

Edition 3.0 2023-10

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Miniature fuses -

Part 6: Fuse-holders for miniature fuse-links

Coupe-circuit miniatures -

Partie 6: Ensembles-porteurs pour cartouches de coupe-circuits miniatures

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2023 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IFC Secretariat Tel.: +41 22 919 02 11

3, rue de Varembé info@iec.ch CH-1211 Geneva 20 www.iec.ch

Switzerland

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.orgThe world's leading online dictionary on electrotechnology, containing more than 22 300 terminological entries in English and French, with equivalent terms in 19 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC

Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

Recherche de publications IEC -

webstore.iec.ch/advsearchform

La recherche avancée permet de trouver des publications IEC en utilisant différents critères (numéro de référence, texte, comité d'études, ...). Elle donne aussi des informations sur les projets et les publications remplacées ou retirées.

IEC Just Published - webstore.iec.ch/justpublished

Restez informé sur les nouvelles publications IEC. Just Published détaille les nouvelles publications parues. Disponible en ligne et une fois par mois par email.

Service Clients - webstore.iec.ch/csc

Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Découvrez notre puissant moteur de recherche et consultez gratuitement tous les aperçus des publications. Avec un abonnement, vous aurez toujours accès à un contenu à jour adapté à vos besoins.

Electropedia - www.electropedia.org

Le premier dictionnaire d'électrotechnologie en ligne au monde, avec plus de 22 300 articles terminologiques en anglais et en français, ainsi que les termes équivalents dans 19 langues Egalement appelé additionnelles. Vocabulaire Electrotechnique International (IEV) en ligne.

Edition 3.0 2023-10

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Miniature fuses -

Part 6: Fuse-holders for miniature fuse-links

Coupe-circuit miniatures -

Partie 6: Ensembles-porteurs pour cartouches de coupe-circuits miniatures

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 29.120.50 ISBN 978-2-8322-7651-8

Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

CONTENTS

F	DREWC	PRD	6
IN	TRODU	JCTION	8
1	Scop	pe	9
2	Norn	native references	9
3	Term	ns and definitions	11
4	Gene	eral requirements	15
5		erred ratings and classifications for fuse-holders	
6		ing	
7		eral notes on tests	
′			
	7.1 7.2	Nature of tests Standard atmospheric conditions for measurement and tests	
	7.2	Preconditioning of test samples	
	7.3 7.4	Nature of supply	
	7.5	Gauges for tests	
	7.5.1	· ·	
	7.5.2		
8	_	ection against electric shock	
	8.1	Category PC1: Fuse-holders without integral protection against electric	
	0	shock	20
	8.2	Category PC2: Fuse-holders with integral protection against electric shock	20
	8.3	Category PC3: Fuse-holders with enhanced integral protection against	
		electric shock	
9		rances and creepage distances	
	9.1	General	
	9.2	Minimum requirements for fuse-holders in respect to the grade of insulation	
	9.3	Clearances	
	9.4	Creepage distances	
10		trical requirements	
	10.1	Insulation resistance, dielectric strength and impulse withstand voltage	
	10.1	3	
	10.1	, i	
	10.1		
	10.1	9	
	10.1 10.2	5 Impulse withstand voltage test Contact resistance	
	10.2		
	10.2	3 1	
11		nanical requirements	
•	11.1	General	
	11.1	Mounting	
	11.2	Compatibility between fuse-holder and fuse-link	
	11.4	Mechanical strength of the connection between fuse-base and fuse-carrier	
	11.4		
	11.4	·	
	11.5	Impact test	
	11.6	Mechanical strength of the fuse-holder fastening on panels	

11.6.1 Fixing nut fastening	31
11.6.2 Fixing screw fastening	
11.6.3 Snap-in fastening	
11.7 Terminals of fuse-bases	
11.7.1 Terminals with screw-type clamping or screwless-type clamping	
11.7.2 Terminals with sorew-type damping of screwless-type damping	
11.8 Resistance to vibration	
11.8.1 General	
11.8.2 Mounting	
11.8.3 Measurement and requirements	
12 Thermal requirements	
12.1 Rated power acceptance test	
12.1.1 General	
12.1.2 Mounting	
-	
•	
12.1.4 Measurement of maximum allowable temperatures on fuse-holders	42
acceptance of a fuse-holder	47
·	
31 Al	
12.1.7 Test method	
12.2 Resistance to abnormal heat and fire	
12.2.1 Needle-flame test	
12.2.2 Glow-wire ignition test	
13 Endurance	
13.1 General	
13.2 Endurance test	
13.3 Requirements	
14 Additional requirements	48
14.1 Resistance to rusting	48
14.2 Resistance to cleaning solvents	
Annex A (normative) Test PC board for fuse-holders of rated currents up to 25 A	49
Annex B (normative) Type tests, test sequences and number of samples	50
Annex C (informative) Insulation coordination	51
C.1 Overvoltage categories	
C.2 Degrees of pollution in the micro-environment	
C.3 Comparative tracking index CTI	
Annex D (informative) Additional tests and requirements	
D.1 General	
D.2 Resistance to shock	
D.2.1 General	
D.2.2 Mounting D.2.3 Measurement and requirements	
D.2.3 Measurement and requirements D.3 Verification of the degree of protection of enclosures	
D.4 Climatic category	
D.4.1 General	
D.4.2 Test conditions and requirements Annex E (normative) Information for the correct application of the fuse-holder	
Ribliography	56 56
BINHOGERON	^

Figure 1 – Outline of gauges and dummy fuse-links according to IEC 60127-2	18
Figure 2 – Outline of gauges and dummy fuse-links according to IEC 60127-3:2015, standard sheet 1	19
Figure 3 – Outline of gauges and dummy fuse-links according to IEC 60127-3:2015, standard sheets 3 and 4	19
Figure 4 – Panel mounting	24
Figure 5 – PC board mounting	24
Figure 6 – Test device for mechanical test	29
Figure 7 – Examples of snap-in fastening Fuse-holder on panels	32
Figure 8 – Tensile force test	36
Figure 9 – Compressive force test	36
Figure 10 – Example of test device	38
Figure 11 – IEC 60127-3:2015, Standard sheet 1	41
Figure 12 – IEC 60127-3:2015, Standard sheets 3 and 4	41
Figure 13 – Illustration of temperatures experienced in practice	43
Figure 14 – Example of a derating curve	46
Figure A.1 – Example of a test board	49
Table 1 – Features of unexposed or exposed fuse-holders	15
Table 2 – Values for preferred ratings and classifications	16
Table 3 – Dimensions and materials for gauges according to IEC 60127-2	18
Table 4 – Dimensions and materials for gauges according to IEC 60127-3	20
Table 5 – Types of insulation between different live parts and accessible parts	21
Table 6 – Required impulse withstand voltage for clearances	22
Table 7 – Minimum clearances in air under overvoltage category II II	22
Table 8 – Minimum clearances in air under overvoltage category II	23
Table 9 – Minimum creepage distances in millimetres for a microenvironment-dependent on rated voltage, pollution degree, insulating material, corresponding to IEC 60664-1:2020, Table F.5	23
Table 10 – Values for insulation resistance, dielectric strength and impulse withstand voltage	28
Table 11 – Values for torque and axial pull	
Table 12 – Torque values	
Table 13 – Torque values	32
Table 14 – Mounting groups	
Table 15 – Cross-sections of conductors	
Table 16 – Tensile and compressive forces	36
Table 17 – Dimensions and materials for dummy fuse-link according to IEC 60127-2	
Table 18 – Dummy fuse-links according to IEC 60127-2	39
Table 19 – Dimensions and materials for dummy fuse-links according to IEC 60127-3	
Table 20 – Dummy fuse-links according to IEC 60127-3	42
Table 21 – Maximum allowable temperatures	44
Table A.1 – Copper layer for test board	49
Table B.1 – Type tests, test sequences and number of samples	50

IEC 60127-6:20	23 © IEC 2023	-5-

	_	
_	5	_

Table D.1 – Examples of climatic categories	. 54
Table E.1 – Information for the correct application of the fuse-holder	. 55

INTERNATIONAL ELECTROTECHNICAL COMMISSION

MINIATURE FUSES -

Part 6: Fuse-holders for miniature fuse-links

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 60127-6 has been prepared by subcommittee 32C: Miniature fuses, of IEC technical committee 32: Fuses. It is an International Standard.

This third edition cancels and replaces the second edition published in 2014. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) enhanced maximum rated current from 16 A to 25 A in Clause 1;
- b) adding of IEC 60127-4 and IEC 60127-7 in Clause 1;
- c) modification of marking position in Clause 6;
- d) modification of rated voltage, rated current and rated power acceptance in Table 2;
- e) modification of Table 5, Table 6, Table 7, Table 9, Table 16 and Table A.1.

The text of this International Standard is based on the following documents:

Draft	Report on voting		
32C/620/FDIS	32C/623/RVD		

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/standardsdev/publications.

A list of all parts in the IEC 60127 series, published under the general title *Miniature fuses*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn, or
- revised.

INTRODUCTION

According to the wish expressed by the users of miniature fuses, all standards, recommendations and other documents relating to miniature fuses have the same publication number in order to facilitate reference to fuses in other specifications, for example, equipment specifications.

Furthermore, a single publication number and subdivision into parts would facilitate the establishment of new standards, because clauses and subclauses containing general requirements need not be repeated.

To this day, the IEC 60127 series, is thus subdivided as follows:

IEC 60127-1, Miniature fuses – Part 1: Definitions for miniature fuses and general requirements for miniature fuse-links

IEC 60127-2, Miniature fuses – Part 2: Cartridge fuse-links

IEC 60127-3, Miniature fuses Part 3: Sub-miniature fuse-links

IEC 60127-4, Miniature fuses – Part 4: Universal modular fuse-links (UMF) – Through-hole and surface mount types

IEC 60127-5, Miniature fuses – Part 5: Guidelines for quality assessment of miniature fuse-links

IEC 60127-6, Miniature fuses – Part 6: Fuse-holders for miniature fuse-links

IEC 60127-7, Miniature fuses – Part 7: Miniature fuse-links for special applications

IEC 60127-8, Miniature fuses – Part 8: Fuse resistors with particular overcurrent protection

IEC 60127-10, Miniature fuses – Part 10:User guide for miniature fuses

This part of IEC 60127 covers requirements, test equipment and test methods for fuse-holders. It is a self-standing document, which refers back to IEC 60127-1 with regard to certain definitions and the atmospheric conditions for test. It also makes reference to other parts of the IEC 60127 series with regard to dimensions and maximum power losses of fuse-links.

MINIATURE FUSES -

Part 6: Fuse-holders for miniature fuse-links

1 Scope

This part of IEC 60127 is applicable to fuse-holders for miniature cartridge fuse-links according to IEC 60127-2, sub-miniature fuse-links according to IEC 60127-3, universal modular fuse-links to IEC 60127-4 and miniature fuse-links for special applications to IEC 60127-7 for the protection of electric appliances, electronic equipment and component parts thereof, normally intended for use indoors.

NOTE Requirements for fuse-holders for miniature fuse-links complying with IEC 60127-4 and IEC 60127-7 are under consideration.

It does not apply to fuse holders for fuses completely covered by the subsequent parts of IEC 60269-1.

This document applies to fuse-holders with:

- a maximum rated current of 25 A and
- a maximum rated voltage of 1 500 V DC or 1 000 V AC; and
- for use up to 2 000 m above sea-level, unless otherwise specified.

The object of this document is to establish uniform requirements for safety and the assessment of electrical, mechanical, thermal and climatic properties of fuse-holders and the compatibility between fuse-holders and fuse-links.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60050-441, International Electrotechnical Vocabulary (IEV) – Part 441: Switchgear, controlgear and fuses

IEC 60050-581, International Electrotechnical Vocabulary (IEV) – Part 581: Electromechanical components for electronic equipment

IEC 60068-1:2013, Environmental testing – Part 1: General and guidance

IEC 60068-2-6:2007, Environmental testing – Part 2-6: Tests – Test Fc: Vibration (sinusoidal)

IEC 60068-2-20:2021, Environmental testing – Part 2-20: Tests – Tests Ta and Tb: Test methods for solderability and resistance to soldering heat of devices with leads

IEC 60068-2-21, Environmental testing – Part 2-21: Tests – Test U: Robustness of terminations and integral mounting devices

IEC 60068-2-27:2008, Environmental testing - Part 2-27: Tests - Test Ea and guidance: Shock

IEC 60068-2-45, Basic environmental testing procedures – Part 2-45: Tests – Test XA and guidance: Immersion in cleaning solvents

IEC 60068-2-47, Environmental testing – Part 2-47: Test – Mounting of specimens for vibration, impact and similar dynamic tests

IEC 60068-2-75, Environmental testing – Part 2-75: Tests – Test Eh: Hammer tests

IEC 60127- 1^1 :2006, Miniature fuses – Part 1: Definitions for miniature fuses and general requirements for miniature fuse-links

IEC 60127-1:2006/AMD1:2011

IEC 60127-1:2006/AMD2:2015

IEC 60127-2, Miniature fuses – Part 2: Cartridge fuse-links

IEC 60127-3:2015, Miniature fuses – Part 3: Sub-miniature fuse-links

IEC 60216-1, Electrical insulating materials – Thermal endurance properties – Part 1: Ageing procedures and evaluation of test results

IEC 60529:1989, Degrees of protection provided by enclosures (IP Code)

IEC 60664-1:2020, Insulation coordination for equipment within low-voltage supply systems – Part 1: Principles, requirements and tests

IEC 60695-4:2012, Fire hazard testing – Part 4: Terminology concerning fire tests for electrotechnical products

IEC 60695-2-12:2021, Fire hazard testing – Part 2-12: Glowing/hot-wire based test methods – Glow-wire flammability index (GWFI) test method for materials

IEC 60695-2-13:2021, Fire hazard testing – Part 2-13: Glowing/hot-wire based test methods – Glow-wire ignition temperature (GWIT) test method for materials

IEC 60695-11-5:2016, Fire hazard testing – Part 11-5: Test flames – Needle-flame test method – Apparatus, confirmatory test arrangement and guidance

IEC 60999-1, Connecting devices – Electrical copper conductors – Safety requirements for screw-type and screwless-type clamping units – Part 1: General requirements and particular requirements for clamping units for conductors from 0,2 mm² up to 35 mm² (included)

IEC 61210, Connecting devices – Flat quick-connect terminations for electrical copper conductors – Safety requirements

A consolidated version of this publication exists, comprising IEC 60127-1:2006, IEC 60127-1:2006/AMD 1:2011 and IEC 60127-1:2006/AMD 2:2015.

3 Terms and definitions

For the purposes of this document, the terms and definitions given in IEC 60050-441, IEC 60050-581, IEC 60127-1 and the following apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

3.1

fuse-holder

combination of a fuse-base with its fuse-carrier

Note 1 to entry: In some fuse-holder constructions where the fuse-base and the fuse-carrier are not separate parts the fuse-holder may consist of only the fuse-base and no fuse-carrier.

3.1.1

fuse-base

fuse-mount

fixed part of a fuse provided with contacts and terminals for connection to the system

[SOURCE: IEC 60127-1:2006, 3.10]

3.1.2

fuse-carrier

movable part of a fuse designed to carry a fuse-link

[SOURCE: IEC 60127-1:2006, 3.12]

3.1.3

unexposed fuse-holder

fuse-holder with enclosed contacts

3.1.4

exposed fuse-holder

fuse-holder with exposed contacts

EXAMPLE Clips.

3.2

rating

characteristic values that together define the working conditions upon which the tests are based and for which the fuse-holder is designed

EXAMPLE Examples of rated values usually stated for fuse-holders are:

- voltage (U_N);
- current (I_N);
- power acceptance.

3.3

rated power acceptance

value of power acceptance of a fuse-holder assigned by the manufacturer

Note 1 to entry: This value is the maximum power dissipation produced by the inserted dummy fuse-link during testing, at the rated current tolerated by the fuse-holder without exceeding the specified temperatures.

Note 2 to entry: The rated power acceptance is referred to an ambient temperature of 23 $^{\circ}\text{C}$.

rated current

value of current of a fuse-holder assigned by the manufacturer and to which the rated power acceptance is referred

3.5

rated voltage

value of voltage of a fuse-holder assigned by the manufacturer and to which operation and performance characteristics are referred

3.6

insulation coordination

mutual correlation of insulation characteristics of electrical equipment taking into account the expected micro-environment and other influencing stresses

[SOURCE: IEC 60664-1:2020, 3.1.3, modified – Note 1 to entry has been removed.]

3.7

impulse withstand voltage

highest peak value of impulse voltage of specified form and polarity which does not cause breakdown of insulation under specified conditions

[SOURCE: IEC 60664-1:2020, 3.1.15]

3.8

overvoltage category

numeral defining a transient overvoltage condition

Note 1 to entry: Specified categories, see Clause C.1.

[SOURCE: IEC 60664-1:2020, 3.1.20, modified – Note 1 to entry "Overvoltage categories I, II, III and IV are used, see 4.3.2" has been entirely reworded."]

3.9

pollution

<of an electrical system> any condition of foreign matter, solid, liquid, or gaseous (ionized
gases), that can affect dielectric strength or surface resistivity

[SOURCE: IEC 60664-1:2020, 3.1.24]

3.10

pollution degree

numeral characterizing the expected pollution of the micro-environment

Note 1 to entry: see Clause C.2.

[SOURCE: IEC 60664-1:2020, 3.1.25, modified – Note 1 to entry has been added].

3.11

micro-environment

<of an electrical system> ambient conditions which immediately influences the dimensioning of the clearance and creepage distances

[SOURCE: IEC 60664-1:2020, 3.1.23]

clearance

shortest distance in air between two conductive parts

[SOURCE: IEC 60664-1:2020, 3.1.4]

3.13

creepage distance

shortest distance along the surface of a solid insulating material between two conductive parts

[SOURCE: IEC 60050-151:2001, 151-15-50]

3.14

solid insulation

solid insulating material or a combination of solid insulating material, placed between two conductive parts or between a conductive part and a body part

[SOURCE: IEC 60664-1:2020, 3.1.6]

3.15

comparative tracking index

CTI

numerical value of the maximum voltage in volts which a material can withstand without tracking and without a persistent flame occurring under specified test conditions

Note 1 to entry: The test for comparative tracking index in accordance with IEC 60112 is designed to compare the performance of various insulating materials under test conditions, namely drops of an aqueous contaminant falling on a horizontal surface leading to electrolytic conduction material groups and their CTI values, see Clause C.3.

[SOURCE: IEC 60050-212:2010, 212-11-59, modified – The Note to entry has been added.]

3.16

live part

conductor or conductive part intended to be energized in normal operation, including a neutral conductor, but by convention, not a PEN conductor or PEM conductor or PEL conductor

Note 1 to entry: This concept does not necessarily imply a risk of electric shock.

[SOURCE: IEC 60050-826:2022, 826-12-08, modified – The domain "<in electrical installations and equipment> has been deleted, the definition has been reworded and the note to entry has been added.]

3.17

fuse-holder electric shock protection categories

designation characterizing the level of the protection against electric shock of a fuse-holder

3.18

maximum allowable ambient temperature

highest air temperature, in the immediate vicinity, that a fuse-holder can endure at a power acceptance assigned by the manufacturer of the fuse-holder without exceeding the maximum allowable temperatures on the accessible and inaccessible surfaces of the fuse-holder

3.19

relative temperature index

based on IEC 60216-1, temperature index of a test material obtained from the time which corresponds to the known temperature index of a reference material when both materials are subjected to the same ageing and diagnostic procedures in comparative test

insulation

part of an electrotechnical product which separates the conducting parts at different electric potentials during operation or insulates such parts from the surroundings

Note 1 to entry: For detailed information, see IEC 61140 and IEC 60664-1.

[SOURCE: IEC 60050-212:2010, 212-11-07, modified – The term "electric insulation" has been replaced by "insulation".]

3.20.1

functional insulation

insulation between conductive parts which is necessary only for the proper functioning of the equipment

[SOURCE: IEC 60664-1:2020, 3.1.29]

3.20.2

basic insulation

insulation of hazardous-live-parts which provides basic protection

Note 1 to entry: The concept does not apply to insulation used exclusively for functional purposes.

[SOURCE: IEC 60050-826:2022, 826-12-14, modified – In the definition, the term "insulation" has been replaced by "insulation of hazardous-live-parts".]

3.20.3

supplementary insulation

independent insulation applied in addition to basic insulation for fault protection

[SOURCE: IEC 60050-826:2022, 826-12-15]

3.20.4

double insulation

insulation comprising both basic insulation and supplementary insulation

[SOURCE: IEC 60050-826:2022, 826-12-16]

3.20.5

reinforced insulation

insulation of hazardous-live-parts which provides a degree of protection against electric shock equivalent to double insulation

Note 1 to entry: Reinforced insulation can comprise several layers which cannot be tested singly as basic insulation or supplementary insulation.

[SOURCE: IEC 60050-826:2022, 826-12-17, modified – In the definition, the term "insulation" has been replaced by "insulation of hazardous-live-parts".]

3.21

inaccessible part

inaccessible surface

part or surface inside the equipment which cannot be touched by means of the standard test finger according to IEC 60529

accessible part accessible surface

part or surface which can be touched by means of the standard test finger according to IEC 60529, when the fuse-holder is installed and operated as in normal use, e.g. on the front panel of equipment

3.23 gauge

test fuse-link without a melting element

4 General requirements

Fuse-holders shall be so designed and constructed that in normal use, installed according to the manufacturer's instructions, their performance is reliable and without danger to the user or surroundings.

In general, compliance is checked by carrying out all of the relevant tests specified.

Additional tests and requirements may be added in accordance with the manufacturer's declaration, as shown in Annex D.

Examples of fuse-holder types with different features are given in Table 1.

Table 1 - Features of unexposed or exposed fuse-holders

No.	description								
1	Types of mounting:								
	 Panel and base mounting 								
	- Printed circuit board mounting								
2	Methods of fastening:								
	– Methods of fastening on panel:								
	Fixing nut fastening (threaded nut)								
	Snap-in fastening:								
	a) Fuse-base with an integral spring system								
	 Fuse-base with a separate spring-nut (a nut fabricated, e.g. from thin spring steel having an impression designed to accommodate the mating part) 								
	– Methods of fastening on printed circuit (PC) board:								
	Solder fastening								
	Plug-in fastening								
3	Methods of insertion of the fuse-carrier into the fuse base:								
	- Screw insertion								
	- Bayonet insertion								
	- Plug-in insertion								
4	Types of terminals:								
	- Screw terminals								
	– Solder terminals								
	– Quick connect terminals								
	- Other solderless terminals:								
	crimp terminals								
	wire wrap terminals								

No.	description						
5 Protection against electric shock							
Fuse-holder without integral protection against electric shock							
	- Fuse-holder with integral protection against electric shock						
	- Fuse-holder with enhanced integral protection against electric shock						
NOTE This list is not intended to be comprehensive and fuse-holders which are not listed are not necess excluded from the scope.							

5 Preferred ratings and classifications for fuse-holders

Table 2 gives the values for preferred ratings and classifications.

Table 2 - Values for preferred ratings and classifications

Ratings and classifications	For fuse-links according to			
for fuse-holders	IEC 60127-2	IEC 60127-3		
Rated voltage	250 V and 500 V	125 V and 250 V		
Rated current	6,3 A / 10 A / 12,5 A / 16 A / 20 A / 25 A	6,3 A / 10 A		
Rated power acceptance at an ambient temperature $T_{\rm A1}$ of 23 $^{\circ}{\rm C}$	1,6 W / 2,5 W / 3,2 W / 4 W /5 W / 6 W / 8 W	1,6 W / 2,0 W		
Fuse-holder electric shock protection categories	Category PC1 Category PC2 Category PC3			
Protection against electric shock referring to equipment, according to IEC 61140	Class I or II			
Insulation coordination according to IEC 60664-1:				
a) Overvoltage category	II or III			
b) Pollution degree	2 or 3			
c) Comparative tracking index CTI	CTI ≥ 150			

In reference to ratings (voltage, current, power acceptance), if other values are required, these values should be selected from the R10 series according to ISO 3. For classifications (Insulation coordination according to IEC 60664-1 in Table 2), other values may be specified.

Complete information on ratings and classifications is given by the manufacturer according to Annex E.

6 Marking

6.1 Fuse-holders shall be marked with:

- name or trade mark of the manufacturer
- catalogue or type reference.

The manufacturer shall provide the below markings on the smallest packaging label and may additionally mark them on the fuse-holder.

- rated voltage in volts,
- power acceptance in watts
- rated current in amperes

For panel-mount fuse-holders, these markings shall not be placed on the front of the fuse-holder. This is to prevent installation of a replacement fuse-link with the wrong rating.

Examples of Marking: 250 V 4 W/6,3 A or 250 V 4 W 6,3A.

The marking shall be indelible and easily legible.

6.2 Compliance is checked by inspection and by rubbing the marking by hand for 15 s with a piece of cloth soaked in water and again for 15 s with a piece of cloth soaked in petroleum spirit.

For petroleum spirit the use of an aliphatic solvent hexane, with an aromatics content of maximum 0,1 % volume, a kauri-butanol value of 29, initial boiling point approximately 65 °C, dry-point approximately 69 °C and specific gravity of approximately 0,68.

NOTE In the case of colour coding, the test for indelibility need not be applied.

7 General notes on tests

7.1 Nature of tests

Tests according to this standard are type tests.

The test sequences and number of samples to test is stated in Annex B.

7.2 Standard atmospheric conditions for measurement and tests

Unless otherwise specified, all tests shall be carried out under the atmospheric conditions according to 7.1 of IEC 60127-1:2006.

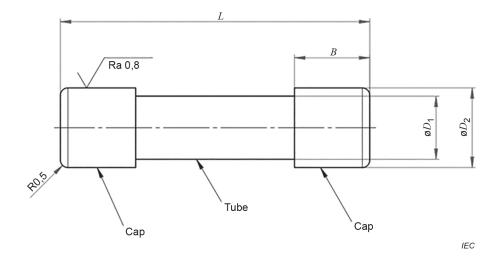
7.3 Preconditioning of test samples

Unless otherwise specified, the test samples shall be maintained at standard atmospheric conditions for not less than 4 h before measurements are performed.

7.4 Nature of supply

For alternating current, the test voltage shall be of substantially sinusoidal form with a frequency between 45 Hz and 62 Hz.

7.5 Gauges for tests


7.5.1 Gauges according to IEC 60127-2

For tests that require gauges (Figure 1), the appropriate gauges mentioned in Table 3 shall be used. The gauges or parts thereof made of brass shall be provided with 8 μ m of nickel plating plus 4,5 μ m of gold plating.

There shall be no holes in the ends of the gauges.

The gauges shall have a homogeneous composition, except for gauge numbers 3 and 6.

Dimensions in millimetres

NOTE The symbol for roughness, N6, is in accordance with ISO 1302^2 .

Figure 1 – Outline of gauges and dummy fuse-links according to IEC 60127-2

Table 3 gives the dimensions and materials for gauges according to IEC 60127-2.

Table 3 – Dimensions and materials for gauges according to IEC 60127-2

Type of cartridge						14/ - 1 - 1-4	Materials of part		
Fuse- link	Gauge No.	Size	L	L D1 D2 B	Weight Approximately	Сар	Tube		
mm			mm	mm	mm	mm	g		
	1	max.	20,54 $^0_{-0,04}$	5,3 +0,01	4,2 ± 0,1	5 ^{+0,1}	-	Ste	el ^a
5 × 20	2	min.	19,46 +0,04	5,0 ⁰ _{-0,01}	4,2 ± 0,1	5 ^{+0,1}	2,5	Bra	ıss ^b
	3	ı	20,54 0	5,3 +0,01	4,2	6,2 +0,1	ı	Brass end caps ^b	Glass or ceramic tube
	4	max.	32,64 $^0_{-0,04}$	6,45 $^{+0,01}_{0}$	5,5 ± 0,1	6 0 +0,1	ı	Ste	el ^a
6,3 × 32	5	min.	30,96 +0,04	6,25 ⁰ _{-0,01}	5,5 ± 0,1	6 0 +0,1	6	Bra	ıss ^b
	6	-	32,64 0	6,45 0 +0,01	5,5	8,3 0 +0,1	-	Brass end caps ^b	Glass or ceramic tube
^a Hardened									

Copper content from 58 % to 70 %.

 $^{^{2}}$ $\,$ This document has been revised by ISO 21920-1:2021.

7.5.2 Gauges according to IEC 60127-3

For tests that require gauges (Figure 2 and Figure 3), the appropriate gauges mentioned in Table 4 shall be used.

The gauges or parts thereof made of brass shall be provided with 8 μm of nickel plating plus 4,5 μm of gold plating.

The gauges shall have a homogeneous composition, except for gauge numbers 3 and 6.

Dimensions in millimetres

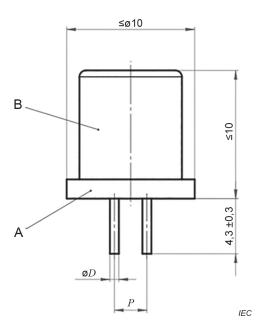


Figure 2 – Outline of gauges and dummy fuse-links according to IEC 60127-3:2015, standard sheet 1

Dimensions in millimetres

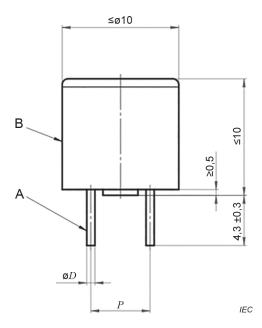


Figure 3 – Outline of gauges and dummy fuse-links according to IEC 60127-3:2015, standard sheets 3 and 4

Тур	e of		D	P	Material	s of part
Sub-miniature fuse-link	Gauge No.	Size	mm	mm	Α	В
Standard sheet 1	1	max.	$0,70_{-0,02}^{$		Ste	el ^a
	2	min.	$0,55_{-0,02}^{0}$	$2,54^{+0,17}_{-0,09}$	Bra	ss ^b
	3	I	$0,70_{-0,02}^{$		Brass ^b	Insulating material
Standard sheets 3 and 4	4	max.	$0,63_{-0,02}^{$		Steel ^a Brass ^b	
	5	min.	$0,56 \frac{0}{-0,02}$	5,08±0,1		
	6	-	$0,60_{-0,02}^{0}$		Brass	Insulating material
a Hardened.						

Table 4 - Dimensions and materials for gauges according to IEC 60127-3

8 Protection against electric shock

8.1 Category PC1: Fuse-holders without integral protection against electric shock

Fuse-holders of category PC1 are only suitable for applications where corresponding additional means are provided to protect against electric shock.

8.2 Category PC2: Fuse-holders with integral protection against electric shock

8.2.1 The fuse-holder shall be so designed that:

- live parts are not accessible when the fuse-holder is properly assembled and correctly installed on the front panel of equipment with fuse-carrier and gauge numbers 3 or 6 according to Table 3 or Table 4 inserted into the fuse-base;
- live parts do not become accessible, either during insertion or removal of the fuse-carrier by hand or with the aid of a tool or after the fuse-carrier has been removed.
- **8.2.2** Compliance is checked by using the standard test finger specified in IEC 60529. This test finger is applied without appreciable force in every possible position. Where the fuse-holder has a fuse-carrier, gauge numbers 3 or 6 according to Table 3 or Table 4 shall be placed in the fuse-carrier during testing. It is recommended that an electrical indicator with a voltage of approximately 40 V is used for the indication of contact with the relevant part.

8.3 Category PC3: Fuse-holders with enhanced integral protection against electric shock

The requirements for this category are the same as those for 8.2 (Category PC2) with the exception that the testing is carried out with a rigid test wire of 1 mm diameter according to IEC 60529:1989, Table VI, instead of the standard test finger.

b Copper content from 58 % to 70 %.

9 Clearances and creepage distances

9.1 General

Clearances and creepage distances shall be checked for a fuse-holder properly assembled and installed as in normal use, and fitted with gauge numbers 3 or 6 according to Table 3 or Table 4.

Compliance is checked by measurement.

9.2 Minimum requirements for fuse-holders in respect to the grade of insulation

9.2.1 Table 5 shows the types of insulation between different live parts and accessible parts.

Table 5 - Types of insulation between different live parts and accessible parts

Type of insulation	Functional	Basic	Supplementary	Reinforced	Double
Insulation between:	Functional	Dasic	Supplementary	Keillioicea	Double
a) Live parts of different potential	Х				
b) Live parts and a metal mounting-plate or any other metal parts which may be in contact with the mounting-plate e.g. base-fixing devices.					
Thickness of the mounting-plate according to 10.1.1					
 fuse-holders according to 9.2.2 		×	(X) ^a		
 fuse-holders according to 9.2.3 				Х	X
c) Live parts and all parts which may be touched with the test finger (accessible parts)					
 fuse-holders according to 9.2.2 		Х	(X) ^a		
 fuse-holders according to 9.2.3 				Х	Х

^a Supplementary insulation is only applied in addition to basic insulation, whereas basic insulation can be applied without supplementary insulation.

- **9.2.2** Fuse-holders intended for class I equipment shall have at least basic insulation between live parts and accessible metal parts. These metal parts shall be provided with means enabling a reliable connection to the protective earthing circuit of the equipment in which it is intended to be used.
- **9.2.3** Fuse-holders intended for class II equipment shall have double or reinforced insulation between live parts and accessible parts.

9.3 Clearances

Clearances shall be dimensioned in such a way that the fuse-holder withstands the overvoltages expected to occur during normal use. The clearances shall be verified by measurement of dimensions and the impulse withstand voltage test according to 10.1.5, where this test is required.

Clearances equal to those specified in Table 7 or Table 8 shall be deemed to comply with this requirement. In this case the impulse withstand voltage test according to 10.1.5 is not required.

Clearances may be smaller than the values specified in Table 7 and Table 8 but not smaller than the values determined for the homogeneous field conditions according to Table F.2 of IEC 60664-1:2020. In this case, the clearances shall be deemed to comply with this requirement as long as no non-compliance occurs in the impulse withstand voltage test according to 10.1.5.

Clearances smaller than the values determined for the homogeneous field conditions according to Table F.2 of IEC 60664-1:2020 shall be deemed not to comply with this requirement.

Table 6 - Required impulse withstand voltage for clearances

Rated	voltage	Required impulse withstand voltage \hat{U} 1,2/50 $^{1)}$	
	V	kV	1
Overvolta	ge category	Functional, basic or	Reinforced or double
II	III	supplementary insulation	insulation
≤ 50	-	0,5	0,8
> 50 to ≤ 100	-	0,8	1,5
> 100 to ≤ 150	-	1,5	2,5
> 150 to ≤ 300	≤ 150	2,5	4,0
> 300 to ≤ 600	> 150 to ≤ 300	4,0	6,0
-	> 300 to ≤ 600	6,0	8,0
_	> 600 to ≤ 1 000	8,0	1,2

According to IEC 60060-1. \hat{U} 1,2/50 defines the impulse wave shape: 1,2 μ s rise time and 50 μ s half-value decay time.

There is increasing use of equipment operating at voltages below 125 V. In order to conform with IEC 60664-1, fuse holders specifically designed for these lower voltages shall meet the prescriptions in this table.

Attention is drawn to the fact that appliance specifications might contain requirements additional to or deviating from those specified in Table 5, Table 6, Table 7 and Table 8.

Table 7 and Table 8 show minimum clearances in air with regard to the rated voltage, the overvoltage category and the specified degree of pollution.

NOTE Minimum clearances in air in millimetres up to 2 000 m above sea-level for inhomogeneous field conditions corresponding to IEC 60664-1:2020, Table F.2.

Table 7 - Minimum clearances in air under overvoltage category II II

Rated voltage		Clearances in air	
	V	mm	
Functional, basic or	Reinforced or double	Pollution	n degree
supplementary insulation	insulation	2	3
≤ 50	-	0,2	0,8
> 50 to ≤ 100	≤ 50	0,2	0,8
> 100 to ≤ 150	> 50 to ≤ 100	0,5	0,8
> 150 to ≤ 300	> 100 to ≤ 150	1,5	1,5
> 300 to ≤ 600	> 150 to ≤ 300	3,0	3,0
_	> 300 to ≤ 600	5,5	5,5
_	> 600 to ≤ 1 000	8,0	8,0

Table 8 - Minimum clearances in air under overvoltage category II

Rated voltage		Clearances in air		
\	1	m	m	
Functional, basic or	Reinforced or double	Pollution	n degree	
supplementary insulation	insulation	2	3	
≤ 150	-	1,5	1,5	
> 150 to ≤ 300	≤ 150	3,0	3,0	
> 300 to ≤ 600	> 150 to ≤ 300	5,5	5,5	
_	> 300 to ≤ 600	8,0	8,0	
_	> 600 to ≤ 1 000	11	11	

9.4 Creepage distances

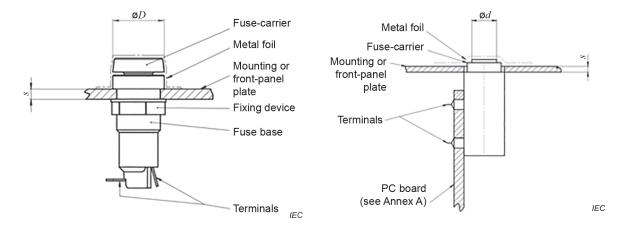
- **9.4.1** Creepage distances for basic or supplementary insulation, based on the rated voltage shall be selected from Table 9. The following influencing factors shall be taken into account:
- rated voltage;
- pollution degree;
- shape of insulating surface;
- comparative tracking index (CTI).
- **9.4.2** Measurement of creepage distances and clearances, shape of insulating surface: requirements according to 6.2 of IEC 60664-1:2020.
- **9.4.3** Creepage distances for reinforced or double insulation: shall be twice the value as specified in Table 9.
- **9.4.4** A creepage distance cannot be less than the associated clearance so that the shortest creepage distance possible is equal to the required clearance.

Table 9 – Minimum creepage distances in millimetres for a microenvironmentdependent on rated voltage, pollution degree, insulating material, corresponding to IEC 60664-1:2020, Table F.5

	Creepage distances mm							
Rated voltage	Pollution degree 2		Pollution degree 3					
		Materia	l group ¹⁾			Material	group ¹⁾	
	1	Ш	IIIa	IIIb	I	Ш	IIIa	IIIb
≤ 32	0,53	0,53	0,	53	1,30	1,30	1,3	30
> 32 to ≤ 63	0,63	0,90	1,:	25	1,60	1,80	2,0	00
> 63 to ≤ 125	0,75	1,05	1,	50	1,90	2,10	2,4	10
>125 to ≤ 250	1,25	1,80	2,	50	3,20	3,60	4,0	00
> 250 to ≤ 320	1,60	2,20	3,	20	4,00	4,50	5,0	00
> 320 to ≤ 400	2,0	2,8	4.	,0	5,0	5,6	6,	3
> 400 to ≤ 500	2,5	3,6	5	,0	6,3	7,1	8,	0
Up to 1 000	5,0	7,1	10	0,0	12,5	14,0	16	,0
1) See Annex C	-							

There is increasing use of equipment operating at voltages below 125 V. In order to conform with IEC 60664-1, fuse holders specifically designed for these lower voltages shall meet the prescriptions in this table.

10 Electrical requirements


10.1 Insulation resistance, dielectric strength and impulse withstand voltage

10.1.1 Mounting

Fuse-holders shall be mounted as follows:

- a) Fuse-holders designed for panel or base mounting, shall be mounted on a metal plate, with a thickness s, see Figure 4, as specified by the manufacturer. A test gauge according to Table 10 and with or without the fuse-carrier shall be inserted into the fuse-base.
 - For fuse-holders having screw-in fuse-carriers, these carriers shall be fitted in the normal way for each operation with a torque equal to two-thirds of the value specified in Table 11.
- b) Fuse-holders designed for PC board mounting shall be mounted on a test PC board according to Annex A and, if adapted to such use, with a front-panel metal plate of a thickness s, see Figure 5. A test gauge according to Table 10 and with or without the fuse-carrier shall be inserted into the fuse-base.

Fuse-holders for PC board mounting by soldering (through-hole types) should have a pin-spacing of $n \times e$ where n is an integer from 1 to 6 and e = 2,54 mm.

NOTE Thickness s to be specified by the manufacturer.

Figure 4 – Panel mounting

Figure 5 - PC board mounting

10.1.2 Humidity preconditioning

In accordance with 10.1.1, the separated mounted fuse-bases and fuse-carriers are submitted to the humidity preconditioning.

The humidity preconditioning is carried out in a humidity chamber containing air with a relative humidity maintained between 91 % and 95 %.

The air in the chamber where test samples are located shall be maintained at a temperature $t = (40 \pm 2)$ °C, uniformly distributed throughout the chamber.

The air in the chamber shall be stirred and the chamber shall be designed so that mist of condensed water will not precipitate on the test samples. Temperature variations shall not allow

any part of the test samples to reach a dew-point condition. Some methods of achieving the specified relative humidity are described in IEC TR 60260³.

The test samples are kept in the chamber for 48 h.

Immediately after the humidity preconditioning, with the samples still in the humidity chamber or in the room in which the samples were brought to the prescribed temperature, the measurement of the insulation resistance and dielectric strength are made, after reassembly of those parts which were separated before the humidity preconditioning. Parts of insulating material shall be wrapped in metal foil as shown in Figure 4 and Figure 5.

10.1.3 Measurement of insulation resistance

The insulation resistance shall be measured between the points as specified in Table 10.

DC voltage according to Table 10 shall be applied. The measurement is made 1 min after application of the test-voltage.

The insulation resistance shall be not less than the values shown in Table 10.

10.1.4 Dielectric strength test

Immediately after the measurement of the insulation resistance, with the samples still in the humidity chamber or in the room in which the samples were brought to the prescribed temperature, an AC voltage according to Table 10 is applied for 1 min between the points specified in Table 10.

Initially, not more than half the prescribed voltage is applied, then it is raised rapidly to the full value

No flashover or breakdown shall occur during the test.

10.1.5 Impulse withstand voltage test

After the test in 10.1.4 the impulse withstand voltage shall be tested between the points as specified in Table 10.

The required impulse withstand voltage according to Table 6 shall be applied.

Form and numbers of impulses:

The 1,2/50 µs impulse voltage shall be applied three times for each polarity at intervals of 1 s minimum.

Unless otherwise specified, the output impedance of the impulse generator should not be higher than 500 Ω .

NOTE A description of the test equipment can be found in IEC 60060-1 and IEC 60060-3.

During this voltage test, no breakdown or flashover shall occur.

Corona effects and similar phenomena are disregarded.

³ This document has been withdrawn in 2000.

10.2 Contact resistance

10.2.1 General measuring requirements

Measurements may be carried out with direct current or alternating current. For AC measurements the frequency shall not exceed 1 kHz. In the case of dispute, the DC measurements shall govern.

The accuracy of the measuring apparatus shall be within ±3 %.

For fuse-holders having screw-in fuse-carriers these carriers shall be fitted in the normal way for each operation with a torque equal to two-thirds of the value specified in Table 11.

The contact resistance shall be measured between the terminals after the fuse-holder has been equipped with a gauge No. 2 or No. 5 according to Table 3 or Table 4.

Contact resistance of fuse-holders intended for PC board mounting shall be measured on a fuse-holder mounted (soldered) on a test PC board according to Annex A. The voltage drop shall be measured between points P and O of Figure A.1.

The contact resistance shall normally be calculated from the voltage drop measured between the terminals.

The measurement is carried out under the following conditions:

- a) test voltage: the electromotive force of the source shall not exceed 60 V d.c. or a.c. (peak), but shall be at least 10 V;
- b) test current: 0,1 A;
- c) measurement shall be made within 1 min after the application of the test current;
- d) care shall be taken during the measurement to avoid exerting abnormal pressure on the contacts under test and to avoid movement of the test cable.

10.2.2 Measuring cycle

10.2.2.1 Measuring cycle with direct current

One measuring cycle consists of:

- a) insertion of the gauge in the fuse-holder;
- b) measurement with current flowing in one direction;
- c) measurement with current flowing in opposite direction;
- d) removal of the gauge from the fuse-holder.

10.2.2.2 Measuring cycle with alternating current

One measuring cycle consists of:

- a) insertion of the gauge in the fuse-holder;
- b) measurement;
- c) removal of the gauge from the fuse-holder.

10.2.2.3 Measurement and requirements

The complete measurement shall consist of five measuring cycles, which shall be carried out in immediate succession.

For fuse-holders for fuse-links in accordance with IEC 60127-2 the average values shall not exceed 5 m Ω . The value of any individual measurement shall not exceed 10 m Ω .

For fuse-holders for fuse-links in accordance with IEC 60127-3 the average values shall not exceed 10 m Ω . The value of any individual measurement shall not exceed 15 m Ω .

Table 10 – Values for insulation resistance, dielectric strength and impulse withstand voltage

			Insul	Insulation resistance	nce	Dielectric strength	strength	Impulse withstand voltage	tand voltage
Insulation resistance, dielectric strength and impulse withstand voltage	Number of test gauges according	Rated voltage	DC test voltage	oltage	Insulation resistance	AC test voltage	voltage	Impulse test voltage	st voltage
		^	^		МΩ	^	,	^	
measured between:	to table 3 or 4		functional, basic or supplementary insulation	Reinforced or double insulation		functional, basic or supplementary insulation	Reinforced or double insulation	functional, basic or supplementary insulation	Reinforced or double insulation
1 Unexposed fuse-holder 1.1 The terminals	3/6					200	1 000		
1.2 The terminals and the metal mounting or front-panel plate	1 / 4								
1.3 The terminals and any other metal parts which may be in contact with the mounting plate, e. g. base fixing devices		32 63 125 250	F		≥10 for functional, basic or supplementary insulation	Twice rated voltage +1 000 V	Twice the value for functional, basic or supplementary insulation	Required impulse withstand	withstand
1.4 The terminals and a metal foil covering the whole of the accessible surface (see figures 4 and 5)		350	but at least 100 V	100 V	≥20 for reinforced or			voltage values according to Table 6	cording to
2 Exposed fuse-holders 2.1 The terminals	3/6	1 000			double insulation	200	1 000		
2.2 The terminals and the mounting plate	1 / 4					Twice rated voltage +1 000 V	Twice the value for functional, basic or supplementary insulation		

There is increasing use of equipment operating at voltages below 125 V. In order to conform with IEC 60664-1, fuse-holders specifically designed for these lower voltages shall meet the prescriptions in Table 9.

11 Mechanical requirements

11.1 General

Fuse-holders shall have adequate mechanical strength to withstand the stresses imposed during installation and use.

Compliance is checked by the appropriate tests of 11.2 to 11.8.

11.2 Mounting

For the tests of 11.3 to 11.5 the fuse-holders are mounted as follows.

a) Fuse-holders designed for front-panel mounting shall be mounted with their fixing elements, if any, in the centre of a metal plate 130 mm \times 130 mm having a maximum thickness s as specified by the manufacturer.

The specimen as a whole is then fixed to a rigid plane support having a free space with a diameter of 100 mm for the base of a panel-mounted fuse-holder. To ensure that the specimen is rigidly supported, a block of metal or concrete having a mass of 15 kg shall be used (Figure 6).

Any fixing nut or fixing screw is screwed on with two-thirds of the torque specified in Table 12 or Table 13 as applicable.

Metal or concrete block with a mass of 15 kg

Ø100

130 × 130

Dimensions in millimetres

Figure 6 - Test device for mechanical test

b) Fuse-holders for PC board mounting shall be soldered to the test PC board according to Annex A and, by means of screws, this test PC board shall be fixed to the metal or concrete block of Figure 6 using a suitably adapted metal plate.

11.3 Compatibility between fuse-holder and fuse-link

The maximum gauge No. 1 or No. 4 according to Table 3 or Table 4 shall be inserted in and withdrawn from the fuse-holder and fuse-carrier, if any, 10 times for cartridge fuse-holder and 5 times for sub-miniature fuseholder.

For fuse-holders having screw-in fuse-carriers, these carriers shall be fitted in the normal way for each operation with a torque equal to two-thirds of the value specified in Table 11.

For fuse-holders having bayonet fuse-carriers there are no special torque requirements.

There shall be no visible damage or loosening of parts. In the most unfavourable position, the minimum gauge No. 2 or No. 5 according to Table 3 or Table 4 shall not fall from the fuse-carrier.

The minimum gauge No. 2 or No. 5 according to Table 3 or Table 4 shall then be inserted in the holder and the contact resistance shall be measured according to 10.2 with the same requirements.

11.4 Mechanical strength of the connection between fuse-base and fuse-carrier

11.4.1 Screw and bayonet connections

For the following tests, the fuse-carrier is fitted with the maximum gauge No. 1 or No. 4 according to Table 3 and inserted in the fuse-base mounted according to 11.2.

- a) Torque test on fuse-carriers
 - The fuse-carrier shall be subjected five times to the appropriate torque specified in Table 11.
- b) Tensile test on fuse-carriers

The screw-in fuse-carrier is screwed in with a torque of two-thirds of the value as specified in Table 11.

The screw-in or bayonet fuse-carrier shall then be subjected for 1 min to an axial pull as specified in Table 11.

Diameter of fuse-carrier	Torque	Axial pull
(Φ d in Figure 4 and Figure 5)	Nm	N
Up to and including 16 mm	0,4	25
Over 16 mm, up to and including 25 mm	0,6	50
Over 25 mm, up to and including 35 mm	0.8	75

Table 11 - Values for torque and axial pull

During and after the tests, the fuse-carrier shall be securely held in the fuse-base and shall not show any change impairing its further use.

For fuse-holders where fuse-carriers are flush with the fuse-base, the axial pull test is not required.

11.4.2 Plug-in connection

Insertion and withdrawal forces:

The fuse-carrier together with the maximum gauge No. 1 or No. 4 according to Table 3 shall be inserted in and withdrawn from the fuse-base. The forces have to be measured with suitable measuring devices. This test has to be repeated 10 times. The value of any individual measurement, insertion and withdrawal forces, shall be within limits assigned by the manufacturer.

After the test the contact resistance shall be measured according to 10.2 with the same requirements.

11.5 Impact test

This test shall only be applied to panel-mounted fuse-holders. The fuse-carrier with the maximum gauge No. 1 or No. 4 according to Table 3 shall be inserted in the fuse-holder.

The front of the fuse-holder is then subjected to three blows with a spring-operated impact-hammer according to IEC 60068-2-75, applied to points equally distributed over the front of the fuse-holder.

The adjusted value of the kinetic energy just before impact shall be (0.35 ± 0.03) J.

After the test, the sample shall show no serious damage. In particular, live parts shall not have become exposed so as to impair compliance with Clause 9 and there shall not have been such distortion as to impair compliance with Clause 10.

Compliance is checked by visual inspection and measurement of dimensions. If there is any doubt, compliance is additionally checked by the impulse withstand voltage test according to 10.1.5.

11.6 Mechanical strength of the fuse-holder fastening on panels

11.6.1 Fixing nut fastening

The fuse-base shall be mounted with supplied fixing elements, including gasket, on a steel plate according to the manufacturer's instructions.

The fixing nut of a one-hole mounted fuse-base shall be screwed on and off five times with a torque as specified in Table 12.

Thread diameter mm Nm

Up to and including 12 0,6

Greater than 12, up to and including 18 1,2

Greater than 18, up to and including 30 2,4

Greater than 30, up to and including 40 3,6

Greater than 40, up to and including 50 4,8

Table 12 - Torque values

After the test the fuse-base shall not show any change impairing its further use.

11.6.2 Fixing screw fastening

Fixing screws, bolts or nuts of a multi-hole mounted fuse-base shall be screwed on and off five times with a torque as specified in Table 13.

Thread diameter	Torque
mm	Nm
2	0,25
2,5	0,4
3	0,5
3,5	0,8
4	1,2
5	2,0
6	2,5
>8	3.5

Table 13 - Torque values

After the test the fuse-base shall not show any change impairing its further use.

11.6.3 Snap-in fastening

11.6.3.1 General

The following types belong to this group of fuse-holders:

- fuse-base with integral spring-system;
- fuse-base with a separate spring-nut (a nut fabricated e.g. from thin spring steel having an impression designed to accommodate the mating part).

11.6.3.2 Tests and requirements

11.6.3.2.1 Test procedures

The mechanical strength of the fuse-holder fastening on panels (see Figure 7) shall be verified by the following tests.

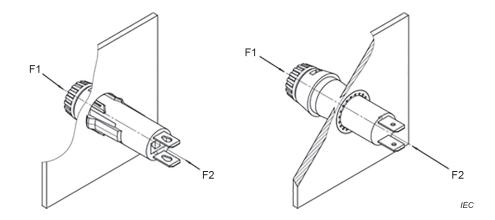


Figure 7 - Examples of snap-in fastening Fuse-holder on panels

The tests shall be performed with an engaged snap-in fastening and the fuse-holder shall lie flat on the surface of the mounting plate.

The specimens shall be divided into two mounting groups according to Table 14.

Table 14 - Mounting groups

	Group 1	Group 2
Mounting plate	Maximum panel thickness	Minimum panel thickness
	and	and
	mounting hole with smallest dimension	mounting hole with largest dimension
Testing force	Insertion force F1	Withdrawal force F2

Preparation of the specimen:

The thickness of the mounting plate and the diameter of the mounting hole shall be according to the specifications of the manufacturer.

The mounting plate may be positioned in any convenient orientation during the test procedures.

11.6.3.2.2 Insertion force F1

The insertion force F1 shall be \leq 120 N or as specified by the manufacturer, and centered in the middle of the socket base of the fuse-holder (see Figure 7).

The insertion force F1 shall be so applied that the force on the whole surface is continuously increased in a monotonous manner without jogging.

The pressure device shall cover the flange completely.

11.6.3.2.3 Withdrawal force F2

The withdrawal force F2 (see Figure 7) shall be applied axially to the rear of the fuse-holder. The force shall be increased monotonously from 0 N to 50 N.

The snap-in fastening of the fuse-holder shall not be permanently distorted and the fuse-holder shall not be ejected by the maximum force.

11.6.3.2.4 Acceptance criteria in the above tests

- Cracks, chipping and breakage of the fuse-holder base due to the mechanical stress of F1 and F2 are not acceptable.
- Ridges and wear of the insulating body are acceptable.

11.7 Terminals of fuse-bases

11.7.1 Terminals with screw-type clamping or screwless-type clamping

Tests and requirements for terminals with screw-type and screwless-type clamping units for electrical copper conductors shall comply with IEC 60999-1.

11.7.2 Terminals for soldering

11.7.2.1 Tag terminals

11.7.2.1.1 General

Designed for being soldered with a soldering iron.

11.7.2.1.2 Size

Terminals of fuse-bases shall allow the connection of rigid conductors, solid or stranded and flexible conductors of the size shown in Table 15.

Table 15 - Cross-sections of conductors

Fuse-holder with a maximum rated current of:	Minimum hole diameter	Maximum cross-section of the conductor
	mm	mm²
Up to and including 6,3 A	1,2	1
More than 6,3 A, and up to and including 10 A	1,4	1,5
More than 10 A, and up to and including 16 A	1,8	2,5
More than 16 A, and up to and including 25 A	2,3	4,0

For soldering terminals there shall be a means such as a hole through which the conductor, or all strands of a multi-strand conductor, will pass so that the conductor may be held independently of the solder.

11.7.2.1.3 Tests

a) Robustness of termination

The terminals shall be subjected to the following tensile and bending tests.

Tensile test according to Test Ua₁ of IEC 60068-2-21.

An axial force of 20 N shall be applied.

Requirements: there shall be no damage which would impair normal operation.

- Bending test according to Test Ub of IEC 60068-2-21.

Where applicable, method 1 shall be used, otherwise method 2.

Requirements: there shall be no damage which would impair normal operation.

b) Solderability, wetting, soldering iron method

The test shall be performed in accordance with Test Ta of IEC 60068-2-20:2021 after the accelerated ageing 4.1.4.3 detailed in 4.1.4 of IEC 60068-2-20:2021

- Method 2.
- "B" size soldering iron.

Requirements: The solder shall have wetted the test area and there shall be no droplets.

c) Resistance to soldering heat, soldering iron method

The test shall be performed in accordance with Test Tb of IEC 60068-2-20:2021.

- Method 2.
- "B" size soldering iron.

Requirements: there shall be no damage that would impair normal operation.

11.7.2.2 Wire and pin terminals

11.7.2.2.1 General

Designed for use with printed boards or other applications using similar soldering techniques.

11.7.2.2.2 Size

Dimensions: no special requirements

11.7.2.2.3 Tests

- a) Robustness of termination: see 11.7.2.1.3 a).
- b) Solderability, wetting, solder bath method.

The test shall be performed in accordance with Test Ta of IEC 60068-2-20 after the accelerated ageing 4.1.4.3 detailed in 4.1.4 of IEC 60068-2-20:2021

- Method 1.
- A thermal screen shall be used: e.g. a PC board.

Requirements: the dipped surface shall be covered with a solder coating with no more than small amounts of scattered imperfections such as pin-holes or unwetted areas. These imperfections shall not be concentrated in one area.

c) Resistance to soldering heat, solder bath method.

The test shall be performed in accordance with Test Tb of IEC 60068-2-20:2021.

- Method 1.
- A thermal screen shall be used: e.g. a PC board.
- Immersion temperature: 260 °C ± 3 °C
- Immersion time: (5 ± 1) s.

Requirements: there shall be no damage that would impair normal operation.

11.7.2.3 Quick-connect male tab terminals

11.7.2.3.1 General

A quick-connect termination consists of a male tab with hole or dimple detent and the mating female connectors. The fuse-base is provided with the male tab.

11.7.2.3.2 Size

Dimensions, classified types of male tabs: according to IEC 61210.

11.7.2.3.3 Tests

Robustness of terminations

The terminals shall be subjected to the following tensile and compressive strength tests:

- tensile test according to test Ua₁ of IEC 60068-2-21. A tensile force F1 according to Table 16 shall be applied to the fixed male tab as shown in Figure 8;
- compressive test analogous to the tensile test. A compressive force F2 according to Table 16 shall be applied to the fixed male tab as shown in Figure 9.

Separate specimens shall be used for tensile and compressive testing. Care shall be taken to ensure correct alignment and direction of forces.

Requirements: there shall be no damage which would impair normal operation.

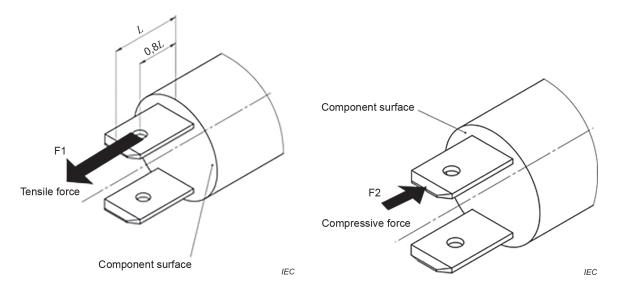


Figure 8 - Tensile force test

Figure 9 – Compressive force test

 Tab size
 Tensile force F1 and compressive force F2

 mm
 N

 2,8
 53

 4,8
 67

 5,2
 67

 6,3
 80

 9,5
 100

Table 16 - Tensile and compressive forces

11.7.2.4 Quick-connect male tab terminals combined with solder tag terminals

Combined versions are tested according to 11.7.2.1 and 11.7.2.3 as applicable.

11.8 Resistance to vibration

11.8.1 General

The resistance to vibration of fuse-holders shall be adequate.

Compliance is checked by submitting the fuse-holder to the test in accordance with IEC 60068-2-6:2007, Test Fc, with the following general measuring requirements.

11.8.2 Mounting

The fuse-holder shall be mechanically connected to the test apparatus according to IEC 60068-2-47 by its normal mounting method.

The fixing nut of one-hole mounted fuse-bases shall be screwed on with a torque as specified in 11.6.1.

The fixing screws, bolts or nuts of multi-hole mounted fuse-bases shall be screwed on with a torque as specified in 11.6.2.

The snap-in fastening fuse-bases shall be mounted as specified in 11.6.3.

The minimum gauge No. 2 or No. 5 according to Table 3 or Table 4 shall be inserted in the fuse-holder.

For fuse-holders having screw-in fuse-carriers, these carriers shall be fitted in the normal way with a torque equal to two-thirds of the maximum allowable value specified in Table 11.

11.8.3 Measurement and requirements

11.8.3.1 Severity

- Frequency range: 10 Hz to 55 Hz.
- Displacement amplitude 0,35 mm (Figure 1 and Figure 2 of IEC 60068 2 6:2007, 5.2 apply).
- Number of sweep cycles: five in each axis.

11.8.3.2 Axis of vibration

The fuse-holder shall be vibrated in three mutually perpendicular axes in turn which should be chosen in such a way that one axis is the main fuse-link axis.

11.8.3.3 Functional checks

During vibration, it shall be checked whether or not the electrical continuity between the contacts is interrupted. Interruption of 1 ms or less shall be ignored.

11.8.3.4 Final measurements

After the test, the contact resistance shall be in accordance with 10.2, and the fuse-holder shall show no serious damage in the sense of this standard.

12 Thermal requirements

12.1 Rated power acceptance test

12.1.1 General

A fuse-holder shall be so designed to carry continuously the rated current at the rated power acceptance and at an ambient air temperature $T_{\rm A1}$ of 23 °C without exceeding the allowable temperatures on the fuse-holder specified in 12.1.4.

Compliance is checked by the tests of 12.1.2 to 12.1.7.

12.1.2 Mounting

Fuse-holders designed for panel or base mounting shall be mounted in the centre of an insulating plate, e.g. laminated phenolic cellulose paper with the dimensions $(100 \times 100 \times 3)$ mm.

Fuse-holders designed for PC board mounting shall be mounted on a test PC board according to Annex A.

For fuse-holders having screw-in fuse-carriers, these carriers shall be fitted in the normal way with a torque equal to two-thirds of the maximum allowable value specified in Table 11.

The temperature measurements shall be carried out in air as undisturbed as possible. Therefore the fuse-holder, mounted on the corresponding plate, shall be placed in an enclosure which protects the immediate environment from external movements of air. The enclosure should be made of negligible reflective materials.

The enclosure sides shall not be closer than 200 mm from the edges of the fuse-holder. The enclosure shall not have a cover. For an example see Figure 10.

The fuse-holder samples shall be arranged in three different positions, one in the horizontal plane (Figure 10) and two in the vertical plane (upright and downwards).

The arrangement in the other planes has to be made in a similar way.

Dimensions in millimetres

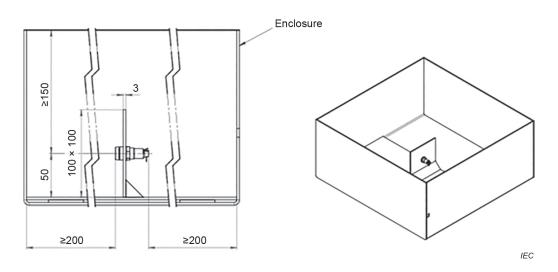


Figure 10 - Example of test device

The insulated conductors fitted to the fuse-holder or test PC board terminals shall have the following dimensions:

- a) Length: 1 m.
- b) Cross-sectional area of a single-core copper conductor:
 - 0,5 mm² for fuse-holders rated up to and including 1 A;
 - 1 mm² for fuse-holders rated more than 1 A but less than or equal to 6,3 A;
 - 1,5 mm² for fuse-holders rated more than 6,3 A but less than or equal to 10 A;
 - 2,5 mm² for fuse-holders rated more than 10 A but less than or equal to 16 A.
 - 4 mm² for fuse-holders rated more than 16 A but less than or equal to 25 A.

12.1.3 Dummy fuse-links

12.1.3.1 Dummy fuse-links for cartridge fuse-links

A dummy fuse-link is a test fuse-link with defined resistance according to Table 18.

The material of the resistance wire used in the dummy fuse-link shall be of CuNi44 or any similar material having a temperature coefficient of resistance of less than $\pm 10.0 \times 10^{-5}$ K⁻¹ within the temperature range of 20 °C to 200 °C.

The dimensions of the dummy fuse-links are specified in Table 17.

Table 17 - Dimensions and materials for dummy fuse-link according to IEC 60127-2

Type of cartridge			D1	D2	D0 B	Materials of part	
Fuse-link	Size		<i>D</i> 1	D2	В	Сар	Tube
mm		mm	mm	mm	mm		
5 × 20	min.	19,46 +0,5	5,0 ^{+0,2} ₀	4,2 ± 0,1	5 +0,2	Brass ^a	Ceramic
6,3 × 32	min.	30,96 +0,8	6,25 +0,2	5,5 ± 0,1	6 +0,2	Brass ^a	Ceramic
^a Brass with copper content from 58 % to 70 %, surface with 2 μm (minimum) nickel plating (galvanic).							

In case of doubt concerning the behaviour of the used dummy fuse-links, these should be tested at rated current in the fuse-base shown in Figure 1 of IEC 60127-2:2014, and they should show no special effects such as thermoelectrical voltage.

There shall be no holes in the ends of the dummy fuse-links.

Table 18 - Dummy fuse-links according to IEC 60127-2

	ny No. nk for fuse-links	Nominal power dissipation of the dummy fuse-link ^a	Current ^a	Resistance ^b ± 10 %
5 mm × 20 mm	6,3 mm × 32 mm	P W	Y A	R mΩ
A1/1625	A2/1625	4.0	2,5	256
A1/1663	A2/1663	1,6	6,3	40
A1/2525	A2/2525		2,5	400
A1/2563	A2/2563	2,5	6,3	63
A1/2510	A2/2510		10	25
A1/3263	A2/3263		6,3	81
A1/3210	A2/3210	3,2	10	32
A1/4063	A2/4063		6,3	101
A1/4010	A2/4010		10	40
A1/4012	A2/4012	4,0	12,5	25,6
A1/4016	A2/4016		16	15,6
A1/4020	A2/4020		20	10
A1/5012	A2/5012		12,5	32
A1/5016	A2/5016	5,0	16	19,5
A1/5020	A2/5020		20	12,5
A1/6012	A2/6012		12,5	38,4
A1/6016	A2/6016	6,0	16	23,4
A1/6020	A2/6020		20	15
A1/8020	A2/8020		20	20
A1/8025	A2/8025	8,0	25	12,8

^a If other values are required, these values should be selected from the series R10 of ISO 3.

b The resistance of the dummy fuse-link is calculated as follows: $R = P/I^2$.

12.1.3.2 Dummy fuse-links for sub-miniature fuse-links

Requirements:

- a) Defined resistance according to Table 20. The material should be of low temperature coefficient of resistance.
- b) Dimensions of the dummy fuse-links according Table 19.
- c) Materials of parts A and B according to Table 19:
 - part A: brass or copper, nickel- or tin-plated;
 - part B: insulating material.

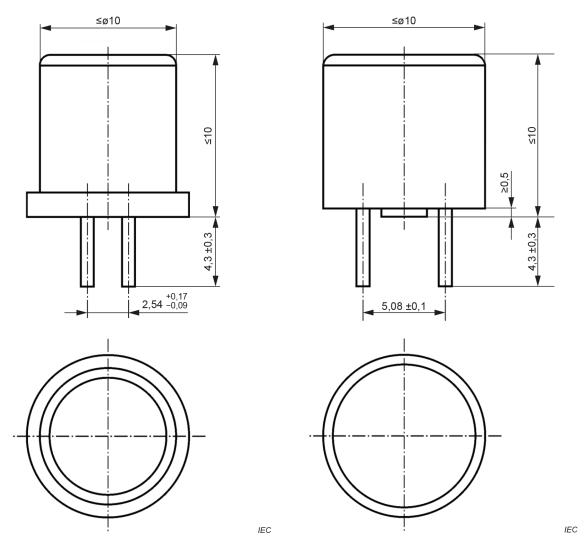

The type of material shall be assigned by the manufacturer.

Table 19 – Dimensions and materials for dummy fuse-links according to IEC 60127-3

Dummy fuse-link for	D	P	Materials of part		
sub-miniature fuse-links	mm	mm	Α	В	
Standard sheet 1	0,55 _ 0	2,54 + 0,17 - 0,09	Brass ^a	Insulating Material	
Standard sheets 3 and 4	0,56 _ 0,02	5,08 ± 0,1	Brass ^a	Insulating Material	

^a Brass with copper content from 58 % to 70 %, surface with 2 μm (minimum) nickel plating (galvanic).

Dimensions in millimetres

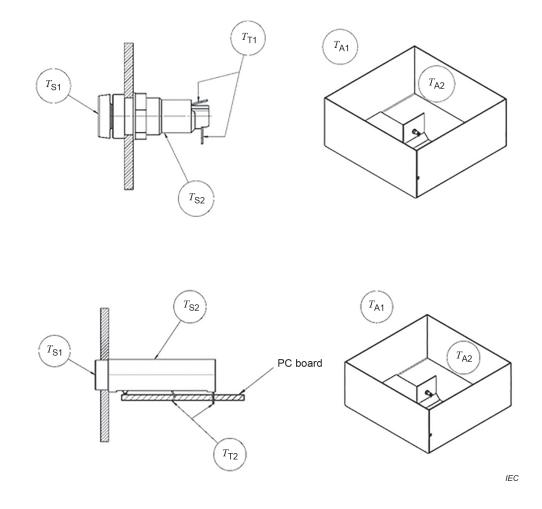
Source: Standard sheet 1 of IEC 60127-3:2015

Figure 11 – IEC 60127-3:2015, Standard sheet 1

Source: Standard sheets 3 and 4 of IEC 60127-3:2015

Figure 12 – IEC 60127-3:2015, Standard sheets 3 and 4

Table 20 - Dummy fuse-links according to IEC 60127-3


Dumn	ny No.	Nominal power		Resistance ^b ± 10 %	
	for sub-miniature eccording to	dissipation of the dummy fuse-link ^a	Current ^a		
Standard sheet 1	Standard sheets 3 and 4	P W	I A	R mΩ	
B1/1650		1,6	5,0	64	
	B2/1620	1,6	2,0	400	
	B2/1650		5,0	64	
	B2/2050	2,0	5,0	80	
	B2/2010	2,0	10,0	20	

^a If other values are required, these values should be selected from the series R10 of ISO 3.

12.1.4 Measurement of maximum allowable temperatures on fuse-holders

The locations where the relevant temperatures shall be measured are illustrated in Figure 13.

b The resistance of the dummy fuse-link is calculated as follows: $R = P/I^2$.

Key:

 $T_{\rm A1}$ = ambient air temperature, outside the enclosure

 $T_{\rm A2}$ = surrounding air temperature, in the enclosure

 $T_{\rm S1}$ = temperature of accessible part on fuse-holder surface

 $T_{\rm S2}$ = temperature of inaccessible part on fuse-holder surface

 T_{T1} = temperature on the tag-terminal of panel fuse-holder

 T_{T2} = temperature on the pin-terminal of PC-board fuse-holder

Figure 13 – Illustration of temperatures experienced in practice

A thermocouple or any other temperature measuring device that does not appreciably affect the result shall be used. Even the mounting method of the thermocouple shall be chosen in such a way, that the measuring results shall not be affected. and there shall be no damage to the fuse-holder surface.

Remarks on the individual measuring points:

 $T_{\rm A1}$ denotes the ambient temperature surrounding the enclosure. It is measured at a distance of approximately 100 mm from the enclosure of the test device.

The rated power acceptance is referred to an ambient temperature $T_{\rm A1}$ of 23 °C.

The power acceptance at higher ambient temperatures $T_{\rm A1}$ shall be assigned by the manufacturer.

Preferred ratings at ambient temperatures T_{A1} are given in Table 2. See also Annex E.

 $T_{\rm A2}$ denotes the ambient temperature inside the enclosure. It is measured at a distance of approximately 50 mm from the fuse-holder under test.

 $T_{\rm S1}$ denotes the temperature of accessible parts on the fuse-holder surface which can be touched by means of the standard test finger according to IEC 60529, when the fuse-holder is installed and operated as in normal use, e.g. on the front panel of the enclosure (see 3.17).

 $T_{\rm S2}$ denotes the temperature of inaccessible parts on the fuse-holder surface. It is measured on the insulating parts of the fuse-holder which are located inside the enclosure. The measuring point on the surface of the fuse-holder shall be accessible by means of a test wire of 1 mm diameter according to IEC 60529.

 $T_{\rm S1}$ and $T_{\rm S2}$ shall be measured on the hottest point of the fuse-holder surface area.

The temperature measuring points should be chosen by performing a plot test (placing of thermocouples in various areas) or by the use of a thermal imaging camera to determine the approximate location of the hottest point.

 T_{T1} denotes the temperature on the tag-terminals of panel fuse-holders. It is measured on the centre point of the tag-terminal surface.

 T_{T2} denotes the temperature on the pin-terminals of PC-board fuse-holders. It is measured underneath the PC board on the centre point of the fillet formed by the meniscus of the solder.

	Fire helder confees are	Maximum allowable temperatures		
	Fuse-holder surface area	b	°C	
1	Accessible parts ^a	T_{S1}	85	
2	Inaccessible parts ^a			
2.1	Insulating parts	$T_{ m S2}$	С	
2.2	Terminals:			
2.2.1	of fuse-holder for panel or base mounting: (area around the fitted conductor)	T_{T1}	d	
2.2.2	of fuse-holder for PC board mounting: (soldered points on PC board)	T_{T2}	d	

Table 21 – Maximum allowable temperatures

The RTI value shall be assigned by the manufacturer.

d The maximum allowable temperature shall be assigned by the manufacturer, but not above 175 °C.

12.1.5 Correlation between ambient air temperature T_{A1} and the power acceptance of a fuse-holder

The rated power acceptance of a fuse-holder is determined at an ambient temperature T_{A1} of 23 °C (see 3.3).

When the fuse-holder is properly assembled, installed and operated as in normal use, e.g. on the front panel of end-product.

b See Figure 13.

The maximum allowable temperature of the fuse-holder's insulating materials corresponds to the relative temperature index (RTI) or temperature index (TI) according to IEC 60216-1, which is based on test conditions of 20 000 h – electrical, without impact – if the insulating material is inaccessible after normal installation of the fuse-holder in the end-product. If there are no relevant IEC values available, as an alternative, comparable RTI values may be chosen from an equivalent standard.

The power acceptance at higher ambient temperatures T_{A1} shall be assigned by the manufacturer. See also Annex E.

12.1.6 Temperature measuring point for ambient air temperature $T_{\Delta 1}$

The measuring point for measuring the ambient air temperatures T_{A1} shall be located outside the enclosure in Figure 10.

12.1.7 Test method

The fuse-holder shall be mounted according to 12.1.2.

The dummy fuse-link corresponding to the fuse-holder to be tested shall be chosen from Table 19 or Table 20 and inserted in the holder.

For example, for a fuse-holder designed for fuse-links 5 mm \times 20 mm and a rated power acceptance of 4 W at a rated current of 6,3 A, the dummy fuse-link No. A1/4063 with a resistance of 101 m Ω ± 10 % should be used.

The rated power acceptance test shall be carried out at an ambient temperature of not less than 23 °C and the result is corrected to a reference temperature of T_{A1} = 23 °C.

A test current equal to the rated current, a.c. or d.c., shall be passed through the fuse-holder. It is permissible for the test voltage to be less than the rated voltage of the fuse-holder.

Based on the dummy fuse-link resistance, the test current of the fuse-holder is adjusted within a tolerance of ${}^{+5}_{0}\%$ of the rated current to give the nominal power dissipation P of the inserted dummy fuse-link.

NOTE $\,$ For the above example the tolerances of the 101 m Ω dummy fuse-link are:

 R_{\min} = 90,9 m Ω , adjusted current: 6,63 A;

 R_{max} = 111 m Ω , adjusted current: 6,00 A.

The test shall be continued until temperature stability has been reached.

Temperature stability shall be considered to have been reached when three (3) successive readings, at least 10 min apart, indicate no further temperature rise.

After temperature stability has been reached, the endurance test, according to Clause 13, shall be carried out with the same fuse-holder.

To obtain power acceptance values at higher ambient temperatures $T_{\rm A1}$, tests shall be carried out at these higher temperatures following the test described above. The results can then be represented by means of a derating curve similar to the example shown in Figure 14.

Because of the maximum allowable temperature T_{S1max} = 85 °C for accessible parts, the derating curve should intersect the x-axis at the point T_{A1} = 85 °C.

Attention is drawn to the fact that this figure is an example of a derating curve. The relevant derating curve for any individual fuse-holder is assigned by the manufacturer.

Figure 14 - Example of a derating curve

12.2 Resistance to abnormal heat and fire

12.2.1 Needle-flame test

Insulation materials of fuse-holders which might be exposed to thermal stress due to electric effects and the deterioration of which might impair the safety of the end-product shall not be unduly affected by heat and by fire generated within the fuse-holder.

Compliance is checked by subjecting the fuse-holder to the needle-flame test according to IEC 60695-11-5:2016, with the following modifications:

- Clause 7: Flame application times
 - The duration of application of the test flame is (10 ± 1) s.
- Clause 9: Test procedure

The fuse-holder shall be positioned as in normal use and, at the beginning of the test, the flame is applied so that the tip of the flame is in contact with the surface of the fuse-holder. During the test, the burner shall not be moved.

Clause 11: Evaluation of test results

Add the following:

There shall be no ignition of the tissue paper or scorching of the white pine board, a slight discoloration, if any, of the white pine board being neglected.

12.2.2 Glow-wire ignition test

This is not applicable for fuse-holders which represent small parts according to IEC 60695-2-11.

For fuse-holders made of plastic material or of material containing organic substances the following minimum requirements apply.

Glow-wire ignition temperature (GWIT) = 775 °C

Glow-wire flammability index (GWFI) = 850 °C

For GWFI and GWIT, reference should be made to IEC 60695-2-12 and IEC 60695-2-13 respectively. For the glow wire test, it is necessary to use material plates with the dimensions according to 4.2 of IEC 60695-2-12:2021 or IEC 60695-2-13:2021.

NOTE For materials such as glass and ceramic whose GWIT and GWFI are higher than 775 $^{\circ}$ C and 850 $^{\circ}$ C, respectively the glow-wire tests do not apply.

13 Endurance

13.1 General

Fuse-holders shall be sufficiently resistant to heat and to mechanical stresses which may occur in normal use.

Compliance is checked by the following test.

13.2 Endurance test

The fuse-holder shall be subjected to the rated power acceptance test according to 12.1. The test together with measurements of temperature and voltage drop shall go on continuously for a period of 500 h.

13.3 Requirements

After the test the fuse-holder shall be in a satisfactory condition. It shall not have suffered any deformation that would impair its correct operation. The requirements according to the following subclauses shall be fulfilled:

- 10.1.3 Insulating resistance.
- 10.1.4 Dielectric strength.
- 11.3 Compatibility between fuse-holder and fuse-link. For this test, the requirements in the second paragraph of 10.2.2.3 shall be replaced by the following: "The average of the values of the contact resistance shall not exceed 10 m Ω . The value of any individual measurement shall not exceed 15 m Ω ."

The maximum allowable temperatures according to Table 21 shall not be exceeded.

14 Additional requirements

14.1 Resistance to rusting

Ferrous parts shall be adequately protected against rusting. Compliance is checked by the following test.

All grease is removed from the parts to be tested by immersion in trichloroethane or an equivalent degreasing agent, for 10 min. The parts are then immersed for 10 min in a 10 % solution of ammonium chloride in water at a temperature of (20 ± 5) °C.

Without drying, but after shaking off any drops, the parts are placed for 10 min in a box containing air saturated with moisture at a temperature of (20 ± 5) °C.

After the parts have been dried for 10 min in a heating cabinet at a temperature of (100 ± 5) °C, their surface shall show no signs of rust.

Traces of rust on sharp edges and any yellowish film removable by rubbing are ignored.

For small springs and for inaccessible parts exposed to abrasion, a layer of grease may provide sufficient protection against rusting. Such parts are subjected to the test only if there is doubt about the effectiveness of the grease film, and the test is then made without previous removal of the grease.

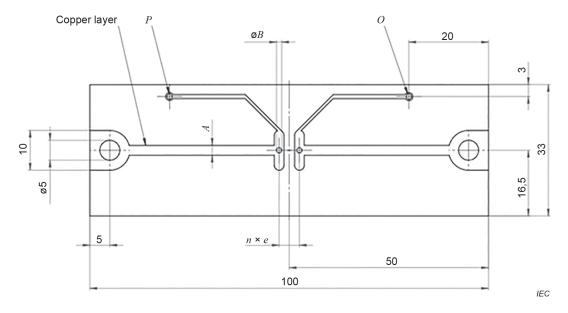
14.2 Resistance to cleaning solvents

This test shall be applied to fuse-holders designed for PC board mounting.

The cleaning solvent to be used shall be propan-2-ol (isopropyl alcohol) or any similar solvent, except for solvent containing freon.

Compliance is checked by the test according to IEC 60068-2-45, with the following conditions:

- solvent temperature: (23 ± 5) °C;
- duration of immersion: (5 ± 0.5) min;
- conditioning: Method 2 (without rubbing);
- recovery time: not less than 1 h;
- final measurement:
 - visual inspection and
 - · dielectric strength test according to Table 9.


Annex A

(normative)

Test PC board for fuse-holders of rated currents up to 25 A

Figure A.1 shows an example of a test board. The number and alignment of the holes for the solder terminal of the fuse-holder may be chosen to suit the relevant fuse-holder. The dimensions of the copper layer (nominal width A, nominal thickness) and the overall dimensions (approximately $100 \text{ mm} \times 33 \text{ mm}$) shall be met.

Dimensions in millimetres

ΦB - minimum 1,3 mm or in accordance to manufacturer declaration

P/O – Connection for voltage drop measurement:

 $e-2,54~\mathrm{mm}$

n - 1 to 6

Figure A.1 - Example of a test board

Base material:

- glass-fibre reinforced epoxy, temperature strength ≥150 °C;
- nominal thickness shall be 1,6 mm;
- copper layer:

Table A.1 - Copper layer for test board

Rated current of fuse-	Copper layer			
holder	Nominal width A	Nominal thickness		
	mm	mm		
<6,3 A	2,5	0,035		
6,3 A to ≤10 A	5,0	0,070		
>10 A to ≤16 A	10,0	0,105		
>16 A to ≤25 A	15,0	0,140		

Other layouts of the pc-board are acceptable, as long as the length, width and thickness of the copper layer inside the requested values.

Annex B

(normative)

Type tests, test sequences and number of samples

Table B.1 gives type tests, test sequences and number of samples. Twelve (12) spare samples shall be available.

Table B.1 – Type tests, test sequences and number of samples

Test		Number of		Clause	Acceptance
group	no.	samples	Daramotore		criteria
		1 to 15 (15 samples)	Marking	6	All samples shall comply with the standard
	1.1		Protection against electric shock	8	
	1.2		Clearance, creepage distances	9	
1	1.3	1 to 3 (3 samples)	Insulation resistance, dielectric strength, impulse withstand voltage	10.1	All samples shall comply with the standard
	1.4		Mechanical strength of the fuse-holder fastening on panels	11.6	
	2.1		Contact resistance	10.2	
	2.2	4 to 6 (3 samples)	Compatibility between fuse-holder and fuse-link	11.3	
2	2.3		Mechanical strength of the connection between fuse-base and fuse-carrier	11.4	а
	2.4		Impact test	11.5	
	2.5		Terminals of fuse-bases	11.7	
	3.1		Rated power acceptance test including endurance test	12.1 13	
3	3.2	7 to 9	Measurement of insulation resistance	10.1.3	а
3	3.3	(3 samples)	Dielectric strength test	10.1.4	ŭ
	3.4		Compatibility between fuse-holder and fuse- link with requirements according to 13.3	11.3	
4	4.1	10 to 12 (3 samples)	Resistance to abnormal heat and fire	12.2	а
	5.1		Resistance to vibration	11.8	
5	5.2	13 to 15 (3 samples)	Resistance to rusting	14.1	а
	5.3	, , ,	Resistance to cleaning solvents	14.2	

If one instance of non-compliance occurs, then the test shall be repeated on this parameter using the original sample size. Providing that no further instances of non-compliance occur, the fuse-holder shall be deemed to comply with this standard.

If a total of two or more instances of non-compliance occur, not necessarily for the same parameter of this group, then the fuse-holder is deemed not to comply with this standard.

Annex C

(informative)

Insulation coordination⁴

C.1 Overvoltage categories

The concept of overvoltage categories is used for equipment energized directly from the low-voltage mains.

NOTE 1 This concept of overvoltage categories is used in IEC 60364-4-44.

Equipment of overvoltage category IV is for use at the origin of the installation.

NOTE 2 Examples of such equipment are electricity meters and primary overcurrent protection equipment.

 Equipment of overvoltage category III is equipment in fixed installations, and for cases where the reliability and the availability of the equipment is subject to special requirements.

NOTE 3 Examples of such equipment are switches in the fixed installation and equipment for industrial use with permanent connection to the fixed installation.

 Equipment of overvoltage category II is energy-consuming equipment to be supplied from the fixed installation.

NOTE 4 Examples of such equipment are appliances, portable tools, and other household and similar loads.

If such equipment is subjected to special requirements with regard to reliability and availability, overvoltage category III applies.

Equipment of overvoltage category I is equipment for connection to circuits in which
measures are taken to limit transient overvoltages to an appropriately low level.

NOTE 5 Examples are protected electronic circuits.

C.2 Degrees of pollution in the micro-environment

Pollution degree 1

No pollution or only dry, non-conductive pollution occurs. The pollution has no influence.

Pollution degree 2

Only non-conductive pollution occurs except that occasionally a temporary conductivity caused by condensation is to be expected.

Pollution degree 3

Conductive pollution occurs or dry non-conductive pollution occurs which becomes conductive due to condensation which is to be expected.

Pollution degree 4

The pollution generates persistent conductivity caused by conductive dust, or by rain or snow.

⁴ See IEC 60664-1.

C.3 Comparative tracking index CTI

Material groups and their CTI value as follows:

Material group I 600 ≤ CTI

Material group II 400 ≤ CTI < 600

Material group IIIa 175 ≤ CTI < 400

Material group IIIb 100 ≤ CTI < 175

The CTI values above refer to values obtained, in accordance with IEC 60112, on samples specifically made for the purpose and tested with solution A.

The proof-tracking index (PTI) is also used to identify the tracking characteristics of materials. A material may be included in one of the four groups given above on the basis that its PTI, established by the methods of IEC 60112 using solution A, is equal to or greater than the lower value specified for the group.

Annex D

(informative)

Additional tests and requirements

D.1 General

The tests mentioned in this Annex D are optional. However, if they are carried out, the following requirements shall be met.

It shall also be indicated in which lot for a type test this test shall be included.

D.2 Resistance to shock

D.2.1 General

The resistance to shock of fuse-holders shall be adequate. Compliance is checked by submitting the fuse-holder to the test in accordance with IEC 60068-2-27, test Ea, with the following general measuring requirements.

D.2.2 Mounting

According to 11.8.2.

D.2.3 Measurement and requirements

D.2.3.1 Severity (minimum level)

Acceleration amplitude: 50 g

- Pulse duration: 11 ms

(see 4.1 of IEC 60068-2-27:2008, Table 1)

D.2.3.2 Axes of shocks

According to 11.8.3.2.

D.2.3.3 Final measurements

According to 11.8.3.4.

D.3 Verification of the degree of protection of enclosures

If the fuse-holder is qualified equipment with a degree of protection provided by enclosure according to IEC 60529, as declared by the manufacturer, the verification of the degree of protection shall be carried out according to IEC 60529.

IEC 60529 gives test conditions for each degree of protection. The conditions appropriate to the stated degree of protection should be applied, immediately followed by the dielectric strength test on the fuse holder as specified in 10.1.4.

Preferred degree of protection: Minimum IP 40.

D.4 Climatic category

D.4.1 General

The climatic category assigned to the fuse-holder by the manufacturer shall be in accordance with IEC 60068-1, as shown in Table D.1.

Table D.1 - Examples of climatic categories

Category	Temperature limits °C		Damp heat, steady state: number of days	Designation ^a of the test according to IEC 60068-2			
55/125/56	-55	+125	56	A (Cold, IEC 60068-2-1)			
40/85/56	-40	+85	56				
25/70/21	-25	+70	21	B (Dry heat, IEC 60068-2-2) C (Damp heat, steady state, IEC 60068-2-78)			
10/55/04	-10	+55	4	C (Damp fleat, Steady State, IEC 00000-2-70)			
a The follo	^a The following upper case letters of tests are designated by the introduction of IEC 60068-1:2013.						

D.4.2 Test conditions and requirements

The verification of the stated climatic category shall be carried out under the conditions in the relevant IEC 60068-1 and IEC 60068-2.

The fuse-holder shall be mounted as specified in 10.1.1.

Immediately after these tests the parts of insulating material, normally accessible when in use, shall be wrapped with metal foil as shown in Figure 4 and Figure 5. After this treatment the requirements shall be in accordance with:

- 10.1.3 Insulation resistance
- 10.1.4 Dielectric strength
- 11.3 Compatibility between fuse-holder and fuse-link. For this test the requirements in the second paragraph of 10.2.2.3 shall be replaced by the following: "The average of the values of the contact resistance shall not exceed 10 m Ω . The value of any individual measurement shall not exceed 15 m Ω ."

Annex E

(normative)

Information for the correct application of the fuse-holder

Manufacturers shall hold available the following minimum information which is necessary for the correct application of the fuse-holder.

Table E.1 – Information for the correct application of the fuse-holder

		Ratings, characteristics	According to clauses and subclauses
1	Rated voltage		3.5 /Table 2
2	Rated current		3.4 / Table 2
3	Rated power acceptance at ambient temperature $T_{\rm A1}$ of 23 $^{\circ}{\rm C}$		3.3 / Table 2 / 12.1
4	Maximum allowable ambient temperature:		3.18 /12.1.3 / 12.1.4
4.1	for accessible parts (T_{A1})		
4.2	for inaccessible parts (T_{A2})		
5	Protection against electric shock Category PC1 or PC2 or PC3		Table 2 / 8
6	Protection class I or II of electrical equipment for which the fuse-holder is suitable, regarding protection against electric shock according to IEC 61140		Table 2 / 8
7	Overvoltage category and degree of pollution		3.8 / 3.10 / Table 2
8	Comparative tracking index CTI of insulation materials		3.15 / Table 2

Bibliography

IEC 60050-151:2001, International Electrotechnical Vocabulary – Part 151: Electrical and magnetic devices

IEC 60050-212:2010, International Electrotechnical Vocabulary – Part 212: Electrical insulating solids, liquids and gases

IEC 60050-826:2022, International Electrotechnical Vocabulary (IEV) – Part 826: Electrical installations

IEC 60060-1:2010 High-voltage test techniques – Part 1: General definitions and test requirements

IEC 60060-3:2006, High-voltage test techniques – Part 3: Definitions and requirements for on-site testing

IEC 60068-2-1:2007, Environmental testing – Part 2-1: Tests – Test A: Cold

IEC 60068-2-2:2007, Environmental testing - Part 2-2: Tests - Test B: Dry heat

IEC 60068-2-78:2012, Environmental testing – Part 2-78: Tests – Test Cab: Damp heat, steady state

IEC 60112:2020, Method for the determination of the proof and the comparative tracking indices of solid insulating materials

IEC 60269-1, Low-voltage fuses – Part 1: General requirements

IEC 60364-4-44, Low-voltage electrical installations – Part 4-44: Protection for safety – Protection against voltage disturbances and electromagnetic disturbances

IEC 60695-2-11, Fire hazard testing – Part 2-11: Glowing/hot-wire based test methods – Glowwire flammability test method for end products (GWEPT)

IEC 61140, Protection against electric shock – Common aspects for installations and equipment

ISO $1302:2002^5$, Geometrical Product Specifications (GPS) – Indication of surface texture in technical product documentation

IEC TR 60260:1968⁶, Test enclosures of non-injection type for constant relative humidity

ISO 3:1973, Preferred numbers – Series of preferred numbers

⁵ This document has been revised by ISO 21920-1:2021.

⁶ This document has been withdrawn in 2000.

SOMMAIRE

А١	/ANT-P	ROPOS	62
IN	TRODU	ICTION	64
1	Doma	aine d'application	65
2	Réfé	rences normatives	65
3	Term	es et définitions	67
4	Exige	ences générales	71
5	Cara	ctéristiques assignées et classifications préférentielles pour les ensembles-	
		urs	72
6	Marq	uage	73
7	Géné	eralités sur les essais	73
	7.1	Nature des essais	73
	7.2	Conditions atmosphériques normalisées pour les mesurages et les essais	73
	7.3	Préconditionnement des échantillons d'essai	
	7.4	Nature de l'alimentation	
	7.5	Calibres d'essai	
	7.5.1		
_	7.5.2		
8		ection contre les chocs électriques	/ /
	8.1	Catégorie PC1: Ensembles-porteurs sans protection intégrée contre les chocs électriques	77
	8.2	Catégorie PC2: Ensembles-porteurs avec protection intégrée contre les	
	0	chocs électriques	77
	8.3	Catégorie PC3: Ensembles-porteurs avec protection intégrée renforcée	
_	5	contre les chocs électriques	
9		nces d'isolement et lignes de fuite	
	9.1	Généralités	78
	9.2	Exigences minimales pour les ensembles-porteurs en fonction du niveau d'isolation	78
	9.3	Distances d'isolement	_
	9.4	Lignes de fuite	
10	Exige	ences électriques	81
	10.1	Résistance d'isolement, rigidité diélectrique et tension de tenue aux chocs	81
	10.1.		
	10.1.	Préconditionnement en humidité	82
	10.1.	3 Mesurage de la résistance d'isolement	82
	10.1.	4 Essai de rigidité diélectrique	83
	10.1.	5 Essai de tension de tenue aux chocs	83
	10.2	Résistance de contact	
	10.2.		
	10.2.	,	
11	•	ences mécaniques	
	11.1	Généralités	
	11.2	Montage	
	11.3	Compatibilité de l'ensemble-porteur avec l'élément de remplacement	
	11.4	Résistance mécanique de la connexion du socle avec le porte-fusible	
	11.4.		
	11.4.	2 Connexion par fiche	88

	11.5	Essai au choc	89
	11.6	Résistance mécanique de la fixation de l'ensemble-porteur sur des panneaux	89
	11.6.	1 Fixation par écrou	89
	11.6.	2 Fixation à vis	89
	11.6.	3 Fixation par encliquetage	90
	11.7	Bornes des socles	91
	11.7.		
	11.7.		
		Résistance aux vibrations	
	11.8.		
	11.8.	3	
40	11.8.	5 5	
12		ences thermiques	
	12.1	Essai de la puissance admissible assignée	
	12.1.		
	12.1.	3	
	12.1.	•	97
	12.1.	4 Mesurage de la température maximale admissible sur les ensembles- porteurs	100
	12.1.	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	
		admissible de l'ensemble-porteur	104
	12.1.	Point de mesure de la température de l'air ambiant T_{A1}	104
	12.1.	7 Méthode d'essai	104
	12.2	Résistance à la chaleur anormale et au feu	105
	12.2.	Ŭ	
	12.2.	3	
13	Endu	rance	106
	13.1	Généralités	106
	13.2	Essai d'endurance	
	13.3	Exigences	
14	Exige	ences supplémentaires	107
	14.1	Protection contre la rouille	
	14.2	Résistance aux solvants de nettoyage	107
		(normative) Carte de circuit imprimé d'essai pour ensembles-porteurs ayant nts assignés inférieurs ou égaux à 25 A	108
Αn	nexe B	(normative) Essais de type, séquences d'essai et nombre d'échantillons	110
An	nexe C	(informative) Coordination de l'isolement	111
	C.1	Catégories de surtension	111
	C.2	Degrés de pollution dans le micro-environnement	
	C.3	Indice de résistance au cheminement IRC	
Αn	nexe D	(informative) Essais et exigences complémentaires	113
	D.1	Généralités	
	D.2	Résistance aux chocs	
	D.2.1		
	D.2.2	Montage	113
	D.2.3	Mesurages et exigences	113
	D 3	Vérification du degré de protection procuré par les hoîtiers	113

D.4 Catégorie climatique	114
D.4.1 Généralités	114
D.4.2 Exigences et conditions d'essai	114
Annexe E (normative) Renseignements concernant la bonne application de l'ensemble-porteur	115
Bibliographie	116
Figure 1 – Profil des calibres et des éléments de remplacement conventionnels d'essai conformes à l'IEC 60127-2	74
Figure 2 – Profil des calibres et des éléments de remplacement conventionnels d'essai conformes à la feuille de norme 1 de l'IEC 60127-3:2015	76
Figure 3 – Profil des calibres et des éléments de remplacement conventionnels d'essai conformes aux feuilles de norme 3 et 4 de l'IEC 60127-3:2015	76
Figure 4 – Montage sur panneau	82
Figure 5 – Montage sur carte de circuit imprimé	82
Figure 6 – Dispositif d'essai pour essai mécanique	87
Figure 7 – Exemples d'ensemble-porteur prévu pour une fixation par encliquetage sur panneaux	90
Figure 8 – Essai de force de traction	94
Figure 9 – Essai de force de compression	94
Figure 10 – Exemple de dispositif d'essai	96
Figure 11 – IEC 60127-3:2015, Feuille de norme 1	99
Figure 12 – IEC 60127-3:2015, Feuilles de norme 3 et 4	99
Figure 13 – Représentation des températures connues dans la pratique	
Figure 14 – Exemple d'une courbe de taux de réduction	105
Figure A.1 – Exemple d'une carte d'essai	108
Tableau 1 – Caractéristiques des ensembles-porteurs protégés ou non protégés	71
Tableau 2 – Valeurs pour les caractéristiques assignées et les classifications	
préférentielles	72
Tableau 3 – Dimensions et matériaux pour les calibres selon l'IEC 60127-2	
Tableau 4 – Dimensions et matériaux pour les calibres selon l'IEC 60127-3	77
Tableau 5 – Types d'isolation entre des parties actives différentes et des parties	70
accessibles	
Tableau 6 – Tensions de tenue aux chocs exigées pour les distances d'isolement	79
Tableau 7 – Distances minimales d'isolement dans l'air sous la catégorie de surtension II	80
Tableau 8 – Distances minimales d'isolement dans l'air sous la catégorie de surtension II	80
Tableau 9 – Lignes de fuite minimales en millimètres pour un micro-environnement dépendant de la tension assignée, du degré de pollution, du matériau isolant, conformément au Tableau F.5 de l'IEC 60664-1:2020	81
Tableau 10 – Valeurs pour la résistance d'isolement, la rigidité diélectrique et la tension de tenue aux chocs	85
Tableau 11 – Valeurs pour le couple et la force de traction axiale	88
Tableau 12 – Valeurs du couple	89
Tableau 13 – Valeurs du couple	90

Tableau 14 – Groupes de montage	91
Tableau 15 – Sections des conducteurs	92
Tableau 16 – Forces de traction et de compression	94
Tableau 17 – Dimensions et matériaux pour les éléments de remplacement conventionnels d'essai conformes à l'IEC 60127-2	97
Tableau 18 – Éléments de remplacement conventionnels d'essai conformes à l'IEC 60127-2	98
Tableau 19 – Dimensions et matériaux pour les éléments de remplacement conventionnels d'essai conformes à l'IEC 60127-3	99
Tableau 20 – Éléments de remplacement conventionnels d'essai conformes à l'IEC 60127-3	100
Tableau 21 – Températures maximales admissibles	103
Tableau A.1 – Couche de cuivre pour carte d'essai	108
Tableau B.1 – Essais de type, séquences d'essai et nombre d'échantillons	110
Tableau D.1 – Exemples de catégories climatiques	114
Tableau E.1 – Renseignements concernant la bonne application de l'ensemble-porteur	115

COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

COUPE-CIRCUIT MINIATURES -

Partie 6: Ensembles-porteurs pour cartouches de coupe-circuit miniatures

AVANT-PROPOS

- 1) La Commission Électrotechnique Internationale (IEC) est une organisation mondiale de normalisation composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de l'IEC). L'IEC a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l'électricité et de l'électronique. À cet effet, l'IEC entre autres activités publie des Normes internationales, des Spécifications techniques, des Rapports techniques, des Spécifications accessibles au public (PAS) et des Guides (ci-après dénommés "Publication(s) de l'IEC"). Leur élaboration est confiée à des comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec l'IEC, participent également aux travaux. L'IEC collabore étroitement avec l'Organisation Internationale de Normalisation (ISO), selon des conditions fixées par accord entre les deux organisations.
- 2) Les décisions ou accords officiels de l'IEC concernant les questions techniques représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de l'IEC intéressés sont représentés dans chaque comité d'études.
- 3) Les Publications de l'IEC se présentent sous la forme de recommandations internationales et sont agréées comme telles par les Comités nationaux de l'IEC. Tous les efforts raisonnables sont entrepris afin que l'IEC s'assure de l'exactitude du contenu technique de ses publications; l'IEC ne peut pas être tenue responsable de l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.
- 4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de l'IEC s'engagent, dans toute la mesure possible, à appliquer de façon transparente les Publications de l'IEC dans leurs publications nationales et régionales. Toutes divergences entre toutes Publications de l'IEC et toutes publications nationales ou régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.
- 5) L'IEC elle-même ne fournit aucune attestation de conformité. Des organismes de certification indépendants fournissent des services d'évaluation de conformité et, dans certains secteurs, accèdent aux marques de conformité de l'IEC. L'IEC n'est responsable d'aucun des services effectués par les organismes de certification indépendants.
- 6) Tous les utilisateurs doivent s'assurer qu'ils sont en possession de la dernière édition de cette publication.
- 7) Aucune responsabilité ne doit être imputée à l'IEC, à ses administrateurs, employés, auxiliaires ou mandataires, y compris ses experts particuliers et les membres de ses comités d'études et des Comités nationaux de l'IEC, pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice) et les dépenses découlant de la publication ou de l'utilisation de cette Publication de l'IEC ou de toute autre Publication de l'IEC, ou au crédit qui lui est accordé.
- 8) L'attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications référencées est obligatoire pour une application correcte de la présente publication.
- 9) L'attention est attirée sur le fait que certains des éléments du présent document de l'IEC peuvent faire l'objet de droits de brevets. L'IEC ne prend pas position quant à la preuve, à la validité et à la portée de ces droits de propriété. À la date de publication du présent document, l'IEC n'a reçu aucune déclaration relative à des droits de brevets, qui pourraient être exigés pour la mise en œuvre du présent document. Toutefois, il est rappelé aux responsables de cette mise en œuvre qu'il ne s'agit peut-être pas des informations les plus récentes, qui peuvent être obtenues dans la base de données disponible à l'adresse https://patents.iec.ch. L'IEC ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de brevets.

L'IEC 60127-6 a été établie par le sous-comité 32C: Coupe-circuits à fusibles miniatures, du comité d'études 32 de l'IEC: Coupe-circuits à fusibles. Il s'agit d'une Norme internationale.

Cette troisième édition annule et remplace la deuxième édition parue en 2014. Cette édition constitue une révision technique.

Cette édition inclut les modifications techniques majeures suivantes par rapport à l'édition précédente:

- a) amélioration du courant assigné maximal de 16 A à 25 A à l'Article 1;
- b) ajout de l'IEC 60127-4 et de l'IEC 60127-7 à l'Article 1;

- c) modification de la position de marquage à l'Article 6;
- d) modification de la tension assignée, du courant assigné et de la puissance admissible assignée dans le Tableau 2;
- e) modification du Tableau 5, du Tableau 6, du Tableau 7, du Tableau 9, du Tableau 16 et du Tableau A.1.

Le texte de cette Norme internationale est issu des documents suivants:

Projet	Rapport de vote
32C/620/FDIS	32C/623/RVD

Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant abouti à son approbation.

La langue employée pour l'élaboration de cette Norme internationale est l'anglais.

Ce document a été rédigé selon les directives ISO/IEC, Partie 2, il a été développé selon les directives ISO/IEC, Partie 1 et les directives ISO/IEC, Supplément IEC, disponibles sous www.iec.ch/members_experts/refdocs Les principaux types de documents développés par l'IEC sont décrits plus en détail sous www.iec.ch/standardsdev/publications.

Une liste de toutes les parties de la série IEC 60127, publiées sous le titre général *Coupe-circuit miniatures*, se trouve sur le site web de l'IEC.

Le comité a décidé que le contenu de ce document ne sera pas modifié avant la date de stabilité indiquée sur le site web de l'IEC sous webstore.iec.ch dans les données relatives au document recherché. À cette date, le document sera

- · reconduit,
- supprimé, ou
- révisé.

INTRODUCTION

Selon le vœu exprimé par les utilisateurs de coupe-circuit à fusibles miniatures, toutes les normes, toutes les recommandations et autres documents concernant ces coupe-circuits à fusibles miniatures ont le même numéro de publication afin de faciliter toute référence aux coupe-circuits à fusibles dans d'autres spécifications, par exemple les spécifications de matériels.

De plus, un seul numéro de publication et la subdivision en plusieurs parties facilitent l'établissement de nouvelles normes, car il n'est pas nécessaire de répéter les articles et paragraphes qui contiennent des exigences générales.

À ce jour, la série IEC 60127 est donc subdivisée comme suit:

IEC 60127-1, Coupe-circuits miniatures – Partie 1: Définitions pour coupe-circuits miniatures et exigences générales pour éléments de remplacement miniatures

IEC 60127-2, Coupe-circuit miniatures – Partie 2: Cartouches

IEC 60127-3, Coupe-circuit miniatures – Partie 3: Éléments de remplacement subminiatures

IEC 60127-4, Coupe-circuit miniatures – Partie 4: Éléments de remplacement modulaires universels (UMF) – Types de montage en surface et montage par trous

IEC 60127-5, Coupe-circuit miniatures – Partie 5: Lignes directrices pour l'évaluation de la qualité des éléments de remplacement miniatures

IEC 60127-6, Coupe-circuit miniatures – Partie 6: Ensembles-porteurs pour cartouches de coupe-circuit miniatures

IEC 60127-7, Coupe-circuit miniatures – Partie 7: Éléments de remplacement miniatures pour applications spéciales

IEC 60127-8, Coupe-circuit miniatures – Partie 8: Résistances de protection avec protection particulière contre les surintensités

IEC 60127-10, Coupe-circuit miniatures – Partie 10: Guide d'utilisation pour coupe-circuit miniatures

La présente partie de l'IEC 60127 concerne les exigences, les matériels d'essai et les méthodes d'essai applicables aux ensembles-porteurs. Il s'agit d'un document indépendant qui se réfère à l'IEC 60127-1 concernant certaines définitions et les conditions d'essai atmosphériques. Ce document se réfère aussi à d'autres parties de la série IEC 60127 concernant les dimensions et les pertes maximales de puissance des éléments de remplacement.

COUPE-CIRCUIT MINIATURES -

Partie 6: Ensembles-porteurs pour cartouches de coupe-circuit miniatures

1 Domaine d'application

La présente partie de l'IEC 60127 s'applique aux ensembles-porteurs pour éléments de remplacement à cartouches conformes à l'IEC 60127-2, aux éléments de remplacement subminiatures conformes à l'IEC 60127-3, aux éléments de remplacement modulaires universels conformes à l'IEC 60127-4 et aux éléments de remplacement miniatures pour applications spéciales conformes à l'IEC 60127-7 pour la protection d'appareils électriques, de matériels électroniques et de leurs éléments constituants, normalement destinés à être utilisés à l'intérieur de bâtiments.

NOTE Les exigences relatives aux ensembles-porteurs pour éléments de remplacement miniatures conformes à l'IEC 60127-4 et à IEC 60127-7 sont à l'étude.

La présente partie de l'IEC 60269-1 ne s'applique pas aux ensembles-porteurs pour coupecircuit à fusibles, traités par les parties suivantes de l'IEC 60269-1.

Le présent document s'applique aux ensembles-porteurs:

- de courant assigné maximal de 25 A; et
- de tension assignée maximale de 1 500 V en courant continu ou 1 000 V en courant alternatif; et
- pour une utilisation jusqu'à 2 000 m au-dessus du niveau de la mer, sauf spécification contraire.

Le présent document a pour objet d'établir des exigences uniformes relatives à la sécurité et à l'évaluation des propriétés électriques, mécaniques, thermiques et climatiques des ensembles-porteurs et à la compatibilité entre les ensembles-porteurs et les éléments de remplacement.

2 Références normatives

Les documents suivants sont cités dans le texte de sorte qu'ils constituent, pour tout ou partie de leur contenu, des exigences du présent document. Pour les références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du document de référence s'applique (y compris les éventuels amendements).

IEC 60050-441, Vocabulaire Électrotechnique International (IEV) – Partie 441: Appareillage et fusibles

IEC 60050-581, Vocabulaire Électrotechnique International (IEV) – Partie 581: Composants électromécaniques pour équipements électroniques

IEC 60068-1:2013, Essais d'environnement – Partie 1: Généralités et lignes directrices

IEC 60068-2-6:2007, Essais d'environnement – Partie 2-6: Essais – Essai Fc: Vibrations (sinusoïdales)

IEC 60068-2-20:2021, Essais d'environnement – Partie 2-20: Essais – Essais Ta et Tb: Méthodes d'essai de la brasabilité et de la résistance à la chaleur de brasage des dispositifs à broches

IEC 60068-2-21, Essais d'environnement – Partie 2-21: Essais – Essai U: Robustesse des sorties et des dispositifs de montage incorporés

IEC 60068-2-27:2008, Essais d'environnement – Partie 2-27: Essais – Essai Ea et guide: Chocs

IEC 60068-2-45, Essais fondamentaux climatiques et de robustesse mécanique – Partie 2-45: Essais – Essai XA et guide: Immersion dans les solvants de nettoyage

IEC 60068-2-47, Essais d'environnement – Partie 2-47: Essais – Fixation de spécimens pour essais de vibrations, d'impacts et autres essais dynamiques

IEC 60068-2-75, Essais d'environnement – Partie 2-75: Essais – Test Eh: Essais au marteau

IEC 60127-1¹:2006, Miniature fuses – Part 1: Definitions for miniature fuses and general requirements for miniature fuse-links (disponible en anglais seulement)

IEC 60127-1:2006/AMD1:2011

IEC 60127-1:2006/AMD2:2015

IEC 60127-2, Coupe-circuit miniatures – Partie 2: Cartouches

IEC 60127-3:2015, Coupe-circuit miniatures – Partie 3: Éléments de remplacement subminiatures

IEC 60216-1, Matériaux isolants électriques – Propriétés d'endurance thermique – Partie 1: Méthodes de vieillissement et évaluation des résultats d'essai

IEC 60529:1989, Degrés de protection procurés par les enveloppes (Code IP)

IEC 60664-1:2020, Coordination de l'isolement des matériels dans les réseaux d'énergie électrique à basse tension – Partie 1: Principes, exigences et essais

IEC 60695-4:2012, Essais relatifs aux risques du feu – Partie 4: Terminologie relative aux essais au feu pour les produits électrotechniques

IEC 60695-2-12:2021, Essais relatifs aux risques du feu — Partie 2-12: Essais au fil incandescent/chauffant — Méthode d'essai d'indice d'inflammabilité au fil incandescent (GWFI) pour matériaux

IEC 60695-2-13:2021, Essais relatifs aux risques du feu — Partie 2-13: Essais au fil incandescent/chauffant — Méthode d'essai de température d'allumage au fil incandescent (GWIT) pour matériaux

IEC 60695-11-5:2016, Essais relatifs aux risques du feu — Partie 11-5: Flammes d'essai — Méthode d'essai au brûleur-aiguille — Appareillage, dispositif d'essai de vérification et lignes directrices

IEC 60999-1, Dispositifs de connexion – Conducteurs électriques en cuivre – Prescriptions de sécurité pour organes de serrage à vis et sans vis – Partie 1: Prescriptions générales et particulières pour les organes de serrage pour les conducteurs de 0,2 mm2 à 35 mm2 (inclus)

IEC 61210, Dispositifs de connexion – Bornes plates à connexion rapide pour conducteurs électriques en cuivre – Exigences de sécurité

Il existe une version consolidée de cette publication comprenant l'IEC 60127-1:2006, l'IEC 60127-1:2006/AMD 1:2011 et l'IEC 60127-1:2006/AMD 2:2015.

3 Termes et définitions

Pour les besoins du présent document, les termes et les définitions de l'IEC 60050-441, de l'IEC 60050-581 et de l'IEC 60127-1 ainsi que les suivants s'appliquent.

L'ISO et l'IEC tiennent à jour des bases de données terminologiques destinées à être utilisées en normalisation, consultables aux adresses suivantes:

- IEC Electropedia: disponible à l'adresse http://www.electropedia.org/
- ISO Online browsing platform: disponible à l'adresse http://www.iso.org/obp

3.1

ensemble-porteur

combinaison d'un socle et de son porte-fusible

Note 1 à l'article: Dans quelques conceptions d'ensemble-porteur dans lesquelles le socle et le porte-fusible ne sont pas séparés, l'ensemble-porteur peut être composé du socle seulement, sans porte-fusible.

3.1.1

socle

partie fixe d'un coupe-circuit équipée de contacts et de bornes pour le raccordement au circuit

[SOURCE: IEC 60127-1:2006, 3.10]

3.1.2

porte-fusible

partie mobile d'un coupe-circuit destinée à recevoir un élément de remplacement

[SOURCE: IEC 60127-1:2006, 3.12]

3.1.3

ensemble-porteur protégé

ensemble-porteur avec des contacts inaccessibles

3.1.4

ensemble-porteur non protégé

ensemble-porteur avec des contacts accessibles

EXEMPLE Clips.

3.2

caractéristique assignée

chacune des valeurs caractéristiques qui définissent ensemble les conditions de fonctionnement d'après lesquelles les essais sont déterminés et pour lesquelles l'ensemble-porteur a été conçu

EXEMPLE Exemples de valeurs assignées généralement indiquées pour des ensembles-porteurs:

- tension (U_N);
- courant (I_N);
- puissance admissible.

3.3

puissance admissible assignée

valeur de puissance admissible d'un ensemble-porteur assignée par le fabricant

Note 1 à l'article: Cette valeur est la puissance dissipée maximale produite par l'élément de remplacement conventionnel d'essai inséré, que l'ensemble-porteur peut admettre sans dépasser les températures spécifiées pendant l'essai au courant assigné.

Note 2 à l'article: La puissance admissible assignée se réfère à une température ambiante de 23 °C.

3.4

courant assigné

valeur du courant d'un ensemble-porteur, fixée par le fabricant, à laquelle référence est faite pour la puissance admissible assignée

3.5

tension assignée

valeur de la tension d'un ensemble-porteur, assignée par le fabricant, à laquelle renvoient le fonctionnement et les caractéristiques fonctionnelles

3.6

coordination de l'isolement

correspondance mutuelle des caractéristiques d'isolement du matériel électrique en tenant compte du micro-environnement prévu et des autres contraintes ayant une influence

[SOURCE: IEC 60664-1:2020, 3.1.3, modifié – La Note 1 à l'article a été supprimée.]

3.7

tension de tenue aux chocs

valeur de crête la plus élevée d'une tension de choc, de forme et de polarité spécifiées, qui ne provoque pas de claquage dans des conditions d'essai spécifiées

[SOURCE: IEC 60664-1:2020, 3.1.15]

3.8

catégorie de surtension

chiffre définissant une condition de surtension transitoire

Note 1 à l'article: Catégories spécifiées, voir l'Article C.1.

[SOURCE: IEC 60664-1:2020, 3.1.20, modifié – La Note 1 à l'article "Les catégories de surtension I, II, III et IV sont utilisées, voir 4.3.2" a été entièrement reformulée.]

3.9

pollution

<d'un système électrique> toute condition de matériau étranger solide, liquide ou gazeux (gaz ionisés) qui peut affecter la rigidité diélectrique ou la résistivité de surface

[SOURCE: IEC 60664-1:2020, 3.1.24]

3.10

degré de pollution

chiffre caractérisant la pollution prévue du micro-environnement

Note 1 à l'article: Voir l'Article C.2.

[SOURCE: IEC 60664-1:2020, 3.1.25, modifié – La Note 1 à l'article a été ajoutée].

3.11

micro-environnement

<d'un système électrique> conditions ambiantes qui influencent immédiatement le dimensionnement de la distance d'isolement et des lignes de fuite

[SOURCE: IEC 60664-1:2020, 3.1.23]

3 12

distance d'isolement

plus petite distance dans l'air entre deux parties conductrices

[SOURCE: IEC 60664-1:2020, 3.1.4]

3.13

ligne de fuite

distance la plus courte, le long de la surface d'un isolant solide, entre deux parties conductrices

[SOURCE: IEC 60050-151:2001, 151-15-50]

3.14

isolation solide

matériau isolant solide, ou combinaison de matériaux isolants solides, placé entre deux parties conductrices ou entre une partie conductrice et une partie du corps

[SOURCE: IEC 60664-1:2020, 3.1.6]

3.15

indice de résistance au cheminement

IRC

valeur numérique de la tension maximale, exprimée en volts, qu'un matériau peut supporter sans cheminement et sans apparition de flammes persistantes dans des conditions d'essai spécifiées

Note 1 à l'article: L'essai pour déterminer l'indice de résistance au cheminement conformément à l'IEC 60112 est conçu de façon à comparer le comportement de divers matériaux isolants placés dans des conditions d'essai. Il consiste à faire tomber des gouttes d'un liquide aqueux contaminant sur une surface horizontale pour donner des groupes de matériaux de conduction électrolytique et leurs valeurs IRC, voir l'Article C.3.

[SOURCE: IEC 60050-212:2010, 212-11-59, modifié – La Note 1 à l'article a été ajoutée]

3.16

partie active

conducteur ou partie conductrice destiné à être sous tension dans des conditions de fonctionnement normal, y compris le conducteur neutre, mais par convention, excepté le conducteur PEN, le conducteur PEM ou le conducteur PEL

Note 1 à l'article: Cette notion n'implique pas nécessairement l'existence d'un risque de choc électrique.

[SOURCE: IEC 60050-826:2022, 826-12-08, modifié – la partie "<installations et matériels électriques>" a été supprimée, la définition a été reformulée et la note à l'article a été ajoutée.]

3.17

catégories de protection de l'ensemble-porteur contre les chocs électriques

désignation qui caractérise le degré de protection de l'ensemble-porteur contre les chocs électriques

3.18

température maximale admissible de l'air ambiant

température de l'air la plus élevée, à proximité immédiate, que l'ensemble-porteur peut supporter à une puissance admissible assignée par le fabricant de l'ensemble-porteur sans que les températures maximales admissibles sur les surfaces accessibles et inaccessibles soient dépassées

3.19

indice relatif de température

fondé sur l'IEC 60216-1, indice de température d'un matériau d'essai obtenu à partir du temps qui correspond à l'indice connu de température d'un matériau de référence lorsque les deux matériaux sont soumis aux mêmes méthodes de vieillissement et de diagnostic dans des essais comparables

3.20

isolant

partie d'un produit électrotechnique qui sépare les pièces conductrices portées à des potentiels différents au cours du fonctionnement ou isole ces pièces de l'environnement

Note 1 à l'article: Pour plus de précisions, voir l'IEC 61140 et l'IEC 60664-1.

[SOURCE: IEC 60050-212:2010, 212-11-07, modifié – Le terme "isolant électrique" a été remplacé par "isolant".]

3.20.1

isolation fonctionnelle

isolation entre parties conductrices qui est uniquement nécessaire pour le bon fonctionnement du matériel

[SOURCE: IEC 60664-1:2020, 3.1.29]

3.20.2

isolation principale

isolation des parties actives dangereuses qui assure la protection principale

Note 1 à l'article: Cette notion n'est pas applicable à l'isolation exclusivement utilisée à des fins fonctionnelles.

[SOURCE: IEC 60050-826:2022, 826-12-14, modifié – Dans la définition, le terme "isolation" a été remplacé par "isolation des parties actives dangereuses".]

3.20.3

isolation supplémentaire

isolation indépendante prévue, en plus de l'isolation principale, en tant que protection en cas de défaut

[SOURCE: IEC 60050-826:2022, 826-12-15]

3.20.4

double isolation

isolation comprenant à la fois une isolation principale et une isolation supplémentaire

[SOURCE: IEC 60050-826:2022, 826-12-16]

3.20.5

isolation renforcée

isolation des parties actives dangereuses assurant un degré de protection contre les chocs électriques équivalant à celui d'une double isolation

Note 1 à l'article: L'isolation renforcée peut comporter plusieurs couches qui ne peuvent pas être soumises aux essais séparément en tant qu'isolation principale ou isolation supplémentaire.

[SOURCE: IEC 60050-826:2022, 826-12-17, modifié – Dans la définition, le terme "isolation" a été remplacé par "isolation des parties actives dangereuses".]

3.21

partie inaccessible surface inaccessible

partie ou surface à l'intérieur du matériel, avec laquelle le doigt d'épreuve normalisé conforme à l'IEC 60529 ne peut entrer en contact

3.22

partie accessible surface accessible

toute partie ou surface qui peut être touchée avec le doigt d'épreuve normalisé conforme à l'IEC 60529, lorsque l'ensemble-porteur est installé et actionné comme en usage normal, par exemple sur le panneau avant d'un matériel

3.23

calibre

élément de remplacement pour les essais, sans élément de fusion

4 Exigences générales

Les ensembles-porteurs doivent être conçus et construits de façon que la performance soit sûre et sans danger pour l'utilisateur ou l'entourage lorsqu'ils sont utilisés normalement et installés selon les instructions données par le fabricant.

En règle générale, la vérification est effectuée en réalisant la totalité des essais appropriés spécifiés.

Les exigences et essais supplémentaires peuvent être ajoutés conformément à la déclaration du fabricant, comme cela est présenté à l'Annex D.

Des exemples de types d'ensembles-porteurs dont les caractéristiques sont différentes sont indiqués dans le Tableau 1.

Tableau 1 – Caractéristiques des ensembles-porteurs protégés ou non protégés

N°	Description
1	Types de montage
	- Montage sur panneau et plaque de base
	 Montage sur carte de circuit imprimé
2	Méthodes de fixation:
	- Méthodes de fixation sur panneau:
	Fixation par écrou (écrou taraudé)
	Fixation par encliquetage:
	a) Socle à système à ressort intégré
	 Socle à écrou ressort séparé (écrou réalisé, par exemple, en acier à ressort fin avec un logement conçu pour recevoir la pièce qui s'emboîte).
	- Méthodes de fixation sur carte de circuit imprimé (PC - printed circuit):
	Fixation par brasage
	Fixation à fiches
3	Méthodes d'insertion du porte-fusible dans le socle:
	– Insertion à vis
	- Insertion à baïonnette
	- Insertion à fiches

N°	Description
4	Types de bornes:
	– Bornes à vis
	- Bornes à braser
	- Bornes pour connexion rapide
	- Autres bornes sans brasure:
	bornes à sertissage
	bornes pour connexion enroulée
5	Protection contre les chocs électriques
	 Ensemble-porteur sans protection intégrée contre les chocs électriques
	 Ensemble-porteur avec protection intégrée contre les chocs électriques
	– Ensemble-porteur avec protection intégrée renforcée contre les chocs électriques
	Cette liste n'est pas exhaustive et les ensembles-porteurs qui n'y sont pas énoncés ne sont pas irement exclus du présent domaine d'application.

5 Caractéristiques assignées et classifications préférentielles pour les ensembles-porteurs

Le Tableau 2 présente les valeurs pour les caractéristiques assignées et les classifications préférentielles.

Tableau 2 – Valeurs pour les caractéristiques assignées et les classifications préférentielles

Caractéristiques assignées et classifications	Pour éléments de remp	olacement conformes à	
pour les ensembles-porteurs	I'IEC 60127-2	l'IEC 60127-3	
Tension assignée	250 V et 500 V	125 V et 250 V	
Courant assigné	6,3 A / 10 A / 12,5 A / 16 A / 20 A / 25 A	6,3 A / 10 A	
Puissance admissible assignée à une température ambiante $T_{\rm A1}$ de 23 °C	1,6 W / 2,5 W / 3,2 W / 4 W /5 W / 6 W / 8 W	1,6 W / 2,0 W	
Catégories de protection de l'ensemble-porteur contre les chocs électriques	Catégorie PC1 Catégorie PC2 Catégorie PC3		
Protection contre les chocs électriques relative aux matériels, conformément à l'IEC 61140	Classe I ou II		
Coordination de l'isolement conformément à l'IEC 60664-1:			
a) Catégorie de surtension	II ou III		
b) Degré de pollution	2 ou 3		
c) Indice de résistance au cheminement IRC	IRC ≥ 150		

En référence aux caractéristiques assignées (tension, courant, puissance admissible), si d'autres valeurs sont exigées, il convient de les choisir dans la série R10 selon l'ISO 3. Pour les classifications (coordination de l'isolement conformément à l'IEC 60664-1, voir le Tableau 2) d'autres valeurs peuvent être spécifiées.

Le fabricant donne toutes les informations sur les caractéristiques assignées et les classifications, conformément à l'Annex E.

6 Marquage

- **6.1** Les ensembles-porteurs doivent porter un marquage avec les indications suivantes:
- le nom du fabricant ou la marque de fabrique;
- la référence catalogue ou la référence de type.

Le fabricant doit fournir les marquages ci-dessous sur la plus petite des étiquettes de l'emballage. Il peut également apposer ces marquages sur l'ensemble-porteur.

- la tension assignée en volts;
- la puissance admissible en watts;
- le courant assigné en ampères.

Dans le cas des ensembles-porteurs montés sur panneau, ces marquages ne doivent pas être placés sur la face frontale de l'ensemble-porteur. Cette exigence est destinée à éviter l'installation d'un élément de remplacement de rechange dont la caractéristique assignée est incorrecte.

Exemples de Marquage: 250 V 4 W/6,3 A ou 250 V 4 W 6,3 A.

Le marquage doit être indélébile et facilement lisible.

6.2 La vérification est effectuée par inspection et en frottant le marquage à la main pendant 15 s avec un morceau de tissu imbibé d'eau, puis à nouveau 15 s avec un morceau de tissu imbibé d'essence de pétrole.

Pour l'essence de pétrole, l'utilisation d'un solvant aliphatique hexane avec une teneur maximale en aromatiques d'au moins 0,1 %, un indice de kauributanol de 29, une température d'ébullition initiale d'environ 65 °C, un point sec d'environ 69 °C et une gravité spécifique d'environ 0.68.

NOTE Dans le cas où un code couleur est utilisé, il n'est pas nécessaire d'appliquer l'essai destiné à vérifier le marquage indélébile.

7 Généralités sur les essais

7.1 Nature des essais

Les essais mentionnés dans la présente norme sont des essais de type.

Les séquences d'essai et le nombre d'échantillons à soumettre à l'essai sont indiqués dans l'Annex B.

7.2 Conditions atmosphériques normalisées pour les mesurages et les essais

Sauf spécification contraire, tous les essais doivent être effectués dans les conditions atmosphériques selon 7.1 de l'IEC 60127-1:2006.

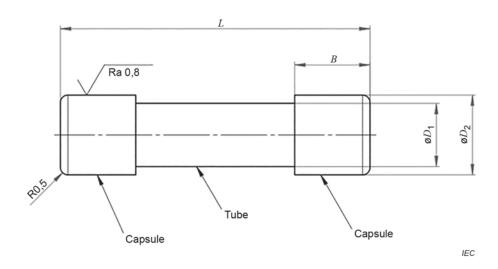
7.3 Préconditionnement des échantillons d'essai

Sauf spécification contraire, les échantillons d'essai doivent être maintenus 4 h au moins dans les conditions atmosphériques normalisées, avant que les mesurages ne soient effectués.

7.4 Nature de l'alimentation

Dans le cas d'essais en courant alternatif, la tension d'essai doit être de forme pratiquement sinusoïdale avec une fréquence comprise entre 45 Hz et 62 Hz.

7.5 Calibres d'essai


7.5.1 Calibres conformes à l'IEC 60127-2

Pour les essais qui nécessitent un calibre (Figure 1), les calibres appropriés mentionnés dans le Tableau 3 doivent être utilisés. Les calibres, ou leurs parties, en laiton doivent être recouverts d'un premier dépôt de nickel de 8 µm et d'un dépôt final d'or de 4,5 µm.

Il ne doit pas y avoir de trou dans les extrémités des calibres.

Les calibres doivent avoir une composition homogène, à l'exception des calibres numéros 3 et 6.

Dimensions en millimètres

NOTE Le symbole qui précise la rugosité, N6, est conforme à l'ISO 1302².

Figure 1 – Profil des calibres et des éléments de remplacement conventionnels d'essai conformes à l'IEC 60127-2

Le Tableau 3 présente les dimensions et les matériaux pour les calibres selon l'IEC 60127-2.

 $^{^{2}~{\}rm Le}$ présent document a été révisé par l'ISO 21920-1:2021.

Tableau 3 – Dimensions et matériaux pour les calibres selon l'IEC 60127-2

Type de cartouche		de cartouche								
Calibre N°	Taille	L	<i>D</i> 1	D2	В	Poids approximatif	Capsule	Tube		
		mm	mm	mm	mm	g				
1	maximale	$20,54 \stackrel{0}{_{-0,04}}$	5,3 ^{+0,01} ₀	4,2 ± 0,1	5 ^{+0,1} ₀	-	Aci	er ^a		
2	Minimale	19,46 +0,04	5,0 0 -0,01	4,2 ± 0,1	5 +0,1	2,5	Lait	on ^b		
3	-	20,54 0 0 0	5,3 +0,01	4,2	6,2 +0,1	-	Capsules de laiton	Tube de verre ou céramiqu e		
4	maximale	32,64 $^0_{-0,04}$	6,45 $^{+0,01}_{0}$	5,5 ± 0,1	6 +0,1	-	Aci	er ^a		
5	minimale	30,96 $^{+0,04}_{0}$	$6,25 \begin{array}{c} 0 \\ -0,01 \end{array}$	5,5 ± 0,1	6 +0,1	6	Lait	on ^b		
6	-	32,64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6,45 $^{+0,01}_{0}$	5,5	8,3 $^{+0,1}_{0}$	-	Capsules de laiton	Tube de verre ou céramiqu e		
	Calibre N° 1 2 3 4 5	Calibre N° Taille 1 maximale 2 Minimale 3 - 4 maximale 5 minimale	Calibre N° Taille L 1 maximale $20.54 \frac{0}{-0.04}$ 2 Minimale $19.46 \frac{+0.04}{0}$ 3 - $20.54 \frac{0}{-0.04}$ 4 maximale $32.64 \frac{0}{-0.04}$ 5 minimale $30.96 \frac{+0.04}{0}$	Calibre N° L D1 mm mm 1 maximale $20.54 \frac{0}{-0.04}$ $5.3 \frac{+0.01}{0}$ 2 Minimale $19.46 \frac{+0.04}{0}$ $5.0 \frac{0}{-0.01}$ 3 - $20.54 \frac{0}{-0.04}$ $5.3 \frac{+0.01}{0}$ 4 maximale $32.64 \frac{0}{-0.04}$ $6.45 \frac{+0.01}{0}$ 5 minimale $30.96 \frac{+0.04}{0}$ $6.25 \frac{0}{-0.01}$	Calibre N° Taille L D1 D2 mm mm mm mm 1 maximale $20.54 \frac{0}{-0.04}$ $5.3 \frac{+0.01}{0}$ 4.2 ± 0.1 2 Minimale $19.46 \frac{+0.04}{0}$ $5.0 \frac{0}{-0.01}$ 4.2 ± 0.1 3 - $20.54 \frac{0}{-0.04}$ $5.3 \frac{+0.01}{0}$ 4.2 4 maximale $32.64 \frac{0}{-0.04}$ $6.45 \frac{+0.01}{0}$ 5.5 ± 0.1 5 minimale $30.96 \frac{+0.04}{0}$ $6.25 \frac{0}{-0.01}$ 5.5 ± 0.1	Calibre N° Taille L D1 D2 B 1 maximale $20.54^{\circ}_{-0.04}$ $5.3^{+0.01}_{-0.04}$ 4.2 ± 0.1 $5^{+0.1}_{-0.04}$ 2 Minimale $19.46^{+0.04}_{-0.04}$ $5.0^{\circ}_{-0.01}$ 4.2 ± 0.1 $5^{+0.1}_{-0.01}$ 3 - $20.54^{\circ}_{-0.04}$ $5.3^{+0.01}_{-0.04}$ 4.2 ± 0.1 $6.2^{+0.1}_{-0.01}$ 4 maximale $32.64^{\circ}_{-0.04}$ $6.45^{\circ}_{-0.01}$ 5.5 ± 0.1 $6^{\circ}_{-0.01}$ 5 minimale $30.96^{\circ}_{-0.04}$ $6.25^{\circ}_{-0.01}$ 5.5 ± 0.1 $6^{\circ}_{-0.1}$	Calibre N° Taille L D1 D2 B Poids approximatif 1 maximale $20.54^{\circ}_{-0.04}$ $5.3^{+0.01}_{-0.04}$ 4.2 ± 0.1 $5^{+0.1}_{-0.01}$ $-$ 2 Minimale $19.46^{+0.04}_{-0.04}$ $5.0^{\circ}_{-0.01}$ 4.2 ± 0.1 $5^{+0.1}_{-0.01}$ 2.5 3 $ 20.54^{\circ}_{-0.04}$ $5.3^{+0.01}_{-0.04}$ 4.2 $6.2^{+0.1}_{-0.01}$ $-$ 4 maximale $32.64^{\circ}_{-0.04}$ $6.45^{\circ}_{-0.01}$ 5.5 ± 0.1 $6^{\circ}_{-0.01}$ $-$ 5 minimale $30.96^{\circ}_{-0.04}$ $6.25^{\circ}_{-0.01}$ 5.5 ± 0.1 $6^{\circ}_{-0.01}$ $6^{\circ}_{-0.01}$	Calibre N° Taille L D1 D2 B Poids approximatif approximatif Capsule 1 maximale $20.54^{\circ}_{-0.04}$ $5.3^{\circ}_{-0.01}$ 4.2 ± 0.1 $5^{\circ}_{-0.01}$ $-$ Aci 2 Minimale $19.46^{\circ}_{-0.04}$ $5.0^{\circ}_{-0.01}$ 4.2 ± 0.1 $5^{\circ}_{-0.1}$ 2.5 Lait 3 $ 20.54^{\circ}_{-0.04}$ $5.3^{\circ}_{-0.01}$ 4.2 $6.2^{\circ}_{-0.01}$ $-$ Capsules de laiton b 4 maximale $32.64^{\circ}_{-0.04}$ $6.45^{\circ}_{-0.01}$ 5.5 ± 0.1 $6^{\circ}_{-0.1}$ $-$ Aci 5 minimale $30.96^{\circ}_{-0.04}$ $6.25^{\circ}_{-0.01}$ 5.5 ± 0.1 $6^{\circ}_{-0.1}$ $-$ Capsules de laiton b 6 $ 32.64^{\circ}_{-0.04}$ $6.45^{\circ}_{-0.01}$ 5.5 $8.3^{\circ}_{-0.01}$ $-$ Capsules de laiton b		

b Teneur en cuivre de 58 % à 70 %.

7.5.2 Calibres conformes à l'IEC 60127-3

Pour les essais qui nécessitent un calibre (Figure 2 et Figure 3), les calibres appropriés mentionnés dans le Tableau 4 doivent être utilisés.

Les calibres, ou leurs parties, en laiton doivent être recouverts d'un premier dépôt de nickel de $8~\mu m$ et d'un dépôt final d'or de $4,5~\mu m$.

Les calibres doivent avoir une composition homogène, à l'exception des calibres numéros 3 et 6

Dimensions en millimètres

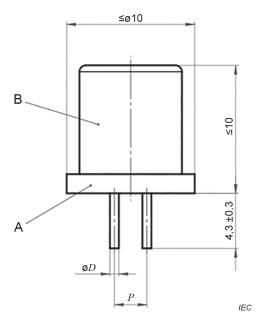


Figure 2 – Profil des calibres et des éléments de remplacement conventionnels d'essai conformes à la feuille de norme 1 de l'IEC 60127-3:2015

Dimensions en millimètres

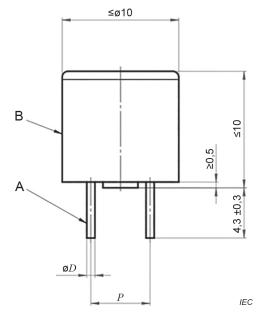


Figure 3 – Profil des calibres et des éléments de remplacement conventionnels d'essai conformes aux feuilles de norme 3 et 4 de l'IEC 60127-3:2015

Type de D P Matériaux des pièces Élément de Calibre remplacement Taille mm mm Α В subminiature Feuille de norme 1 $0,70 \begin{array}{c} 0 \\ -0,02 \end{array}$ 1 maximale Aciera $2,54 ^{\,+0,17}_{\,\,-0,09}$ $0,55 \begin{array}{c} 0 \\ -0,02 \end{array}$ 2 Laitonb minimale $0,70 \begin{array}{c} 0 \\ -0,02 \end{array}$ Matériau 3 Laitonb isolant Feuilles de $0,63_{\ -0,02}$ maximale 4 Acier^a norme 3 et 4 5 minimale $0,56 \stackrel{\circ}{_{-0,02}}$ 5 08+0 1 Laitonb Matériau $0,60_{-0,02}^{\circ}$ 6 Laiton isolant а Dur.

Tableau 4 – Dimensions et matériaux pour les calibres selon l'IEC 60127-3

8 Protection contre les chocs électriques

8.1 Catégorie PC1: Ensembles-porteurs sans protection intégrée contre les chocs électriques

Les ensembles-porteurs de la catégorie PC1 sont appropriés uniquement à des applications dans lesquelles des moyens correspondants complémentaires sont prévus pour assurer la protection contre les chocs électriques.

8.2 Catégorie PC2: Ensembles-porteurs avec protection intégrée contre les chocs électriques

- **8.2.1** L'ensemble-porteur doit être conçu de façon que:
- les parties actives ne soient pas accessibles lorsque l'ensemble-porteur est fixé et installé correctement sur le panneau avant d'un matériel avec un porte-fusible et un calibre numéro 3 ou numéro 6 selon le Tableau 3 ou le Tableau 4 introduits dans le socle;
- les parties actives ne deviennent accessibles ni pendant l'introduction ou l'extraction du porte-fusible à la main ou à l'aide d'un outil ni après son extraction.
- **8.2.2** La vérification est effectuée en utilisant le doigt d'épreuve normalisé spécifié dans l'IEC 60529. Ce doigt d'épreuve est appliqué sans force appréciable dans toutes les positions possibles. Si l'ensemble-porteur a un porte-fusible, le calibre numéro 3 ou numéro 6 selon le Tableau 3 ou le Tableau 4 doit être placé dans le porte-fusible au cours de l'essai. En ce qui concerne l'indication du contact avec la partie appropriée, il est recommandé d'utiliser un indicateur électrique avec une tension d'environ 40 V.

8.3 Catégorie PC3: Ensembles-porteurs avec protection intégrée renforcée contre les chocs électriques

Les exigences relatives à cette catégorie sont identiques à celles relatives à 8.2 (Catégorie PC2), mais l'essai est effectué à l'aide d'un fil rigide d'essai de 1 mm de diamètre conforme au Tableau VI de l'IEC 60529:1989, à la place du doigt d'épreuve normalisé.

b Teneur en cuivre de 58 % à 70 %.

9 Distances d'isolement et lignes de fuite

9.1 Généralités

Les distances d'isolement et les lignes de fuite doivent être vérifiées lorsque l'ensemble-porteur est assemblé correctement, installé comme en utilisation normale et équipé d'un calibre numéro 3 ou numéro 6 selon le Tableau 3 ou le Tableau 4.

La vérification est effectuée par mesurage.

9.2 Exigences minimales pour les ensembles-porteurs en fonction du niveau d'isolation

9.2.1 Le Tableau 5 présente des types d'isolation entre des parties actives différentes et des parties accessibles.

Tableau 5 – Types d'isolation entre des parties actives différentes et des parties accessibles

Type d'isolation	Fanatiannalla	Dringingle	Supplémentaire	Donforcás	Double
Isolation entre:	Fonctionnelle	Principale	Supplémentaire	Renforcée	Double
a) Parties actives de potentiel différent	×				
b) Parties actives et plaque métallique de fixation ou toute autre partie métallique qui peut entrer en contact avec la plaque de fixation, par exemple des dispositifs de fixation des socles.					
Épaisseur de la plaque de fixation conforme à 10.1.1					
 ensembles-porteurs conformes à 9.2.2 		Х	(X) ^a		
 ensembles-porteurs conformes à 9.2.3 				Х	Х
c) Parties actives et toutes les parties avec lesquelles le doigt d'épreuve peut entrer en contact (parties accessibles)					
 ensembles-porteurs conformes à 9.2.2 		x	(X) ^a		
 ensembles-porteurs conformes à 9.2.3 				×	Х

L'isolation supplémentaire ne s'applique qu'en plus de l'isolation principale, alors que l'isolation principale peut être appliquée sans l'isolation supplémentaire.

- **9.2.2** Les ensembles-porteurs prévus pour le matériel de la classe I doivent avoir au moins l'isolation principale entre des parties actives et des parties métalliques accessibles. Ces parties métalliques doivent être telles qu'elles assurent une connexion solide au circuit de terre de protection du matériel dans lequel l'ensemble-porteur est destiné à être utilisé.
- **9.2.3** Les ensembles-porteurs prévus pour le matériel de la classe II doivent avoir une double isolation ou une isolation renforcée entre des parties actives et des parties accessibles.

9.3 Distances d'isolement

Les distances d'isolement doivent être dimensionnées de façon que l'ensemble-porteur supporte les surtensions attendues au cours de l'usage normal. Les distances d'isolement doivent être vérifiées par un mesurage de dimensions et l'essai de tension de tenue aux chocs selon 10.1.5, lorsque cet essai est exigé.

Les distances d'isolement égales à celles qui sont spécifiées dans le Tableau 7 ou dans le Tableau 8 doivent être considérées comme étant conformes à cette exigence. Dans ce cas, l'essai de tension de tenue aux chocs selon 10.1.5 n'est pas exigé.

Les distances d'isolement peuvent être inférieures aux valeurs spécifiées dans le Tableau 7 et dans le Tableau 8, mais pas inférieures aux valeurs déterminées pour les conditions de champ homogène selon le Tableau F.2 de l'IEC 60664-1:2020. Dans ce cas, les distances d'isolement doivent être considérées comme étant conformes à cette exigence tant qu'il ne se produit aucun cas de non-conformité dans l'essai de tension de tenue aux chocs selon 10.1.5.

Les distances d'isolement inférieures aux valeurs déterminées pour les conditions de champ homogène selon le Tableau F.2 de l'IEC 60664-1:2020 doivent être considérées comme étant conformes à cette exigence.

Tableau 6 – Tensions de tenue aux chocs exigées pour les distances d'isolement

Tensior	assignée	Tensions de tenue aux chocs exigées \hat{U} 1,2/50 $^{1)}$			
	V	k	V		
Catégorie d	le surtension	Isolation fonctionnelle,	Isolation renforcée ou		
II	III	principale ou supplémentaire	double isolation		
≤ 50	-	0,5	0,8		
> 50 à ≤ 100	-	0,8	1,5		
> 100 à ≤ 150	-	1,5	2,5		
> 150 à ≤ 300	≤ 150	2,5	4,0		
> 300 à ≤ 600	> 150 à ≤ 300	4,0	6,0		
_	> 300 à ≤ 600	6,0	8,0		
_	> 600 à ≤ 1 000	8,0	1,2		

¹⁾ Conformément à l'IEC 60060-1. \hat{U} 1,2/50 définit la forme de l'onde de choc: durée d'établissement de 1,2 µs et durée jusqu'à la mi-valeur de la queue de 50 µs.

De plus en plus de matériels qui fonctionnent à des tensions inférieures à 125 V sont utilisés. Les ensembles-porteurs spécifiquement conçus pour le fonctionnement à ces tensions plus basses doivent satisfaire aux prescriptions indiquées dans ce tableau, afin qu'ils soient conformes à l'IEC 60664-1.

L'attention est attirée sur le fait que les spécifications de matériels peuvent comporter des exigences qui s'ajoutent à celles qui sont spécifiées dans le Tableau 5, le Tableau 6, le Tableau 7 et le Tableau 8 ou qui en diffèrent.

Le Tableau 7 et le Tableau 8 donnent les distances minimales d'isolement dans l'air en fonction de la tension assignée, de la catégorie de surtension et du degré spécifié de pollution.

NOTE Distances minimales d'isolement dans l'air en millimètres jusqu'à 2 000 m au-dessus du niveau de la mer pour des conditions de champ hétérogène conformément au Tableau F.2 de l'IEC 60664-1:2020.

Tableau 7 – Distances minimales d'isolement dans l'air sous la catégorie de surtension II

Tension	assignée	Distances d'isol	ement dans l'air
,	V	m	m
Isolation fonctionnelle,	Isolation renforcée ou	Degré de	pollution
principale ou supplémentaire	double isolation	2	3
≤ 50	-	0,2	0,8
> 50 à ≤ 100	≤ 50	0,2	0,8
> 100 à ≤ 150	> 50 à ≤ 100	0,5	0,8
> 150 à ≤ 300	> 100 à ≤ 150	1,5	1,5
> 300 à ≤ 600	> 150 à ≤ 300	3,0	3,0
_	> 300 à ≤ 600	5,5	5,5
_	> 600 à ≤ 1 000	8,0	8,0

Tableau 8 – Distances minimales d'isolement dans l'air sous la catégorie de surtension II

Tension a	assignée	Distances d'isol	ement dans l'air	
V	/	m	ım	
Isolation fonctionnelle, Isolation renforcée ou		Degré de pollution		
principale ou supplémentaire	double isolation	2	3	
≤ 150	_	1,5	1,5	
> 150 à ≤ 300	≤ 150	3,0	3,0	
> 300 à ≤ 600	> 150 à ≤ 300	5,5	5,5	
_	> 300 à ≤ 600	8,0	8,0	
_	> 600 à ≤ 1 000	11	11	

9.4 Lignes de fuite

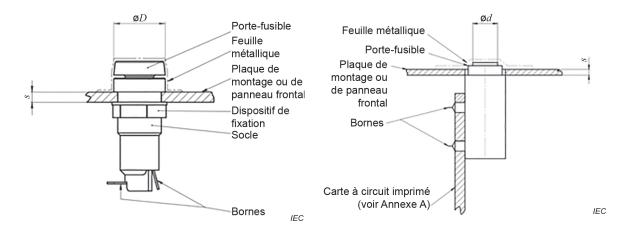
- **9.4.1** Les lignes de fuite pour l'isolation principale ou supplémentaire, déterminées à partir de la tension assignée, doivent être choisies dans le Tableau 9. Les facteurs d'influence suivants doivent être pris en considération:
- tension assignée;
- degré de pollution;
- forme de la surface isolante;
- indice de résistance au cheminement (IRC).
- **9.4.2** Mesurage des lignes de fuite et des distances d'isolement, forme de la surface isolante: exigences selon 6.2 de l'IEC 60664-1:2020.
- **9.4.3** Les lignes de fuite pour l'isolation renforcée ou la double isolation doivent être de deux fois la valeur spécifiée dans le Tableau 9.
- **9.4.4** Une ligne de fuite ne peut pas être inférieure à la valeur associée de distance d'isolement. En conséquence, la ligne de fuite la plus courte possible est égale à la distance d'isolement exigée.

Tableau 9 – Lignes de fuite minimales en millimètres pour un micro-environnement dépendant de la tension assignée, du degré de pollution, du matériau isolant, conformément au Tableau F.5 de l'IEC 60664-1:2020

	Lignes de fuite mm									
Tension assignée		•	pollution 2			Degré de pollution 3				
V	Groupe de matériau ¹⁾				iau ¹⁾ Groupe de matériau ¹⁾					
	1	Ш	IIIa	IIIb	I	II	IIIa	IIIb		
≤ 32	0,53	0,53	0,	0,53		1,30	1,30			
> 32 à ≤ 63	0,63	0,90	1,2	25	1,60	1,80	2,00			
> 63 à ≤ 125	0,75	1,05	1,	50	1,90	2,10	2,4	0		
>125 à ≤ 250	1,25	1,80	2,	50	3,20	3,60	4,0	0		
> 250 à ≤ 320	1,60	2,20	3,2	20	4,00	4,50	5,0	0		
> 320 à ≤ 400	2,0	2,8	4,0		5,0	5,6	6,3	3		
> 400 à ≤ 500	2,5	3,6	5,0		6,3	7,1	8,0			
Jusqu'à 1 000	5,0	7,1	10	,0	12,5	14,0	16,	0		
1) Voir l'Annex	C.									

De plus en plus de matériels qui fonctionnent à des tensions inférieures à 125 V sont utilisés. Les ensembles-porteurs spécifiquement conçus pour le fonctionnement à ces tensions plus basses doivent satisfaire aux prescriptions indiquées dans ce tableau, afin qu'ils soient conformes à l'IEC 60664-1.

10 Exigences électriques


10.1 Résistance d'isolement, rigidité diélectrique et tension de tenue aux chocs

10.1.1 Montage

Les ensembles-porteurs doivent être montés comme suit:

- a) les ensembles-porteurs conçus pour un montage sur panneau ou sur plaque de base doivent être montés sur une plaque métallique d'une épaisseur s, voir la Figure 4, comme cela est spécifié par le fabricant. Un calibre d'essai conforme au Tableau 10, avec ou sans portefusible, doit être inséré dans le socle.
 - Pour les ensembles-porteurs avec porte-fusible à vis, ces porte-fusibles doivent être adaptés de la manière normale pour toute opération avec un couple égal aux deux tiers de la valeur spécifiée dans le Tableau 11;
- b) les ensembles-porteurs conçus pour un montage sur carte de circuit imprimé doivent être montés sur une carte de circuit imprimé d'essai conforme à l'Annex A et, s'ils sont adaptés à ce montage, avec une plaque métallique de panneau frontal d'une épaisseur s, voir la Figure 5. Un calibre d'essai conforme au Tableau 10, avec ou sans porte-fusible, doit être inséré dans le socle.

Il convient que l'espacement entre les broches des ensembles-porteurs conçus pour un montage sur carte de circuit imprimé par brasage (types à montage par trou) soit de $n \times e$, où n est un nombre entier compris entre 1 et 6 et e = 2,54 mm.

NOTE L'épaisseur s est à spécifier par le fabricant.

Figure 4 - Montage sur panneau

Figure 5 – Montage sur carte de circuit imprimé

10.1.2 Préconditionnement en humidité

Conformément au 10.1.1, les socles montés et les porte-fusibles séparés sont soumis au préconditionnement en humidité.

Le préconditionnement en humidité est effectué dans une chambre humide qui contient de l'air dont l'humidité relative est maintenue entre 91 % et 95 %.

La température t de l'air en tout endroit de la chambre dans lequel les échantillons d'essai peuvent être placés pour le préconditionnement doit être maintenue à $t = (40 \pm 2)$ °C.

L'air de la chambre doit être agité et la chambre doit être conçue de sorte que de la vapeur d'eau condensée ne puisse pas tomber sur les échantillons d'essai. Les variations de température ne doivent pas aboutir à ce qu'une partie des échantillons d'essai atteigne le point de rosée. Certaines méthodes de réalisation de l'humidité relative spécifiée sont décrites dans l'IEC TR 60260³.

Les échantillons d'essai sont maintenus dans la chambre pendant 48 h.

Immédiatement après le préconditionnement en humidité, les échantillons étant encore dans la chambre humide ou dans la chambre dans laquelle les échantillons ont été portés à la température requise, la résistance d'isolement et la rigidité diélectrique sont mesurées après assemblage des parties qui avaient été séparées avant le préconditionnement en humidité. Les parties en matériau isolant doivent être enveloppées dans une feuille métallique comme cela est représenté à la Figure 4 et à la Figure 5.

10.1.3 Mesurage de la résistance d'isolement

La résistance d'isolement doit être mesurée entre les points spécifiés dans le Tableau 10.

Une tension continue conforme au Tableau 10 doit être appliquée. Le mesurage s'effectue 1 min après l'application de la tension d'essai.

La résistance d'isolement ne doit pas être inférieure aux valeurs indiquées dans le Tableau 10.

³ Le présent document a été supprimé en 2000.

10.1.4 Essai de rigidité diélectrique

Immédiatement après le mesurage de la résistance d'isolement, les échantillons étant encore dans la chambre humide ou dans la chambre dans laquelle les échantillons ont été portés à la température requise, une tension alternative conforme au Tableau 10 est appliquée pendant 1 min entre les points spécifiés dans le Tableau 10.

Une tension qui ne dépasse pas la moitié de la tension exigée est appliquée au départ. La tension est ensuite augmentée rapidement jusqu'à la pleine valeur exigée.

Il ne doit se produire ni claquage ni contournement électrique pendant l'essai

10.1.5 Essai de tension de tenue aux chocs

Après l'essai de 10.1.4, la tension de tenue aux chocs doit être vérifiée entre les points spécifiés dans le Tableau 10.

La tension de tenue aux chocs exigée selon le Tableau 6 doit être appliquée.

Forme et nombre de chocs:

La tension de choc de 1,2/50 µs doit être appliquée trois fois pour chaque polarité, séparées par des intervalles de 1 s au moins.

Sauf spécification contraire, il convient que l'impédance de sortie du générateur de chocs ne dépasse pas $500~\Omega$.

NOTE Une description des matériels d'essai est disponible dans l'IEC 60060-1 et l'IEC 60060-3.

Pendant cet essai de tension, il ne doit se produire ni claquage ni contournement.

Les effets de couronne et les phénomènes similaires sont ignorés.

10.2 Résistance de contact

10.2.1 Exigences générales relatives aux mesurages

Les mesurages peuvent être effectués soit en courant continu, soit en courant alternatif. Si les mesurages sont effectués en courant alternatif, la fréquence ne doit pas dépasser 1 kHz. En cas de litige, les mesurages en courant continu doivent prévaloir.

L'exactitude des appareils de mesure doit être de l'ordre de ±3 %.

Pour les ensembles-porteurs avec porte-fusible à vis, ces porte-fusibles doivent être adaptés de la manière normale pour toute opération avec un couple égal aux deux tiers de la valeur spécifiée dans le Tableau 11.

La résistance de contact doit être mesurée entre les bornes, l'ensemble-porteur ayant été équipé d'un calibre n° 2 ou n° 5 selon le Tableau 3 ou le Tableau 4.

La résistance de contact d'ensembles-porteurs prévus pour un montage sur carte de circuit imprimé doit être mesurée sur l'ensemble-porteur monté (brasé) sur une carte de circuit imprimé d'essai conforme à l'Annex A. La chute de tension doit être mesurée entre les points P et O de la Figure A.1.

La résistance de contact doit généralement être déterminée à partir de la chute de tension mesurée entre les bornes.

Les mesurages sont effectués dans les conditions ci-dessous:

- a) tension d'essai: la force électromotrice de la source ne doit pas dépasser 60 V en courant continu ou en courant alternatif (valeur de crête), mais elle doit être de 10 V au moins;
- b) courant d'essai: 0,1 A;
- c) les mesurages doivent être effectués dans la minute qui suit l'application du courant d'essai;
- d) un soin particulier doit être apporté à la nécessité, pendant les mesurages, d'éviter d'exercer une pression anormale sur les contacts en essai et d'éviter un mouvement du câble d'essai.

10.2.2 Cycle de mesure

10.2.2.1 Cycle de mesure en courant continu

Un cycle de mesure comprend:

- a) insérer le calibre dans l'ensemble-porteur;
- b) effectuer le mesurage avec le courant circulant dans un sens donné;
- c) effectuer le mesurage avec le courant circulant dans le sens opposé;
- d) extraire le calibre de l'ensemble-porteur.

10.2.2.2 Cycle de mesure en courant alternatif

Un cycle de mesure comprend:

- a) insérer le calibre dans l'ensemble-porteur;
- b) effectuer le mesurage;
- c) extraire le calibre de l'ensemble-porteur.

10.2.2.3 Mesurages et exigences

Le mesurage complet doit consister à effectuer cinq cycles de mesure successifs qui doivent être exécutés immédiatement les uns après les autres.

En ce qui concerne les ensembles-porteurs pour éléments de remplacement selon l'IEC 60127-2, les valeurs moyennes ne doivent pas dépasser 5 m Ω . Aucune des valeurs relevées au cours d'un mesurage individuel ne doit dépasser 10 m Ω .

En ce qui concerne les ensembles-porteurs pour éléments de remplacement selon l'IEC 60127-3, les valeurs moyennes ne doivent pas dépasser 10 m Ω . Aucune des valeurs relevées au cours d'un mesurage individuel ne doit dépasser 15 m Ω .

Tableau 10 – Valeurs pour la résistance d'isolement, la rigidité diélectrique et la tension de tenue aux chocs

Tension de tenue aux chocs	Tension d'essai aux chocs	>	Isolation Isolation fonctionnelle, renforcée principale ou ou double supplémentaire isolation	Valeurs exigées de la tension de tenue aux chocs conformément au Tableau 6					
Rigidité diélectrique	Tension d'essai alternative	>	Isolation renforcée ou double isolation	1 000		Deux fois la valeur pour l'isolation fonctionnelle, principale ou	supplementaire	1 000	Deux fois la valeur pour l'isolation fonctionnelle, principale ou supplémentaire
Rigidité di	Tension d'ess		Isolation fonctionnelle, principale ou supplémentaire	200		Deux fois la tension assignée +1 000 V		200	Deux fois la tension assignée +1 000 V
ment	Résistance d'isolement	MΩ		≥10 pour isolation fonctionnelle, principale ou supplémentaire ≥20 pour isolation double isolation					
Résistance d'isolement	Tension d'essai continue	>	Isolation fonctionnelle, principale ou supplémen- taire	Deux fois la tension assignée, mais 100 V au moins					
	Tension Tens assignée	>	lsol foncti princi supp te				300 m 350 500	1 000	
	Nombre de calibres d'essai a conformé ment		au Tableau 3 ou 4	3 / 6	1/4			3 / 6	4 / 1
	Résistance d'isolement, rigidité diélectrique et tension de tenue aux chocs		mesurées entre:	1 Ensemble-porteur protégé 1.1 Les bornes	1.2 Les bornes et la plaque métallique de montage ou de panneau frontal	1.3 Les bornes et toute autre partie métallique qui peut être au contact de la plaque de montage, par exemple: dispositifs de fixation des socles	1.4 Les bornes et une feuille métallique recouvrant la totalité de la surface accessible (voir les Figures 4 et 5)	2 Ensembles-porteurs non protégés 2.1 Les bornes	2.2 Les bornes et la plaque de montage

De plus en plus de matériels qui fonctionnent à des tensions inférieures à 125 V sont utilisés. Les ensembles-porteurs spécifiquement conçus pour le fonctionnement à ces tensions plus basses doivent satisfaire aux prescriptions indiquées dans le Tableau 9, afin qu'ils soient conformes à l'IEC 60664-1.

11 Exigences mécaniques

11.1 Généralités

Les ensembles-porteurs doivent avoir une résistance mécanique suffisante pour supporter les contraintes imposées lors de l'installation et de l'utilisation.

La vérification est effectuée par les essais appropriés de 11.2 à 11.8.

11.2 Montage

Pour les essais de 11.3 à 11.5, les ensembles-porteurs sont montés comme suit.

a) Les ensembles-porteurs conçus pour un montage sur panneau frontal ainsi que leurs éventuels éléments de fixation doivent être montés au centre d'une plaque métallique de 130 mm × 130 mm avant une épaisseur maximale s spécifiée par le fabricant.

Ensuite, le spécimen est entièrement fixé sur un support plan rigide qui comporte un espace libre de 100 mm de diamètre pour l'installation du socle d'un ensemble-porteur prévu pour un montage sur panneau frontal. Afin d'assurer que le spécimen est supporté de façon rigide, un bloc en métal ou en béton d'une masse de 15 kg doit être utilisé (Figure 6).

Tous les écrous de fixation ou toutes les vis de fixation sont vissés avec un couple égal aux deux tiers de la valeur spécifiée dans le Tableau 12 ou dans le Tableau 13, selon le cas.

Bloc en métal ou en béton d'une masse de 15 kg

Ø100

130 × 130

Dimensions en millimètres

Figure 6 - Dispositif d'essai pour essai mécanique

b) Les ensembles-porteurs conçus pour un montage sur carte de circuit imprimé doivent être brasés sur la carte de circuit imprimé d'essai conformément à l'Annex A et la carte à circuit imprimé d'essai doit être fixée au moyen de vis sur le bloc en métal ou en béton de la Figure 6 en utilisant une plaque métallique ajustée convenablement.

11.3 Compatibilité de l'ensemble-porteur avec l'élément de remplacement

Le calibre maximal n° 1 ou n° 4 selon le Tableau 3 ou le Tableau 4 doit être monté dans l'ensemble-porteur et le porte-fusible éventuel, le cas échéant, puis doit en être retiré. Cette opération doit être effectuée 10 fois pour un ensemble-porteur à cartouche et 5 fois pour un ensemble-porteur subminiature.

Pour les ensembles-porteurs avec porte-fusible à vis, ces porte-fusibles doivent être adaptés de la manière normale pour toute opération avec un couple égal aux deux tiers de la valeur spécifiée dans le Tableau 11.

Il n'y a pas d'exigences spéciales relatives au couple dans le cas d'ensembles-porteurs qui comportent des porte-fusibles à baïonnette.

Il ne doit se produire ni détérioration visible ni jeu entre les différentes parties. Dans la position la plus défavorable, le calibre minimal n° 2 ou n° 5 selon le Tableau 3 ou le Tableau 4 ne doit pas tomber du porte-fusible.

Le calibre minimal n° 2 ou n° 5 selon le Tableau 3 ou le Tableau 4 doit être ensuite monté dans l'ensemble-porteur, et la résistance de contact doit être mesurée conformément à 10.2 suivant les mêmes exigences.

11.4 Résistance mécanique de la connexion du socle avec le porte-fusible

11.4.1 Connexions à vis et à baïonnette

Pour les essais suivants, le porte-fusible est équipé du calibre maximal n° 1 ou n° 4 selon le Tableau 3 et introduit dans le socle monté conformément à 11.2.

- a) Essai de couple sur les porte-fusibles
 Le porte-fusible doit être soumis cinq fois au couple approprié spécifié dans le Tableau 11.
- b) Essai de traction sur les porte-fusibles
 Le porte-fusible à vis est vissé en appliquant un couple égal aux deux tiers de la valeur spécifiée dans le Tableau 11.

Ensuite, le porte-fusible à vis ou à baïonnette doit être soumis pendant 1 min à une force de traction axiale spécifiée dans le Tableau 11.

Diamètre du porte-fusible	Couple	Force de traction axiale
(Φ d à la Figure 4 et à la Figure 5)	Nm	N
Inférieur ou égal à 16 mm	0,4	25
Supérieur à 16 mm et jusqu'à 25 mm inclus	0,6	50
Supérieur à 25 mm et jusqu'à 35 mm inclus	0.8	75

Tableau 11 - Valeurs pour le couple et la force de traction axiale

Pendant et après les essais, le porte-fusible doit demeurer solidement maintenu dans le socle et ne doit présenter aucune détérioration qui peut nuire à son emploi ultérieur.

Pour les ensembles-porteurs dans lesquels les porte-fusibles sont au ras du socle, l'essai de la force de traction axiale n'est pas exigé.

11.4.2 Connexion par fiche

Forces d'insertion et d'extraction:

Le porte-fusible équipé du calibre maximal n° 1 ou n° 4 selon le Tableau 3 doit être inséré dans le socle, puis doit en être retiré. Le mesurage des forces doit être effectué à l'aide de dispositifs de mesure appropriés. Cet essai doit être répété dix fois. Toutes les valeurs relevées au cours d'un mesurage individuel de la force d'insertion et de la force d'extraction doivent être dans les limites assignées par le fabricant.

Après l'essai, le mesurage de la résistance de contact doit s'effectuer conformément à 10.2 suivant les mêmes exigences.

11.5 Essai au choc

Cet essai ne doit être appliqué qu'aux ensembles-porteurs montés sur panneau. Le portefusible équipé du calibre maximal n° 1 ou n° 4 selon le Tableau 3 doit être introduit dans l'ensemble-porteur.

La face frontale de l'ensemble-porteur est alors soumise à trois chocs dus à l'impact d'un marteau d'épreuve à ressort conforme à l'IEC 60068-2-75 et appliqués en des points également répartis sur cette face.

La valeur réglée d'énergie cinétique, immédiatement avant le choc, doit être de (0,35 ± 0,03) J.

Après l'essai, l'échantillon ne doit pas présenter de détériorations graves. En particulier, les parties actives ne doivent pas être devenues accessibles afin de ne pas compromettre la conformité à l'Article 9 et l'échantillon ne doit pas avoir subi de déformations telles que la conformité à l'Article 10 soit compromise.

La vérification est effectuée par examen visuel et mesurage des dimensions. En cas de doute, la vérification est effectuée en outre par l'essai de tension de tenue aux chocs selon 10.1.5.

11.6 Résistance mécanique de la fixation de l'ensemble-porteur sur des panneaux

11.6.1 Fixation par écrou

Le socle doit être monté sur une plaque en acier selon les instructions données par le fabricant, à l'aide des éléments de fixation fournis, le joint étant inclus.

L'écrou de fixation d'un socle prévu pour un montage qui comporte un seul trou doit être vissé et dévissé cinq fois avec application d'un couple dont la valeur est spécifiée dans le Tableau 12.

Diamètre de la partie filetée
mm
Nm
Inférieur ou égal à 12
O,6
Supérieur à 12 et jusqu'à 18 inclus
1,2
Supérieur à 18 et jusqu'à 30 inclus
2,4
Supérieur à 30 et jusqu'à 40 inclus
3,6
Supérieur à 40 et jusqu'à 50 inclus
4,8

Tableau 12 - Valeurs du couple

Après l'essai, le socle ne doit présenter aucune détérioration qui peut nuire à son emploi ultérieur.

11.6.2 Fixation à vis

Les vis, boulons ou écrous d'un socle qui comportent plusieurs trous de fixation doivent être vissés et dévissés cinq fois avec application d'un couple dont la valeur est spécifiée dans le Tableau 13.

Diamètre de la partie filetée	Couple
Mm	Nm
2	0,25
2,5	0,4
3	0,5
3,5	0,8
4	1,2
5	2,0
6	2,5
≥8	3,5

Tableau 13 - Valeurs du couple

Après l'essai, le socle ne doit présenter aucune détérioration qui peut nuire à son emploi ultérieur.

11.6.3 Fixation par encliquetage

11.6.3.1 Généralités

Le groupe d'ensembles-porteurs prévus pour une fixation par encliquetage comprend les types ci-après:

- socle à système à ressort intégré;
- socle à écrou ressort séparé (écrou réalisé, par exemple, en acier à ressort fin avec un logement conçu pour recevoir la pièce qui s'emboîte).

11.6.3.2 Essais et exigences

11.6.3.2.1 Procédures d'essai

La résistance mécanique de la fixation de l'ensemble-porteur sur des panneaux (voir la Figure 7) doit être vérifiée par les essais suivants.

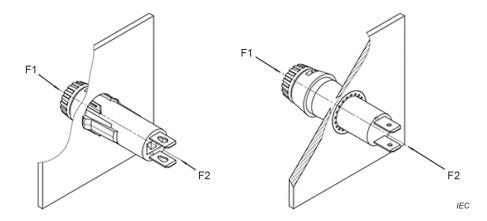


Figure 7 – Exemples d'ensemble-porteur prévu pour une fixation par encliquetage sur panneaux

Les essais doivent être effectués avec une fixation par encliquetage engagée et l'ensembleporteur doit être placé à plat sur la surface de la plaque de montage.

Les spécimens doivent être divisés en deux groupes de montage conformément au Tableau 14.

Tableau 14 - Groupes de montage

	Groupe 1	Groupe 2
Plaque de montage	Épaisseur maximale du panneau	Épaisseur minimale du panneau
	et	et
	trou de fixation avec la dimension la plus petite	trou de fixation avec la dimension la plus grande
Force d'essai	Force d'insertion F1	Force d'extraction F2

Préparation du spécimen:

L'épaisseur de la plaque de montage et le diamètre du trou de fixation doivent être conformes aux spécifications données par le fabricant.

Au cours des procédures d'essai, la plaque de montage peut avoir une orientation commode quelconque.

11.6.3.2.2 Force d'insertion F1

La force d'insertion F1 doit être soit ≤ 120 N, soit comme cela est spécifié par le fabricant, et centrée au milieu du socle de l'ensemble-porteur (voir la Figure 7).

La force d'insertion F1 doit être appliquée de manière que la force sur l'ensemble de la surface soit augmentée de façon continue et régulière, sans à-coups.

Le dispositif de pression doit couvrir l'ensemble de la bride.

11.6.3.2.3 Force d'extraction F2

La force d'extraction F2 (voir la Figure 7) doit être appliquée axialement au dos de l'ensembleporteur. La force doit être augmentée de façon monotone de 0 N à 50 N.

La fixation par encliquetage de l'ensemble-porteur ne doit pas être déformée de façon permanente et l'ensemble-porteur ne doit pas être éjecté par la force maximale.

11.6.3.2.4 Critères d'admissibilité pour les essais ci-dessus

- Les fêlures, l'éclatement et le bris du socle de l'ensemble-porteur en raison des contraintes mécaniques provoquées par les forces F1 et F2 ne sont pas acceptables.
- Les sillons et les phénomènes d'usure du corps isolant sont acceptables.

11.7 Bornes des socles

11.7.1 Bornes avec serrage à vis ou serrage sans vis

Essais et exigences relatifs aux bornes à organes de serrage à vis et sans vis pour conducteurs électriques en cuivre doivent être conformes à l'IEC 60999-1.

11.7.2 Bornes à braser

11.7.2.1 Bornes par cosses

11.7.2.1.1 Généralités

Conçues pour être brasées avec un fer à braser.

11.7.2.1.2 Taille

Les bornes des socles doivent permettre le raccordement de conducteurs rigides, de conducteurs à âme massive ou à brins multiples et flexibles dont les dimensions sont indiquées dans le Tableau 15.

Tableau 15 - Sections des conducteurs

Ensemble-porteur avec un courant assigné maximal de:	Diamètre minimal du trou	Section maximale du conducteur	
	mm	mm²	
Inférieur ou égal à 6,3 A	1,2	1	
Supérieur à 6,3 A et jusqu'à 10 A inclus	1,4	1,5	
Supérieur à 10 A et jusqu'à 16 A inclus	1,8	2,5	
Supérieur à 16 A et jusqu'à 25 A inclus	2,3	4,0	

Pour les bornes brasables, un moyen tel qu'un trou à travers lequel passe le conducteur (ou tous les brins d'un conducteur à brins multiples) doit être prévu de manière que ce conducteur puisse être maintenu indépendamment de la brasure.

11.7.2.1.3 Essais

a) Robustesse des bornes

Les bornes doivent être soumises aux essais de traction et de pliage ci-dessous.

- Essai de traction selon les modalités de l'essai Ua1 de l'IEC 60068-2-21.
 - Une force axiale de 20 N doit être appliquée.
 - Exigences: il ne doit y avoir aucune détérioration qui peut nuire au service normal.
- Essai de pliage selon les modalités de l'essai Ub de l'IEC 60068-2-21.
 - Le cas échéant, la méthode 1 doit être utilisée, sinon la méthode 2.
 - Exigences: il ne doit y avoir aucune détérioration qui peut nuire au service normal.
- b) Brasabilité, mouillage, méthode du fer à braser

L'essai doit être effectué conformément à l'essai Ta de l'IEC 60068-2-20:2021 après la méthode de vieillissement accéléré 4.1.4.3 précisée en 4.1.4 de l'IEC 60068-2-20:2021

- Méthode 2
- Fer à braser de forme "B".
 - Exigences: La brasure doit avoir mouillé la surface d'essai et il ne doit pas y avoir de gouttelettes.
- c) Résistance à la chaleur de brasage, méthode du fer à braser

L'essai doit être effectué conformément à l'essai Tb de l'IEC 60068-2-20:2021.

- Méthode 2.
- Fer à braser de forme "B".

Exigences: il ne doit y avoir aucune détérioration qui peut nuire au service normal.

11.7.2.2 Bornes à fils et à broche

11.7.2.2.1 Généralités

Conçues pour l'usage avec des cartes de circuit imprimé ou autres applications qui utilisent des techniques de brasage analogues.

11.7.2.2.2 Taille

Dimensions: pas d'exigences spéciales.

11.7.2.2.3 Essais

- a) Robustesse des bornes voir le 11.7.2.1.3 a).
- b) Brasabilité, mouillage, méthode au bain de brasage.

L'essai doit être effectué en conformément à l'essai Ta de l'IEC 60068-2-20 après la méthode de vieillissement accéléré 4.1.4.3 précisée en 4.1.4 de l'IEC 60068-2-20:2021.

- Méthode 1.
- Un écran thermique (une carte de circuit imprimé, par exemple) doit être utilisé.

Exigences: la surface qui a été immergée doit être recouverte d'une couche de brasure, avec seulement un petit nombre d'imperfections dispersées, telles que piqûres ou zones non mouillées. Ces imperfections ne doivent pas être concentrées sur une seule zone.

c) Résistance à la chaleur de brasage, méthode du bain de brasage.

L'essai doit être effectué conformément à l'essai Tb de l'IEC 60068-2-20:2021.

- Méthode 1.
- Un écran thermique (une carte de circuit imprimé, par exemple) doit être utilisé.
- Température d'immersion: 260 °C ± 3 °C.
- Temps d'immersion: (5 ± 1) s.

Exigences: il ne doit y avoir aucune détérioration qui peut nuire au service normal.

11.7.2.3 Bornes à fiche mâle pour connexion rapide

11.7.2.3.1 Généralités

Une borne à connexion rapide comporte une languette avec trou ou empreinte et un clip d'accouplement. Le socle est équipé de la languette.

11.7.2.3.2 Taille

Dimensions, types classés de languettes: conformément à l'IEC 61210.

11.7.2.3.3 Essais

Robustesse des bornes

Les bornes doivent être soumises aux essais de résistance à la traction et à la compression:

- essai de traction selon les modalités de l'essai Ua1 de l'IEC 60068-2-21. Une force de traction F1 selon le Tableau 16 doit être appliquée à la languette fixe comme cela est représenté à la Figure 8;
- essai de résistance à la compression analogue à l'essai de résistance à la traction. Une force de compression F2 selon le Tableau 16 doit être appliquée à la languette fixe comme cela est représenté à la Figure 9.

Des spécimens distincts doivent être utilisés pour les essais de résistance à la traction et à la compression. Un soin particulier doit être apporté à la nécessité d'assurer un alignement et une orientation corrects des forces.

Exigences: il ne doit y avoir aucune détérioration qui peut nuire au service normal.

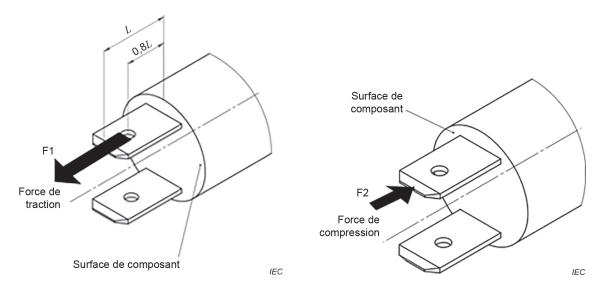


Figure 8 - Essai de force de traction

Figure 9 - Essai de force de compression

Taille de la languette	Force de traction F1 et force de compression F2		
Mm	N		
2,8	53		
4,8	67		
5,2	67		
6,3	80		
9,5	100		

Tableau 16 – Forces de traction et de compression

11.7.2.4 Bornes à fiche mâle pour connexion rapide et bornes à braser par cosses

Des versions combinées sont soumises à l'essai conformément à 11.7.2.1 et 11.7.2.3 selon le cas.

11.8 Résistance aux vibrations

11.8.1 Généralités

La résistance aux vibrations des ensembles-porteurs doit être suffisante.

La vérification est effectuée en soumettant l'ensemble-porteur à l'essai conformément à l'IEC 60068-2-6:2007, essai Fc, suivant les exigences de mesure générales ci-dessous.

11.8.2 Montage

L'ensemble-porteur doit être mécaniquement relié à l'appareillage d'essai conformément à l'IEC 60068-2-47 en utilisant la méthode normale de montage.

L'écrou de fixation des socles prévus pour un montage qui comporte un seul trou doit être vissé avec application d'un couple dont la valeur est spécifiée en 11.6.1

Les vis, boulons ou écrous de socles qui comportent plusieurs trous de fixation doivent être vissés avec application d'un couple dont la valeur est spécifiée en 11.6.2.

Les socles prévus pour une fixation par encliquetage doivent être montés comme cela est spécifié en 11.6.3.

Le calibre minimal n° 2 ou n° 5 selon le Tableau 3 ou le Tableau 4 doit être inséré dans l'ensemble-porteur.

Dans le cas d'ensembles-porteurs qui comportent des porte-fusibles à vis, ces porte-fusibles doivent être adaptés de la manière normale avec un couple égal aux deux tiers de la valeur maximale admissible spécifiée dans le Tableau 11.

11.8.3 Mesurages et exigences

11.8.3.1 Sévérités

- Plage de fréquences: 10 Hz à 55 Hz.
- Amplitude du déplacement de 0,35 mm (la Figure 1 et la Figure 2 de l'IEC 60068-2-6:2007, 5.2 s'appliquent).
- Nombre de cycles de balayage: cinq suivant chaque axe.

11.8.3.2 Axes de vibrations

Des vibrations doivent successivement être appliquées à l'ensemble-porteur selon trois axes perpendiculaires entre eux; il convient de choisir ces axes de sorte que l'un d'eux soit l'axe principal de l'élément de remplacement.

11.8.3.3 Vérifications fonctionnelles

Au cours de l'essai de vibrations, la continuité électrique entre les contacts doit être vérifiée pour détecter d'éventuelles interruptions. Les interruptions d'une durée inférieure ou égale à 1 ms ne doivent pas être prises en compte.

11.8.3.4 Mesurages finals

À la fin des essais, la résistance de contact doit être conforme à 10.2 et l'ensemble-porteur ne doit pas présenter de détériorations graves, au sens de la présente norme.

12 Exigences thermiques

12.1 Essai de la puissance admissible assignée

12.1.1 Généralités

L'ensemble-porteur doit être conçu pour supporter continuellement le courant assigné à la puissance admissible assignée et à la température de l'air ambiant $T_{\rm A1}$ de 23 °C sans dépassement des températures admissibles sur l'ensemble-porteur comme cela est spécifié en 12.1.4.

La vérification est effectuée par les essais de 12.1.2 à 12.1.7.

12.1.2 Montage

Les ensembles-porteurs conçus pour un montage sur panneau ou sur plaque de base doivent être disposés au centre d'une plaque isolante. Par exemple, papier de cellulose phénolique stratifié de dimensions (100 × 100 × 3) mm.

Les ensembles-porteurs conçus pour un montage sur carte de circuit imprimé doivent être disposés sur une carte de circuit imprimé d'essai conforme à l'Annex A.

Dans le cas d'ensembles-porteurs qui comportent des porte-fusibles à vis, ces porte-fusibles doivent être adaptés de la manière normale avec un couple égal aux deux tiers de la valeur maximale admissible spécifiée dans le Tableau 11.

Les températures doivent être mesurées dans de l'air aussi calme que possible. À cet effet, l'ensemble-porteur, monté sur la plaque correspondante, doit être placé dans un boîtier assurant la protection de l'environnement immédiat contre des mouvements externes de l'air. Il convient d'utiliser un boîtier composé d'un matériau qui présente une réflexion négligeable.

La distance entre les côtés du boîtier et les bords de l'ensemble-porteur ne doit pas être inférieure à 200 mm. Le boîtier ne doit pas comporter de couvercle. La Figure 10 représente un exemple.

Les échantillons d'ensemble-porteur doivent être disposés en trois positions différentes, une dans le plan horizontal (Figure 10) et deux dans le plan vertical (vers le haut et vers le bas).

La disposition dans les autres plans doit être effectuée d'une manière similaire.

Dimensions en millimètres

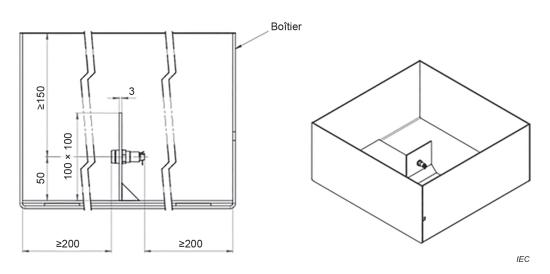


Figure 10 - Exemple de dispositif d'essai

Les dimensions des conducteurs isolés adaptés aux bornes de l'ensemble-porteur ou de la carte de circuit imprimé d'essai doivent être comme suit:

- a) longueur: 1 m;
- b) section d'un conducteur en cuivre unifilaire:
 - 0,5 mm² pour les ensembles-porteurs d'un courant assigné inférieur ou égal à 1 A;
 - 1 mm² pour les ensembles-porteurs d'un courant assigné supérieur à 1 A, mais inférieur ou égal à 6,3 A;
 - 1,5 mm² pour les ensembles-porteurs d'un courant assigné supérieur à 6,3 A, mais inférieur ou égal à 10 A;
 - 2,5 mm² pour les ensembles-porteurs d'un courant assigné supérieur à 10 A, mais inférieur ou égal à 16 A;
 - 4 mm² pour les ensembles-porteurs d'un courant assigné supérieur à 16 A, mais inférieur ou égal à 25 A.

12.1.3 Éléments de remplacement conventionnels d'essai

12.1.3.1 Éléments de remplacement conventionnels d'essai pour cartouches

Un élément de remplacement conventionnel d'essai est un élément de remplacement d'essai avec une résistance bien définie conforme au Tableau 18.

Le matériau du fil de résistance utilisé dans l'élément de remplacement conventionnel d'essai doit être du CuNi44 ou tout autre matériau analogue ayant un coefficient de température de résistance inférieur à $\pm 10,0 \times 10^{-5} \ \text{K}^{-1}$ dans la plage de températures comprise entre 20 °C et 200 °C.

Les dimensions des éléments de remplacement conventionnels d'essai sont spécifiées dans le Tableau 17.

Tableau 17 – Dimensions et matériaux pour les éléments de remplacement conventionnels d'essai conformes à l'IEC 60127-2

Type de ca	artouche	touche		Matériaux des pièces			
Élément de remplacem ent	Taille	L	<i>D</i> 1	D2	В	Capsule	Tube
mm		mm	mm	Mm	mm		
5 × 20	minimale	19,46 +0,5	5,0 +0,2	4,2 ± 0,1	5 +0,2	Laiton ^a	Céramique
6,3 × 32	minimale	30,96 +0,8	6,25 +0,2	5,5 ± 0,1	6 +0,2	Laiton ^a	Céramique

a Laiton de teneur en cuivre comprise entre 58 % et 70 %, revêtement de surface d'au moins 2 μm en nickel (galvanique).

En cas de doute sur le comportement des éléments de remplacement conventionnels d'essai utilisés, il convient de les soumettre à l'essai au courant assigné sur le socle représenté à la Figure 1 de l'IEC 60127-2:2014; il convient en outre qu'ils ne présentent pas d'effets spéciaux tels que la tension thermoélectrique.

Il ne doit pas y avoir de trou dans les extrémités des éléments de remplacement conventionnels d'essai.

Tableau 18 – Éléments de remplacement conventionnels d'essai conformes à l'IEC 60127-2

N° de l'élément de remplacement conventionnel d'essai Élément de remplacement conventionnel d'essai pour éléments de remplacement		Puissance dissipée nominale de l'élément de remplacement conventionnel d'essai ^a	Courant ^a	Résistance ^b ± 10 %
5 mm × 20 mm	6,3 mm × 32 mm	P W	Y A	R mΩ
A1/1625	A2/1625	4.0	2,5	256
A1/1663	A2/1663	1,6	6,3	40
A1/2525	A2/2525		2,5	400
A1/2563	A2/2563	2,5	6,3	63
A1/2510	A2/2510		10	25
A1/3263	A2/3263	3,2	6,3	81
A1/3210	A2/3210	3,2	10	32
A1/4063	A2/4063		6,3	101
A1/4010	A2/4010		10	40
A1/4012	A2/4012	4,0	12,5	25,6
A1/4016	A2/4016		16	15,6
A1/4020	A2/4020		20	10
A1/5012	A2/5012		12,5	32
A1/5016	A2/5016	5,0	16	19,5
A1/5020	A2/5020		20	12,5
A1/6012	A2/6012		12,5	38,4
A1/6016	A2/6016	6,0	16	23,4
A1/6020	A2/6020		20	15
A1/8020	A2/8020	8,0	20	20
A1/8025	A2/8025	0,0	25	12,8

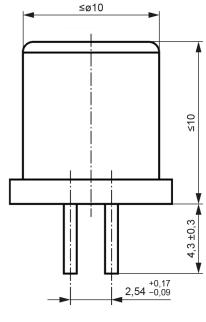
^a Si d'autres valeurs sont exigées, il convient de les sélectionner parmi la série R10 de l'ISO 3.

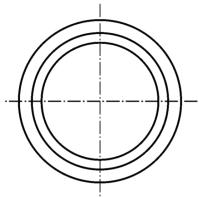
12.1.3.2 Éléments de remplacement conventionnels d'essai pour éléments de remplacement subminiatures

Exigences:

- a) résistance bien définie conforme au Tableau 20. Il convient que le matériau soit un bas coefficient de température de résistance;
- b) dimensions des éléments de remplacement conventionnels d'essai selon le Tableau 19;
- c) matériaux des pièces A et B selon le Tableau 19:
 - pièce A: laiton ou cuivre, nickelé ou étamé;
 - pièce B: matériau isolant.

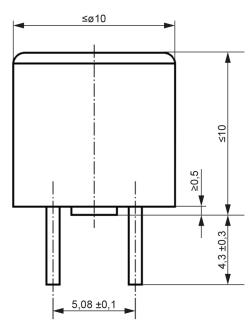
Le type de matériau doit être assigné par le fabricant.

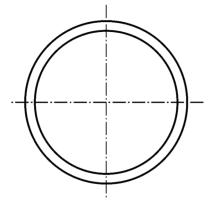

b La résistance de l'élément de remplacement conventionnel d'essai est calculée comme suit: $R = P/I^2$.


Tableau 19 – Dimensions et matériaux pour les éléments de remplacement conventionnels d'essai conformes à l'IEC 60127-3

Éléments de remplacement conventionnels d'essai pour	D	P	Matériaux des pièces	
éléments de remplacement subminiatures	mm	mm	A	В
Feuille de norme 1	0,55 _ 0	2,54 + 0,17 - 0,09	Laiton ^a	Matériau isolant
Feuilles de norme 3 et 4	0,56 _ 0,02	5,08 ± 0,1	Laiton ^a	Matériau isolant

^a Laiton de teneur en cuivre comprise entre 58 % et 70 %, revêtement de surface d'au moins 2 μm en nickel (galvanique).


Dimensions en millimètres



Source: Feuille de norme 1 de l'IEC 60127-3:2015

Figure 11 – IEC 60127-3:2015, Feuille de norme 1

Source: Feuilles de norme 3 et 4 de l'IEC 60127-3:2015

Figure 12 – IEC 60127-3:2015, Feuilles de norme 3 et 4

Tableau 20 – Éléments de remplacement conventionnels d'essai conformes à l'IEC 60127-3


N° de l'élément de remplacement conventionnel d'essai Élément de remplacement conventionnel d'essai pour les éléments de remplacement subminiatures conformes à la / aux		Puissance dissipée nominale de l'élément de remplacement conventionnel ^a	Courant ^a	Résistance ^b ± 10 %
Feuille de norme 1	Feuilles de norme 3 et 4	P W	I A	R mΩ
B1/1650		1,6	5,0	64
	B2/1620	1,6	2,0	400
	B2/1650		5,0	64
	B2/2050	2,0	5,0	80
	B2/2010	2,0	10,0	20

^a Si d'autres valeurs sont exigées, il convient de les sélectionner parmi la série R10 de l'ISO 3.

12.1.4 Mesurage de la température maximale admissible sur les ensembles-porteurs

Les points auxquels les températures appropriées doivent être mesurées sont donnés à la Figure 13.

b La résistance de l'élément de remplacement conventionnel d'essai est calculée comme suit: $R = P/I^2$.

Légende:

 $T_{\rm A1}$ = température de l'air ambiant, en dehors du boîtier

 $T_{\rm A2}$ = température de l'air environnant, dans le boîtier

 $T_{\rm S1}$ = température de la partie accessible sur la surface de l'ensemble-porteur

 $T_{\rm S2}$ = température de la partie inaccessible sur la surface de l'ensemble-porteur

 T_{T1} = température sur la cosse de l'ensemble-porteur monté sur panneau

 T_{T2} = température sur les bornes à broche de l'ensemble-porteur monté sur carte de circuit imprimé

Figure 13 - Représentation des températures connues dans la pratique

Un thermocouple ou tout autre dispositif de mesure de température qui n'affecte pas de façon appréciable le résultat doit être utilisé pour mesurer les températures. Même la méthode de montage du thermocouple doit être choisie de manière que les résultats de mesure ne doivent pas être affectés. La surface de l'ensemble-porteur ne doit subir aucune détérioration.

Remarques sur les points de mesure individuels:

 $T_{\rm A1}$ définit la température ambiante autour du boîtier. Elle est mesurée à une distance d'environ 100 mm du boîtier du dispositif d'essai.

La puissance admissible assignée se réfère à une température ambiante $T_{\rm A1}$ de 23 °C.

La puissance admissible aux températures ambiantes supérieures $T_{\rm A1}$ doit être assignée par le fabricant.

Les caractéristiques assignées préférentielles pour les températures ambiantes $T_{\rm A1}$ sont données dans le Tableau 2. Voir également l'Annex E.

 $T_{\rm A2}$ définit la température ambiante à l'intérieur du boîtier. Elle est mesurée à une distance d'environ 50 mm de l'ensemble-porteur en essai.

 $T_{\rm S1}$ définit la température des parties accessibles de la surface de l'ensemble-porteur qui peuvent être touchées par le doigt d'épreuve normalisé selon l'IEC 60529, quand l'ensemble-porteur est installé et actionné comme en utilisation normale, par exemple sur la face avant du boîtier (voir le 3.17).

 $T_{\rm S2}$ définit la température des parties inaccessibles de la surface de l'ensemble-porteur. Elle est mesurée sur les parties isolantes de l'ensemble-porteur qui sont situées à l'intérieur du boîtier. Les points de mesure de la surface de l'ensemble-porteur doivent être accessibles au fil d'essai de diamètre 1 mm conformément à l'IEC 60529.

 $T_{\rm S1}$ et $T_{\rm S2}$ doivent être mesurées au point le plus chaud de la surface de l'ensemble-porteur.

Il convient de choisir les points de mesure de la température au moyen d'un essai d'implantation (en plaçant les thermocouples dans des zones différentes) ou au moyen d'une caméra à imagerie thermique afin de déterminer l'emplacement approximatif du point le plus chaud.

 T_{T1} définit la température aux bornes par cosse des ensembles-porteurs montés sur panneau. Elle est mesurée au centre de la surface de la borne par cosse.

 T_{T2} définit la température sur les bornes à broche des ensembles-porteurs montés sur carte de circuit imprimé. Elle est mesurée en dessous de la carte de circuit imprimé au point central du filet formé par le ménisque de la brasure.

Tableau 21 - Températures maximales admissibles

Cunface de Panaemble norteur		Températures maximales admissibles		
	Surface de l'ensemble-porteur	b	°C	
1	Parties accessibles ^a	T_{S1}	85	
2	Parties inaccessibles ^a			
2.1	Parties isolantes	T_{S2}	С	
2.2	Bornes:			
2.2.1	de l'ensemble-porteur prévu pour un montage sur panneau ou sur plaque de base: (zone autour du conducteur monté)	T_{T1}	d	
2.2.2	de l'ensemble-porteur conçu pour un montage sur carte de circuit imprimé: (points brasés sur carte de circuit imprimé)	T_{T2}	d	

Lorsque l'ensemble-porteur est assemblé correctement, installé et manœuvré comme en usage normal, par exemple sur la face avant du produit fini.

La valeur de l'IRT doit être assignée par le fabricant.

b Voir la Figure 13.

La température maximale admissible des matériaux isolants utilisés pour l'ensemble porteur correspond à l'indice relatif de température (IRT) ou à l'indice de température (IT) selon l'IEC 60216-1, qui repose sur des conditions d'essai de 20 000 h (électrique, sans impact) si le matériau isolant est inaccessible après l'installation normale de l'ensemble-porteur dans le produit fini. S'il n'y a pas de valeurs IEC appropriées disponibles, des valeurs d'IRT comparables peuvent être choisies en variante dans une norme équivalente.

d La température maximale admissible doit être assignée par le fabricant. Elle ne doit cependant pas dépasser 175 °C.

12.1.5 Corrélation entre la température de l'air ambiant $T_{\rm A1}$ et la puissance admissible de l'ensemble-porteur

La puissance admissible assignée de l'ensemble-porteur est déterminée à une température ambiante $T_{\rm A1}$ de 23 °C (voir le 3.3).

La puissance admissible aux températures ambiantes supérieures $T_{\rm A1}$ doit être assignée par le fabricant. Voir également l'Annex E.

12.1.6 Point de mesure de la température de l'air ambiant T_{A1}

Le point auquel la température de l'air ambiant T_{A1} est mesurée doit être à l'extérieur du boîtier de la Figure 10.

12.1.7 Méthode d'essai

L'ensemble-porteur doit être monté selon 12.1.2.

L'élément de remplacement conventionnel d'essai correspondant à l'ensemble-porteur en essai doit être choisi dans le Tableau 19 ou dans le Tableau 20 et inséré dans l'ensemble-porteur.

Par exemple, pour l'ensemble-porteur conçu pour porter les éléments de remplacement 5 mm \times 20 mm et dont la puissance admissible assignée est de 4 W à un courant assigné de 6,3 A, il convient d'utiliser l'élément de remplacement conventionnel d'essai n° A1/4063 avec une résistance de 101 m Ω ± 10 %.

L'essai de la puissance admissible assignée doit être effectué à une température ambiante au moins égale à 23 °C et le résultat est corrigé par rapport à une température de référence de $T_{\Delta 1}$ = 23 °C.

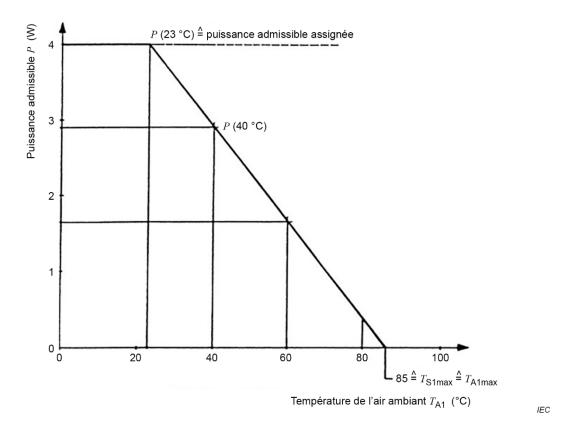
L'ensemble-porteur doit être parcouru par un courant d'essai égal au courant assigné alternatif ou continu. Il est admis que la tension d'essai soit inférieure à la tension assignée de l'ensemble-porteur.

Le courant d'essai de l'ensemble-porteur est réglé en fonction de la résistance de l'élément de remplacement conventionnel d'essai avec une tolérance de $^{+5}_{0}$ % du courant assigné pour donner la puissance dissipée nominale P de l'élément de remplacement conventionnel d'essai utilisé.

NOTE Pour l'exemple ci-dessus, les tolérances de l'élément de remplacement conventionnel d'essai avec une résistance de $101~\text{m}\Omega$ sont:

 R_{min} = 90,9 m Ω , courant réglé: 6,63 A;

 $R_{\rm max}$ = 111 m Ω , courant réglé: 6,00 A.


L'essai doit être poursuivi jusqu'à ce que la stabilité de la température soit atteinte.

La stabilité de la température doit être considérée comme étant atteinte lorsque trois (3) lectures successives, séparées par des intervalles de 10 min au moins, n'indiquent aucun autre échauffement.

Après que la stabilité de la température a été atteinte, l'essai d'endurance selon l'Article 13 doit être effectué avec le même ensemble-porteur.

Pour obtenir les valeurs de puissance admissible à des températures ambiantes $T_{\rm A1}$ plus élevées, les essais doivent être effectués à ces températures supérieures selon l'essai décrit ci-dessus. Les résultats peuvent alors être représentés par des courbes de taux de réduction analogues à celle de l'exemple représenté à la Figure 14.

En raison de la température maximale admissible $T_{\rm S1max}$ = 85 °C pour les parties accessibles, il convient que la courbe de taux de réduction coupe l'axe des abscisses au point $T_{\rm A1}$ = 85 °C.

L'attention est attirée sur le fait que cette figure est un exemple d'une courbe de taux de réduction. La courbe de taux de réduction appropriée pour tout ensemble-porteur individuel est assignée par le fabricant.

Figure 14 - Exemple d'une courbe de taux de réduction

12.2 Résistance à la chaleur anormale et au feu

12.2.1 Essai au brûleur-aiguille

En cas d'ensembles-porteurs qui peuvent être exposés aux contraintes thermiques dues aux effets électriques et dont la détérioration peut compromettre le niveau de sécurité du produit fini, les matériaux isolants ne doivent pas être affectés de façon appréciable par la chaleur ou le feu produit dans l'ensemble-porteur.

La vérification est effectuée en soumettant l'ensemble-porteur à l'essai au brûleur-aiguille selon l'IEC 60695-11-5:2016, modifiée comme suit:

- Article 7: Durées d'application de la flamme;
 La durée d'application de la flamme d'essai est (10 ± 1) s.
- Article 9: Procédure d'essai

L'ensemble-porteur doit être disposé dans la position dans laquelle il se trouve en usage normal et, au début de l'essai, la flamme est appliquée de façon que la pointe de la flamme soit en contact avec la surface de l'ensemble-porteur. Au cours de l'essai, le brûleur ne doit plus être déplacé;

Article 11: Évaluation des résultats d'essai

Ajouter ce qui suit:

Le papier mousseline ne doit pas s'être enflammé et la planche de pin blanc ne doit pas être roussie. Un éventuel petit changement de couleur de la planche de pin blanc est négligé.

12.2.2 Essai d'allumage au fil incandescent

Cet essai ne s'applique pas aux ensembles-porteurs qui contiennent de petits éléments selon l'IEC 60695-2-11.

Pour les ensembles-porteurs en matière plastique ou en matériau qui contiennent des substances organiques, les exigences minimales suivantes s'appliquent.

Température d'allumage au fil incandescent (GWIT – Glow-wire ignition temperature) = 775 °C

Indice d'inflammabilité au fil incandescent (GWFI - Glow-wire flammability index) = 850 °C

Pour les grandeurs GWFI et GWIT, il convient de faire respectivement référence à l'IEC 60695- 2-12 et à l'IEC 60695-2-13. Pour l'essai au fil incandescent, il est nécessaire d'utiliser des plaques métalliques dont les dimensions sont conformes au 4.2 de l'IEC 60695- 2- 12:2021 ou de l'IEC 60695-2-13:2021.

NOTE Les essais au fil incandescent ne s'appliquent pas aux matériaux tels que le verre ou la céramique, dont les grandeurs GWIT et GWFI sont supérieures à 775 °C et 850 °C, respectivement.

13 Endurance

13.1 Généralités

Les ensembles-porteurs doivent résister efficacement à la chaleur et aux contraintes mécaniques pouvant se produire en utilisation normale.

La vérification est effectuée par l'essai suivant.

13.2 Essai d'endurance

L'ensemble-porteur doit être soumis à l'essai de la puissance admissible assignée selon 12.1. L'essai avec les mesurages de températures et de chutes de tension doit continuer sans interruption pendant une période de 500 h.

13.3 Exigences

Après l'essai, l'ensemble-porteur doit être dans un état satisfaisant. Il ne doit avoir subi aucune déformation qui peut nuire à son fonctionnement correct. Les exigences selon les paragraphes suivants doivent être satisfaites:

- 10.1.3 Résistance d'isolement.
- 10.1.4 Rigidité diélectrique.
- 11.3 Compatibilité de l'ensemble-porteur avec l'élément de remplacement. Pour cet essai, les exigences du deuxième alinéa de 10.2.2.3 doivent être remplacées par ce qui suit: "La moyenne des valeurs de la résistance de contact ne doit pas dépasser 10 m Ω . Aucune des valeurs relevées au cours d'un mesurage individuel ne doit dépasser 15 m Ω ."

Les températures maximales admissibles selon le Tableau 21 ne doivent pas être dépassées.

14 Exigences supplémentaires

14.1 Protection contre la rouille

Les parties en métaux ferreux doivent être protégées efficacement contre la rouille. La vérification est effectuée par l'essai suivant.

Les parties à soumettre à l'essai sont lavées de toute graisse par immersion pendant 10 min dans du trichloréthylène ou dans un agent dégraissant équivalent. Puis, elles sont plongées pendant 10 min dans une solution aqueuse à 10 % de chlorure d'ammonium maintenue à une température de (20 ± 5) °C.

Sans séchage, mais après avoir secoué les gouttes éventuelles, les parties à soumettre à l'essai sont suspendues pendant 10 min dans une enceinte à atmosphère saturée d'humidité à une température de (20 ± 5) °C.

Les parties séchées pendant 10 min dans une étuve à une température de (100 ± 5) °C ne doivent présenter aucune trace de rouille sur leurs surfaces.

Ni les traces de rouille sur les arêtes vives ni aucun voile jaunâtre disparaissant par simple frottement ne sont prises en considération.

Pour des petits ressorts et pour des parties inaccessibles exposées à l'abrasion, une couche de graisse peut donner une protection suffisante contre la rouille. Ces parties sont soumises à l'essai seulement en cas de doute sur l'efficacité de la pellicule de graisse. L'essai est alors effectué sans nettoyage préalable de la graisse.

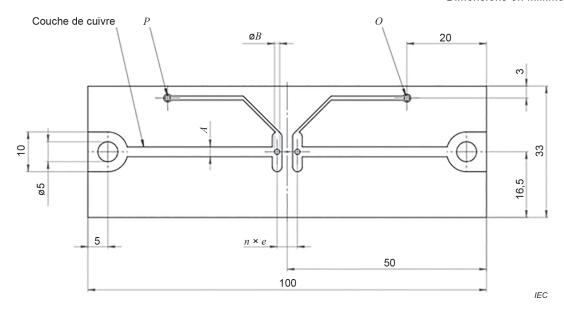
14.2 Résistance aux solvants de nettoyage

Cet essai doit être réalisé sur les ensembles-porteurs conçus pour un montage sur carte de circuit imprimé.

Le solvant de nettoyage à utiliser doit être du propan-2-ol (alcool isopropylique) ou tout solvant analogue, à l'exception des solvants contenant du fréon.

La vérification est effectuée par l'essai de l'IEC 60068-2-45, suivant les conditions indiquées ci-dessous:

- température du solvant: (23 ± 5) °C;
- durée d'immersion: (5 ± 0,5) min;
- conditionnement: Méthode 2 (sans frottement);
- temps de rétablissement: supérieur ou égal à 1 h;
- mesurage final:
 - inspection visuelle; et
 - essai de rigidité diélectrique conformément au Tableau 9.


Annexe A

(normative)

Carte de circuit imprimé d'essai pour ensembles-porteurs ayant des courants assignés inférieurs ou égaux à 25 A

La Figure A.1 représente un exemple d'une carte d'essai. Le nombre et l'alignement des trous des bornes à braser de l'ensemble-porteur peuvent être choisis pour s'adapter à l'ensemble-porteur approprié. Les dimensions de la couche de cuivre (largeur nominale A, épaisseur nominale) et les dimensions hors tout (environ 100 mm × 33 mm) doivent être satisfaites.

Dimensions en millimètres

ΦB – 1,3 mm au moins ou conformément à la déclaration du fabricant

P/O – Connexion pour le mesurage de la chute de tension:

e - 2,54 mm

n – 1 à 6

Figure A.1 – Exemple d'une carte d'essai

Matériau de base:

- époxy renforcé à la fibre de verre, résistance à la température ≥150 °C;
- l'épaisseur nominale doit être de 1,6 mm;
- couche de cuivre:

Tableau A.1 – Couche de cuivre pour carte d'essai

Courant assigné de	Couche de cuivre			
l'ensemble-porteur	Largeur nominale A	Épaisseur nominale		
	mm	mm		
<6,3 A	2,5	0,035		
6,3 A à ≤10 A	5,0	0,070		
>10 A à ≤16 A	10,0	0,105		
>16 A à ≤25 A	15,0	0,140		

D'autres dispositions des cartes de circuits imprimés sont acceptables, pour autant que la longueur, la largeur et l'épaisseur de la couche de cuivre restent dans la limite des valeurs exigées.

Annexe B

(normative)

Essais de type, séquences d'essai et nombre d'échantillons

Le Tableau B.1 présente les essais de type, les séquences d'essai et le nombre d'échantillons. Douze (12) d'échantillons de rechange doivent être disponibles.

Tableau B.1 – Essais de type, séquences d'essai et nombre d'échantillons

Essai group n°		Nombre d'échantillons	Paramètres	Article/ Paragr aphe	Critères d'admissibilité
		1 à 15 (15 échantillons)	Marquage	6	Tous les échantillons doivent être conformes à la norme
	1.1		Protection contre les chocs électriques	8	Tous les échantillons doivent être conformes à la norme
	1.2	1 à 3 (3 échantillons)	Distances d'isolement et lignes de fuite	9	
1	1.3		Résistance d'isolement, rigidité diélectrique et tension de tenue aux chocs	10.1	
	1.4		Résistance mécanique de la fixation de l'ensemble-porteur sur des panneaux	11.6	
	2.1	4 à 6 (3 échantillons)	Résistance de contact	10.2	
	2.2		Compatibilité de l'ensemble-porteur avec l'élément de remplacement	11.3	
2	2.3		Résistance mécanique de la connexion du socle avec le porte-fusible	11.4	а
	2.4		Essai au choc	11.5	
	2.5		Bornes des socles	11.7	
	3.1	7 à 9 (3 échantillons)	Essai de puissance admissible assignée, essai d'endurance inclus	12.1 13	
	3.2		Mesurage de la résistance d'isolement	10.1.3	
3	3.3		Essai de rigidité diélectrique	10.1.4	а
	3.4		Compatibilité de l'ensemble-porteur avec l'élément de remplacement des exigences selon le 13.3	11.3	
4	4.1	10 à 12 (3 échantillons)	Résistance à la chaleur anormale et au feu	12.2	а
	5.1	13 à 15 (3 échantillons)	Résistance aux vibrations	11.8	
5	5.2		Protection contre la rouille	14.1	а
	5.3	,	Résistance aux solvants de nettoyage	14.2	

a Si un cas de non-conformité se produit, l'essai doit être répété sur ce paramètre en utilisant un nombre d'échantillons égal à celui initialement prévu. À condition qu'aucun autre cas de non-conformité ne se produise, l'ensemble-porteur doit être considéré comme étant conforme à la présente norme.

Si un total d'au moins deux cas de non-conformité se produit, pas nécessairement pour le même paramètre de ce groupe, l'ensemble-porteur est considéré comme n'étant pas conforme à la présente norme.

Annexe C

(informative)

Coordination de l'isolement⁴

C.1 Catégories de surtension

Le concept de catégories de surtension est utilisé pour un matériel alimenté directement par le réseau basse tension.

NOTE 1 Ce concept de catégories de surtension est utilisé dans l'IEC 60364-4-44.

Les matériels de la catégorie de surtension IV sont utilisés à l'origine de l'installation.

NOTE 2 Des exemples de tels matériels sont les compteurs électriques et les matériels principaux de protection contre les surintensités.

 Les matériels de la catégorie de surtension III sont les matériels des installations fixes et dans les cas dans lesquels la fiabilité et la disponibilité du matériel sont soumises à des exigences particulières.

NOTE 3 Des exemples de tels matériels sont les commutateurs dans l'installation fixe et les matériels à usage industriel avec raccordement permanent à l'installation fixe.

 Les matériels de la catégorie de surtension II sont les matériels consommateurs d'énergie alimentés à partir de l'installation fixe.

NOTE 4 Des exemples de tels matériels sont les appareils électrodomestiques, les outils portatifs et les autres charges électrodomestiques et analogues.

Si ce matériel est soumis à des exigences spéciales concernant la fiabilité et la disponibilité, la catégorie de surtension III est applicable.

 Les matériels de la catégorie de surtension I sont les matériels pour raccordement aux circuits dans lesquels des mesures sont prises pour limiter les surtensions transitoires à un niveau faible approprié.

NOTE 5 Les circuits électroniques protégés en sont des exemples.

C.2 Degrés de pollution dans le micro-environnement

Degré de pollution 1

Il n'existe pas de pollution ou il se produit seulement une pollution sèche, non conductrice. La pollution n'a pas d'influence.

Degré de pollution 2

Aucune pollution non conductrice ne se produit. Cependant, une conductivité temporaire provoquée par de la condensation doit être prévue occasionnellement.

Degré de pollution 3

Une pollution conductrice se produit ou bien une pollution sèche non conductrice qui devient conductrice par suite de la condensation qui doit être prévue.

⁴ Voir l'IEC 60664-1.

Degré de pollution 4

La pollution produit une conductivité persistante causée par la poussière conductrice, ou par la pluie ou la neige.

C.3 Indice de résistance au cheminement IRC

Groupes de matériaux et leurs valeurs d'IRC comme suit:

Groupe de matériau I 600 ≤ IRC Groupe de matériau II 400 ≤ IRC < 600 Groupe de matériau IIIa 175 ≤ IRC < 400

Groupe de matériau IIIb 100 ≤ IRC < 175

Les valeurs de l'IRC ci-dessus se rapportent aux valeurs obtenues, conformément à l'IEC 60112, sur des échantillons spécifiquement préparés à cet effet et soumis à l'essai avec la solution A.

L'indice de tenue au cheminement (ITC) est également utilisé pour identifier les caractéristiques de cheminement des matériaux. Un matériau peut être inclus dans l'un des quatre groupes cidessus en raison du fait que son ITC, établi selon les méthodes de l'IEC 60112 et en utilisant la solution A, est supérieur ou égal à la valeur inférieure spécifiée pour le groupe.

Annexe D

(informative)

Essais et exigences complémentaires

D.1 Généralités

Les essais mentionnés dans la présente Annex D sont facultatifs. Cependant, dans le cas où ils sont effectués, les exigences suivantes doivent être satisfaites.

Le lot réservé à l'essai de type dans lequel cet essai doit être inclus doit également être indiqué.

D.2 Résistance aux chocs

D.2.1 Généralités

La résistance aux chocs d'ensembles-porteurs doit être adéquate. La vérification est effectuée en soumettant l'ensemble-porteur à l'essai Ea de l'IEC 60068-2-27, avec les exigences générales de mesure ci-dessous.

D.2.2 Montage

Selon 11.8.2.

D.2.3 Mesurages et exigences

D.2.3.1 Sévérité (niveau minimal)

- Amplitude de l'accélération: 50 g
- Durée des impulsions: 11 ms

(voir le 4.1 de l'IEC 60068-2-27:2008, Tableau 1)

D.2.3.2 Axes des chocs

Selon 11.8.3.2.

D.2.3.3 Mesurages finals

Selon 11.8.3.4.

D.3 Vérification du degré de protection procuré par les boîtiers

Si l'ensemble-porteur est un matériel qualifié dont le degré de protection procuré par le boîtier est conforme à l'IEC 60529, selon la déclaration du fabricant, la vérification du degré de protection doit être effectuée conformément à l'IEC 60529.

L'IEC 60529 donne des conditions d'essai pour chaque degré de protection. Il convient d'appliquer les conditions appropriées au degré de protection énoncé, puis, immédiatement après, que l'ensemble-porteur soit soumis à l'essai de rigidité diélectrique comme cela est spécifié en 10.1.4.

Degré de protection préférentiel: IP 40 au moins.

D.4 Catégorie climatique

D.4.1 Généralités

La catégorie climatique de l'ensemble-porteur assignée par le fabricant doit être conforme à l'IEC 60068-1, comme cela est présenté dans le Tableau D.1.

Tableau D.1 – Exemples de catégories climatiques

Catégorie	tempé	es de rature C	Chaleur humide, essai continu: nombre de jours	Désignation ^a de l'essai selon l'IEC 60068-2
55/125/56	-55	+125	56	A (Fix.: 4 JEO 00000 0 4)
40/85/56	-40	+85	56	A (Froid, IEC 60068-2-1)
25/70/21	-25	+70	21	B (Chaleur sèche, IEC 60068-2-2)
10/55/04	-10	+55	4	C (Chaleur humide, essai continu, IEC 60068-2-78)
^a La désignation des essais ci-après en lettres majuscules est tirée de l'introduction de l'IEC 60068-1:2013.				

D.4.2 Exigences et conditions d'essai

La vérification de la catégorie climatique énoncée doit être effectuée dans les conditions spécifiées par l'IEC 60068-1 ou IEC 60068-2 appropriée.

L'ensemble-porteur doit être monté comme cela est spécifié en 10.1.1.

Immédiatement après ces essais, les parties en matériau isolant, normalement accessibles en utilisation, doivent être enveloppées dans une feuille métallique comme cela est représenté à la Figure 4 et à la Figure 5. Après ce traitement, les exigences doivent être conformes à celles de:

- 10.1.3 Résistance d'isolement.
- 10.1.4 Rigidité diélectrique.
- 11.3 Compatibilité de l'ensemble-porteur avec l'élément de remplacement. Pour cet essai, les exigences du deuxième alinéa de 10.2.2.3 doivent être remplacées par ce qui suit: "La moyenne des valeurs de la résistance de contact ne doit pas dépasser 10 m Ω . Aucune des valeurs relevées au cours d'un mesurage individuel ne doit dépasser 15 m Ω ."

Annexe E

(normative)

Renseignements concernant la bonne application de l'ensemble-porteur

Les fabricants doivent fournir les informations minimales suivantes, nécessaires à la bonne application de l'ensemble-porteur.

Tableau E.1 – Renseignements concernant la bonne application de l'ensemble-porteur

		Caractéristiques assignées, caractéristiques	Conformément aux articles et aux paragraphes
1	Tension assignée		3.5 /Tableau 2
2	Courant assigné		3.4 / Tableau 2
3	Puissance admissible assignée à une température ambiante $T_{\rm A1}$ de 23 °C		3.3 / Tableau 2 / 12.1
4	Température maximale admissible de l'air ambiant:		3.18 /12.1.3 / 12.1.4
4.1	pour les parties accessibles (T_{A1})		
4.2	pour les parties inaccessibles $(T_{\rm A2})$		
5	Protection contre les chocs électriques Catégorie PC1 ou PC2 ou PC3		Tableau 2 / 8
6	Protection de classes I ou II du matériel électrique approprié à l'ensemble-porteur concernant la protection contre les chocs électriques conformément à l'IEC 61140		Tableau 2 / 8
7	Catégorie de surtension et degré de pollution		3.8 / 3.10 / Tableau 2
8	Indice de résistance au cheminement (IRC) des matériaux isolants		3.15 / Tableau 2

Bibliographie

IEC 60050-151:2001, Vocabulaire Électrotechnique International – Partie 151: Dispositifs électriques et magnétiques

IEC 60050-212:2010, Vocabulaire Électrotechnique International – Partie 212: Isolants électriques solides, liquides et gazeux

IEC 60050-826:2022, Vocabulaire Électrotechnique International (IEV) – Partie 826: Installations électriques

IEC 60060-1:2010, Techniques des essais à haute tension – Partie 1: Définitions et exigences générales

IEC 60060-3:2006, High-voltage test techniques – Part 3: Definitions and requirements for on-site testing (disponible en anglais seulement)

IEC 60068-2-1:2007, Essais d'environnement – Partie 2-1: Essais – Essais A: Froid

IEC 60068-2-2:2007, Essais d'environnement – Partie 2-2: Essais – Essais B: Chaleur sèche

IEC 60068-2-78:2012, Essais d'environnement – Partie 2-78: Essais – Essai Cab: Chaleur humide, essai continu

IEC 60112:2020, Méthode de détermination des indices de résistance et de tenue au cheminement des matériaux isolants solides

IEC 60269-1, Fusibles basse tension – Partie 1: Exigences générales

IEC 60364-4-44, Installations électriques à basse tension – Partie 4-44: Protection pour assurer la sécurité – Protection contre les perturbations de tension et les perturbations électromagnétiques

IEC 60695-2-11, Essais relatifs aux risques du feu – Partie 2-11: Essais au fil incandescent/chauffant – Méthode d'essai d'inflammabilité pour produits finis (GWEPT)

IEC 61140, Protection contre les chocs électriques – Aspects communs aux installations et aux matériels

ISO 1302:2002⁵, Spécification géométrique des produits (GPS) – Indication des états de surface dans la documentation technique de produits

IEC TR 60260:1968⁶, *Test enclosures of non-injection type for constant relative humidity* (disponible en anglais seulement)

ISO 3:1973, Nombres normaux – Séries de nombres normaux

Le présent document a été révisé par l'ISO 21920-1:2021.

⁶ Le présent document a été supprimé en 2000.

INTERNATIONAL ELECTROTECHNICAL COMMISSION

3, rue de Varembé PO Box 131 CH-1211 Geneva 20 Switzerland

Tel: +41 22 919 02 11 info@iec.ch www.iec.ch