BUREAU OF INDIAN STANDARDS

AGENDA

First Working Group Meeting for "Preparation of Working draft for Smoothness test for fabrics" under TXD 01, Physical Methods of Test Sectional Committee

Date/Day	Time	Venue
08 November 2024	1100 hr	Through Video Conferencing
(Friday)	1100 III	Through video Conferencing

CONVENER: Dr M. S. Parmar **MEMBER SECRETARY**: Shri Amit Kumar Pandey

ITEM 0 WELCOME AND INTRODUCTORY REMARKS BY THE CONVENER

ITEM 1 COMPOSITION OF WORKING GROUP TXD 01/WG 01

1.1 The composition of the working group is given as follows:

- i) Dr M. S. Parmar, NITRA, Ghaziabad (Convener)
- ii) Dr Sanjeev Shukla, NITRA, Ghaziabad
- iii) Dr T. Senthilkumar, ICAR-CIRCOT, Mumbai
- iv) Dr A. Arputharaj, ICAR-CIRCOT, Mumbai
- v) Ms Seema Patel, WRA, Thane
- vi) Shri Mayur Basuk, WRA, Thane
- vii) Shri Amit Kumar Pandey, Member Secretary (Textiles)

ITEM 2 PREPARATION OF WORKING DRAFT FOR SMOOTHNESS TEST FOR FABRICS

2.1 In the 27th meeting of TXD 01, the committee had scrutinized the proposal received for formulation of Indian Standard on "Test method for smoothness characteristics for fabrics". After detailed deliberations, the committee decided to constituted a working group to prepare the working draft for Smoothness test for fabrics under the convenorship of Dr M. S. Parmar based on his expertise in the relevant field.

2.1.1 The proposal received from NITRA, Ghaziabad for formulation of Indian Standard on "Test method for smoothness characteristics for fabrics" is given in Annex 1 (Pages 2 to 4). A working draft prepared by BIS in consultation with Dr M.S. Parmar, NITRA, Ghaziabad is given in Annex 2 (Pages 5 to 15). A comparative data of the Smoothness results received from Smoothness tester developed by NITRA, Ghaziabad and surface roughness results received from KAWABATA EVALUATION SYSTEM KES-FB-4 is given in Annex 3 (Pages 16 to 19). The test reports of specimens tested on Smoothness tester developed by NITRA, Ghaziabad is given in Annex 4 (Pages 20 to 21).

2.1.2 The Working Group may **DELIBERATE** and **DECIDE**.

(*Item* 2.1.1)

PROFORMA FOR PROPOSING NEW SUBJECTS FOR NATIONAL STANDARDIZATION

1	Proposer Name & Complete Contact Details	Dr. M.S.Parmar, NITRA, Sector-23, Rajnagar, Ghaziabad-				
	including Phone no and Email ID.	201002, U.P, 0120-2783586, <u>drmsparmar@nitratextile.org</u> ,				
		mail@nitratextile.org				
2	Proposed Title of the standard (Indicate	Title: Method for determination of smoothness				
	whether the standard required is for product	characteristics of fabric (sheet form) -Test method				
	specification/methods of test/code of practice					
	and define the subject in brief)	This test method provides the scope of quantification of				
		smoothness property of fabric using an indigenously				
		developed cost-effective smoothness tester. The data				
		generated by this instrument shall help the finishers to take				
		appropriate decision to alter the recipe or process to meet				
		the required smoothness characteristics of the fabric.				
3		1.1 This standard prescribes a method for determination of				
	limits to be considered)	smoothness behavior of fabrics including woven, knitted and sheet form.				
		1.2 This test standard also specified the type of apparatus to				
		be used for the determination smoothness behavior of				
		fabric.				
		1.3 This test method may not appropriate for materials that				
		demonstrate extensive compressive properties or having				
		pile structure.				
		r				
4	Purpose and Justification	Fabric smoothness-roughness has been considered as one of				
	-	the most important factors of clothing comfort. It is also a				
		significant factor in consumer buying decision. Fabric				
		smoothness behaviour is influenced by many factors like				
		weave particular, yarn characteristics finishing treatments				
		etc. These all factors may increase or decrease the fabric				
		surface friction behavior, which ultimately influence fabric				
		surface smoothness property. Fabric friction, which is				
		defined as the resistance to motion, can be detected when a				
		fabric is rubbed mechanically against itself or tactually				
		between the finger and thumb. Friction is considered to be				
		one property of cloth which has considerable importance in				
		the fields of both technological and subjective assessment.				

		Subjective assessment which specifies the fabric handle, is undoubtedly influenced by the static and dynamic friction between the cloth surface and the thumb or finger, although other properties are also involved in the assessment. The human finger is a sensitive instrument capable of detecting small differences in the frictional behavior of fabrics.
		Objective measurement of the frictional properties of fabrics helps in clear communication and the optimization of a particular process. It is well known that there are always disputes between buyer and manufacturer regarding feel of fabric as there is no cost-effective quantitative method is available which can spell out the feel of the particular fabric.
		This test method provides the scope of quantification of smoothness property of fabric using an indigenously developed cost-effective smoothness tester. The data generated by this instrument shall help the finishers to take appropriate decision to alter the recipe or process to meet the required smoothness characteristics of the fabric.
5	Likely users of standards and their inputs	Textile Finishers, Garment and textile Exporter, defence textile supplier, Kids wear manufacturers
	Any related standard/series of standard/system standard required to make this subject standard complete	NA
7	When the final Standard would be required <i>(any time limit)</i>	Within 3 months
8		As there is no test standard is available, fabric feel/smoothness is not being given. Even in the BIS standards on fabrics, this property is shown in the limitation of the scope.
9	Bearing with Govt legislation regulation, etc	NA
10	Name and address of manufacturers/implementing industries/purchasing organization/component supplier/raw material supplier, if any	The instrument used in the smoothness testing is developed by NITRA under the Ministry of Textiles, Govt of India, sponsored project
	Status of the industry in the country	NA
		Not available as this is first time developed in India.
	Whether related to variety reduction, export, health, safety consumer protection, mass consumption, energy conservation, technology transfer, technology upgradation	

	protoction of anyironment & other national	
	protection of environment & other national	
L	priorities.	
14	Relevant supportive document/other	Attaching conference paper presented in Functional Textiles
	national/international standards, company	& Clothing, 9-12 Feb 2018, IIT, New Delhi, India
	standard, technical & research papers, etc if	
	any (Please give reference or attach a copy)	
15	R&D work done in India	The work is done at NITRA, Ghaziabad
16	Any foreign collaboration (give details)	No
17	Liaison with any organisation(s)	Tested sample of various Textile Industries
18	Preparatory work:	Draft is attached
	a) whether draft attached	
	b) whether outline attached and draft can	
	be prepared	
	c) no draft possible, if so, why?	
19	Whether this project can be funded by your	It is funded by Ministry of Textiles, Govt of India. 50%
	organization or can it be sponsored by	grant given by Ministry of Textiles, Govt of India and rest
	industry/ association/professional	by NITRA
	bodies/ministry? If yes, to what extent?	
20	Whether your organisation would be	Yes
	interested to opt for BIS Standard Mark once	
	the standard is published?	
I		Signature:

Note:

- *i)* It is desirable that information is provided by the proposer for all items of the proforma; in any case information against item 1 to 5 must be provided.
- *ii)* Write `NA' wherever not applicable.
- *iii) Add separate sheet to elaborate.*

($\mathit{Item}\ 2.1.1$)

Preliminary Draft

भारतीय मानक ब्यूरो BUREAU OF INDIAN STANDRADS

Draft For Comments Only

Doc: TXD 01 (xxxxx)P xxxx 2024

(Not to be reproduced without permission of BIS or used as Standard)

भारतीय मानक मसौदा

वस्त्रादि — कपड़ों की स्मूथनेस विशेषताएं — परीक्षण पद्धतियाँ

Draft Indian Standard

TEXTILES — SMOOTHNESS CHARACTERISTICS OF FABRIC — METHODS OF TEST

ICS 59.080.30

Physical Methods of Test Sectional Committee	Last date for receipt of comments
TXD 01	xx xxx 2024

FOREWORD

(Formal clauses will be added later)

Fabric smoothness-roughness has been considered as one of the most important factors of clothing comfort. Fabric smoothness behavior is influenced by many factors like weave particular, yarn characteristics, finishing treatments etc. These all factors may increase or decrease the fabric surface friction behavior, which ultimately influence fabric surface smoothness property. Fabric friction, which is defined as the resistance to motion, can be detected when a fabric is rubbed mechanically against itself or tactually between the finger and thumb. Friction is considered to be one property of cloth which has considerable importance in the fields of both technological and subjective assessment.

Subjective assessment of fabric handle is strongly influenced by the static and dynamic friction between the cloth surface and the thumb or finger, although other properties also play a role. The human finger, highly sensitive, can detect small differences in fabric frictional behavior, yet disputes often arise between buyers and manufacturers over the 'feel' of fabric. This is due to the lack of a cost-effective quantitative method that can accurately represent

the tactile properties. Objective measurement of fabric friction properties would facilitate clearer communication and help optimize specific processes.

This test method provides the scope of quantification of smoothness property of fabric using an indigenously developed smoothness tester. The data generated by this instrument will help the finishers to take appropriate decision to alter the recipe or process to meet the required smoothness characteristics of the fabric.

The procedures for calibration of Smoothness tester developed by NITRA is given in Annex A. The test results of smoothness characteristics of cotton fabric at various processing stages are given in Annex C for information only.

In reporting the result of a test or analysis made in accordance with this standard, if the final value, observed or calculated, is to be rounded off, it shall be done in accordance with IS 2 : 2022 'Rules for rounding off numerical values (*second revision*)'.

Draft Indian Standard

TEXTILES — SMOOTHNESS CHARACTERISTICS OF FABRIC — METHODS OF TEST

1 SCOPE

1.1 This standard prescribes a test method for determination of smoothness characteristics of fabrics including woven and knitted.

1.2 The test method prescribed in this standard may not be appropriate for fabrics that exhibits extensive compressive properties or have pile structure.

2 REFERENCES

The Indian Standards given below contain provisions which through reference in this text, constitute provisions of this standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below:

IS No.	Title
IS 196 : 2024	Atmospheric Conditions for Testing (first revision)
IS 6359 : 2023	Method for conditioning of Textiles (first revision)
IS 6489 (Part 1): 2011	Textiles - Tear properties of Fabrics Part 1- Determination of Tear
	Force using ballistic pendulum method (Elmendorf)

3 TERMS AND DEFINITIONS

For the purposes of this standard, the following definitions shall apply.

3.1 Time Required in Stopping Pendulum — It is a time in milliseconds taken by the pendulum assembly to stop on the arc type platform.

3.2 Smoothness Grading — The time required to stop pendulum is converted into grading. The smoothness grading is given in 1 to 5 scales. Smoothness grade-1 means fabric surface is very rough (smoothness is very poor), smoothness grade-5 means fabric smoothness is excellent. Complete grading system for smoothness characteristics of woven and knitted fabric is given in Table 1 and Table 2 respectively.

4 PRINCIPLE

This test method is based on the pendulum principle. In this method, a constant weight is subjected to swing too and fro as a pendulum on the test specimen and the time taken in stopping the weight due to reduction in the amplitude of the swing with surface friction is measured. Higher the surface friction of the test specimen, lesser will be the time taken in stopping the weight and vice versa. The time taken in stopping the weight is then corelated with the grading system given in Table 1 and Table 2 for determining the smoothness characteristics of fabric. A typical illustration of working principle of the test method is given in Figure 1.

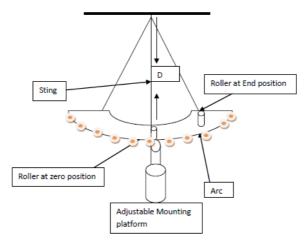


FIG.1 A TYPICAL ILLUSTRATION OF WORKING PRINCIPLE

5 SAMPLING

5.1 Select samples either in accordance with the procedure laid down in the material specification for the fabric or agreed between the interested parties.

5.2 In the absence of an appropriate material specification, an example of a suitable sampling procedure given in Annex B may be followed.

6 PREPARATION OF TEST SPECIMEN

6.1 Take the sample to be tested for smoothness characteristics and iron it so that there shall not be any crease/wrinkle.

6.2 Cut at least 10 specimens each from lengthwise (warp wise or course wise) and widthwise (weft wise or wale wise) with dimensions 10 cm x 20 cm respectively.

NOTE - Utmost care shall be made while cutting specimen from the sample. Sample shall be cut straight keeping in mind warp or course and weft or wale lines.

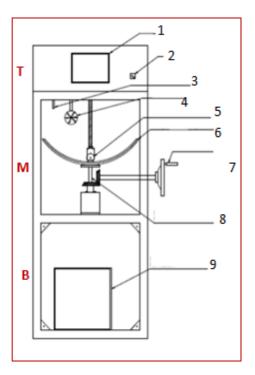
7 ATMOSPHERIC CONDITIONS FOR CONDITIONING AND TESTING

Prior to test, the specimens shall be conditioned to moisture equilibrium in the standard atmosphere of (65 ± 2) percent relative humidity and 27 °C ± 2 °C temperature from dry side as laid down in IS 6359 and the test shall be carried out in the standard atmosphere (*See also* IS 196). It is recommended that samples be conditioned for at least 24 h in the relaxed state.

8 APPARATUS

8.1 Fabric Smoothness tester

The smoothness tester should include three chambers namely top, middle and bottom chamber which comprises of the following:


8.1.1 Top chamber (T) - This chamber accommodates display unit, on/off switch, geared motor with electromagnetic clutch, press button to actuate pendulum, rotor encoder in order to measure angle/amplitude and programmable logic controller (PLC) to control various parameters such as humidity, temperature etc. The display unit reflects information pertaining to humidity, amplitude, time of completion of cycle, air velocity etc. The on/off switch is provided to switch on or off the said apparatus. The geared motor with electromagnetic clutch controls oscillation of the roller hanging from the roof of the middle chamber with a rod.

The roller hanging from the roof by means of rod causes whole assembly to oscillate about the equilibrium position by swinging back and forth. This oscillation takes place with the help of geared motor. The electromagnetic clutch play role to shift the roller assembly at the maximum angle on one side. When this roller assembly attains the maximum angle, it is released by means of a release button. Upon release of the assembly, it starts oscillating about the equilibrium position swinging back and forth. Said rotary encoder is provided to measure angle/amplitude of the roller assembly.

8.1.2 The middle chamber (M) embodies temperature and humidity sensor, Anemometer, revolving roller assembly, Arc type sample holder and screw arrangement and height adjustment.

8.1.3 Bottom chamber (B): This chamber houses steam generator to generate steam for changing humidity. Beside the above three chambers, an air conditioning unit is also employed with the apparatus to maintain required temperature in the course of the testing.

NOTE — The schematic diagram of Fabric smoothness tester developed by NITRA (Northern Textile Research Association), Ghaziabad, U.P, India. is shown in Figure 2.

Keys:

- 1. Display unit
- 2. Switches
- 3. Temperature and Humidity sensor
- 4. Anemometer
- 5. Revolving roller assembly
- 6. Arc type specimen holder
- 7. Screw arrangement
- 8. Height adjustment
- 9. Steam Generator

FIG. 2 SCHEMATIC DIAGRAM OF FABRIC SMOOTHNESS TESTER DEVELOPED BY NITRA

9 PROCEDURE

9.1 First of all Pendulum assembly is moved upward to ensure that it is not touching the arc type platform, which also acts as specimen holding device and having sufficient distance from arc type platform so that the test specimen can be mounted easily on the platform using specimen holder.

9.2 Mount the specimen on the arc type platform using specimen holder ensuring that there shall not be any crease/fold/wrinkle on the specimen.

9.3 Lower the pendulum assembly slowly using load cell adjustment wheel so that it touches the specimen. Apply required load on the specimen using load cell. The recommended load shall be 400 ± 20 grams.

9.4 For knitted fabric or samples having high extensibility, instead of using sample holder, use 51 ± 1 mm width binder clip on all four sides of the fabric specimen with total load 400 ± 20 grams (per side per clip having hanging weight, shall be 100 g including clip weight).

9.5 Push the start button so that the pendulum device starts swinging to and fro on the arc type platform. After pushing the start button, time measuring device also start simultaneously. It measures time in milliseconds. Note down the reading. Repeat this procedure for all the specimens. Take average of all 10 readings of each side. Convert it into grading as per given in **Table 1** and **Table 2**.

NOTE- If any of the reading deviate from $\bar{x} \pm 3\sigma$, then the same shall be discarded and fresh sample shall be taken for further testing.

Sl No.	Time (millisec) to stop pendulum	Smoothness grade
(1)	(2)	(3)
i)	Up to 400	Grade 1 (Very poor)
ii)	401 to 500	Grade 2 (Poor)
iii)	501 to 600	Grade 3 (Good)
iv)	601 to 700	Grade 4 (Very good)
v)	> 701	Grade 5 (Excellent)

Table 1 Smoothness Grading Table for Woven Fabric (Clauses 3.2, 9.5, 10)

Table 2 Smoothness Grading Table for Knitted Fabric

Sl No.	Time (millisec) to stop pendulum	Smoothness grade
(1)	(2)	(3)
i)	Up to 300	Grade 1 (Very poor)
ii)	301 to 400	Grade 2 (Poor)
iii)	401 to 500	Grade 3 (Good)
iv)	501 to 600	Grade 4 (Very good)
v)	> 601	Grade 5 (Excellent)

(*Clauses* 3.2, 9.5, 10)

10 CALCULATION

The calculation of smoothness characteristics are based on mean of at least 10 test specimen readings, each side (lengthwise and widthwise) of time taken to stop pendulum device in milliseconds.

The mean value of these reading is converted into smoothness grading as per Table 1 and Table 2.

11 TEST RESULTS

The test report shall include the following information:

- a) Type of sample i.e. woven or knitted
- b) Side of surface taken for test
- c) Number of test specimens and if needed, number of tests rejected with reasons.
- d) Mean of 10 readings of specimen for time taken to stop pendulum device in milliseconds in lengthwise and widthwise.
- e) the coefficient of variation of time taken to stop pendulum device, in percentage.
- f) Grading of smoothness (Specimen lengthwise and widthwise).
- g) Any deviation from the test procedure

ANNEX A

(Foreword)

ADJUSTMENTS AND CALIBRATION OF FABRIC SMOOTHNESS TESTER

A-1 With the pendulum in the raised position, starting position, check the alignment of the arc type platform. For this purpose, lower the pendulum device in such a way that the wheel provided at lower end start touching the center position of arc type platform. At this position the weight impose on the center position of arc type platform shall be 0.4 kg using load cell. Now move this whole pendulum assembly on the arc type platform by hand and note down the readings of weight displayed on the displayed unit. Change in reading at any place shall not be more than ± 20 grams than the center position. If change in reading is more than ± 20 grams, adjust the platform.

A-2 The metallic wheel provided at the end of the pendulum device shall be smooth, scratch free and free to move. To check its proper working, a polyester transparent film of same size of arch type platform shall be taken and fix over the platform using tapes. Tape shall not be put in middle part of the film otherwise movement of wheel may hinder and true reading of smoothness of film may not reflect. Push the start button so that the pendulum device starts swinging to and fro on the arc type platform. Measure the total time taken by the pendulum device to stop. Note down the reading. Repeat this procedure 10 times on the same polyester transparent film. Take average of all 10 readings. If any of the individual value deviate from the mean by \pm 20 %, the complete set of values shall be discarded and fresh reading on a new polyester transparent film shall be taken. This average of the 10 readings in millisec shall be 2600 \pm 5%. The above procedure shall be followed for any subsequently working on the apparatus.

NOTES -

This is an important part of the apparatus which actually touch the specimen and move on the specimen. If some scratches are found then it may be electroplated, to have a smooth and clear surface.
 Oddy overhead projector polyester film of 100 micron shall be used for the verification of the apparatus.

A-3 The levelness of the apparatus is essential. Movement of the instrument during the swinging of the pendulum device is significant source of error. Securely anchor the apparatus so that it is sufficiently rigid and that there shall not be perceptible movement of the apparatus during the swing of the pendulum device. Adjust the apparatus accordingly to the built-in level.

A-4 Whole assembly shall be placed in the closed chamber so there shall not be any effect of air current.

ANNEX B

(Clause 5.2, Foreword)

RECOMMENDATORY SAMPLING PROCEDURE

B-1 Bulk sampling (Number of pieces taken from shipment or lot)

Take at random from the shipment or lot the appropriate number of pieces shown in the table 3. Ensure that no piece shall show signs of damage or dampness incurred during transit is included in the bulk sample.

Table 3 Bulk Sampling

(Clause B-1)

SI No.	Number of pieces in shipment or lot	Number of pieces comprising bulk sample, <i>Min</i> .			
(1)	(2)	(3)			
i)	3 or less	1			
ii)	4 to 10	2			
iii)	11 to 30	3			
iv)	31 to 75	4			
v)	76 or more	5			

B-2 Number of laboratory samples

From each piece in the bulk sample, if it is a fabric roll, cut (from a position taken at random but at least 3 meters from the end piece) a laboratory sample of length at least 1/2 meter and full width. Ensure that areas that are creased or that have a visible fault, or faults, are not included in the laboratory sample.

If the test is carried out on a garment, at least three garments from same lot shall be taken and specimen is cut from all the three garment samples.

ANNEX C

(Foreword)

EXAMPLE FOR TESTING FABRIC SAMPLES

C.1 To further explain testing procedure, an example of cotton fabric is taken over here. For the study, 100% cotton grey fabric was desized, singed, scoured, bleached and mercerized in the mill using standard recipe. The mercerized fabric sample was given various finishing treatments. All these samples were evaluated for smoothness characteristics using NITRA-Fabric smoothness tester. The results are shown in Table-4 and Table-5 with smoothness grade.

Table 4 Smoothness Behavior of Cotton Fabric at Various Stages of Wet Processing

	Time required to stop pendulum, millisecond												
Sl. No.	Gray		Singed	Singed		Desized		Scoured		Bleached		Mercerized	
	Wp	Wt	Wp	Wt	Wp	Wt	Wp	Wt	Wp	Wt	Wp	Wt	
i)	470	420	419	411	519	449	448	439	432	439	599	559	
ii)	486	434	429	419	519	419	439	440	418	438	539	569	
iii)	488	428	439	418	518	459	439	438	428	420	599	559	
iv)	447	430	418	429	528	479	440	448	438	428	589	569	
v)	445	440	399	420	529	418	438	439	418	438	560	611	
vi)	466	430	399	419	519	478	436	449	448	439	539	559	
vii)	454	434	418	419	519	479	432	448	438	429	500	558	
viii)	442	442	419	429	522	479	441	438	438	428	579	559	
ix)	439	438	420	428	519	479	439	449	429	439	500	499	
x)	447	444	429	418	528	468	438	448	419	439	499	499	
Mean	458	434	419	421	522	460	439	444	430	434	550	554	
Grade	2	2	2	2	3	2	2	2	2	2	3	3	

Wp: Waprwise, Wt: Weftwise

Table 5 Smoothness behaviour after treatment of mercerized cotton fabric

	Time required to stop pendulum, millisecond									
Sl.No	Treatr	nent-1	Treate	ment-2	Treatm	ent-3	Treatment-4			
	Wp	Wt	Wp	Wt	Wp	Wt	Wp	Wt		
i)	610	602	650	646	710	701	740	680		
ii)	620	621	652	642	1720	706	734	688		
iii)	622	608	640	638	1725	690	729	690		
iv)	625	610	642	635	702	698	720	680		
v)	605	615	647	632	704	692	724	682		
vi)	610	616	646	630	710	696	725	698		
vii)	609	618	647	640	722	697	722	690		
viii)	606	610	652	645	710	694	718	675		
ix)	620	611	654	633	715	699	732	680		
x)	623	612	640	638	716	695	730	682		
Mean	615	612	647	638	713	697	727	685		
Grade	4	4	4	4	5	4	5	4		

Wp: Waprwise, Wt: Weftwise

(*Clause* 2.1.1)

Sample	Code	Sample	Code
Grey	G1	Jinguard Eco PCD (25g/l)	T5
Singed	S1	Jinguard Eco PCD (45g/l)	T6
Desized	D1	DPT (20 g/l)	T7
Scoured	SC1	DPT (60 g/l)	T8
Bleaching	B1	DPT (100 g/l)	T9
Mercerized	M1	ULTRA (30g/l)	T10
Product 6000 (40g/l)	T1	ULTRA (50g/l)	T11
Product 6000 (50g/l)	T2	ULTRA (70g/l)	T12
Product 6000 (60g/l)	T3	Jinsof Eco MAS Conc (40g/l)	T13
Jinguard Eco PCD (5g/l)	T4	Jinsof Eco MAS Conc (60g/l)	T14

Table 1 Fabric samples with code number

Table 2 Fabric samples properties

Sample code	Mass, g/m ²	End /inch	Picks /inch	TensileTearCreaseStrength, NStrength, g(warp + weft),DegreeDegree		strength, N		Bending length, cm		
				Warp	Weft	Warp	Weft	Warp	Weft	
G1	128	120	72	576	259	1138	569	106	2.45	1.75
S1	124	122	72	560	270	1112	536	110	2.40	2.80
D1	118	126	78	520	230	1150	720	140	1.58	1.46
SC1	124	128	80	580	240	1064	676	144	1.55	1.42
B1	126	134	82	600	248	897	640	146	1.56	1.40
M1	127	136	80	681	258	977	670	156	1.40	1.38
T1	122	135	70	396	111	1342	823	173	1.26	1.16
T2	124	136	72	363	148	1380	790	178	1.22	1.12
T3	123	135	72	371	133	1340	773	180	1.18	1.10
T4	129	136	71	457	216	918	615	160	1.48	1.36
T5	121	136	72	452	185	919	652	162	1.44	1.30
T6	122	135	72	482	195	1001	685	164	1.40	1.28
T7	123	132	70	431	197	1380	892	180	1.30	1.24
T8	123	132	72	449	164	1496	940	182	1.22	1.20
T9	125	132	72	456	156	1516	947	186	1.18	1.16
T10	123	136	71	412	176	1338	913	188	1.18	1.14
T11	125	135	72	384	160	1340	849	182	1.16	1.12
T12	126	136	72	428	167	1404	821	184	1.12	1.10
T13	126	136	72	433	176	1428	959	186	1.20	1.16
T14	127	135	72	425	186	1426	949	190	1.14	1.12

				Tim	e require	ed to stop	pendulu	ım, millis	econd				
S. No.	(61	S	1	Ľ	D1		SC1		B1		M1	
	Wp	Wt	Wp	Wt	Wp	Wt	Wp	Wt	Wp	Wt	Wp	Wt	
1.	470	420	419	411	519	449	448	439	432	439	599	559	
2.	486	434	429	419	519	419	439	440	418	438	539	569	
3.	488	428	439	418	518	459	439	438	428	420	599	559	
4.	447	430	418	429	528	479	440	448	438	428	589	569	
5.	445	440	399	420	529	418	438	439	418	438	560	611	
6.	466	430	399	419	519	478	436	449	448	439	539	559	
7.	454	434	418	419	519	479	432	448	438	429	500	558	
8.	442	442	419	429	522	479	441	438	438	428	579	559	
9.	439	438	420	428	519	479	439	449	429	439	500	499	
10.	447	444	429	418	528	468	438	448	419	439	499	499	
lverage	458	434	419	421	522	460	439	444	430	434	550	554	
Grade	2	2	2	2	3	2	2	2	2	2	3	3	
COF*	1.50	1.52	1.51	1.50	1.37	1.48	1.53	1.57	1.53	1.52	1.29	1.26	

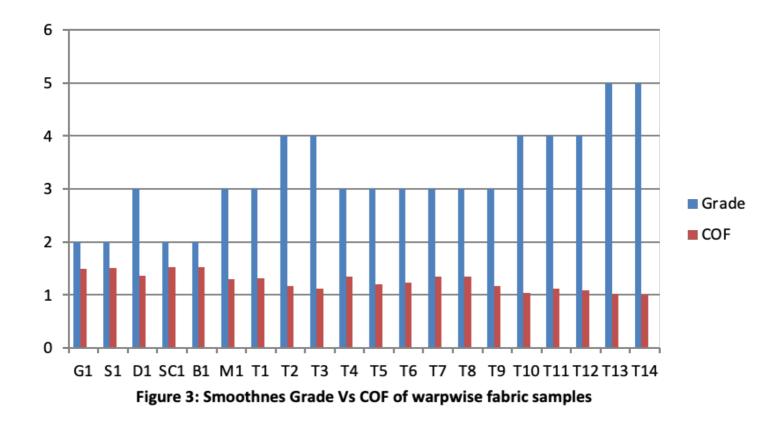
Table 4A. Testing smoothness behaviour of cotton fabric at various stages of wet processing

COF* Coefficient of friction by Kawabata analysis

Table 4B. Testing smoothness	behaviour of cotton	fabric at various	stages of wet pr	ocessing

S. No				Time re	auired to	ston nendu	lum millise	cond			
	T1					equired to stop pendulum, milliso T3		сона Г4		T5	
	Wp	Wt	Wp	Wt	Wp	Wt	Wp	Wt	Wp	Wt	
1	520	516	610	590	625	610	520	540	570	590	
2	518	510	600	565	610	600	510	530	568	580	
3	522	508	612	578	620	605	500	524	570	592	
4	518	512	600	580	604	604	512	530	560	588	
5	514	510	598	588	610	610	514	520	570	578	
6	516	508	604	568	630	612	522	528	580	580	
7	510	512	605	572	628	598	512	530	583	590	
8	512	514	598	570	600	596	514	532	582	579	
9	514	514	594	568	620	600	510	534	560	590	
10	510	516	600	566	628	604	520	540	563	580	
Avg.	515	512	602	574	618	604	513	530	570	584	
Grade	3	3	4	3	4	4	3	3	3	3	
COF*	1.32	1.34	1.17	1.20	1.12	1.14	1.34	1.28	1.20	1.18	

COF* Coefficient of friction by Kawabata analysis **Table 4C.** Testing smoothness behaviour of cotton fabric at various stages of wet processing


S.No				Time rec	wired to s	ton nendu	lum, millise	cond		
	1	Г6	1	ГЛПС ГСС Г7		гор рении Г8		сони Г9	,	Г10
	Wp	Wt								
1	590	536	510	500	528	490	566	556	604	610
2	595	528	515	505	526	494	589	594	601	698
3	578	532	500	498	520	498	590	590	690	690
4	580	528	598	490	528	510	580	588	610	692
5	594	526	596	499	520	502	588	558	607	694
6	586	530	508	506	518	504	502	560	612	689
7	588	532	506	510	524	506	510	550	580	688
8	578	540	502	502	522	508	590	548	678	684
9	580	525	498	596	518	498	592	560	690	601
10 Avg.	584 585	528 530	512 505	590 502	520 522	502 501	580 589	564 567	678 695	690 693
Grade	3	3	3	3	3	3	3	3	4	4
COF*	1.24	1.26	1.35	1.35	1.34	1.38	1.16	1.22	1.04	1.04


COF* Coefficient of friction by Kawabata analysis

Table 4D. Testing smoothness	behaviour of cotton	fabric at various sta	ages of wet processing

S.No			Time re	cauired to st	op pendulum	millisecond		
	1	F 11		Г 12		Г13		T14
	Wp	Wt	Wp	Wt	Wp	Wt	Wp	Wt
1	610	602	650	646	710	701	740	680
2	620	621	652	642	1720	706	734	688
3	622	608	640	638	1725	690	729	690
4	625	610	642	635	702	698	720	680
5	605	615	647	632	704	692	724	682
6	610	616	646	630	710	696	725	698
7	609	618	647	640	722	697	722	690
8	606	610	652	645	710	694	718	675
9	620	611	654	633	715	699	732	680
10	623	612	640	638	716	695	730	682
Avg.	615	612	647	638	713	697	727	685
Grade	4	4	4	4	5	4	5	4
COF*	1.12	1.14	1.08	1.10	1.02	1.04	1.01	1.06

COF* Coefficient of friction by Kawabata analysis

(*Item* 2.1.1)

SI.No.	Test Parameter	Test Method	Unit	Test	Results
1	Smoothness Test	In house method		Length Wise	Width Wise
	-Specimen 1		mili second	951	832
	-Specimen 2		mili second	831	892
	-Specimen 3		mili second	833	895
	-Specimen 4		mili second	894	890
	-Specimen 5		mili second	833	900
	-Specimen 6		mili second	832	898
	-Specimen 7		mili second	832	896
	-Specimen 8		mili second	870	880
	-Specimen 9		mili second	894	900
	-Specimen 10		mili second	850	860
	-Avg.		mili second	862	884
	-CV		%	4.68	2.49
	-Max.		mili second	951	900
	-Min.		mili second	831	832
	-Grade		-	5	5

Sample Code :- Description as per client : Fabric: Dyed wool.

Any Observation / Comments : Test condition: Load Applied-400g, Test Room Condition: Temp-27 \pm 2°C & Relative humidity= 65 \pm 2%

As per a research paper published in the Indian Journal of Fibre & Textile Research (M S Parmar, Nidhi Sisodia & Maheshwar Singh, Development of fabric smoothness tester, Indian Journal of Fibre & Textile Research Vol 45, June 2020, pp. 190-196), the grading system of the fabric samples is given as per the following table:

Time (ms) to stop pendulum ----- Smoothness grade

Up to 400----- Grade 1 (very poor)

401-500 ----- Grade 2 (poor)

501-600 ---- Grade 3 (good)

601-700 ----- Grade 4 (very good)

>700----- Grade 5 (excellent)

Authorised Signator

Authorised Signatory

Sl.No.	Test Parameter	Test Method	Unit	Test R	esults
2	Smoothness Test	In house method		Length	Width
				Wise	Wise
	-Specimen 1		mili second	1311	1431
	-Specimen 2		mili second	1492	1493
	-Specimen 3		mili second	1510	1500
	-Specimen 4		mili second	1431	1435
	-Specimen 5		mili second	1380	1491
	-Specimen 6		mili second	1410	1510
	-Specimen 7		mili second	1500	1490
	-Specimen 8		mili second	1430	1460
	-Specimen 9		mili second	1462	1495
	-Specimen 10		mili second	1480	1510
	-Avg.		mili second	1441	1482
	-CV		%	4.30	1.96
	-Max.		mili second	1510	1510
	-Min.		mili second	1311	1431
	-Grade		-	5	5

Sample Code : Description as per client : Fabric: Silk.

Any Observation / Comments : Test condition: Load Applied-400g, Test Room Condition: Temp-27 \pm 2°C & Relative humidity= 65 \pm 2%

As per a research paper published in the Indian Journal of Fibre & Textile Research (M S Parmar, Nidhi Sisodia & Maheshwar Singh, Development of fabric smoothness tester, Indian Journal of Fibre & Textile Research Vol 45, June 2020, pp. 190-196), the grading system of the fabric samples is given as per the following table:

Time (ms) to stop pendulum ------ Smoothness grade

Up to 400----- Grade 1 (very poor)

401-500----- Grade 2 (poor)

501-600----- Grade 3 (good)

601-700----- Grade 4 (very good)

>700-----Grade 5 (excellent)

Authorised Signator

Authorised Signatory

-- End of the Report --