भूवैज्ञानिक मानचित्र, खंड और उपसतही अन्वेषी लॉग में प्रयुक्त चिह्न और संक्षिप्त रूप भाग 3 अवसादी चट्टानें

IS 7422 (Part 3): 2024

(पहला पुनरीक्षण)

Symbols and Abbreviations
Use in Geological Maps, Sections
and Subsurface Exploratory Logs
Part 3 Sedimentary Rocks

(First Revision)

ICS 07.060

© BIS 2024

भारतीय मानक ब्यूरो BUREAU OF INDIAN STANDARDS मानक भवन, 9 बहादुर शाह ज़फर मार्ग, नई दिल्ली - 110002 MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG NEW DELHI - 110002

www.bis.gov.in www.standardsbis.in

FOREWORD

This Indian Standard (Part 3) (First Revision) was adopted by the Bureau of Indian Standards, after the draft finalized by the Geological Investigation and Subsurface Exploration Sectional Committee had been approved by the Water Resources Division Council.

In all spheres of engineering construction, data on the nature of the geological formations constituting the foundations are indispensable. Often, these data are given on maps or in geological sections using symbols and abbreviations. Geological maps and sections are also required for other activities, such as mining and mineral prospecting. Such maps and sections are therefore being prepared by various agencies in the country. In the absence of any standard for the guidance of the engineering geologist or engineer, different symbols and abbreviations are being used by different agencies, resulting in entirely different representations of the same geological data. The data collected and presented by one agency for a particular purpose is often useful to other agencies investigating for a different job. It, therefore, becomes essential for all agencies to follow the same practice. This standard has been prepared to fulfil this need.

This standard (Part 3) deals with sedimentary rocks while other parts are as follows:

Part 1 Abbreviations

Part 2 Igneous rocks

Part 4 Metamorphic rocks

Part 5 Line symbols for formation contacts and structural features

The symbolization of rock types is based on the principles laid down by the International Organization for Standardization. For the rock types to be covered for symbolization, classification, of sedimentary rocks as adopted by United States Bureau of Reclamation for engineering purposes has been used.

The standard was first published in 1974. This revision has been brought out to bring the standard in latest style and update with respect to the latest field practices. In revision of this standard, due weightage has been given to international co-ordination among the standards and practices prevailing in different countries in addition to relating it to the practices in the field in this country. In this first revision of standard, assistance have been derived from ISO 710 'Graphical symbol for use on detailed maps, plans and geological cross section'.

The composition of the Committee responsible for the formulation of this standard is given in Annex A.

For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test, shall be rounded off in accordance with IS 2: 2022 'Rounding off numerical values (*second revision*)'. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.

Indian Standard

SYMBOLS AND ABBREVIATIONS FOR USE IN GEOLOGICAL MAPS, SECTIONS AND SUBSURFACE EXPLORATORY LOGS

PART 3 SEDIMENTARY ROCKS

(First Revision)

1 SCOPE

This standard (Part 3) covers symbols for sedimentary rocks for use in geological, maps, sections and logs of bore holes, test pits, exploratory drifts and shafts for river valley projects. Rock types covered in this standard are restricted to those commonly met with in engineering practice.

2 BASIC PRINCIPLES OF SYMBOLIZATION

- **2.1** In order to represent a type of rock on a map or on a plan, the corresponding surface should be covered by the symbols representing the rock in question. The surfaces occupied by rocks of different types should be separated by a continuous thin line if there is a clear demarcation among the different types in nature.
- **2.2** The graphic symbols should be used in black and white for the representation of rocks and minerals. Additional letter symbols may be used to designate other characteristics, such as age.
- 2.3 There is a great variety of rocks and it is impossible to have an individual symbol for each of the rock types that are found in nature. For this reason, the symbols are developed for the most important and frequently occurring rock types. For listing the rock types, one of the simpler systems used for classification of rocks has been followed; however, the tables of symbols for rock types are not meant to provide a standard system of classification. The symbolization is based on the following principles:
 - a) In order to characterize the properties of rocks, elementary symbols are chosen, which should be:
 - 1) as simple as possible and therefore easily traceable;
 - 2) express the nature of the rock; and
 - 3) such dimensions that several elementary symbols can be placed next to each other.
 - b) Principal rock types are represented by the juxtaposition of several identical

elementary symbols; the variations of the above are shown by the addition of the elementary symbols which characterize the principal constituents;

- c) In order to characterize the loose form of rock, symbols should be arranged with no determined order; a systematic staggered arrangement should represent the consolidated form of a rock; and
- d) The individual elements or the rows of symbols should be arranged either parallel to the stratification or foliation where applicable or parallel to the margin of the map or the geological formation under portrayal, as found convenient. The procedure adopted should be indicated on the plan.

The basic symbols given in this standard should not be used for representations other than specified. Within the framework of these principles, symbols for other rocks not covered in this standard may be developed and intimated to the Indian Standards Institution. Similarly, for any characteristic not represented by a symbol, a new symbol may be chosen.

3 GRAPHIC SYMBOLS FOR SEDIMENTARY ROCKS

3.1 Elementary and Basic Symbols

The elementary symbols relating to sedimentary rocks and the basic symbols for the principal rock types are given in <u>Table 1</u> and <u>Table 2</u> respectively.

3.2 Mixed Symbols for Rocks

- **3.2.1** For developing mixed symbols for sedimentary rocks of a mixed character, the following points should be kept in view:
 - a) Irregular arrangement of the basic symbols characterizes loose rocks and a systematic staggered arrangement represents consolidated rocks; and

- b) The symbols for mixed types of rocks are derived by combining suitably elementary symbols (*see* <u>Table 1</u>) and the basic symbols (*see* <u>Table 2</u>).
- **3.2.2** The symbols for different rock types commonly met with in engineering practice are given in <u>Table 3</u>. Symbols for rock types not given
- in this table may be developed on the basis of the principles laid down in 2.3 and 3.2.1.
- **3.2.3** Where features are too small for graphical representation either an asterisk may be given against the feature and explained in the legend or the name of the rock written out.

Table 1 Elementary Symbols Relating to Sedimentary Rocks

[Clauses <u>3.1</u> and <u>3.2.1 (b)</u>]

Sl No.	Mineral	Symbol	Mineral	Symbol
(1)	(2)	(3)	(4)	(5)
i)	Detritus		Anhydrite	
ii)	Gritty pebbly	0	Sodium salt	
iii)	Sandy	•	Potassium	\bowtie
iv)	Silty		magnesium salt	K Mg
v)	Argillaceous		Ferruginous	
vi)	Calcareous	Ι	Siliceous	V
vii)	Dolomitic	7	Carbonaceous	~
viii)	Gypsiferous		Bituminous	
ix)	Concretion		Humous	===

Table 1 (Concluded)

Sl No.	Mineral	Symbol	Mineral	Symbol
(1)	(2)	(3)	(4)	(5)
x)	Qoides	⊙ ⊙	Fossiliferous (in general)	f
xi)	Incrustations for example ferruginous	22 22 22 22	Vertebrates	\gg
xii)			Invertebrates (marine)	P
xiii)	Cavern for		Invertebrates (non-marine)	
xiv)	example In limestone		Microfauna	8
xv)	Volcanogenetic Admixtures	>>	Flora	4
xvi)		>	Microflora	9
xvii)	Stigmarion bed	人众办人	Shelly layer	\ \\\\

Table 2 Basic Symbols for Principal Types of Sedimentary Rocks

[Clauses <u>3.1</u> and <u>3.2.1 (b)</u>]

Sl No.	Mineral	Symbol	Mineral	Symbol
(1)	(2)	(3)	(4)	(5)
i)	Gravel	0000	Shale	
ii)	Sand	· · · · · · · · · · · · · · · · · · ·	Limestone	

Table 2 (Concluded)

Sl No.	Mineral	Symbol	Mineral	Symbol
(1)	(2)	(3)	(4)	(5)
iii)	Silt	** **	Dolomite	
iv)	Clay	<u> </u>	Gypsum	$\left[\begin{array}{c} A & A \\ A & A \end{array}\right]$
v)	Breccia		Anhydrite	
vi)	Conglomerate	00000	Sodium salt	
vii)	Sandstone	• • • •	Siliceous rocks	* * * * *
viii)	Siltstone	** ** **	Peat	

Table 3 Derived Symbols for Sedimentary Rock Type

(*Clause* <u>3.2.2</u>)

Sl No.	Texture	Essential Constituent	Definitive Characteristic	Petrographic Type	Symbol
(1)	(2)	(3)	(4)	(5)	(6)
i)	Clastic (composed predominantly of rock and mineral grains derived by weathering and erosion, and deposited by water, wind, ice or gravity;	Volcanicejecta	Fragments > 32 mm	Agglomerate or breccia	
	showing varying degrees of cementation or consolidation)		Particles > 4 mm < 32 mm	Lapilli tuff	>>
			Particles < 4 mm	Tuff	

Table 3 (Continued)

Sl No.	Texture	Essential Constituent	Definitive Characteristic	Petrographic Type	Symbol
(1)	(2)	(3)	(4)	(5)	(6)
		Gravel	Abraded particles > 4 mm over 50 % clay < 25 %	Conglomerate	0 0 0 0
		Rock and mineral fragments	Angular particles > 4 mm over 50 % clay < 25 %	Breccia	
		Rock fragments and clay	Fragments greatly varied, occasionally exhibit faceting, high range of	Loose till	%.°;
			sizes usually unsorted; matrix usually clay, sometimes sand,	Compact tillite	• •
			usually greatly in excess of fragments	Sandstone	<u>••••</u>
					• • • •
				Quartzite	•••••
ii)	Clastic (composed predominantly of rock and mineral grains derived by weathering and erosion,	Sand	Particles < 4 mm > 1/16 mm over 50 % clay <	Arkose	
	and deposited by water, wind, ice or gravity; showing varying degrees of cementation or		25 %	Graywacke	·\.o\o
	consolidation)			Subgraywacke	
		Detrital grains of calcite	Calcite > 50 % clay < 25 %	Limestone	
		Silt	Particles < 1/16 mm over 50 % clay < 25 %; massive to stratified	Siltstone	** ** ** ** **

Table 3 (Continued)

Sl No.	Texture	Essential Constituent	Definitive Characteristic	Petrographic Type	Symbol
(1)	(2)	(3)	(4)	(5)	(6)
			Predominant particles < 1/16 mm, fissile	Shale	
			Predominant particles < 1/16 mm, open structure	Loess	
		Clay minerals	Clay > 25 % massive to stratified	Claystone	
			Predominantly clay or silt, fissile	Shale	
			Predominantly clays and sericite, incipient recrystallization	Argillite (mudstone)	
			Montmorillonite clays > 75 %	Bentonite	
			Kaolinite clays > 75 %	Kaolin	
		Clay and calcite	Very fine grained; carbonates 25 % to 75 %	Marl, marlstone	
iii)	Calcite	Carbonate > 50 % of which calcite > 50 %	Coarse to microcrystalline, compact	Limestone	
			Fine to microcrystalline, porous, firm to friable	Chalk	IIII
			Spongy, porous, firm to friable, fine to microcrystalline	Tufa	пппп
			Compact to porous, banded, fine to microcrystalline	Travertine	ПППП

 Table 3 (Continued)

Sl No.	Texture	Essential Constituent	Definitive Characteristic	Petrographic Type	Symbol
(1)	(2)	(3)	(4)	(5)	(6)
		Calcite and clay	Very fine- grained; calcite 25 % to 75 %	Marl, marlstone	- - - - - - - - - - - -
iv)	Crystalline (composed predominantly of coarse to fine of microcrystalline to cryptocrystalline	Carbonates	Carbonates > 25 % compact to earthy; deposited by ground water	Caliche	
	aggregates of crystals precipitated chemically or biochemically from surface or subsurface waters)	Dolomite	Carbonate > 50 % of which dolomite > 50 % coarse to fine, compact	Dolomite	
		Chalcedony	Chalcedony > 25 % microcrystalline to	Chalcedonic chert	lacksquare
			cryptocrystalline, conchoidal fracture, compact		
		Cryptocrystall- ine quartz	Cryptocrystalline quartz, > 50 %	Novaculite	* * * *
		Chalcedony	Chalcedony > 25% friable to firm; earthy to porous	Tripoli	
		Crystalline phosphates	Crystalline phosphates > 50 %	Phosphorite	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
		Anhydrite	Anhydrite > 50 %	Rock anhydrite	
		Gypsum	Gypsum > 50 %	Rock gypsum	
v)	Amorphous (composed predominantly of noncrystalline substances precipitated or produced by	Halite	Halite > 50 %	Rock salt	
	chemical or biochemical action in surface or ground water or within sediments by geologic processes)	Haematite	Haematite > 50 %	Haematite rock	

Table 3 (Continued)

Sl No.	Texture	Essential	Definitive	Petrographic	Symbol
(1)	(2)	Constituent (3)	Characteristic (4)	Type (5)	(6)
	(2)	Crystalline hydrous aluminium oxide	Hydrous aluminium oxides > 50 % of which > 50 % are crystalline	Bauxite	
		Opal	Opal > 50 % massive to banded; compact	Opal opaline chert, porcelanite	$\boxed{ \triangledown \triangledown \triangledown \triangledown}$
			Opal > 50 % porous, massive to laminated	Siliceous sinter	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
			Deposited by geysers	Geyserite	
		Collophane	Accumulated bird excrement	Guano	00 00 00
			Amorphous phosphates > 50 %	Phosphorite	
		Limonite	Limonite > 50 %	Limonite, bog iron ore	
		Amorphous hydrous aluminium oxides	Hydrous aluminium oxides > 50 % of which > 50 % are amorphous	Bauxite	
				Laterite	
		Hydrocarbons	Solid	Asphalt, mineral tar, gilsonite, grahamite	五法
		Amorphous carbon	Fibrous to spongy to compact; carbonized plant remains < 50 % black to brown	Coal	
		Oxygenated hydrocarbons	Resinous, various light colours	Amber	(2-50)

 Table 3 (Concluded)

Sl No.	Texture	Essential Constituent	Definitive Characteristic	Petrographic Type	Symbol
(1)	(2)	(3)	(4)	(5)	(6)
vi)	Bio fragmental (composed of whole or mental remains of plants or animals)	Calcareous shells and fragments	Whole or fragments shells > 50 %	Coquina	
		Diatom tests	Diatom tests > 50 %	Diatomite, diatomaceous earth	
		Radiolarian tests	Radiolarian tests > 50 %	Radiolarian, radiolarian earth	& & & & & & &
		Foraminifera tests	Foraminifera tests > 50 %	Foraminiferal limestone	
		Algal structures	Algal structures > 50 %	Algal limestone	\$\tap \$\phi \$\ph
		Coral structures	Coral structures > 50 %	Coral limestone	\$ \$ \$ \$.
		Phosphatic shells teeth, bones	Phosphatic fossils > 50 %	Phosphorite	
		Partially or completely carbonized plant, remains	Brown to black, spongy to compact, plant remains readily visible	Peat	
			Brown to black, fibrous to compact, slakes readily	Lignite	
			Black, massive to banded, compact, slakes slowly	Bituminous coal	
			Black, massive to banded, submetallic, conchoidal fracture	Anthracite coal	

ANNEX A

(<u>Foreword</u>)

COMMITTEE COMPOSITION

Geological Investigations and Subsurface Exploration Sectional Committee, WRD 05

Organization	Representative(s)
In Personal Capacity, (G-202, JMD Garden Sohna Road, Sector 33 Gurugram-122018)	DR P. C. NAWANI (<i>Chairperson</i>)
AECS Engineering & Geotechnical Services Pvt Ltd, Noida	DR TANU RAGHUVANSHI SHRI SANJEEV TREHAN (Alternate)
Afcons Infrastructure Limited, Mumbai	DR SUNIL BASARKAR DR LAKSHMANA RAO MANTRI (Alternate)
Aimil Limited, New Delhi	SHRI LAXMIDHAR MOHAPATRA SHRI HEMAN MANCHANDA (<i>Alternate</i>)
CSIR – Central Building Research Institute, Roorkee	SHRI KOUSHIK PANDIT DR P. K. S. CHAUHAN (<i>Alternate</i>)
CSIR - Central Institute for Mining And Fuel Research, Dhanbad	DR J. K. MOHNOT DR ANIL SWARUP (Alternate)
Central Soil & Material Research Station, New Delhi	SHRI N. P. HONKANDAVAR SHRI HARI DEV(<i>Alternate</i>)
Central Water Commission, New Delhi	SHRI SAMIR KUMAR SHUKLA SHRI S. K. DAS (<i>Alternate</i>)
Central Water & Power Research Station, Pune	DR G. DHANUNJAYA SHRI V. CHANDRA SHEKAR (Alternate) SHRI B. SURESH KUMAR (Alternate)
Ferro Concrete Construction Pvt Ltd, Indore	DR MAHAVIR BIDASARIA (Alternate)
Geological Survey of India, New Delhi	SHRI P. K. GAJBHIYE SHRI IMTIKUMZUK (<i>Alternate</i>)
Gujarat Engineering Research Institute, Vadodara	SHRI N. R. MAKWANA SHRI R. K. CHAUHAN (<i>Alternate</i>)
Himachal Pradesh Power Corporation Limited, Shimla	SHRI ER R. K. KAUNDAL SHRI SANJAY RANA (<i>Alternate</i>)
Indian Institute of Remote Sensing, Dehradun	DR R. S. CHATTERJEE
J&K State Power Development Corporation Limited, Srinagar	SHRI RAVI PANDITA

Organization Representative(s)

M/S Parsons Overseas Ltd, New Delhi
SHRI SANJAY RANA, MANAGING DIRECTOR
SHRI ASHUTOSH KAUSHIK, CEO (Alternate)

Narmada Control Authority, Indore SHRI M. K. CHAUHAN

National Hydroelectric Power Corporation Ltd, SHRI SHYAM LAL KAPIL

Faridabad Shri Ajay Singh (Alternate I)

SHRI MOHINDER PAL SINGH (Alternate II)

National Institute of Rock Mechanics, Karnataka DR AJAY KUMAR NAITHANI

DR SANDEEP NELLIAT (Alternate)

National Thermal Power Corporation Limited, SHRI NAVEEN KUMAR JAIN

Noida Shri Bhuvnesh Kumar (Alternate)

North Eastern Electric Power Corporation Ltd, Shri Girish Kalita, Manager (Geology)

Satluj Jal Vidyut Nigam Ltd Limited, Shimla SH AJAY KUMAR, MANAGER

Shri Brijesh Badoni, Manager (*Alternate*)

Tehri Hydro Development Corporation India Limited, SHRI AJAY KUMAR

Rishikesh Shri Kailasah Chandra Uniyal (Alternate)

Uttarakhand Jal Vidyut Nigam Ltd, Dehradun DIRECTOR (PROJECTS)

Dr Harish Bahuguna (*Alternate*)

(NHPC Society) Sector PHI 1, Pocket 4 Greater

Noida, Gautam Budhha Nagar-201310

In Personal Capacity [House No. 120, Jalshakti Vihar

In Personal Capacity (Falt no. 4123, Ace Golfshire,

Tower 4, Sector 150, Noida – 201310)

In Personal Capacity (D 31, Jal Vidyut Apts. Sector 21 SHRI IMRAAN SYEED

C. Part III, Faridabad- 121001)

Shillong

BIS Directorate General SHRI R. BHANU PRAKASH SCIENTIST 'E'/DIRECTOR AND

HEAD (WATER RESOURCES) [REPRESENTING DIRECTOR

GENERAL (*Ex-officio*)]

SHRI GOPAL DHAWAN,

SHRI R. K. GOEL

Member Secretary
SHRI AJAY MEENA
SCIENTIST 'B'/ASSISTANT DIRECTOR
(WATER RESOURCES), BIS

This Pade has been Intentionally left blank

This Pade has been Intentionally left blank

Bureau of Indian Standards

BIS is a statutory institution established under the *Bureau of Indian Standards Act*, 2016 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Head (Publication & Sales), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the website-www.bis.gov.in or www.standardsbis.in.

This Indian Standard has been developed from Doc No.: WRD 05 (21366).

Amendments Issued Since Publication

Amend No.	Date of Issue	Text Affected	

BUREAU OF INDIAN STANDARDS

Headquarters:

Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002

Telephones: 2323 0131, 2323 3375, 2323 9402 Website: www.bis.gov.in

Temphones. 2525 0151, 2525 5575, 2525 5102			
Regional Offices:		Te	lephones
Central	: 601/A, Konnectus Tower -1, 6 th Floor, DMRC Building, Bhavbhuti Marg, New Delhi 110002	{ 23	lephones 323 7617
Eastern	: 8 th Floor, Plot No 7/7 & 7/8, CP Block, Sector V, Salt Lake, Kolkata, West Bengal 700091	{ 23 23	367 0012 320 9474 265 9930
Northern	: Plot No. 4-A, Sector 27-B, Madhya Marg, Chandigarh 160019	{ 2	265 9930
Southern	: C.I.T. Campus, IV Cross Road, Taramani, Chennai 600113	{ 22 { 22	254 1442 254 1216
Western	: 5 th Floor/MTNL CETTM, Technology Street, Hiranandani (Powai, Mumbai 400076	Gardens, { 25 25	570 0030 570 2715

Branches: AHMEDABAD, BENGALURU, BHOPAL, BHUBANESHWAR, CHANDIGARH, CHENNAI, COIMBATORE, DEHRADUN, DELHI, FARIDABAD, GHAZIABAD, GUWAHATI, HARYANA (CHANDIGARH), HUBLI, HYDERABAD, JAIPUR, JAMMU, JAMSHEDPUR, KOCHI, KOLKATA, LUCKNOW, MADURAI, MUMBAI, NAGPUR, NOIDA, PARWANOO, PATNA, PUNE, RAIPUR, RAJKOT, SURAT, VIJAYAWADA.