भारतीय मानक Indian Standard

खानों में वेष्टन द्वारा और व्यक्ति-रोहन द्वारा ढुलाई के लिए लड़दार इस्पात के तार के रस्से — विशिष्टि

IS 1855: 2024

(चौथा पुनरीक्षण)

Stranded Steel Wire Ropes for Winding and Man-Riding Haulages in Mines — Specification

(Fourth Revision)

ICS 73.100.40; 77.140.65

© BIS 2024

भारतीय मानक ब्यूरो

BUREAU OF INDIAN STANDARDS मानक भवन, 9 बहादुर शाह ज़फर मार्ग, नई दिल्ली - 110002 MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG NEW DELHI - 110002

www.bis.gov.in www.standardsbis.in

FOREWORD

This Indian Standard (Fourth Revision) was adopted by the Bureau of Indian Standards, after the draft finalized by the Wire Ropes and Wire Products Sectional Committee had been approved by the Mechanical Engineering Division Council.

This standard was first published in 1961 and was revised in 1977, 2003 and 2022. The standard is being revised again for incorporating the modifications found necessary as a result of experience gained with the use of this standard. Also, the major changes in the standard with this revision are given below:

- a) The scope of the standard has been modified;
- b) Provision for minimum breaking force has been modified; and
- c) Requirements for wire rope core has been modified in 6.2.

All the necessary information regarding the conditions, under which the rope is to be used together with other particulars, laid down in Annex A, shall be supplied with the enquiry and order.

The composition of the Committee responsible for the formulation of this standard is given in Annex B.

For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test or analysis, shall be rounded off in accordance with IS 2:2022 'Rules for rounding off numerical values (*second revision*)'. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.

Indian Standard

STRANDED STEEL WIRE ROPES FOR WINDING AND MAN-RIDING HAULAGES IN MINES — SPECIFICATION

(Fourth Revision)

1 SCOPE

This standard covers general requirements for stranded steel wire ropes for winding and manriding haulages in mines. Most common rope constructions and rope types are given in following table. Common rope grades, cores and size ranges are identified by x mark. Specially developed constructions including compacted ropes, cushion core rope and plastic valley filled ropes may be used to fulfill specific requirement of the installation if agreed between manufacturer and purchaser.

Sl No.	Construction	Туре		Ro	ope Gra	de		Con	re	Rope Size	Table
			1230	1420	1570	1770	1960	Fibre	Steel	(Diam etre, in mm)	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
i)	6 × 7 (6 – 1)	Round strand	_	_	×	×	×	×	×	13 to 29	1
ii)	6 × 15 S (7 – 7 –1)		_		×	×	×	×	×	13 to 32	2
iii)	6 × 17 S (8 – 8 –1)				×	×	×	×	×	13 to 35	
iv)	6 × 19 S (9 – 9 – 1)				×	×	×	×	×	13 to 38	
v)	6 × 26 SW (10 -5 + 5 - 5 - 1)				×	×	×	×	×	25 to 41	3
vi)	6 × 31 SW (12 -6 + 6 - 6 - 1)				×	×	×	×	×	29 to 44	
vii)	6 × 36 SW (14 – 7 + 7 – 7 – 1)		_	_	×	×	×	×	×	35 to 51	
viii)	6 × 41 SW (16 – 8 + 8 – 8 – 1)				×	×	×	×	×	38 to 60	
ix)	6 × 49 SWS (16 - 8 + 8 - 8 - 8 - 1)				×	×	×	×	×	51 to 64	
x)	6 × 46 SW (18 – 9 + 9 – 9 - 1)				×	×	×	×	×	51 to 64	
xi)	6 × 52 SW (18 - 9 + 9 - 9/6 - 1)				×	×	×	×	×	51 to 64	
xii)	$17 \times 7 [11 \times 7$ (6-1): 6 × 7(6 -1)]	Multi strand	×	×	×	×	×	×	×	16 to 35	4
xiii)	$18 \times 7 [12 \times 7 (6-1): 6 \times 7 (6-1)]$		×	×	×	×	×	×	×	16 to 35	

IS 1855: 2024

Sl No.	Construction	Туре		Re	pe Grad	de		Сол	re	Rope	Table
					__					Size	
			1230	1420	1570	1770	1960	Fibre	Steel	(Diam etre, in mm)	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
xiv)	34 × 7 [17 × 7 (6 -1): 11 × 7(6 - 1)/6 × 7 (6 - 1)]	Rotation resistant	×	×	×	×	×	×	×	19 to 60	5
xv)	36 × 7 [18 × 7(6 -1):12 × 7 (6 - 1)/6 × 7(6 - 1)]		×	×	×	×	×	×	×	19 to 60	
xvi)	$35 \times 7 [16 \times 7 (6 - 1) : 6 \times 7 (6 - 1) + 6 \times 7 (6 - 1) - 6 \times 7 (6 - 1) - 1 \times 7 (6 - 1)$				×	×	×		×	19 to 60	8
xvii)	$40 \times 7 [18 \times 7 (6$ $-1): 7 \times 7 (6 - 1) + 7 \times 7 (6 - 1)$ $-7 \times 7 (6 - 1) - 1 \times 7 (6 - 1)]$				×	×	×		×	19 to 60	8
xviii)	35 × 19 S [16 × 19S (9 - 9 - 1) : 6 × 19 S (9 - 9 - 1) + 6 × 19S (9 - 9 - 1) - 6 × 19 S (9 - 9 - 1) - 1 × 19S (9 - 9 - 1)				×	×	×		×	19 to 60	8
xix)	* 15 × 7				×	×	×		×	19 to 60	8
xx)	* 16 × 7				×	×	×		×	19 to 60	8
xxi)	6 × V 8 (7 – Δ)	Flattened strand	_		×	×	×	×	×	16 to 32	6
xxii)	$6 \times V 9 (8 - \Delta)$				×	×	×	×	×	16 to 32	
xxiii)	6 × V 22 (9/12 – Δ)		_	_	×	×	×	×	×	25 to 36	7
xxiv)	6 × V 25 (12/12 - Δ)				×	×	×	×	×	25 to 44	
xxv)	6 × V 28 (15/12 - Δ)				×	×	×	×	×	32 to 56	
xxvi)	6 × V 31 (18/12 - Δ)				×	×	×	×	×	36 to 64	

 $^{*15 \}times 7$ and 16×7 construction rope shall have IWRC having more than 7 strands for flexibility and lay direction shall be opposite to rope lay direction for rotational resistance property.

2 REFERENCES

The standards given below contain provisions, which through reference in this text constitute provisions of this standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this standard are encouraged to investigate the possibility of applying the most recent edition of these standards:

IS No.	Title
IS 1804 : 2004	Steel wire ropes — Fibre main cores — Specification (fourth revision)
IS 1835 : 1976	Specification for round steel wire for ropes (third revision)
IS 2363 : 2022	Glossary of terms relating to wire ropes (second revision)
IS 9182 (Part 1): 1993	Lubricants for wire ropes and fire cores — Specification: Part 1 Lubricants for fibre core of wire ropes (first revision)
IS 13917 : 2003	Stranded wire ropes for mine hoisting — Technical delivery requirements (first revision)

3 TERMINOLOGY

For the purpose of this standard, the definitions given in IS 2363 shall apply.

4 ROPE SIZE AND TOLERANCE

Most common size of rope, designated, as 'nominal diameter' are given in <u>Table 1</u> to <u>Table 7</u>; however other size may be given as agreed between the manufacturer and purchaser. The actual diameter of the rope as supplied shall be within + 4, - 1 percent of the nominal diameter.

5 MINIMUM BREAKING FORCE

Minimum breaking force shall be as given in <u>Table 1</u> to <u>Table 8</u> or higher values as agreed between manufacturer and purchaser. Minimum breaking force for compacted ropes and specially developed ropes may be as agreed between manufacturer and purchaser.

NOTE — The actual breaking force shall not fall below the minimum breaking force values and may be obtained

through Method A or B (including foot notes) as specified in IS 13917.

6 GENERAL REQUIREMENTS

The wire rope shall conform to IS 13917 in addition to the requirements given below:

6.1 Wire

The chemical composition of the raw material for producing wires to be used in the rope shall conform to any of the Grades 1, 2 and 3 of IS 1835.

6.2 Core

Core shall be fibre core or steel core as per $\underline{6.2.1}$ and $\underline{6.2.2}$.

6.2.1 Fibre Core

The core shall be made from natural hard fibre, either manila (abaca) or sisal, and shall conform to the requirements laid down in IS 1804.

6.2.2 Steel Core

Whenever steel main core is specified, it shall be an independent wire rope core (CWR), except for multi-strand rotation resistant ropes where wire strand cores (CWS) shall be used. In case of inner core of multi-strand rotation resistant rope is having 3 or 4 number of strands in first inner layer, there may not have essentially a central core. The tensile designation of the wires for steel core and core wires in the strands of the rope shall not exceed the tensile grade of the main rope wires, however, it can be up to one grade lower than the main rope wires. In case of shaped wires from strand core, **4.3** of IS 13917 shall be referred.

NOTE — The use of steel core has certain advantages in adverse conditions, such as corrosive atmosphere, multi-layer winding leading to crushing of rope, and deep shaft winding leading to considerable stretch in the rope.

6.3 Joints

6.3.1 Joints in wires at the final stage shall be avoided as far as possible, but where necessary, those shall be spread as widely as possible in the strand and in no case more than one wire shall be joined in a strand length of every 1 000 m or part. Total number of such joints shall not be more than 3 in any length of rope.

6.3.2 The joints shall be as far as possible electrically welded or brazed.

To access Indian Standards click on the link below:

IS 1855: 2024

6.3.3 Tucked joints shall not be permitted.

6.4 Lay

6.4.1 *Direction of Lay*

The rope shall be of Lang's lay unless otherwise specified by the purchaser (zZ or sS).

6.4.2 Length of Lay

The length of lay of ropes shall not exceed 8 times the nominal diameter.

6.5 Mass

- **6.5.1** The rope mass values shown in <u>Table 1</u> to <u>Table 8</u> are of fully lubricated ropes. The ropes, which are not lubricated, may be lighter.
- **6.5.2** The actual rope mass shall meet the requirements of IS 13917.

NOTE — Rope mass values for the rope not covered in the <u>Table 1</u> to <u>Table 8</u> shall be as agreed between manufacturer and supplier.

7 GALVANIZING

Galvanizing shall meet the requirement of IS 13917.

8 LUBRICATION

- **8.1** The ropes shall be thoroughly lubricated with an appropriate lubricant specified in IS 13917 unless otherwise requested by the purchaser specifically.
- **8.2** Galvanized ropes for friction winder shall be lubricated with a lubricant, which will be resistant to slippage.
- **8.3** Fibre core shall be lubricated with a suitable lubricant as specified in IS 9182 (Part 1) and shall have retention of lubricant after rope making (in new condition):
 - a) to an extent of minimum 12 percent by mass of dry fire core for general winding ropes; and
 - b) to an extent of minimum 8 percent by mass of dry fire core for friction winder ropes.

9 FREEDOM FROM DEFECTS

The completed ropes shall be free from defects like loose wires and strands, kink, protrusion of core and other irregularities that can be detected visually. The ropes shall be evenly laid and shall remain in condition when properly unwound from the reel.

10 SAMPLING PLAN

10.1 Lot

Steel wire rope of same size manufactured using the same set of strands and same type of core under identical condition of production, shall constitute a lot.

NOTE — Manufacturer shall provide evidence for the tractability of the individual rope lengths to the parent rope to establish that those represent the lot as defied above.

- **10.2** For ascertaining the conformity of a lot, the following sampling plan shall be made:
 - a) Dimensional checking 100 percent; or
 - Breaking force test one sample from a lot

11 PREFORMING

Round and flattened strand ropes shall be preformed unless otherwise agreed upon. Multi-strand rotation resistant ropes may at the option of the manufacturer be supplied as non-preformed. Manufacturer shall provide at least one seizing at the rope ends for all round and flattened strand ropes and two to three seizing's of appropriate length and distance in case of rotation resistant ropes.

12 TEST

The wire ropes shall meet the test requirements and compliance criteria as laid down in IS 13917.

13 PACKING AND MARKING

3.1 Packing

Packing shall be done as per IS 13917.

13.2 Marking

The reel number, nominal rope size, construction, rope grade, direction of lay, core, coating, length, purchaser's order reference and any other marking which may be specified by the purchaser shall be legibly displayed on both sides of reel flanges through suitable tags or stenciling.

13.3 BIS Certification Marking

The product(s) conforming to the requirements of this standard may be certified as per the conformity assessment schemes under the provisions of the *Bureau of Indian Standards Act*, 2016 and the Rules and Regulations framed thereunder, and the products may be marked with the Standard Mark.

Table 1 Breaking Force and Mass for 6×7 (6-1) Construction Ropes

(Clauses 4, 5, 6.5.1 and 6.5.2)

Typical Cross Section	Typical Construction			
(88) (88)	Rope Construction	Strand Construction		
WITH FIBRE CORE (CF) 6×7 (6-1)-CWR	6 × 7	6-1		

Sl No.	Nominal	ominal Nominal Mass ameter		Minimum Breaking Force Corresponding to Rope Grade of							
	Diameter			15	570	17	770	1960			
		Fibre Core	Steel Core	Fibre Core	Steel Core	Fibre Core	Steel Core	Fibre Core	Steel Core		
		(CF)	(CWR)	(CF)	(CWR)	(CF)	(CWR)	(CF)	(CWR)		
	mm	kg/	kg/100		kN	kN	kN	kN	kN		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)		
i)	13	60.4	66.4	88.1	95.2	99.4	107	110	119		
ii)	14	70.1	77.0	102	110	115	124	128	138		
iii)	16	91.5	101	134	144	151	163	167	180		
iv)	18	116	127	169	183	191	206	211	228		
v)	19	129	142	188	203	212	229	235	254		
vi)	20	143	157	209	225	235	254	260	281		
vii)	21	158	173	230	248	259	280	287	310		

IS 1855: 2024

 Table 1 (Concluded)

Sl No.	Nominal	Nomin	al Mass		Minimum Bre	aking Force Co	rresponding to	Rope Grade of			
	Diameter			15	70	17	70	1960			
		Fibre Core	Steel Core	Fibre Core	Steel Core	Fibre Core	Steel Core	Fibre Core	Steel Core		
		(CF)	(CWR)	(CF)	(CWR)	(CF)	(CWR)	(CF)	(CWR)		
	mm k		kg/100		kg/100		kN	kN	kN	kN	kN
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)		
viii)	22	173	190	252	273	285	307	315	340		
ix)	24	206	226	300	324	339	366	375	405		
x)	25	223	246	326	352	367	397	407	440		
xi)	26	242	266	353	381	397	429	440	475		
xii)	27	261	287	380	411	429	463	475	513		
xiii)	28	280	308	409	442	461	498	510	551		
xiv)	29	301	331	439	474	495	534	548	591		

NOTE — To calculate the aggregate breaking force, multiply the figures given in col (4), (6) and (8) by 1.111 and in col (5), (7) and (9) by 1.193.

Table 2 Breaking Force and Mass for 6×15 S (7 –7 –1), 6×17 S (8 –8 –1) and 6×19 S (9 –9 –1) Construction Ropes

Typical Cross Section	Typical Construction				
	Rope Construction	Strand Construction			
(0.000000000000000000000000000000000000					
	6 × 15S	7-7-1			
	6 × 17S	8-8-1			
	6 × 19S	9-9-1			
WITH FIBRE CORE (CF) WITH STEEL CORE (CWR)					

Sl No.	Nominal	Nomin	al Mass	Minimum Breaking Force Corresponding to Rope Grade of							
	Diameter			15	570	17	770	19	960		
		Fibre	Steel	Fibre	Steel	Fibre	Steel	Fibre	Steel		
		Core	Core	Core	Core	Core	Core	Core	Core		
		(CF)	(CWR)	(CF)	(CWR)	(CF)	(CWR)	(CF)	(CWR)		
	mm	kg/	100	kN	kN	kN	kN	kN	kN		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)		
i)	13	63.0	69.3	87.8	94.8	99.0	107	110	118		
ii)	14	73.0	80.3	102	110	115	124	127	137		
iii)	16	95.4	105	133	144	150	162	166	179		
iv)	18	121	133	168	182	190	205	210	227		
v)	19	135	148	188	203	211	228	234	253		
vi)	20	149	164	208	224	234	253	260	280		
vii)	21	164	181	229	247	258	279	286	309		
viii)	22	180	198	252	272	284	306	314	339		
ix)	24	215	236	299	323	337	364	374	403		
x)	25	233	256	325	351	366	395	405	438		
xi)	26	252	277	351	379	396	428	439	474		
xii)	27	272	299	379	409	427	461	473	511		
xiii)	28	292	321	407	440	459	496	509	549		
xiv)	29	313	345	437	472	493	532	546	589		
xv)	32	382	420	532	575	600	648	664	717		
xvi)	35	456	502	637	687	718	775	795	858		
xvii)	38	538	592	750	810	846	913	937	1012		

NOTE — To calculate the aggregate breaking force, multiply the figures given in col (4), (6) and (8) by 1.163 and in col (5), (7) and (9) by 1.25.

Table 3 Breaking Force and Mass for 6×26 SW (10-5+5-5-1), 6×31 SW (12-6+6-6-1), 6×36 SW (14-7+7-7-1), 6×41 SW (16-8+8-8-1) and 6×49 SWS (16-8+8-8-8-1) Construction Ropes

Typical Cross Section	Typical	Construction
	Rope Construction	Strand Construction
	6 × 26SW	10-5+5-5-1
	6 × 31 SW	12 - 6 + 6 - 6 - 1
	$6 \times 36 \text{ SW}$	14 - 7 + 7 - 7 - 1
WITH FIBRE CORE (CF) WITH STEEL CORE (CWR)	6 × 41 SW	16 - 8 + 8 - 8 - 1
	6 × 49SWS	16 - 8 + 8 - 8 - 8 - 1
	6 × 46SW	18 - 9 + 9 - 9 - 1
	6 × 52SW	18 - 9 + 9 - 9/6 - 1

Sl No.	Nominal	Nomin	al Mass	Minimum Breaking Force Corresponding to Rope Grade of							
	Diameter			15	570	17	770	19	960		
		Fibre	Steel	Fibre	Steel	Fibre	Steel	Fibre	Steel		
		Core	Core	Core	Core	Core	Core	Core	Core		
		(CF)	(CWR)	(CF)	(CWR)	(CF)	(CWR)	(CF)	(CWR)		
	mm	kg	/100	kN	kN	kN	kN	kN	kN		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)		
i)	25	238	261	324	350	365	394	404	436		
ii)	26	257	283	350	378	395	426	437	472		
iii)	28	298	328	406	439	458	494	507	548		
iv)	29	320	352	436	470	491	530	544	587		
v)	32	389	428	530	573	598	646	662	715		
vi)	35	466	512	634	685	715	773	792	855		
vii)	36	493	542	671	725	757	817	838	905		
viii)	38	549	604	748	808	843	911	934	1 008		
ix)	40	608	669	829	895	934	1 009	1 035	1 117		
x)	41	639	703	871	940	982	1 060	1 087	1 174		
xi)	42	671	738	914	987	1 030	1 112	1 141	1 232		
xii)	44	736	810	1 003	1 083	1 130	1 221	1 252	1 352		
xiii)	48	876	964	1 193	1 289	1 345	1 453	1 490	1 609		
xiv)	51	989	1 088	1 347	1 455	1 519	1 640	1 682	1 816		
xv)	52	1 028	1 131	1 401	1 513	1 579	1 705	1 748	1 888		
xvi)	56	1 192	1 311	1 624	1 754	1 831	1 978	2 028	2 190		
xvii)	60	1 369	1 506	1 856	2 014	2 102	2 270	2 328	2 514		
(viii)	64	1 557	1 713	2 121	2 291	2 392	2 583	2 648	2 860		

Table 4 Breaking Force and Mass for 17×7 (6 –1) and 18×7 (6 –1) Construction Ropes

Typical Cross Section	Typical Construction					
	Rope Construction	Strand Construction				
	$17 \times 7 (11 \times 7 : 6 \times 7 - FC)$	6-1				
	$17 \times 7 (11 \times 7 : 6 \times 7 - 1 \times 7)$	6-1				
	$18 \times 7 (12 \times 7 : 6 \times 7 - FC)$	6-1				
	$18 \times 7 (12 \times 7 : 6 \times 7 - 1 \times 7)$	6-1				
WITH FIBRE CORE (CF) WITH STEEL CORE (CWS)						

Sl No.	Nominal Diameter	Nomin	al Mass			Mini	imum Breaki	ng Force Cor	responding to	o Rope Grade	e of		
		iameter		1230		14	1420		1570		1770		1960
		Fibre core (CF)	Steel core (CWS)										
	mm	kg/	100	kN	kN								
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
i)	16	98	103	100	103	116	119	128	132	144	149	160	165
ii)	19	138	145	141	146	163	168	181	186	204	210	225	232
iii)	20	153	161	226	161	181	186	200	206	226	232	250	257
iv)	22	185	195	190	195	219	225	242	249	273	281	302	311
v)	24	220	232	226	232	261	268	288	297	325	335	360	370
vi)	25	239	251	245	252	283	291	313	322	352	363	390	402
vii)	26	259	272	265	273	306	315	338	348	381	393	422	435
viii)	27	279	293	286	294	330	340	365	376	411	423	455	469
ix)	28	300	315	307	316	355	365	392	404	442	455	490	504
x)	32	392	412	401	413	463	477	512	527	577	595	639	659
xi)	35	469	492	480	494	554	571	613	631	691	711	765	788

NOTE — To calculate the aggregate breaking force, multiply the figures given in col (4), (6), (8), (10) and (12) by 1.28 and in col (5), (7), (9), (11) and (13) by 1.32.

Table 5 Breaking Force and Mass for $34 \times 7~(6-1)$ and $36 \times 7~(6-1)$ Construction Ropes

Typical Cross Section	Typical Construction			
	Rope Construction	Strand Construction		
	$34 \times 7 (17 \times 7 : 11 \times 7/6 \times 7 - FC)$	6-1		
	$34 \times 7 (17 \times 7 : 11 \times 7/6 \times 7 - 1 \times 7)$	6-1		
	$36 \times 7 (18 \times 7 : 12 \times 7/6 \times 7 - FC)$	6-1		
	$36 \times 7 (18 \times 7 : 12 \times 7/6 \times 7 - 1 \times 7)$	6-1		
WITH FIBRE CORE (CF) WITH STEEL CORE (CWS)	$60 \times 7 (24 \times 7 : 18 \times 7 : 12 \times 7 : 6 \times 7 - FC)$	6-1		

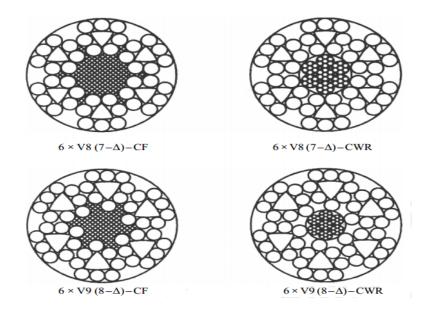
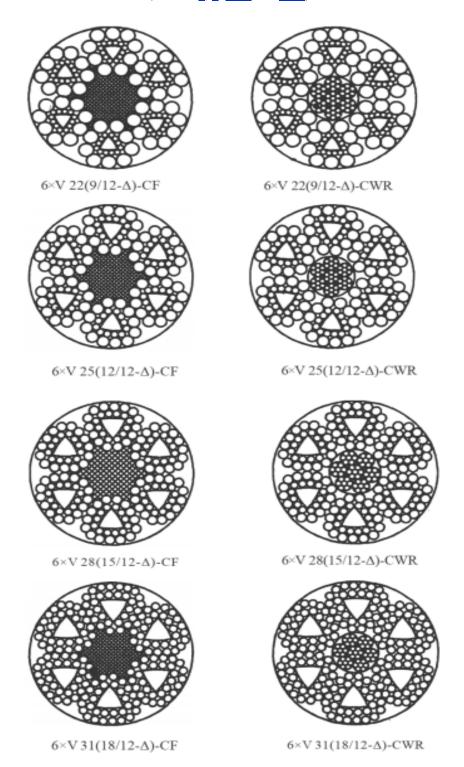

Sl	Nominal	Nomina	al Mass			Min	imum Break	ing Force Co	rresponding	to Rope Gra	de of		
No.	Diameter			1230		1420		1570		1770		1960	
		Fibre Core	Steel Core	Fibre Core	Steel Core	Fibre Core	Steel Core	Fibre Core	Steel Core	Fibre Core	Steel Core	Fibre Core	Steel Core
		(CF)	(CWS)	(CF)	(CWS)	(CF)	(CWS)	(CF)	(CWS)	(CF)	(CWS)	(CF)	(CWS)
	mm	kg/	100	kN	kN	kN	kN	kN	kN	kN	kN	kN	kN
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
i)	19	141	145	139	141	160	163	177	180	199	203	221	225
ii)	22	189	195	186	190	215	219	237	242	267	273	296	302
iii)	25	244	251	240	245	277	283	306	312	345	352	382	390
iv)	26	264	272	260	265	300	306	331	338	374	381	414	422
v)	28	306	315	301	307	348	354	384	392	433	442	480	489
vi)	30	351	362	346	352	399	407	441	450	497	507	551	562
vii)	32	400	412	393	401	454	463	502	512	566	577	627	639
viii)	34	451	465	444	453	512	523	567	578	639	651	707	721
ix)	36	506	521	498	508	575	586	635	648	716	730	793	809

 Table 5 (Concluded)

Sl	Nominal	Nomina	al Mass		Minimum Breaking Force Corresponding to Rope Grade of								
No.	Diameter			12	30	1420		1570		1770		1960	
		Fibre Core	Steel Core	Fibre Core	Steel Core	Fibre Core	Steel Core	Fibre Core	Steel Core	Fibre Core	Steel Core	Fibre Core	Steel Core
		(CF)	(CWS)	(CF)	(CWS)	(CF)	(CWS)	(CF)	(CWS)	(CF)	(CWS)	(CF)	(CWS)
	mm	kg/	100	kN	kN	kN	kN	kN	kN	kN	kN	kN	kN
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
x)	38	563	580	555	566	640	653	708	722	798	814	884	901
xi)	40	624	643	614	627	709	723	784	800	884	902	979	999
xii)	41	656	676	646	658	745	760	824	840	929	947	1 029	1 049
xiii)	44	755	778	743	758	858	875	949	968	1 070	1 091	1 185	1 208
xiv)	48	899	926	885	902	1 021	1 042	1 129	1 152	1 273	1 298	1 410	1 438
xv)	51	1 015	1 046	999	1 019	1 153	1 176	1 275	1 300	1 437	1 466	1 592	1 623
xvi)	52	1 055	1 087	1 038	1 059	1 199	1 223	1 325	1 352	1 494	1 524	1 655	1 687
xvii)	55	1 180	1 216	1 162	1 185	1 341	1 368	1 483	1 512	1 672	1 705	1 851	1 888
xviii)	56	1 224	1 261	1 204	1 228	1 390	1 418	1 537	1 568	1 733	1 767	1 919	1 957
xix)	60	1 405	1 447	1 382	1 410	1 596	1 628	1 765	1 800	1 989	2 029	2 203	2 247

NOTE — To calculate the aggregate breaking force, multiply the figures given in col (4), (6), (8), (10) and (12) by 1.33 and in col (5), (7), (9), (11) and (13) by 1.346.

Table 6 Breaking Force and Mass for $6 \times V$ 8 (7 $-\Delta$) and $6 \times V$ 9 (8 $-\Delta$) Construction Ropes


Sl No.	Nominal	Nomin	al Mass	Minim	ım Breakir	ng Force Co	rresponding	g to Rope (Grade of
	Diameter			15	570	17	770	19	960
		Fibre	Steel	Fibre	Steel	Fibre	Steel	Fibre	Steel
		Core	Core	Core	Core	Core	Core	Core	Core
		(CF)	(CWR)	(CF)	(CWR)	(CF)	(CWR)	(CF)	(CWR)
	mm	kg/	100	kN	kN	kN	kN	kN	kN
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
i)	16	105	114	145	154	164	174	182	193
ii)	19	148	161	205	218	231	245	256	272
iii)	20	164	179	227	241	256	272	284	301
iv)	21	181	197	251	266	283	300	313	332
v)	22	198	216	275	292	310	329	343	364
vi)	24	236	257	327	347	369	391	409	434
vii)	25	256	279	355	377	400	425	443	470
viii)	26	277	302	384	408	433	459	480	509
ix)	29	345	376	478	507	539	572	597	633
x)	32	420	458	582	617	656	696	727	771

NOTES

¹ To calculate the aggregate breaking force, multiply the figures given in col (4), (6) and (8) by 1.137 and in col (5), (7) and (9) by 1.21. 2 In case of Δ wire, 3 or more round wires may also be used.

Table 7 Breaking Force and Mass for $6 \times V$ 22 $(9/12 - \Delta)$, $6 \times V$ 25 $(12/12 - \Delta)$, $6 \times V$ 28 $(15/12 - \Delta)$ and $6 \times V$ 31 $(18/12 - \Delta)$ Construction Ropes

(Clauses $\underline{4}$, $\underline{5}$, $\underline{6.5.1}$ and $\underline{6.5.2}$)

IS 1855: 2024

Sl No.	Nominal	Nomin	al Mass	Minimu	ım Breakir	g Force C	orrespondi	ng to Rope	Grade of
	Diameter			15	570	17	770	19	60
		Fibre	Steel	Fibre	Steel	Fibre	Steel	Fibre	Steel
		Core	Core	Core	Core	Core	Core	Core	Core
		(CF)	(CWR)	(CF)	(CWR)	(CF)	(CWR)	(CF)	(CWR)
	mm	kg/	100	kN	kN	kN	kN	kN	kN
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
i)	25	256	279	344	365	388	412	430	456
ii)	26	277	302	373	395	420	445	465	493
iii)	28	321	350	432	458	487	516	539	572
iv)	29	345	376	463	491	522	554	579	613
v)	32	420	458	564	598	636	674	704	747
vi)	35	502	548	675	715	761	807	843	893
vii)	36	531	579	714	757	805	853	892	945
viii)	40	656	715	882	934	994	1 054	1 110	1 167
ix)	44	794	865	1 067	1 131	1 203	1 275	1 332	1 412
x)	48	945	1 030	1 270	1 346	1 431	1 571	1 585	1 680
xi)	51	1 066	1 163	1 433	1 519	1 616	1 713	1 789	1 896
xii)	52	1 109	1 209	1 490	1 579	1 680	1 780	1 860	1 972
xiii)	56	1 286	1 402	1 728	1 832	1 948	2 065	2 157	2 287
xiv)	60	1 476	1 609	1 984	2 103	2 237	2 370	2 477	2 625
xv)	64	1 679	1 831	2 257	2 392	2 545	2 697	2 818	2 986

NOTES

¹ To calculate the aggregate breaking force, multiply the figures given in col (4), (6) and (8) by 1.177 and in col (5), (7) and (9) by 1.25. 2 In case of Δ wire, 3 or more round wires may also be used.

Table 8 Breaking Force and Mass for 35×7 (6-1) and $35 \times 19S$ (9-9-1) Construction $35(W) \times 7$ Class and 15×7 Class Ropes

(Clauses <u>5</u>, <u>6.5.1</u> and <u>6.5.2</u>)

Typical Cross Section	Typical Constru	ction
	Rope Construction	Strand Construction
	$35 \times 7 (16 \times 7 : 6 \times 7 + 6 \times 7 - 6 \times 7)$	6-1
	-1×7	
	$40 \times 7 [18 \times 7 : 7 \times 7 + 7 \times 7 - 7 \times 7]$	6-1
	-1 × 7)	
	$35 \times 19S (16 \times 19S : 6 \times 19S + 6 \times$	9-9-1
₩	$19S - 6 \times 19S - 1 \times 19S$)	
∞ ∞ ∞∞	15 × 7 : IWRC	6-1
WITH STEEL CORE (CWS)	16 × 7 : IWRC	6-1
88888 88088 88088		
88 88 88 88 88 88 88 88 88 88 88 88 88		
WITH STEEL CORE (CWR)		

Sl No.	Nominal Diameter	Approximate Mass	Minimum Braking Force Corresponding to Rope Grade of				
			1570	1770	1960		
		Steel Core	Steel Core	Steel Core	Steel Core		
		(CWR)	(CWR)	(CWR)	(CWR)		
	mm	kg/100 m	kN	kN	kN		
(1)	(2)	(3)	(4)	(5)	(6)		
i)	19	164	204	230	255		
ii)	20	182	226	255	282		
iii)	22	220	274	308	342		
iv)	24	262	326	367	406		
v)	25	284	353	398	441		
vi)	26	307	382	431	477		
vii)	28	356	443	500	553		
viii)	29	382	475	536	593		
ix)	30	409	509	573	635		
x)	32	465	579	652	723		
xi)	34	525	653	737	816		
xii)	35	556	692	781	864		
xiii)	36	588	732	826	914		
xiv)	38	656	816	920	1 019		

 Table 8 (Concluded)

Sl No.	Nominal Diameter	Approximate Mass	Minimum Bra	king Force Corresp Grade of	oonding to Rope
			1570	1770	1960
		Steel Core	Steel Core	Steel Core	Steel Core
		(CWR)	(CWR)	(CWR)	(CWR)
	mm	kg/100 m	kN	kN	kN
(1)	(2)	(3)	(4)	(5)	(6)
xv)	40	726	904	1 020	1 129
xvi)	42	801	997	1 124	1 245
xvii)	44	879	1 094	1 234	1 366
xviii)	45	919	1 145	1 290	1 429
xix)	46	961	1 196	1 348	1 493
xx)	48	1 046	1 302	1 468	1 626
xxi)	50	1 135	1 413	1 593	1 764
xxii)	51	1 181	1 470	1 657	1 835
xxiii)	52	1 228	1 528	1 723	1 908
xxiv)	54	1 324	1 648	1 858	2 058
xxv)	55	1 373	1 710	1 928	2 134
xxvi)	56	1 424	1 772	1 998	2 213
xxvii)	58	1 527	1 901	2 144	2 374
xxviii)	60	1 634	2 035	2 294	2 540

ANNEX A

(Foreword)

INFORMATION TO BE GIVEN WITH THE ENQUIRY OR ORDER

The information to be given with the enquiry or order is detailed below. It is recommended that the information should be supplied in the tabular form as illustrated in Table 9.

A-1 PARTICULARS OF SHAFT

- a) Depth From lowest working level in shaft to bank, vertical distance from bank to center of head pulley;
- b) Whether up cast, downcast, or both;
- Whether wet or dry, and approximate range of temperature variation;
- d) Whether shaft water is known to be of an injurious nature; its pH value and chloride content, if available; and
- e) Whether steam is exhausted into the shaft, and whether there are any other special circumstances likely to affect the rope.

A-2 PARTICULARS OF WINDING ENGINE DRUM

- a) Type of drum:
 - If parallel type, give diameter, width and distance of fist and last live turns from centerline of drum;
 - If conical type, give minimum and maximum diameters, width and distance of fist and last working turns from centerline of drum; and
 - 3) If cylindro-conical type, give maximum and minimum diameters, distance of fist and last live turns from centre-line of drum, number of working turns on the minimum diameter, number of turns on the scroll, width of drum, width of scroll and width of parallel portion of drum:
- Nature and arrangement of drum lagging or cladding material and particulars of any grooving; and
- Whether rope is wound on itself; if so, number of layers.

A-3 PARTICULARS OF DRIVING SHEAVE

- a) Diameter; and
- b) Rope groove lining.

A-4 PARTICULARS OF PITHEAD PULLEYS AND POSITION WITH RESPECT TO WINDING ENGINE

- a) Horizontal and vertical distance between centres of pithead pulleys and whether the vertical centreline of or between the pulleys coincides with the centreline of the drum or sheave;
- b) Diameter of pithead pulley at the bottom of groove;
- Diameter of any guide sheave and its position with respect to the pithead pulley or driving sheave;
- d) Height of centre of head pulley above centre of drum or ground type driving sheave:
- e) Horizontal distance between centre of drum or ground type driving sheave and rope hanging in shaft; and
- f) Inside and outside fleet angles.

A-5 MAXIMUM WINDING SPEED IN METRES PER SECOND

A-6 MAXIMUM ACCELERATION IN METRES PER SECOND PER SECOND OF ROPE WHEN RAISING FULL LOAD

A-7 MAXIMUM LOAD AND NORMAL LOAD SUSPENDED FROM THE WINDING ROPE CAPPING INCLUDING THE MASS OF ANY BALANCE ROPE AND ITS ATTACHMENTS

A-8 TYPE OF CAGE GUIDES

A-9 PARTICULARS OF ROPE REQUIRED OR PROPOSED

- a) Length, in m;
- b) Nominal diameter, in mm;
- c) Construction;
- d) Minimum breaking force, in kN;
- e) Round strand or flattened strand Lang's lay or ordinary lay, right hand or left hand, preformed or non-preformed;
- f) Rope grade;
- g) If the wire is to be galvanized, state type;
- h) Material of main core, fibre or wire.

A-10 PARTICULARS OF INSPECTION AND TESTING REQUIRED

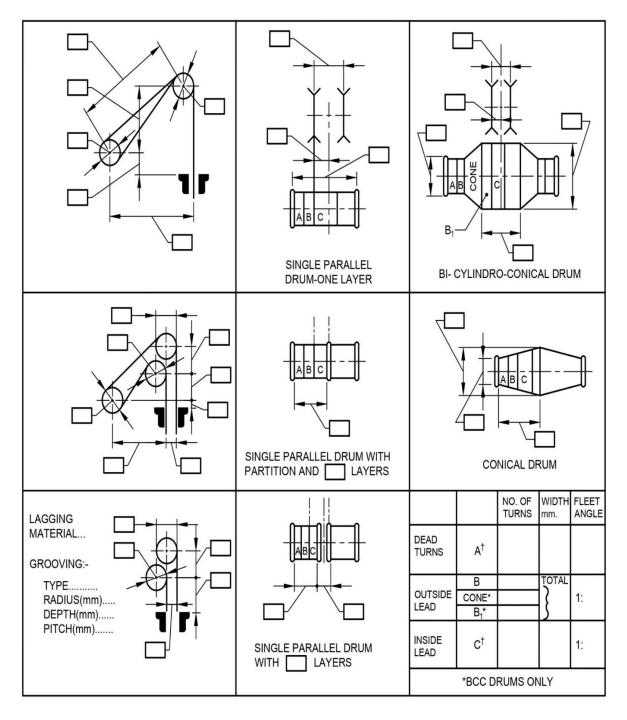

A-11 WHETHER TO BE DELIVERED ON REEL HAVING LIMITING DIMENSIONS

Table 9 Enqiry or Order Form for Winding Rope Round Strand or Flattened Strand Only (Annex A)

	Mine	Engine
	(1)	(2)
a) b) c)	Depth — lowest working level to bank (m) Type of cage guides Any special circumstances in shaft (for example, exhaust steam)	 a) Up cast or downcast b) Wet or dry c) Approximate working temperature range (°C) d) Approximate analysis of shaft water if
2 Rope	Loading	pH value
a)	Maximum working load, excluding rope, but including cage, balance rope, etc (kg)	injurious = $\frac{\text{ph value}}{\text{Chloride (as Cl}_2)\text{parts per million}}$
3 Data	of Rope Required or Proposed	a) Maximum winding speed (m/s)
a) b) c)	Length (m) Diameter (mm) Lay (Lang's or ordinary, right hand or left hand)	b) Maximum acceleration or retardation under full load conditions (m/s²)
d) e) f) g) h) j) k)	Whether preformed Construction Rope grade Minimum breaking force (kN) Whether galvanized and type required Material and construction of main core To be delivered on reel having limiting	
m)	dimensions, if any Details of special tests and inspection	

4 Drum and head gear, type of drum or driving sheave

NOTE — All diameters are to bottom of rope groove.

 $^{^{\}dagger}$ If the rope coil is from right to left, A and C are reversed.

ANNEX B

(Foreword)

COMMITTEE COMPOSITION

Wire Ropes and Wire Products Sectional Committee, MED 10

Organization Representative(s)

Directorate General of Mines Safety, Dhanbad Shri D. B. Naik (Chairperson)

SHRI VIJAY BARAPATRE (Alternate)

Bharat Heavy Electrical Limited, New Delhi Shri Bhaskarjit Barua

SHRI RAMAN BHARIHOKE (Alternate)

Bharat Wire Ropes Limited, Mumbai Shri Mahender Singh Arora

SHRI MAYANK MITTAL (Alternate)

Central Institute of Mining and Fuel Research, DR MANOJ KUMAR SINGH,

Dhanbad DR DEBASISH BSSAK (Alternate)

Directorate General Factory Advice Service and Labour Shri Samir Pandey

Institutes, Mumbai Shri N. Varadharajan (Alternate)

Maccaferri Environment Solutions Pvt. Limited, Navi SHRIMATI MINIMOL KORULLA

Mumbai Shri Rudra Buddhabhatti (Alternate)

Ministry of Ports, Shipping and Waterways, New Delhi Shri Anil Pruthi

SHRI RAMJI SINGH (Alternate)

Nanda and Miller Co, Kolkata Shri J. P. Goenka

National Test House, Kolkata Shri Suresh Parwal

SHRI ANGAD VERMA (Alternate)

Oil and Natural Gas Corporation Limited, New Delhi Shri Ritujit Hazarika

SHRI RAKESH KUMAR SRIVASTAVA (Alternate)

Orient Wire Ropes, Indore Shri Rushikesh Akarte

Otis Elevator Company (India) Limited, Bengaluru Shri Shrihari Vispute

Schindler India Private Limited, Mumbai SHRI NITIN VITHAL KADAM

SHRI KETAN KSHIRSAGAR (Alternate)

TK Elevator India Private Limited, Navi Mumbai Shri Vishnu Parashar

Shri Deepak Balani (Alternate)

Usha Martin Industries Limited, Ranchi Shri Subrata Dutta

SHRI SANDEEP JAISWAL (Alternate)

Vedanta Limited, Mumbai Shri Rakesh Singhiv

BIS Directorate General Shri K. V. Rao, Scientist 'F'/Senior Director and

HEAD (MECHANICAL ENGINEERING) [REPRESENTING

DIRECTOR GENERAL (*Ex-officio*)]

Member Secretary
Shri Sandeep Keshav
Scientist 'C'/ Deputy Director
(Mechanical Engineering), BIS

This Pade has been Intentionally left blank

Bureau of Indian Standards

BIS is a statutory institution established under the *Bureau of Indian Standards Act*, 2016 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Head (Publication & Sales), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the website-www.bis.gov.in or www.standardsbis.in.

This Indian Standard has been developed from Doc No.: MED 10 (25710).

Amendments Issued Since Publication

Amend No.	Date of Issue	Text Affected	

BUREAU OF INDIAN STANDARDS

Headquarters:

Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002

Telephones: 2323 0131, 2323 3375, 2323 9402 *Website*: www.bis.gov.in

reception	201. 2020 0101, 2020 0070, 2020 0102	Website: WWW.bis.gov.iii	
Regional	Offices:		Telephones
Central	: 601/A, Konnectus Tower -1, 6 th Floor, DMRC Building, Bhavbhuti Marg, New Delhi 110002		Telephones { 2323 7617
Eastern	: 8 th Floor, Plot No 7/7 & 7/8, CP Block, Sector V, Salt Lake, Kolkata, West Bengal 700091		2367 0012 2320 9474
Northern	: Plot No. 4-A, Sector 27-B, Madhya Marg, Chandigarh 160019		265 9930
Southern	: C.I.T. Campus, IV Cross Road, Taramani, Chennai 600113		2254 1442 2254 1216
Western	: Manakalya, 5 th Floor/MTNL CETTM, Technology Street, H Mumbai 400076	iranandani Gardens, Powai	25700030 25702715

Branches: AHMEDABAD, BENGALURU, BHOPAL, BHUBANESHWAR, CHANDIGARH, CHENNAI, COIMBATORE, DEHRADUN, DELHI, FARIDABAD, GHAZIABAD, GUWAHATI, HARYANA (CHANDIGARH), HUBLI, HYDERABAD, JAIPUR, JAMMU, JAMSHEDPUR, KOCHI, KOLKATA, LUCKNOW, MADURAI, MUMBAI, NAGPUR, NOIDA, PARWANOO, PATNA, PUNE, RAIPUR, RAJKOT, SURAT, VIJAYAWADA.