

http://xml.coverpages.org/geographyML.html
http://xml.coverpages.org/geographyML.html
https://unitsofmeasure.org/

ISO 19136-1:2020(E)

[28] W3C SMIL, Synchronized Multimedia Integration Language (SMIL 2.0), W3C Recommendation
(07 August 2001)

[29] W3C SVG, Scalable Vector Graphics (SVG) 1, W3C Recommendation (14 January 2003)

[30] ISO 19107:2019, Geographic information — Spatial schema

[31] ISO 19111:2019, Geographic information — Referencing by coordinates

[32] ISO 19109:2015, Geographic information — Rules for application schema

[33] ISO 19103:2015, Geographic information — Conceptual schema language

[34] ISO 19118:2011, Geographic information — Encoding

[35] ISO/TS 19139 (all parts), Geographic information — XML schema implementation

[36] ISO 2955:198312), Information processing — Representation of SI and other units in systems with
limited character sets

[37] ISO/TS 19103:200513), Geographic information — Conceptual schema language

[38] ISO 19107:200314), Geographic information — Spatial schema

[39] ISO 19109:200515), Geographic information — Rules for application schema

[40] ISO 19111:200716), Geographic information — Spatial referencing by coordinates

[41] ISO 19115:200317), Geographic information — Metadata

[42] ISO 19118:200518), Geographic information — Encoding

12) Withdrawn standard.
13) Cancelled and replaced by ISO 19103:2015.
14) Cancelled and replaced be ISO 19107:2019.
15) Cancelled and replaced by ISO 19109:2015.
16) Cancelled and replaced by ISO 19111:2019.
17) Cancelled and replaced by ISO 19115-1:2014.
18) Cancelled and replaced by ISO 19118:2011.

358 © ISO 2020 – All rights reserved

ISO 19136-1:2020(E)

ICS 35.240.70
Price based on 358 pages

© ISO 2020 – All rights reserved

	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms, definitions, symbols and abbreviated terms
	3.1 Terms and definitions
	3.2 Abbreviated terms
	4 Conformance
	4.1 Conformance requirements
	4.2 Conformance classes related to GML application schemas
	4.3 Conformance classes related to GML profiles
	4.4 Conformance classes related to GML documents
	4.5 Conformance classes related to software implementations
	5 Conventions
	5.1 XML namespaces
	5.2 Versioning
	5.3 Deprecated parts of previous versions of GML
	5.4 UML notation
	5.5 XML Schema
	6 Overview of the GML schema
	6.1 GML schema
	6.2 GML application schemas
	6.3 Relationship between the ISO 19100 series of International Standards, the GML schema and GML application schemas
	6.4 Organization of this document
	6.5 Deprecated and experimental schema components
	7 GML schema — General rules and base schema components
	7.1 GML model and syntax
	7.1.1 GML instance documents
	7.1.2 Lexical conventions
	7.1.3 XML Schema definition of GML language
	7.2 gmlBase schema components
	7.2.1 Goals of base schema components
	7.2.2 Base objects
	7.2.3 GML properties
	7.2.4 Standard properties of GML objects
	7.2.5 Collections of GML objects
	7.2.6 Metadata
	8 GML schema — Xlinks and basic types
	8.1 Xlinks — Object associations and remote properties
	8.2 Basic types
	8.2.1 Overview
	8.2.2 Relationship with ISO 19103
	8.2.3 Simple types
	8.2.4 Lists
	9 GML schema — Features
	9.1 General concepts
	9.2 Relationship with ISO 19109
	9.3 Features
	9.3.1 AbstractFeatureType
	9.3.2 AbstractFeature
	9.4 Standard feature properties
	9.4.1 boundedBy, BoundingShapeType, EnvelopeWithTimePeriod, EnvelopeWithTimePeriodType
	9.4.2 locationName, locationReference
	9.4.3 FeaturePropertyType, FeatureArrayPropertyType
	9.5 Geometry properties
	9.6 Topology properties
	9.7 Temporal properties
	9.8 Defining application-specific feature types
	9.9 Feature collections
	9.9.1 GML feature collections
	9.9.2 AbstractFeatureMemberType and derived property types
	9.10 Spatial reference system used in a feature or feature collection
	10 GML schema — Geometric primitives
	10.1 General concepts
	10.1.1 Overview
	10.1.2 Relationship with ISO 19107
	10.1.3 Abstract geometry
	10.1.4 Coordinate geometry, vectors and envelopes
	10.2 Abstract geometric primitives
	10.2.1 AbstractGeometricPrimitiveType, AbstractGeometricPrimitive
	10.2.2 GeometricPrimitivePropertyType
	10.3 Geometric primitives (0‑dimensional)
	10.3.1 PointType, Point
	10.3.2 PointPropertyType, pointProperty
	10.3.3 PointArrayPropertyType, pointArrayProperty
	10.4 Geometric primitives (1‑dimensional)
	10.4.1 AbstractCurveType, AbstractCurve
	10.4.2 CurvePropertyType, curveProperty
	10.4.3 CurveArrayPropertyType, curveArrayProperty
	10.4.4 LineStringType, LineString
	10.4.5 CurveType, Curve
	10.4.6 OrientableCurveType, OrientableCurve, baseCurve
	10.4.7 Curve segments
	10.5 Geometric primitives (2‑dimensional)
	10.5.1 AbstractSurfaceType, AbstractSurface
	10.5.2 SurfacePropertyType, surfaceProperty
	10.5.3 SurfaceArrayPropertyType, surfaceArrayProperty
	10.5.4 PolygonType, Polygon
	10.5.5 exterior, interior
	10.5.6 AbstractRingType, AbstractRing
	10.5.7 AbstractRingPropertyType
	10.5.8 LinearRingType, LinearRing
	10.5.9 LinearRingPropertyType
	10.5.10 SurfaceType, Surface
	10.5.11 OrientableSurfaceType, OrientableSurface, baseSurface
	10.5.12 Surface patches
	10.6 Geometric primitives (3‑dimensional)
	10.6.1 AbstractSolidType, AbstractSolid
	10.6.2 SolidPropertyType, solidProperty
	10.6.3 SolidArrayPropertyType, solidArrayProperty
	10.6.4 SolidType, Solid
	10.6.5 ShellType, Shell
	10.6.6 ShellPropertyType
	11 GML schema — Geometric complex, geometric composites and geometric aggregates
	11.1 Overview
	11.2 Geometric complex and geometric composites
	11.2.1 Geometric complex
	11.2.2 Composite geometries
	11.3 Geometric aggregates
	11.3.1 Aggregates of unspecified dimensionality
	11.3.2 0‑Dimensional aggregates
	11.3.3 1‑Dimensional aggregates
	11.3.4 2‑Dimensional aggregates
	11.3.5 3‑Dimensional aggregates
	12 GML schema — Coordinate reference systems schemas
	12.1 Overview
	12.1.1 General
	12.1.2 Relationship with ISO 19111
	12.1.3 Important XML elements
	12.2 Reference systems
	12.2.1 Overview
	12.2.2 IdentifiedObjectType
	12.2.3 Abstract coordinate reference system
	12.3 Coordinate reference systems
	12.3.1 Overview
	12.3.2 Abstract coordinate reference systems
	12.3.3 Concrete coordinate reference systems
	12.4 Coordinate systems
	12.4.1 Overview
	12.4.2 Coordinate system axes
	12.4.3 Abstract coordinate system
	12.4.4 Concrete coordinate systems
	12.5 Datums
	12.5.1 Overview
	12.5.2 Abstract datum
	12.5.3 Geodetic datum
	12.5.4 Other concrete datums
	12.6 Coordinate operations
	12.6.1 Overview
	12.6.2 Abstract coordinate operations
	12.6.3 Concrete coordinate operations
	12.6.4 Parameter values and groups
	12.6.5 Operation method
	12.6.6 Operation parameters and groups
	13 GML schema — Topology
	13.1 General concepts
	13.1.1 Overview
	13.1.2 Relationship with ISO 19107
	13.2 Abstract topology
	13.3 Topological primitives
	13.3.1 Abstract topological primitives
	13.3.2 Topological primitives (0‑dimensional)
	13.3.3 Topological primitives (1‑dimensional)
	13.3.4 Topological primitives (2‑dimensional)
	13.3.5 Topological primitives (3‑dimensional)
	13.4 Topological collections
	13.4.1 Topological collection (0‑dimensional)
	13.4.2 Topological collection (1‑dimensional)
	13.4.3 Topological collection (2‑dimensional)
	13.4.4 Topological collection (3‑dimensional)
	13.5 Topology complex
	13.5.1 TopoComplexType, TopoComplex
	13.5.2 Maximal, sub- and super-complexes
	13.5.3 topoPrimitiveMember
	13.5.4 topoPrimitiveMembers
	13.5.5 TopoComplexPropertyType, topoComplexProperty
	14 GML schema — Temporal information and dynamic features
	14.1 General concepts
	14.1.1 Overview
	14.1.2 Relationship with ISO 19108
	14.2 Temporal schema
	14.2.1 Abstract temporal objects
	14.2.2 Temporal geometry
	14.3 Temporal topology schema
	14.3.1 General
	14.3.2 Temporal topology objects
	14.4 Temporal reference systems
	14.4.1 Overview
	14.4.2 Basic temporal reference system, TimeReferenceSystem
	14.4.3 TimeCoordinateSystem
	14.4.4 Calendars and clocks
	14.4.5 Ordinal temporal reference systems
	14.5 Representing dynamic features
	14.5.1 Overview
	14.5.2 dataSource
	14.5.3 Dynamic properties
	14.5.4 DynamicFeature
	14.5.5 DynamicFeatureCollection
	14.5.6 AbstractTimeSlice
	14.5.7 history
	15 GML schema — Definitions and dictionaries
	15.1 Overview
	15.2 Dictionary schema
	15.2.1 Definition, DefinitionType, remarks
	15.2.2 Dictionary, DictionaryType
	15.2.3 dictionaryEntry, DictionaryEntryType
	15.2.4 Using definitions and dictionaries
	16 GML schema — Units, measures and values
	16.1 Introduction
	16.2 Units schema
	16.2.1 Overview
	16.2.2 Using unit definitions
	16.2.3 unitOfMeasure, UnitOfMeasureType
	16.2.4 UnitDefinition, UnitDefinitionType
	16.2.5 quantityType, quantityTypeReference
	16.2.6 catalogSymbol
	16.2.7 BaseUnit, BaseUnitType, unitsSystem
	16.2.8 DerivedUnit, DerivedUnitType
	16.2.9 derivationUnitTerms, DerivationUnitTermType
	16.2.10 ConventionalUnit, ConventionalUnitType
	16.2.11 conversionToPreferredUnit, roughConversionToPreferredUnit, ConversionToPreferredUnitType, FormulaType
	16.2.12 Example of units dictionary <informative>
	16.3 Measures schema
	16.3.1 Overview
	16.3.2 measure
	16.3.3 Scalar measure types
	16.3.4 angle
	16.4 Value objects schema
	16.4.1 Introduction
	16.4.2 Value element hierarchy
	16.4.3 Boolean, BooleanList
	16.4.4 Category, CategoryList
	16.4.5 Count, CountList
	16.4.6 Quantity, QuantityList
	16.4.7 AbstractValue, AbstractScalarValue, AbstractScalarValueList
	16.4.8 Value
	16.4.9 valueProperty, valueComponent, valueComponents
	16.4.10 CompositeValue
	16.4.11 ValueArray
	16.4.12 Typed ValueExtents: CategoryExtent, CountExtent, QuantityExtent
	16.4.13 BooleanPropertyType, CategoryPropertyType, CountPropertyType, QuantityPropertyType
	17 GML schema — Directions
	17.1 Direction schema
	17.2 direction, DirectionPropertyType
	17.3 DirectionVectorType
	17.4 DirectionDescriptionType
	18 GML schema — Observations
	18.1 Observations
	18.2 Observation schema
	18.2.1 Overview
	18.2.2 Observation
	18.2.3 using
	18.2.4 target
	18.2.5 resultOf
	18.2.6 DirectedObservation
	18.2.7 DirectedObservationAtDistance
	19 GML schema — Coverages
	19.1 The coverage model and representations
	19.1.1 General remarks
	19.1.2 Formal description of a coverage
	19.1.3 Coverage in GML
	19.1.4 Relationship with ISO 19123
	19.2 Grids schema
	19.2.1 Overview
	19.2.2 Grid
	19.2.3 RectifiedGrid
	19.3 Coverage schema
	19.3.1 AbstractCoverageType, AbstractCoverage
	19.3.2 DiscreteCoverageType, AbstractDiscreteCoverage
	19.3.3 AbstractContinuousCoverageType, AbstractContinuousCoverage
	19.3.4 domainSet, DomainSetType
	19.3.5 rangeSet, RangeSetType
	19.3.6 DataBlock
	19.3.7 rangeParameters
	19.3.8 tupleList
	19.3.9 doubleOrNilReasonTupleList
	19.3.10 File, FileType
	19.3.11 coverageFunction, CoverageFunctionType
	19.3.12 CoverageMappingRule
	19.3.13 GridFunction, GridFunctionType
	19.3.14 sequenceRule, SequenceRuleType, SequenceRuleEnumeration
	19.3.15 Specific Coverage Types in GML
	19.3.16 MultiPointCoverage
	19.3.17 MultiCurveCoverage
	19.3.18 MultiSurfaceCoverage
	19.3.19 MultiSolidCoverage
	19.3.20 GridCoverage
	19.3.21 RectifiedGridCoverage
	20 Profiles
	20.1 Profiles of GML and application schemas
	20.2 Definition of profile
	20.3 Relation to application schema
	20.4 Rules for elements and types in a profile
	20.5 Rules for referencing GML profiles from application schemas
	20.6 Recommendations for application schemas using GML profiles
	20.7 Summary of rules for GML profiles
	21 Rules for GML application schemas
	21.1 Instances of GML objects
	21.1.1 GML documents
	21.1.2 GML object elements in other XML documents
	21.2 GML application schemas
	21.2.1 General
	21.2.2 Target namespace
	21.2.3 Import GML schema
	21.2.4 Object type derivation
	21.2.5 Elements representing objects
	21.2.6 Property type derivation
	21.2.7 Elements representing properties
	21.3 Schemas defining Features and Feature Collections
	21.3.1 General
	21.3.2 Import GML schema components
	21.3.3 Elements representing features
	21.3.4 Application features are features
	21.4 Schemas defining spatial geometries
	21.4.1 Import GML geometry schema components
	21.4.2 User-defined geometry types and geometry property types
	21.5 Schemas defining spatial topologies
	21.5.1 Import GML topology schema components
	21.5.2 User-defined topology types and topology property types
	21.6 Schemas defining time
	21.6.1 Import GML temporal schema components
	21.6.2 User-defined temporal types and temporal property types
	21.7 Schemas defining coordinate reference systems
	21.7.1 General
	21.7.2 Import GML coordinate reference system schema components
	21.8 Schemas defining coverages
	21.8.1 General
	21.8.2 Import GML coverage schema components
	21.8.3 User-defined coverage types
	21.8.4 Range parameters shall be substitutable for AbstractValue
	21.8.5 Coverage document
	21.9 Schemas defining observations
	21.9.1 General
	21.9.2 Import GML observation schema components
	21.9.3 User-defined observation types
	21.9.4 Observation collections
	21.9.5 Observations are features
	21.9.6 Observation collection document
	21.10 Schemas defining dictionaries and definitions
	21.10.1 General
	21.10.2 Import GML dictionary schema components
	21.10.3 User-defined definition types
	21.10.4 User-defined dictionary types
	21.11 Schemas defining values
	21.11.1 General
	21.11.2 Import GML value objects schema components
	21.11.3 Construction of new value types
	21.12 GML profiles of the GML schema
	Annex A (normative) Abstract test suites for GML application schemas, GML profiles and GML documents
	Annex B (normative) Abstract test suite for software implementations
	Annex C (informative) GML schema
	Annex D (normative) Implemented profile of the ISO 19100 series of International Standards and extensions
	Annex E (normative) UML-to-GML application schema encoding rules
	Annex F (normative) GML-to-UML application schema encoding rules
	Annex G (informative) Guidelines for subsetting the GML schema
	Annex H (informative) Default styling
	Annex I (informative) Backwards compatibility with earlier versions of GML
	Annex J (informative) Modularization and dependencies
	Bibliography

