
भारतीय मानक
Indian Standard

भारतीय मानक बययूरो
B U R E A U O F I N D I A N S TA N D A R D S

मानक भवन, 9 बहादरुशाह ज़फर मार्ग, नई िदल्ी – 110002
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG

NEW DELHI-110002
 www.bis.gov.in www.standardsbis.in

© BIS 2021

August 2021 Price � 7230.00

सचूना प्रौद्योगिकी — श्रव्य-दृश्यवस त्ुओ ं
का कयोगििं

भाि 22 खतुला फ़ॉन्ट प्ारूप

(पहला पनुरीक्षण)

Information Technology — Coding of
Audio-Visual Objects

Part 22 Open Font Format

(First Revision)

ICS 35.040.40

IS/ISO/IEC 14496-22 : 2019

http://www.bis.gov.in
http://www.standardsbis.in

Coding and Processing of Audio, Picture, Multimedia and Hypermedia Information Sectional
Committee, LITD 23

NATIONAL FOREWORD
This Indian Standard (First Revision) which is identical with ISO/IEC 14496-22 : 2019 ‘Information
technology — Coding of audio-visual objects — Part 22: Open font format’ issued by International
Organization for Standardization (ISO) and International Electro technical Commission (IEC) was
adopted by the Bureau of Indian Standards on recommendations of the Coding and Processing of
Audio, Picture, Multimedia and Hypermedia Information Sectional Committee, and approval of
the Electronics and Information Technology Division Council.

This Indian Standard is published in several parts. The other parts in this series are:

 Part 1 Systems

 Part 2 Visual

 Part 3 Audio

 Part 4 Conformance testing

 Part 5 Reference software

 Part 6 Delivery Multimedia Integration Framework (DMIF)

 Part 7 Optimized reference software for coding of audio-visual objects

 Part 8 Carriage of ISO/IEC 14496 contents over IP networks

 Part 9 Reference hardware description

 Part 10 Advanced video coding

 Part 11 Scene description and application engine

	 	 Part	12			 	ISO	base	media	file	format

 Part 13 Intellectual property management and protection (IPMP) extensions

	 	 Part	14			 	MP4	file	format

 Part 15 Carriage of network abstraction layer (NAL) unit structured video in the ISO base media
file	format

 Part 16 Animation framework eXtension AFX

 Part 17 Streaming text format

 Part 18 Font compression and streaming

 Part 19 Synthesized texture stream

 Part 20 Lightweight application scene representation (LASeR) and simple aggregation
format (SAF)

 Part 21 MPEG-J Graphics Framework eXtensions (GFX)

 Part 23 Symbolic music representation

 Part 24 Audio and systems interaction

 Part 25 3D Graphics compression model

 Part 26 Audio conformance

 Part 27 3D Graphics conformance

 Part 28 Composite font representation

(Continued on third cover)

i

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 iii
	

Contents Page

Foreword ... vii

Introduction .. viii

1 Scope .. 1
2 Normative references .. 1

3 Terms, definitions and abbreviated terms .. 1
3.1 Terms and definitions ... 1
3.2 Abbreviated terms ... 2

4 The Open Font file format ... 3
4.1 Description ... 3
4.2 Filenames ... 3
4.3 Data types .. 3
4.4 Table version numbers ... 4
4.5 Top-level OFF organization .. 5
4.5.1 Offset table ... 5
4.5.2 Table directory ... 5
4.5.3 Calculating checksums .. 6
4.6 Font collections ... 6
4.6.1 The Font Collection overview .. 6
4.6.2 The Font Collection file structure .. 7
4.6.3 TTC header ... 7

5 Open font tables .. 8
5.1 General ... 8
5.2 Required common tables ... 8
5.2.1 List of required tables ... 8
5.2.2 cmap – Character to glyph index mapping table ... 9
5.2.3 head – Font header .. 21
5.2.4 hhea – Horizontal header .. 23
5.2.5 hmtx – Horizontal metrics .. 24
5.2.6 maxp – Maximum profile .. 25
5.2.7 name – Naming table ... 26
5.2.8 OS/2 – Global font information table ... 45
5.2.9 Font class parameters .. 67
5.2.10 post – PostScript ... 67
5.3 Tables related to TrueType outlines .. 69
5.3.1 List of TrueType outlines tables .. 69
5.3.2 cvt – Control value table ... 69
5.3.3 fpgm – Font program .. 69
5.3.4 glyf – Glyf data ... 70
5.3.5 loca – Index to location ... 75
5.3.6 prep – Control value program .. 75
5.3.7 gasp – Grid-fitting and scan-conversion procedure table .. 76
5.4 Tables related to CFF outlines ... 78
5.4.1 List of CFF outline tables.. 78
5.4.2 CFF – Compact Font Format (version 1) table ... 78
5.4.3 CFF2 – Compact Font Format (version 2) table ... 78
5.4.4 VORG – Vertical origin table .. 88
5.5 Table for SVG glyph outlines ... 89
5.5.1 SVG – The SVG (Scalable Vector Graphics) table ... 89
5.5.2 Color Palettes .. 90
5.5.3 Glyph Identifiers .. 91
5.5.4 Glyph Semantics and Metrics .. 91
5.5.5 Glyph Rendering .. 91
5.5.6 SVG glyph examples ... 93

v

ii

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

iv	 ©	ISO/IEC	2019	–	All	rights	reserved
	

5.6 Tables related to bitmap glyphs ...98
5.6.1 List of bitmap glyph tables ...98
5.6.2 EBDT – Embedded bitmap data table ..98
5.6.3 EBLC – Embedded bitmap location table .. 101
5.6.4 EBSC – Embedded bitmap scaling table .. 108
5.6.5 CBDT – Color bitmap data table .. 109
5.6.6 CBLC – Color bitmap location table ... 111
5.6.7 sbix – Standard bitmap graphics table ... 112
5.7 Optional tables .. 114
5.7.1 DSIG – Digital signature table ... 115
5.7.2 hdmx – Horizontal device metrics ... 117
5.7.3 kern – Kerning ... 118
5.7.4 LTSH – Linear threshold .. 120
5.7.5 MERG – Merge table ... 121
5.7.6 meta – Metadata table .. 125
5.7.7 PCLT – PCL 5 table ... 128
5.7.8 VDMX – Vertical device metrics .. 135
5.7.9 vhea – Vertical header table .. 137
5.7.10 vmtx – Vertical metric table ... 141
5.7.11 COLR – Color Table .. 143
5.7.12 CPAL – Palette Table .. 144

6 Advanced Open Font layout tables ... 147
6.1 Advanced Open Font layout extensions .. 147
6.1.1 Overview of advanced typographic layout extensions ... 147
6.1.2 TrueType versus OFF layout ... 149
6.1.3 OFF layout terminology ... 149
6.1.4 Text processing with OFF layout .. 151
6.1.5 OFF layout and Font variations ... 153
6.2 OFF layout common table formats ... 153
6.2.1 Overview .. 153
6.2.2 OFF layout and Font variations ... 154
6.2.3 Table organization .. 155
6.2.4 Scripts and languages ... 156
6.2.5 Features and lookups ... 159
6.2.6 Coverage table .. 162
6.2.7 Class definition table .. 164
6.2.8 Device and VariationIndex tables .. 165
6.2.9 Feature variations ... 167
6.2.10 Common table examples ... 170
6.3 Advanced typographic tables .. 178
6.3.1 BASE Baseline table ... 178
6.3.2 GDEF – The glyph definition table .. 199
6.3.3 GPOS – The glyph positioning table... 211
6.3.4 GSUB – The glyph substitution table ... 263
6.3.5 JSTF – The justification table .. 296
6.3.6 MATH – The mathematical typesetting table ... 306
6.4 Layout tag registry.. 322
6.4.1 Scripts tags ... 323
6.4.2 Language tags ... 327
6.4.3 Feature tags ... 344
6.4.4 Baseline tags ... 406

7 OFF font variations ... 410
7.1 Font variations overview .. 410
7.1.1 General ... 410
7.1.2 Terminology .. 412
7.1.3 Variation space, default instances and adjustment deltas .. 414
7.1.4 Coordinate scales and normalization ... 417
7.1.5 Variation data .. 419
7.1.6 Variation data tables and miscellaneous requirements ... 428
7.1.7 Algorithm for interpolation of instance values .. 429

iii

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 v
	

7.1.8 Interpolation example ... 432
7.1.9 Dynamic generation of static instance fonts .. 437
7.2 Font variations common table formats ... 438
7.2.1 Overview ... 438
7.2.2 Tuple variation store ... 439
7.2.3 Item variation stores ... 446
7.2.4 Design-variation axis tag registry .. 450
7.3 Font variations tables ... 455
7.3.1 avar – Axis variations table .. 455
7.3.2 cvar – CVT variations table .. 459
7.3.3 fvar – Font variations table ... 461
7.3.4 gvar – Glyph variations table ... 468
7.3.5 HVAR – Horizontal metrics variations table ... 478
7.3.6 MVAR – Metrics variations table .. 481
7.3.7 STAT – Style attributes table .. 485
7.3.8 VVAR – Vertical metrics variations table .. 497

8 Recommendations for OFF fonts .. 499
8.1 Byte ordering ... 499
8.2 'sfnt' version... 499
8.3 Mixing outline formats .. 499
8.4 Filenames ... 499
8.5 Table alignment and length .. 500
8.6 Glyph 0: the .notdef glyph .. 500
8.7 'BASE' table.. 500
8.8 'cmap' table .. 500
8.9 'cvt' table .. 501
8.10 'fpgm' table ... 501
8.11 'glyf' table ... 501
8.12 'hdmx' table .. 501
8.13 'head' table ... 501
8.14 'hhea' table ... 501
8.15 'hmtx' table ... 502
8.16 'kern' table .. 502
8.17 'loca' table .. 502
8.18 'LTSH' table .. 502
8.19 'maxp' table .. 502
8.20 'name' table .. 502
8.21 'OS/2' table ... 504
8.22 'post' table .. 505
8.23 'prep' table .. 505
8.24 'VDMX' table ... 505
8.25 TrueType Collections .. 505

9 General recommendations ... 506
9.1 Optimized table ordering .. 506
9.2 Non-standard (Symbol) fonts ... 506
9.3 Baseline to baseline distances .. 506
9.4 Style bits ... 507
9.5 Drop-out control .. 507
9.6 Embedded bitmaps ... 507
9.7 OFF CJK font guidelines... 508
9.8 Stroke reduction in variable fonts ... 508
9.9 Families with optical size variants ... 508

Annex A (informative) Font Class and Font Subclass parameters .. 510
Annex B (informative) Earlier versions of OS/2 – OS/2 and Windows metrics 521

Annex C (informative) OFF Mirroring Pairs List ... 596

Annex D (informative) The CFF2 CharString Format ... 603

Annex E (informative) CFF2 DICT Encoding .. 622

iv

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

vi	 ©	ISO/IEC	2019	–	All	rights	reserved
	

Annex F (informative) Registration of Media Type: application/font-sfnt 624

Bibliography ... 627

v

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

viii	 ©	ISO/IEC	2019	–	All	rights	reserved
	

Introduction

Multimedia applications require a broad range of media-related standards. In addition to the typical audio and
video applications, multimedia presentations include scalable 2D graphics and text supporting all languages of
the world. Faithful reproduction of scalable multimedia content requires additional components including
scalable font technology. The Open Font Format, which is based on the OpenType® 1 font format, was
originally developed as an extension of the TrueType®2 font format, adding support for PostScript®3 Compact
Font Format (CFF) font data. OFF fonts and the operating system services which support OFF fonts provide
users with a simple way to install and use fonts, whether the fonts contain TrueType outlines or CFF
(PostScript Type1) outlines.

The Open Font Format addresses the following goals:

 broader multi-platform support;

 excellent support for international character sets;

 excellent protection for font data;

 smaller file sizes to make font distribution more efficient;

 excellent support for advanced typographic control.

CFF data included in OFF fonts may be directly rasterized or converted to the TrueType outline format for
rendering, depending on which rasterizers have been installed in the host operating system. But the user
model is the same: OFF fonts just work. Users will not need to be aware of the type of outline data in OFF
fonts. And font creators can use whichever outline format they feel provides the best set of features for their
work, without worrying about limiting a font's usability.

OFF fonts can include the OFF Layout tables, which allow font creators to design broader international and
high-end typographic fonts. The OFF Layout tables contain information on glyph substitution, glyph positioning,
justification, and baseline positioning, enabling text-processing applications to improve text layout.

As with TrueType fonts, OFF fonts allow the handling of large glyph sets using Unicode encoding. Such
encoding allows broad international support, as well as support for typographic glyph variants.

Additionally, OFF fonts may contain digital signatures, which allows operating systems and browsing
applications to identify the source and integrity of font files, including embedded font files obtained in web
documents, before using them. Also, font developers can encode embedding restrictions in OFF fonts which
cannot be altered in a font signed by the developer.

The International Organization for Standardization (ISO) and International Electrotechnical Commission (IEC)
draw attention to the fact that it is claimed that compliance with this document may involve the use of patents.

ISO and IEC take no position concerning the evidence, validity and scope of these patent rights. The holders
of these patent rights have assured ISO and IEC that they is willing to negotiate licences under reasonable
and non-discriminatory terms and conditions with applicants throughout the world. In this respect, the
statement of the holders of these patent rights is registered with ISO and IEC.

1 OpenType® is the trademark of a product supplied by Microsoft. This information is given for the convenience of users
of this document and does not constitute an endorsement by ISO or IEC of this product.
2 TrueType® is the trademark of a product supplied by Apple Inc. This information is given for the convenience of users of
this document and does not constitute an endorsement by ISO or IEC of this product.
3 PostScript® is the trademark of a product supplied by Adobe Systems Inc. This information is given for the convenience
of users of this document and does not constitute an endorsement by ISO or IEC of this product.

vi

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 ix
	

Information may be obtained from:

Apple Inc.
1 Infinite Loop MS 3-PAT
US-Cupertino, CA 95014-2084
Tel.: +1 408 974 9453
Email: iplaw@apple.com

Microsoft Corporation
Interoperability Group 3460 157th Avenue NE
US-Redmond, WA 98052
Tel.: +1 425 882 80 80

Monotype Imaging Inc.
500 Unicorn Park Drive
US-Woburn, MA 01801
Tel.: +1 781-970-6088
E-mail: vladimir.levantovsky@monotypeimaging.com

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights other than those identified above. ISO and IEC shall not be held responsible for identifying any or all
such patent rights.

1

IS/ISO/IEC 14496-22 : 2019

Indian Standard

INFORMATION TECHNOLOGY — CODING OF
AUDIO-VISUAL OBJECTS

PART 22 OPEN FONT FORMAT

(First Revision)

INTERNATIONAL STANDARD ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 1
	

Information technology — Coding of audio-visual objects —

Part 22:
Open Font Format

1 Scope

This document specifies the Open Font Format (OFF) specification, including the TrueType and Compact
Font Format (CFF) outline formats. Many references to both TrueType and PostScript exist throughout this
document, as Open Font Format fonts combine the two technologies. The document defines data structures
for variaous font tables, and provides the necessary details for developers to build a font rendering and taxt
layout/shaping engines in compliance with this document.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes
requirements of this document. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 10646, Information technology — Universal Coded Character Set (UCS)

ISO/IEC 14496-18, Information technology — Coding of audio-visual objects — Part 18: Font compression
and streaming

ISO/IEC 15948, Information technology — Computer graphics and image processing — Portble Network
Graphics: Functional specification 4

IEC 61966-2-1/Amd 1:2003: Multimedia systems and equipment — Colour measurement and management —
Part 2-1: Colour management — Default RGB colour space — sRGB.

TrueType Instruction Set, http://www.microsoft.com/typography/otspec/ttinst.htm

Unicode 11.0, http://www.unicode.org/versions/Unicode11.0.0/

Scalable Vector Graphics (SVG) 1.1 (2nd edition), W3C Recommendation, 16 August
2011 http://www.w3.org/TR/SVG11/

IETF BCP 47 specification, “Tags for Identifying Languages”. http://tools.ietf.org/html/bcp47

3 Terms, definitions and abbreviated terms

3.1 Terms and definitions

No terms and definitions are listed in this document.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at https://www.iso.org/obp

— IEC Electropedia: available at http://www.electropedia.org/

4 Also available as a W3C Recommendation (Reference [15]).

2

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

2 ©	ISO/IEC	2019	–	All	rights	reserved
	

3.2 Abbreviated terms

ACF average character face

ANSI American National Standards Institute

ASCII American Standard Code for Information Interchange

BMP [Unicode] basic multilingual plane

BTBD baseline to baseline distance

CFF compact font format

CID character identifier

CJK Chinese Japanese Korean [characters, ideographs, fonts, etc.]

CJKV Chinese Japanese Korean and Vietnamese

CV control value

CVT control value table

DLL dynamically linked library

FDEF function definition

GID glyph ID

ICF ideographic character face

IDEF instruction definition

IETF Internet Engineering Task Force

JIS Japanese Industrial Standard

LTR left to right

NLC National Language Council of Japan

OFF open font format

OMPL OFF mirroring pairs list

OTF OpenType font

PCL printer control language

PPM, PPEM pixels per em

RTL right to left

TTC TrueType collection

TTF TrueType font

UCS universal character set

UTF Unicode transformation format

UVS Unicode variation sequence

VM virtual memory

W3C world wide web consortium

3

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 3
	

4 The Open Font file format

4.1 Description

An Open Font file contains data, in table format, that comprises either a TrueType or a CFF outline font.
Rasterizers use combinations of data from the tables contained in the font to render the TrueType or
PostScript glyph outlines. Some of this supporting data is used no matter which outline format is used; some
of the supporting data is specific to either TrueType or PostScript.

References to the Universally Coded Character Set and the Unicode standard are used throughout this
document; the users of the OFF cannot meet the requirements of this document without strict adherence to
these standards.

4.2 Filenames

OFF font files may have the extension .OTF, .TTF, .OTC or .TTC. The extensions .OTC and .TTC should only
be used for font collection files. For additional information on filename extension conventions, see subclause
8.4.

4.3 Data types

The following data types are used in the OFF font file. All OFF fonts use big-endian (network byte order):

Data Type Description

uint8 8-bit unsigned integer.

int8 8-bit signed integer.

uint16 16-bit unsigned integer.

int16 16-bit signed integer.

uint24 24-bit unsigned integer.

uint32 32-bit unsigned integer.

int32 32-bit signed integer.

Fixed 32-bit signed fixed-point number (16.16)

FWORD int16 that describes a quantity in font design units.

UFWORD uint16 that describes a quantity in font design units.

F2DOT14 16-bit signed fixed number with the low 14 bits of fraction (2.14).

LONGDATETIME Date represented in number of seconds since 12:00 midnight, January 1,
1904. The value is represented as a signed 64-bit integer.

Tag Array of four uint8s (length = 32 bits) used to identify a table, design-
variation axis, script, language system, feature, or baseline

Offset16 Short offset to a table, same as uint16, NULL offset = 0x0000

Offset32 Long offset to a table, same as uint32, NULL offset = 0x00000000

4

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

4 ©	ISO/IEC	2019	–	All	rights	reserved
	

The F2DOT14 format consists of a signed, 2's complement integer and an unsigned fraction. To compute the
actual value, take the integer and add the fraction. Examples of 2.14 values are:

Decimal Value Hex Value Integer Fraction

1.999939 0x7fff 1 16383/16384

1.75 0x7000 1 12288/16384

0.000061 0x0001 0 1/16384

0.0 0x0000 0 0/16384

-0.000061 0xffff -1 16383/16384

-2.0 0x8000 -2 0/16384

A Tag value is a uint8 array. Each byte within the array shall have a value in the range 0x20 to 0x7E. This
corresponds to the range of values of Unicode Basic Latin characters in UTF-8 encoding, which is the same
as the printable ASCII characters. As a result, a Tag value can be re-interpreted as a four-character sequence,
which is conventionally how they are referred to. Formally, however, the value is a byte array.

When re-interpreted as characters, the Tag value is case sensitive. It shall have one to four non-space
characters, padded with trailing spaces (byte value 0x20). A space character cannot be followed by a non-
space character.

4.4 Table version numbers

Most tables have version numbers, and the version number for the entire font is contained in the Table
Directory. Note that there are five different table version number types, each with its own numbering scheme.

 A single uint16 field. This is used in a number of tables, usually with versions starting at zero (0).

 Separate, uint16 major and minor version fields. This is used in a number of tables, usually with
versions starting at 1.0.

 A Fixed field for major/minor version numbers. This is used in the maxp, post and vhea tables.

 A uint32 field with enumerated values.

 A uint32 field with a numeric value. This is used only in the DSIG and meta tables.

Only certain tables use a Fixed value for version, and only for reasons of backward compatibility. Fixed values
will not be used in the future for any new tables that may be introduced. When a Fixed number is used as a
version, the upper 16 bits comprise a major version number and the lower 16 bits a minor version. The
representation of a non-zero minor version, however, is not consistent with the normal treatment of Fixed
values, in which the lower 16 bits represent a fractional value, N * 2 ^ -16. Rather, tables with non-zero minor
version numbers always specify the literal value of the version number. For example, the version number of
'maxp' table version 0.5 is 0x00005000, and that of 'vhea' table version 1.1 is 0x00011000. When Fixed is
indicated as the type for a version field, the possible values should be treated as an enumeration of specific
values, rather than as a numeric value capable of representing many potential major and minor versions.

The Table Directory uses a uint32 field with an enumeration of defined values that represent four-character
tags; see subclause 4.5 (Top-level OFF organization) for details.

Implementations reading tables must include code to check version numbers so that if and when the format
and therefore the version number changes, older implementations will handle newer versions gracefully.

Minor version number changes always imply format changes that are compatible extensions. If an
implementation understands a major version number, then it can safely proceed reading the table. If the minor
version is greater than the latest version recognized by the implementation, then the extension fields will be
undetectable to the implementation.

5

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 5
	

For purposes of compatibility, version numbers that are represented using a single uint16 or uint32 value are
treated like a minor version number, and any format changes are compatible extensions.

Note that some field values that were undefined or reserved in an earlier revision may be assigned meanings
in a minor version change. Implementations should never make assumptions regarding reserved or
unassigned values or bits in bit fields, and can ignore them if encountered. When writing font data, tools
should always write zero for reserved fields or bits. Validators should warn of any non-zero values for fields or
bits that are not defined for the given version against which data is being validated.

If the major version is not recognized, the implementation must not read the table as it can make no
assumptions regarding interpretation of the binary data. The implementation should treat the table as missing.

4.5 Top-level OFF organization
4.5.1 Offset table

A key characteristic of the OFF format is the TrueType sfnt "wrapper", which provides organization for a
collection of tables in a general and extensible manner.

The OFF font starts with the Offset Table. If the font file contains only one font, the Offset Table will begin at
byte 0 of the file. If the font file is a font collection, the beginning point of the Offset Table for each font is
indicated in the TTCHeader.

Offset Table

Type Name Description

uint32 sfntVersion 0x00010000 or 0x4F54544F ('OTTO') – see below.

uint16 numTables Number of tables.

uint16 searchRange (Maximum power of 2 <= numTables) x 16.

uint16 entrySelector Log2(maximum power of 2 <= numTables).

uint16 rangeShift NumTables x 16 - searchRange.

OFF fonts that contain TrueType outlines should use the value of 0x00010000 for sfntVersion. OFF fonts
containing CFF data (version 1 or 2) should use 0x4F54544F ('OTTO', when re-interpreted as a Tag) for
sfntVersion.

4.5.2 Table directory

The Offset Table is followed immediately by the Table Record entries. Entries in the Table Record shall be
sorted in ascending order by tag. Offset values in the Table Record are measured from the start of the font file.

Table Record

Type Name Description

Tag tableTag Table identifier.

uint32 checksum CheckSum for this table.

Offset32 Offset Offset from beginning of TrueType font file.

uint32 Length Length of this table.

6

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

6 ©	ISO/IEC	2019	–	All	rights	reserved
	

The Table Record makes it possible for a given font to contain only those tables it actually needs. As a result
there is no standard value for numTables.

Table tags are the names given to tables in the OFF font file. For requirements of Tag values, see subclause
4.3 (Data types).
Some tables have an internal structure with subtables located at specified offsets, and as a result, it is
possible to construct a font with data for different tables interleaved. In general, tables should be arranged
contiguously without overlapping the ranges of distinct tables. In any case, however, table lengths measure a
contiguous range of bytes that encompasses all of the data for a table. This applies to any subtables as well
as to top-level tables.

4.5.3 Calculating checksums

Table checksums are the unsigned sum of the longs of a given table. In C, the following function can be used
to determine a checksum:

uint32
CalcTableChecksum(uint32 *Table, uint32 Length)
{
uint32 Sum = 0L;
uint32 *Endptr = Table+((Length+3) & ~3) / sizeof(uint32);

while (Table < EndPtr)
 Sum += *Table++;
return Sum;
}

NOTE This function implies that the length of a table is a multiple of four bytes. In fact, a font is not considered
structurally proper without the correct padding. All tables must begin on four byte boundaries, and any remaining
space between tables is padded with zeros. The length of all tables would be recorded in the table record with
their actual length (not their padded length).

To calculate the checkSum for the 'head' table which itself includes the checkSumAdjustment entry for the
entire font, do the following:

 Set the checkSumAdjustment to 0.

 Calculate the checksum for all the tables including the 'head' table and enter that value into the table
directory.

 Calculate the checksum for the entire font.

 Subtract that value from value 0xB1B0AFBA.

 Store the result in checkSumAdjustment.

The checkSum for the head table which includes the checkSumAdjustment entry for the entire font is now
incorrect. That is not a problem. Do not change it. An application attempting to verify that the 'head' table has
not changed should calculate the checkSum for that table by not including the checkSumAdjustment value,
and compare the result with the entry in the table directory.

4.6 Font collections

4.6.1 The Font Collection overview

A Font Collection (either TTC or OTC, formerly known as TrueType Collection) is a means of delivering
multiple OFF font resources in a single file structure. Font collections containing either TrueType or CFF
outlines (TTC or OTC) are most useful when the fonts to be delivered together share many glyphs in common.
By allowing multiple fonts to share glyph sets and other common font tables, font collections can result in a
significant saving of file space.

7

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 7
	

For example, a group of Japanese fonts may each have their own designs for the kana glyphs, but share
identical designs for the kanji. With ordinary OFF font files, the only way to include the common kanji glyphs is
to copy their glyph data into each font. Since the kanji represent much more data than the kana, this results in
a great deal of wasteful duplication of glyph data. Font collections were defined to solve this problem.

NOTE Even though the original definition of TrueType Collection (as part of the TrueType specification) was intended to
be used with fonts containing TrueType outlines, this is no longer strictly the case. TTC files may contain various
types of outlines (or a mix of them), regardless of whether or not fonts have layout tables present. For backward
compatibility and simplicity, the description of the font collection file structure is using the term "TrueType
Collection" though it is understood that it is used to identify a generic font collection structure containing any type
of outline tables.

4.6.2 The Font Collection file structure

A font collection file consists of a single TTC Header table, one or more Offset Tables with Table Directories
(each corresponding to a different font resource), and a number of OFF tables. The TTC Header shall be
located at the beginning of the TTC file.

The TTC file shall contain a complete Offset Table and Table Directory for each font resource. A TTC file
Table Directory has exactly the same format as a TTF file Table Directory. The table offsets in all Table
Directories within a TTC file are measured from the beginning of the TTC file.

Each OFF table in a TTC file is referenced through the Offset Table and Table Directory of each font which
uses that table. Some of the OFF tables must appear multiple times, once for each font included in the TTC;
while other tables may be shared by multiple fonts in the TTC.

As an example, consider a TTC file which combines two Japanese fonts (Font1 and Font2). The fonts have
different kana designs (Kana1 and Kana2) but use the same design for kanji. The TTC file contains a single
'glyf' table which includes both designs of kana together with the kanji; both fonts' Table Directories point to
this 'glyf' table. But each font's Table Directory points to a different 'cmap' table, which identifies the glyph set
to use. Font1's 'cmap' table points to the Kana1 region of the 'loca' and 'glyf' tables for kana glyphs, and to the
kanji region for the kanji. Font2's 'cmap' table points to the Kana2 region of the 'loca' and 'glyf' tables for kana
glyphs, and to the same kanji region for the kanji.

The tables that should have a unique copy per font are those that are used by the system in identifying the
font and its character mapping, including 'cmap', 'name', and 'OS/2'. The tables that should be shared by fonts
in the TTC are those that define glyph and instruction data or use glyph indices to access data: 'glyf', 'loca',
'hmtx', 'hdmx', 'LTSH', 'cvt ', 'fpgm', 'prep', 'EBLC', 'EBDT', 'EBSC', 'maxp', and so on. In practice, any tables
which have identical data for two or more fonts may be shared.

4.6.3 TTC header

There are two versions of the TTC Header: Version 1.0 has been used for TTC files without digital signatures.
Version 2.0 can be used for TTC files with or without digital signatures -- if there's no signature, then the last
three fields of the version 2.0 header are left null.

If a digital signature is used, the DSIG table for the file must be the last table in the TTC file. Signatures in a
TTC file are expected to be Format 1 signatures.

The purpose of the TTC Header table is to locate the different Offset Tables within a TTC file. The TTC
Header is located at the beginning of the TTC file (offset = 0). It consists of an identification tag, a version
number, a count of the number of OFF fonts in the file, and an array of offsets to each Offset Table.

TTC Header Version 1.0

Type Name Description

TAG ttcTag Font Collection ID string: 'ttcf' (used for fonts with CFF
or CFF2 outlines, as well as TrueType outlines)

uint16 majorVersion Major version of the TTC Header, = 1.

8

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

8 ©	ISO/IEC	2019	–	All	rights	reserved
	

uint16 minorVersion Minor version of the TTC Header, = 0.

uint32 numFonts Number of fonts in TTC

Offset32 offsetTable[numFonts] Array of offsets to the OffsetTable for each font from
the beginning of the file

TTC Header Version 2.0

Type Name Description

TAG ttcTag TrueType Collection ID string: 'ttcf'

uint16 majorVersion Major version of the TTC Header, = 2.

uint16 minorVersion Minor version of the TTC Header, = 0.

uint32 numFonts Number of fonts in TTC

Offset32 offsetTable[numFonts] Array of offsets to the OffsetTable for each font from
the beginning of the file

uint32 ulDsigTag Tag indicating that a DSIG table exists, 0x44534947
('DSIG') (null if no signature)

uint32 dsigLength The length (in bytes) of the DSIG table (null if no
signature)

uint32 dsigOffset The offset (in bytes) of the DSIG table from the
beginning of the TTC file (null if no signature)

5 Open font tables

5.1 General

The rasterizer has a much easier time traversing tables if they are padded so that each table begins on a 4-
byte boundary. All tables shall be long-aligned and padded with zeroes.

5.2 Required common tables

5.2.1 List of required tables

Whether TrueType or CFF outlines are used in an OFF font, the following tables are required for the font to
function correctly:

Tag Name

cmap Character to glyph mapping

head Font header

hhea Horizontal header

9

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 9
	

hmtx Horizontal metrics

maxp Maximum profile

name Naming table

OS/2 OS/2 and Windows specific metrics

post PostScript information

5.2.2 cmap – Character to glyph index mapping table

This table defines the mapping of character codes to the glyph index values used in the font. It may contain
more than one subtable, in order to support more than one character encoding scheme.

5.2.2.1 Table overview

This table defines the mapping of character codes to a default glyph index. Different subtables may be defined
that each contain mappings for different character encoding schemes. The table header indicates the
character encodings for which subtables are present.

Regardless of the encoding scheme, character codes that do not correspond to any glyph in the font should
be mapped to glyph index 0. The glyph at this location must be a special glyph representing a missing
character, commonly known as .notdef.

Each subtable is in one of seven possible formats and begins with a format code indicating the format used.
The first four formats — formats 0, 2, 4 and 6 — were originally defined prior to Unicode 2.0. These formats
allow for 8-bit single-byte, 8-bit multi-byte, and 16-bit encodings. With the introduction of supplementary
planes in Unicode 2.0, the Unicode addressable code space extends beyond 16 bits. To accommodate this,
three additional formats were added — formats 8, 10 and 12 — that allow for 32-bit encoding schemes.

Other enhancements in Unicode led to the addition of other subtable formats. Subtable format 13 allows for an
efficient mapping of many characters to a single glyph; this is useful for “last-resort” fonts that provide fallback
rendering for all possible Unicode characters with a distinct fallback glyph for different Unicode ranges.
Subtable format 14 provides a unified mechanism for supporting Unicode variation sequences.

NOTE The 'cmap' table version number remained at 0x0000 for fonts that make use of the newer subtable formats.

'cmap' Header
The Character to Glyph Index Mapping Table is organized as follows:

Type Name Description

uint16 Version Table version number (0)

uint16 numTables Number of encoding tables that follow

EncodingRecord encodingRecords[numTables]

Encoding records and encodings
The array of encoding records specify particular encoding and the offset to the subtable for each encoding.

10

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

10 ©	ISO/IEC	2019	–	All	rights	reserved
	

Encoding Record:

Type Name Description

uint16 platformID Platform ID.

uint16 encodingID Platform-specific encoding ID.

Offset32 offset Byte offset from beginning of table to the
subtable for this encoding

The platform ID and platform-specific encoding ID in the encoding record are used to specify a particular
character encoding. In the case of the Macintosh platform, a language field within the mapping subtable is
also used for this purpose.

The encoding record entries in the 'cmap' header must be sorted first by platform ID, then by platform-specific
encoding ID, and then by the language field in the corresponding subtable. Each platform ID, platform-specific
encoding ID, and subtable language combination may appear only once in the 'cmap' table.
Complete details on platformIDs, and platform-specific encoding and language IDs are defined in subclause
5.2.7. Some specific details applicable to the 'cmap' table are provided here.

Unicode platform (platform ID = 0)

Unicode Variation Sequences supported by the font should be specified in the 'cmap' table using a format 14
subtable. A format 14 subtable must only be used under platform ID 0 and encoding ID 5.Macintosh platform
(platform ID = 1)

When building a font that will be used on the Macintosh, the platform ID should be 1 and the encoding ID
should be 0.

Windows platform (platform ID = 3)

When building a Unicode font for Windows, the platform ID should be 3 and the encoding ID should be 1.
When building a symbol font for Windows, the platform ID should be 3 and the encoding ID should be 0.

Microsoft strongly recommends using a BMP Unicode 'cmap' for all fonts. However, other non-Unicode
encodings are also used in existing fonts with the Windows platform. The following are encoding IDs defined
for the Windows platform:

Windows encodings

Platform ID Encoding ID Description

3 0 Symbol

3 1 Unicode BMP (UCS-2)

3 2 ShiftJIS

3 3 PRC

3 4 Big5

3 5 Wansung

3 6 Johab

3 7 Reserved

11

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 11
	

3 8 Reserved

3 9 Reserved

3 10 Unicode UCS-4

Fonts that support Unicode BMP characters on Windows platform must have a Format 4 'cmap' subtable for
platform ID 3, platform-specific encoding 1.

Fonts that support Unicode supplementary-plane characters on Windows platform must have a Format 12
subtable for platform ID 3, encoding ID 10. To ensure backward compatibility with older software and devices,
a format 4 subtable for platform ID 3, encoding ID 1 is also required. The characters supported in the format 4
subtable must be a subset of the characters in the format 12 subtable and should include all of the Unicode
BMP characters supported by the font.

Custom platform (Platform ID = 4) and OTF Windows NT compatibility mapping

If a platform ID 4 (custom), encoding ID 0-255 (OTF Windows NT compatibility mapping) 'cmap' encoding is
present in an OFF font with CFF outlines, then the OTF font driver in Windows NT will:
a) superimpose the glyphs encoded at character codes 0-255 in the encoding on the corresponding Windows
character set (code page 1252) Unicode values in the Unicode encoding it reports to the system;
b) add Windows character set (CharSet 0) to the list of CharSets supported by the font; and
c) consider the value of the encoding ID to be a Windows CharSet value and add it to the list of CharSets
supported by the font.
Note that the 'cmap' subtable shall use Format 0 or 6 for its subtable, and the encoding shall be identical to
the CFF's encoding.

This 'cmap' encoding is not required. It provides a compatibility mechanism for non-Unicode applications that
use the font as if it were Windows ANSI encoded. Non-Windows ANSI Type 1 fonts, such as Cyrillic and
Central European fonts, that Adobe shipped in the past had “0” (Windows ANSI) recorded in the CharSet field
of the .PFM file; ATM for Windows 9x ignores the CharSet altogether. Adobe provides this compatibility 'cmap'
encoding in every OTF converted from a Type1 font in which the Encoding is not StandardEncoding.

5.2.2.2 cmap subtable formats

5.2.2.2.1 Use of the language field in 'cmap' subtables

The language field must be set to zero for all cmap subtables whose platform IDs are other than Macintosh
(platform ID 1). For cmap subtables whose platform IDs are Macintosh, set this field to the Macintosh
language ID of the cmap subtable plus one, or to zero if the cmap subtable is not language-specific. For
example, a Mac OS Turkish cmap subtable must set this field to 18, since the Macintosh language ID for
Turkish is 17. A Mac OS Roman cmap subtable must set this field to 0, since Mac OS Roman is not a
language-specific encoding.

5.2.2.2.2 Format 0: Byte encoding table

This is the Macintosh platform standard character to glyph index mapping table which is available via the
Reference [7].

'cmap' Subtable Format 0:

Type Name Description

uint16 format Format number is set to 0.

uint16 length This is the length in bytes of the subtable.

12

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

12 ©	ISO/IEC	2019	–	All	rights	reserved
	

uint16 language For requirements on use of the language field, see
subclause 5.2.2.2.1.

uint8 glyphIdArray[256] An array that maps character codes to glyph index values.

This is a simple 1 to 1 mapping of character codes to glyph indices. The glyph set is limited to 256. If this
format is used to index into a larger glyph set, only the first 256 glyphs will be accessible.

5.2.2.2.3 Format 2: High byte mapping through table

This subtable is useful for the national character code standards used for Japanese, Chinese, and Korean
characters. These code standards use a mixed 8/16-bit encoding, in which certain byte values signal the first
byte of a 2-byte character (but these values are also legal as the second byte of a 2-byte character).

In addition, even for the 2-byte characters, the mapping of character codes to glyph index values depends
heavily on the first byte. Consequently, the table begins with an array that maps the first byte to a 4-word
subHeader. For 2-byte character codes, the subHeader is used to map the second byte's value through a
subArray, as described below. When processing mixed 8/16-bit text, subHeader 0 is special: it is used for
single-byte character codes. When subHeader zero is used, a second byte is not needed; the single byte
value is mapped through the subArray.

'cmap' Subtable Format 2:

Type Name Description

uint16 format Format number is set to 2.

uint16 length This is the length in bytes of the subtable.

uint16 language For requirements on use of the language field, see subclause
5.2.2.2.1.

uint16 subHeaderKeys[256] Array that maps high bytes to subHeaders: value is subHeader
index * 8.

SubHeader subHeaders[] Variable-length array of subHeader structures.

uint16 glyphIndexArray[] Variable-length array containing subarrays used for mapping
the low byte of 2-byte characters.

A subHeader is structured as follows:

SubHeader Record:

Type Name Description

uint16 firstCode First valid low byte for this subHeader.

uint16 entryCount Number of valid low bytes for this subHeader.

int16 idDelta See text below.

uint16 idRangeOffset See text below.

The firstCode and entryCount values specify a subrange that begins at firstCode and has a length equal to the
value of entryCount. This subrange stays within the 0-255 range of the byte being mapped. Bytes outside of

13

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 13
	

this subrange are mapped to glyph index 0 (missing glyph). The offset of the byte within this subrange is then
used as index into a corresponding subarray of glyphIndexArray. This subarray is also of length entryCount.
The value of the idRangeOffset is the number of bytes past the actual location of the idRangeOffset word
where the glyphIndexArray element corresponding to firstCode appears.

Finally, if the value obtained from the subarray is not 0 (which indicates the missing glyph), you should add
idDelta to it in order to get the glyphIndex. The value idDelta permits the same subarray to be used for several
different subheaders. The idDelta arithmetic is modulo 65536.

5.2.2.2.4 Format 4: Segment mapping to delta values

This is the standard character-to-glyph-index mapping table for the Windows platform for fonts that support
Unicode BMP characters. See Windows platform (platform ID = 3) in subclause 5.2.2.1 for additional details
regarding subtable formats for Unicode encoding on the Windows platform.

This format is used when the character codes for the characters represented by a font fall into several
contiguous ranges, possibly with holes in some or all of the ranges (that is, some of the codes in a range may
not have a representation in the font). The format-dependent data is divided into three parts, which shall occur
in the following order:

a) A four-word header gives parameters for an optimized search of the segment list;

b) Four parallel arrays describe the segments (one segment for each contiguous range of codes);

c) A variable-length array of glyph IDs (unsigned words).

'cmap' Subtable Format 4:

Type Name Description

uint16 format Format number is set to 4.

uint16 length This is the length in bytes of the subtable.

uint16 language For requirements on use of the language field, see subclause
5.2.2.2.1.

uint16 segCountX2 2 x segCount.

uint16 searchRange 2 x (2**floor(log2(segCount)))

uint16 entrySelector log2(searchRange/2)

uint16 rangeShift 2 x segCount - searchRange

uint16 endCode[segCount] End characterCode for each segment, last=0xFFFF.

uint16 reservedPad Set to 0.

uint16 startCode[segCount] Start character code for each segment.

int16 idDelta[segCount] Delta for all character codes in segment.

uint16 idRangeOffset[segCount] Offsets into glyphIdArray or 0

uint16 glyphIdArray[] Glyph index array (arbitrary length)

14

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

14 ©	ISO/IEC	2019	–	All	rights	reserved
	

The number of segments is specified by segCount, which is not explicitly in the header; however, all of the
header parameters are derived from it. The searchRange value is twice the largest power of 2 that is less than
or equal to segCount. For example, if segCount=39, we have the following:

segCountX2 78

searchRange 64 (= 2 x (largest power of 2 <=39))

entrySelector 5 (= log2 (32))

rangeShift 14 (= 2 x 39 – 64)

Each segment is described by a startCode and endCode, along with an idDelta and an idRangeOffset, which
are used for mapping the character codes in the segment. The segments are sorted in order of increasing
endCode values, and the segment values are specified in four parallel arrays. You search for the first
endCode that is greater than or equal to the character code you want to map. If the corresponding startCode
is less than or equal to the character code, then you use the corresponding idDelta and idRangeOffset to map
the character code to a glyph index (otherwise, the missingGlyph is returned). For the search to terminate, the
final startCode and endCode values shall be 0xFFFF. This segment need not contain any valid mappings. (It
can just map the single character code 0xFFFF to missingGlyph). However, the segment must be present.

If the idRangeOffset value for the segment is not 0, the mapping of character codes relies on glyphIdArray.
The character code offset from startCode is added to the idRangeOffset value. This sum is used as an offset
from the current location within idRangeOffset itself to index out the correct glyphIdArray value. This obscure
indexing trick works because glyphIdArray immediately follows idRangeOffset in the font file. The C
expression that yields the glyph index is:

glyphId = *(idRangeOffset[i]/2
+ (c - startCount[i])
+ &idRangeOffset[i])

The value c is the character code in question, and i is the segment index in which c appears. If the value
obtained from the indexing operation is not 0 (which indicates missingGlyph), idDelta[i] is added to it to get the
glyph index. The idDelta arithmetic is modulo 65536.

If the idRangeOffset is 0, the idDelta value is added directly to the character code offset (i.e. idDelta[i] + c) to
get the corresponding glyph index. Again, the idDelta arithmetic is modulo 65536.

As an example, the variant part of the table to map characters 10-20, 30-90, and 153-480 onto a contiguous
range of glyph indices may look like this:

segCountX2: 8

searchRange: 8

entrySelector: 4

rangeShift: 0

endCode: 20 90 480 0xffff

reservedPad: 0

startCode: 10 30 153 0xffff

idDelta: -9 -18 -80 1

idRangeOffset: 0 0 0 0

This table performs the following mappings:
10 -> 10 - 9 = 1
20 -> 20 - 9 = 11
30 -> 30 - 18 = 12
90 -> 90 - 18 = 72

15

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 15
	

Note that the delta values could be reworked so as to reorder the segments.

5.2.2.2.5 Format 6: Trimmed table mapping

'cmap' Subtable Format 6:

Type Name Description

uint16 format Format number is set to 6.

uint16 length This is the length in bytes of the subtable.

uint16 language For requirements on use of the language field, see
subclause 5.2.2.2.1.

uint16 firstCode First character code of subrange.

uint16 entryCount Number of character codes in subrange.

uint16 glyphIdArray
[entryCount]

Array of glyph index values for character codes in the
range.

The firstCode and entryCount values specify a subrange (beginning at firstCode, length = entryCount) within
the range of possible character codes. Codes outside of this subrange are mapped to glyph index 0. The
offset of the code (from the first code) within this subrange is used as index to the glyphIdArray, which
provides the glyph index value.
NOTE Supporting 4-byte character codes: While the four existing 'cmap' subtable formats which currently exist have

served us well, the introduction of the Surrogates Area in the Unicode Standard has stressed them past the point
of utility. This clause specifies three formats, format 8, 10 and 12; which directly support 4-byte character codes.
A major change introduced with these three formats is a more pure 32-bit orientation. The 'cmap' table version
number will continue to be 0x0000, for those fonts that make use of these formats.

5.2.2.2.6 Format 8: mixed 16-bit and 32-bit coverage

Format 8 is similar to format 2 in that it provides for mixed-length character codes. Instead of allowing for 8-
and 16-bit character codes, however, it allows for 16- and 32-bit character codes.

If a font contains Unicode supplementary-plane characters (U+10000 to U+10FFFF), then it's likely that it will
also include Unicode BMP characters (U+0000 to U+FFFF) as well. Hence, there is a need to map a mixture
of 16-bit and 32-bit character codes. A simplifying assumption is made: namely, that there are no 32-bit
character codes which share the same first 16 bits as any 16-bit character code. (Since the Unicode code
space extends only to U+1FFFFF, a potential conflict exists only for characters U+0000 to U+001F, which are
non-printing control characters.) This means that the determination as to whether a particular 16-bit value is a
standalone character code or the start of a 32-bit character code can be made by looking at the 16-bit value
directly, with no further information required.

'cmap' Subtable Format 8:

Type Name Description

uint16 format Subtable format; set to 8.

uint16 reserved Reserved; set to 0

uint32 length Byte length of this subtable (including the header)

uint32 language For requirements on use of the language field, see
subclause 5.2.2.2.1.

16

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

16 ©	ISO/IEC	2019	–	All	rights	reserved
	

uint8 is32[8192] Tightly packed array of bits (8K bytes total) indicating
whether the particular 16-bit (index) value is the start
of a 32-bit character code

uint32 numGroups Number of groupings which follow

SequentialMapGroup groups[numGroups] Array of SequentialMapGroup records.

Each sequential map group record specifies a character range and the starting glyph ID mapped from the first
character. Glyph IDs for subsequent characters follow in sequence.

SequentialMapGroup Record:

Type Name Description

uint32 startCharCode First character code in this group; note that if this group is for one or
more 16-bit character codes (which is determined from the is32
array), this 32-bit value will have the high 16-bits set to zero

uint32 endCharCode Last character code in this group; same condition as listed above for
the startCharCode

uint32 startGlyphID Glyph index corresponding to the starting character code

A few notes here. The endCharCode is used, rather than a count, because comparisons for group matching
are usually done on an existing character code, and having the endCharCode be there explicitly saves the
necessity of an addition per group. Groups shall be sorted by increasing startCharCode. A group's
endCharCode shall be less than the startCharCode of the following group, if any.

To determine if a particular word (cp) is the first half of 32-bit code points, one can use an expression such as
(is32[cp / 8] & (1 << (7 - (cp % 8)))). If this is non-zero, then the word is the first half of a 32-bit code
point.

0 is not a special value for the high word of a 32-bit code point. A font may not have both a glyph for the code
point 0x0000 and glyphs for code points with a high word of 0x0000.

The presence of the packed array of bits indicating whether a particular 16-bit value is the start of a 32-bit
character code is useful even when the font contains no glyphs for a particular 16-bit start value. This is
because the system software often needs to know how many bytes ahead the next character begins, even if
the current character maps to the missing glyph. By including this information explicitly in this table, no
"secret" knowledge needs to be encoded into the OS.

Although this format was created to support Unicode supplementary-plane characters, it's not widely
supported or used. Also, no character encoding other than Unicode uses mixed 16-/32-bit characters. The use
of this format is discouraged.

5.2.2.2.7 Format 10: Trimmed array

Format 10 is similar to format 6, in that it defines a trimmed array for a tight range of character codes. It differs,
however, in that is uses 32-bit character codes.

'cmap' Subtable Format 10:

Type Name Description

uint16 format Subtable format; set to 10.

uint16 reserved Reserved; set to 0

uint32 length Byte length of this subtable (including the header)

uint32 language For requirements on use of the language field, see subclause

17

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 17
	

5.2.2.2.1.

uint32 startCharCode First character code covered

uint32 numChars Number of character codes covered

uint16 glyphs[] Array of glyph indices for the character codes covered

This format is not widely used and is not supported on Windows platforms. It would be most suitable for fonts
that support only a contiguous range of Unicode supplementary-plane characters, but such fonts are rare.

5.2.2.2.8 Format 12: Segmented coverage

This is the standard character-to-glyph-index mapping table for the Windows platform for fonts supporting
Unicode supplementary-plane characters (U+10000 to U+10FFFF). See Windows platform (platform ID = 3) in
subclause 5.2.2.1 for additional details regarding subtable formats for Unicode encoding on the Windows
platform.

Format 12 is similar to format 4 in that it defines segments for sparse representation in 4-byte character space.
It differs, however, in that it uses 32-bit character codes.

'cmap' Subtable Format 12:

Type Name Description

uint16 format Subtable format; set to 12.

uint16 reserved Reserved; set to 0

uint32 length Byte length of this subtable (including the header)

uint32 language For requirements on use of the language field, see
subclause 5.2.2.2.1.

uint32 numGroups Number of groupings which follow

SequentialMapGroup groups[numGroups] Array of SequentialMapGroup records.

The sequential map group record is the same format as is used for the format 8 subtable. The qualifications
regarding 16-bit character codes does not apply here, however, since characters codes are uniformly 32-bit.

SequentialMapGroup Record:

Type Name Description

uint32 startCharCode First character code in this group

uint32 endCharCode Last character code in this group

uint32 startGlyphID Glyph index corresponding to the starting character code

Groups shall be sorted by increasing startCharCode. A group's endCharCode shall be less than the
startCharCode of the following group, if any. The endCharCode is used, rather than a count, because
comparisons for group matching are usually done on an existing character code, and having the
endCharCode be there explicitly saves the necessity of an addition per group.

18

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

18 ©	ISO/IEC	2019	–	All	rights	reserved
	

5.2.2.2.9 Format 13: Many-to-one range mappings

This subtable provides for situations in which the same glyph is used for hundreds or even thousands of
consecutive characters spanning across multiple ranges of the code space. This subtable format may be
useful for “last resort” fonts, although these fonts may use other suitable subtable formats as well. (For "last
resort" fonts, see also the 'head' table flags in subclause 5.2.3, flags: bit 14).

NOTE Subtable formats 13 has the same data structure as format 12; it differs only in the interpretation of the
startGlyphID/glyphID fields.

'cmap' Subtable Format 13:
Type Name Description

uint16 format Subtable format; set to 13.

uint16 reserved Reserved; set to 0

uint32 length Byte length of this subtable (including the header)

uint32 language For requirements on use of the language field, see
subclause 5.2.2.2.1.

uint32 numGroups Number of groupings which follow

ConstantMapGroup groups[numGroups] Array of ConstantMapGroup records.

The constant map group record has the same structure as the sequential map group record, with start and
end character codes and a mapped glyph ID. However, the same glyph ID applies to all characters in the
specified range rather than sequential glyph IDs.

ConstantMapGroup Record:

Type Name Description

uint32 startCharCode First character code in this group

uint32 endCharCode Last character code in this group

uint32 glyphID Glyph index to be used for all the characters in the
group's range.

5.2.2.2.10 Format 14: Unicode variation sequences

Subtable format 14 specifies the Unicode Variation Sequences (UVSes) supported by the font. A Variation
Sequence, according to the Unicode Standard, comprises a base character followed by a variation selector;
e.g. <U+82A6, U+E0101>.

The subtable partitions the UVSes supported by the font into two categories: “default” and “non-default”
UVSes. Given a UVS, if the glyph obtained by looking up the base character of that sequence in the Unicode
cmap subtable (i.e. the BMP subtable or BMP + supplementary-planes subtable) is the glyph to use for that
sequence, then the sequence is a “default” UVS. Otherwise, it is a “non-default” UVS, and the glyph to use for
that sequence is specified in the format 14 subtable itself.

The example in the end of this subclause shows how a font vendor can use format 14 for a JIS-2004–aware
font.

19

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 19
	

'cmap' Subtable Format 14:Format 14 header

Type Name Description

uint16 format Subtable format; set to 14.

uint32 length Byte length of this subtable (including this
header)

uint32 numVarSelectorRecords Number of variation Selector Records

VariationSelector varSelector[numVarSelectorRecords] Array of VariationSelector records.

Each variation selector records specifies a variation selector character, and offsets to “default” and “non-
default” tables used to map variation sequences using that variation selector.

Variation Selector Record

Type Name Description

uint24 varSelector Variation selector

Offset32 defaultUVSOffset Offset from the start of the format 14 subtable to
Default UVS Table. May be 0.

Offset32 nonDefaultUVSOffset Offset from the start of the format 14 subtable to
Non-Default UVS Table. May be 0.

The Variation Selector Records are sorted in increasing order of ‘varSelector’. No two records may have the
same ‘varSelector’.

A Variation Selector Record and the data its offsets point to specify those UVSes supported by the font for
which the variation selector is the ‘varSelector’ value of the record. The base characters of the UVSes are
stored in the tables pointed to by the offsets. The UVSes are partitioned by whether they are default or non-
default UVSes.

Glyph IDs to be used for non-default UVSes are specified in the Non-Default UVS table.

Default UVS table

A Default UVS Table is simply a range-compressed list of Unicode scalar values, representing the base
characters of the default UVSes which use the ‘varSelector’ of the associated Variation Selector Record.

Default UVS Table header

Type Name Description

uint32 numUnicodeValueRanges Number of ranges that follow

UnicodeRange ranges[numUnicodeValueRanges] Array of UnicodeRange records.

Each Unicode range record specifies a contiguous range of Unicode values.

UnicodeRange Record

Type Name Description

uint24 startUnicodeValue First value in this range

uint8 additionalCount Number of additional values in this range

For example, the range U+4E4D–U+4E4F (3 values) will set ‘startUnicodeValue’ to 0x004E4D and
‘additionalCount’ to 2. A singleton range will set ‘additionalCount’ to 0.

(‘startUnicodeValue’ + ‘additionalCount’) shall not exceed 0xFFFFFF.

20

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

20 ©	ISO/IEC	2019	–	All	rights	reserved
	

The Unicode Value Ranges are sorted in increasing order of ‘startUnicodeValue’. The ranges must not
overlap; i.e., (‘startUnicodeValue’ + ‘additionalCount’) must be less than the ‘startUnicodeValue’ of the
following range (if any).

Non-default UVS table

A Non-Default UVS Table is a list of pairs of Unicode scalar values and glyph IDs. The Unicode values
represent the base characters of all non-default UVSes which use the ‘varSelector’ of the associated Variation
Selector Record, and the glyph IDs specify the glyph IDs to use for the UVSes.

Non-Default UVS Table header

Type Name Description

uint32 numUVSMappings Number of UVS Mappings that follow

UVSMapping uvsMappings[numUVSMappings] Array of UVSMapping records.

Each UVSMapping record provides a glyph ID mapping for one base Unicode character, when that base
character is used in a variation sequence with the current variation selector.

UVSMapping Record

Type Name Description

uint24 unicodeValue Base Unicode value of the UVS

uint16 glyphID Glyph ID of the UVS

The UVS Mappings are sorted in increasing order of ‘unicodeValue’. No two mappings in this table may have
the same ‘unicodeValue’ values.

Example

Here is an example of how a format 14 cmap subtable may be used in a font that is aware of JIS-2004 variant
glyphs. The CIDs (character IDs) in this example refer to those in the Adobe Character Collection “Adobe-
Japan1”, and may be assumed to be identical to the glyph IDs in the font in our example.

JIS-2004 changed the default glyph variants for some of its code points. For example:

JIS-90: U+82A6 -> CID 1142
JIS-2004: U+82A6 -> CID 7961

Both of these glyph variants are supported through the use of Unicode Variation Sequences, as the following
examples from Unicode’s UVS registry show:

U+82A6 U+E0100 -> CID 1142
U+82A6 U+E0101 -> CID 7961

If the font wants to support the JIS-2004 variants by default, it will:

 encode glyph ID 7961 at U+82A6 in the Unicode cmap subtable,

 specify in the UVS cmap subtable’s Default UVS Table (‘varSelector’ will be 0x0E0101 and
‘defaultUVSOffset’ will point to data containing a 0x0082A6 Unicode value)

 specify -> glyph ID 1142 in the UVS cmap subtable’s Non-Default UVS Table (‘varSelector’ will be
0x0E0100 and ‘nonDefaultBaseUVOffset’ will point to data containing a ‘unicodeValue’ 0x82A6 and
‘glyphID’ 1142).

If, however, the font wants to support the JIS-90 variants by default, it will:

 encode glyph ID 1142 at U+82A6 in the Unicode cmap subtable,

 specify in the UVS cmap subtable’s Default UVS Table

 specify -> glyph ID 7961 in the UVS cmap subtable’s Non-Default UVS Table

21

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 21
	

5.2.3 head – Font header

This table gives global information about the font. The bounding box values should be computed using only
glyphs that have contours. Glyphs with no contours should be ignored for the purposes of these calculations.

Type Name Description

uint16 majorVersion Major version number of the font header table – set to 1.

uint16 minorVersion Minor version number of the font header table – set to 0.

Fixed fontRevision Set by font manufacturer.

uint32 checkSumAdjustment To compute: set it to 0, sum the entire font as uint32,
then store 0xB1B0AFBA - sum. If the font is used as a
component in a font collection file, the value of this field
will be invalidated by changes to the file structure and
font table directory, and must be ignored.

uint32 magicNumber Set to 0x5F0F3CF5.

uint16 flags Bit 0: Baseline for font at y=0;
Bit 1: Left sidebearing point at x=0 (relevant only for
TrueType rasterizers) – see the note below regarding
variable fonts;
Bit 2: Instructions may depend on point size;
Bit 3: Force ppem to integer values for all internal scaler
math; may use fractional ppem sizes if this bit is clear;
Bit 4: Instructions may alter advance width (the advance
widths might not scale linearly);
Bit 5: This bit is not used in OFF, and should not be set in
order to ensure compatible behavior on all platforms. If
set, it may result in different behavior for vertical layout in
some platforms. (See 'head' table specification of "Apple's
TrueType Reference Manual" [7] for details regarding
behavior in Apple platforms.)
Bits 6-10: These bits are not used in OFF and should
always be cleared. (See 'head' table specification of
"Apple's TrueType Reference Manual" [7] for details
regarding legacy use in Apple platforms.)
Bit 11: Font data is ‘lossless’ as a result of having been
subjected to optimizing transformation and/or
compression (such as font compression mechanisms
defined by ISO/IEC 14496-18, MicroType®5 Express,
WOFF2 [24], or similar) where the original font
functionality and features are retained but the binary
compatibility between input and output font files is not
guaranteed. As a result of the applied transform, the
‘DSIG’ Table may also be invalidated.
Bit 12: Font converted (produce compatible metrics)
Bit 13: Font optimized for ClearType®6. Note, fonts that
rely on embedded bitmaps (EBDT) for rendering should
not be considered optimized for ClearType, and therefore

5 MicroType® is the trademark of a product supplied by Monotype Imaging Inc. This information is given for the
convenience of users of this document and does not constitute an endorsement by ISO or IEC of this product.

6 ClearType® is the trademark of a product supplied by Microsoft. This information is given for the convenience of users of
this document and does not constitute an endorsement by ISO or IEC of this product.

22

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

22 ©	ISO/IEC	2019	–	All	rights	reserved
	

should keep this bit cleared.
Bit 14: Last Resort font. If set, indicates that the glyphs
encoded in the cmap subtables are simply generic
symbolic representations of code point ranges and don’t
truly represent support for those code points. If unset,
indicates that the glyphs encoded in the cmap subtables
represent proper support for those code points
Bit 15: Reserved, set to 0

uint16 unitsPerEm Set to a value from 16 to 16384. Any value in this range
is valid. In fonts that have TrueType outlines, a power of
2 is recommended as this allows performance
optimization in some rasterizers.

LONGDATETIME created Number of seconds since 12:00 midnight that started
January 1st, 1904, in GMT/UTC time zone. 64-bit integer

LONGDATETIME modified Number of seconds since 12:00 midnight that started
January 1st, 1904, in GMT/UTC time zone. 64-bit integer

int16 xMin For all glyph bounding boxes.

int16 yMin For all glyph bounding boxes.

int16 xMax For all glyph bounding boxes.

int16 yMax For all glyph bounding boxes.

uint16 macStyle Bit 0: Bold (if set to 1);
Bit 1: Italic (if set to 1)
Bit 2: Underline (if set to 1)
Bit 3: Outline (if set to 1)
Bit 4: Shadow (if set to 1)
Bit 5: Condensed (if set to 1)
Bit 6: Extended (if set to 1)
Bits 7-15: Reserved (set to 0).

uint16 lowestRecPPEM Smallest readable size in pixels.

int16 fontDirectionHint Deprecated (Set to 2).

0: Fully mixed directional glyphs;
1: Only strongly left to right;
2: Like 1 but also contains neutrals;
-1: Only strongly right to left;
-2: Like -1 but also contains neutrals. 1

int16 indexToLocFormat 0 for short offsets, 1 for long.

int16 glyphDataFormat 0 for current format.

A neutral character has no inherent directionality; it is not a character with zero (0) width. Spaces and
punctuation are examples of neutral characters. Non-neutral characters are those with inherent directionality.
For example, Roman letters (left-to-right) and Arabic letters (right-to-left) have directionality. In a "normal"
Roman font where spaces and punctuation are present, the font direction hints should be set to two (2).

23

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 23
	

It should be noted that the macStyle bits must agree with the 'OS/2' table fsSelection bits. The fsSelection bits
are used over the macStyle bits in Windows. The PANOSE values and 'post' table values are ignored for
determining bold or italic fonts.

For historical reasons, the fontRevision value contained in this table is not used by Windows to determine the
version of a font. Instead, Windows evaluates the version string (id 5) in the 'name' table.

Note that, in a variable font with TrueType outlines, the left side bearing for each glyph must equal xMin, and
bit 1 in the flags field must be set. Also, bit 5 must be cleared in all variable fonts. For general information on
OFF Font variations, see subclause 7.1.

5.2.4 hhea – Horizontal header

This table contains information for horizontal layout. The values in the minRightSidebearing,
minLeftSideBearing and xMaxExtent should be computed using only glyphs that have contours. Glyphs with
no contours should be ignored for the purposes of these calculations. All reserved areas shall be set to 0.

Type Name Description

uint16 majorVersion Major version number of the horizontal header table – set to 1.

uint16 minorVersion Minor version number of the horizontal header table – set to 0.

FWORD ascender Typographic ascent. (Distance from baseline of highest
ascender)

FWORD descender Typographic descent. (Distance from baseline of lowest
descender)

FWORD lineGap Typographic line gap.
Negative lineGap values are treated as zero in in some legacy
platform implementations.

UFWORD advanceWidthMax Maximum advance width value in 'hmtx' table.

FWORD minLeftSideBearing Minimum left sidebearing value in 'hmtx' table.

FWORD minRightSideBearing Minimum right sidebearing value; calculated as Min (aw - lsb -
(xMax - xMin)).

FWORD xMaxExtent Max(lsb + (xMax - xMin)).

int16 caretSlopeRise Used to calculate the slope of the cursor (rise/run); 1 for vertical.

int16 caretSlopeRun 0 for vertical.

int16 caretOffset The amount by which a slanted highlight on a glyph needs to be
shifted to produce the best appearance. Set to 0 for non-slanted
fonts

int16 (reserved) set to 0

int16 (reserved) set to 0

int16 (reserved) set to 0

int16 (reserved) set to 0

24

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

24 ©	ISO/IEC	2019	–	All	rights	reserved
	

int16 metricDataFormat 0 for current format.

uint16 numberOfHMetrics Number of hMetric entries in 'hmtx' table

NOTE The ascender, descender and linegap values in this table are Macintosh platform specific. These are not ignored
by Windows platform. They are used to identify fixed pitch fonts. Also see information in the OS/2 table.

'hhea' Table and OFF Font Variations

In a variable font, various font-metric values within the horizontal header table may need to be adjusted for
different variation instances. Variation data for 'hhea' entries can be provided in the metrics variations
('MVAR') table. Different 'hhea' entries are associated with particular variation data in the 'MVAR' table using
value tags, as follows:

'hhea' entry Tag

caretOffset 'hcof'

caretSlopeRise 'hcrs'

caretSlopeRun 'hcrn'

For general information on OFF Font variations, see subclause 7.1.

5.2.5 hmtx – Horizontal metrics

Glyph metrics used for horizontal text layout include glyph advance widths, side bearings and X-direction min
and max values (xMin, xMax). These are derived using a combination of the glyph outline data ('glyf', 'CFF ' or
'CFF2') and the horizontal metrics table. The horizontal metrics ('hmtx') table provides glyph advance widths
and left side bearings.

In a font with TrueType outline data, the 'glyf' table provides xMin and xMax values, but not advance widths or
side bearings. The advance width is always obtained from the 'hmtx' table. In some fonts, depending on the
state of flags in the 'head' table, the left side bearings may be the same as the xMin values in the 'glyf' table,
though this is not true for all fonts. (See the description of bit 1 of the flags field in the 'head' table.) For this
reason, left side bearings are provided in the 'hmtx' table. The right side bearing is always derived using
advance width and left side bearing values from the 'hmtx' table, plus bounding-box information in the glyph
description — see below for more details.

In a variable font with TrueType outline data, the left side bearing value in the 'hmtx' table must always be
equal to xMin (bit 1 of the 'head' flags field must be set). Hence, these values can also be derived directly from
the 'glyf' table. Note that these values apply only to the default instance of the variable font: non-default
instances may have different side bearing values. These can be derived from interpolated “phantom point”
coordinates using the 'gvar' table (see below for additional details), or by applying variation data in the 'HVAR'
table to default-instance values from the 'glyf' or 'hmtx' table.

In a font with CFF version 1 outline data, the 'CFF ' table does include advance widths. These values are used
by PostScript processors, but are not used in OFF layout. In an OFF context, the 'hmtx' table is required and
must be used for advance widths. Note that fonts in a Font Collection file that share a 'CFF ' table may specify
different advance widths in font-specific 'hmtx' tables for a particular glyph index. Also note that the 'CFF2'
table does not include advance widths. In addition, for either 'CFF ' or 'CFF2' data, there are no explicit xMin
and xMax values; side bearings are implicitly contained within the CharString data, and can be obtained from
the the CFF / CFF2 rasterizer. Some layout engines may use left side bearing values in the 'hmtx' table,
however; hence, font production tools should ensure that the lsb values in the 'hmtx' table match the implicit
xMin values reflected in the CharString data. In a variable font with CFF2 outline data, left side bearing and
advance width values for non-default instances should be obtained by combining information from the 'hmtx'
and 'HVAR' tables.

25

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 25
	

The table uses a longHorMetric record to give the advance width and left side bearing of a glyph. Records are
indexed by glyph ID. As an optimization, the number of records can be less than the number of glyphs, in
which case the advance width value of the last record applies to all remaining glyph IDs. This can be useful in
monospaced fonts, or in fonts that have a large number of glyphs with the same advance width (provided the
glyphs are ordered appropriately). The number of longHorMetric records is determined by the
numberOfHMetrics field in the 'hhea' table.

If the longHorMetric array is less than the total number of glyphs, then that array is followed by an array for the
left side bearing values of the remaining glyphs. The number of elements in the left side bearing will be
derived from numberOfHMetrics plus the numGlyphs field in the 'maxp' table.

Horizontal Metrics Table:

Type Name Description

longHorMetric hMetrics
[numberOfHMetrics]

Paired advance width and left side bearing values for
each glyph. Records are indexed by glyph ID.

int16 leftSideBearing
[numGlyphs -
numberOfHMetrics]

Left side bearings for glyph IDs greater than or equal to
numberOfHMetrics.

longHorMetric Record:

Type Name Description

uint16 advanceWidth Advance width, in font design units.

int16 lsb Glyph left side bearing, in font design units.

In a font with TrueType outlines, xMin and xMax values for each glyph are given in the 'glyf' table. The
advance width (“aw”) and left side bearing (“lsb”) can be derived from the glyph “phantom points”, which are
computed by the TrueType rasterizer; or they can be obtained from the 'hmtx' table. In a font with CFF or
CFF2 outlines, xMin (= left side bearing) and xMax values can be obtained from the CFF / CFF2 rasterizer.
From those values, the right side bearing (“rsb”) is calculated as follows:

rsb = aw - (lsb + xMax - xMin)
If pp1 and pp2 are TrueType phantom points used to control lsb and rsb, their initial position in the X-direction
is calculated as follows:

pp1 = xMin - lsb
pp2 = pp1 + aw

5.2.6 maxp – Maximum profile

This table establishes the memory requirements for this font. Fonts with CFF data must use Version 0.5 of this
table, specifying only the numGlyphs field. Fonts with TrueType outlines must use Version 1.0 of this table,
where all data is required.

Version 0.5

Type Name Description

Fixed version 0x00005000 for version 0.5
(Note the difference in the representation of a non-zero fractional
part, in Fixed numbers.)

uint16 numGlyphs The number of glyphs in the font.

26

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

26 ©	ISO/IEC	2019	–	All	rights	reserved
	

Version 1.0

Type Name Description

Fixed version 0x00010000 for version 1.0.

uint16 numGlyphs The number of glyphs in the font.

uint16 maxPoints Maximum points in a non-composite glyph.

uint16 maxContours Maximum contours in a non-composite glyph.

uint16 maxCompositePoints Maximum points in a composite glyph.

uint16 maxCompositeContours Maximum contours in a composite glyph.

uint16 maxZones 1 if instructions do not use the twilight zone (Z0), or 2 if
instructions do use Z0; should be set to 2 in most cases.

uint16 maxTwilightPoints Maximum points used in Z0.

uint16 maxStorage Number of Storage Area locations.

uint16 maxFunctionDefs Number of FDEFs, equal to the highest function number
+ 1.

uint16 maxInstructionDefs Number of IDEFs.

uint16 maxStackElements Maximum stack depth across Font Program ('fpgm'
table), CVT Program ('prep' table) and all glyph
instructions (in the 'glyf' table).

uint16 maxSizeOfInstructions Maximum byte count for glyph instructions.

uint16 maxComponentElements Maximum number of components referenced at "top
level" for any composite glyph.

uint16 maxComponentDepth Maximum levels of recursion; 1 for simple components.

5.2.7 name – Naming table

5.2.7.1 Table structure

The naming table allows multilingual strings to be associated with the OFF font file. These strings can
represent copyright notices, font names, family names, style names, and so on. To keep this table short, the
font manufacturer may wish to make a limited set of entries in some small set of languages; later, the font can
be "localized" and the strings translated or added. Other parts of the OFF font file that require these strings
can refer to them using a language-independent name ID. In addition to language variants, the table also
allows for platform-specific character-encoding variants. Clients that need a particular string can look it up by
its platform ID, encoding ID, language ID and name ID. Note that different platforms may have different
requirements for the encoding of strings.

Many newer platforms can use strings intended for different platforms if a font does not include strings for that
platform. Some applications might display incorrect strings, however, if strings for the current platform are not
included.

27

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 27
	

Naming table header

There are two formats for the Naming Table. Format 0 uses platform-specific numeric language identifiers.
Format 1 allows for use of language-tag strings to indicate the language of Naming-Table strings. Both
formats include variable-size string-data storage, and an array of name records that are used to identify the
type of string (name ID), platform, encoding and language variants of the string, and the location within the
storage.

Naming table format 0

The format 0 naming table is organized as follows:

Type Name Description

uint16 format Format selector (=0).

uint16 count Number of name records.

Offset16 stringOffset Offset to start of string storage (from start of table).

NameRecord nameRecord[count] The name records where count is the number of records.

(Variable) Storage for the actual string data.

Format 0 differs from format 1 in regard to handling of language identification: it uses only numeric language
IDs, which generally are values less than 0x8000 and have platform-specific interpretations. See subclause
5.2.7.2 for more details.

Naming table format 1

The format 1 naming table adds additional elements, as follows:

Type Name Description

uint16 format Format selector (=1).

uint16 count Number of name records.

Offset16 stringOffset Offset to start of string storage (from start of
table).

NameRecord nameRecord[count] The name records where count is the number of
records.

uint16 langTagCount Number of language-tag records.

LangTagRecord langTagRecord[langTagCount] The language-tag records where langTagCount
is the number of records.

(Variable) Storage for the actual string data.

When format 1 is used, the language IDs in name records can be less than or greater than 0x8000. If a
language ID is less than 0x8000, it has a platform-specific interpretation as with a format 0 naming table. If a
language ID is equal to or greater than 0x8000, it is associated with a language-tag record (LangTagRecord)
that references a language-tag string. In this way, the language ID is associated with a language-tag string
that specifies the language for name records using that language ID, regardless of the platform. These can be
used for any platform that supports this language-tag mechanism.

28

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

28 ©	ISO/IEC	2019	–	All	rights	reserved
	

A font using a format 1 naming table may use a combination of platform-specific language IDs as well as
language-tag records for a given platform and encoding.

Each LangTagRecord is organized as follows:

Type Name Description

uint16 length Language-tag string length (in bytes).

uint16 offset Language-tag string offset from start of storage area (in bytes).

Language-tag strings stored in the naming table must be encoded in UTF-16BE. The language tags shall be
as specified in the IETF specification BCP 47. This provides tags such as "en", "fr-CA" and "zh-Hant" to
identify languages, including dialects, written form and other language variants.

The language-tag records are associated sequentially with language IDs starting with 0x8000. Each language-
tag record corresponds to a language ID one greater than that for the previous language-tag record. Thus,
language IDs associated with language-tag records must be within the range 0x8000 to 0x8000 +
langTagCount - 1. If a name record uses a language ID that is greater than this, the identity of the language is
unknown; such name records should not be used.

For example, suppose a font has two language-tag records referencing strings in the storage: the first
references the string "en", and the second references the string "zh-Hant-HK" In this case, the language ID
0x8000 is used in name records to index English-language strings. The language ID 0x8001 is used in name
records to index strings in Traditional Chinese as used in Hong Kong.

5.2.7.2 Name records

Each string in the string storage is referenced by a name record. The name record has a multi-part key, to
identify the logical type of string and its language or platform-specific implementation variants, plus the
location of the string in the string storage.

Each NameRecord is organized as follows:

Type Name Description

uint16 platformID Platform ID.

uint16 encodingID Platform-specific encoding ID.

uint16 languageID Language ID.

uint16 nameID Name ID.

uint16 length String length (in bytes).

Offset16 Offset String offset from start of storage area (in bytes).

The name ID identifies a logical string category, such as family name or copyright. Name IDs are the same for
all platforms and languages; these are described in detail below. The other three elements of the key allow for
platform-specific implementations: a platform ID, a platform-specific encoding ID, and a language ID.

As with encoding records in the 'cmap' table, name records shall be sorted first by platform ID, then by
encoding ID, then language ID, and then, in addition, by name ID. Descriptions of the various IDs follow.

5.2.7.3 Platform, encoding and language IDs

The platform, encoding and language IDs of a name record allow for platform-specific implementations.
Different platforms can support different encodings, and different languages. All encoding IDs are platform-

29

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 29
	

specific. Language IDs are similarly platform-specific, except in the case of IDs used in conjuction with the
language-tag mechanism of naming table format 1, described above.

NOTE Platform IDs, platform-specific encoding IDs and, in some cases, platform-specific language IDs are also used in
the 'cmap' table (see subclause 5.2.2)

Language IDs refer to a value that identifies the language in which a particular string is written. Values less
than 0x8000 are defined on a platform-specific basis. A format 0 naming table shall use only language ID
values less than 0x8000 from the platform-specific enumerations given below. (Exceptions to this requirement
are permitted, however, in the case of user-defined platforms — platform IDs 240 to 255.) Values greater than
or equal to 0x8000 can be used in a format 1 naming table in conjunction with language-tag records, as
described above. Not all platforms have platform-specific language IDs, and not all platforms support
language-tag records.

Platform IDs

The following platform IDs are defined:
Platform ID Platform name Platform-specific encoding IDs Language IDs

0 Unicode Various None

1 Macintosh Script manager code Various

2 ISO [deprecated] ISO encoding [deprecated] None

3 Windows Windows encoding Various

4 Custom Custom None

Platform ID 2 (ISO) has been deprecated. It was intended to represent ISO/IEC 10646, as opposed to
Unicode. It is redundant, however, since both standards have identical character code assignments.

Platform ID values 240 through 255 are reserved for user-defined platforms, and shall never be assigned to a
registered platform.

Platform-specific encoding and language IDs: Unicode platform (platform ID = 0)

The following encoding IDs are defined for use with the Unicode platform:

Encoding ID Description

0 Unicode 1.0 semantics

1 Unicode 1.1 semantics

2 ISO/IEC 10646 semantics

3 Unicode 2.0 and onwards semantics, Unicode BMP only (cmap subtable formats 0,
4, 6).

4 Unicode 2.0 and onwards semantics, Unicode full repertoire (cmap subtable
formats 0, 4, 6, 10, 12).

5 Unicode Variation Sequences (cmap subtable format 14).

6 Unicode full repertoire (cmap subtable formats 0, 4, 6, 10, 12, 13).

A new encoding ID for the Unicode platform will be assigned if a new version of Unicode moves characters, in
order to properly specify character code semantics. (Because of Unicode stability policies, such a need is not
anticipated.) The distinction between Unicode platform-specific encoding IDs 1 and 2 is for historical reasons
only; The Unicode Standard is in fact identical in repertoire and encoding to ISO/IEC 10646. For all practical

30

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

30 ©	ISO/IEC	2019	–	All	rights	reserved
	

purposes in current fonts, the distinctions provided by encoding IDs 0, 1 and 2 are not important, thus these
encoding IDs are deprecated.
A new encoding ID for the Unicode platform is also sometimes assigned when new cmap subtable formats are
added to the specification, so as to allow for compatibility with existing parsers. For example, when cmap
subtable formats 10 and 12 were added to the specification, encoding ID 4 was added as well, and when
cmap subtable format 13 was added to the specification, encoding ID 6 was added. The cmap subtable
formats listed in the table above are the only ones that may be used for the corresponding encoding ID.

Unicode platform encoding ID 5 can be used for encodings in the ‘cmap’ table but not for strings in the ‘name’
table.

There are no platform-specific language IDs defined for the Unicode platform. Language ID = 0 may be used
for Unicode-platform strings, but this does not indicate any particular language. Language IDs greater than or
equal to 0x8000 may be used together with language-tag records, as described above.

Platform-specific encoding and language IDs: Windows platform (platform ID= 3)

Windows encoding IDs

The following encoding IDs are defined for use with the Windows platform:

Platform ID Encoding ID Description

3 0 Symbol

3 1 Unicode BMP

3 2 ShiftJIS

3 3 PRC

3 4 Big5

3 5 Wansung

3 6 Johab

3 7 Reserved

3 8 Reserved

3 9 Reserved

3 10 Unicode full repertoire

When building a Unicode font for Windows, the platform ID should be 3 and the encoding ID should be 1,
and the referenced string data must be encoded in UTF-16BE. When building a symbol font for Windows,
the platform ID should be 3 and the encoding ID should be 0, and the referenced string data must be
encoded in UTF-16BE.

Windows language IDs

The following are platform-specific language IDs assigned by Microsoft:

31

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 31
	

Primary Language Region Language ID

(hexadecimal)
Afrikaans South Africa 0436

Albanian Albania 041C

Alsatian France 0484

Amharic Ethiopia 045E

Arabic Algeria 1401

Arabic Bahrain 3C01

Arabic Egypt 0C01

Arabic Iraq 0801

Arabic Jordan 2C01

Arabic Kuwait 3401

Arabic Lebanon 3001

Arabic Libya 1001

Arabic Morocco 1801

Arabic Oman 2001

Arabic Qatar 4001

Arabic Saudi Arabia 0401

Arabic Syria 2801

Arabic Tunisia 1C01

Arabic U.A.E. 3801

Arabic Yemen 2401

Armenian Armenia 042B>

Assamese India 044D

Azeri (Cyrillic) Azerbaijan 082C

Azeri (Latin) Azerbaijan 042C

Bashkir Russia 046D

Basque Basque 042D

Belarusian Belarus 0423

Bengali Bangladesh 0845

Bengali India 0445

Bosnian (Cyrillic) Bosnia and Herzegovina 201A

Bosnian (Latin) Bosnia and Herzegovina 141A

Breton France 047E

Bulgarian Bulgaria 0402

Catalan Catalan 0403

Chinese Hong Kong S.A.R. 0C04

Chinese Macao S.A.R. 1404

32

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

32 ©	ISO/IEC	2019	–	All	rights	reserved
	

Chinese People's Republic of China 0804

Chinese Singapore 1004

Chinese Taiwan 0404

Corsican France 0483

Croatian Croatia 041A

Croatian (Latin) Bosnia and Herzegovina 101A

Czech Czech Republic 0405

Danish Denmark 0406

Dari Afghanistan 048C

Divehi Maldives 0465

Dutch Belgium 0813

Dutch Netherlands 0413

English Australia 0C09

English Belize 2809

English Canada 1009

English Caribbean 2409

English India 4009

English Ireland 1809

English Jamaica 2009

English Malaysia 4409

English New Zealand 1409

English Republic of the Philippines 3409

English Singapore 4809

English South Africa 1C09

English Trinidad and Tobago 2C09

English United Kingdom 0809

English United States 0409

English Zimbabwe 3009

Estonian Estonia 0425

Faroese Faroe Islands 0438

Filipino Philippines 0464

Finnish Finland 040B

French Belgium 080C

French Canada 0C0C

French France 040C

French Luxembourg 140c

French Principality of Monaco 180C

French Switzerland 100C

33

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 33
	

Frisian Netherlands 0462

Galician Galician 0456

Georgian Georgia 0437

German Austria 0C07

German Germany 0407

German Liechtenstein 1407

German Luxembourg 1007

German Switzerland 0807

Greek Greece 0408

Greenlandic Greenland 046F

Gujarati India 0447

Hausa (Latin) Nigeria 0468

Hebrew Israel 040D

Hindi India 0439

Hungarian Hungary 040E

Icelandic Iceland 040F

Igbo Nigeria 0470

Indonesian Indonesia 0421

Inuktitut Canada 045D

Inuktitut (Latin) Canada 085D

Irish Ireland 083C

isiXhosa South Africa 0434

isiZulu South Africa 0435

Italian Italy 0410

Italian Switzerland 0810

Japanese Japan 0411

Kannada India 044B

Kazakh Kazakhstan 043F

Khmer Cambodia 0453

K'iche Guatemala 0486

Kinyarwanda Rwanda 0487

Kiswahili Kenya 0441

Konkani India 0457

Korean Korea 0412

Kyrgyz Kyrgyzstan 0440

Lao Lao P.D.R. 0454

Latvian Latvia 0426

Lithuanian Lithuania 0427

34

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

34 ©	ISO/IEC	2019	–	All	rights	reserved
	

Lower Sorbian Germany 082E

Luxembourgish Luxembourg 046E

Macedonian (FYROM) Former Yugoslav Republic of Macedonia 042F

Malay Brunei Darussalam 083E

Malay Malaysia 043E

Malayalam India 044C

Maltese Malta 043A

Maori New Zealand 0481

Mapudungun Chile 047A

Marathi India 044E

Mohawk Mohawk 047C

Mongolian (Cyrillic) Mongolia 0450

Mongolian (Traditional) People's Republic of China 0850

Nepali Nepal 0461

Norwegian (Bokmal) Norway 0414

Norwegian (Nynorsk) Norway 0814

Occitan France 0482

Odia (formerly Oriya) India 0448

Pashto Afghanistan 0463

Polish Poland 0415

Portuguese Brazil 0416

Portuguese Portugal 0816

Punjabi India 0446

Quechua Bolivia 046B

Quechua Ecuador 086B

Quechua Peru 0C6B

Romanian Romania 0418

Romansh Switzerland 0417

Russian Russia 0419

Sami (Inari) Finland 243B

Sami (Lule) Norway 103B

Sami (Lule) Sweden 143B

Sami (Northern) Finland 0C3B

Sami (Northern) Norway 043B

Sami (Northern) Sweden 083B

Sami (Skolt) Finland 203B

Sami (Southern) Norway 183B

Sami (Southern) Sweden 1C3B

35

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 35
	

Sanskrit India 044F

Serbian (Cyrillic) Bosnia and Herzegovina 1C1A

Serbian (Cyrillic) Serbia 0C1A

Serbian (Latin) Bosnia and Herzegovina 181A

Serbian (Latin) Serbia 081A

Sesotho sa Leboa South Africa 046C

Setswana South Africa 0432

Sinhala Sri Lanka 045B

Slovak Slovakia 041B

Slovenian Slovenia 0424

Spanish Argentina 2C0A

Spanish Bolivia 400A

Spanish Chile 340A

Spanish Colombia 240A

Spanish Costa Rica 140A

Spanish Dominican Republic 1C0A

Spanish Ecuador 300A

Spanish El Salvador 440A

Spanish Guatemala 100A

Spanish Honduras 480A

Spanish Mexico 080A

Spanish Nicaragua 4C0A

Spanish Panama 180A

Spanish Paraguay 3C0A

Spanish Peru 280A

Spanish Puerto Rico 500A

Spanish (Modern sort) Spain 0C0A

Spanish (Traditional sort) Spain 040A

Spanish United States 540A

Spanish Uruguay 380A

Spanish Venezuela 200A

Sweden Finland 081D

Swedish Sweden 041D

Syriac Syria 045A

Tajik (Cyrillic) Tajikistan 0428

Tamazight (Latin) Algeria 085F

Tamil India 0449

Tatar Russia 0444

36

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

36 ©	ISO/IEC	2019	–	All	rights	reserved
	

Telugu India 044A

Thai Thailand 041E

Tibetan PRC 0451

Turkish Turkey 041F

Turkmen Turkmenistan 0442

Uighur PRC 0480

Ukrainian Ukraine 0422

Upper Sorbian Germany 042E

Urdu Islamic Republic of Pakistan 0420

Uzbek (Cyrillic) Uzbekistan 0843

Uzbek (Latin) Uzbekistan 0443

Vietnamese Vietnam 042A

Welsh United Kingdom 0452

Wolof Senegal 0488

Yakut Russia 0485

Yi PRC 0478

Yoruba Nigeria 046A

Platform-specific encoding and language IDs: Macintosh platform (platform ID = 1)

Macintosh encoding IDs (script manager codes)

The following encoding IDs are defined for use with the Macintosh platform:

Encoding ID Script Encoding ID Script

0 Roman 17 Malayalam

1 Japanese 18 Sinhalese

2 Chinese (Traditional) 19 Burmese

3 Korean 20 Khmer

4 Arabic 21 Thai

5 Hebrew 22 Laotian

6 Greek 23 Georgian

7 Russian 24 Armenian

8 RSymbol 25 Chinese (Simplified)

9 Devanagari 26 Tibetan

10 Gurmukhi 27 Mongolian

11 Gujarati 28 Geez

12 Oriya 29 Slavic

13 Bengali 30 Vietnamese

14 Tamil 31 Sindhi

15 Telugu 32 Uninterpreted

16 Kannada

37

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 37
	

Macintosh language IDs

The following are platform-specific language ID's assigned by Apple:

Language ID Language Language ID Language

0 English 59 Pashto

1 French 60 Kurdish

2 German 61 Kashmiri

3 Italian 62 Sindhi

4 Dutch 63 Tibetan

5 Swedish 64 Nepali

6 Spanish 65 Sanskrit

7 Danish 66 Marathi

8 Portuguese 67 Bengali

9 Norwegian 68 Assamese

10 Hebrew 69 Gujarati

11 Japanese 70 Punjabi

12 Arabic 71 Oriya

13 Finnish 72 Malayalam

14 Greek 73 Kannada

15 Icelandic 74 Tamil

16 Maltese 75 Telugu

17 Turkish 76 Sinhalese

18 Croatian 77 Burmese

19 Chinese (Traditional) 78 Khmer

20 Urdu 79 Lao

21 Hindi 80 Vietnamese

22 Thai 81 Indonesian

23 Korean 82 Tagalong

24 Lithuanian 83 Malay (Roman script)

25 Polish 84 Malay (Arabic script)

26 Hungarian 85 Amharic

27 Estonian 86 Tigrinya

28 Latvian 87 Galla

29 Sami 88 Somali

30 Faroese 89 Swahili

31 Farsi/Persian 90 Kinyarwanda/Ruanda

32 Russian 91 Rundi

38

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

38 ©	ISO/IEC	2019	–	All	rights	reserved
	

33 Chinese (Simplified) 92 Nyanja/Chewa

34 Flemish 93 Malagasy

35 Irish Gaelic 94 Esperanto

36 Albanian 128 Welsh

37 Romanian 129 Basque

38 Czech 130 Catalan

39 Slovak 131 Latin

40 Slovenian 132 Quenchua

41 Yiddish 133 Guarani

42 Serbian 134 Aymara

43 Macedonian 135 Tatar

44 Bulgarian 136 Uighur

45 Ukrainian 137 Dzongkha

46 Byelorussian 138 Javanese (Roman script)

47 Uzbek 139 Sundanese (Roman script)

48 Kazakh 140 Galician

49 Azerbaijani (Cyrillic script) 141 Afrikaans

50 Azerbaijani (Arabic script) 142 Breton

51 Armenian 143 Inuktitut

52 Georgian 144 Scottish Gaelic

53 Moldavian 145 Manx Gaelic

54 Kirghiz 146 Irish Gaelic (with dot
above)

55 Tajiki 147 Tongan

56 Turkmen 148 Greek (polytonic)

57 Mongolian (Mongolian script) 149 Greenlandic

58 Mongolian (Cyrillic script) 150 Azerbaijani (Roman script)

Platform-specific encoding and language IDs: ISO platform (platform ID=2) [Deprecated]

The following encoding IDs are defined for use with ISO platform:

Code ISO encoding

0 7-bit ASCII

1 ISO 10646

2 ISO 8859-1

There are no ISO-specific language IDs, and language-tag records are not supported on this platform. This
means that it could potentially be used for encodings in the 'cmap' table but not for strings in the 'name' table.
Note that use of the ISO platform in the 'cmap' table is deprecated.

39

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 39
	

Platform-specific encoding and language IDs: Custom platform (platform ID = 4)

ID Custom encoding

0-255 OTF Windows NT compatibility mapping

In cases where a custom platform cmap is present for OTF Windows NT compatibility, the encoding ID must
be set to the Windows charset value (in the range 0 to 255, inclusive) present in the .PFM file of the original
Type 1 font. See the 'cmap' table for more details on the OTF Windows NT compatibility cmap.

There are no platform-specific language IDs defined for the Custom platform, and language-tag records are
not supported on this platform. This means that it can be used for encodings in the 'cmap' table but not for
strings in the 'name' table.

5.2.7.4 Name IDs

The following name IDs are pre-defined and they apply to all platforms unless indicated otherwise. Name IDs
23 to 255, inclusive, are reserved for future standard names. Name IDs 256 to 32767, inclusive, are reserved
for font-specific names such as those referenced by a font's layout features.

Code Meaning

0 Copyright notice.

1 Font Family name. This family name is assumed to be shared among fonts that differ
only in weight or style (regular, italic, bold, bold).

Font Family name is used in combination with Font Subfamily name (name ID 2).
Some applications that use this pair of names assume that a Font Family name is
shared by at most four fonts that form a font style-linking group: regular, italic, bold,
and bold italic. To be compatible with the broadest range of platforms and
applications, fonts should limit use of any given Font Family name in this manner.
(This four-way distinction should also be reflected in OS/2.fsSelection bit settings.)
For fonts within an extended typographic family that fall outside this four-way
distinction, the distinguishing attributes should be reflected in the Font Family name
so that those fonts appear as a separate font family. For example, the Font Family
name for the Arial Narrow font is “Arial Narrow”; the Font Family name for the Arial
Black font is “Arial Black”. (Note that, in such cases, name ID 16 should also be
included with a shared name that reflects the full, typographic family.)

2 Font Subfamily name. The Font Subfamily name distiguishes the font in a group with
the same Font Family name (name ID 1). This is assumed to address style (italic,
oblique) and weight variants only. A font with no distinctive weight or style (e.g.
medium weight, not italic and OS/2.fsSelection bit 6 set) should have the string
"Regular" as the Font Subfamily name (for English language).

Font Subfamily name is used in combination with Font Family name (name ID 1).
Some applications that use this pair of names assume that a Font Family name is
shared by at most four fonts that form a font style-linking group. These four fonts may
have Subfamily name values that reflect various weights or styles, with four-way
“Bold” and “Italic” style-linking relationships indicated using OS/2.fsSelection bits 0, 5
and 6. Within an extended typographic family that includes fonts beyond regular, bold,
italic, or bold italic, distinctions are made in the Font Family name, so that fonts
appear to be in separate families. In some cases, this may lead to specifying a
Subfamily name of “Regular” for a font that might not otherwise be considered a
regular font. For example, the Arial Black font has a Font Family name of “Arial Black”
and a Subfamily name of “Regular”. (Note that, in such cases, name IDs 16 and 17
should also be included, using a shared value for name ID 16 that reflects the full
typographic family, and values for name ID 17 that appropriately reflect the actual
design variant of each font.)

40

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

40 ©	ISO/IEC	2019	–	All	rights	reserved
	

3 Unique font identifier

4 Full font name that reflects all family and relevant subfamily descriptors. The full font
name is generally a combination of name IDs 1 and 2, or of name IDs 16 and 17, or a
similar human-readable variant.

For fonts in extended typographic families (that is, families that include more than
regular, italic, bold, and bold italic variants), values for name IDs 1 and 2 are normally
chosen to provide compatibility with certain applications that assume a family has at
most four style-linked fonts. In that case, some fonts may end up with a Subfamily
name (name ID 2) of “Regular” even though the font would not be considered,
typographically, a regular font. For such non-regular fonts in which name ID 2 is
specified as “Regular”, the “Regular” descriptor would generally be omitted from name
ID 4. For example, the Arial Black font has a Font Family name (name ID 1) of “Arial
Black” and a Subfamily name (name ID 2) of “Regular”, but has a full font name
(name ID 4) of “Arial Black”. Note that name IDs 16 and 17 should also be included in
these fonts, and that name ID 4 would typically be a combination of name IDs 16 and
17, without needing any additional qualifications regarding “Regular”.

5 Version string. Should begin with the syntax 'Version <number>.<number>' (upper
case, lower case, or mixed, with a space between "Version" and the number).
The string must contain a version number of the following form: one or more digits (0-
9) of value less than 65,535, followed by a period, followed by one or more digits of
value less than 65,535. Any character other than a digit will terminate the minor
number. A character such as ";" is helpful to separate different pieces of version
information.
The first such match in the string can be used by installation software to compare font
versions. Some installers may require the string to start with "Version ", followed by a
version number as above.

6 PostScript name for the font; Name ID 6 specifies a string which is used to invoke a
PostScript language font that corresponds to this OFF font. When translated to ASCII,
the name string must be no longer than 63 characters and restricted to the printable
ASCII subset, codes 33-126, except for the 10 characters '[', ']', '(', ')', '{', '}', '<', '>', '/',
'%'.

In a CFF OT font, there is no requirement that this name be the same as the font
name in the CFF’s Name INDEX. Thus, the same CFF may be shared among
multiple font components in an OFF Font Collection. See subclause 8.20 for
additional information.

7 Trademark; this is used to save any trademark notice/information for this font. Such
information should be based on legal advice. This is distinctly separate from the
copyright.

8 Manufacturer Name.

9 Designer; name of the designer of the typeface.

10 Description; description of the typeface. Can contain revision information, usage
recommendations, history, features, etc.

11 URL Vendor; URL of font vendor (with protocol, e.g., http://, ftp://). If a unique serial
number is embedded in the URL, it can be used to register the font.

12 URL Designer; URL of typeface designer (with protocol, e.g., http://, ftp://).

13 License Description; description of how the font may be legally used, or different
example scenarios for licensed use. This field should be written in plain language, not
legalese.

41

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 41
	

14 License Info URL; URL where additional licensing information can be found.

15 Reserved.

16 Typographic Family name: The typographic family grouping doesn't impose any
constraints on the number of faces within it, in contrast with the 4-style family
grouping (ID 1), which is present both for historical reasons and to express style
linking groups. If name ID 16 is absent, then name ID 1 is considered to be the
typographic family name. (In earlier versions of the specification, name ID 16 was
known as "Preferred Family".)

17 Typographic Subfamily name: This allows font designers to specify a subfamily name
within the typographic family grouping. This string must be unique within a particular
typographic family. If it is absent, then name ID 2 is considered to be the typographic
subfamily name. (In earlier versions of the specification, name ID 17 was known as
"Preferred Subfamily".)

18 Compatible Full (Macintosh only); On the Macintosh, the menu name is constructed
using the FOND resource. This usually matches the Full Name. If you want the name
of the font to appear differently than the Full Name, you can insert the Compatible Full
Name in ID 18.

19 Sample text; This can be the font name, or any other text that the designer thinks is
the best sample to display the font in.

20 PostScript CID findfont name; Its presence in a font means that the nameID 6 holds a
PostScript font name that is meant to be used with the "composefont" invocation in
order to invoke the font in a PostScript interpreter. See the definition of name ID 6.

The value held in the name ID 20 string is interpreted as a PostScript font name that
is meant to be used with the "findfont" invocation, in order to invoke the font in a
PostScript interpreter.

When translated to ASCII, this name string must be restricted to the printable ASCII
subset, codes 33 through 126, except for the 10 characters: '[', ']', '(', ')', '{', '}', '<', '>',
'/', '%'. See subclause 8.20 in "Recommendations for OFF fonts" for additional
information.

21 WWS family name (see OS/2 fsSelection field for details). If bit 8 of 'fsSelection' field is
set, the font belongs to WWS font families that are composed of font faces that differ
only in Weight, Width and Slope. Non-WWS font families may contain faces for weight,
width and slope, in addition to faces for other traditional attributes such as
“handwriting”, “caption”, “subheading”, “display”, “optical” etc. This ID may define the
additional attributes of non-WWS font families. Examples of name ID 21: "Minion Pro
Caption" and "Minion Pro Display". (Name ID 16 would be "Minion Pro" for these
examples.)

22 WWS subfamily name; Should be similar to ID 21, but reflect only weight, width and
slope attributes of the font. Examples of name ID 22: "Semibold Italic", "Bold
Condensed". (Name ID 17 could be "Semibold Italic Caption", or "Bold Condensed
Display", for example.)

23 Light Background Palette. This ID, if used in the CPAL table’s Palette Labels Array,
specifies that the corresponding color palette in the CPAL table is appropriate to use
with the font when displaying it on a light background such as white. Name table
strings for this ID specify the user interface strings associated with this palette.

24 Dark Background Palette. This ID, if used in the CPAL table’s Palette Labels Array,
specifies that the corresponding color palette in the CPAL table is appropriate to use
with the font when displaying it on a dark background such as black. Name table
strings for this ID specify the user interface strings associated with this palette.

42

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

42 ©	ISO/IEC	2019	–	All	rights	reserved
	

25 Variations PostScript Name Prefix. If present in a variable font, it may be used as the
family prefix in the PostScript Name Generation for Variation Fonts algorithm. The
character set is restricted to ASCII-range uppercase Latin letters, lowercase Latin
letters, and digits. All name strings for name ID 25 within a font, when converted to
ASCII, must be identical. See Reference [27] for reasons to include name ID 25 in a
font, and for examples. For general information on OFF Font variations, see subclause
7.1.

NOTE While both Apple and Microsoft support the same set of name strings, the interpretations may be somewhat
different. But since name strings are stored by platform, encoding and language (placing separate strings for both
Apple and MS platforms), this should not present a problem.

The key information for this table for Microsoft fonts relates to the use of name IDs 1, 2, 4, 16 and 17. Note
that some newer applications will use name IDs 16 and 17, while some legacy applications require name IDs
1 and 2 and also assume certain limitations on these values (see descriptions of name IDs 1 and 2 above).
Fonts should include all of these strings for the broadest application compatibility. To better understand how to
set values for these name IDs, some examples of name usage, weight class and style flags have been
created.

The following is an example of how name strings would be made for the Arial family:

Font Name ID 1 Name ID 2 Name ID 4 Name
ID 16

Name ID 17

Arial Narrow Arial Narrow Regular Arial Narrow Arial Narrow

Arial Narrow Italic Arial Narrow Italic Arial Narrow Italic Arial Narrow Italic

Arial Narrow Bold Arial Narrow Bold Arial Narrow Bold Arial Narrow Bold

Arial Narrow Bold Italic Arial Narrow Bold Italic Arial Narrow Bold Italic Arial Narrow Bold Italic

Arial Arial Regular Arial Arial

Arial Italic Arial Italic Arial Italic Arial Italic

Arial Bold Arial Bold Arial Bold Arial Bold

Arial Bold Italic Arial Bold Italic Arial Bold Italic Arial Bold Italic

Arial Black Arial Black Regular Arial Black Arial Black

Arial Black Italic Arial Black Italic Arial Black Italic Arial Black Italic

In addition to name strings, OS/2.usWeightClass, OS/2.usWidthClass, OS/2.fsSelection style bits, and
head.macStyle bits are shown. These settings allow the fonts to fit together into a single family of varying
weight and compression/expansion.

Font OS/2
usWeigh

tClass

OS/2
usWidt
hClass

OS/2
fsSelecti
on Italic

OS/2
fsSelecti
on Bold

OS/2
fsSelection

Regular

head
macStyle

Bold

head
macStyle

Italic

head
macStyle

Condensed

head
macStyle
Extended

Arial
Narrow

400 3 x x

Arial
Narrow
Italic

400 3 x x x

Arial
Narrow
Bold

700 3 x x x

43

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 43
	

Arial
Narrow
Bold
Italic

700 3 x x x x x

Arial 400 5 x
Arial
Italic

400 5 x x

Arial
Bold

700 5 x x

Arial
Bold
Italic

700 5 x x x x

Arial
Black

900 5

Arial
Black
Italic

900 5 x x

All naming table strings for the Windows platform (platform ID 3) must be encoded in UTF-16BE. Strings for
the Macintosh platform (platform ID 1) use platform-specific single- or double-byte encodings.

Note that, for a typographic family that includes member faces that differ from Regular in relation to attributes
other than weight, width or slope, there may also be some member faces that differ only in relation to these
three attributes. IDs 21 and 22 should be used only in those fonts that differ from the Regular face in terms of
an attribute other than weight, width or slope.

Examples

The following are examples of how these strings might be defined, based on Times New Roman Bold:

0. The copyright string from the font vendor. © Copyright the Monotype Corporation plc, 1990

1. The name the user sees. Times New Roman

2. The name of the style. Bold

3. A unique identifier that applications can store to identify the font being used. Monotype: Times New Roman
Bold: 1990

4. The complete, unique, human readable name of the font. This name is used by Windows. Times New
Roman Bold

5. Release and version information from the font vendor. Version 1.00 June 1, 1990, initial release

6. The name the font will be known by on a PostScript printer. TimesNewRoman-Bold

7. Trademark string. Times New Roman is a registered trademark of the Monotype Corporation.

8. Manufacturer. Monotype Corporation

9. Designer. Stanley Morison

10. Description. Designed in 1932 for the Times of London newspaper. Excellent readability and a narrow
overall width, allowing more words per line than most fonts.

11. URL of Vendor. http://www.monotypeimaging.com

12. URL of Designer. http://www.monotypeimaging.com

44

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

44 ©	ISO/IEC	2019	–	All	rights	reserved
	

13. License Description. This font may be installed on all of your machines and printers, but you may not sell
or give these fonts to anyone else.

14. License Info URL. http://www.monotype.com/license/

15. Reserved. Set to zero.

16. Preferred Family. No name string present, since it is the same as name ID 1 (Font Family name).

17. Preferred Subfamily. No name string present, since it is the same as name ID 2 (Font Subfamily name).

18. Compatible Full (Macintosh only). No name string present, since it is the same as name ID 4 (Full name).

19. Sample text. The quick brown fox jumps over the lazy dog.

20. PostScript CID findfont name. No name string present. Thus, the PostScript Name defined by name ID 6
should be used with the "findfont" invocation for locating the font in the context of a PostScript interpreter.

21. WWS family name: Since Times New Roman is a WWS font, this field does not need to be specified. If the
font contained styles such as "caption", "display", "handwriting", etc, that would be noted here.

22. WWS subfamily name: Since Times New Roman is a WWS font, this field does not need to be specified.

23. Light background palette name. No name string present, since this is not a color font.

24. Dark background palette name. No name string present, since this is not a color font.

25. Variations PostScript name prefix. No name string present, since this is not a variable font.

The following is an example of only name IDs 6 and 20 in the CFF OFF Japanese font Kozuka Mincho Std
Regular (other name IDs are also present in this font):

6. PostScript name: KozMinStd-Regular. Since a name ID 20 is present in the font (see below), then
the PostScript name defined by name ID 6 should be used with the "composefont" invocation for
locating the font in the context of a PostScript interpreter.

20. PostScript CID findfont name: KozMinStd-Regular-83pv-RKSJ-H, in a name record of Platform 1
[Macintosh], Platform-specific script 1 [Japanese], Language: 0xFFFF [English]. This name string is a
PostScript name that should be used with the "findfont" invocation for locating the font in the context of
a PostScript interpreter, and is associated with the encoding specified by the following cmap subtable,
which must be present in the font: Platform: 1 [Macintosh]; Platform-specific encoding: 1 [Japanese];
Language: 0 [not language-specific].

The following is an example of family/subfamily naming for an extended, WWS-only family. Consider Adobe
Caslon Pro, with six members: upright and italic versions of regular, semibold and bold weights. (Bit 8 of the
fsSelection field of the OS/2 table, version 4, should be set for all six fonts, and none should include ‘name’
entries for IDs 21 or 22.)

Adobe Caslon Pro Regular:
Name ID 1: Adobe Caslon Pro
Name ID 2: Regular

Adobe Caslon Pro Italic:
Name ID 1: Adobe Caslon Pro
Name ID 2: Italic

Adobe Caslon Pro Semibold:
Name ID 1: Adobe Caslon Pro
Name ID 2: Bold
Name ID 16: Adobe Caslon Pro
Name ID 17: Semibold

Adobe Caslon Pro Semibold Italic:
Name ID 1: Adobe Caslon Pro
Name ID 2: Bold Italic
Name ID 16: Adobe Caslon Pro
Name ID 17: Semibold Italic

45

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 45
	

Adobe Caslon Pro Bold:
Name ID 1: Adobe Caslon Pro Bold
Name ID 2: Regular
Name ID 16: Adobe Caslon Pro
Name ID 17: Bold

Adobe Caslon Pro Bold Italic:
Name ID 1: Adobe Caslon Pro Bold
Name ID 2: Italic
Name ID 16: Adobe Caslon Pro
Name ID 17: Bold Italic

The following is an example of family/subfamily naming for an extended, non-WWS family. Consider Minion
Pro Opticals, with 32 member fonts: upright and italic versions of regular, medium, semibold and bold weights
in each of four optical sizes: regular, caption, display and subhead. The following show names for a sampling
of the fonts in this family. (Bit 8 of the fsSelection field in the OS/2 table, version 4, should be set in those fonts
that do not include ‘name’ entries for IDs 21 or 22, and only in those fonts.)

Minion Pro Regular:
Name ID 1: Minion Pro
Name ID 2: Regular

Minion Pro Italic:
Name ID 1: Minion Pro
Name ID 2: Italic

Minion Pro Semibold:
Name ID 1: Minion Pro SmBd
Name ID 2: Regular
Name ID 16: Minion Pro
Name ID 17: Semibold

Minion Pro Semibold Italic:
Name ID 1: Minion Pro SmBd
Name ID 2: Italic
Name ID 16: Minion Pro
Name ID 17: Semibold Italic

Minion Pro Caption:
Name ID 1: Minion Pro Capt
Name ID 2: Regular
Name ID 16: Minion Pro
Name ID 17: Caption
Name ID 21: Minion Pro Caption
Name ID 22: Regular

Minion Pro Semibold Italic Caption:
Name ID 1: Minion Pro SmBd Capt
Name ID 2: Italic
Name ID 16: Minion Pro
Name ID 17: Semibold Italic Caption
Name ID 21: Minion Pro Caption
Name ID 22: Semibold Italic

5.2.8 OS/2 – Global font information table

The OS/2 table consists of a set of metrics and other data that are required in OFF fonts.

 OS/2 Table formats

Six versions of the OS/2 table have been defined: versions 0 to 5. The format of version 5 is as follows:

46

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

46 ©	ISO/IEC	2019	–	All	rights	reserved
	

Type Name of Entry Comments

uint16 Version 0x0000, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005

int16 xAvgCharWidth

uint16 usWeightClass

uint16 usWidthClass

uint16 fsType

int16 ySubscriptXSize

int16 ySubscriptYSize

int16 ySubscriptXOffset

int16 ySubscriptYOffset

int16 ySuperscriptXSize

int16 ySuperscriptYSize

int16 ySuperscriptXOffset

int16 ySuperscriptYOffset

int16 yStrikeoutSize

int16 yStrikeoutPosition

int16 sFamilyClass

uint8 Panose[10]

uint32 ulUnicodeRange1 Bits 0-31

uint32 ulUnicodeRange2 Bits 32-63 version 0x0001 and later

uint32 ulUnicodeRange3 Bits 64-95 version 0x0001 and later

uint32 ulUnicodeRange4 Bits 96-127 version 0x0001 and later

Tag achVendID[4]

uint16 fsSelection

uint16 usFirstCharIndex

uint16 usLastCharIndex

int16 sTypoAscender

int16 sTypoDescender

int16 sTypoLineGap

uint16 usWinAscent

uint16 usWinDescent

uint32 ulCodePageRange1 Bits 0-31 version 0x0001 and later

uint32 ulCodePageRange2 Bits 32-63 version 0x0001 and later

int16 sxHeight version 0x0002 and later

int16 sCapHeight version 0x0002 and later

uint16 usDefaultChar version 0x0002 and later

uint16 usBreakChar version 0x0002 and later

uint16 usMaxContext version 0x0002 and later

47

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 47
	

uint16 usLowerOpticalPointSize version 0x0005 and later

uint16 usUpperOpticalPointSize version 0x0005 and later

All versions are supported, but use of version 4 or later is recommended. For descriptions of older OS/2 table
formats see Annex B. OS/2 field details are provided below.

5.2.8.1 version

Format: uint16

Units: n/a

Title: OS/2 table version number.

Description: The version number for this OS/2 table, = 5.

Comments: The version number allows for identification of the precise contents and layout for the OS/2
table.

5.2.8.2 xAvgCharWidth

Format: int16

Units: Pels / em units

Title: Average weighted escapement.

Description: The Average Character Width parameter specifies the arithmetic average of the escapement
(width) of all non-zero width glyphs in the font.

Comments: The value for xAvgCharWidth is calculated by obtaining the arithmetic average of the width of
all non-zero width glyphs in the font. Furthermore, it is strongly recommended that
implementers do not rely on this value for computing layout for lines of text. Especially, for
cases where complex scripts are used. The calculation algorithm differs from one being used in
previous versions of OS/2 table. For details see Annex A.

5.2.8.3 usWeightClass

Format: uint16

Title: Weight class.

Description: Indicates the visual weight (degree of blackness or thickness of strokes) of the characters in the
font. Values from 1 to 1000 are valid.

Comments: usWeightClass values use the same scale as the 'wght' axis that is used in the 'fvar' table of
variable fonts and in the 'STAT' table. While integer values from 1 to 1000 are supported, some
legacy platforms may have limitations on supported values. The following are commonly set
values:

Value Description C Definition (from windows.h)

100 Thin FW_THIN

200 Extra-light (Ultra-light) FW_EXTRALIGHT

300 Light FW_LIGHT

400 Normal (Regular) FW_NORMAL

500 Medium FW_MEDIUM

48

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

48 ©	ISO/IEC	2019	–	All	rights	reserved
	

600 Semi-bold (Demi-bold) FW_SEMIBOLD

700 Bold FW_BOLD

800 Extra-bold (Ultra-bold) FW_EXTRABOLD

900 Black (Heavy) FW_BLACK

5.2.8.4 usWidthClass

Format: uint16

Title: Width class.

Description: Indicates a relative change from the normal aspect ratio (width to height ratio) as specified by a
font designer for the glyphs in a font.

Comments: Although every character in a font may have a different numeric aspect ratio, each character in
a font of normal width has a relative aspect ratio of one. When a new type style is created of a
different width class (either by a font designer or by some automated means) the relative aspect
ratio of the characters in the new font is some percentage greater or less than those same
characters in the normal font -- it is this difference that this parameter specifies.

The valid usWidthClass values are shown in the following table. Note that the usWidthClass
values are related to but distinct from the scale for the 'wdth' axis that is used in the 'fvar' table
of variable fonts and in the 'STAT' table. The “% of normal” column in the following table
provides a mapping from usWidthClass values 1 – 9 to 'wdth' values.

Value Description C Definition % of normal

1 Ultra-condensed FWIDTH_ULTRA_CONDENSED 50

2 Extra-condensed FWIDTH_EXTRA_CONDENSED 62.5

3 Condensed FWIDTH_CONDENSED 75

4 Semi-condensed FWIDTH_SEMI_CONDENSED 87.5

5 Medium (normal) FWIDTH_NORMAL 100

6 Semi-expanded FWIDTH_SEMI_EXPANDED 112.5

7 Expanded FWIDTH_EXPANDED 125

8 Extra-expanded FWIDTH_EXTRA_EXPANDED 150

9 Ultra-expanded FWIDTH_ULTRA_EXPANDED 200

5.2.8.5 fsType

Format: uint16

Title: Type flags.

Description: Indicates font embedding licensing rights for the font. Embeddable fonts may be stored in a
document. When a document with embedded fonts is opened on a system that does not have
the font installed (the remote system), the embedded font may be loaded for temporary (and in
some cases, permanent) use on that system by an embedding-aware application. Embedding
licensing rights are granted by the vendor of the font.

49

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 49
	

The OFF Font Embedding DLL Applications that implement support for font embedding, either
through use of the Font Embedding DLL or through other means, must not embed fonts which
are not licensed to permit embedding. Further, applications loading embedded fonts for
temporary use (see Preview & Print and Editable embedding below) must delete the fonts
when the document containing the embedded font is closed.

This version of the OS/2 table makes bits 0 - 3 a set of exclusive bits. In other words, at most
one bit in this range may be set at a time. The purpose is to remove misunderstandings caused
by previous behavior of using the least restrictive of the bits that are set.

Bit Mask Description

 0x0000 Installable Embedding: No fsType bit is set. Thus fsType is zero.
Fonts with this setting indicate that they may be embedded and
permanently installed on the remote system by an application. The user
of the remote system acquires the identical rights, obligations and
licenses for that font as the original purchaser of the font, and is subject
to the same end-user license agreement, copyright, design patent, and/or
trademark as was the original purchaser.

0 0x0001 Reserved, must be zero.

1 0x0002 Restricted License embedding:
Fonts that have only this bit set must not be modified, embedded or
exchanged in any manner without first obtaining permission of the legal
owner.
Caution: For Restricted License embedding to take effect, it must be the
only level of embedding selected.

2 0x0004 Preview & Print embedding: When this bit is set, the font may be
embedded, and temporarily loaded on the remote system. Documents
containing Preview & Print fonts must be opened "read-only;" no edits
can be applied to the document.

3 0x0008 Editable embedding: When this bit is set, the font may be embedded but
must only be installed temporarily on other systems. In contrast to
Preview & Print fonts, documents containing Editable fonts may be
opened for reading, editing is permitted, and changes may be saved.

4-7 Reserved, must be zero.

8 0x0100 No subsetting: When this bit is set, the font may not be subsetted prior to
embedding. Other embedding restrictions specified in bits 0-3 and 9 also
apply.

9 0x0200 Bitmap embedding only: When this bit is set, only bitmaps contained in
the font may be embedded. No outline data may be embedded. If there
are no bitmaps available in the font, then the font is considered
unembeddable and the embedding services will fail. Other embedding
restrictions specified in bits 0-3 and 8 also apply.

10-15 Reserved, must be zero.

50

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

50 ©	ISO/IEC	2019	–	All	rights	reserved
	

5.2.8.6 ySubscriptXSize

Format: int16

Units: Font design units

Title: Subscript horizontal font size.

Description: The recommended horizontal size in font design units for subscripts for this font.

Comments: If a font has two recommended sizes for subscripts, e.g., numerics and other, the numeric sizes
should be stressed. This size field maps to the em square size of the font being used for a
subscript. The horizontal font size specifies a font designer's recommended horizontal font size
for subscript characters associated with this font. If a font does not include all of the required
subscript characters for an application, and the application can substitute characters by scaling
the character of a font or by substituting characters from another font, this parameter specifies
the recommended em square for those subscript characters.

For example, if the em square for a font is 2048 and ySubScriptXSize is set to 205, then the
horizontal size for a simulated subscript character would be 1/10th the size of the normal
character.

5.2.8.7 ySubscriptYSize

Format: int16

Units: Font design units

Title: Subscript vertical font size.

Description: The recommended vertical size in font design units for subscripts for this font.

Comments: If a font has two recommended sizes for subscripts, e.g. numerics and other, the numeric sizes
should be stressed. This size field maps to the emHeight of the font being used for a subscript.
The horizontal font size specifies a font designer's recommendation for horizontal font size of
subscript characters associated with this font. If a font does not include all of the required
subscript characters for an application, and the application can substitute characters by scaling
the characters in a font or by substituting characters from another font, this parameter specifies
the recommended horizontal EmInc for those subscript characters.

For example, if the em square for a font is 2048 and ySubScriptYSize is set to 205, then the
vertical size for a simulated subscript character would be 1/10th the size of the normal
character.

5.2.8.8 ySubscriptXOffset

Format: int16

Units: Font design units

Title: Subscript x offset.

Description: The recommended horizontal offset in font design untis for subscripts for this font.

Comments: The Subscript X offset parameter specifies a font designer's recommended horizontal offset –
from the character origin of the font to the character origin of the subscript's character – for
subscript characters associated with this font. If a font does not include all of the required
subscript characters for an application, and the application can substitute characters, this
parameter specifies the recommended horizontal position from the character escapement point
of the last character before the first subscript character. For upright characters, this value is
usually zero; however, if the characters of a font have an incline (italic characters) the reference
point for subscript characters is usually adjusted to compensate for the angle of incline.

51

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 51
	

5.2.8.9 ySubscriptYOffset

Format: int16

Units: Font design units

Title: Subscript y offset.

Description: The recommended vertical offset in font design units from the baseline for subscripts for this
font.

Comments: The Subscript Y offset parameter specifies a font designer's recommended vertical offset from
the character baseline to the character baseline for subscript characters associated with this
font. Values are expressed as a positive offset below the character baseline. If a font does not
include all of the required subscript for an application, this parameter specifies the
recommended vertical distance below the character baseline for those subscript characters.

5.2.8.10 ySuperscriptXSize

Format: int16

Units: Font design units

Title: Superscript horizontal font size.

Description: The recommended horizontal size in font design units for superscripts for this font.

Comments: If a font has two recommended sizes for subscripts, e.g., numerics and other, the numeric sizes
should be stressed. This size field maps to the em square size of the font being used for a
subscript. The horizontal font size specifies a font designer's recommended horizontal font size
for superscript characters associated with this font. If a font does not include all of the required
superscript characters for an application, and the application can substitute characters by
scaling the character of a font or by substituting characters from another font, this parameter
specifies the recommended em square for those superscript characters.

For example, if the em square for a font is 2048 and ySuperScriptXSize is set to 205, then the
horizontal size for a simulated superscript character would be 1/10th the size of the normal
character.

5.2.8.11 ySuperscriptYSize

Format: int16

Units: Font design units

Title: Superscript vertical font size.

Description: The recommended vertical size in font design units for superscripts for this font.

Comments: If a font has two recommended sizes for subscripts, e.g., numerics and other, the numeric sizes
should be stressed. This size field maps to the emHeight of the font being used for a subscript.
The vertical font size specifies a font designer's recommended vertical font size for superscript
characters associated with this font. If a font does not include all of the required superscript
characters for an application, and the application can substitute characters by scaling the
character of a font or by substituting characters from another font, this parameter specifies the
recommended EmHeight for those superscript characters.

For example, if the em square for a font is 2048 and ySuperScriptYSize is set to 205, then the
vertical size for a simulated superscript character would be 1/10th the size of the normal
character.

52

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

52 ©	ISO/IEC	2019	–	All	rights	reserved
	

5.2.8.12 ySuperscriptXOffset

Format: int16

Units: Font design units

Title: Superscript x offset.

Description: The recommended horizontal offset in font design units for superscripts for this font.

Comments: The Superscript X offset parameter specifies a font designer's recommended horizontal offset --
from the character origin to the superscript character's origin for the superscript characters
associated with this font. If a font does not include all of the required superscript characters for
an application, this parameter specifies the recommended horizontal position from the
escapement point of the character before the first superscript character. For upright characters,
this value is usually zero; however, if the characters of a font have an incline (italic characters)
the reference point for superscript characters is usually adjusted to compensate for the angle of
incline.

5.2.8.13 ySuperscriptYOffset

Format: int16

Units: Font design units

Title: Superscript y offset.

Description: The recommended vertical offset in font design units from the baseline for superscripts for this
font.

Comments: The Superscript Y offset parameter specifies a font designer's recommended vertical offset --
from the character baseline to the superscript character's baseline associated with this font.
Values for this parameter are expressed as a positive offset above the character baseline. If a
font does not include all of the required superscript characters for an application, this parameter
specifies the recommended vertical distance above the character baseline for those superscript
characters.

5.2.8.14 yStrikeoutSize

Format: int16

Units: Font design units

Title: Strikeout size.

Description: Width of the strikeout stroke in font design units.

Comments: This field should normally be the width of the em dash for the current font. If the size is one, the
strikeout line will be the line represented by the strikeout position field. If the value is two, the
strikeout line will be the line represented by the strikeout position and the line immediately
above the strikeout position. For a Roman font with a 2048 em square, 102 is suggested.

5.2.8.15 yStrikeoutPosition

Format: int16

Units: Font design units

Title: Strikeout position.

Description: The position of the top of the strikeout stroke relative to the baseline in font design units.

53

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 53
	

Comments: Positive values represent distances above the baseline, while negative values represent
distances below the baseline. A value of zero falls directly on the baseline, while a value of one
falls one pel above the baseline. The value of strikeout position should not interfere with the
recognition of standard characters, and therefore should not line up with crossbars in the font.
For a Roman font with a 2048 em square, 460 is suggested.

5.2.8.16 sFamilyClass

Format: int16

Title: Font-family class and subclass.

Description: This parameter is a classification of font-family design.

Comments: The font class and font subclass are registered values per Annex A. the to each font family.
This parameter is intended for use in selecting an alternate font when the requested font is not
available. The font class is the most general and the font subclass is the most specific. The high
byte of this field contains the family class, while the low byte contains the family subclass.

5.2.8.17 Panose

Format: uint8[10]

Title: PANOSE classification number

International: Additional specifications are required for PANOSE to classify non-Latin character sets.

Description: This 10 byte series of numbers is used to describe the visual characteristics of a given
typeface. If provided, these characteristics are then used to associate the font with other fonts
of similar appearance having different names; the default values should be set to 'zero'.

Comments: The PANOSE definition contains ten digits each of which currently describes up to sixteen
variations. Windows uses bFamilyType, bSerifStyle and bProportion in the font mapper to
determine family type. It also uses bProportion to determine if the font is monospaced. If the
font is a symbol font, the first byte of the PANOSE number (bFamilyType) must be set to
“pictorial”. The specification for assigning PANOSE values [14] can be found in bibliography.

Type Name

uint8 bFamilyType

uint8 bSerifStyle

uint8 bWeight

uint8 bProportion

uint8 bContrast

uint8 bStrokeVariation

uint8 bArmStyle

uint8 bLetterform

uint8 bMidline

uint8 bXHeight

5.2.8.18 UnicodeRange

ulUnicodeRange1 (Bits 0-31)
ulUnicodeRange2 (Bits 32-63)
ulUnicodeRange3 (Bits 64-95)
ulUnicodeRange4 (Bits 96-127)

54

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

54 ©	ISO/IEC	2019	–	All	rights	reserved
	

Format: uint32[4] - total 128 bits.

Title: Unicode Character Range

Description: This field is used to specify the Unicode blocks or ranges encompassed by the font file in the
'cmap' subtable for platform 3, encoding ID 1 (Microsoft platform, Unicode BMP) and platform 3,
encoding ID 10 (Microsoft platform, Unicode full repertoire). If a bit is set (1) then the Unicode
ranges assigned to that bit are considered functional. If the bit is clear (0) then the range is not
considered functional. Each of the bits is treated as an independent flag and the bits can be set
in any combination. The determination of "functional" is left up to the font designer, although
character set selection should attempt to be functional by ranges, if at all possible.

All reserved fields must be zero. Each long is in Big-Endian form.

NOTE Avalable bits were exhausted after Unicode 5.1. There are many additional ranges supported in
the current version of Unicode that are not supported by this field in the OS/2 table. See the 'dlng' and
'slng' tags in the Metadata table for an alternate mechanism to declare what scripts or languages a font
can support or is designed for.

Bit Unicode Range Block range

0 Basic Latin 0000-007F

1 Latin-1 Supplement 0080-00FF

2 Latin Extended-A 0100-017F

3 Latin Extended-B 0180-024F

4 IPA Extensions 0250-02AF

 Phonetic Extensions 1D00-1D7F

 Phonetic Extensions Supplement 1D80-1DBF

5 Spacing Modifier Letters 02B0-02FF

 Modifier Tone Letters A700-A71F

6 Combining Diacritical Marks 0300-036F

 Combining Diacritical Marks Supplement 1DC0-1DFF

7 Greek and Coptic 0370-03FF

8 Coptic 2C80-2CFF

9 Cyrillic 0400-04FF

 Cyrillic Supplement 0500-052F

 Cyrillic Extended-A 2DE0-2DFF

 Cyrillic Extended-B A640-A69F

10 Armenian 0530-058F

11 Hebrew 0590-05FF

12 Vai A500-A63F

13 Arabic 0600-06FF

 Arabic Supplement 0750-077F

14 NKo 07C0-07FF

15 Devanagari 0900-097F

16 Bengali 0980-09FF

17 Gurmukhi 0A00-0A7F

55

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 55
	

18 Gujarati 0A80-0AFF

19 Oriya 0B00-0B7F

20 Tamil 0B80-0BFF

21 Telugu 0C00-0C7F

22 Kannada 0C80-0CFF

23 Malayalam 0D00-0D7F

24 Thai 0E00-0E7F

25 Lao 0E80-0EFF

26 Georgian 10A0-10FF

 Georgian Supplement 2D00-2D2F

27 Balinese 1B00-1B7F

28 Hangul Jamo 1100-11FF

29 Latin Extended Additional 1E00-1EFF

 Latin Extended-C 2C60-2C7F

 Latin Extended-D A720-A7FF

30 Greek Extended 1F00-1FFF

31 General Punctuation 2000-206F

 Supplemental Punctuation 2E00-2E7F

32 Superscripts And Subscripts 2070-209F

33 Currency Symbols 20A0-20CF

34 Combining Diacritical Marks For Symbols 20D0-20FF

35 Letterlike Symbols 2100-214F

36 Number Forms 2150-218F

37 Arrows 2190-21FF

 Supplemental Arrows-A 27F0-27FF

 Supplemental Arrows-B 2900-297F

 Miscellaneous Symbols and Arrows 2B00-2BFF

38 Mathematical Operators 2200-22FF

 Supplemental Mathematical Operators 2A00-2AFF

 Miscellaneous Mathematical Symbols-A 27C0-27EF

 Miscellaneous Mathematical Symbols-B 2980-29FF

39 Miscellaneous Technical 2300-23FF

40 Control Pictures 2400-243F

41 Optical Character Recognition 2440-245F

42 Enclosed Alphanumerics 2460-24FF

43 Box Drawing 2500-257F

44 Block Elements 2580-259F

45 Geometric Shapes 25A0-25FF

56

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

56 ©	ISO/IEC	2019	–	All	rights	reserved
	

46 Miscellaneous Symbols 2600-26FF

47 Dingbats 2700-27BF

48 CJK Symbols And Punctuation 3000-303F

49 Hiragana 3040-309F

50 Katakana 30A0-30FF

 Katakana Phonetic Extensions 31F0-31FF

51 Bopomofo 3100-312F

 Bopomofo Extended 31A0-31BF

52 Hangul Compatibility Jamo 3130-318F

53 Phags-pa A840-A87F

54 Enclosed CJK Letters And Months 3200-32FF

55 CJK Compatibility 3300-33FF

56 Hangul Syllables AC00-D7AF

57 Non-Plane 0 * D800-DFFF

58 Phoenician 10900-1091F

59 CJK Unified Ideographs 4E00-9FFF

 CJK Radicals Supplement 2E80-2EFF

 Kangxi Radicals 2F00-2FDF

 Ideographic Description Characters 2FF0-2FFF

 CJK Unified Ideographs Extension A 3400-4DBF

 CJK Unified Ideographs Extension B 20000-2A6DF

 Kanbun 3190-319F

60 Private Use Area (plane 0) E000-F8FF

61 CJK Strokes 31C0-31EF

 CJK Compatibility Ideographs F900-FAFF

 CJK Compatibility Ideographs Supplement 2F800-2FA1F

62 Alphabetic Presentation Forms FB00-FB4F

63 Arabic Presentation Forms-A FB50-FDFF

64 Combining Half Marks FE20-FE2F

65 Vertical Forms FE10-FE1F

 CJK Compatibility Forms FE30-FE4F

66 Small Form Variants FE50-FE6F

67 Arabic Presentation Forms-B FE70-FEFF

68 Halfwidth And Fullwidth Forms FF00-FFEF

69 Specials FFF0-FFFF

70 Tibetan 0F00-0FFF

71 Syriac 0700-074F

72 Thaana 0780-07BF

57

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 57
	

73 Sinhala 0D80-0DFF

74 Myanmar 1000-109F

75 Ethiopic 1200-137F

 Ethiopic Supplement 1380-139F

 Ethiopic Extended 2D80-2DDF

76 Cherokee 13A0-13FF

77 Unified Canadian Aboriginal Syllabics 1400-167F

78 Ogham 1680-169F

79 Runic 16A0-16FF

80 Khmer 1780-17FF

 Khmer Symbols 19E0-19FF

81 Mongolian 1800-18AF

82 Braille Patterns 2800-28FF

83 Yi Syllables A000-A48F

 Yi Radicals A490-A4CF

84 Tagalog 1700-171F

 Hanunoo 1720-173F

 Buhid 1740-175F

 Tagbanwa 1760-177F

85 Old Italic 10300-1032F

86 Gothic 10330-1034F

87 Deseret 10400-1044F

88 Byzantine Musical Symbols 1D000-1D0FF

 Musical Symbols 1D100-1D1FF

 Ancient Greek Musical Notation 1D200-1D24F

89 Mathematical Alphanumeric Symbols 1D400-1D7FF

90 Private Use (plane 15) F0000-FFFFD

 Private Use (plane 16) 100000-10FFFD

91 Variation Selectors FE00-FE0F

 Variation Selectors Supplement E0100-E01EF

92 Tags E0000-E007F

93 Limbu 1900-194F

94 Tai Le 1950-197F

95 New Tai Lue 1980-19DF

96 Buginese 1A00-1A1F

97 Glagolitic 2C00-2C5F

98 Tifinagh 2D30-2D7F

99 Yijing Hexagram Symbols 4DC0-4DFF

58

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

58 ©	ISO/IEC	2019	–	All	rights	reserved
	

100 Syloti Nagri A800-A82F

101 Linear B Syllabary 10000-1007F

 Linear B Ideograms 10080-100FF

 Aegean Numbers 10100-1013F

102 Ancient Greek Numbers 10140-1018F

103 Ugaritic 10380-1039F

104 Old Persian 103A0-103DF

105 Shavian 10450-1047F

106 Osmanya 10480-104AF

107 Cypriot Syllabary 10800-1083F

108 Kharoshthi 10A00-10A5F

109 Tai Xuan Jing Symbols 1D300-1D35F

110 Cuneiform 12000-123FF

 Cuneiform Numbers and Punctuation 12400-1247F

111 Counting Rod Numerals 1D360-1D37F

112 Sundanese 1B80-1BBF

113 Lepcha 1C00-1C4F

114 Ol Chiki 1C50-1C7F

115 Saurashtra A880-A8DF

116 Kayah Li A900-A92F

117 Rejang A930-A95F

118 Cham AA00-AA5F

119 Ancient Symbols 10190-101CF

120 Phaistos Disc 101D0-101FF

121 Carian 102A0-102DF

 Lycian 10280-1029F

 Lydian 10920-1093F

122 Domino Tiles 1F030-1F09F

 Mahjong Tiles 1F000-1F02F

123-127 Reserved
NOTE * Setting bit 57 implies that there is at least one codepoint beyond the Basic Multilingual Plane that is supported

by this font.

5.2.8.19 achVendID

Format: 4-byte Tag

Title: Font Vendor Identification

Description: The four character identifier for the vendor of the given type face.

Comments: This is not the royalty owner of the original artwork. This is the company responsible for the
marketing and distribution of the typeface that is being classified. It is reasonable to assume that

59

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 59
	

there will be 6 vendors of ITC Zapf Dingbats for use on desktop platforms in the near future (if
not already). It is also likely that the vendors will have other inherent benefits in their fonts (more
kern pairs, unregularized data, hand hinted, etc.). This identifier will allow for the correct
vendor's type to be used over another, possibly inferior, font file. The Vendor ID value is not
required. The Vendor ID list can be accessed via the informative reference 6 in the
bibliolgraphy.

5.2.8.20 fsSelection

Format: uint16.

Title: Font selection flags.

Description: Contains information concerning the nature of the font patterns, as follows:

Bit # macStyl
e bit

C definition Description

0 bit 1 ITALIC Font contains Italic or oblique characters,
otherwise they are upright.

1 UNDERSCORE Characters are underscored.

2 NEGATIVE Characters have their foreground and background
reversed.

3 OUTLINED Outline (hollow) characters, otherwise they are
solid.

4 STRIKEOUT Characters are overstruck.

5 bit 0 BOLD Characters are emboldened.

6 REGULAR Characters are in the standard weight/style for the
font.

7 USE_TYPO_METRICS If set, it is strongly recommended to use
OS/2.sTypoAscender - OS/2.sTypoDescender+
OS/2.sTypoLineGap as a value for default line
spacing for this font.

(OS/2 version 4 and later)

8 WWS The font family this face belongs to is composed of
faces that only differ in weight, width and slope
(please see more detailed description below.)

(OS/2 version 4 and later)

9 OBLIQUE Font contains oblique characters.

(OS/2 version 4 and later)

10 – 15 <reserved> Reserved; set to 0.

Comments: All undefined bits must be zero.

This field contains information on the original design of the font. Bits 0 & 5 can be used to
determine if the font was designed with these features or whether some type of machine
simulation was performed on the font to achieve this appearance. Bits 1-4 are rarely used bits
that indicate the font is primarily a decorative or special purpose font.

If bit 6 is set, then bits 0 and 5 must be clear, else the behavior is undefined. As noted above, the
settings of bits 0 and 5 must be reflected in the macStyle bits in the 'head' table. While bit 6 on
implies that bits 0 and 1 of macStyle are clear (along with bits 0 and 5 of fsSelection), the
reverse is not true. Bits 0 and 1 of macStyle (and 0 and 5 of fsSelection) may be clear and that
does not give any indication of whether or not bit 6 of fsSelection is clear (e.g., Arial Light would

60

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

60 ©	ISO/IEC	2019	–	All	rights	reserved
	

have all bits cleared; it is not the regular version of Arial).

Bit 7 was specified in OS/2 table v. 4. If fonts created with an earlier version of the OS/2 table
are updated to the current version of the OS/2 table, then, in order to minimize potential reflow of
existing documents which use the fonts, the bit would be set only for fonts for which using the
OS/2.usWin* metrics for line height would yield significantly inferior results than using the
OS/2.sTypo* values. New fonts, however, are not constrained by backward compatibility
situations, and so are free to set this bit always.

If bit 8 is set in OS/2 table v. 4, then the font’s typographic family contains faces that differ only in
one or more of the attributes weight, width and slope. For example, a family with only weight and
slope attributes will set this bit.

If unset in OS/2 table v. 4, then this font’s typographic family contains faces that differ in
attributes other than weight, width or slope. For example, a family with faces that differ only by
weight, slope, and optical size will not set this bit.

This bit must be unset in OS/2 table versions less than 4. In these cases, it is not possible to
determine any information about the typographic family’s attributes by examining this bit.

In this context, "typographic family" is the Microsoft Unicode string for name ID 16, if present,
else the Microsoft Unicode string for name ID 1; "weight" is OS/2.usWeightClass; "width" is
OS/2.usWidthClass; "slope" is OS/2.fsSelection bit 0 (ITALIC) and bit 9 (OBLIQUE).

If bit 9 is set in OS/2 table v. 4, then this font is to be considered an "oblique" style by processes
which make a distinction between oblique and italic styles, e.g. Cascading Style Sheets font
matching. For example, a font created by algorithmically slanting an upright face will set this bit.

If unset in OS/2 table v. 4, then this font is not to be considered an "oblique" style. For example,
a font that has a classic italic design will not set this bit.

This bit must be unset in OS/2 table versions less than 4. In these cases, it is not possible to
determine any information about this font's attributes by examining this bit.

This bit, unlike the ITALIC bit, is not related to style-linking for Windows GDI or Mac OS
applications in a traditional four-member family of regular, italic, bold and bold italic". It may be
set or unset independently of the ITALIC bit. In most cases, if OBLIQUE is set, then ITALIC will
also be set, though this is not required.

Bit 15 is permanently reserved. It has been used in some legacy implementations and may result
in special behavior in some implementations. Use of this bit is deprecated.

5.2.8.21 usFirstCharIndex

Format: uint16

Description: The minimum Unicode index (character code) in this font, according to the cmap subtable for
platform ID 3 and platform- specific encoding ID 0 or 1. For most fonts supporting Win-ANSI or
other character sets, this value would be 0x0020. This field cannot represent supplementary
character values (codepoints greater than 0xFFFF). Fonts that support supplementary
characters should set the value in this field to 0xFFFF if the minimum index value is a
supplementary character.

5.2.8.22 usLastCharIndex

Format: uint16

Description: The maximum Unicode index (character code) in this font, according to the cmap subtable for
platform ID 3 and encoding ID 0 or 1. This value depends on which character sets the font
supports. This field cannot represent supplementary character values (codepoints greater than
0xFFFF). Fonts that support supplementary characters should set the value in this field to
0xFFFF.

61

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 61
	

5.2.8.23 sTypoAscender

Format: int16

Description: The typographic ascender for this font. Remember that this is not the same as the Ascender
value in the 'hhea' table, . One good source for sTypoAscender in Latin based fonts is the
Ascender value from an AFM file. For CJK fonts see below.

The suggested usage for sTypoAscender is that it be used in conjunction with unitsPerEm to
compute typographically-correct default line spacing. The goal is to free applications from
Macintosh or Windows-specific metrics which are constrained by backward compatibility
requirements. These new metrics, when combined with the character design widths, will allow
applications to lay out documents in a typographically correct and portable fashion.

For CJK (Chinese, Japanese, and Korean) fonts that are intended to be used for vertical writing
(in addition to horizontal writing), the required value for sTypoAscender is that which describes
the top of the of the ideographic em-box. For example, if the ideographic em-box of the font
extends from coordinates 0,-120 to 1000,880 (that is, a 1000x1000 box set 120 design units
below the Latin baseline), then the value of sTypoAscender must be set to 880. Failing to
adhere to these requirements will result in incorrect vertical layout.

Also see the recommendations in Clause 7 for more on this field.

5.2.8.24 sTypoDescender

Format: int16

Description: The typographic descender for this font. One good source for sTypoDescender in Latin based
fonts is the Descender value from an AFM file. For CJK fonts see below.
The suggested usage for sTypoDescender is that it be used in conjunction with unitsPerEm to
compute typographically-correct default line spacing. The goal is to free applications from
Macintosh or Windows-specific metrics which are constrained by backward compatability
requirements. These new metrics, when combined with the character design widths, will allow
applications to lay out documents in a typographically correct and portable fashion.
For CJK (Chinese, Japanese, and Korean) fonts that are intended to be used for vertical writing
(in addition to horizontal writing), the required value for sTypoDescender is that which describes
the bottom of the ideographic em-box. For example, if the ideographic em-box of the font
extends from coordinates 0,-120 to 1000,880 (that is, a 1000x1000 box set 120 design units
below the Latin baseline), then the value of sTypoDescender must be set to -120. Failing to
adhere to these requirements will result in incorrect vertical layout.

Also see the recommendations in Clause 7 for more on this field.

5.2.8.25 sTypoLineGap

Format: int16

Description: The typographic line gap for this font. Remember that this is not the same as the LineGap value
in the 'hhea' table.

The suggested usage for sTypoLineGap is that it be used in conjunction with unitsPerEm to
compute typographically-correct default line spacing. Typical values average 7-10% of units per
em. The goal is to free applications from Macintosh or Windows-specific metrics which are
constrained by backward compatability requirements (see Clause 7). These new metrics, when
combined with the character design widths, will allow applications to lay out documents in a
typographically correct and portable fashion.

62

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

62 ©	ISO/IEC	2019	–	All	rights	reserved
	

5.2.8.26 usWinAscent

Format: uint16

Description: The ascender metric for Windows. For platform 3 encoding 0 fonts, it is the same as yMax.
Windows will clip the bitmap of any portion of a glyph that appears above this value. Some
applications use this value to determine default line spacing. This is strongly discouraged. The
typographic ascender, descender and line gap fields in conjunction with unitsPerEm should be
used for this purpose. Developers should set this field keeping the above factors in mind.
If any clipping is unacceptable, then the value should be set to yMax.

However, if a developer desires to provide appropriate default line spacing using this field, for
those applications that continue to use this field for doing so (against OFF recommendations),
then the value should be set appropriately. In such a case, it may result in some glyph bitmaps
being clipped.

5.2.8.27 usWinDescent

Format: uint16

Description: The descender metric for Windows. For platform 3 encoding 0 fonts, it is the same as -yMin.
Windows will clip the bitmap of any portion of a glyph that appears below this value. Some
applications use this value to determine default line spacing. This is strongly discouraged.
The typographic ascender, descender and line gap fields in conjunction with unitsPerEm should
be used for this purpose. Developers should set this field keeping the above factors in mind.
If any clipping is unacceptable, then the value should be set to yMin.

However, if a developer desires to provide appropriate default line spacing using this field, for
those applications that continue to use this field for doing so (against OFF recommendations),
then the value should be set appropriately. In such a case, it may result in some glyph bitmaps
being clipped.

5.2.8.28 CodePageRange

ulCodePageRange1 Bits 0-31
ulCodePageRange2 Bits 32-63

Format: uint32[2] - total 64 bits.

Title: Code Page Character Range

Description: This field is used to specify the code pages encompassed by the font file in the 'cmap' subtable
for platform 3, encoding ID 1 (Windows platform, Unicode BMP). If the font file is encoding ID 0,
then the Symbol Character Set bit should be set.

If a given bit is set (1), then the code page is considered functional. If the bit is clear (0) then the
code page is not considered functional. Each of the bits is treated as an independent flag and
the bits can be set in any combination. The determination of "functional" is left up to the font
designer, although character set selection should attempt to be functional by code pages if at all
possible.

Symbol character sets have a special meaning. If the symbol bit (31) is set, and the font file
contains a 'cmap' subtable for platform of 3 and encoding ID of 1, then all of the characters in
the Unicode range 0xF000 - 0xF0FF (inclusive) will be used to enumerate the symbol character
set. If the bit is not set, any characters present in that range will not be enumerated as a symbol
character set.

All reserved fields must be zero. Each long is in Big-Endian form.

63

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 63
	

Bit Code Page Description

0 1252 Latin 1

1 1250 Latin 2: Eastern Europe

2 1251 Cyrillic

3 1253 Greek

4 1254 Turkish

5 1255 Hebrew

6 1256 Arabic

7 1257 Windows Baltic

8 1258 Vietnamese

9-15 Reserved for Alternate ANSI

16 874 Thai

17 932 JIS/Japan

18 936 Chinese: Simplified chars--PRC and
Singapore

19 949 Korean Wansung

20 950 Chinese: Traditional chars--Taiwan and
Hong Kong

21 1361 Korean Johab

22-28 Reserved for Alternate ANSI & OEM

29 Macintosh Character Set (US Roman)

30 OEM Character Set

31 Symbol Character Set

32-46 Reserved for OEM

47 Reserved

48 869 IBM Greek

49 866 MS-DOS Russian

50 865 MS-DOS Nordic

51 864 Arabic

52 863 MS-DOS Canadian French

53 862 Hebrew

54 861 MS-DOS Icelandic

55 860 MS-DOS Portuguese

56 857 IBM Turkish

57 855 IBM Cyrillic; primarily Russian

58 852 Latin 2

59 775 MS-DOS Baltic

60 737 Greek; former 437 G

61 708 Arabic; ASMO 708

62 850 WE/Latin 1

63 437 US

64

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

64 ©	ISO/IEC	2019	–	All	rights	reserved
	

5.2.8.29 sxHeight

Format: int16

Description: This metric specifies the distance between the baseline and the approximate height of non-
ascending lowercase letters measured in font design units. This value would normally be
specified by a type designer but in situations where that is not possible, for example when a
legacy font is being converted, the value may be set equal to the top of the unscaled and
unhinted glyph bounding box of the glyph encoded at U+0078 (LATIN SMALL LETTER X). If no
glyph is encoded in this position the field should be set to 0.

This metric, if specified, can be used in font substitution: the xHeight value of one font can be
scaled to approximate the apparent size of another.

5.2.8.30 sCapHeight

Format: int16

Description: This metric specifies the distance between the baseline and the approximate height of
uppercase letters measured in font design units. This value would normally be specified by a
type designer but in situations where that is not possible, for example when a legacy font is
being converted, the value may be set equal to the top of the unscaled and unhinted glyph
bounding box of the glyph encoded at U+0048 (LATIN CAPITAL LETTER H). If no glyph is
encoded in this position the field should be set to 0.

This metric, if specified, can be used in systems that specify type size by capital height
measured in millimeters. It can also be used as an alignment metric; the top of a drop capital,
for instance, can be aligned to the sCapHeight metric of the first line of text.

5.2.8.31 usDefaultChar

Format: uint16

Description: Whenever a request is made for a character that is not in the font, Windows provides this default
character. If the value of this field is zero, glyph ID 0 is to be used for the default character
otherwise this is the Unicode encoding of the glyph that Windows uses as the default character.
This field cannot represent supplementary character values (codepoints greater than 0xFFFF),
and so applications are strongly discouraged from using this field.

5.2.8.32 usBreakChar

Format: uint16

Description: This is the Unicode encoding of the glyph that Windows uses as the break character. The break
character is used to separate words and justify text. Most fonts specify 'space' as the break
character. This field cannot represent supplementary character values (codepoints greater than
0xFFFF), and so applications are strongly discouraged from using this field.

5.2.8.33 usMaxContext

Format: uint16

Description: The maximum length of a target glyph context for any feature in this font. For example, a font
which has only a pair kerning feature should set this field to 2. If the font also has a ligature
feature in which the glyph sequence 'f f i' is substituted by the ligature 'ffi', then this field should
be set to 3. This field could be useful to sophisticated line-breaking engines in determining how
far they should look ahead to test whether something could change that effect the line breaking.
For chaining contextual lookups, the length of the string (covered glyph) + (input sequence) +
(lookahead sequence) should be considered.

65

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 65
	

5.2.8.34 usLowerOpticalPointSize

Format: uint16

Units: TWIPs

Description: This field is used for fonts with multiple optical styles.

This value is the lower value of the size range for which this font has been designed. The units
for this field are TWIPs (one-twentieth of a point, or 1440 per inch). The value is inclusive —
meaning that that font was designed to work best at this point size through, but not including,
the point size indicated by usUpperOpticalPointSize. When used with other optical fonts that set
usLowerOpticalPointSize and usUpperOpticalPointSize, it would be expected that another font
has this same value as this entry in the usUpperOpticalPointSize field, unless this font is
designed for the lowest size range. The smallest font in an optical size set should set this value
to 0. When working across multiple optical fonts, there should be no intentional gaps or overlaps
in the ranges. usLowerOpticalPointSize must be less than usUpperOpticalPointSize. The
maximum valid value is 0xFFFE.

For fonts that were not designed for multiple optical styles, this field should be set to 0 (zero)
and the corresponding usUpperOpticalPointSize set to 0xFFFF.

NOTE Use of this field has been superseded by the 'STAT' table. See subclause 9.9 for more information.

5.2.8.35 usUpperOpticalPointSize

Format: uint16

Units: TWIPs

Description: This field is used for fonts with multiple optical styles.

This value is the upper value of the size range for which this font has been designed. The units
for this field are TWIPs (one-twentieth of a point, or 1440 per inch). The value is exclusive —
meaning that that font was designed to work best below this point size down to the
usLowerOpticalPointSize threshold. When used with other optical fonts that set
usLowerOpticalPointSize and usUpperOpticalPointSize, it would be expected that another font
has this same value as this entry in the usLowerOpticalPointSize field, unless this font is
designed for the highest size range. The largest font in an optical size set should set this value
to 0xFFFF, which is interpreted as infinity. When working across multiple optical fonts, there
should be no intentional or overlaps left in the ranges. usUpperOpticalPointSize must be greater
than usLowerOpticalPointSize. The minimum valid value for this field is 2 (two). The largest
possible inclusive point size represented by this field is 3276.65 points, any higher values would
be represented as infinity.

For fonts that were not designed for multiple optical styles, this field should be set to 0xFFFF
and the corresponding usLowerOpticalPointSize set to 0 (zero).

NOTE Use of this field has been superseded by the 'STAT' table. See subclause 9.9 for more information.

OS/2 Table and Font Variations

In variable fonts, default line metrics should always be set using the sTypoAscender, sTypoDescender and
sTypoLinGap values, and the USE_TYPO_METRICS flag in the fsSelection field should be set. The ascender,
descender and lineGap fields in the 'hhea' table should be set to the same values as sTypoAscender,
sTypoDescender and sTypoLinGap. The usWinAscent and usWinDescent fields should be used to specify a
recommended clipping rectangle.

In a variable font, various font-metric values within the OS/2 table may need to be adjusted for different
variation instances. Variation data for OS/2 entries can be provided in the metrics variations ('MVAR') table.
Different OS/2 entries are associated with particular variation data in the 'MVAR' table using value tags, as
follows:

66

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

66 ©	ISO/IEC	2019	–	All	rights	reserved
	

OS/2 entry Tag

sCapHeight 'cpht'

sTypoAscender 'hasc'

sTypoDescender 'hdsc'

sTypoLineGap 'hlgp'

sxHeight 'xhgt'

usWinAscent 'hcla'

usWinDescent 'hcld'

yStrikeoutPosition 'stro'

yStrikeoutSize 'strs'

ySubscriptXOffset 'sbxo'

ySubScriptXSize 'sbxs'

ySubscriptYOffset 'sbyo'

ySubscriptYSize 'sbys'

ySuperscriptXOffset 'spxo'

ySuperscriptXSize 'spxs'

ySuperscriptYOffset 'spyo'

ySuperscriptYSize 'spys'

NOTE 1 The usWeightClass and usWidthClass values are not adjusted by variation data since these correspond to 'wght'
and 'wdth' variation axes that can be used to define a font’s variation space. Appropriate usWeightClass and
usWidthClass values for a variation instance can be derived from 'wght' and 'wdth' user coordinates that are used
to select a particular variation instance. For 'wdth' values greater than 200, the usWidthClass value is clamped to
9. See the discussion of the 'wght' and 'wdth' axes in the "Design-variation axis tags registry" for details on the
relationship between these OS/2 fields and the corresponding design axes.

NOTE 2 The usLowerOpticalPointSize and usUpperOpticalPointSize values are not adjusted by variation data. These
values (now superseded by the 'STAT' table) are used to indicate a range of sizes for which a given font has
been designed. It is assumed that variation that targets different sizes will implemented using the 'opsz' variation
axis. If a variable font supports 'opsz' as an axis of variation, then the usLowerOpticalPointSize and
usUpperOpticalPointSize fields can be set to the same values as the minValue and maxValue fields for the 'opsz'
axis in the 'fvar' table.

To have variable line metrics in a variable font, the 'hasc', 'hdsc' and 'hlgp' value tags should be used in the
'MVAR' table to vary the ascender, descender and line gap values from defaults specified in the
sTypoAscender, sTypoDescender and sTypoLinGap fields. The 'hcla' and 'hcld' value tags can be used in
addition to vary the size of a clipping region from the default specified in the winAscent and winDescent fields.
Other metrics can be varied using value tags listed above.

For general information on OFF Font variations, see the subclause 7.1.

67

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 67
	

5.2.9 Font class parameters

NOTE See Annex A for details.

5.2.10 post – PostScript

This table contains additional information needed to use TrueType or OFF fonts on PostScript printers. This
includes data for the FontInfo dictionary entry and the PostScript names of all the glyphs. For more
information about PostScript names, see the Adobe document Unicode and Glyph Names in Reference [3].

Table Versions 1.0, 2.0, and 2.5 refer to TrueType fonts and OFF fonts with TrueType data. OFF fonts with
TrueType data may also use Version 3.0. OFF fonts with CFF data use Version 3.0 only.

The table begins as follows:

Type Name Description

Fixed version 0x00010000 for version 1.0
0x00020000 for version 2.0
0x00025000 for version 2.5 (deprecated)
0x00030000 for version 3.0

Fixed italicAngle Italic angle in counter-clockwise degrees from the vertical. Zero for
upright text, negative for text that leans to the right (forward).

FWord underlinePosition This is the suggested distance of the top of the underline from the
baseline (negative values indicate below baseline).
The PostScript definition of this FontInfo dictionary key (the y
coordinate of the center of the stroke) is not used for historical
reasons. The value of the PostScript key may be calculated by
subtracting half the underlineThickness from the value of this field.

FWord underlineThickness Suggested values for the underline thickness.

uint32 isFixedPitch Set to 0 if the font is proportionally spaced, non-zero if the font is not
proportionally spaced (i.e. monospaced).

uint32 minMemType42 Minimum memory usage when an OFF font is downloaded.

uint32 maxMemType42 Maximum memory usage when an OFF font is downloaded.

uint32 minMemType1 Minimum memory usage when an OFF font is downloaded as a Type
1 font.

uint32 maxMemType1 Maximum memory usage when an OFF font is downloaded as a
Type 1 font.

The last four entries in the table are present because PostScript drivers can do better memory management if
the virtual memory (VM) requirements of a downloadable OFF font are known before the font is downloaded.
This information should be supplied if known. If it is not known, set the value to zero. The driver will still work
but will be less efficient.

Maximum memory usage is minimum memory usage plus maximum runtime memory use. Maximum runtime
memory use depends on the maximum band size of any bitmap potentially rasterized by the font scaler.
Runtime memory usage could be calculated by rendering characters at different point sizes and comparing
memory use.

If the table version is 1.0 or 3.0, the table ends here. The additional entries for versions 2.0 and 2.5 are shown
below. Version 4.0 is reserved to the specification published in Reference [7].

68

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

68 ©	ISO/IEC	2019	–	All	rights	reserved
	

5.2.10.1 Version 1.0

This version is used in order to supply PostScript glyph names when the font file contains exactly the 258
glyphs in the standard Macintosh TrueType font file (see 'post' Format 1 in Reference [2] for a list of the 258
Macintosh glyph names), and the font does not otherwise supply glyph names. As a result, the glyph names
are taken from the system with no storage required by the font.

5.2.10.2 Version 2.0

This is the version required in order to supply PostScript glyph names for fonts which do not supply them
elsewhere. A version 2.0 'post' table can be used in fonts with TrueType or CFF version 2 outlines.

Type Name Description

uint16 numGlyphs Number of glyphs (this should be the same
as numGlyphs in 'maxp' table).

uint16 glyphNameIndex[numGlyphs]. This is not an offset, but is the ordinal
number of the glyph in 'post' string tables.

int8 names[numberNewGlyphs] Glyph names with length bytes [variable]
(a Pascal string).

This font file contains glyphs not in the standard Macintosh set or the ordering of the glyphs in the font file
differs from the standard Macintosh set. The glyph name array maps the glyphs in this font to name index. If
the name index is between 0 and 257, treat the name index as a glyph index in the Macintosh standard order.
If the name index is between 258 and 65535, then subtract 258 and use that to index into the list of Pascal
strings at the end of the table. Thus a given font may map some of its glyphs to the standard glyph names,
and some to its own names.

If you do not want to associate a PostScript name with a particular glyph, use index number 0 which points the
name .notdef.

5.2.10.3 Version 2.5

This version of the 'post' table has been deprecated.

5.2.10.4 Version 3.0

This version makes it possible to create a font that is not burdened with a large 'post' table set of glyph names.
A version 3.0 'post' table can be used by OFF fonts with TrueType or CFF (version 1 or 2) data.

This version specifies that no PostScript name information is provided for the glyphs in this font file. The
printing behavior of this version on PostScript printers is unspecified, except that it should not result in a fatal
or unrecoverable error. Some drivers may print nothing, other drivers may attempt to print using a default
naming scheme.

Windows makes use of the italic angle value in the 'post' table but does not actually require any glyph names
to be stored as Pascal strings.

5.2.10.5 'post' Table and OFF Font Variations

In a variable font, various font-metric values within the 'post' table may need to be adjusted for different
variation instances. Variation data for 'post' entries can be provided in the table in subclause 7.3.6. Different
'post' entries are associated with particular variation data in the 'MVAR' table using value tags, as follows:

69

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 69
	

'post' entry Tag

underlinePosition 'undo'

underlineThickness 'unds'

NOTE The italicAngle value is not adjusted by variation data since this corresponds to the 'slnt' variation axis that can be
used to define a font’s variation space. Appropriate post.italicAngle values for a variation instance can be derived
from the 'slnt' user coordinates that are used to select a particular variation instance. See the discussion of the
'slnt' axis in subclause 7.2.4 for details on the relationship between italicAngle and the 'slnt' axis.

For general information on OFF Font Variations, see subclause 7.1.

5.3 Tables related to TrueType outlines

5.3.1 List of TrueType outlines tables

For OFF fonts based on TrueType outlines, the following tables are used:

Tag Name

cvt Control Value Table (optional table)

fpgm Font program (optional table)

glyf Glyph data

loca Index to location

prep CV Program (optional table)

gasp Grid-fitting/Scan-conversion (optional table)

5.3.2 cvt – Control value table

This table contains a list of values that can be referenced by instructions. They can be used, among other
things, to control characteristics for different glyphs. The length of the table must be an integral number of
FWORD units.

Type Description

FWORD[n] List of n values referenceable by
instructions. n is the number of FWORD
items that fit in the size of the table.

5.3.3 fpgm – Font program

This table is similar to the CV Program, except that it is only run once, when the font is first used. It is used
only for FDEFs and IDEFs. Thus the CV Program need not contain function definitions. However, the CV
Program may redefine existing FDEFs or IDEFs.

This table is optional.

Type Description

uint8[n] Instructions. n is the number of uint8
items that fit in the size of the table.

70

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

70 ©	ISO/IEC	2019	–	All	rights	reserved
	

5.3.4 glyf – Glyf data

5.3.4.1 Table structure

This table contains information that describes the glyphs in the font in the TrueType outline format. Information
regarding the rasterizer (scaler) refers to the TrueType rasterizer.

Table organization

The 'glyf' table is comprised of a list of glyph data blocks, each of which provides the description for a single
glyph. Glyphs are referenced by identifiers (glyph IDs), which are sequential integers beginning at zero. The
total number of glyphs is specified by the numGlyphs field in the 'maxp' table. The 'glyf' table does not include
any overall table header or records providing offsets to glyph data blocks. Rather, the 'loca' table provides an
array of offsets, indexed by glyph IDs, which provide the location of each glyph data block within the 'glyf' table.
Note that the 'glyf' table must always be used in conjunction with the 'loca' and 'maxp' tables. The size of each
glyph data block is inferred from the difference between two consecutive offsets in the 'loca' table (with one
extra offset provided to give the size of the last glyph data block). As a result of the 'loca' format, glyph data
blocks within the 'glyf' table must be in glyph ID order.

Glyph headers

Each glyph begins with the following header.

Glyph Header

Type Name Description

int16 numberOfContours If the number of contours is greater than or equal to zero, this is a
simple glyph; if negative, this is a composite glyph – the value -1
should be used for composite glyphs.

int16 xMin Minimum x for coordinate data.

int16 yMin Minimum y for coordinate data.

int16 xMax Maximum x for coordinate data.

int16 yMax Maximum y for coordinate data.

NOTE 1 The bounding rectangle from each character is defined as the rectangle with a lower left corner of (xMin, yMin)
and an upper right corner of (xMax, yMax). The scaler will perform better if the glyph coordinates have been
created such that the xMin is equal to the lsb. For example, if the lsb is 123, then xMin for the glyph should be
123. If the lsb is -12 then the xMin should be -12. If the lsb is 0 then xMin is 0. If all glyphs are done like this, set
bit 1 of flags field in the 'head' table.

NOTE 2 The glyph descriptions do not include side bearing information. Left side bearings are provided in the 'hmtx' table,
and right side bearings are inferred from the advance width (also provided in the 'hmtx' table) and the bounding
box coordinates provided in the 'glyf' table. For vertical layout, top side bearings are provided in the 'vmtx' table,
and bottom side bearings are inferred. The rasterizer will generate a representation of side bearings in the form
of “phantom” points, which are added as four additional points at the end of the glyph description and which can
be referenced and manipulated by glyph instructions. See the chapter "Instructing TrueType Glyphs", as
specified by the "TrueType Instruction Set", for more background on phantom points.

5.3.4.1.1 Simple glyph description

This is the table information needed if numberOfContours is greater than zero, that is, a glyph is not a
composite. Note that point numbers are base-zero indices that are numbered sequentially across all of the
contours for a glyph; that is, the first point number of each contour (except the first) is one greater than the last
point number of the preceding contour.

71

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 71
	

Simple Glyph table

Type Name Description

uint16 endPtsOfContours[numberOfContours] Array of point indices for the last point of
each contour; in increasing numeric order.

uint16 instructionLength Total number of bytes for instructions. If
instructionLength is zero, no instructions
are present for this glyph, and this field is
followed directly by the flags field.

uint8 instructions[instructionLength] Array of instructions for each glyph; shall be
as specified in the TrueType Instruction
Set.

uint8 flags[variable] Array of flag elements. See below for
details regarding the number of flag array
elements.

uint8 or int16 xCoordinates[variable] Contour point x-coordinates. See below for
details regarding the number of coordinate
array elements. Coordinate for the first
point is relative to (0,0); others are relative
to previous point.

uint8 or int16 yCoordinates[variable] Contour point y-coordinates. See below for
details regarding the number of coordinate
array elements. Coordinate for the first
point is relative to (0,0); others are relative
to previous point.

NOTE In the glyf table, the position of a point is not stored in absolute terms but as a vector relative to the previous point.
The delta-x and delta-y vectors represent these (often small) changes in position. Coordinate values are in font
design units, as defined by the unitsPerEm field in the 'head' table. Note that smaller unitsPerEm values will
make it more likely that delta-x and delta-y values can fit in a smaller representation (8-bit rather than 16-bit),
though with a trade-off in the level or precision that can be used for describing an outline.

Each element in the flags array is a single byte, each of which has multiple flag bits with distinct meanings, as
shown below.

In logical terms, there is one flag byte element, one x-coordinate, and one y-coordinate for each point. Note,
however, that the flag byte elements and the coordinate arrays use packed representations. In particular, if a
logical sequence of flag elements or sequence of x- or y-coordinates is repeated, then the actual flag byte
element or coordinate value can be given in a single entry, with special flags used to indicate that this value is
repeated for subsequent logical entries. The actual stored size of the flags or coordinate arrays must be
determined by parsing the flags array entries. See the flag descriptions below for details.
Simple Glyph flags

Mask Name Description

0x01 ON_CURVE_POINT Bit 0: If set, the point is on the curve; otherwise, it is off the
curve.

0x02 X_SHORT_VECTOR Bit 1: If set, the corresponding x-coordinate is 1 byte long. If
not set, it is two bytes long. For the sign of this value, see
the description of the
X_IS_SAME_OR_POSITIVE_X_SHORT_VECTOR flag.

0x04 Y_SHORT_VECTOR Bit 2: If set, the corresponding y-coordinate is 1 byte long. If
not set, it is two bytes long. For the sign of this value, see
the description of the
Y_IS_SAME_OR_POSITIVE_Y_SHORT_VECTOR flag.

72

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

72 ©	ISO/IEC	2019	–	All	rights	reserved
	

0x08 REPEAT_FLAG Bit 3: If set, the next byte (read as unsigned) specifies the
number of additional times this flag byte is to be repeated in
the logical flags array – that is, the number of additional
logical flag entries inserted after this entry. (In the expanded
logical array this bit is ignored.) In this way, the number of
flags listed can be smaller than the number of points in the
glyph description.

0x10 X_IS_SAME_OR_POSITIVE_X_
SHORT_VECTOR

Bit 4: This flag has two meanings, depending on how the
X_SHORT_VECTOR flag is set. If X_SHORT_VECTOR is
set, this bit describes the sign of the value, with 1 equalling
positive and 0 negative. If X_SHORT_VECTORt is not set
and this bit is set, then the current x-coordinate is the same
as the previous x-coordinate. If X_SHORT_VECTOR is not
set and this bit is also not set, the current x-coordinate is a
signed 16-bit delta vector.

0x20 Y_IS_SAME_OR_POSITIVE_Y_
SHORT_VECTOR

Bit 5: This flag has two meanings, depending on how the
Y_SHORT_VECTOR flag is set. If Y_SHORT_VECTOR is
set, this bit describes the sign of the value, with 1 equalling
positive and 0 negative. If Y_SHORT_VECTOR is not set
and this bit is set, then the current y-coordinate is the same
as the previous y-coordinate. If Y_SHORT_VECTOR is not
set and this bit is also not set, the current y-coordinate is a
signed 16-bit delta vector.

0x40 OVERLAP_SIMPLE Bit 6: If set, contours in the glyph description may overlap.
Use of this flag is not required in OFF – that is, it is valid to
have contours overlap without having this flag set. It may
affect behaviors in some platforms, however. (See Apple’s
TrueType Reference Manual [7] for details regarding
behavior in Apple platforms.) When used, it must be set on
the first flag byte for the glyph. See additional details below.

0x80 Reserved Bits 7 is reserved:set to zero.

A non-zero-fill algorithm is needed to avoid dropouts when contours overlap. This can be particularly relevant
for variable fonts, which often make use of overlapping contours. The OVERLAP_SIMPLE flag is used by
some rasterizer implementations to ensure that a non-zero-fill algorithm is used rather than an even-odd-fill
algorithm. Note that some implementations might use this flag specifically in non-variable fonts, but not in
variable fonts. Implementations that always use a non-zero-fill algorithm will ignore this flag. This flag can be
used in order to provide broad interoperability of fonts — particularly non-variable fonts — when glyphs have
overlapping contours. Tools that generate static-font data for a specific instance of a variable font should
either set this flag when contours in the derived glyph data are overlapping, or else should merge contours to
remove overlap of separate contours.

NOTE The OVERLAP_COMPOUND flag, described below, has a similar purpose in relation to composite glyphs. The
same considerations described for the OVERLAP_SIMPLE flag also apply to the OVERLAP_COMPOUND flag.

5.3.4.1.2 Composite glyph description

If numberOfContours is negative, a composite glyph description is used.

A composite glyph starts with two uint16 values ("flags" and "glyphIndex", i.e. the index of the first contour in
this composite glyph); the data then varies according to "flags").

73

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 73
	

Composite Glyph table

Type Name Description

uint16 Flags component flag

uint16 glyphIndex glyph index of component

uint8, int8, uint16 or int16 Argument1 x-Offset for component or point number; type depends on
bits 0 and 1 in component flags

uint8, int8, uint16 or int16 Argument2 y-Offset for component or point number; type depends on
bits 0 and 1 in component flags

Transformation Option

The C pseudo-code fragment below shows how the composite glyph information is stored and parsed;
definitions for "flags" bits follow this fragment:

do {
 uint16 flags;
 uint16 glyphIndex;
 if (flags & ARG_1_AND_2_ARE_WORDS) {
 (int16 or FWord) argument1;
 (int16 or FWord) argument2;
 } else {
 uint16 arg1and2; /* (arg1 << 8) | arg2 */
 }
 if (flags & WE_HAVE_A_SCALE) {
 F2Dot14 scale; /* Format 2.14 */
 } else if (flags & WE_HAVE_AN_X_AND_Y_SCALE) {
 F2Dot14 xscale; /* Format 2.14 */
 F2Dot14 yscale; /* Format 2.14 */
 } else if (flags & WE_HAVE_A_TWO_BY_TWO) {
 F2Dot14 xscale; /* Format 2.14 */
 F2Dot14 scale01; /* Format 2.14 */
 F2Dot14 scale10; /* Format 2.14 */
 F2Dot14 yscale; /* Format 2.14 */
 }
} while (flags & MORE_COMPONENTS)
if (flags & WE_HAVE_INSTR){
 uint16 numInstr
 uint8 instr[numInstr]

Argument1 and argument2 can be either x and y offsets to be added to the glyph (the
ARGS_ARE_XY_VALUES flag is set), or two point numbers (the ARGS_ARE_XY_VALUES flag is not set). In
the latter case, the first point number indicates the point that is to be matched to the new glyph. The second
number indicates the new glyph's "matched" point. Once a glyph is added, its point numbers begin directly
after the last glyphs (endpoint of first glyph + 1).

When arguments 1 and 2 are an x and a y offset instead of points and the bit ROUND_XY_TO_GRID is set to
1, the values are rounded to those of the closest grid lines before they are added to the glyph. X and Y offsets
are described in font design units.

If the bit WE_HAVE_A_SCALE is set, the scale value is read in 2.14 format-the value can be between -2 to
almost +2. The glyph will be scaled by this value before grid-fitting.

The bit WE_HAVE_A_TWO_BY_TWO allows for linear transformation of the X and Y coordinates by
specifying a 2 × 2 matrix. This could be used for 90-degree rotations of the glyph components, for example.

74

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

74 ©	ISO/IEC	2019	–	All	rights	reserved
	

The following composite glyph flags are defined:

Composite Glyph flags

Mask Flags Description

0x0001 ARG_1_AND_2_ARE_WORDS Bit 0: If this is set, the arguments are words;
otherwise, they are bytes.

0x0002 ARGS_ARE_XY_VALUES Bit 1: If this is set, the arguments are xy
values; otherwise, they are points.

0x0004 ROUND_XY_TO_GRID Bit 2: For the xy values if the preceding is
true.

0x0008 WE_HAVE_A_SCALE Bit 3: This indicates that there is a simple
scale for the component. Otherwise, scale =
1.0.

0x0020 MORE_COMPONENTS Bit 5: Indicates at least one more glyph after
this one.

0x0040 WE_HAVE_AN_X_AND_Y_SCALE Bit 6: The x direction will use a different scale
from the y direction.

0x0080 WE_HAVE_A_TWO_BY_TWO Bit 7: The bit WE_HAVE_A_TWO_BY_TWO
allows for linear transformation of the X and Y
coordinates by specifying a 2 × 2 matrix. This
could be used for scaling and 90° rotations of
the glyph components, for example.

0x0100 WE_HAVE_INSTRUCTIONS Bit 8: Following the last component are
instructions for the composite character.

0x0200 USE_MY_METRICS Bit 9: If set, this forces the aw and lsb (and
rsb) for the composite to be equal to those
from this original glyph. This works for hinted
and unhinted characters.

0x0400 OVERLAP_COMPOUND Bit 10: If set, the components of this
compound glyph overlap. Use of this flag is
not required in OFF — that is, it is valid to
have components overlap without having this
flag set. It may affect behaviors in some
platforms, however. (See Apple’s TrueType
Reference Manual [7] for details regarding
behavior in Apple platforms.) When used, it
must be set on the flag word for the first
component. See additional remarks, above,
for the similar OVERLAP_SIMPLE flag used
in simple-glyph descriptions.

0x0800 SCALED_COMPONENT_OFFSET Bit 11: Composite designed to have the
component offset scaled.

0x1000 UNSCALED_COMPONENT_OFFSET Bit 12: Composite designed not to have the
component offset scaled.

0xE010 RESERVED Bits 4, 13, 14 and 15 are reserved: set to 0.

The purpose of USE_MY_METRICS is to force the lsb and rsb to take on a desired value. For example, an i-
circumflex (U+00EF) is often composed of the circumflex and a dotless-i. In order to force the composite to
have the same metrics as the dotless-i, set USE_MY_METRICS for the dotless-i component of the composite.
Without this bit, the rsb and lsb would be calculated from the hmtx entry for the composite (or would need to
be explicitly set with TrueType instructions).
NOTE The behavior of the USE_MY_METRICS operation is undefined for rotated composite components.

75

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 75
	

The SCALED_COMPONENT_OFFSET and UNSCALED_COMPONENT_OFFSET flags are used to
determine how x and y offset values are to be interpreted when the component glyph is scaled. If the
SCALED_COMPONENT_OFFSET flag is set, then the x and y offset values are deemed to be in the
component glyph’s coordinate system, and the scale transformation is applied to both values. If the
UNSCALED_COMPONENT_OFFSET flag is set, then the x and y offset values are deemed to be in the
current glyph’s coordinate system, and the scale transformation is not applied to either value. If neither flag is
set, then the rasterizer will apply a default behavior. On Microsoft and Apple platforms, the default behavior is
the same as when the UNSCALED_COMPONENT_OFFSET flag is set; this behavior is recommended for all
rasterizer implementations. If a font has both flags set, this is invalid; the rasterizer should use its default
behavior for this case.

5.3.5 loca – Index to location

The loca table stores the offsets to the locations of the glyphs in the font, relative to the beginning of the glyf
table. In order to compute the length of the last glyph element, there is an extra entry after the last valid index.

By definition, index zero points to the "missing character", which is the character that appears if a character is
not found in the font. The missing character is commonly represented by a blank box or a space. If the font
does not contain an outline for the missing character, then the first and second offsets should have the same
value. This also applies to any other character without an outline, such as the space character. If a glyph has
no outlines, the offset loca[n] = loca[n+1]. In the particular case of the last glyph(s), loca[n] will be equal the
length of the glyph data ('glyf') table. The offsets shall be in ascending order with loca[n] <= loca[n+1].

Most routines will look at the 'maxp' table to determine the number of glyphs in the font, but the value in the
'loca' table should agree.

There are two versions of this table, the short and the long. The version is specified in the indexToLocFormat
entry in the 'head' table.

Short version

Type Name Description

Offset16 Offsets[n] The actual local offset divided by 2 is stored. The value of n is
numGlyphs + 1. The value for numGlyphs is found in the 'maxp' table.

Long version

Type Name Description

Offset32 Offsets[n] The actual local offset is stored. The value of n is numGlyphs + 1. The
value for numGlyphs is found in the 'maxp' table.

NOTE The local offsets should be long-aligned, i.e., multiples of 4. Offsets which are not long-aligned may seriously
degrade performance of some processors.

5.3.6 prep – Control value program

The Control Value Program consists of a set of TrueType instructions that will be executed whenever the font
or point size or transformation matrix change and before each glyph is interpreted. Any instruction is legal in
the CV Program but since no glyph is associated with it, instructions intended to move points within a
particular glyph outline cannot be used in the CV Program. The name 'prep' is anachronistic (the table used to
be known as the Pre Program table).

Type Description

uint8[n] Set of instructions executed whenever point size or font or transformation change.
n is the number of uint8 items that fit in the size of the table.

76

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

76 ©	ISO/IEC	2019	–	All	rights	reserved
	

5.3.7 gasp – Grid-fitting and scan-conversion procedure table

This table contains information which describes the preferred rasterization techniques for the typeface when it
is rendered on grayscale-capable devices. This table also has some use for monochrome devices, which may
use the table to turn off hinting at very large or small sizes, to improve performance.

At very small sizes, the best appearance on grayscale devices can usually be achieved by rendering the
glyphs in grayscale without using hints. At intermediate sizes, hinting and monochrome rendering will usually
produce the best appearance. At large sizes, the combination of hinting and grayscale rendering will typically
produce the best appearance.

If the 'gasp' table is not present in a typeface, the rasterizer may apply default rules to decide how to render
the glyphs on grayscale devices.

The 'gasp' table consists of a header followed by groupings of 'gasp' records:

'gasp' Header

Type Name Description

uint16 version Version number (set to 0 or 1)

uint16 numRanges Number of records to follow

GaspRange gaspRanges[numRanges] Sorted by ppem

The array of GaspRange records provides recommended behaviors for various ppem sizes:

GaspRange Record

Type Name Description

uint16 rangeMaxPPEM Upper limit of range, in PPEM

uint16 rangeGaspBehavior Flags describing desired rasterizer behavior.

There are fourRangeGaspBehavior flags defined.

RangeGaspBehavior flags

Mask Name Description

0x0001 GASP_GRIDFIT Use gridfitting

0x0002 GASP_DOGRAY Use grayscale rendering

0x0004 GASP_SYMMETRIC_GRIDFIT Use gridfitting with ClearType symmetric
smoothing
Only supported in version 1 of 'gasp' table

0x0008 GASP_SYMMETRIC_ SMOOTHING Use smoothing along multiple axes with
ClearType®
Only supported in version 1 of 'gasp' table

0xFFF0 Reserved Reserved flags – set to 0.

The set of bit flags may be extended in the future. The first two bit flags operate independently of the following
two bit flags. If font smoothing is enabled, then the first two bit flags are used. If ClearType is enabled, then
the following two bit flags are used. The seven currently defined values of rangeGaspBehavior would have the
following uses:

77

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 77
	

Flag Value Meaning

GASP_DOGRAY 0x0002 small sizes, typically ppem<9

GASP_GRIDFIT 0x0001 medium sizes, typically 9<=ppem<=16

GASP_DOGRAY|GASP_GRIDFIT 0x0003 large sizes, typically ppem>16

GASP_SYMMETRIC_GRIDFIT 0x0004 typically always enabled

GASP_SYMMETRIC_SMOOTHING 0x0008 larger screen sizes, typically ppem>15, most
commonly used with the gridfit flag.

GASP_SYMMETRIC_SMOOTHING
| GASP_ SYMMETRIC_GRIDFIT

0x000C Large screen sizes, typically ppem>15

(neither) 0x0000 optional for very large sizes, typically
ppem>2048

The records in the gaspRange[] array must be sorted in order of increasing rangeMaxPPEM value. The last
record should use 0xFFFF as a sentinel value for rangeMaxPPEM and should describe the behavior desired
at all sizes larger than the previous record's upper limit. If the only entry in 'gasp' is the 0xFFFF sentinel value,
the behavior described will be used for all sizes.

'gasp' Table and OFF Font Variations
In a variable font, the threshold sizes at which rasterizer behaviors are changed may need to be adjusted for
different variation instances. Variation data for adjusting the rangeMaxPPEM value of up to ten GaspRange
records can be provided in the metrics variations ('MVAR') table, referenced using value tags 'gsp0' to 'gsp9'.
Note that the rasterizer behavior for a given GaspRange record cannot be changed for different variation
instances; only the rangeMaxPPEM value can be adjusted.
The last GASPRANGE record in a ‘gasp’ table is assumed to have a rangeMaxPPEM value of 0xFFFF
(effectively infinity). The rangeMaxPPEM value of the last record is never adjusted for different instances; the
number of value records in the 'MVAR' table that are associated with 'gasp' entries must never be more than
numRanges minus one.
For general information on OFF Font Variations, see subclause 7.1.

Sample 'gasp' table

Flag Value Font Smoothing Meaning ClearType with Symmetric
Smoothing Meaning

version 0x0001

numRanges 0x0004

Range[0],
Flag

0x0008

0x000a

ppem<=8, grayscale only ppem<=8, symmetric ClearType only

Range[1],
Flag

0x0010

0x0005

9<=ppem<=16, gridfit only 9<=ppem<=16, symmetric gridfit only

Range[2],
Flag

0x0013

0x0007

17<=ppem<=19, gridfit and
grayscale

17<=ppem<=19, symmetric gridfit

Range[3],
Flag

0xFFFF

0x000F

20<=ppem, gridfit and
grayscale

20<=ppem, symmetric gridfit and
symmetric smoothing

78

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

78 ©	ISO/IEC	2019	–	All	rights	reserved
	

5.4 Tables related to CFF outlines

5.4.1 List of CFF outline tables

For OFF fonts based on CFF outlines, the following tables are used:

Tag Name

CFF Compact Font Format 1.0

CFF2 Compact Font Format 2.0

VORG Vertical Origin (optional table)

It is strongly recommended that CFF fonts that are used for vertical writing include a Vertical Origin ('VORG')
table.

5.4.2 CFF – Compact Font Format (version 1) table

This table contains a Compact Font Format version 1 representation (also known as a PostScript Type 1, or
CIDFont) and is structured according to Adobe Technical Note #5176: "The Compact Font Format
Specification" [5] and Adobe Technical Note #5177: "Type 2 Charstring Format" [4].

OFF fonts with TrueType outlines use a glyph index to specify and access glyphs within a font, e.g. to index
within the 'loca' table and thereby access glyph data in the glyf table. This concept is retained in OFF CFF
fonts, except that glyph data is accessed through the CharStrings INDEX of the CFF table.

The Name INDEX in the CFF must contain only one entry; that is, there must be only one font in the CFF
FontSet. It is not a requirement that this name be the same as Name ID 6 in the OFF font’s ‘name’ table. Note
that, in an OFF Font Collection file, a single CFF table can be shared accross multiple fonts; names used by
applications must be those provided in the 'name' table, not the Name INDEX entry. The CFF Top DICT must
specify a CharstringType value of 2.
The numGlyphs field in the 'maxp' table must be the same as the number of entries in the CFF's CharStrings
INDEX. The OFF glyph index is the same as the CFF glyph index for all glyphs in the font.

5.4.3 CFF2 – Compact Font Format (version 2) table

5.4.3.1 Overview

This document describes the CFF2 format. Like the CFF version 1 format, CFF2 allows efficient storage of
glyph outlines and metadata. The CFF2 format differs from CFF version 1 in that it cannot be used as a stand-
alone font program: it is intended for use only in the context of an OFF font as an SFNT table with the tag
'CFF2', and depends on data in other OFF tables. All the data from the version 1 format that is duplicated by
data in other tables, or which is not used in the context of an OFF font, is removed.

Another important difference is that the CFF2 format adds new operators that allow CFF2 to represent the
data for a variable font: a font that includes representations for several different variants of each glyph, which
can be blended to produce an intermediate instance. See subclause 7.1, for a general description of variable
fonts and for a complete list of the tables required to support a variable font.

Finally, the CFF2 format requires the use of CFF2 CharStrings rather than Type 2 CharStrings. This
CharString format, like the CFF2 format itself, has removed operators to reduce file size, and added new
operators to support variable fonts. See subclause 5.4.2.8 for additional information on CFF2 CharStrings.

For a complete description of the differences between CFF format version 1 and CFF2, see "CFF2 changes
From CFF 1.0" [28].

79

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 79
	

5.4.3.2 Data layout

Conceptually, the binary data is organized as a number of separate data structures. The overall layout within
the binary data is shown in following table. The first three structures occupy fixed locations. The remainder are
reached via offsets, and their ordering can be changed.

CFF Data layout

Entry Comments

Header Fixed location

Top DICT Fixed location

Global Subr INDEX Fixed location

VariationStore -

FDSelect Present only if there is more than one Font DICT in the Font DICT INDEX.

Font DICT INDEX -

Array of Font DICT Included in Font DICT INDEX

Private DICT one per Font DICT

An annotated example of a CFF2 table can be found in the Example CFF2 Font [29].

5.4.3.3 Data types

This subclause describes data representation and types used by the CFF2 format.

All multi-byte numeric data and offset fields are stored in big-endian byte order (high byte low offset) and do
not honor any alignment restrictions. This leads to a format that is free from padding bytes.

Data objects are often specified by byte offsets that are relative to some reference point within the CFF2 data.
These offsets are 1 to 4 bytes in length. The reference position for the offset is indicated in each case.

The data types used in the CFF2 table are shown in the following table:

CFF Data Types

Name Range Description

int8 0 to 255 1-byte unsigned number

uint16 0 to 65535 2-byte unsigned number

uint32 0 to 4294967296 4-byte unsigned number

Offset varies 1, 2, 3, or 4 byte offsets (specified by OffSize field in an Index table)

OffSize 1 to 4 1-byte unsigned number specifies the size of an Offset field or fields

This document describes data structures by listing field types, names, and descriptions. Data structures may
be given a type name and subsequently described. Arrays of objects are indicated by the usual square
bracket convention enclosing the array length.

The majority of CFF2 data is contained by either of two data structures called DICT and INDEX which are
described below.

80

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

80 ©	ISO/IEC	2019	–	All	rights	reserved
	

5.4.3.4 DICT data

Font dictionary data comprising key-value pairs is represented in a compact tokenized format that is similar to
that used to represent CharStrings. Dictionary keys are encoded as 1- or 2-byte operators and dictionary
values are encoded as variable-size numeric operands. An operator is preceded by the operand(s) that
specify its value. A DICT is simply a sequence of operand(s) / operator bytes concatenated together. There
are three structures that use the DICT Data format: Top DICT, Font DICT and Private DICT. A list of DICT
operators for each of these may be found in subclauses 5.4.2.7, 5.4.2.10, and 5.4.2.11. A summary of all
DICT operators is provided in Annex E.

A number of integer operand types of varying sizes are defined and are encoded as shown in the table below
(first byte of operand is b0, second is b1, and so on).

Operand Encoding

Size b0 range Value range Value calculation

1 32 to 246 -107 to +107 b0 - 139

2 247 to 250 +108 to +1131 (b0 - 247) * 256 + b1 + 108

2 251 to 254 -1131 to -108 -(b0 - 251) * 256 - b1 - 108

3 28 -32768 to +32767 b1<<8 | b2

5 29 -(2^31) to +(2^31-1) b1<<24 | b2<<16 | b3<<8 | b4

NOTE The 1- , 2-, and 3- byte integer formats are identical to those used by Type 2 CharStrings.

Examples of the integer formats are shown in the table below:

Integer Format Examples

Value Encoding

0 8b

100 ef

-100 27

1000 fa 7c

10000 1c 27 10

-10000 1c d8 f0

100000 1d 00 01 86 a0

-100000 1d ff fe 79 60

A real number operand is provided in addition to integer operands. This operand begins with a byte value of
30 followed by a variable-length sequence of bytes. Each byte is composed of two 4-bit nibbles as defined in
the table below. The first nibble of a pair is stored in the most significant 4 bits of a byte and the second nibble
of a pair is stored in the least significant 4 bits of a byte.

81

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 81
	

Nibble Definitions

Nibble Value Represents

0 to 9 0 to 9

a . (decimal point)

b E

c E–

d <reserved>

e – (minus)

f end of number

A real number is terminated by one (or two) 0xf nibbles so that it is always padded to a full byte. Thus, the
value –2.25 is encoded by the byte sequence (1e e2 a2 5f) and the value 0.140541E–3 by the sequence (1e
0a 14 05 41 c3 ff).

Operators and operands may be distinguished by inspection of their first byte. Values 28, 29, 30, and 32 to
254 specify operands (numbers). All other values either specify an operator or are reserved. The maximum
number of operands which may precede an operator is set by the current stack limit.

An operator may have one or more operands of the types shown in the table below:

Operand Types

Type Description

number Integer or real number

array One or more numbers

delta A number or a delta-encoded array of numbers (see below)

The length of array or delta types is determined by counting the operands preceding the operator. The second
and subsequent numbers in a delta are encoded as the difference between successive values. For example,
an array a0, a1, ..., an would be encoded as: a0 (a1-a0) (a2-a1) ..., (an-an-1).

Two-byte operators have an initial escape byte of 12.

Further compaction of dictionary data is achieved by establishing default values for various DICT keys. For
those keys that have a default value the absence of the corresponding operator in a DICT implies a key
should take its default value.

5.4.3.5 INDEX data

An INDEX is an array of variable-sized objects. It comprises a header, an offset array, and object data. The
offset array specifies offsets within the object data. An object is retrieved by indexing the offset array and
fetching the object at the specified offset. The object’s length can be determined by subtracting its offset from
the next offset in the offset array. An additional offset is added at the end of the offset array so the length of
the last object may be determined. The INDEX format is shown below.

82

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

82 ©	ISO/IEC	2019	–	All	rights	reserved
	

INDEX Format

Type Name Description

uint32 count Number of objects stored in INDEX

OffSize offSize Offset array element size

Offset offset [count+1] Offset array - offsets are from the start of the object data.

uint8 data [<varies>] Object data

Offsets in the offset array are relative to the byte that precedes the object data. Therefore the first element of
the offset array is always 1. (This ensures that every object has a corresponding offset which is always
nonzero and permits the efficient implementation of dynamic object loading.)

An empty INDEX is represented by a count field with a 0 value and no additional fields. Thus, the total size of
an empty INDEX is 4 bytes.

NOTE An INDEX may be skipped by jumping to the offset specified by the last element of the offset array.

5.4.3.6 Header

The binary data begins with a header having the format shown below:

Header Format

Type Name Description

uint8 majorVersion Format major version. Set to 2.

uint8 minorVersion Format minor version. Set to zero.

uint8 headerSize Header size (bytes)

uint16 topDictLength Length of Top DICT structure in bytes.

The headerSize field must be used when locating the start of the Top DICT data. It is provided so that future
versions of the format may introduce additional data between the topDictLength field and the Top DICT data in
a manner that is compatible with older implementations.

5.4.3.7 Top DICT data

This is the top-level DICT of the CFF2 table. The names of the Top DICT operators and default values (where
applicable) are shown in the table below:

Top DICT Operator Entries

Name Value Operand(s) Default Notes

FontMatrix 12 7 array 0.001 0 0
0.001 0 0

CharStrings 17 number – CharStrings INDEX offset, from start of
the CFF2 table.(0)

FDArray 12 36 number – Font DICT (FD) INDEX offset, from start
of the CFF2 table.

FDSelect 12 37 number – FDSelect structure offset, from start of
the CFF2 table.

vstore 24 number – VariationStore structure offset, from start
of the CFF2 table.

83

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 83
	

The Top DICT FontMatrix operator is required if the unitsPerEm value in the 'head' table is other than 1000. If
unitsPerEm is 1000, then the FontMatrix operator may be omitted. When included, the FontMatrix operand
array must be [1/unitsPerEm 0 0 1/unitsPerEm 0 0]. The default values shown above assume that unitsPerEm
is 1000.

The FDSelect operator and the structure it points to are required if the Font DICT INDEX contains more than
one Font DICT, else it must be omitted.

The vstore operator and the data it points to are required if variation data is present, and must be omitted if
there is no variation data.

Operators in Top DICT, Font DICTs, Private DICTs and CharStrings may be preceded by up to a maximum of
513 operands.

5.4.3.8 CharStrings INDEX

The CharStrings INDEX is an INDEX structure that contains all of the CFF2 glyphs in the font. EachCharString
provides a definition of a glyph and is accessed by glyph index ("GID"). The first CharString (GID 0) must be
the .notdef glyph. The number of glyphs defined in the CFF2 table may be determined from the CharString
INDEX count field. The value of this field shall match the value of the numGlyphs field in the 'maxp' table.

The format of the CharString data for CFF2 data, and therefore the method of interpretation, is the CFF2
CharString format. This is based on the Type 2 CharString format, and differs only in that some operators are
added, and many are removed. See Annex D "The CFF2 CharString format" for details. The major changes
are as follows:

 CFF2 CharStrings do not contain a value for advance width.

 For CFF2 tables, the fill rule for CharStrings must always be the nonzero winding number rule, rather
than the even-odd rule. This is required in order to support variable font data, in which it is not
practical to enforce removal of overlaps between paths.

 The stack depth is increased from 48 to 513.

 The CharString operator set is extended in CFF2 to include the blend (16) and vsindex (15)
operators. These operators work as described below, in relation to equivalent CFF2 Private DICT
operators, in subclause 5.4.2.12. Note, however, that the operator codes for these operators when
used in CharStrings are different from the operator codes for the equivalent CFF2 Private DICT
operators.

 The Type 2 operators endchar and return are removed.

 The Type 2 logic, storage, and math operators are removed.

The CFF2 format does not contain glyph names or CID values for glyph tags. Glyph that provide some
semantic content can be useful for debugging, however, and can also be used as a last resort for deriving
encoding information. Glyph tags for CFF2 tables can be represented PostScript glyph names in a version 2.0
'post' table. Glyph names add to the size of a font and are optional. Alternatively, the font can use a version
3.0 'post' table, which omits glyph names.

5.4.3.9 Local and Global Subr INDEXes

A subroutine ("subr") is typically a sequence of CharString bytes representing a sub-program that is used in
more than one place in a font’s CharString data. A subr may be stored once but referenced many times from
within one or more CharStrings by the use of a call-subroutine operator that takes as an operand the number
of the subr to be called.

Some subrs are local; that is, they are contained within a Private DICT and accessible by the set of
CharStrings associated with the Private Dict. Local subrs are contained within an INDEX structure; the offset
of the INDEX within the Private DICT is specified using the Subrs operator. A CharString references a local
subr in its Private DICT by means of the callsubr operator.

84

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

84 ©	ISO/IEC	2019	–	All	rights	reserved
	

Subrs can also be global, accessible to any CharString within the font. Global subrs are stored in the Global
Subrs INDEX, which follows the Top DICT data. A font might not have any global subrs, in which case the
Global Subrs INDEX is empty. A CharString references a global subr by means of the callgsubr operator.

Subr numbers are skewed by a number called the “subr number bias” that is calculated from the count of the
subroutines in either the local or global subr INDEXes. The bias is calculated as follows:
 uint16 bias;
 uint16 nSubrs = subrINDEX.count;
 if (nSubrs < 1240)
 bias = 107;
 else if (nSubrs < 33900)
 bias = 1131;
 else
 bias = 32768;

For correct subr selection the calculated bias must be added to the subr number operand before accessing
the appropriate subr INDEX. This technique allows subr numbers to be specified using negative as well as
positive numbers, thereby fully utilizing the available number ranges and thus saving space.

5.4.3.10 Font DICT INDEX, Font DICTs and FDSelect

The Font DICT INDEX contains one or more Font DICT structures. Unlike CID-keyed Type 1 fonts, the Font
DICT INDEX may contain more than 256 Font DICTs.

A Font DICT is used for hinting, variation or subroutine (subr) data used by CharStrings. A font can have one
Font DICT, which would apply to all CharStrings, or it can have multiple Font DICTs, each applicable to some
set of CharStrings. The actual hinting or other data is contained in a Private DICT. Each Font DICT structure
provides a reference to a Private DICT.

Font DICT Operator Entries

Name Value Operand(s) Default Notes

Private 18 number
number

– Private DICT size and offset, from start
of the CFF2 table.

The use of a Font DICT FontMatrix operator is not required in CFF2 fonts, and is deprecated.

If there are multiple Font DICTs, an FDSelect table is used to provide information about which Font DICT
("FD") is used for which glyphs. An FDSelect is used only if there are multiple Font DICTs.

The location of the FDSelect table is given as the operand of the FDSelect operator in the Top DICT. An
FDSelect table associates a Font DICT with a glyph by specifying an FD index for that glyph. The FD index is
used to access one of the Font DICTs stored in the Font DICT INDEX. Three formats are currently defined, as
shown in the following tables.

FDSelect Format 0

Type Name Description

uint8 format Set to 0

uint8 fds [nGlyphs] FD selector array

Each element of the fds array represents the FD index of a Font DICT in the FDArray. This format should be
used when the FD indices are in a fairly random order. The number of glyphs (nGlyphs) is the value of the
count field in the CharStrings INDEX.

85

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 85
	

FDSelect Format 3

Type Name Description

uint8 format Set to 3

uint16 nRanges Number of ranges

Range3 range3 [nRanges] Array of Range3 records (see below)

uint16 sentinel Sentinel GID

The format of a Range3 record is as follows:

Range3 Record Format

Type Name Description

uint16 first First glyph index in range

uint8 fd FD index for all glyphs in range

Each Range3 describes a group of sequential GIDs that have the same FD index. Each range includes GIDs
from the first GID in the range record up to, but not including, the first GID of the next range record. Records in
the Range3 array must be in increasing order of first GIDs. The first range must have a first GID of 0. A
sentinel GID follows the last range element and serves to delimit the last range in the array. The sentinel GID
is set equal to the number of glyphs in the font. That is, its value is 1 greater than the last GID in the font. This
format is particularly suited to FD indexes that are well ordered (the usual case).

FDSelect Format 4

Type Name Description

uint8 format Set to 4

uint32 nRanges Number of ranges

Range4 range4 [nRanges] Array of Range4 records (see below)

uint32 sentinel Sentinel GID

Format 4 differs from Format 3 only in that it accommodates more than 65536 glyphs by using a uint32 type
for the nRanges and sentinel fields, and a Range4 record array.

The format of a Range4 record is as follows:

Range4 Record Format

Type Name Description

uint32 first First glyph index in range

uint16 fd FD index for all glyphs in range

The Range4 format differs from the Range3 only in that it accommodates more than 65536 glyphs, by using a
uint32 type for the first GID field and a uint16 field for the FD index.

NOTE While FDSelect format 4 allows for more than 65536 glyphs, other parts of the OFF format, such as the
numGlyphs field of the 'maxp' table, are still constrained to 65536 glyphs.

86

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

86 ©	ISO/IEC	2019	–	All	rights	reserved
	

5.4.3.11 Private DICT data

The names of the Private DICT operators (shown in table below) are, where possible, the same as the
corresponding Type 1 dict keys. Operators that have no corresponding Type 1 dict key are indicated with a
note.

Name Value Operand(s) Default Notes

BlueValues 6 delta –

OtherBlues 7 delta –

FamilyBlues 8 delta –

FamilyOtherBlues 9 delta –

BlueScale 12 9 number 0.039625

BlueShift 12 10 number 7

BlueFuzz 12 11 number 1

StdHW 10 number –

StdVW 11 number –

StemSnapH 12 12 delta –

StemSnapV 12 13 delta –

LanguageGroup 12 17 number 0

ExpansionFactor 12 18 number 0.06

vsindex 22 number 0 itemVariationData index in the
VariationStore structure.

Blend 23 delta, number
of blends

– Leaves 'number of blends' values on
the operand stack.

Subrs 19 number – Offset to local subrs INDEX, from start
of Private DICT.

The local subrs offset is relative to the beginning of the Private DICT data.

The OtherBlues and FamilyOtherBlues operators must occur after the BlueValues and FamilyBlues operators,
respectively.

A Private DICT is required, but may be specified as having a size of 0 if there are no non-default values to be
stored.

5.4.3.12 Extensions for font variations

In order to support glyph variation data in CFF2 tables, three new operators are added in CFF2 format:
vsindex, blend, and vstore.

A variable font holds data representing the equivalent of several distinct design variations, and uses
algorithms for interpolation — or blending — between these designs to derive a continuous range of design
instances. This allows an entire family of fonts to be represented by a single variable font. For example, a
variable font may contain data equivalent to Light and Heavy designs from a family, which can then be
interpolated to derive instances for any weight in a continuous range between Light and Heavy.

87

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 87
	

For general background on OFF font variations, details on the tables used to support a variable font,
terminology, and a specification of the interpolation algorithm used to blend values to derive specific design
instances see subclause 7.1.

Outline data for a variable font in the CFF2 format are built much like a non-variable CFF2 table would be built,
with exactly the same structure and operators as would be used for the default design representation.
However, wherever a value occurs in the default design, the single value for the one design is supplemented
with a set of delta values, followed by the blend operator. (For efficiency, a single blend operator may follow a
series of such delta sets, rather than after each individual set.) Unlike other DICT operators, blend does not
clear the stack when it is processed. The result of the blend operator remains on the stack to be processed by
the following operator.

Within a variable font, different glyphs can use different sets of regions and associated delta values for the
blending operation. When processing a given glyph, the interpreter must determine which set to use. These
sets are stored in the CFF2 table in an ItemVariationStore structure. The ItemVariationStore contains one or
more ItemVariationData subtables, each of which contains a list of Variation Regions. The first
ItemVariationData subtable (index 0) is used by default, when no other subtable has been specified. When an
ItemVariationData subtable other than the default is needed for a set of delta values, the vsindex operator is
used. When this operator is used in a Private DICT to set a non-default itemVariationData index, this then
becomes the default Item Variation Data index for not only the Private DICT, but also for all CharStrings that
reference that Private DICT.When the vsindex operator is used in a CharString, it supersedes any vsindex
from the private DICT. All private DICTs and CharStrings in a CFF2 table share the same ItemVariationStore.

5.4.3.12.1 Syntax for font variations support operators

vsindex |- ivs vsindex (22) |-
Selects the ItemVariationData subtable to be used for blending; the ivs argument
is the ItemVariationData index. When used, vsindex must precede the blend
operator.
Note that the operator code, 22, is different from the equivalent CharStrings
operator. This operator may be used only in a Private DICT.

blend num(0)…num(n-1), delta(0,0)…delta(k-1,0), delta(0,1)…delta(k-1,1) … delta(0,n-
1)…delta(k-1,n-1) n blend (23) val(0)…val(n-1)
For k regions, produces n interpolated result value(s) from n*(k + 1) operands.
For more information and examples, see the description of the equivalent
CharString operator in Annex D (D.4.5).
Note that the operator code, 23, is different from the equivalent CharStrings
operator. This operator may only be used in a Private DICT.

vstore |- offset vstore (24) |-
Provides the offset to the VariationStore data in the CFF2 table. This operator
may only be used in the Top DICT.

5.4.3.12.2 VariationStore data contents

The VariationStore data is comprised of two parts: a uint16 field that specifies a length, followed by an Item
Variation Store structure of the specified length. The Item Variation Store format is specified in subclause 7.2.
A brief description of the format as used within the CFF2 table follows.

To support variation of glyphs or other font data, the information used is comprised of default values for the
particular data item, a set of delta adjustment values used to modify the default value, and a set of regions
within the font’s variation space over which the different delta values apply. The Item Variation Store format is
designed to accommodate both the set of regions and the delta values. Within the CFF2 table, the Item
Variation Store is used to represent the different regions, but the delta values are interleaved within the
CharStrings where they are used.

An Item VariationStore contains two important lists. The first list is data that describes the region of influence
in variation space for each design that is used in the variable font. Each of these is called a Variation Region.
The entire list of Variation Regions is called a Variation Region List.

88

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

88 ©	ISO/IEC	2019	–	All	rights	reserved
	

The second list is an array of ItemVariationData structures that each specify a set of Variation Regions, as a
list of indices into the Variation Region List. This allows different glyphs to have delta values that apply to
different sets of regions. There is often only one itemVariationData structure, and hence only one set of
regions that is used by all glyphs. If more than one set of regions are needed, then an itemVariationData
structure is added to define each set. The vsindex operator may be used in a Private DICT to set the
itemVariationData index for all glyphs which reference the Private DICT, or it may be used in specific CFF2
CharStrings when a CharString needs to use a different ItemVariationData structure than is specified in the
Private DICT.

An example of a Variation Store structure in a CFF2 table can be seen in the Example CFF2 Font [29].

5.4.4 VORG – Vertical origin table

This optional table specifies the y coordinate of the vertical origin of every glyph in the font.

This table may be optionally present only in CFF OFF fonts. If present in TrueType OFF fonts it must be
ignored by font clients, just as any other unrecognized table would be. This is because this table is not needed
for TrueType OFF fonts: the Vertical Metrics ('vmtx') and Glyph Data ('glyf') tables in TrueType OFF fonts
provide all the information necessary to accurately calculate the y-coordinate of a glyph's vertical origin. See
the "Vertical Origin and Advance Height" in the 'vmtx' table specification for more details.

The 'vmtx' and Vertical Header ('vhea') tables continue to be required for all OFF fonts that support vertical
writing. Advance heights must continue to be obtained from the 'vmtx' table; that is the only place they are
stored.

If a 'VORG' table is present in a CFF OFF font, a font client may choose to obtain the y coordinate of a glyph's
vertical origin either:

a) directly from the 'VORG', or:

b) by first calculating the top of the glyph's bounding box from the CFF charstring data and then adding
to it the glyph's top side bearing from the 'vmtx' table.

The former method offers the advantage of increased accuracy and efficiency, since bounding box results
calculated from the CFF charstring as in the latter method can differ depending on the rounding decisions and
data types of the bounding box algorithm. The latter method provides compatibility for font clients who are
either unaware of or choose not to support the 'VORG'.

Thus, the 'VORG' doesn't add any new font metric values per se; it simply improves accuracy and efficiency
for CFF OFF font clients, since the intermediate step of calculating bounding boxes from the CFF charstring is
rendered unnecessary.

See Clause 6 "OFF CJK Font Guidelines" for more information about constructing CJK (Chinese, Japanese,
and Korean) fonts.

Vertical Origin Table Format

Type Name Description

uint16 majorVersion Major version (starting at 1). Set to 1.

uint16 minorVersion Minor version (starting at 0). Set to 0.

int16 defaultVertOriginY The y coordinate of a glyph's vertical origin, in the font's
design coordinate system, to be used if no entry is present
for the glyph in the vertOriginYMetrics array.

uint16 numVertOriginYMetrics Number of elements in the vertOriginYMetrics array.

This is immediately followed by the vertOriginYMetrics array (if numVertOriginYMetrics is non-zero), which
has numVertOriginYMetrics elements of the following format:

89

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 89
	

Type Name Description

uint16 glyphIndex Glyph index.

int16 vertOriginY Y coordinate, in the font's design coordinate system, of the
vertical origin of glyph with index glyphIndex.

This array must be sorted by increasing glyphIndex, and must not have more than one element with the same
glyphIndex. In a size-optimized implementation, glyphs whose vertical origin's y coordinate equals
defaultVertOriginY will not have an entry in this array.

If all glyphs in a font share the same defaultVertOriginY value, the length of the 'VORG' table will be 8 bytes in
a size-optimized implementation, since the vertOriginYMetrics array will be absent.

Typically only the full-width Latin glyphs in an East Asian font will have entries in the vertOriginYMetrics array.
Glyphs rotated for vertical writing, as used in the Vertical Alternates and Rotation ('vrt2') feature, for example,
can take advantage of the default value if they are designed appropriately.

In the following example of a complete 'VORG' table for a 1000-unit-em font, every glyph in the font is
specified as having a vertOriginY of 880 except for glyphs with glyph indexes 10, 12, and 13:
majorVersion =1
minorVersion =0
defaultVertOriginY =880
numVertOriginYMetrics=3
--- vertOriginYMetrics[index]=(glyphIndex,vertOriginY)
[0]=(10,889)
[1]=(12,861)
[2]=(13,849)

5.5 Table for SVG glyph outlines

5.5.1 SVG – The SVG (Scalable Vector Graphics) table

OFF fonts with either TrueType or CFF outlines may also contain an optional ‘SVG ’ table, which allows some
or all glyphs in the font to be defined with color, gradients, or animation.

This table contains SVG descriptions for some or all of the glyphs in the font, which shall be as specified in the
Scalable Vector Graphics (SVG) 1.1 (2nd edition), W3C Recommendation. For every SVG glyph description,
there must also exist a corresponding CFF or TT glyph description in the font.

SVG Main Header

Type Name Description

uint16 version Table version (starting at 0). Set to 0.

Offset32 svgDocIndexOffset Offset (relative to the start of the SVG table) to the SVG
Documents Index. Must be non-zero.

uint32 reserved Set to 0.

SVG Document Index

The SVG Document Index is a set of SVG documents, each of which defines one or more glyph descriptions.

90

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

90 ©	ISO/IEC	2019	–	All	rights	reserved
	

Type Name Description

uint16 numEntries Number of SVG Document Index Entries. Must be
non-zero.

SVG Document
Index Entry

entries[numEntries] Array of SVG Document Index Entries.

SVG Document Index Entry

Each SVG Document Index Entry specifies a range [startGlyphID, endGlyphID], inclusive, of glyph IDs and the
location of its associated SVG document in the SVG table.

Type Name Description

uint16 startGlyphID The first glyph ID in the range described by this index entry.

uint16 endGlyphID The last glyph ID in the range described by this index entry. Must
be >= startGlyphID.

Offset32 svgDocOffset Offset from the beginning of the SVG Document Index to an SVG
document. Must be non-zero.

uint32 svgDocLength Length of the SVG document. Must be non-zero.

Index entries must be arranged in order of increasing startGlyphID. The startGlyphID of an index entry must
be greater than the endGlyphID of the previous index entry, if any.

While SVG 1.1 [16] requires in addition to plain text encoding that conforming SVG implementations shall
correctly support gzip-encoded [RFC1952] and deflate-encoded [RFC1951] data streams, this document
requires that the SVG documents be either plain-text or gzip-encoded [RFC1952]. The encoding of the
(uncompressed) SVG document must be UTF-8. In both cases, svgDocLength encodes the length of the
encoded data, not the decoded document.

For further details about the content of the SVG documents, see “Glyph Identifiers” and the following sections
below.

5.5.2 Color Palettes

The SVG glyph descriptions may contain color variables whose values are obtained either from one of the
various color palettes in the Color Palette (CPAL) table or by other means, for example values specified by the
user. The first color palette shall be the default one. It is strongly recommended that the default values for the
color variables in the SVG documents be set to the same values as in the first color palette table, for
implementations that may not support color palettes.

Color variables are made available for use in the SVG glyph descriptions by the font engine setting CSS
custom properties [18] in a User Agent style sheet. The custom property names are of the form "--
color<num>", where <num> is a parameter index in the range [0, numPaletteEntries-1], inclusive, expressed
as a non-zero- padded decimal number. numPaletteEntries is defined in the CPAL table. See the “Glyph
rendering” section below for exactly how the values are to be passed in to the SVG document.

Font engines that support the SVG table and color palettes are strongly suggested to implement the CSS
Custom Properties for Cascading Variables specification [18], as this is required for the palette entries to be
passed into the SVG document.

Note that the SVG glyph descriptions are able to express their own explicit or “hard-coded” colors as well.
These are not related to color variables and thus do not vary by palette selection. For example, a font
designer may want the teardrop on a crying emoji always to be blue (this is “hard-coded”) but the rest of the
emoji regulated by color variables, with the skin of the face having a default value of the classic “smiley face”

91

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 91
	

yellow (default both in the SVG glyph description itself – see the var(--color0, yellow) example below – and in
the default color palette).

5.5.3 Glyph Identifiers

For each glyph ID in an SVG Document Index Entry’s [startGlyphID, endGlyphID] range, inclusive, the
associated SVG document shall contain an element with id “glyph<glyphID>”, where <glyphID> is the glyph ID
expressed as a non–zero-padded decimal value. This element functions as the SVG glyph description for the
glyph ID.

For example, say a font with maxp.numGlyphs=100 has SVG glyph definitions only for its last 5 glyphs. The
last SVG glyph definition has its own SVG document, but the rest share an SVG document (say, to take
advantage of shared graphical elements). There will be two index entries, the first with glyph ID range [95, 98]
and the second with glyph ID range [99, 99]. The SVG document referenced by the first index entry will
contain elements with id “glyph95”, “glyph96”, “glyph97”, and “glyph98”. The SVG document referenced by the
second index entry will contain an element with id “glyph99”.

5.5.4 Glyph Semantics and Metrics

The glyph descriptions in the SVG documents are considered to be the SVG versions of the glyphs with the
corresponding IDs in the CFF or glyf table. They are designed on an em specified in the head table’s
unitsPerEm field, as with CFF and TrueType glyphs. SVG glyph definitions will be in SVG’s y-down coordinate
system, upright, with the default baseline at y = 0. For example, the top of a capital letter may be at y = -800,
and the bottom at y = 0 (see subclause 5.5.6). It is the font engine’s responsibility to translate this to the
coordinate system of the rest of the OT tables and the coordinate system of the graphics environment.

Glyph semantics are expressed in the usual way (cmap table followed by GSUB). Glyph metrics such as
horizontal and vertical advances are specified in the OFF metrics tables (hmtx and vmtx), and glyph
positioning adjustments by the GPOS or kern table.

As with CFF glyphs, no explicit glyph bounding boxes are recorded. The “ink” bounding box of the rendered
SVG glyph should be used if a bounding box is desired; this box may be different for animated vs static
renderings of the glyph.

Note that the glyph advances are static and not able to be made variable or animated.

5.5.5 Glyph Rendering

The SVG glyph descriptions may be rendered statically or with animation enabled. Note that static rendering is
done by not running any animations in the SVG document; this is different from running the document with
animations running but at a snapshot time of zero seconds. Some clients may choose not to support – or may
not be able to support – animation. Clients that support animation may still request, in certain cases, that the
glyph be rendered statically, e.g. for printing to paper.

The font engine shall apply the following user agent style sheet (or implement its functional equivalent) to SVG
documents processed from the SVG table:
@namespace svg url(http://www.w3.org/2000/svg);
svg|text, svg|foreignObject {
 display: none !important;
}

:root {
 fill: context-fill;
 fill-opacity: context-fill-opacity;
 stroke: context-stroke;
 stroke-opacity: context-stroke-opacity;
 stroke-width: context-value;
 stroke-dasharray: context-value;
 stroke-dashoffset: context-value;
}

92

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

92 ©	ISO/IEC	2019	–	All	rights	reserved
	

In addition, if the font engine supports color palettes, and color palette values are provided, the user agent
style sheet must include CSS Custom Property declarations for the color variables. This is done by including
‘numPaletteEntries’ (defined in the CPAL table) declarations in the :root rule of the form:
 --color<num>: <color>;
where <num> is each of the values from zero to numPaletteEntries–1, inclusive, expressed as a non-zero-
padded decimal number; and <color> is the <num> index within the desired Color Palette, expressed in SVG’s
<color> format. An example entry in the style sheet is:
 --color0: rgba(255,0,0, 0.5);
and the corresponding usage in an SVG glyph description could be something like:
 <path fill="var(--color0, yellow)" d="..."/>
where 'yellow' defines a default color to be used when color0 variable is not defined.
Note that SVG’s context-fill value may be used in the glyph descriptions to denote the current text color.

The font engine must support at least version 1.1 of the SVG specification (exceptions are noted in the section
on glyph rendering restrictions). The version attribute in the <svg> element is present in the SVG 1.1 and 1.2
specifications, but not in SVG 2. Thus, the SVG document may not always have a version field specified.
Given this approach to versioning in SVG, and given that not all implementations may support all of SVG
(whether 1.1 or 2), font designers should restrict their SVG, as a practical matter, to whatever is supported by
SVG-in-OT implementations they care about. Targeting the capabilities of SVG 1.1 would be the approach
most likely to result in cross-implementation consistency.
The following new values for any CSS property that takes an SVG paint value shall be supported:
 context-fill
 context-stroke

These values mean the same paint as the computed value of the 'fill' or 'stroke' property, respectively, of the
context element, which is the element in the outer document that is using the SVG glyphs. If the referenced
paint is a gradient or a pattern, then the coordinate space to use and the object used for any
'objectBoundingBox'-relative values are the same as those of the context element.

The following new values for the 'fill-opacity', 'stroke-opacity' and 'opacity' CSS properties shall be supported:
 context-fill-opacity
 context-stroke-opacity
These values mean the same as the computed value of the 'fill-opacity' or 'stroke-opacity' property,
respectively, of the context element.
The following new value for the 'stroke-width', 'stroke-dasharray' and 'stroke-dashoffset' CSS properties shall
be supported:
 context-value
This value means the same as the computed value of the corresponding property of the context element, but
scaled so that it has the same size when used in the coordinate system of the root <svg> element of the SVG
glyph document. For example, if the context element has 'stroke-width' set to 2px and the SVG glyph
document is rendered with a coordinate system such that 2048 user units corresponds to 16px in the context
element's coordinate space, then using context-value for 'stroke-width' in the glyph definition will have the
same visual effect as using 256 user units.

Font engines that support SVG glyphs are strongly suggested to implement the context-fill, context-fill-opacity,
context-stroke, context-stroke-opacity and context-value property values according to the definitions found in
SVG 2 [19], as these definitions may be more precise than those described in this document above.

Security considerations and other glyph rendering restrictions

Processing of SVG glyph documents shall be done with script execution, external references and interactivity
disabled. If the font engine is rendering SVG glyphs with animation, then declarative animations shall be
enabled; if it is rendering glyphs statically, then declarative animations shall be disabled.
These requirements correspond to the "secure animated" and "secure static" processing modes that the SVG
Integration document [17] requires font documents to be run in.

93

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 93
	

In addition, any SVG <text> and <foreignObject> elements within a glyph description must be ignored and not
rendered (see the corresponding rules in the User Agent style sheet above).

Text Layout Process

An implementation that supports the SVG table first does layout in the usual manner, using the cmap, GSUB,
hmtx, and other OFF layout tables. This results in a list of glyph IDs arranged at particular x,y positions on the
surface (along with the appropriate scale/rotation matrices). At this point, for each such glyph ID, if an SVG
glyph description is available for it, it is rendered (in static or animated mode, as appropriate and if supported
by the engine); otherwise, the CFF or TT glyph description must be rendered. Since the glyph advances are
the same in either case, and not allowed to be animated, switching between SVG and CFF/TT rendering, or
between animated and static SVG, should not require re-layout of lines (unless line layout depends on ink
bounding boxes).

5.5.6 SVG glyph examples

SVG glyph descriptions must be defined in SVG’s own y-down coordinate system, upright, with the default
baseline at y=0. It is always the font engine’s responsibility to translate this into the coordinate system of the
rest of the OFF font rendering environment.

The SVG code in these examples is presented exactly as could be used in the SVG documents of an OFF
font with SVG glyph outlines. The code is not optimized for brevity.

Example: Glyph specified directly in expected position

<svg id="glyph7" version="1.1" xmlns="http://www.w3.org/2000/svg">
 <defs>
 <linearGradient id="grad" x1="0%" y1="0%" x2="0%" y2="100%">
 <stop offset="0%" stop-color="darkblue" stop-opacity="1" />
 <stop offset="100%" stop-color="#00aab3" stop-opacity="1" />
 </linearGradient>
 </defs>
 <rect x="100" y="-430" width="200" height="430" fill="url(#grad)" />
 <rect x="100" y="-635" width="200" height="135" fill="darkblue" />
</svg>

In this example, the letter “i” is drawn directly in the +x –y quadrant of the SVG coordinate system, upright,
with its baseline on the x axis, exactly where the OFF font engine expects it to be.

Example: Glyph shifted up with viewBox

<svg id="glyph7" version="1.1" xmlns="http://www.w3.org/2000/svg" viewBox="0 1000
1000 1000">
 <defs>
 <linearGradient id="grad" x1="0%" y1="0%" x2="0%" y2="100%">

94

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

94 ©	ISO/IEC	2019	–	All	rights	reserved
	

 <stop offset="0%" stop-color="darkblue" stop-opacity="1" />
 <stop offset="100%" stop-color="#00aab3" stop-opacity="1" />
 </linearGradient>
 </defs>
 <rect x="100" y="570" width="200" height="430" fill="url(#grad)" />
 <rect x="100" y="365" width="200" height="135" fill="darkblue" />
</svg>

In this example, the glyph description of the letter “i” is first specified in the +x +y quadrant of the SVG
coordinate system, upright, with its baseline along y=1000 in the SVG coordinate system. (This may be the
natural way SVG illustrating software positioned it.) A viewBox in the <svg> element is then used to shift it
upwards by 1000 units, to end up in the position where the OFF font engine expects it to be.

The diagram is the same as in the above example.

Example: Common elements shared across glyphs in same SVG doc

<svg version="1.1" xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink">
 <defs>
 <linearGradient id="grad" x1="0%" y1="0%" x2="0%" y2="100%">
 <stop offset="0%" stop-color="darkblue" stop-opacity="1" />
 <stop offset="100%" stop-color="#00aab3" stop-opacity="1" />
 </linearGradient>
 <g id="i-base">
 <rect x="100" y="570" width="200" height="430" fill="url(#grad)" />
 </g>
 </defs>
 <g id="glyph2" transform="translate(0,-1000)">
 <use xlink:href="#i-base" />
 </g>
 <g id="glyph13" transform="translate(0,-1000)">
 <use xlink:href="#i-base" />
 <rect x="100" y="365" width="200" height="135" fill="darkblue" />
 </g>
 <g id="glyph14" transform="translate(0,-1000)">
 <use xlink:href="#i-base" />
 <polygon fill="darkblue" points="120,500 280,500 435,342 208,342 "/>
 </g>
</svg>

In this example, the base of the letter 'i' is shared across three glyphs, and has identifier “i-base” in the <defs>
section. It represents the dotless 'i' in glyph ID 2. Glyph ID 13 adds a dot on top. Glyph ID 14 adds an acute
accent on top. The diagram above shows glyph IDs 2, 13, and 14, from left to right.

95

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 95
	

Note that glyph IDs 3–12 can be defined in one or more separate SVG docs, and still allow glyph IDs 2, 13,
and 14 to share the same SVG doc. For example:

SVG Document Index: numEntries=5
…
entries[2]: { startGlyphID = 2, endGlyphID = 2, svgDocOffset/Length point to svgDoc0 }
entries[3]: { startGlyphID = 3, endGlyphID = 12, svgDocOffset/Length point to svgDoc1 }
entries[4]: { startGlyphID = 13, endGlyphID = 14, svgDocOffset/Length point to svgDoc0 }

Example: Specifying current text color in glyphs

<svg id="glyph7" version="1.1" xmlns="http://www.w3.org/2000/svg" viewBox="0 1000
1000 1000">
 <defs>
 <linearGradient id="grad" x1="0%" y1="0%" x2="0%" y2="100%">
 <stop offset="0%" stop-color="darkblue" stop-opacity="1" />
 <stop offset="100%" stop-color="#00aab3" stop-opacity="1" />
 </linearGradient>
 </defs>
 <rect x="100" y="570" width="200" height="430" fill="url(#grad)" />
 <rect x="100" y="365" width="200" height="135" fill="context-fill" />
</svg>

Here the “darkblue” color of the dot above the “i” in the “Glyph shifted up with viewBox” example is replaced
by “context-fill”. The diagram above shows the glyph when the fill color of the context element (i.e. the text
color) is set to black (left) and red (right).

Example: Specifying color palette variables in glyphs

96

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

96 ©	ISO/IEC	2019	–	All	rights	reserved
	

<svg id="glyph7" version="1.1" xmlns="http://www.w3.org/2000/svg" viewBox="0 1000
1000 1000">
 <defs>
 <linearGradient id="grad" x1="0%" y1="0%" x2="0%" y2="100%">
 <stop offset="0%" stop-color="var(--color0,darkblue)" stop-opacity="1" />
 <stop offset="100%" stop-color="var(--color1,#00aab3)" stop-opacity="1" />
 </linearGradient>
 </defs>
 <rect x="100" y="570" width="200" height="430" fill="url(#grad)" />
 <rect x="100" y="365" width="200" height="135" fill="darkblue" />
</svg>

This example is the duplicate of the “Glyph shifted up with viewBox” example, but with the stop colors of the
linear gradient controlled by color variables --color0 and --color1, which are provided by the font engine to the
SVG renderer via a user agent style sheet (or its functional equivalent).

The color palettes (CPAL) table in this font specifies two palettes, each with two color entries. Here is a
description of the CPAL palettes, with alpha assumed to be 0xFF for all colors:

palette[0]: { darkblue, #00aab3 }

palette[1]: { purple, orchid }

The first item in the diagram above shows the first color palette applied to the glyph, which is done by the font
engine passing the following user agent style sheet to the SVG renderer:

:root {
 --color0: darkblue;
 --color1: #00aab3;
}

The second item in the diagram shows the second color palette applied to the glyph, using the style sheet:

:root {
 --color0: purple;
 --color1: orchid;
}

Note that the dot is still dark blue, since this is hard coded in the glyph description and not controlled by a
color variable.

The last item in the diagram shows the following user-selected colors applied to the glyph via the color
variables:

:root {
 --color0: red;
 --color1: orange;
}

If --color0 and --color1 aren’t defined by the font engine, however, then the default values provided in the stop-
colors (darkblue and #00aab3, respectively) are used. Note that these are in fact the same colors as in the
first (default) CPAL color palette, which means the glyph will render as in the first item in the diagram. This
way, the glyph renders with the same colors by default, whether or not the font engine supports the CPAL.

97

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 97
	

Example: Embedding a PNG in an SVG glyph

<svg id="glyph2" version="1.1" xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink" viewBox="0 1000 1000 1000">
 <image x="100" y="365" width="200" height="635"
 xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAMgAAAJ7CAYAAACmmd5sAAAFZklEQVR42u3XsQ3D
MBAEQUpw9ypahrMPGGwiwcFMCQQW9zzWuu4FbJ2eAAQCAgGBgEBAICAQEAgIBAQC
CAQEAgIBgYBAQCAgEBAICAQEAggEBAICAYGAQEAgIBAQCAgEEAgIBAQCAgGBgEBA
ICAQEAgIBBAICAQEAgIBgYBAQCAgEBAIIBAQCAgEBAICAYGAQEAgIBAQCCAQEAgI
BAQCAgGBgEBAICAQQCAgEBAICAQEAgIBgYBAQCAgEEAgIBAQCAgEBAICAYGAQEAg
IBBPAAIBgYBAQCAgEBAICAQEAgIBBAICAYGAQEAgIBAQCAgEBAICAQQCAgGBgEBA
ICAQEAgIBAQCCAQEAgIBgYBAQCAgEBAICAQEAggEBAICAYGAQEAgIBAQCAgEAAAA
AA
AAAA4DHHWtftGWDv80sE2Ds9AQgEBAL+IPBuIAoBJxYIBAQCPukgEHBigUBAIOAP
AlgQiAtiQsCCgEDAJx0sCFgQsCAgEHBigQUB5oKYELAgIBDwSQcLAhYELAgIBJxY
YEEACwItEIWAEwucWGBBwIKABQGBgBMLLAhYEMCCQFwQEwJOLHBigQUBCwICAScW
WBCwIGBBAIFAPbHcWGBBwCcdLAgIBJxYYEHAgoAFAYEA88RyY4EFAZ90sCAgEBAI
+IOAQMCJBQIBBALxD+ITAj7p4MQCgYBAwB8EBAJOLBAICATwB4EYiELAiQUCAYGA
TzoIBJxYIBAQCPiDABYE4oKYELAgIBDwSQcLAhYELAgIBJxYYEGAuSAmBCwICAR8
0sGCgAUBCwICAScWWBDAgkALRCHgxAInFlgQsCBgQUAg4MQCCwIWBLAgEBfEhIAT
C5xYYEHAgoBAwIkFFgQsCFgQQCBQTyw3FlgQ8EkHCwICAScWWBCwIGBBQCDAPLHc
WGBBwCcdLAgIBAQC/iAgEHBigUAAgUD8g/iEgE86OLFAICAQ8AcBgYATCwQCAgH8
QSAGohBwYoFAQCDgkw4CAScWCAQEAv4ggAWBuCAmBCwICAR80sGCgAUBCwICAScW
WBBgLogJAQsCAgGfdLAgYEHAgoBAwIkFFgSwINACUQg4scCJBRYELAhYEBAIOLHA
goAFASwIxAUxIeDEAicWWBCwICAQcGKBBQELAhYEEAjUE8uNBRYEfNLBgoBAwIkF
FgQsCFgQEAgwTyw3FlgQ8EkHCwICAYGAPwgIBJxYIBBAIBD/ID4h4JMOTiwQCAgE
/EFAIODEAoGAQAB/EIiBKAScWCAQEAj4pINAwIkFAgGBgD8IYEEgLogJAQsCAgGf
dLAgYEHAgoBAwIkFFgSYC2JCwIKAQMAnHSwIWBCwICAQcGKBBQEsCLRAFAJOLHBi
gQUBCwIWBAQCTiywIGBBAAsCcUFMCDixwIkFFgQsCAgEnFhgQcCCgAUBBAL1xHJj
gQUBn3SwICAQcGKBBQELAhYEBALME8uNBRYEfNLBgoBAQCDgDwICAScWCAQQCMQ/
iE8I+KSDEwsEAgIBfxAQCDixQCAgEMAfBGIgCgEnFggEBAI+6SAQcGKBQEAg4A8C
WBCIC2JCwIKAQMAnHSwIWBCwICAQcGKBBQHmgpgQsCAgEPBJBwsCFgQsCAgEnFhg
QQALAi0QhYATC5xYYEHAgoAFAYGAEwssCFgQwIJAXBATAk4scGKBBQELAgIBJxZY
ELAgYEEAgUA9sdxYYEHAJx0sCAgEnFhgQcCCgAUBgQDzxHJjgQUBn3SwICAQEAj4
g4BAwIkFAgEEAvEP4hMCPungxAKBgEDgH3wBrUwJtCBGuc0AAAAASUVORK5CYII=
 "/>
</svg>

In this example, the PNG is embedded using SVG’s <image> element. The use case for this is bitmap
lettering artwork that needs to be packaged into an OT-SVG font.

98

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

98 ©	ISO/IEC	2019	–	All	rights	reserved
	

5.6 Tables related to bitmap glyphs

5.6.1 List of bitmap glyph tables

OFF fonts may also contain bitmaps of glyphs, in addition to outlines. Hand-tuned bitmaps are especially
useful in OFF fonts for representing complex glyphs at very small sizes. If a bitmap for a particular size is
provided in a font, it will be used by the system instead of the outline when rendering the glyph.
NOTE Adobe Type Manager does not currently support hinted bitmaps in OFF fonts.

Tag Name

EBDT Embedded bitmap data

EBLC Embedded bitmap location data

EBSC Embedded bitmap scaling data

CBDT Color bitmap data

CBLC Color bitmap location data

5.6.2 EBDT – Embedded bitmap data table

The 'EBDT' table is used to embed monochrome or grayscale bitmap glyph data. It is used together with
the 'EBLC' table, which provides embedded bitmap locators, and the 'EBSC' table, which provides embedded
bitmap scaling information.

5.6.2.1 OFF embedded bitmaps are also called 'sbits' (for “scaler bitmaps”). A set of bitmaps for a
face at a given size is called a strike.Table structure

The 'EBLC' table identifies the sizes and glyph ranges of the sbits, and keeps offsets to glyph bitmap data in
IndexSubTables. The 'EBDT' table then stores the glyph bitmap data, in a number of different possible formats.
Glyph metrics information may be stored in either the 'EBLC' or 'EBDT' table, depending upon the
IndexSubTable and glyph bitmap data formats. The 'EBSC' table identifies sizes that will be handled by
scaling up or scaling down other sbit sizes.

The 'EBDT' table begins with a header containing simply the table version number.

Type Name Description

uint16 majorVersion Major version of the EBDT table, = 2.

uint16 minorVersion Minor version of the EBDT table, = 0.

The rest of the 'EBDT' table is a collection of bitmap data. The data can be in a number of possible formats,
indicated by information in the 'EBLC' table. Some of the formats contain metric information plus image data,
and other formats contain only the image data. Long word alignment is not required for these sub tables; byte
alignment is sufficient.

There are also two different formats for glyph metrics: big glyph metrics and small glyph metrics. Big glyph
metrics define metrics information for both horizontal and vertical layouts. This is important in fonts (such as
Kanji) where both types of layout may be used. Small glyph metrics define metrics information for one layout
direction only. Which direction applies, horizontal or vertical, is determined by the 'flags' field in the BitmapSize
table within the 'EBLC' table.

99

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 99
	

BigGlyphMetrics
Type Name

uint8 height

uint8 width

int8 horiBearingX

int8 horiBearingY

uint8 horiAdvance

int8 vertBearingX

int8 vertBearingY

uint8 vertAdvance

SmallGlyphMetrics

Type Name

uint8 height

uint8 width

int8 bearingX

int8 bearingY

uint8 advance

5.6.2.2 Glyph bitmap data formats

The nine different formats currently defined for glyph bitmap data are listed and described below. Different
formats are better for different purposes.

In all formats, if the bitDepth is greater than 1, all of a pixel's bits are stored consecutively in memory, and all
of a row's pixels are stored consecutively.
NOTE Each of these formats can contain black/white or grayscale bitmaps depending on the setting of the bitDepth field

in the 'EBLC' table. For performance reasons, we recommend using a byte-aligned format for embedded bitmaps
with bitDepth of 8.

5.6.2.2.1 Format 1: small metrics, byte-aligned data

Type Name Description

SmallGlyphMetrics smallMetrics Metrics information for the glyph

VARIABLE imageData Byte-aligned bitmap data

Glyph bitmap format 1 consists of small metrics records (either horizontal or vertical depending on the flags
field of the BitmapSize table within the 'EBLC' table) followed by byte aligned bitmap data. The bitmap data
begins with the most significant bit of the first byte corresponding to the top-left pixel of the bounding box,
proceeding through succeeding bits moving left to right. The data for each row is padded to a byte boundary,

100

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

100 ©	ISO/IEC	2019	–	All	rights	reserved
	

so the next row begins with the most significant bit of a new byte. 1 bits correspond to black, and 0 bits to
white.

5.6.2.2.2 Format 2: small metrics, bit-aligned data

Type Name Description

SmallGlyphMetrics smallMetrics Metrics information for the glyph

VARIABLE imageData Bit-aligned bitmap data

Glyph bitmap format 2 is the same as format 1 except that the bitmap data is bit aligned. This means that the
data for a new row will begin with the bit immediately following the last bit of the previous row. The start of
each glyph must be byte aligned, so the last row of a glyph may require padding. This format takes a little
more time to parse, but saves file space compared to format 1.

5.6.2.2.3 Format 3: (obsolete)

This format is not supported in OFF.

5.6.2.2.4 Format 4: metrics in EBLC, compressed data
NOTE Glyph bitmap format 4 is a compressed format used by Macintosh platform in some of the East Asian fonts.

5.6.2.2.5 Format 5: metrics in EBLC, bit-aligned image data only

Type Name Description

VARIABLE imageData Bit-aligned bitmap data

Glyph bitmap format 5 is similar to format 2 except that no metrics information is included, just the bit aligned
data. This format is for use with 'EBLC' IndexSubTable format 2 or format 5, which will contain the metrics
information for all glyphs. It works well for Kanji fonts.

The rasterizer recalculates sbit metrics for Format 5 bitmap data, allowing Windows to report correct ABC
widths, even if the bitmaps have white space on either side of the bitmap image. This allows fonts to store
monospaced bitmap glyphs in the efficient Format 5 without breaking Windows GetABCWidths call.

5.6.2.2.6 Format 6: big metrics, byte-aligned data

Type Name Description

BigGlyphMetrics bigMetrics Metrics information for the glyph

VARIABLE imageData Byte-aligned bitmap data

Glyph bitmap format 6 is the same as format 1 except that is uses big glyph metrics instead of small.

5.6.2.2.7 Format7: big metrics, bit-aligned data

Type Name Description

BigGlyphMetrics bigMetrics Metrics information for the glyph

VARIABLE imageData Bit-aligned bitmap data

Glyph bitmap format 7 is the same as format 2 except that is uses big glyph metrics instead of small.

101

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 101
	

EbdtComponent Record
The EbdtComponent record is used in glyph bitmap data formats 8 and 9.

Type Name Description

uint16 glyphID Component glyph ID

int8 xOffset Position of component left

int8 yOffset Position of component top

The EbdtComponent record contains the glyph ID of the component, which can be used to look up the
location of component glyph data in the 'EBLC' table, as well as xOffset and yOffset values which specify
where to position the top-left corner of the component in the composite. Nested composites (a composite of
composites) are allowed, and the number of nesting levels is determined by implementation stack space.

5.6.2.2.8 Format 8: small metrics, component data

Type Name Description

SmallGlyphMetrics smallMetrics Metrics information for the glyph

uint8 pad Pad to short boundary

uint16 numComponents Number of components

EbdtComponent components[numComponents] Array of EbdtComponent records

5.6.2.2.9 Format 9: big metrics, component data

Type Name Description

BigGlyphMetrics bigMetrics Metrics information for the glyph

uint16 numComponents Number of components

EbdtComponent components[numComponents] Array of EbdtComponent records

Glyph bitmap formats 8 and 9 are used for composite bitmaps. For accented characters and other composite
glyphs it may be more efficient to store a copy of each component separately, and then use a composite
description to construct the finished glyph. The composite formats allow for any number of components, and
allow the components to be positioned anywhere in the finished glyph. Format 8 uses small metrics, and
format 9 uses big metrics.

5.6.3 EBLC – Embedded bitmap location table

The EBLC provides embedded bitmap locators. It is used together with the EDBT table, which provides
embedded, monochrome or grayscale bitmap glyph data, and the EBSC table, which provided embedded
bitmap scaling information.

OFF embedded bitmaps are also called 'sbits' (for “scaler bitmaps”). A set of bitmaps for a face at a given size
is called a strike.

5.6.3.1 Table structure and data types

The 'EBLC' table identifies the sizes and glyph ranges of the sbits, and keeps offsets to glyph bitmap data in
IndexSubTables. The 'EBDT' table then stores the glyph bitmap data, also in a number of different possible

102

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

102 ©	ISO/IEC	2019	–	All	rights	reserved
	

formats. Glyph metrics information may be stored in either the 'EBLC' or 'EBDT' table, depending upon the
IndexSubTable and glyph bitmap formats. The 'EBSC' table identifies sizes that will be handled by scaling up
or scaling down other sbit sizes.

The 'EBLC' table begins with a header containing the table version and number of strikes. An OFF font may
have one or more strikes embedded in the 'EBDT' table.

EblcHeader

Type Name Description

uint16 majorVersion Major version of the EBLC table, = 2.

uint16 minorVersion Minor version of the EBLC table, = 0.

uint32 numSizes Number of BitmapSize tables.

The EblcHeader is followed immediately by the BitmapSize table array(s). The numSizes field in the
EblcHeader indicates the number of BitmapSize tables in the array. Each strike is defined by one BitmapSize
table.

BitmapSize table

Type Name Description

Offset32 indexSubTableArrayOffset Offset to IndexSubtableArray, from beginning of EBLC.

uint32 indexTablesSize Number of bytes in corresponding index subtables and
array.

uint32 numberOfIndexSubTables There is an index subtable for each range or format
change.

uint32 colorRef Not used; set to 0.

SbitLineMetrics hori Line metrics for text rendered horizontally.

SbitLineMetrics vert Line metrics for text rendered vertically.

uint16 startGlyphIndex Lowest glyph index for this size.

uint16 endGlyphIndex Highest glyph index for this size.

uint8 ppemX Horizontal pixels per em.

uint8 ppemY Vertical pixels per em.

uint8 bitDepth The following bitDepth values are supported, as
described below: 1, 2, 4, and 8.

int8 flags Vertical or horizontal (see Bitmap Flags)

The indexSubTableArrayOffset is the offset from the beginning of the 'EBLC' table to the IndexSubTableArray.
Each strike has one of these arrays to support various formats and discontiguous ranges of bitmaps. The
indexTablesSize is the total number of bytes in the IndexSubTableArray and the associated IndexSubTables.
The numberOfIndexSubTables is a count of the IndexSubTables for this strike.

103

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 103
	

5.6.3.2 Description of table entries

The horizontal and vertical line metrics contain the ascender, descender, linegap, and advance information for
the strike. The line metrics format is described in the following table:

SbitLineMetrics

Type Name

int8 ascender

int8 descender

uint8 widthMax

int8 caretSlopeNumerator

int8 caretSlopeDenominator

int8 caretOffset

int8 minOriginSB

int8 minAdvanceSB

int8 maxBeforeBL

int8 minAfterBL

int8 pad1

int8 pad2

The caret slope determines the angle at which the caret is drawn, and the offset is the number of pixels (+ or -)
to move the caret. This is a signed char since we are dealing with integer metrics. The minOriginSB,
minAdvanceSB, maxBeforeBL, and minAfterBL are described in the diagrams below. The main need for these
numbers is for scalers that may need to pre-allocate memory and/or need more metric information to position
glyphs. All of the line metrics are one byte in length. The line metrics are not used directly by the rasterizer,
but are available to clients who want to parse the 'EBLC' table.

The startGlyphIndex and endGlyphIndex describe the minimum and maximum glyph IDs in the strike, but a
strike does not necessarily contain bitmaps for all glyph IDs in this range. The IndexSubTables determine
which glyphs are actually present in the 'EBDT' table.

The ppemX and ppemY fields describe the size of the strike in pixels per Em. The ppem measurement is
equivalent to point size on a 72 dots per inch device. Typically, ppemX will be equal to ppemY for devices with
'square pixels'. To accommodate devices with rectangular pixels, and to allow for bitmaps with other aspect
ratios, ppemX and ppemY may differ.

The bitDepth field is used to specify the number of levels of gray used in the embedded bitmaps. The
Windows rasterizer v.1.7 or greater support the following values.

Bit Depth

The bitDepth field of the BitmapSize table is used to specify the number of levels of gray used in the
embedded bitmaps. The the following values are supported.

Value Description

1 black/white

2 4 levels of gray

104

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

104 ©	ISO/IEC	2019	–	All	rights	reserved
	

4 16 levels of gray

8 256 levels of gray

The 'flags' byte contains two bits to indicate the direction of small glyph metrics: horizontal or vertical. The
remaining bits are reserved.

Bitmap Flags

Mask Name Description

0x01 HORIZONTAL_METRICS Horizontal

0x02 VERTICAL_METRICS Vertical

0xFC Reserved Reserved for future use – set to 0.

The colorRef and bitDepth fields are reserved for future enhancements. For monochrome bitmaps they should
have the values colorRef=0 and bitDepth=1.

Figure 5.1 – Horizontal text

Figure 5.2 – Vertical text

105

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 105
	

Associated with the image data for every glyph in a strike is a set of glyph metrics. These glyph metrics
describe bounding box height and width, as well as side bearing and advance width information. The glyph
metrics can be found in one of two places. For ranges of glyphs (not necessarily the whole strike) whose
metrics may be different for each glyph, the glyph metrics are stored along with the glyph image data in the
'EBDT' table. Details of how this is done is described in 'EBDT'. For ranges of glyphs whose metrics are
identical for every glyph, we save significant space by storing a single copy of the glyph metrics in the
IndexSubTable in the 'EBLC'.

There are also two different formats for glyph metrics: big glyph metrics and small glyph metrics. Big glyph
metrics define metrics information for both horizontal and vertical layouts. This is important in fonts (such as
Kanji) where both types of layout may be used. Small glyph metrics define metrics information for one layout
direction only. Which direction applies, horizontal or vertical, is determined by the 'flags' field in the BitmapSize
table.

BigGlyphMetrics

Type Name

uint8 height

uint8 width

int8 horiBearingX

int8 horiBearingY

uint8 horiAdvance

int8 vertBearingX

int8 vertBearingY

uint8 vertAdvance

SmallGlyphMetrics

Type Name

uint8 height

uint8 width

int8 bearingX

int8 bearingY

uint8 advance

The following diagram illustrates the meaning of the glyph metrics.

106

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

106 ©	ISO/IEC	2019	–	All	rights	reserved
	

Figure 5.3 – Glyph metrics

The BitmapSize table for each strike contains the offset to an array of IndexSubTableArray elements. Each
element describes a glyph ID range and an offset to the IndexSubTable for that range. This allows a strike to
contain multiple glyph ID ranges and to be represented in multiple index formats if desirable.

IndexSubTableArray

Type Name Description

uint16 firstGlyphIndex First glyph ID of this range

uint16 lastGlyphIndex Last glyph ID of this range (inclusive)

Offset32 additionalOffsetToIndexSubtable Add to indexSubTableArrayOffset to
get offset from beginning of 'EBLC'

After determining the strike, the rasterizer searches this array for the range containing the given glyph ID.
When the range is found, the additionalOffsetToIndexSubtable is added to the indexSubTableArrayOffset to
get the offset of the IndexSubTable in the 'EBLC'.

The first IndexSubTableArray is located after the last bitmapSizeSubTable entry. Then the IndexSubTables for
the strike follow. Another IndexSubTableArray (if more than one strike) and its IndexSubTables are next. The
'EBLC' continues with an array and IndexSubTables for each strike.

We now have the offset to the IndexSubTable. All IndexSubTable formats begin with an IndexSubHeader
which identifies the IndexSubTable format, the format of the 'EBDT' image data, and the offset from the
beginning of the 'EBDT' table to the beginning of the image data for this range.

IndexSubHeader

Type Name Description

uint16 indexFormat Format of this IndexSubTable

uint16 imageFormat Format of 'EBDT' image data

Offset32 imageDataOffset Offset to image data in 'EBDT' table

IndexSubTables

There are currently five different formats used for the IndexSubTable, depending upon the size and type of
bitmap data in the glyph ID range.

107

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 107
	

The choice of which IndexSubTable format to use is up to the font manufacturer, but should be made with the
aim of minimizing the size of the font file. Ranges of glyphs with variable metrics - that is, where glyphs may
differ from each other in bounding box height, width, side bearings or advance - must use format 1, 3 or 4.
Ranges of glyphs with constant metrics can save space by using format 2 or 5, which keep a single copy of
the metrics information in the IndexSubTable rather than a copy per glyph in the 'EBDT' table. In some
monospaced fonts it makes sense to store extra white space around some of the glyphs to keep all metrics
identical, thus permitting the use of format 2 or 5.

Structures for each IndexSubTable format are listed below.

IndexSubTable1: variable-metrics glyphs with 4-byte offsets

Type Name Description

IndexSubHeader header Header info.

Offset32 offsetArray[] offsetArray[glyphIndex] + imageDataOffset = glyphData
sizeOfArray = (lastGlyph – firstGlyph + 1) + 1 + 1, pad if needed

IndexSubTable2: all glyphs have identical metrics

Type Name Description

IndexSubHeader header Header info

uint32 imageSize All the glyphs are of the same size.

BigGlyphMetrics bigMetrics All glyphs have the same metrics; glyph data may be
compressed, byte-aligned, or bit-aligned.

IndexSubTable3: variable-metrics glyphs with 2-byte offsets

Type Name Description

IndexSubHeader header Header info.

Offset16 offsetArray[] offsetArray[glyphIndex] + imageDataOffset = glyphData
sizeOfArray = (lastGlyph – firstGlyph + 1) + 1 + 1, pad if needed

IndexSubTable4: variable-metrics glyphs with sparse glyph IDs

Type Name Description

IndexSubHeader header Header info.

uint32 numGlyphs Array length

GlyphIdOffsetPair glyphArray[] One per glyph; sizeOfArray = numGlyphs+1

GlyphIdOffsetPair record:

Type Name Description

uint16 glyphID Glyph ID of glyph present.

Offset16 offset Location in EBDT

108

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

108 ©	ISO/IEC	2019	–	All	rights	reserved
	

IndexSubTable5: constant-metrics glyphs with sparse glyph IDs

Type Name Description

IndexSubHeader header Header info.

uint32 imageSize All glyphs have the same data size

BigGlyphMetrics bigMetrics All glyphs have the same metrics

uint32 numGlyphs Array length

uint16 glyphIDArray[] One per glyph, sorted by glyph ID;
sizeOfArray=numGlyphs

The size of the 'EBDT' image data can be calculated from the IndexSubTable information. For the constant
metrics formats (2 and 5) the image data size is constant, and is given in the imageSize field. For the variable
metrics formats (1, 3, and 4) image data must be stored contiguously and in glyph ID order, so the image data
size may be calculated by subtracting the offset for the current glyph from the offset of the next glyph.
Because of this, it is necessary to store one extra element in the OffsetArray pointing just past the end of the
range's image data. This will allow the correct calculation of the image data size for the last glyph in the range.

Contiguous, or nearly contiguous, ranges of glyph IDs are handled best by formats 1, 2, and 3 which store an
offset for every glyph ID in the range. Very sparse ranges of glyph IDs should use format 4 or 5 which
explicitly call out the glyph IDs represented in the range. A small number of missing glyphs can be efficiently
represented in formats 1 or 3 by having the offset for the missing glyph be followed by the same offset for the
next glyph, thus indicating a data size of zero.

The only difference between formats 1 and 3 is the size of the OffsetArray elements: format 1 uses uint32's
while format 3 uses uint16's. Therefore format 1 can cover a greater range (> 64k bytes) while format 3 saves
more space in the 'EBLC' table. Since the OffsetArray elements are added to the imageDataOffset base
address in the IndexSubHeader, a very large set of glyph bitmap data could be addressed by splitting it into
multiple ranges, each less than 64k bytes in size, allowing the use of the more efficient format 3.

The 'EBLC' table specification requires double word (uint32) alignment for all subtables. This occurs naturally
for IndexSubTable formats 1, 2, and 4, but may not for formats 3 and 5, since they include arrays of type
uint16. When there are an odd number of elements in these arrays it is necessary to add an extra padding
element to maintain proper alignment.

5.6.4 EBSC – Embedded bitmap scaling table

The 'EBSC' table provides a mechanism for describing embedded bitmaps which are created by scaling other
embedded bitmaps. While this is the sort of thing that outline font technologies were invented to avoid, there
are cases (small sizes of Kanji, for example) where scaling a bitmap produces a more legible glyph than scan-
converting an outline. For this reason the 'EBSC' table allows a font to define a bitmap strike as a scaled
version of another strike.

The EBSC table is used together with the EBDT table, which provides embedded monochrome or grayscale
bitmap data, and the EBLC table, which provides embedded bitmap locators.

EBSC Header

The 'EBSC' table begins with a header containing the table version and number of strikes.

Type Name Description

uint16 majorVersion Major version of the EBSC table, = 2.

uint16 minorVersion Minor version of the EBSC table, = 0.

uint32 numSizes

109

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 109
	

The header is followed immediately by the BitmapScale table array. The numSizes field in the header
indicates the number of BitmapScale tables in the array. Each strike is defined by one BitmapScale table.

BitmapScale Table

Type Name Description

SbitLineMetrics hori line metrics

SbitLineMetrics vert line metrics

uint8 ppemX target horizontal pixels per Em

uint8 ppemY target vertical pixels per Em

uint8 substitutePpemX use bitmaps of this size

uint8 substitutePpemY use bitmaps of this size

The line metrics have the same meaning as those in the BitmapSize table, and refer to font wide metrics after
scaling. The ppemX and ppemY values describe the size of the font after scaling. The substitutePpemX and
substitutePpemY values describe the size of a strike that exists as an sbit in the 'EBLC' and 'EBDT', and that
will be scaled up or down to generate the new strike.

Notice that scaling in the x direction is independent of scaling in the y direction, and their scaling values may
differ. A square aspect-ratio strike could be scaled to a non-square aspect ratio. Glyph metrics are scaled by
the same factor as the pixels per Em (in the appropriate direction), and are rounded to the nearest integer
pixel.

5.6.5 CBDT – Color bitmap data table

The 'CBDT' table is used to embed color bitmap glyph data. It is used together with the 'CBLC' table (see
subclause 5.6.6), which provides embedded bitmap locators. The formats of these two tables are backward
compatible with the 'EBDT' (subclause 5.6.2) and 'EBLC' (subclause 5.6.3) tables used for embedded
monochrome and grayscale bitmaps.

5.6.5.1 Table structure

The 'CBDT' table begins with a header containing simply the table version number.

Type Name Description

uint16 majorVersion Major version of the CBDT table, = 3.

uint16 minorVersion Miinor version of the CBDT table, = 0.

The rest of the 'CBDT' table is a collection of bitmap data. The data can be presented in three possible
formats, indicated by information in the 'CBLC' table. Some of the formats contain metric information plus
image data, and other formats contain only the image data. Long word alignment is not required for these
subtables; byte alignment is sufficient.

Uncompressed color bitmaps
The value ‘32’ of the bitDepth field of BitmapSize table struct defined in the CBLC table, to identify color
bitmaps with 8-bit blue/green/red/alpha (“BGRA”) channels per pixel, encoded in that order for each pixel. The
color channels represent pre-multiplied color and shall encode colors in the sRGB colorspace, as specified in
IEC 61966-2-1/Amd 1:2003. For example, the color “full-green with half translucency” is encoded as
\x00\x80\x00\x80, and not \x00\xFF\x00\x80.

110

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

110 ©	ISO/IEC	2019	–	All	rights	reserved
	

All bitmap image data formats defined in the EBDT / EBLC tables are valid for use with the CBDT / CBLC
tables.

Compressed color bitmaps
Images for each individual glyph are stored as straight PNG data, and shall be as specified in ISO/IEC 15948.
Only the following chunks are allowed in such PNG data: IHDR, PLTE, tRNS, sRGB, IDAT, and IEND. If other
chunks are present, the behavior is undefined. The image data shall be in the sRGB colorspace, regardless of
color information that may be present in other chunks in the PNG data. The individual images must have the
same size as expected by the table in the bitmap metrics.

Glyph Metrics
There are also two different formats for glyph metrics: big glyph metrics and small glyph metrics. Big glyph
metrics define metrics information for both horizontal and vertical layouts. This is important in fonts (such as
Kanji) where both types of layout may be used. Small glyph metrics define metrics information for one layout
direction only. Which direction applies, horizontal or vertical, is determined by the 'flags' field in the BitmapSize
tables within the 'CBLC' table.

BigGlyphMetrics
Type Name

uint8 height

uint8 width

int8 horiBearingX

int8 horiBearingY

uint8 horiAdvance

int8 vertBearingX

int8 vertBearingY

uint8 vertAdvance

SmallGlyphMetrics

Type Name

uint8 height

uint8 width

int8 bearingX

int8 bearingY

uint8 advance

5.6.5.2 Glyph bitmap data formats

In addition to nine different formats already defined for glyph bitmap data in the EBDT table, there are three
new formats described below.

111

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 111
	

5.6.5.2.1 Format 17: small metrics, PNG image data

Type Name Description

smallGlyphMetrics glyphMetrics Metrics information for the glyph

uint32 dataLen Length of data in bytes

VARIABLE data Raw PNG data

5.6.5.2.2 Format 18: big metrics, PNG image data

Type Name Description

BigGlyphMetrics glyphMetrics Metrics information for the glyph

uint32 dataLen Length of data in bytes

VARIABLE data Raw PNG data

5.6.5.2.3 Format 19: metricsin CBLC, PNG image data

Type Name Description

uint32 dataLen Length of data in bytes

VARIABLE data Raw PNG data

Scaling behavior
Applications using these glyphs may need to scale them to fit the raster size available for display. How this
scaling takes place is application dependent. It is recommended that where possible the application
downscale using the closest sized bitmap that is larger than the desired end raster size.

5.6.6 CBLC – Color bitmap location table

The 'CBLC' table provides embedded bitmap locators. It is used together with the 'CBDT' table (subclause
5.6.5), which provides embedded, color bitmap glyph data. The formats of these two tables are backward
compatible with the 'EBDT' (subclause 5.6.2) and 'EBLC' (subclause 5.6.3) tables used for embedded
monochrome and grayscale bitmaps.

The 'CBLC' table begins with a header containing the table version and number of strikes. An OFF font may
have one or more strikes embedded in the 'CBDT' table.

CblcHeader

Type Name Description

uint16 majorVersion Major version of the 'CBLC' table, = 3.

uint16 minorVersion Minor version of the 'CBLC' table, = 0.

uint32 numSizes Number of BitmapSize tables

The CblcHeader is followed immediately by the BitmapSize table array(s). The numSizes in the cblcHeader
indicates the number of BitmapSize tables in the array. Each strike is defined by one BitmapSize table.

112

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

112 ©	ISO/IEC	2019	–	All	rights	reserved
	

BitmapSize table

Type Name Description

Offset32 indexSubTableArrayOffset Offset to index subtable from beginning of
CBLC.

uint32 indexTablesSize Number of bytes in corresponding index
subtables and array

uint32 numberOfIndexSubTables There is an index subtable for each range or
format change

uint32 colorRef Not used; set to 0.

SbitLineMetrics hori Line metrics for text rendered horizontally

SbitLineMetrics vert Line metrics for text rendered vertically

uint16 startGlyphIndex Lowest glyph index for this size

uint16 endGlyphIndex Highest glyph index for this size

uint8 ppemX Horizontal pixels per Em

uint8 ppemY Vertical pixels per Em

uint8 bitDepth In addtition to already defined bitDepth values
1, 2, 4, and 8 supported by existing
implementations, the value of 32 is used to
identify color bitmaps with 8 bit per pixel
RGBA channels.

int8 flags Vertical or horizontal (see Bitmap Flags
section of subclause 5.6.3)

The indexSubTableArrayOffset is the offset from the beginning of the 'CBLC' table to the IndexSubTableArray.
Each strike has one of these arrays to support various formats and discontiguous ranges of bitmaps. The
indexTablesSize is the total number of bytes in the IndexSubTableArray and the associated IndexSubTables.
The numberOfIndexSubTables is a count of the IndexSubTables for this strike.

The rest of the CBLC table structure is identical to one already defined for EBLC, see subclause 5.6.3 for
details.

5.6.7 sbix – Standard bitmap graphics table

This table provides access to bitmap data in a standard graphics format, such as PNG, JPEG or TIFF.

The 'sbix' table has functionality somewhat similar to the 'EBDT' table in that both provide bitmap data for
glyph presentation. They are different in three important respects, however. First, whereas the 'EBDT' table
supports only black/white or grayscale bitmaps, the 'sbix' table supports color bitmaps. Secondly, whereas the
'EBDT' table uses formats specific to the OFF specification, the 'sbix' table uses standard bitmap graphics
formats that are in common use. Thirdly, whereas the 'EBDT' table must be used in conjunction with other
tables ('EBLC' and 'EBSC') for processing the bitmap data, the 'sbix' table contains complete data required for
processing bitmaps.

A font that includes an 'sbix' table may also include outline glyph data in a 'glyf' or 'CFF ' table. An 'sbix' table
can provide bitmap data for all glyph IDs, or for only a subset of glyph IDs. A font can also include different
bitmap data for different sizes (“strikes”), and the glyph coverage for one size can be different from that for
another size.

113

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 113
	

5.6.7.1 Header

'sbix' Header:

Type Name Description

uint16 version Table version number – set to 1

uint16 flags Bit 0: Set to 1.
Bit 1: Draw outlines.
Bits 2 to 15: reserved (set to 0).

uint32 numStrikes Number of bitmap strikes.

Offset32 strikeOffsets[numStrikes] Offsets from the beginning of the 'sbix' table to data
for each individual bitmap strike.

For historical reasons, bit 0 of the flags field should always be set to 1.

If bit 1 of the flags field is clear, then the application is instructed to draw only the bitmaps for each glyph
supported in the 'sbix' table. If bit 1 is set, then the application is instructed to draw the bitmap and the outline,
in that order (that is, with the outline overlaid on top of the bitmap). If the 'sbix' table does not contain bitmap
data for a glyph, then the outline is always drawn, regardless of the state of bit 1.

NOTE Application support for bit 1 of the flags field is optional. To ensure the best compatibility, set this bit to 0.

5.6.7.2 Strikes

Each strike includes a header and the glyph bitmap data. The header has the following format:

Type Name Description

uint16 ppem The PPEM size for which this strike was
designed.

uint16 ppi The device pixel density (in PPI) for which this
strike was designed. (E.g., 96 PPI, 192 PPI.)

Offset32 glyphDataOffsets[numGlyphs+1] Offset from the beginning of the strike data
header to bitmap data for an individual glyph ID.

The glyphDataOffset array includes offsets for every glyph ID, plus one extra. The number of glyphs is
determined from the 'maxp' table. The length of the bitmap data for each glyph is variable, and can be
determined from the difference between two consecutive offsets. Hence, the length of data for glyph N is
glyphDataOffset[N+1] – glyphDataOffset[N]. If this is zero, there is no bitmap data for that glyph in this strike.
There is one extra offset in the array in order to provide the length of data for the last glyph.

NOTE The length of data for non-printing glyphs, such as space, should always be zero.

A strike does not need to include data for every glyph, and does not need to include data for the same set of
glyphs as other strikes. If the application is using bitmap data to draw text and there is bitmap data for a glyph
in any strike, then the glyph must be drawn using a bitmap from some strike. If the exact size is not available,
implementations may choose a bitmap based on the closest available larger size, or the closest available
integer-multiple larger size, or on some other basis. The only cases in which a glyph is not drawn using a
bitmap are if the application has not requested that text be drawn using bitmap data or if there is no bitmap
data for the glyph in any strike.

Each strike targets a specific PPEM size and device pixel density (PPI). Thus, a font can contain two strikes
for the same PPEM but different pixel densities, or two strikes for the same pixel density but different PPEMs.
Note that some platforms may not support targeting of strikes for particular pixel densities.

114

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

114 ©	ISO/IEC	2019	–	All	rights	reserved
	

5.6.7.3 Glyph data

The data for each glyph includes a header and the actual, embedded graphic data, with the following format:

Type Name Description

int16 originOffsetX The horizontal (x-axis) offset from the left edge of the graphic to
the glyph’s origin. That is, the x-coordinate of the point on the
baseline at the left edge of the glyph.

int16 originOffsetY The vertical (y-axis) offset from the bottom edge of the graphic
to the glyph’s origin. That is, the y-coordinate of the point on the
baseline at the left edge of the glyph.

Tag graphicType Indicates the format of the embedded graphic data: one of 'jpg ',
'png ' or 'tiff', or the special format 'dupe'.

uint8 data[] The actual embedded graphic data. The total length is inferred
from sequential entries in the glyphDataOffsets array and the
fixed size (8 bytes) of the preceding fields.

The graphicType field indicates the format of the embedded graphic data. Three standard formats are
supported: JPEG, PNG and TIFF; these are indicated using tag values 'jpg ', 'png ' and 'tiff', respectively.

The special graphicType of 'dupe' indicates that the data field contains a two-byte, big-endian glyph ID. The
bitmap data for the indicated glyph should be used for the current glyph.

NOTE Apple’s specification for TrueType fonts allows for a graphicType tag value of 'pdf ' or 'mask'. These values are
not supported in the OFF specification, however.

5.6.7.4 Table dependencies

The glyph count is derived from the 'maxp' table. Advance and side-bearing glyph metrics are stored in
the 'hmtx' table for horizontal layout, and the 'vmtx' table for vertical layout.

5.7 Optional tables

Tag Name

DSIG Digital signature

hdmx Horizontal device metrics

Kern Kerning

LTSH Linear threshold data

PCLT PCL 5 data

VDMX Vertical device metrics

vhea Vertical Metrics header

vmtx Vertical Metrics

COLR Color table

CPAL Color palette table

115

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 115
	

5.7.1 DSIG – Digital signature table

The DSIG table contains the digital signature of the OFF font. Signature formats are widely documented and
rely on a key pair architecture. Software developers, or publishers posting material on the Internet, create
signatures using a private key. Operating systems or applications authenticate the signature using a public
key.

The W3C and major software and operating system developers have specified security standards that
describe signature formats, specify secure collections of web objects, and recommend authentication
architecture. OFF fonts with signatures will support these standards.

OFF fonts offer many security features:

 Operating systems and browsing applications can identify the source and integrity of font files before
using them,

 Font developers can specify embedding restrictions in OFF fonts, and these restrictions cannot be
altered in a font signed by the developer.

The enforcement of signatures is an administrative policy, enabled by the operating system. Windows will
soon require installed software components, including fonts, to be signed. Internet browsers will also give
users and administrators the ability to screen out unsigned objects obtained on-line, including web pages,
fonts, graphics, and software components.

Anyone can obtain identity certificates and encryption keys from a certifying agency, such as Verisign or
GTE's Cybertrust, free or at a very low cost.

The DSIG table is organized as follows. The first portion of the table is the header:

DSIG Header

Type Name Description

uint32 version Version number of the DSIG
table (0x00000001)

uint16 numSignatures Number of signatures in the
table

uint16 flags permission flags
Bit 0: cannot be resigned
Bits 1-7: Reserved (Set to 0)

SignatureRecord signatureRecords[munSignatures] Array of signature records

The version of the DSIG table is expressed as a uint32, beginning at 0. The version of the DSIG table
currently used is version 1 (0x00000001).

Permission bit 0 allows a party signing the font to prevent any other parties from also signing the font (counter-
signatures). If this bit is set to zero (0) the font may have a signature applied over the existing digital
signature(s). A party who wants to ensure that their signature is the last signature can set this bit.

The DSIG header has an array of signature records, which specifying the format and offset of signature
blocks:

116

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

116 ©	ISO/IEC	2019	–	All	rights	reserved
	

SignatureRecord

Type Name Description

uint32 format Format of the signature

uint32 length Length of signature in bytes

Offset32 offset Offset to the signature block from the beginning of the table

Signatures are contained in one or more signature blocks. Signature blocks may have various formats;
currently one format is defined. The format identifier specifies both the format of the signature block, as well
as the hashing algorithm used to create and authenticate the signature:

Signature Block Format 1

Type Name Description

uint16 reserved1 Reserved for future use; set to zero.

uint16 reserved2 Reserved for future use; set to zero.

uint32 signatureLength Length (in bytes) of the PKCS#7 packet in the
signature field.

uint8 signature[signatureLength] PKCS#7 packet

The format identifier specifies both the format of the signature object, as well as the hashing algorithm used to
create and authenticate the signature. Currently only one format is defined. Format 1 supports PKCS#7
signatures with X.509 certificates and counter-signatures, as these signatures have been standardized for use
by the W3C with the participation of numerous software developers.

For more information about PKCS#7 signatures see [10]

For more information about counter-signatures, see [11]

Format 1: For whole fonts, with either TrueType outlines and/or CFF data

PKCS#7 or PKCS#9. The signed content digest is created as follows:

1. If there is an existing DSIG table in the font,

1. Remove DSIG table from font.

2. Remove DSIG table entry from sfnt Table Directory.

3. Adjust table offsets as necessary.

4. Zero out the file checksum in the head table.

5. Add the usFlag (reserved, set at 1 for now) to the stream of bytes

2. Hash the full stream of bytes using a secure one-way hash (such as MD5) to create the content digest.

3. Create the PKCS#7 signature block using the content digest.

4. Create a new DSIG table containing the signature block.

5. Add the DSIG table to the font, adjusting table offsets as necessary.

117

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 117
	

6. Add a DSIG table entry to the sfnt Table Directory.

7. Recalculate the checksum in the head table.

Prior to signing a font file, ensure that all the following attributes are true.

 The magic number in the head table is correct.

 Given the number of tables value in the offset table, the other values in the offset table are consistent.

 The tags of the tables are ordered alphabetically and there are no duplicate tags.

 The offset of each table is a multiple of 4. (That is, tables are long word aligned.)

 The first actual table in the file comes immediately after the directory of tables.

 If the tables are sorted by offset, then for all tables i (where index 0 means the the table with the
smallest offset), Offset[i] + Length[i] <= Offset[i+1] and Offset[i] + Length[i] >= Offset[i+1] - 3. In other
words, the tables do not overlap, and there are at most 3 bytes of padding between tables.

 The pad bytes between tables are all zeros.

 The offset of the last table in the file plus its length is not greater than the size of the file.

 The checksums of all tables are correct.

 The head table's checkSumAdjustment field is correct.

Signatures for TrueType Collections

The DSIG table for a TrueType Collection (TTC) must be the last table in the TTC file. The offset and
checksum to the table is put in the TTCHeader (version 2). Signatures of TTC files are expected to be Format
1 signatures.

The signature of a TTC file applies to the entire file, not to the individual fonts contained within the TTC.
Signing the TTC file ensures that other contents are not added to the TTC.

Individual fonts included in a TrueType collection should not be individually signed as the process of making
the TTC could invalidate the signature on the font.

5.7.2 hdmx – Horizontal device metrics

The hdmx table relates to OFF fonts with TrueType outlines. The Horizontal Device Metrics table stores
integer advance widths scaled to particular pixel sizes. This allows the font manager to build integer width
tables without calling the scaler for each glyph. Typically this table contains only selected screen sizes. This
table is sorted by pixel size. The checksum for this table applies to both subtables listed.
NOTE For non-square pixel grids, the character width (in pixels) will be used to determine which device record to use.

For example, a 12 point character on a device with a resolution of 72x96 would be 12 pixels high and 16 pixels
wide. The hdmx device record for 16 pixel characters would be used.

If bit 4 of the flag field in the 'head' table is not set, then it is assumed that the font scales linearly; in this case
an 'hdmx' table is not necessary and should not be built. If bit 4 of the flag field is set, then one or more glyphs
in the font are assumed to scale nonlinearly. In this case, performance can be improved by including the
'hdmx' table with one or more important DeviceRecord's for important sizes. See Clause 7 "Recommendations
for OFF Fonts" for more detail.

The table begins as follows:

118

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

118 ©	ISO/IEC	2019	–	All	rights	reserved
	

hdmx Header

Type Name Description

uint16 version Table version number (0)

int16 numRecords Number of device records.

int32 sizeDeviceRecord Size of a device record, long aligned.

DeviceRecord records[numRecords] Array of device records.

Each DeviceRecord for format 0 looks like this.

Device Record

Type Name Description

uint8 pixelSize Pixel size for following widths (as ppem).

uint8 maxWidth Maximum width.

uint8 widths[numGlyphs] Array of widths (numGlyphs is from the 'maxp'
table).

Each DeviceRecord is padded with 0's to make it long word aligned.

Each Width value is the width of the particular glyph, in pixels, at the pixels per em (ppem) size listed at the
start of the DeviceRecord.

The ppem sizes are measured along the y axis.

5.7.3 kern – Kerning

The kerning table contains the values that control the inter-character spacing for the glyphs in a font.

Each subtable varies in format, and can contain information for vertical or horizontal text, and can contain
kerning values or minimum values. Kerning values are used to adjust inter-character spacing, and minimum
values are used to limit the amount of adjustment that the scaler applies by the combination of kerning and
tracking. Because the adjustments are additive, the order of the subtables containing kerning values is not
important. However, tables containing minimum values should usually be placed last, so that they can be used
to limit the total effect of other subtables.

The kerning table in the OFF font file has a header, which contains the format number and the number of
subtables present, and the subtables themselves.

Type Field Description

uint16 version Table version number (0)

uint16 nTables Number of subtables in the kerning table.

Kerning subtables will share the same header format. This header is used to identify the format of the
subtable and the kind of information it contains:

Type Field Description

uint16 version Kern subtable version number (0)

uint16 length Length of the subtable, in bytes (including this header).

uint16 coverage What type of information is contained in this table.

119

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 119
	

The coverage field is divided into the following sub-fields, with sizes given in bits:

Sub-field Bits #'s Size Description

horizontal 0 1 1 if table has horizontal data, 0 if vertical.

minimum 1 1 If this bit is set to 1, the table has minimum values. If set to 0, the
table has kerning values.

cross-
stream

2 1 If set to 1, kerning is perpendicular to the flow of the text.
If the text is normally written horizontally, kerning will be done in the
up and down directions. If kerning values are positive, the text will
be kerned upwards; if they are negative, the text will be kerned
downwards.
If the text is normally written vertically, kerning will be done in the
left and right directions. If kerning values are positive, the text will
be kerned to the right; if they are negative, the text will be kerned to
the left.
The value 0x8000 in the kerning data resets the cross-stream
kerning back to 0.

override 3 1 If this bit is set to 1 the value in this table should replace the value
currently being accumulated.

reserved1 4-7 4 Reserved. This should be set to zero.

format 8-15 8 Format of the subtable. Only formats 0 and 2 have been defined.
Formats 1 and 3 through 255 are reserved for future use.

Format 0

Format 0 is the only subtable format supported by Windows.

This subtable is a sorted list of kerning pairs and values. The list is preceded by information which makes it
possible to make an efficient binary search of the list:

Type Field Description

uint16 nPairs This gives the number of kerning pairs in the table.

uint16 searchRange The largest power of two less than or equal to the value of nPairs,
multiplied by the size in bytes of an entry in the table.

uint16 entrySelector This is calculated as log2 of the largest power of two less than or
equal to the value of nPairs. This value indicates how many iterations
of the search loop will have to be made. (For example, in a list of
eight items, there would have to be three iterations of the loop).

uint16 rangeShift The value of nPairs minus the largest power of two less than or equal
to nPairs, and then multiplied by the size in bytes of an entry in the
table.

This is followed by the list of kerning pairs and values. Each has the following format:

Type Field Description

uint16 left The glyph index for the left-hand glyph in the kerning pair.

uint16 right The glyph index for the right-hand glyph in the kerning pair.

FWORD value The kerning value for the above pair, in font design units. If this value
is greater than zero, the characters will be moved apart. If this value
is less than zero, the character will be moved closer together.

120

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

120 ©	ISO/IEC	2019	–	All	rights	reserved
	

The left and right halves of the kerning pair make an unsigned 32-bit number, which is then used to order the
kerning pairs numerically.

A binary search is most efficiently coded if the search range is a power of two. The search range can be
reduced by half by shifting instead of dividing. In general, the number of kerning pairs, nPairs, will not be a
power of two. The value of the search range, searchRange, should be the largest power of two less than or
equal to nPairs. The number of pairs not covered by searchRange (that is, nPairs - searchRange) is the value
rangeShift.

Format 2

This subtable is a two-dimensional array of kerning values. The glyphs are mapped to classes, using a
different mapping for left- and right-hand glyphs. This allows glyphs that have similar right- or left-side shapes
to be handled together. Each similar right- or left-hand shape is said to be single class.

Each row in the kerning array represents one left-hand glyph class, each column represents one right-hand
glyph class, and each cell contains a kerning value. Row and column 0 always represent glyphs that do not
kern and contain all zeros.

The values in the right class table are stored pre-multiplied by the number of bytes in a single kerning value,
and the values in the left class table are stored pre-multiplied by the number of bytes in one row. This
eliminates needing to multiply the row and column values together to determine the location of the kerning
value. The array can be indexed by doing the right- and left-hand class mappings, adding the class values to
the address of the array, and fetching the kerning value to which the new address points.

The header for the simple array has the following format:

Type Field Description

uint16 rowWidth The width, in bytes, of a row in the table.

Offset16 leftClassTable Offset from beginning of this subtable to left-hand class table.

Offset16 rightClassTable Offset from beginning of this subtable to right-hand class table.

Offset16 array Offset from beginning of this subtable to the start of the kerning array.

Each class table has the following header:

Type Field Description

uint16 firstGlyph First glyph in class range.

uint16 nGlyphs Number of glyph in class range.

This header is followed by nGlyphs number of class values, which are in uint16 format. Entries for glyphs that
don't participate in kerning should point to the row or column at position zero.

The array itself is a left by right array of kerning values, which are FWords, where left is the number of left-
hand classes and R is the number of right-hand classes. The array is stored by row.
NOTE This format is the quickest to process since each lookup requires only a few index operations. The table can be

quite large since it will contain the number of cells equal to the product of the number of right-hand classes and
the number of left-hand classes, even though many of these classes do not kern with each other.

5.7.4 LTSH – Linear threshold

The LTSH table relates to OFF fonts containing TrueType outlines. There are noticeable improvements to
fonts on the screen when instructions are carefully applied to the sidebearings. The gain in readability is offset
by the necessity for the OS to grid fit the glyphs in order to find the actual advance width for the glyphs (since
instructions may be moving the sidebearing points). The TrueType outline format already has two

121

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 121
	

mechanisms to side step the speed issues: the 'hdmx' table, where precomputed advance widths may be
saved for selected ppem sizes, and the 'vdmx' table, where precomputed vertical advance widths may be
saved for selected ppem sizes. The 'LTSH' table (Linear ThreSHold) is a second, complementary method.

The LTSH table defines the point at which it is reasonable to assume linearly scaled advance widths on a
glyph-by-glyph basis. This table should not be included unless bit 4 of the "flags" field in the 'head' table is set.
The criteria for linear scaling is:

a) (ppem size is ≥ 50) AND (difference between the rounded linear width and the rounded instructed
width ≤ 2% of the rounded linear width) or

b) Linear width == Instructed width

The LTSH table records the ppem for each glyph at which the scaling becomes linear again, despite
instructions effecting the advance width. It is a requirement that, at and above the recorded threshold size, the
glyph remain linear in its scaling (i.e., not legal to set threshold at 55 ppem if glyph becomes nonlinear again
at 90 ppem). The format for the table is:

Type Name Description

uint16 version Version number (starts at 0).

uint16 numGlyphs Number of glyphs (from "numGlyphs" in 'maxp' table).

uint8 yPels[numGlyphs] The vertical pel height at which the glyph can be
assumed to scale linearly. On a per glyph basis.

NOTE Glyphs which do not have instructions on their sidebearings have yPels = 1; i.e., always scales linearly.

5.7.5 MERG – Merge table

The 'MERG' table enables a font to specify whether antialias filtering of glyphs within a glyph run can be
performed separately for each glyph, or whether certain glyph pairs or sequences should be composed
together – or merged – before antialiasing is performed.

When glyphs are composed together after antialiasing has been performed, that can result in rendering
artifacts in some cases in which glyphs touch or overlap. (This is true of any per-primitive antialiasing.)
Merging glyphs together before antialiasing eliminates those artifacts, but it also adds a significant
performance cost. A font can use the MERG table to indicate specific glyph pairs or sequences for which pre-
antialias merging is required in order to avoid the risk of rendering artifacts, while implicitly declaring that other
glyph pairs or sequences do not require pre-antialias merging.

NOTE 1 Hereafter, “merging” will be used to refer to composing of glyphs together prior to antialias filtering.

NOTE 2 Some implementations may use caching of glyph-rendering results as a means of performance optimization. If
merging of glyph sequences is not required, then the cached renderings may be composed without a need to
render glyphs or the glyph sequence again.

The approach used is to give a positive declaration of cases in which merging should be performed. If a
'MERG' table is provided but there no declarations are made for any pairs, then the intended interpretation is
that no merging is necessary. (Some implementations may still merge glyphs before antialiasing, however.) If
no 'MERG' table is provided, then implementations should always merge glyphs before filtering in order to
avoid artifacts.

Data is provided for pairs of glyph classes. The first and second glyph elements in a pair correspond to logical
ordering of glyphs in a run. Since glyphs are processed in logical order but may be presented in visual left-to-
right or right-to-left order, it is possible to give separate recommendations for either left-to-right or right-to-left
order.

In some cases, it may be necessary to consider interaction of sequences of more than two glyphs rather than
simply a pair. The data format allows the font developer to specify sequences that need to be treated together
in merging; this is explained further below.

122

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

122 ©	ISO/IEC	2019	–	All	rights	reserved
	

Determination of whether or not merging should be done is a design consideration on the part of the font
developer. Glyphs may touch or overlap, but there might not be any perceptible artifacts in visual results. If the
designer determines that merging for a particular pair or sequence is not needed to provide adequate visual
results, then there will be performance benefits from not declaring that pair or sequence as requiring merging.

Note that different platforms may support different rendering techniques, and may or may not support the
'MERG' table. On some platforms, glyphs sequences might always be merged before antialiasing is performed,
regardless of whether 'MERG' data is provided in the font. Similarly, in some other platforms, glyphs might
always be composed after antialiasing is performed, regardless of whether 'MERG' data is provided in the font.
Font developers should consult developer documentation for the different platforms on which fonts will be
used to determine what benefits a 'MERG' table may provide, and should evaluate rendered results on
relevant platforms to determine which glyph pairs or sequences should be declared as requiring merging.

To construct a 'MERG' table, the first step is to classify glyphs based on desired merging behavior such that
each glyph has an associated merge class (represented by a zero-based index). The system of classification
and number of classes will depend on the font and the font developer’s discretion, but could take into account
such properties as a glyph’s general shape and whether it connects to other glyphs. After assigning glyphs
into classes, one then selects a recommended merging behavior for each pair of merge classes.

NOTE 3 The number of pairs for which data is provided is the square of the number of merge classes. Therefore, the
number of merge classes should be as small as possible.

5.7.5.1 Grouping of glyphs

In some cases, a sequence of glyphs may need to be treated as a unit for purposes of merging. For example,
a glyph for a combining accent might not typographically interact at all with following glyphs, yet it might come
in logical order between glyphs that do interact and that may require merging. This is illustrated in the
following Figure 5.4 (assume left-to-right visual order).

Figure 5.4: Accent glyph logically between two typographically-interacting glyphs

In this case, the accent and the base “e” glyph can be treated as a unit for purposes of evaluating the required
merge behavior with the following “f” glyph. Note that, if merging of the “e” and “f” glyphs is required, then the
accent will also need to be included in the sequence that gets antialiased together.

The merge data entries that specify how pairs of glyphs should be handled include values that indicate that
the pair of glyphs should be grouped together as a unit, without specifying whether merging is required.
Whether or not merging is needed will get determined only as this group is compared with other glyphs. In the
above figure 5.4, the accent is grouped together with the “e” glyph, but whether or not any merging is required
will be determined by comparing that combination with the following “f” glyph.

Whenever a pair of glyphs is grouped or merged, then one or the other will be most relevant when the
combination is evaluated in relation to the following glyph. In the example above, the required behavior for the
“e”-plus-accent combination when it interacts with the following glyph can be determined by the “e”. In a
different example, it may be the second of a pair of glyphs that is most relevant for purposes of interaction with

123

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 123
	

subsequent glyphs. Thus, whenever a pair of glyphs is grouped or merged, the data indicates whether the
merge class of the sequence takes on the class of the first or the second element of the pair. This is indicated
by use of a flag: in the unmarked case (flag is not set), the sequence takes the merge class of the second
glyph. But if a second is subordinate flag is set, then the sequence takes on the merge class of the first
element of the pair.

See the following sections for complete details regarding the merge entry values and how they are processed.

5.7.5.2 Table formats

The 'MERG' table is comprised by a header, a set of class-definition tables, and an array of merge-entry data.
The format of the header is as follows:

Merge header

Type Name Description

uint16 version Version number of the merge table — set to 0.

uint16 mergeClassCount The number of merge classes.

Offset16 mergeDataOffset Offset to the array of merge-entry data.

uint16 classDefCount The number of class definition tables.

Offset16 offsetToClassDefOffsets Offset to an array of offsets to class definition tables —
in bytes from the start of the 'MERG' table.

The offsetToClassDefOffsets field provides an offset to the start of an array of offsets. Each element in the
array is an offset (unsigned 16-bit) from the start of the 'MERG' table to a class definition table. The
classDefCount field gives the number of elements in the offsets array, and the number of class definition
tables.

NOTE 1 A given class definition table can be used to assign different glyphs into multiple classes. The number of class
definition tables does not determine the number of merge classes. Rather, the mergeClassCount field determines
the number of classes that can be referenced by the merge-entry data. Specifically, merge entries are provided
for merge classes 0 to mergeClassCount - 1. If any glyph is assigned to a class ID greater than or equal to
mergeClassCount, there will be no merge entries for pairs involving that class, which effectively means that
merging of that glyph with other glyphs is never required.

The class definition tables use the same formats as are used in OFF Layout tables. Both ClassDefFormat1
and ClassDefFormat2 may be used. For details on class definition table formats, see the Class definition table
section of subclause 6.2.

NOTE 2 A class definition table gives an explicit assignment of glyphs to specific class IDs. Any glyph that is not assigned
to a class are implicitly assigned to class zero.

Any given glyph must be assigned to at most one class. Moreover, as the class definition tables are read in
order, glyph ID references must be in strictly increasing order. If glyph IDs are given out of order, the 'MERG'
table is invalid and is ignored.

The merge-entry data array is a 2D table of entries for glyph-class pairs. Each entry is a uint8 value, and the
total size of the data is mergeClassCount^2. The data are organized as mergeClassCount number of rows
each having mergeClassCount number of column entries.

MergeEntry table

Type Name Description

MergeEntryRow mergeEntryRows
[mergeClassCount]

Array of merge-entry rows.

124

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

124 ©	ISO/IEC	2019	–	All	rights	reserved
	

MergeEntryRow record:

Type Name Description

uint8 mergeEntries
[mergeClassCount]

Array of merge entries.

Each merge entry specifies a behavior for a pair of merge classes: the row index represents the class of the
first element, in logical order, and the column index represents the class of the second element.

Each merge entry is a bit field with six flags defined. These describe three different processing behaviors for
both left-to-right and right-to-left visual orders. The flags are assigned as follows:

Merge Entry Flags

Mask Name Description

0x01 MERGE_LTR Merge glyphs, for LTR visual order.

0x02 GROUP_LTR Group glyphs, for LTR visual order.

0x04 SECOND_IS_SUBORDINATE_
LTR

Second glyph is subordinate to the first glyph, for
LTR visual order.

0x08 Reserved Flag reserved for future use — set to 0.

0x10 MERGE_RTL Merge glyphs, for RTL visual order.

0x20 GROUP_RTL Group glyphs, for RTL visual order.

0x40 SECOND_IS_SUBORDINATE_
RTL

Second glyph is subordinate to the first glyph, for
RTL visual order.

0x80 Reserved Flag reserved for future use — set to 0.

The Merge flags (MergeLTR, MergeRTL) indicate that the pair of items should be merged prior to antialiasing.

The Group flags, described in the previous section, indicate that the pair should be treated as a unit, without
indicating whether or not merging is required — that will be determine be evaluating the combination in
relation to other glyphs.

The SecondIsSubordinate flags, also described in the previous section, are used only if the Merge or Group
flag for the same visual order was set. These indicate whether the class for the merged or grouped sequence
should be that of the first or second item of the pair. If a SecondIsSubordinate flag is set but neither the Merge
or Group flag for the same visual order was set, then it is ignored.

A detailed description of handling of the Merge, Group and SecondIsSubordinate flags is provided in the
following subclause.

5.7.5.3 Processing

The merge entries are used while processing glyphs in a glyph run to determine which sequences of glyphs
require merging before antialias filtering is performed. The following description is given in a way that is
generic with regard to visual order. So, for instance “the Merge flag” refers to the MergeLTR flag if the visual
order is LTR, or to the MergeRTL flag if the visual order is RTL.

In the following description, a merge group is a sequence of one or more glyphs that are processed as a unit.
In addition to the glyph sequence, a merge group has a boolean mergeRequired property that is set by default
to false. The group also has a mergeClass property, that is set as described below.

Merge processing proceeds as follows:

125

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 125
	

1. Start: The start state for the processing algorithm is one in which the current glyph did not need to be
merged with a preceding glyph or glyph sequence. (This includes the start of a glyph run.) The current
glyph is the start of a new merge group with group.mergeRequired = false.

2. Determine the merge class of the current glyph. Set the group.mergeClass to this class ID.
3. Process next glyph: Determine the merge class of the next glyph.
4. Using group.mergeClass as a row index and the merge class of the next glyph as a column index,

retrieve the merge entry for the given row and column.
5. If the merge entry is zero, or if the merge class for either the current or next glyph was greater or

equal to mergeClassCount, then the next glyph does not need to be merged into the current merge
sequence. Do not add the next glyph into the merge group, but proceed to step 10.

6. Else, if the merge entry has the Merge flag set, then the next glyph is added to the current merge
group, and group.mergeRequired is set to true. Proceed to step 8.

7. Else, if the merge entry has the Group flag set, then the next glyph is added to the current merge
group. The group.mergeRequired property is not changed. Proceed to step 8.

8. Determine the new merge class for the group:
a. If the merge entry has the SecondIsSubordinate flag set then the group.mergeClass property

is not changed.
b. Else (the SecondIsSubordinate flag is clear), then set the group.mergeClass property to be

the merge class of the next glyph.
9. The merge group has been extended; proceed to the next glyph: next becomes current, and the group

properties remain as set in steps 6 – 8. Return to step 3.
10. The merge group is terminated:

a. If group.mergeRequired is true, then merge all of the glyphs in this merge group prior to
antialias filtering.

b. Else (group.mergeRequired is false), then merging is not required for any of the glyphs in the
merge group.

c. Proceed to next glyph (next becomes current) and return to the start state, step 1.

5.7.6 meta – Metadata table

The metadata table contains various metadata values for the font. Different categories of metadata are
identified by four-character tags. Values for different categories can be either binary or text.

5.7.6.1 Table formats

The metadata table begins with a header, structured as follows:

Metadata header

Type Name Description

uint32 version Version number of the metadata table – set to 1.

uint32 flags Flags – currently unused; set to 0.

uint32 Reserved Not used; set to 0.

uint32 dataMapsCount The number of data maps in the table.

DataMap dataMaps[dataMapsCount] Array of data map records.

NOTE The reserved field was originally documented in Apple TrueType specification as a data offset. This was
redundant, since DataMap records include offsets from the start of the 'meta' table, and therefore not used.

The data map record has the following format:

126

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

126 ©	ISO/IEC	2019	–	All	rights	reserved
	

DataMap record

Type Name Description

Tag tag A tag indicating the type of metadata.

Offset32 dataOffset Offset in bytes from the beginning of the metadata
table to the data for this tag.

uint32 dataLength Length of the data, in bytes. The data is not
required to be padded to any byte boundary.

The data for a given record may be either textual or binary. The representation format is specified for each tag.
Depending on the tag, multiple records for a given tag or multiple, delimited values in a record may or may not
be permitted, as specified for each tag. If only one record or value is permitted for a tag, then any instances
after the first may be ignored.

5.7.6.2 Metadata Tags

Metadata tags identify the category of information provided and representation format used for a given
metadata value. A registry of commonly-used tags is maintained, but private, vendor-determined tags can also
be used.

Like other OFF tags, metadata tags are four unsigned bytes that can equivalently be interpreted as a string of
four ASCII characters. Metadata tags shall begin with a letter (0x41 to 0x5A, 0x61 to 0x7A) and must use only
letters, digits (0x30 to 0x39) or space (0x20). Space characters must only occur as trailing characters in tags
that have fewer than four letters or digits.

Privately-defined metadata tags shall begin with an uppercase letter (0x41 to 0x5A), and shall use only
uppercase letters or digits. Registered axis tags must not use that pattern, but can be any other valid pattern.

Every registered tag defines the semantics of the associated metadata values, and the representation format
of those values. Values for registered tags may be may be either textual or binary. If textual, it will be in UTF-8
encoding unless explicitly indicated otherwise.

The following registered tags are defined or reserved at this time:

Tag Name Description

appl (reserved) Reserved — used by Apple.

bild (reserved) Reserved — used by Apple.

dlng Design languages Text, using only Basic
Latin (ASCII) characters.

Indicates languages and/or scripts for
the user audiences that the font was
primarily designed for. Only one
instance is used. See below for
additional details.

slng Supported
languages

Text, using only Basic
Latin (ASCII) characters.

Indicates languages and/or scripts that
the font is declared to be capable of
supporting. Only one instance See
below for additional details.

The values for 'dlng' and 'slng' are comprised of a series of comma-separated ScriptLangTags, which are
described in detail below. Spaces may follow the comma delimiters and are ignored. Each ScriptLangTag
identifies a language or script. A list of tags is interpreted to imply that all of the languages or scripts are
included.

The 'dlng' value is used to indicate the languages or scripts of the primary user audiences for which the font
was designed. This value may be useful for selecting default font formatting based on content language, for

127

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 127
	

presenting filtered font options based on user language preferences, or similar applications involving the
language or script of content or user settings.

The 'slng' value is used to declare languages or scripts that the font is capable of supported. This value may
be useful for font fallback mechanisms or other applications involving the language or script of content or user
settings.

NOTE Implementations that use 'slng' values in a font may choose to ignore Unicode-range bits set in the OS/2 table.

Some examples will help to understand the distinction between design and supported languages:

 Consider the case of accented Latin letters: Although the accents are used in common by a number of
languages, the precise shape of the accents can depend on the typographic traditions of a specific
language. Polish, for example, prefers steeper accents than French. A font that was designed with
accents specifically for Polish would declare Polish as a design language, but might declare support
for any language using Latin script.

 Fonts designed for East Asian markets will generally include glyphs for Latin, Greek and Cyrillic
because these characters are included in important East Asian character set standards, but using
East Asian fonts for languages that are written with those scripts is generally unsatisfactory. Such
fonts would therefore include these scripts in the 'slng' value, but not in their 'dlng' value.

 There are some systematic differences in glyph design for the characters shared by simplified and
traditional Chinese, such as the way the “bone” radical is drawn in all characters using it. A font
specifically designed for use with simplified Chinese can usually be used to display traditional Chinese,
but any character with the “bone” radical will look wrong to readers of traditional Chinese. Such a font
would include simplified Chinese 'dlng' value, but both simplified and traditional Chinese in its 'slng'
value.

5.7.6.3 ScriptLangTag Values

The 'dlng' and 'slng' metadata use ScriptLangTag values, defined here.

A ScriptLangTag denotes a particular language or script associated with a font. These are adapted from the
IETF BCP 47 specification [25].

BCP 47 language tags can include various subtags that provide different types of qualifiers, such as language,
script or region. In a BCP 47 language tag, a language subtag element is mandatory and other subtags are
optional. ScriptLangTag values used for 'dlng' and 'slng' metadata values use a modification of the BCP 47
syntax: a script subtag is mandatory and other subtags are optional. The following augmented BNF syntax,
adapted from BCP 47, is used:

 ScriptLangTag = [language "-"]
 script
 ["-" region]
 *("-" variant)
 *("-" extension)
 ["-" privateuse]

The expansion of the elements and the intended semantics associated with each are as defined in BCP 47.
Script subtags are taken from ISO 15924. At present, no extensions are defined for use in ScriptLangTags,
and any extension will be ignored. Private-use elements, which are prefixed with “-x”, are defined by private
agreement between the source and recipient and may be ignored.

Subtags must be valid for use in BCP 47 and contained in the Language Subtag Registry [26] maintained by
IANA. See also section 3 of BCP 47 for details.

NOTE OFF Layout script and language system tags are not the same as those used in BCP 47 and should not be
referenced when creating or processing ScriptLangTags.

Any ScriptLangTag value not conforming to these specifications is ignored.

128

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

128 ©	ISO/IEC	2019	–	All	rights	reserved
	

A ScriptLangTag can denote fairly specific information; for example, 'en-Latn-IN' would represent "Latin script
as used for the English language in India". In most cases, however, generic tags should be used, and it is
anticipated that most tags used in 'dlng' and 'slng' metadata declarations will consist only of a script subtag.
Language or other subtags can be included, however, and may be appropriate in some cases.
Implementations must allow for ScriptLangTags that include additional subtags, but they may also choose to
interpret only the script subtag and ignore other subtags.

Examples:

 'Latn' denotes Latin script (and any language or writing system using Latin script).

 'Cyrl' denotes Cyrillic script.

 'sr-Cyrl' denotes Cyrillic script as used for writing the Serbian language; a font that has this property
value may not be suitable for displaying text in Russian or other languages written using Cyrillic script.

 'en-Dsrt' denotes English written with the Deseret script.

 'Hant' denotes Traditional Chinese.

 'Hant-HK' denotes Traditional Chinese as used in China.

 'Jpan' denotes Japanese writing – ISO 15924 defines 'Jpan' as an alias for Han + Hiragana +
Katakana.

 'Kore' denotes Korean writing – ISO 15924 defines 'Kore' as an alias for Hangul + Han.

 'Hang' denotes Hangul script (exclusively – Hanja are not implied by 'Hang').

The Unicode Standard uses the ISO 15924 identifiers 'Zinh' ("inherited") and 'Zyyy' ("undetermined"). These
should not be used in ScriptLangTags. Similarly, 'Zxxx' ("unwritten document") and 'Zzzz' ("unencoded script")
should never be used.

On the other hand, 'Zmth' ("Mathematical notation") and 'Zsym' ("Symbols”) are not used in the Unicode
Standard, yet they may be very useful as declarations in font files. (They were, in fact, added to ISO 15924 for
use in relation to fonts.)

In relation to East Asian scripts, a declaration of 'Jpan' can be used to cover hiragana, katakana and kanji.
Similarly, 'Kore' can be used to cover Hangul and hanja, though a Korean font with only Hangul support
should use 'Hang'. For Chinese fonts, 'Hans' and 'Hant' should normally be used to distinguish between
Simplified and Traditional orthographies rather than the more generic declaration 'Hani'. Region-specific
variations such as 'Hant-HK' can also be declared. In some cases, it may be appropriate to describe a font
capability (but probably not design target) using the generic declaration 'Hani' (denoting ‘Han / Hanzi / Kanji /
Hanja’).

The BCP 47 specification for region subtags allows for continental and sub-continental regions. For example,
“039” can be used to denote Southern Europe. Use of such extended-region subtags in ScriptLangTag values
is not recommended as software implementations may not have the logic to make appropriate correlations to
more specific regions or languages associated with those regions.

5.7.7 PCLT – PCL 5 table

The 'PCLT' table is strongly discouraged for OFF fonts with TrueType outlines. Extra information on many of
these fields can be found in the HP PCL 5 Printer Language Technical Reference Manual available from
Hewlett-Packard Boise Printer Division.

The format for the table is:

Type Name of Entry

uint16 majorVersion

uint16 minorVersion

uint32 FontNumber

129

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 129
	

uint16 Pitch

uint16 xHeight

uint16 Style

uint16 TypeFamily

uint16 CapHeight

uint16 SymbolSet

int8 Typeface[16]

int8 CharacterComplement[8]

int8 FileName[6]

int8 StrokeWeight

int8 WidthType

uint8 SerifStyle

uint8 Reserved (pad)

Major and Minor Version

The current PCLT table version is 1.0.

FontNumber
This 32-bit number is segmented in two parts. The most significant bit indicates native versus converted
format. Only font vendors should create fonts with this bit zeroed. The 7 next most significant bits are
assigned by Hewlett-Packard Boise Printer Division to major font vendors. The least significant 24 bits are
assigned by the vendor. Font vendors should attempt to ensure that each of their fonts are marked with
unique values.

Code Vendor

A Adobe Systems

B Bitstream Inc.

C Agfa Corporation

H Bigelow & Holmes

L Linotype Company

M Monotype Typography Ltd.

Pitch

The width of the space in font design units (font design units are described by the unitsPerEm field of the
'head' table). Monospace fonts derive the width of all characters from this field.
xHeight
The height of the optical line describing the height of the lowercase x in font design units. This might not be
the same as the measured height of the lowercase x.

130

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

130 ©	ISO/IEC	2019	–	All	rights	reserved
	

Style

The most significant 6 bits are reserved. The 5 next most significant bits encode structure. The next 3 most
significant bits encode appearance width. The 2 least significant bits encode posture.
Structure (bits 5-9)

0 Solid (normal, black)

1 Outline (hollow)

2 Inline (incised, engraved)

3 Contour, edged (antique, distressed)

4 Solid with shadow

5 Outline with shadow

6 Inline with shadow

7 Contour, or edged, with shadow

8 Pattern filled

9 Pattern filled #1 (when more than one pattern)

10 Pattern filled #2 (when more than two patterns)

11 Pattern filled #3 (when more than three patterns)

12 Pattern filled with shadow

13 Pattern filled with shadow #1 (when more than one pattern or shadow)

14 Pattern filled with shadow #2 (when more than two patterns or shadows)

15 Pattern filled with shadow #3 (when more than three patterns or shadows)

16 Inverse

17 Inverse with border

18-31 reserved

Width (bits 2-4)

0 normal

1 condensed

2 compressed, extra condensed

3 extra compressed

4 ultra compressed

5 reserved

6 expanded, extended

7 extra expanded, extra extended

Posture (bits 0-1)

0 upright

1 oblique, italic

2 alternate italic (backslanted, cursive, swash)

3 reserved

131

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 131
	

TypeFamily

The 4 most significant bits are font vendor codes. The 12 least significant bits are typeface family codes. Both
are assigned by HP Boise Division.

Vendor Codes (bits 12-15)

0 reserved

1 Agfa Corporation

2 Bitstream Inc.

3 Linotype Company

4 Monotype Typography Ltd.

5 Adobe Systems

6 font repackagers

7 vendors of unique typefaces

8-15 reserved

CapHeight
The height of the optical line describing the top of the uppercase H in font design units. This might not be the
same as the measured height of the uppercase H.

SymbolSet
The most significant 11 bits are the value of the symbol set "number" field. The value of the least significant 5
bits, when added to 64, is the ASCII value of the symbol set "ID" field. Symbol set values are assigned by HP
Boise Division. Unbound fonts, or "typefaces" should have a symbol set value of 0. See the PCL 5 Printer
Language Technical Reference Manual or the PCL 5 Comparison Guide for the most recent published list of
codes.

Examples

 PCL decimal

Windows 3.1 "ANSI" 19U 629

Windows 3.0 "ANSI" 9U 309

Adobe "Symbol" 19M 621

Macintosh 12J 394

PostScript ISO Latin 1 11J 362

PostScript Std. Encoding 10J 330

Code Page 1004 9J 298

DeskTop 7J 234

TypeFace

This 16-byte ASCII string appears in the "font print" of PCL printers. Care should be taken to ensure that the
base string for all typefaces of a family are consistent, and that the designators for bold, italic, etc. are
standardized.

Example

 Times New

 Times New Bd

132

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

132 ©	ISO/IEC	2019	–	All	rights	reserved
	

 Times New It

 Times New BdIt

 Courier New

 Courier New Bd

 Courier New It

 Courier New BdIt

CharacterComplement

This 8-byte field identifies the symbol collections provided by the font, each bit identifies a symbol collection
and is independently interpreted. Symbol set bound fonts should have this field set to all F's (except bit 0).

Example

DOS/PCL Complement 0xFFFFFFFF003FFFFE

Windows 3.1 "ANSI" 0xFFFFFFFF37FFFFFE

Macintosh 0xFFFFFFFF36FFFFFE

ISO 8859-1 Latin 1 0xFFFFFFFF3BFFFFFE

ISO 8859-1,2,9 Latin 1,2,5 0xFFFFFFFF0BFFFFFE

The character collections identified by each bit are as follows:

31 ASCII (supports several standard interpretations)

30 Latin 1 extensions

29 Latin 2 extensions

28 Latin 5 extensions

27 Desktop Publishing Extensions

26 Accent Extensions (East and West Europe)

25 PCL Extensions

24 Macintosh Extensions

23 PostScript Extensions

22 Code Page Extensions

The character complement field also indicates the index mechanism used with an unbound font. Bit 0 must
always be cleared when the font elements are provided in Unicode order.

FileName

This 6-byte field is composed of 3 parts. The first 3 bytes are an industry standard typeface family string. The
fourth byte is a treatment character, such as R, B, I. The last two characters are either zeroes for an unbound
font or a two character mnemonic for a symbol set if symbol set found.

Examples

 TNRR00 Times New (text weight, upright)

 TNRI00 Times New Italic

 TNRB00 Times New Bold

 TNRJ00 Times New Bold Italic

133

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 133
	

 COUR00 Courier

 COUI00 Courier Italic

 COUB00 Courier Bold

 COUJ00 Courier Bold Italic

Treatment Flags

R Text, normal, book, etc.

I Italic, oblique, slanted, etc.

B Bold

J Bold Italic, Bold Oblique

D Demibold

E Demibold Italic, Demibold Oblique

K Black

G Black Italic, Black Oblique

L Light

P Light Italic, Light Oblique

C Condensed

A Condensed Italic, Condensed Oblique

F Bold Condensed

H Bold Condensed Italic, Bold Condensed Oblique

S Semibold (lighter than demibold)

T Semibold Italic, Semibold Oblique

other treatment flags are assigned over time.

StrokeWeight
This signed 1-byte field contains the PCL stroke weight value. Only values in the range -7 to 7 are valid:

-7 Ultra Thin

-6 Extra Thin

-5 Thin

-4 Extra Light

-3 Light

-2 Demilight

-1 Semilight

0 Book, text, regular, etc.

1 Semibold (Medium, when darker than Book)

2 Demibold

3 Bold

4 Extra Bold

5 Black

134

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

134 ©	ISO/IEC	2019	–	All	rights	reserved
	

6 Extra Black

7 Ultra Black, or Ultra

Type designers often use interesting names for weights or combinations of weights and styles, such as Heavy,
Compact, Inserat, Bold No. 2, etc. PCL stroke weights are assigned on the basis of the entire family and use
of the faces. Typically, display faces don't have a "text" weight assignment.

WidthType

This signed 1-byte field contains the PCL appearance width value. The values are not directly related to those
in the appearance with field of the style word above. Only values in the range -5 to 5 are valid.

-5 Ultra Compressed

-4 Extra Compressed

-3 Compressed, or Extra Condensed

-2 Condensed

0 Normal

2 Expanded

3 Extra Expanded

SerifStyle
This uint8 field contains the PCL serif style value. The most significant 2 bits of this byte specify the serif/sans
or contrast/monoline characterisitics of the typeface.

Bottom 6 bit values:

0 Sans Serif Square

1 Sans Serif Round

2 Serif Line

3 Serif Triangle

4 Serif Swath

5 Serif Block

6 Serif Bracket

7 Rounded Bracket

8 Flair Serif, Modified Sans

9 Script Nonconnecting

10 Script Joining

11 Script Calligraphic

12 Script Broken Letter

Top 2 bit values:

0 reserved

1 Sans Serif/Monoline

2 Serif/Contrasting

3 reserved

135

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 135
	

Reserved
Should be set to zero.

5.7.8 VDMX – Vertical device metrics

The VDMX table relates to OFF fonts with TrueType outlines. Under Windows, the usWinAscent and
usWinDescent values from the 'OS/2' table will be used to determine the maximum black height for a font at
any given size. Windows calls this distance the Font Height. Because TrueType instructions can lead to Font
Heights that differ from the actual scaled and rounded values, basing the Font Height strictly on the yMax and
yMin can result in "lost pixels". Windows will clip any pixels that extend above the yMax or below the yMin. In
order to avoid grid fitting the entire font to determine the correct height, the VDMX table has been defined.

The VDMX table consists of a header followed by groupings of VDMX records:

VDMX Header

Type Name Description

uint16 version Version number (0 or 1).

uint16 numRecs Number of VDMX groups present

uint16 numRatios Number of aspect ratio groupings

RatioRange ratRange[numRatios] Ratio record array

Offset16 Offset[numRatios] Offset from start of this table to the VDMX group for a
corresponding RatioRange record.

Vdmx groups The actual VDMX groupings (documented below)

RatioRange Record

Type Name Description

uint8 bCharSet Character set (see below).

uint8 xRatio Value to use for x-Ratio

uint8 yStartRatio Starting y-Ratio value.

uint8 yEndRatio Ending y-Ratio value.

Ratios are set up as follows:

For a 1:1 aspect ratio Ratios.xRatio = 1;
Ratios.yStartRatio = 1;
Ratios.yEndRatio = 1;

For 1:1 through 2:1 ratio Ratios.xRatio = 2;
Ratios.yStartRatio = 1;
Ratios.yEndRatio = 2;

For 1.33:1 ratio Ratios.xRatio = 4;
Ratios.yStartRatio = 3;
Ratios.yEndRatio = 3;

136

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

136 ©	ISO/IEC	2019	–	All	rights	reserved
	

For all aspect ratios Ratio.xRatio = 0;
Ratio.yStartRatio = 0;
Ratio.yEndRatio = 0;

All values set to zero signal the default grouping to use; if present, this must be the last Ratio group in the
table. Ratios of 2:2 are the same as 1:1.

Aspect ratios are matched against the target device by normalizing the entire ratio range record based on the
current X resolution and performing a range check of Y resolutions for each record after normalization. Once a
match is found, the search stops. If the 0,0,0 group is encountered during the search, it is used (therefore if
this group is not at the end of the ratio groupings, no group that follows it will be used). If there is not a match
and there is no 0,0,0 record, then there is no VDMX data for that aspect ratio.
NOTE Range checks are conceptually performed as follows:

(deviceXRatio == Ratio.xRatio) && (deviceYRatio >= Ratio.yStartRatio) && (deviceYRatio <=
Ratio.yEndRatio)

Each ratio grouping refers to a specific VDMX record group; there must be at least 1 VDMX group in the table.

The bCharSet value is used to denote cases where the VDMX group was computed based on a subset of the
glyphs present in the font file. The semantics of bCharSet is different based on the version of the VDMX table.
It is recommended that VDMX version 1 be used. The currently defined values for character set are:

Character Set Values - Version 0

Value Description

0 No subset; the VDMX group applies to all glyphs in the font. This is used
for symbol or dingbat fonts.

1 Windows ANSI subset; the VDMX group was computed using only the
glyphs required to complete the Windows ANSI character set. Windows
will ignore any VDMX entries that are not for the ANSI subset (i.e.
ANSI_CHARSET).

Character Set Values - Version 1

Value Description

0 No subset; the VDMX group applies to all glyphs in the font. If adding new
character sets to existing font, add this flag and the groups necessary to
support it. This should only be used in conjunction with ANSI_CHARSET.

1 No subset; the VDMX group applies to all glyphs in the font. Used when
creating a new font for Windows. No need to support
SYMBOL_CHARSET.

VDMX groups immediately follow the table header. Each set of records (there need only be one set) has the
following layout:

VDMX Group

Type Name Description

137

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 137
	

uint16 recs Number of height records in this group

uint8 startsz Starting yPelHeight

uint8 endsz Ending yPelHeight

vTable entry[recs] The VDMX records

vTable Record

Type Name Description

uint16 yPelHeight yPelHeight to which values apply.

int16 yMax Maximum value (in pels) for this yPelHeight.

int16 yMin Minimum value (in pels) for this yPelHeight.

This table must appear in sorted order (sorted by yPelHeight), but need not be continous. It should have an
entry for every pel height where the yMax and yMin do not scale linearly, where linearly scaled heights are
defined as:

Hinted yMax and yMin are identical to scaled/rounded yMax and yMin.

It is assumed that once yPelHeight reaches 255, all heights will be linear, or at least close enough to linear
that it no longer matters. Please note that while the Ratios structure can only support ppem sizes up to 255,
the vTable structure can support much larger pel heights (up to 65535). The choice of int16 and uint16 for
vTable is dictated by the requirement that yMax and yMin be signed values (and 127 to -128 is too small a
range) and the desire to word-align the vTable elements.

5.7.9 vhea – Vertical header table
The vertical header table (tag name: 'vhea') contains information needed for vertical fonts. The glyphs of
vertical fonts are written either top to bottom or bottom to top. This table contains information that is general to
the font as a whole. Information that pertains to specific glyphs is given in the vertical metrics table (tag name:
'vmtx') described separately. The formats of these tables are similar to those for horizontal metrics (hhea and
hmtx).

Data in the vertical header table must be consistent with data that appears in the vertical metrics table. The
advance height and top sidebearing values in the vertical metrics table must correspond with the maximum
advance height and minimum bottom sidebearing values in the vertical header table.

See the clause 6 "OFF CJK Font Guidelines" for more information about constructing CJK (Chinese,
Japanese, and Korean) fonts.

The difference between version 1.0 and version 1.1 is the name and definition of the following fields:

 ascender becomes vertTypoAscender

 descender becomes vertTypoDescender

 lineGap becomes vertTypoLineGap

Version 1.0 of the vertical header table format is as follows:

138

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

138 ©	ISO/IEC	2019	–	All	rights	reserved
	

Vertical Header Table v1.0

Version
1.0

Type

Name Description

Fixed version Version number of the vertical header table; 0x00010000 for
version 1.0

int16 ascent Distance in font design units from the centerline to the
previous line’s descent.

int16 descent Distance in font design units from the centerline to the next
line’s ascent.

int16 lineGap Reserved; set to 0

int16 advanceHeightMax The maximum advance height measurement -in font design
units found in the font. This value must be consistent with the
entries in the vertical metrics table.

int16 minTop
SideBearing

The minimum top sidebearing measurement found in the font,
in font design units. This value must be consistent with the
entries in the vertical metrics table.

int16 minBottom
SideBearing

The minimum bottom sidebearing measurement found in the
font,
in font design units.
This value must be consistent with the entries in the vertical
metrics table.

int16 yMaxExtent Defined as max(tsb + (yMax-yMin))

int16 caretSlopeRise The value of the caretSlopeRise field divided by the value of
the caretSlopeRun Field determines the slope of the caret. A
value of 0 for the rise and a value of 1 for the run specifies a
horizontal caret. A value of 1 for the rise and a value of 0 for
the run specifies a vertical caret. Intermediate values are
desirable for fonts whose glyphs are oblique or italic. For a
vertical font, a horizontal caret is best.

int16 caretSlopeRun See the caretSlopeRise field. Value=1 for nonslanted vertical
fonts.

int16 caretOffset The amount by which the highlight on a slanted glyph needs
to be shifted away from the glyph in order to produce the best
appearance. Set value equal to 0 for nonslanted fonts.

int16 reserved Set to 0.

int16 reserved Set to 0.

int16 reserved Set to 0.

int16 reserved Set to 0.

int16 metricDataFormat Set to 0.

uint16 numOf
LongVerMetrics

Number of advance heights in the vertical metrics table.

Version 1.1 of the vertical header table format is as follows:

139

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 139
	

Vertical Header Table v1.1

Version
1.1

Type

Name Description

Fixed version Version number of the vertical header table; 0x00011000
for version 1.1
The representation of a non-zero fractional part, in Fixed
numbers.

int16 vertTypoAscender The vertical typographic ascender for this font. It is the
distance in font design units from the ideographic em-
box center baseline for the vertical axis to the right of the
ideographic em-box and is usually set to
(head.unitsPerEm)/2. For example, a font with an em of
1000 fUnits will set this field to 500. See subclause 6.4.4.
Baseline Tags of the OFF Layout Tag Registry for a
description of the ideographic em-box.

int16 vertTypoDescender The vertical typographic descender for this font. It is the
distance in font design units from the ideographic em-
box center baseline for the horizontal axis to the left of
the ideographic em-box and is usually set to
(head.unitsPerEm)/2. For example, a font with an em of
1000 fUnits will set this field to 500.

int16 vertTypoLineGap The vertical typographic gap for this font. An application
can determine the recommended line spacing for single
spaced vertical text for an OFF font by the following
expression: ideo embox width + vhea.vertTypoLineGap

int16 advanceHeightMax The maximum advance height measurement -in font
design units found in the font. This value must be
consistent with the entries in the vertical metrics table.

int16 minTop
SideBearing

The minimum top sidebearing measurement found in the
font, in font design units. This value must be consistent
with the entries in the vertical metrics table.

int16 minBottom
SideBearing

The minimum bottom sidebearing measurement found in
the font,
in font design units.
This value must be consistent with the entries in the
vertical metrics table.

int16 yMaxExtent Defined as max(tsb + (yMax-yMin))

int16 caretSlopeRise The value of the caretSlopeRise field divided by the
value of the caretSlopeRun Field determines the slope of
the caret. A value of 0 for the rise and a value of 1 for the
run specifies a horizontal caret. A value of 1 for the rise
and a value of 0 for the run specifies a vertical caret.
Intermediate values are desirable for fonts whose glyphs
are oblique or italic. For a vertical font, a horizontal caret
is best.

int16 caretSlopeRun See the caretSlopeRise field. Value=1 for nonslanted
vertical fonts.

140

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

140 ©	ISO/IEC	2019	–	All	rights	reserved
	

int16 caretOffset The amount by which the highlight on a slanted glyph
needs to be shifted away from the glyph in order to
produce the best appearance. Set value equal to 0 for
nonslanted fonts.

int16 reserved Set to 0.

int16 reserved Set to 0.

int16 reserved Set to 0.

int16 reserved Set to 0.

int16 metricDataFormat Set to 0.

uint16 numOf
LongVerMetrics

Number of advance heights in the vertical metrics table.

'vhea' Table and OFF Font Variations

In a variable font, various font-metric values within the 'vhea' table may need to be adjusted for different
variation instances. Variation data for 'vhea' entries can be provided in the metrics variations ('MVAR') table.
Different 'post' entries are associated with particular variation data in the 'MVAR' table using value tags, as
follows:

'vhea' entry Tag

ascent 'vasc'

caretOffset 'vcof'

caretSlopeRun 'vcrn'

caretSlopeRise 'vcrs'

descent 'vdsc'

lineGap 'vlgp'

For general information on OFF Font Variations, see subclause 7.1.

Vertical Header Table Example

Offset/
length

Value Name Comment

0/4 0x00011000 version Version number of the vertical header
table, in fixed-point format, is 1.1

4/2 1024 vertTypoAscender Half the em-square height.

6/2 -1024 vertTypoDescender Minus half the em-square height.

8/2 0 vertTypoLineGap Typographic line gap is 0 font design units.

10/2 2079 advanceHeightMax The maximum advance height
measurement found in the font is 2079 font
design units.

141

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 141
	

12/2 -342 minTopSideBearing The minimum top sidebearing
measurement found in the font is -342 font
design units.

14/2 -333 minBottomSideBearing The minimum bottom sidebearing
measurement found in the font is -333 font
design units.

16/2 2036 yMaxExtent max (tsb + (yMax - yMin)) = 2036.

18/2 0 caretSlopeRise The caret slope rise of 0 and a caret slope
run of 1 indicate a horizontal caret for a
vertical font.

20/2 1 caretSlopeRun The caret slope rise of 0 and a caret slope
run of 1 indicate a horizontal caret for a
vertical font.

22/2 0 caretOffset Value set to 0 for nonslanted fonts.

24/4 0 reserved Set to 0.

26/2 0 reserved Set to 0.

28/2 0 reserved Set to 0.

30/2 0 reserved Set to 0.

32/2 0 metricDataFormat Set to 0.

34/2 258 numOfLongVerMetrics Number of advance heights in the vertical
metrics table is 258.

5.7.10 vmtx – Vertical metric table
The vertical metrics table allows you to specify the vertical spacing for each glyph in a vertical font. This table
consists of either one or two arrays that contain metric information (the advance heights and top sidebearings)
for the vertical layout of each of the glyphs in the font. The vertical metrics coordinate system is shown below.

Figure 5.5 – Vertical Metrics

OFFvertical fonts require both a vertical header table ('vhea') and the vertical metrics table discussed below.
The vertical header table contains information that is general to the font as a whole. The vertical metrics table
contains information that pertains to specific glyphs. The formats of these tables are similar to those for
horizontal metrics (hhea and hmtx).

See Clause 6 (OFF CJK Font Guidelines) for more information about constructing CJK (Chinese, Japanese,
and Korean) fonts.

142

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

142 ©	ISO/IEC	2019	–	All	rights	reserved
	

Vertical Origin and Advance Height

The y coordinate of a glyph's vertical origin is specified as the sum of the glyph's top side bearing (recorded in
the 'vmtx' table) and the top (i.e. maximum y) of the glyph's bounding box.

TrueType OFF fonts contain glyph bounding box information in the Glyph Data ('glyf') table. CFF OFF fonts do
not contain glyph bounding box information, and so for these fonts the top of the glyph's bounding box shall be
calculated from the charstring data in the Compact Font Format ('CFF ') table.

OpenType 1.3 introduced the optional Vertical Origin ('VORG') table for CFF OFF fonts, which records the y
coordinate of glyphs' vertical origins directly, thus obviating the need to calculate bounding boxes as an
intermediate step. This improves accuracy and efficiency for CFF OFF clients.

The x coordinate of a glyph's vertical origin is not specified in the 'vmtx' table. Vertical writing implementions
may make use of the baseline values in the Baseline ('BASE') table, if present, in order to align the glyphs in
the x direction as appropriate to the desired vertical baseline.

The advance height of a glyph starts from the y coordinate of the glyph's vertical origin and advances
downwards. Its endpoint is at the y coordinate of the vertical origin of the next glyph in the run, by default.
Metric-adjustment OFF layout features such as Vertical Kerning ('vkrn') could modify the vertical advances in
a manner similar to kerning in horizontal mode.

Vertical Metrics Table Format

The overall structure of the vertical metrics table consists of two arrays shown below: the vMetrics array
followed by an array of top side bearings. The top side bearing is measured relative to the top of the origin of
glyphs, for vertical composition of ideographic glyphs.

This table does not have a header, but does require that the number of glyphs included in the two arrays
equals the total number of glyphs in the font.

The number of entries in the vMetrics array is determined by the value of the numOfLongVerMetrics field of
the vertical header table.

The vMetrics array contains two values for each entry. These are the advance height and the top sidebearing
for each glyph included in the array.

In monospaced fonts, such as Courier or Kanji, all glyphs have the same advance height. If the font is
monospaced, only one entry need be in the first array, but that one entry is required.

The format of an entry in the vertical metrics array is given below.

Type Name Description

uint16 advanceHeight The advance height of the glyph. Unsigned integer in
font design units

int16 topSideBearing The top sidebearing of the glyph.
Signed integer in font design units.

The second array is optional and generally is used for a run of monospaced glyphs in the font. Only one such
run is allowed per font, and it shall be located at the end of the font. This array contains the top sidebearings
of glyphs not represented in the first array, and all the glyphs in this array shall have the same advance height
as the last entry in the vMetrics array. All entries in this array are therefore monospaced.

The number of entries in this array is calculated by subtracting the value of numOfLongVerMetrics from the
number of glyphs in the font. The sum of glyphs represented in the first array plus the glyphs represented in
the second array therefore equals the number of glyphs in the font. The format of the top sidebearing array is
given below.

143

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 143
	

Type Name Description

int16 topSideBearing[] The top sidebearing of the glyph.
Signed integer in font design units.

5.7.11 COLR – Color Table
The COLR table adds support for multi-colored glyphs in a manner that is compatible with existing text
engines and easy to support with current OFF font files.

The COLR table defines a list of base glyphs — which are regular glyphs, typically associated with a cmap
entry. Each base glyph is associated by the COLR table to a list of glyphs, each corresponding to layers that
can be combined, creating a colored representation of the base glyph. The layered glyphs are explicitly
defined in bottom-up z-order and each of their advance widths must match those of the base glyph. If the font
has vertical metrics, the associated layer glyphs must also have the same advance height and vertical Y origin
as the base glyph.

The COLR table works together with the CPAL table which holds the color palettes used by the color layers.

Fonts using 'COLR' and 'CPAL' tables shall implement glyph ID 1 as the .null glyph. If the COLR table is
present in a font but no CPAL table exists, then the COLR table will not be supported for this font.

Header
The table starts with a fixed portion describing the overall setup for the color font records. All offsets, unless
otherwise noted, will be from the beginning of the table

Type Name Description

uint16 version Table version number (starts at 0).

uint16 numBaseGlyphRecords Number of Base Glyph Records.

Offset32 baseGlyphRecordOffset Offset (from beginning of COLR table) to Base Glyph records.

Offset32 layerRecordOffset Offset (from beginning of COLR table) to Layer Records.

uint16 numLayerRecords Number of Layer Records.

Base Glyph Record

The header of the COLR table points to the base glyph record. This record is used to match the base glyph to
the layered glyphs. Each base glyph record contains a base glyph index. This is usually the glyph index that is
referenced in the cmap table. The number of layers is used to indicate how many color layers will be used for
this base glyph. Each record then has an index to a glyph layer record. There will be numLayers of layer
records for each base glyph. The firstLayerIndex refers to the lowest z-order, or bottom, glyph id for the
colored glyph. The next layer record will represent the next highest glyph in the z-order, and this continues
bottom-up until it reaches the numLayers glyph at the top of the z-order. The index is relative to the start of the
Layer Records. The index does not have to be unique for each base glyph ID. If two base glyphs need to
share the color glyphs and palette indices, this is acceptable. Likewise a Base Glyph Record could point
partway into a z-order of another base glyph.

The base glyph records are sorted by glyph id. It is assumed that a binary search can be used to efficiently
access the glyph IDs that have color values. Any use scenario that attempts to map glyphs to character codes
must be aware of the mapping done by the COLR table.

144

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

144 ©	ISO/IEC	2019	–	All	rights	reserved
	

Type Name Description

uint16 gID Glyph ID of reference glyph. This glyph is for reference only and
is not rendered for color.

uint16 firstLayerIndex Index (from beginning of the Layer Records) to the layer record.
There will be numLayers consecutive entries for this base glyph.

uint16 numLayers Number of color layers associated with this glyph.

Layer Record

Type Name Description

uint16 gID Glyph ID of layer glyph (must be in z-order from bottom to top).

uint16 paletteIndex Index value to use with a selected color palette. This value must
be less than numPaletteEntries in the CPAL table. A palette
entry index value of 0xFFFF is a special case indicating that the
text foreground color (defined by a higher-level client) should be
used and shall not be treated as actual index into CPAL
ColorRecord array.

The selection of color palette to be used for a given layer record is the responsibility of a higher-level client.
With CPAL version 0 – the palette selection needs to be made based on the information distributed with a font.
CPAL version 1 offers user-selectable color palettes based on a textual descriptions of palette entries and
palette labels.

5.7.12 CPAL – Palette Table
The palette table is a set of one or more palettes, each containing a predefined number of color records with
BGRA values. It may also contain name table IDs describing the palettes and their entries.

Palettes are defined by a set of color records. All palettes have the same number of color records, specified
by numColorRecords. All color records for all palettes are arranged in a single array, and the color records for
any given palette are a contiguous sequence of color records within that array. The first color record of each
palette is provided in the colorRecordIndices array.

Multiple colorRecordIndices may refer to the same color record, in which case multiple palettes would use the
same color records; hence the number of functionally-distinct palettes may be fewer than the numPalettes
entry. Also, the sequence of color records for different palettes may overlap, with certain color records shared
between multiple palettes. Thus, the total number of color records in the CPAL table may be less than the
number of palette entries multiplied by the number of palettes.

The first palette, number 0, is the default palette. A minimum of one palette must be provided in the CPAL
table if the table is present. Palettes shall have a minimum of one color record. An empty CPAL table, with no
palettes and no color records is not permitted.

Colors within a palette are referenced by base-zero index. The number of colors in each palette is given by
numPaletteEntries. The number of color records in the color records array (numColorRecords) shall be
greater than or equal to max(colorRecordIndices) + numPaletteEntries.

Palette Table Header
The CPAL table begins with a header that starts with a version number. Currently, only versions 0 and 1 are
defined.

CPAL version 0

The CPAL header version 0 is organized as follows:

145

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 145
	

Type Name Description

uint16 version Table version number (=0).

uint16 numPaletteEntries Number of palette entries in each palette.

uint16 numPalettes Number of palettes in the table.

uint16 numColorRecords Total number of color records, combined for all
palettes.

Offset32 offsetFirstColorRecord Offset from the beginning of CPAL table to the
first ColorRecord in the Color Records Array.

uint16 colorRecordIndices[numPalettes] Index of each palette’s first color record in the
Color Records Array.

CPAL version 1

The CPAL header version 1 adds three additional fields to the end of the table header and is organized as
follows:

Type Name Description

uint16 version Table version number (=1).

uint16 numPaletteEntries Number of palette entries in each palette.

uint16 numPalettes Number of palettes in the table.

uint16 numColorRecords Total number of color records, combined for
all palettes.

Offset32 offsetFirstColorRecord Offset from the beginning of CPAL table to the
first ColorRecord in the Color Records Array.

uint16 colorRecordIndices[numPalettes] Index of each palette’s first color record in the
Color Records Array.

Offset32 offsetPaletteTypeArray Offset from the beginning of CPAL table to the
Palette Type Array. Set to 0 if no array is
provided.

Offset32 offsetPaletteLabelArray Offset from the beginning of CPAL table to the
Palette Label Array. Set to 0 if no array is
provided.

Offset32 offsetPaletteEntryLabelArray Offset from the beginning of CPAL table to the
Palette Entry Label Array. Set to 0 if no array
is provided.

Palette Entries and Color Records

Colors defined in the CPAL table are referenced by a palette index plus a palette-entry index. Indices are base
zero. For a given palette index and palette-entry index, an entry within the color records array is derived:
colorRecordIndex = colorRecordIndices[paletteIndex] + paletteEntryIndex.

146

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

146 ©	ISO/IEC	2019	–	All	rights	reserved
	

The color records array is comprised of color records:

Type Name Description

ColorRecord colorRecords[numColorRecords] Color records for all palettes.

Each color record has BGRA values. The color space for these values is sRGB.

Type Name Description

uint8 blue Blue value (B0).

uint8 green Green value (B1).

uint8 red Red value (B2).

uint8 alpha Alpha value (B3).

The colors in the Color Record should not be pre-multiplied, and the alpha value should be explicitly set for
each palette entry.

When placing and registering overlapping elements, there is the possibility of “seaming”, where the edge
rendering of one element interferes with another element. This may be more or less visible based on the
contrast of the colors used.

Palette Type Array

Type Name Description

uint32 paletteTypes [numPalettes] Array of 32-bit flag fields that describe properties
of each palette. See below for details.

The following flags are defined:

Mask Name Description

0x0001 USABLE_WITH_LIGHT_
BACKGROUND

Bit 0: palette is appropriate to use when displaying
the font on a light background such as white.

0x0002 USABLE_WITH_DARK_
BACKGROUND

Bit 1: palette is appropriate to use when displaying
the font on a dark background such as black.

0xFFFC Reserved Reserved for future use — set to 0.

Note that the usableWithLightBackground and usableWithDarkBackground flags are not mutually exclusive:
they may both be set.

Palette Label Array

Type Name Description

uint16 paletteLabels [numPalettes] Array of name table IDs (typically in the font-
specific name ID range) that specify user interface
strings associated with each palette. Use 0xFFFF
if no name ID is provided for a particular palette.

147

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 147
	

Palette Entry Label Array

Type Name Description

uint16 paletteEntryLabels
[numPaletteEntries]

Array of name table IDs (typically in the font-
specific name ID range) that specify user interface
strings associated with each palette entry, e.g.
“Outline”, “Fill”. This set of palette entry labels
applies to all palettes in the font. Use 0xFFFF if no
name ID is provided for a particular palette entry.

Relationship to COLR and SVG Tables

Both the COLR and SVG tables can use CPAL to define their palettes.

COLR and CPAL

In fonts that have COLR table, the CPAL table is required, and contains all the font-specified colors used by
multicolored glyphs.

As noted in the COLR table description, the palette entry index of 0xFFFF if specified in the COLR table
represents the foreground color used in the system. This special value does not change across multiple
palettes. The maximum palette entry index is 65535 – 1, as the 65536th position is used in the COLR table to
indicate the foreground font color.

SVG and CPAL

In fonts that have an SVG table, the CPAL table can be used to contain the values of any color variables used
by the SVG glyph descriptions in the SVG table. SVG glyph descriptions can also include color specifications
directly, however. Thus, the CPAL table is optional for fonts with an SVG table.

Foreground color and foreground color opacity are expressed by the context-fill and context-fill-opacity
attributes in the SVG glyph descriptions.

When used with an SVG table, the default palette’s colors must be set to the same values as the default
values for the color variables in the SVG glyph descriptions; this is for text engines that support the SVG table
but not color palettes. The SVG glyph descriptions are able to express their own explicit or “hard-coded”
colors as well. These are not related to color variables and thus do not vary by palette selection.
See subclause 5.5.1 for more details.

6 Advanced Open Font layout tables

6.1 Advanced Open Font layout extensions

6.1.1 Overview of advanced typographic layout extensions

The Advanced Typographic tables (OFF Layout tables) extend the functionality of fonts with either TrueType
or CFF outlines. OFF Layout fonts contain additional information that extends the capabilities of the fonts to
support high-quality international typography:

 OFF Layout fonts allow a rich mapping between characters and glyphs, which supports ligatures,
positional forms, alternates, and other substitutions.

 OFF Layout fonts include information to support features for two-dimensional positioning and glyph
attachment.

 OFF Layout fonts contain explicit script and language information, so a text-processing application
can adjust its behavior accordingly.

148

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

148 ©	ISO/IEC	2019	–	All	rights	reserved
	

 OFF Layout fonts have an open format that allows font developers to define their own typographical
features.

This overview introduces the power and flexibility of the OFF Layout font model. The OFF Layout tables are
described in more detail in clause 5 "Advanced Open Font Layout Tables".

OFF Layout Common Table Formats are documented in subclause 6.2.

Registered OFF Layout Tags for scripts, languages, and baselines, are documented in subclause 6.4.

OFF layout at a glance

OFF Layout addresses complex typographical issues that especially affect people using text-processing
applications in multi-lingual and non-Latin environments.

OFF Layout fonts may contain alternative forms of characters and mechanisms for accessing them. For
example, in Arabic, the shape of a character often varies with the character's position in a word. As shown
here, the ha character will take any of four shapes, depending on whether it stands alone or whether it falls at
the beginning, middle, or end of a word. OFF Layout helps a text-processing application determine which
variant to substitute when composing text.

Figure 6.1 – Isolated, initial, medial, and final forms of the Arabic character ha

Similarly, OFF Layout helps an application use the correct forms of characters when text is positioned
vertically instead of horizontally, such as with Kanji. For example, Kanji uses alternative forms of parentheses
when positioned vertically.

Figure 6.2 – Alternative forms of parentheses used when positioning Kanji vertically

The OFF Layout font format also supports the composition and decomposition of ligatures. For example,
English, French, and other languages based on Latin can substitute a single ligature, such as "fi", for its
component glyphs - in this case, "f" and "i". Conversely, the individual "f" and "i" glyphs could replace the
ligature, possibly to give a text-processing application more flexibility when spacing glyphs to fill a line of
justified text.

Figure 6.3 – Two Latin glyphs and their associated ligature

149

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 149
	

Figure 6.4 – Three Arabic glyphs and their associated ligature

Glyph substitution is just one way OFF Layout extends font capabilities. Using precise X and Y coordinates for
positioning glyphs, OFF Layout fonts also can identify points for attaching one glyph to another to create
cursive text and glyphs that need diacritical or other special marks.

OFF Layout fonts also may contain baseline information that specifies how to position glyphs horizontally or
vertically. Because baselines may vary from one script (set of characters) to another, this information is
especially useful for aligning text that mixes glyphs from scripts for different languages.

Figure 6.5 – A line of text, baselines adjusted, mixing Latin and Arabic scripts

6.1.2 TrueType versus OFF layout

A TrueType font is a collection of several tables that contain different types of data: glyph outlines, metrics,
bitmaps, mapping information, and much more. OFF Layout fonts contain all this basic information, plus
additional tables containing information for advanced typography.

Text-processing applications - referred to as "clients" of OFF Layout - can retrieve and parse the information
in OFF Layout tables. So, for example, a text-processing client can choose the correct character shapes and
space them properly.

As much as possible, the tables of OFF Layout define only the information that is specific to the font layout.
The tables do not try to encode information that remains constant within the conventions of a particular
language or the typography of a particular script. Such information that would be replicated across all fonts in
a given language belongs in the text-processing application for that language, not in the fonts.

6.1.3 OFF layout terminology

The OFF Layout model is organized around glyphs, scripts, language systems, and features.

Characters versus glyphs

Users don't view or print characters: a user views or prints glyphs. A glyph is a representation of a character.
The character "capital letter A" is represented by the glyph "A" in Times New Roman Bold and "A" in Arial
Bold. A font is a collection of glyphs. To retrieve glyphs, the client uses information in the 'cmap' table of the
font, which maps the client's character codes to glyph indices in the table.

Glyphs can also represent combinations of characters and alternative forms of characters: glyphs and
characters do not strictly correspond one-to-one. For example, a user might type two characters, which might
be better represented with a single ligature glyph. Conversely, the same character might take different forms
at the beginning, middle, or end of a word, so a font would need several different glyphs to represent a single
character. OFF Layout fonts contain a table that provides a client with information about possible glyph
substitutions.

150

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

150 ©	ISO/IEC	2019	–	All	rights	reserved
	

Figure 6.6 – Multiple glyphs for the ampersand character

Scripts

A script is composed of a group of related characters, which may be used by one or more languages. Latin,
Arabic, and Thai are examples of scripts. A font may use a single script, or it may use many scripts. Within an
OFF Layout font, scripts are identified by unique 4-byte tags.

Figure 6.7 – Glyphs in the Latin, Kanji, and Arabic scripts

Language systems

Scripts, in turn, may be divided into language systems. For example, the Latin script is used to write English,
French, or German, but each language has its own special requirements for text processing. A font developer
can choose to provide information that is tailored to the script, to the language system, or to both.

Language systems, unlike scripts, are not necessarily evident when a text-processing client examines the
characters being used. To avoid ambiguity, the user or the operating system needs to identify the language
system. Otherwise, the client will use the default language-system information provided with each script.

Figure 6.8 – Differences in the English, French, and German language system

Features

Features define the basic functionality of the font. A font that contains tables to handle diacritical marks will
have a 'mark' feature. A font that supports substitution of vertical glyphs will have a 'vert' feature.

The OFF Layout feature model provides great flexibility to font developers because features do not have to be
predefined. Instead, font developers can work with application developers to determine useful features for
fonts, add such features to OFF Layout fonts, and enable client applications to support such features.

151

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 151
	

Figure 6.9 – The relationship of scripts, language systems, features, and lookups for
substitution and positioning tables

OFF Layout tables

OFF Layout comprises five new tables: GSUB, GPOS, BASE, JSTF, and GDEF. These tables and their
formats are discussed in detail in the clauses that follow this overview.

GSUB: Contains information about glyph substitutions to handle single glyph substitution, one-to-many
substitution (ligature decomposition), aesthetic alternatives, multiple glyph substitution (ligatures), and
contextual glyph substitution.

GPOS: Contains information about X and Y positioning of glyphs to handle single glyph adjustment,
adjustment of paired glyphs, cursive attachment, mark attachment, and contextual glyph positioning.

BASE: Contains information about baseline offsets on a script-by-script basis.

JSTF: Contains justification information, including whitespace and Kashida adjustments.

GDEF: Contains information about all individual glyphs in the font: type (simple glyph, ligature, or combining
mark), attachment points (if any), and ligature caret (if a ligature glyph).

Common Table Formats: Several common table formats are used by the OFF Layout tables.

6.1.4 Text processing with OFF layout

A text-processing client follows a standard process to convert the string of characters entered by a user into
positioned glyphs. To produce text with OFF Layout fonts:

152

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

152 ©	ISO/IEC	2019	–	All	rights	reserved
	

1. Using the cmap table in the font, the client converts the character codes into a string of glyph indices.

2. Using information in the GSUB table, the client modifies the resulting string, substituting positional or
vertical glyphs, ligatures, or other alternatives as appropriate.

3. Using positioning information in the GPOS table and baseline offset information in the BASE table, the
client then positions the glyphs.

4. Using design coordinates the client determines device-independent line breaks. Design coordinates
are high-resolution and device-independent.

5. Using information in the JSTF table, the client justifies the lines, if the user has specified
such alignment.

6. The operating system rasterizes the line of glyphs and renders the glyphs in device coordinates that
correspond to the resolution of the output device.

Throughout this process the text-processing client keeps track of the association between the character codes
for the original text and the glyph indices of the final, rendered text. In addition, the client may save language
and script information within the text stream to clearly associate character codes with typographical behavior.

Left-to-right and right-to-left text
When an OFF text layout engine applies the Unicode bidi algorithm and gets to the point where mirroring
needs to be performed on runs with an even, i.e. left-to-right (LTR), resolved level, it does the following:

1. Glyph-level mirroring:

Apply feature 'ltrm' to the entire LTR run to substitute mirrored forms.

2. LTR glyph alternates:

Apply feature 'ltra' to the entire LTR run to finesse glyph selection.

For runs with an odd, i.e. right-to-left (RTL), resolved level, the engine does the following:

1. Character-level mirroring:

For each character i in the RTL run:

If it is mapped to character j by the OMPL and cmap(j) is non-zero:

Use glyph cmap(j) at character i.

Here OMPL refers to the OFF Mirroring Pairs List (see Annex C), and cmap(j) refers to the glyph mapped
from code point j in the Unicode cmap table.

For example, suppose U+0028, LEFT PARENTHESIS, occurred in the run at resolved level 1. The glyph
at that code point in the run will be replaced by cmap(U+0029), since {U+0028, U+0029} is a pair in the
OMPL.

2. Glyph-level mirroring:

The engine applies the ‘rtlm’ feature to the entire RTL run. The feature, if present, substitutes mirrored
forms for characters other than those covered by the first elements of OMPL pairs (otherwise, it could
cancel the effects of character-level mirroring).

The data contents of the OMPL are identical to the Bidi Mirroring Glyph Property file of Unicode 5.1, and
will never be revised. Thus, it will be up to the ‘rtlm’ feature to provide, if needed, mirrored forms for both
(a) Unicode 5.1 code points with the “mirrored” property but no appropriate Unicode 5.1 character mirrors,
as well as (b) all future “mirrored” property additions to Unicode, whether or not character mirrors exist for
them.

With such a division of labor between the layout engine and the font, most fonts will not need to include an
‘rtlm’ feature, since the mirrored forms in their Unicode cmap subtable would be adequate.

3. RTL glyph alternates:

The engine applies the ‘rtla’ feature to the entire RTL run. The feature, if present, substitutes variants
appropriate for right-to-left text (other than mirrored forms).

153

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 153
	

In practice, the engine may apply features simultaneously; thus, it is up to the font vendor to ensure that the
features’ lookups are ordered to achieve the desired effect of the algorithms described above. The engine
may optimize its implementation in various ways, e.g. by taking advantage of the fact that character- and
glyph-level mirroring won’t both apply on the same element in the run.

6.1.5 OFF layout and Font variations

OFF Font variations allow a single font to support many design variations along one or more axes of design
variation. For example, a font with weight and width variations might support weights from thin to black, and
widths from ultra-condensed to ultra-expanded. For general information on OFF Font Variations,
see subclause 7.1.

Mechanisms used to support font variations are integrated into the tables used for OFF layout. Variation of
glyph outlines and metrics across a font’s variation space can impact the design-grid distances that get used
in OFF layout tables, such as anchor positions used in a GPOS attachment lookup. Enhancements to OFF
layout formats allow the default values found in existing formats to be associated with variation data that
describes how the given value is adjusted for different variation instances.

In some variable fonts, it may be desirable to have different glyph-substitution or glyph-positioning actions
used for different regions within the font’s variation space. For example, for narrow or heavy instances in
which counters become small, it may be desirable to make certain glyph substitutions to use alternate glyphs
with certain strokes removed or outlines simplified to allow for larger counters. Such effects can be achieved
using a feature variations table within either the GSUB or GPOS table. The feature variations table is
described in subclause 6.2. See also the "Required variation alternates ('rvrn')" feature in the OFF layout tag
registry.

Different variation instances of a variable font have the same glyph IDs. For that reason, it might seem
possible for lookups to be applied across a glyph sequence in which glyphs are formatted using different
variation instances of a variable font. Doing so, however, could lead to unpredictable behaviors since font
developers may not have sufficient control over how lookup tables are generated, and it would not be feasible
to test the vast number of possible cross-instance interactions. For these reasons, layout processing
implementations must treat different variation instances of a variable font as distinct style runs for purposes of
OFF Layout processing.

6.2 OFF layout common table formats

6.2.1 Overview

OFF Layout consists of five tables: the Glyph Substitution table (GSUB), the Glyph Positioning table (GPOS),
the Baseline table (BASE), the Justification table (JSTF), and the Glyph Definition table (GDEF). These tables
use some of the same data formats.

This clause explains the conventions used in all OFF Layout tables, and it describes the common table
formats. Separate clauses provide complete details about the GSUB, GPOS, BASE, JSTF, and GDEF tables.

The OFF Layout tables provide typographic information for properly positioning and substituting glyphs,
operations that are required for accurate typography in many language environments. OFF Layout data is
organized by script, language system, typographic feature, and lookup.

Scripts are defined at the top level. A script is a collection of glyphs used to represent one or more languages
in written form (see Figure 6.10). For instance, a single script-Latin is used to write English, French, German,
and many other languages. In contrast, three scripts-Hiragana, Katakana, and Kanji-are used to write
Japanese. With OFF Layout, multiple scripts may be supported by a single font.

Figure 6.10 – Glyphs in the Latin, Kanji, and Arabic scripts

154

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

154 ©	ISO/IEC	2019	–	All	rights	reserved
	

A language system may modify the functions or appearance of glyphs in a script to represent a particular
language. For example, the eszet ligature is used in the German language system, but not in French or
English (see Figure 6.11). And the Arabic script contains different glyphs for writing the Farsi and Urdu
languages. In OFF Layout, language systems are defined within scripts.

Figure 6.11 – Differences in the English, French, and German language systems

A language system defines features, which are typographic rules for using glyphs to represent a language.
Sample features are a "vert" feature that substitutes vertical glyphs in Japanese, a "liga" feature for using
ligatures in place of separate glyphs, and a "mark" feature that positions diacritical marks with respect to base
glyphs in Arabic (see Figure 6.12). In the absence of language-specific rules, default language system
features apply to the entire script. For instance, a default language system feature for the Arabic script
substitutes initial, medial, and final glyph forms based on a glyph's position in a word.

Figure 6.12 – A ligature glyph feature substitutes the <etc> ligature for individual glyphs, and a mark
feature positions diacritical marks above an Arabic ligature glyph

Features are implemented with lookup data that the text-processing client uses to substitute and position
glyphs. Lookups describe the glyphs affected by an operation, the type of operation to be applied to these
glyphs, and the resulting glyph output.

A font may also include FeatureVariations data within a GPOS or GSUB table that allows the default lookup
data associated with a feature to be substituted by alternate lookup data when particular conditions apply.
Currently, this mechanism is used only for variable fonts using OFF Font Variations.

6.2.2 OFF layout and Font variations

OFF Font variations allow a single font to support many design variations along one or more axes of design
variation. For example, a font with weight and width variations might support weights from thin to black, and
widths from ultra-condensed to ultra-expanded. For general information on OFF Font variations,
see subclause 7.1.

When different variation instances are selected, the design and metrics of individual glyphs changes. This can
impact font-unit values given in GPOS, BASE, JSTF or GDEF tables, such as the X and Y coordinates of an
attachment anchor position. The font-unit values given in these tables apply to the default instance of a
variable font. If adjustments are needed for different variation instances, this is done using variation data with
processes similar to those used for glyph outlines and other font data, as described in subclause 7.1. The
variation data for GPOS, JSTF or GDEF values is contained in an ItemVariationStore table which, in turn, is

155

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 155
	

contained within the GDEF table; variation data for BASE values is contained in an ItemVariationStore table
within the BASE table itself. The format of the ItemVariationStore is described in detail in the subclause 7.2.
For font-unit values within the GPOS, BASE, JSTF or GDEF tables that require variation, references to
specific variation data within the ItemVariationStore are provided in VariationIndex tables, described below.

In some variable fonts, it may be desirable to have different glyph-substitution or glyph-positioning actions
used for different regions within the font’s variation space. For example, for narrow or heavy instances in
which counters become small, it may be desirable to make certain glyph substitutions to use alternate glyphs
with certain strokes removed or outlines simplified to allow for larger counters. Such effects can be achieved
using a FeatureVariations table within either the GSUB or GPOS table. The FeatureVariations table is
described below.

6.2.3 Table organization

Two OFF Layout tables, GSUB and GPOS, use the same data formats to describe the typographic functions
of glyphs and the languages and scripts that they support: a ScriptList table, a FeatureList table, a LookupList
table, and a FeatureVariations table. In GSUB, the tables define glyph substitution data. In GPOS, they define
glyph positioning data. This subclause describes these common table formats.

The ScriptList identifies the scripts in a font, each of which is represented by a Script table that contains script
and language-system data. Language system tables reference features, which are defined in the FeatureList.
Each feature table references the lookup data defined in the LookupList that describes how, when, and where
to implement the feature.

Figure 6.13 – The relationship of scripts, language systems, features, and lookups for substitution and
positioning tables

156

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

156 ©	ISO/IEC	2019	–	All	rights	reserved
	

NOTE The data in the BASE and JSTF tables also is organized by script and language system. However, the data
formats differ from those in GSUB and GPOS, and they do not include a FeatureList or LookupList. The BASE
and JSTF data formats are described in the BASE and JSTF clauses.

The information used to substitute and position glyphs is defined in Lookup subtables. Each subtable supplies
one type of information, depending upon whether the lookup is part of a GSUB or GPOS table. For instance, a
GSUB lookup might specify the glyphs to be substituted and the context in which a substitution occurs, and a
GPOS lookup might specify glyph position adjustments for kerning. OFF Layout has seven types of GSUB
lookups (described in the GSUB clause) and nine types of GPOS lookups (described in the GPOS clause).

Each subtable (except for an Extension LookupType subtable) includes a Coverage table that lists the
"covered" glyphs that will result in a glyph substitution or positioning operation. The Coverage table formats
are described in this clause.

Some substitution or positioning operations may apply to groups, or classes, of glyphs. GSUB and GPOS
Lookup subtables use the Class Definition table to assign glyphs to classes. This clause includes a description
of the Class Definition table formats.

In non-variable fonts, GPOS lookup subtables may also contain Device tables to adjust scaled contour glyph
coordinates for particular output sizes and resolutions. Device tables can also be used for similar adjustments
to baseline metric or caret offset values in the BASE and GDEF tables. Similarly, in variable fonts, GPOS
lookup subtables, BaseCoord tables and CaretValue tables may contain VariationIndex tables that reference
variation data to adjust font-unit values as may be needed for different variation instances within a font’s
design variation space. Device and VariationIndex tables are described in this subclause.

As mentioned above, a feature table references a set of lookups in the lookup list. The FeatureVariations table
allows the default set of lookups used for a given feature to be substituted by a different set of lookups under
particular conditions. This can be used in variable fonts to provide different substitution or positioning actions
for different variation instances. For example, for narrow or heavy instances in which counters become small,
it may be desirable to make certain glyph substitutions to use alternate glyphs with certain strokes removed or
outlines simplified to allow for larger counters.

6.2.4 Scripts and languages

Three tables and their associated records apply to scripts and languages: the Script List table (ScriptList) and
its script record (ScriptRecord), the Script table and its language system record (LangSysRecord), and the
Language System table (LangSys).

Script list table and Script record

OFF Layout fonts may contain one or more groups of glyphs used to render various scripts, which are
enumerated in a ScriptList table. Both the GSUB and GPOS tables define Script List tables (ScriptList):

 The GSUB table uses the ScriptList table to access the glyph substitution features that apply to a
script. For details, see the clause, The Glyph Substitution Table (GSUB).

 The GPOS table uses the ScriptList table to access the glyph positioning features that apply to a
script. For details, see the clause, The Glyph Positioning Table (GPOS).

A ScriptList table consists of a count of the scripts represented by the glyphs in the font (ScriptCount) and an
array of records (ScriptRecord), one for each script for which the font defines script-specific features (a script
without script-specific features does not need a ScriptRecord). Each ScriptRecord consists of a ScriptTag that
identifies a script, and an offset to a Script table. The ScriptRecord array is stored in alphabetic order of the
script tags.

A Script table with the script tag 'DFLT' (default) may be used in a font to define features that are not script-
specific. An application should use a 'DFLT' script table if there is not a script table associated with the specific
script of the text being formatted, or if the text does not have a specific script (for example, it contains only
symbols or punctuation).

NOTE If symbols or punctuation have a Unicode script property “Common” but are used together with characters of a
specific script, features that apply to those symbol or punctuation characters should not necessarily be organized

157

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 157
	

under the 'DFLT' script, but can be organized under the specific script. Applications may process script-neutral
characters together with immediately-preceding or following script-specific characters for better processing
efficiency. In that case, an application would look for features that operate on the neutral characters by using the
Script table for the specific script. The ‘DFLT’ script would still be used if the text contained only the neutral
characters, however.

If there is a 'DFLT' script table, it must have a non-NULL DefaultLangSys value, which provides the offset to a
default Language System table (described below). As languages are written using particular scripts, it is
normally expected that language-specific typographic effects will be associated with the particular script, not
with the generic 'DFLT' script. For this reason, the LangSysCount value of a 'DFLT script table should
normally be 0 (no non-default language system tables). However, a font is permitted to have a 'DFLT' script
table with non-default language system tables, and an application may use features associated with one of
these if the the 'DFLT' script table is applicable (no script table is present for the specific script, or there is no
specific script in the text context), and if one of the particular language systems is specified. Applications
should support use of a non-default language system table that is associated with 'DFLT' script, though some
applications might not do so.

The ScriptRecord array stores the records alphabetically by a ScriptTag that identifies the script. Each
ScriptRecord consists of a ScriptTag and an offset to a Script table.

Example 1 at the end of this clause shows a ScriptList table and ScriptRecords for a Japanese font that uses
three scripts.

ScriptList table

Type Name Description

uint16 scriptCount Number of ScriptRecords

struct scriptRecords
[scriptCount]

Array of ScriptRecords, listed alphabetically by script tag

ScriptRecord

Type Name Description

Tag scriptTag 4-byte script tag identifier

Offset16 scriptOffset Offset to Script table, from beginning of ScriptList

Script table and Language System record

A Script table identifies each language system that defines how to use the glyphs in a script for a particular
language. It also references a default language system that defines how to use the script's glyphs in the
absence of language-specific knowledge.

A Script table begins with an offset to the Default Language System table (defaultLangSys), which defines the
set of features that regulate the default behavior of the script. Next, Language System Count (LangSysCount)
defines the number of language systems (excluding the DefaultLangSys) that use the script. In addition, an
array of Language System Records (LangSysRecord) defines each language system (excluding the default)
with an identification tag (LangSysTag) and an offset to a Language System table (LangSys). The
LangSysRecord array stores the records alphabetically by LangSysTag.

If no language-specific script behavior is defined, the LangSysCount is set to zero (0), and no
LangSysRecords are allocated.

158

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

158 ©	ISO/IEC	2019	–	All	rights	reserved
	

Script table

Type Name Description

Offset16 defaultLangSys Offset to default LangSys table, from beginning of Script table –
may be NULL

uint16 langSysCount Number of langSysRecords for this script – excluding the
DefaultLangSys

struct langSysRecords
[langSysCount]

Array of LangSysRecords, listed alphabetically by LangSys tag

LangSysRecord

Type Name Description

Tag langSysTag 4-byte LangSysTag identifier

Offset16 langSysOffset Offset to LangSys table, from beginning of Script table

Language System table
The Language System table (LangSys) identifies language-system features used to render the glyphs in a
script. (The LookupOrder offset is reserved for future use.)

Optionally, a LangSys table may define a Required Feature Index (ReqFeatureIndex) to specify one feature
as required within the context of a particular language system. For example, in the Cyrillic script, the Serbian
language system always renders certain glyphs differently than the Russian language system.

Only one feature index value can be tagged as the ReqFeatureIndex. This is not a functional limitation,
however, because the feature and lookup definitions in OFF Layout are structured so that one feature table
can reference many glyph substitution and positioning lookups. When no required features are defined, then
the ReqFeatureIndex is set to 0xFFFF.

All other features are optional. For each optional feature, a zero-based index value references a record
(FeatureRecord) in the FeatureRecord array, which is stored in a Feature List table (FeatureList). The feature
indices themselves (excluding the ReqFeatureIndex) are stored in arbitrary order in the FeatureIndex array.
The FeatureCount specifies the total number of features listed in the FeatureIndex array.

Features are specified in full in the FeatureList table, FeatureRecord, and Feature table, which are described
later in this clause. Example 2 at the end of this clause shows a Script table, LangSysRecord, and LangSys
table used for contextual positioning in the Arabic script.

LangSys table

Type Name Description

Offset16 lookupOrder = NULL (reserved for an offset to a
reordering table)

uint16 requiredFeatureIndex Index of a feature required for this language
system; if no required features = 0xFFFF

uint16 featureIndexCount Number of feature index values for this
language system – excludes the required
feature

uint16 featureIndices[featureIndexCount] Array of indices into the FeatureList, in
arbitrary order

159

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 159
	

6.2.5 Features and lookups

Features define the functionality of an OFF Layout font and they are named to convey meaning to the text-
processing client. Consider a feature named 'liga' to create ligatures. Because of its name, the client knows
what the feature does and can decide whether to apply it. For more information, see subclause 6.4. Font
developers can use these features, as well as create their own.

After choosing which features to use, the client assembles all lookups from the selected features. Multiple
lookups may be needed to define the data required for different substitution and positioning actions, as well as
to control the sequencing and effects of those actions.

To implement features, a client applies the lookups in the order the lookup definitions occur in the LookupList.
As a result, within the GSUB or GPOS table, lookups from several different features may be interleaved during
text processing. A lookup is finished when the client locates a target glyph or glyph context and performs a
substitution (if specified) or a positioning (if specified).
NOTE The substitution (GSUB) lookups always occur before the positioning (GPOS) lookups. The lookup sequencing

mechanism in TrueType relies on the font to determine the proper order of text-processing operations.

Lookup data is defined in one or more subtables that contain information about specific glyphs and the
operations to be performed on them. Each type of lookup has one or more corresponding subtable definitions.
The choice of a subtable format depends upon two factors: the precise content of the information being
applied to an operation, and the required storage efficiency. (For complete definitions of all lookup types and
subtables, see the the GSUB and GPOS clauses of this document.)

OFF Layout features define information that is specific to the layout of the glyphs in a font. They do not
encode information that is constant within the conventions of a particular language or the typography of a
particular script. Information that would be replicated across all fonts in a given language belongs in the text-
processing application for that language, not in the fonts.
Feature list table
The headers of the GSUB and GPOS tables contain offsets to Feature List tables (FeatureList) that
enumerate all the features in a font. Features in a particular FeatureList are not limited to any single script. A
FeatureList contains the entire list of either the GSUB or GPOS features that are used to render the glyphs in
all the scripts in the font.

The FeatureList table enumerates features in an array of records (FeatureRecord) and specifies the total
number of features (FeatureCount). Every feature shall have a FeatureRecord, which consists of a
FeatureTag that identifies the feature and an offset to a Feature table (described next). The FeatureRecord
array is arranged alphabetically by FeatureTag names.
NOTE The values stored in the FeatureIndex array of a LangSys table are used to locate records in the FeatureRecord

array of a FeatureList table.

FeatureList table

Type Name Description

uint16 featureCount Number of FeatureRecords in this table

FeatureRecord featureRecords[featureCount] Array of FeatureRecords – zero-based
(first feature has FeatureIndex = 0), listed
alphabetically by feature tag

FeatureRecord

Type Name Description

Tag featureTag 4-byte feature identification tag

Offset16 featureOffset Offset to Feature table, from beginning of FeatureList

160

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

160 ©	ISO/IEC	2019	–	All	rights	reserved
	

Feature table

A Feature table defines a feature with one or more lookups. The client uses the lookups to substitute or
position glyphs.

Feature tables defined within the GSUB table contain references to glyph substitution lookups, and feature
tables defined within the GPOS table contain references to glyph positioning lookups. If a text-processing
operation requires both glyph substitution and positioning, then both the GSUB and GPOS tables must each
define a Feature table, and the tables must use the same FeatureTags.

A Feature table consists of an offset to a Feature Parameters (FeatureParams) table (if one has been defined
for this feature - see note in the following paragraph), a count of the lookups listed for the feature
(LookupCount), and an arbitrarily ordered array of indices into a LookupList (LookupListIndex). The
LookupList indices are references into an array of offsets to Lookup tables.

The format of the Feature Parameters table is specific to a particular feature, and must be specified in the
feature's entry in the Feature Tags, see subclause 6.4.3 of the OFF Layout Tag Registry. The length of the
Feature Parameters table must be implicitly or explicitly specified in the Feature Parameters table itself. The
FeatureParams field in the Feature Table records the offset relative to the beginning of the Feature Table. If a
Feature Parameters table is not needed, the FeatureParams field must be set to NULL.

To identify the features in a GSUB or GPOS table, a text-processing client reads the FeatureTag of each
FeatureRecord referenced in a given LangSys table. Then the client selects the features it wants to implement
and uses the LookupList to retrieve the Lookup indices of the chosen features. Next, the client arranges the
indices in the LookupList order. Finally, the client applies the lookup data to substitute or position glyphs.

Example 3 at the end of this clause shows the FeatureList and Feature tables used to substitute ligatures in
two languages.

Feature table

Type Name Description

Offset16 featureParams Offset to Feature Parameters table (if one has been defined
for the feature), relative to the beginning of the Feature
Table; = NULL if not required.

uint16 lookupIndexCount Number of LookupList indices for this feature

uint16 lookupListIndices
[lookupIndexCount]

Array of indices into the LookupList – zero-based (first
lookup is lookupListIndex = 0)

Lookup list table
The headers of the GSUB and GPOS tables contain offsets to Lookup List tables (LookupList) for glyph
substitution (GSUB table) and glyph positioning (GPOS table). The LookupList table contains an array of
offsets to Lookup tables (Lookup). The font developer defines the Lookup sequence in the Lookup array to
control the order in which a text-processing client applies lookup data to glyph substitution and positioning
operations. LookupCount specifies the total number of Lookup table offsets in the array.

Example 4 at the end of this clause shows three ligature lookups in the LookupList table.

LookupList table

Type Name Description

uint16 lookupCount Number of lookups in this table

Offset16 lookups[lookupCount] Array of offsets to Lookup tables-from beginning of
LookupList – zero-based (first lookup is Lookup index =
0)

161

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 161
	

Lookup table

A Lookup table (Lookup) defines the specific conditions, type, and results of a substitution or positioning
action that is used to implement a feature. For example, a substitution operation requires a list of target glyph
indices to be replaced, a list of replacement glyph indices, and a description of the type of substitution action.

Each Lookup table may contain only one type of information (LookupType), determined by whether the lookup
is part of a GSUB or GPOS table. GSUB supports eight LookupTypes, and GPOS supports nine LookupTypes
(for details about LookupTypes, see the GSUB and GPOS clauses of the document).

Each LookupType is defined with one or more subtables, and each subtable definition provides a different
representation format. The format is determined by the content of the information required for an operation
and by required storage efficiency. When glyph information is best presented in more than one format, a
single lookup may contain more than one subtable, as long as all the subtables are the same LookupType.
For example, within a given lookup, a glyph index array format may best represent one set of target glyphs,
whereas a glyph index range format may be better for another set of target glyphs.

During text processing, a client applies a lookup to each glyph in the string before moving to the next lookup.
A lookup is finished for a glyph after the client makes the substitution/positioning operation. To move to the
"next" glyph, the client will typically skip all the glyphs that participated in the lookup operation: glyphs that
were substituted/positioned as well as any other glyphs that formed a context for the operation. However, in
the case of pair positioning operations (i.e., kerning), the "next" glyph in a sequence may be the second glyph
of the positioned pair (see pair positioning lookup for details).

A Lookup table contains a LookupType, specified as an integer, that defines the type of information stored in
the lookup. The LookupFlag specifies lookup qualifiers that assist a text-processing client in substituting or
positioning glyphs. The subTableCount field specifies the total number of SubTables. The SubTable array
specifies offsets, measured from the beginning of the Lookup table, to each SubTable enumerated in the
SubTable array.

Lookup table

Type Name Description

uint16 lookupType Different enumerations for GSUB and GPOS

uint16 lookupFlag Lookup qualifiers

uint16 subTableCount Number of subtables for this lookup

Offset16 subTableOffsets
[subTableCount]

Array of offsets to lookup subtables, from beginning
of Lookup table

uint16 markFilteringSet Index (base 0) into GDEF mark glyph sets structure.
This field is present only if bit useMarkFilteringSet of
lookup flags is set.

The LookupFlag uses two bytes of data:

 Each of the first four bits can be set in order to specify additional instructions for applying a lookup to
a glyph string. The LookUpFlag bit enumeration table provides details about the use of these bits.

 The fifth bit indicates the presence of a MarkFilteringSet field in the Lookup table.

 The next three bits are reserved for future use.

 The high byte is set to specify the type of mark attachment.

162

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

162 ©	ISO/IEC	2019	–	All	rights	reserved
	

LookupFlag bit enumeration

Value Name Description

0x0001 rightToLeft This bit relates only to the correct processing of the cursive
attachment lookup type (GPOS lookup type 3). When this
bit is set, the last glyph in a given sequence to which the
cursive attachment lookup is applied, will be positioned on
the baseline.
NOTE Setting of this bit is not intended to be used by
operating systems or applications to determine text
direction.

0x0002 ignoreBaseGlyphs If set, skips over base glyphs

0x0004 ignoreLigatures If set, skips over ligatures

0x0008 ignoreMarks If set, skips over all combining marks

0x0010 useMarkFilteringSet If set, indicates that the lookup table structure is followed
by a MarkFilteringSet field. The layout engine skips over all
mark glyphs not in the mark filtering set indicated.

0x00E0 reserved For future use (Set to zero)

0xFF00 markAttachmentType If not zero, skips over all marks of attachment type different
from specified.

IgnoreBaseGlyphs, IgnoreLigatures, or IgnoreMarks refer to base glyphs, ligatures and marks as defined in
the Glyph Class Definition Table in the GDEF table. If any of these flags are set, a Glyph Class Definition
Table must be present. If any of these bits is set, then lookups must ignore glyphs of the respective type; that
is, the other glyphs must be processed just as though these glyphs were not present.

If MarkAttachmentType is non-zero, then mark attachment classes must be defined in the Mark Attachment
Class Definition Table in the GDEF table. When processing glyph sequences, a lookup must ignore any mark
glyphs that are not in the specified mark attachment class; only marks of the specified type are processed.

If any lookup has the UseMarkFilteringSet flag set, then the Lookup header must include the MarkFilteringSet
field and a MarkGlyphSetsTable must be present in GDEF table. The lookup must ignore any mark glyphs that
are not in the specified mark glyph set; only glyphs in the specified mark glyph set are processed.

If a mark filtering set is specified, this supersedes any mark attachment type indication in the lookup flag. If the
IgnoreMarks bit is set, this supersedes any mark filtering set or mark attachment type indications.

For example, in Arabic text, a character string might have the pattern <base - mark - base>. That string could
be converted into a ligature composed of two components, one for each base character, with the combining
mark glyph over the first component. To produce this ligature, the font developer would set the IgnoreMarks
bit of the ligature substitution lookup to tell the client to ignore the mark, substitute the ligature glyph first, and
then position the mark glyph over the ligature in a subsequent GPOS lookup. Alternatively, a lookup which did
not set the IgnoreMarks bit could be used to describe a three-component ligature glyph, composed of the first
base glyph, the mark glyph, and the second base glyph.

For another example, a lookup which creates a ligature of a base glyph with a top mark could skip over all
bottom marks by specifying the mark attachment type as a class that includes only top marks.

6.2.6 Coverage table

Each subtable (except an Extension LookupType subtable) in a lookup references a Coverage table
(Coverage), which specifies all the glyphs affected by a substitution or positioning operation described in the
subtable. The GSUB, GPOS, and GDEF tables rely on this notion of coverage. If a glyph does not appear in a
Coverage table, the client can skip that subtable and move immediately to the next subtable.

163

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 163
	

A Coverage table identifies glyphs by glyph indices (GlyphIDs) either of two ways:

 As a list of individual glyph indices in the glyph set.

 As ranges of consecutive indices. The range format gives a number of start-glyph and end-glyph
index pairs to denote the consecutive glyphs covered by the table.

In a Coverage table, a format code (CoverageFormat) specifies the format as an integer: 1 = lists, and 2 =
ranges.

A Coverage table defines a unique index value (Coverage Index) for each covered glyph. This unique value
specifies the position of the covered glyph in the Coverage table. The client uses the Coverage Index to look
up values in the subtable for each glyph.

Coverage Format 1

Coverage Format 1 consists of a format code (CoverageFormat) and a count of covered glyphs (GlyphCount),
followed by an array of glyph indices (GlyphArray). The glyph indices must be in numerical order for binary
searching of the list. When a glyph is found in the Coverage table, its position in the GlyphArray determines
the Coverage Index that is returned-the first glyph has a Coverage Index = 0, and the last glyph has a
Coverage Index = GlyphCount -1.

Example 5 at the end of this clause shows a Coverage table that uses Format 1 to list the GlyphIDs of all
lowercase descender glyphs in a font.

Coverage Format1 table: Individual glyph indices

Type Name Description

uint16 coverageFormat Format identifier – format = 1

uint16 glyphCount Number of glyphs in the glyph array

uint16 glyphArray[glyphCount] Array of glyph IDs – in numerical order

Coverage Format 2

Format 2 consists of a format code (coverageFormat) and a count of glyph index ranges (rangeCount),
followed by an array of records (rangeRecords). Each RangeRecord consists of a start glyph index
(startGlyphID), an end glyph index (endGlyphID), and the Coverage Index associated with the range's Start
glyph. Ranges shall be in glyph ID order, and they must be distinct, with no overlapping.

The Coverage Indexes for the first range begin with zero (0), and the Start Coverage Indexes for each
succeeding range are determined by adding the length of the preceding range (endGlyphID - startGlyphID +
1) to the array Index. This allows for a quick calculation of the Coverage Index for any glyph in any range
using the formula: Coverage Index (glyphID) = startCoverageIndex + glyphID - startGlyphID.

Example 6 at the end of this clause shows a Coverage table that uses Format 2 to identify a range of numeral
glyphs in a font.

CoverageFormat2 table: Range of glyphs

Type Name Description

uint16 coverageFormat Format identifier – format = 2

uint16 rangeCount Number of RangeRecords

struct rangeRecords
[rangeCount]

Array of glyph ranges – ordered by startGlyphID

164

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

164 ©	ISO/IEC	2019	–	All	rights	reserved
	

RangeRecord

Type Name Description

uint16 startGlyphID First glyph ID in the range

uint16 endGlyphID Last glyph ID in the range

uint16 startCoverageIndex Coverage Index of first glyph ID in range

6.2.7 Class definition table

In OFF Layout, index values identify glyphs. For efficiency and ease of representation, a font developer can
group glyph indices to form glyph classes. Class assignments vary in meaning from one lookup subtable to
another. For example, in the GSUB and GPOS tables, classes are used to describe glyph contexts. GDEF
tables also use the idea of glyph classes.

Consider a substitution action that replaces only the lowercase ascender glyphs in a glyph string. To more
easily describe the appropriate context for the substitution, the font developer might divide the font's
lowercase glyphs into two classes, one that contains the ascenders and one that contains the glyphs without
ascenders.

A font developer can assign any glyph to any class, each identified with an integer called a class value. A
Class Definition table (ClassDef) groups glyph indices by class, beginning with Class 1, then Class 2, and so
on. All glyphs not assigned to a class fall into Class 0. Within a given class definition table, each glyph in the
font belongs to exactly one class.

The ClassDef table can have either of two formats: one that assigns a range of consecutive glyph indices to
different classes, or one that puts groups of consecutive glyph indices into the same class.

Class Definition Table Format 1

The first class definition format (ClassDefFormat1) specifies a range of consecutive glyph indices and a list of
corresponding glyph class values. This table is useful for assigning each glyph to a different class because the
glyph indices in each class are not grouped together.

A ClassDef Format 1 table begins with a format identifier (ClassFormat). The range of glyph IDs covered by
the table is identified by two values: the glyph ID of the first glyph (StartGlyphID), and the number of
consecutive glyph IDs (including the first one) that will be assigned class values (GlyphCount). The
ClassValueArray lists the class value assigned to each glyph ID, starting with the class value for StartGlyphID
and following the same order as the glyph IDs. Any glyph not included in the range of covered glyph IDs
automatically belongs to Class 0.

Example 7 at the end of this clause uses Format 1 to assign class values to the lowercase, x-height, ascender,
and descender glyphs in a font.

ClassDefFormat1 table: Class array

Type Name Description

uint16 classFormat Format identifier-format = 1

uint16 startGlyphID First glyph ID of the classValueArray

uint16 glyphCount Size of the classValueArray

uint16 classValueArray[glyphCount] Array of Class Values – one per glyph ID

165

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 165
	

Class Definition Table Format 2

The second class definition format (ClassDefFormat2) defines multiple groups of glyph indices that belong to
the same class. Each group consists of a discrete range of glyph indices in consecutive order (ranges cannot
overlap).

The ClassDef Format 2 table contains a format identifier (ClassFormat), a count of ClassRangeRecords that
define the groups and assign class values (ClassRangeCount), and an array of ClassRangeRecords ordered
by the glyph ID of the first glyph in each record (ClassRangeRecord).

Each ClassRangeRecord consists of a Start glyph index, an End glyph index, and a Class value. All GlyphIDs
in a range, from Start to End inclusive, constitute the class identified by the Class value. Any glyph not
covered by a ClassRangeRecord is assumed to belong to Class 0.

Example 8 at the end of this clause uses Format 2 to assign class values to four types of glyphs in the Arabic
script.

ClassDefFormat2 table: Class ranges

Type Name Description

uint16 classFormat Format identifier – format = 2

uint16 classRangeCount Number of ClassRangeRecords

ClassRangeRecord classRangeRecords
[classRangeCount]

Array of ClassRangeRecords – ordered by
startGlyphID

ClassRangeRecord

Type Name Description

uint16 startGlyphID First glyph ID in the range

uint16 endGlyphID Last glyph ID in the range

uint16 class Applied to all glyphs in the range

6.2.8 Device and VariationIndex tables

Device tables and VariationIndex tables are used to provide adjustments to font-unit values in GPOS, JSTF,
GDEF or BASE tables, such as the X and Y coordinates of an attachment anchor position. Device tables are
used only in non-variable fonts. VariationIndex tables are used only in variable fonts and are a variant format
of the Device table. When values require adjustment data, the table containing that value will also include an
offset to a Device table or VariationIndex table.

NOTE Because the same fields are used to provide an offset to a Device table or an offset to a VariationIndex table,
Device tables and VariationIndex tables cannot both be used for a given positioning value. Device tables should
only be used in non-variable fonts; VariationIndex tables can only be used in variable fonts.

Glyphs in a font are defined in design units specified by the font developer. Font scaling increases or
decreases a glyph's size and rounds it to the nearest whole pixel. However, precise glyph positioning often
requires adjustment of these scaled and rounded values, particularly at small PPEM sizes. Hinting, applied to
points in the glyph outline, is an effective solution to this problem, but it may require the font developer to
redesign or re-hint glyphs.

Another solution, used by the GPOS, BASE, JSTF, and GDEF tables in non-variable fonts, is to use a Device
table to specify correction values to adjust the scaled design units. A Device table applies the correction

166

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

166 ©	ISO/IEC	2019	–	All	rights	reserved
	

values to the range of sizes identified by StartSize and EndSize, which specify the smallest and largest pixel-
per-em (ppem) sizes needing adjustment.

Because Device table adjustments often are very small (a pixel or two), the correction can be compressed into
a 2-, 4-, or 8-bit representation per size. Two bits can represent a number in the range {-2, -1, 0, or 1}, four
bits can represent a number in the range {-8 to 7}, and eight bits can represent a number in the range {-128 to
127}.

In variable fonts, X or Y font-unit values in GPOS, JSTF, or GDEF data may require adjustment for different
variation instances within a font’s variation space. The variation data for this is contained in an
ItemVariationStore table contained within the GDEF table. Similarly, values in a BASE table may require
adjustment, and the variation data for this is contained in an ItemVariationStore table within the BASE table.
The format of the ItemVariationStore is described in detail in subclause 7.2. It contains a number of delta
values organized into sets that are referenced using a delta-set index. Data stored outside the
ItemVariationStore provides delta-set indices for each of target items requiring variation. Within the GPOS,
JSTF, GDEF and BASE tables, delta-set indices are stored in VariationIndex tables.

The Device and VariationIndex tables contain a DeltaFormat field that identifies the format of data contained.
Format values 0x0001 to 0x0003 are used for Device tables, and indicate the format of delta adjustment
values contained directly within the device table: signed 2-, 4,- or 8-bit values. A format value of 0x8000 is
used for the VariationIndex table, and indicates that a delta-set index is used to reference delta data in an
ItemVariationStore table.

DeltaFormat values

Type Name Description

0x0001 LOCAL_2_BIT_DELTAS Signed 2-bit value, 8 values per uint16

0x0002 LOCAL_4_BIT_DELTAS Signed 4-bit value, 4 values per uint16

0x0003 LOCAL_8_BIT_DELTAS Signed 8-bit value, 2 values per uint16

0x8000 VARIATION_INDEX VariationIndex table, contains a delta-set index pairs.

0x7FFC Reserved For future use – set to 0.

The Device table includes an array of uint16 values (DeltaValue) that stores the adjustment delta values in a
packed representation. The 2-, 4-, or 8-bit signed values are packed into uint16 values starting with the most
significant bits first. For example, using a DeltaFormat of 2 (4-bit values), an array of values equal to {1, 2, 3, -
1} would be represented by the DeltaValue 0x123F.

A single Device table provides delta information for one target value at a range of sizes. The DeltaValue array
lists the number of pixels to adjust specified X or Y values at each ppem size in the targeted range. In the
array, the first index position specifies the number of pixels to add or subtract from the coordinate at the
smallest ppem size that needs correction, the second index position specifies the number of pixels to add or
subtract from the coordinate at the next ppem size, and so on for each ppem size in the range.

Device table

Type Name Description

uint16 startSize Smallest size to correct-in ppem

uint16 endSize Largest size to correct-in ppem

uint16 deltaFormat Format of deltaValue array data: 0x0001, 0x0002, or 0x0003

uint16 deltaValue[] Array of compressed data

167

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 167
	

Example 9 at the end of this clause uses a Device table to define the minimum extent value for a math script.

In a variable font, the ItemVariationStore table uses a two-level organization for variation data: a store can
have multiple Item Variation Data subtables, and each subtable has multiple delta-set rows. A delta-set index
is a two-part index: an outer index that selects a particular item variation data subtable, and an inner index
that selects a particular delta-set row within that subtable. A VariationIndex table specifies both the outer and
inner portions of the delta-set index.

VariationIndex table

Type Name Description

uint16 deltaSetOuterIndex A delta-set outer index – used to select an item variation
data subtable within the item variation store.

uint16 deltaSetInnerIndex A delta-set inner index – used to select a delta-set row
within an item variation data subtable.

uint16 deltaFormat Format, = 0x8000

Note that the VariationIndex table is shorter than the Device table since it does not directly contain an array of
delta data. Its format is similar to a Device table with an empty delta array. When applications get an offset to
a Device or VariationIndex table, they should begin by reading the first three fields and then testing the
DeltaFormat field to determine the interpretation of the first two fields and whether there is additional data to
read.

6.2.9 Feature variations

FeatureVariations Table

A feature variations table describes variations on the effects of features based on various conditions. That is, it
allows the default set of lookups for a given feature to be substituted with alternates of lookups under
particular conditions.

The feature list provides an array of feature tables and associated feature tags, and a LangSys table identifies
a particular set of the feature-table/tag pairs that will be supported for a given script and language system. The
feature tables specified in a LangSys table are used by default when current conditions do not match any of
the conditions for variation defined in the feature variations table. Those defaults will also be used under all
conditions in implementations that do not support the feature variations table.

The feature variations table has an array of condition records, each of which references a set of conditions (a
condition set table), and a set of alternate feature tables to use when a runtime context matches the condition
set.

The substitutions given are replacements of one feature table for another. The alternate feature tables are
appended at the end of the feature variations table, and are not included in the feature list table. Hence, there
are no feature records in the feature list table that correspond to the alternate feature tables. An alternate
feature table maintains the same feature tag association as the default feature table. Also, whereas the default
feature tables in the feature list table are referenced using 16-bit offsets, the alternate feature tables are
referenced using 32-bit offsets within the feature variations table.

When processing text, a default set of feature tables, each with an associated feature tag, is obtained from a
LangSys table for a given script and language system. Condition sets are evaluated in order, testing for a
condition set that matches the current runtime context. When the first match is found, the corresponding
feature table substitution table is used to revise the set of feature tables obtained by default via the LangSys
table, as described below (see FeatureTableSubstitution table).

The format of the feature variations table is as follows:

168

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

168 ©	ISO/IEC	2019	–	All	rights	reserved
	

FeatureVariations Table

Type Name Description

uint16 majorVersion Major version of the FeatureVariations
table – set to 1.

uint16 minorVersion Minor version of the FeatureVariations
table – set to 0.

uint32 featureVariationRecordCount Number of feature variation records.

FeatureVariationRecord featureVariationRecords
[featureVariationRecordCount]

Array of feature variation records.

A feature variation record has offsets to a condition set table and to a feature table substitution table.

If the ConditionSet offset is 0, there is no condition set table. This is treated as the universal condition: all
contexts are matched.

If the FeatureTableSubstitution offset is 0, there is no feature table substitution table, and no substitutions are
made.

Feature variation records shall be ordered in the order of precedence for the condition sets. During processing,
the feature variation records will be read, and the corresponding condition sets tested, in the order in which
they occur. If the condition set for a given record does not match the runtime context, then the next record is
checked. The first feature variation record for which the condition set matches the runtime context will be
considered as a candidate: if the version of the FeatureTableSubstitution table is supported, then this feature
variation record will be used, and no additional feature variation records will be considered. If the version of
the FeatureTableSubtitution table is not supported, then this feature variation record is rejected and
processing will move to the next feature variation record.

FeatureVariationRecord

Type Name Description

Offset32 conditionSet Offset to a condition set table, from beginning of
FeatureVariations table.

Offset32 featureTableSubstitutionOffset Offset to a feature table substitution table, from
beginning of the FeatureVariations table.

ConditionSet Table

A condition set table specifies a set of conditions under which a feature table substitution is to be applied. A
condition set may specify conditions related to various factors; currently, one type of factor is supported: the
variation instance of a variable font. Individual conditions are represented in subtables, which may use
different formats according to the nature of the factor defining the condition.

For a given condition set, conditions are conjunctively related (boolean AND): all of the specified conditions
must be met in order for the associated feature table substitution to be applied. A condition set does not need
to specify conditional values for all possible factors. If no values are specified for some factor, then the
condition set matches all runtime values for that factor.

If a given condition set contains no conditions, then it matches all contexts, and the associated feature table
substitution is always applied, unless there was a FeatureVariation record earlier in the array with a condition
set matching the current context.

169

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 169
	

ConditionSet Table

Type Name Description

uint16 conditionCount Number of conditions for this condition set.

uint32 conditions[conditionCount] Array of offsets to condition tables, from
beginning of the ConditionSet table.

Condition Table

The condition table describes a particular condition. Different formats for the condition table may be defined,
with each format used for a particular kind of condition qualifier. Currently, one format is defined:
ConditionTableFormat1, which is used to specify a value range for a variation axis value in a variable font.

New formats for other condition qualifiers may be added in the future, in which case the version of the
ConditionSet table will be updated. If a layout engine supports a particular version of the condition set table
and encounters a font with a later-version condition set table, it should fail to match the condition set
whenever an unrecognized condition format is encountered. In this way, new condition formats can be defined
and used in fonts that can work in a backward-compatible way in existing implementations. Therefore,
introduction of new condition formats will typically result in minor version updates to the ConditionSet table.

Condition Table Format 1: Font Variation Axis Range

A font variation axis range condition refers to a range of values for a design variation axis in a variable font.
The axes of variation are specified in the font variations ('fvar') table of a font. If a format 1 condition table is
used, there must be an fvar table in the font, and the AxisIndex value (which is zero-based) must be less than
the axisCount value in the fvar table. If the AxisIndex is invalid, the feature variation record containing this
condition table is ignored.

A format 1 condition table specifies a matching range of variation instance values along a single axis.
Absence of a format 1 condition for a given variation axis implies that that axis is not a factor in determining
applicability of the condition set.

The fvar table defines a range of valid values for each variation axis. During processing for a particular
variation instance, a normalization process is applied that maps user values in the range defined within the
fvar table to a normalized scale with a range from -1 to 1. The values specified in a format 1 condition table
are expressed in terms of the normalized scale, and so can be any value from -1 to 1.

A font variation axis range condition is met if the currently-selected variation instance has a value for the given
axis that is greater than or equal to the FilterRangeMinValue, and that is less than or equal to the
FilterRangeMaxValue.

ConditionTableFormat1

Type Name Description

uint16 Format Format, = 1

uint16 AxisIndex Index (zero-based) for the variation axis within the 'fvar' table.

F2DOT14 FilterRangeMinValue Minimum value of the font variation instances that satisfy this
condition.

F2DOT14 FilterRangeMaxValue Maximum value of the font variation instances that satisfy this
condition.

170

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

170 ©	ISO/IEC	2019	–	All	rights	reserved
	

FeatureTableSubstitution Table

A feature table substitution table describes a set of feature table substitutions to be applied when the
corresponding condition set matches the current runtime context. These substitutions are represented using
an array of feature table substitution records. Each record gives a simple substitution of one feature table for
another. When checking for a particular feature index, the first record having that index is matched, and
searching ends if a record is encountered with a higher index value.

Note that the records shall be ordered in increasing order of the FeatureIndex values, and no two records may
have the same FeatureIndex value.

FeatureTableSubstitution table

Type Name Description

uint16 majorVersion Major version of the feature table
substitution table – set to 1

uint16 minorVersion Minor version of the feature table
substitution table – set to 0.

uint16 substitutionCount Number of feature table
substitution records.

FeatureTableSubstitutionRecord substitutions
[substitutionCount]

Array of feature table substitution
records.

FeatureTableSubstitutionRecord:

Type Name Description

uint16 featureIndex The feature table index to match.

Offset32 alternateFeatureTable Offset to an alternate feature table, from start of the
FeatureTableSubstitution table.

As described above, condition sets are evaluated and may be selected for processing of the associated
feature table substitution table to replace a default feature table obtained from a LangSys table with an
alternate feature table. Given a default array of feature tables for selected features obtained from the LangSys
table, substitution of alternate feature tables can be done as follows:

1. For each feature index, evaluate the FeatureTableSubstitutionRecords in order.

2. If a matching record is encountered (FeatureIndex = the current feature index), then replace the
feature table for that feature index using the alternate feature table at the offset given in the record.
Stop processing for that feature index.

3. If a record is encountered with a higher feature index value, stop searching for that feature index; no
substitution is made.

6.2.10 Common table examples

The rest of this clause describes and illustrates examples of all the common table formats. All the examples
reflect unique parameters, but the samples provide a useful reference for building tables specific to other
situations.

The examples have three columns showing hex data, source, and comments.

171

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 171
	

Example 1: ScriptList table and ScriptRecords

Example 1 illustrates a ScriptList table and ScriptRecord definitions for a Japanese font with multiple scripts:
Han Ideographic, Kana, and Latin. Each script has script-specific behavior.

Example 1

Hex Data Source Comment

 ScriptList
TheScriptList

ScriptList table definintion

0003 3 scriptCount

 scriptRecords[0] In alphabetical order by script tag.

68616E69 'hani' scriptTag, Han Ideographic script

0014 HanIScriptTable offset to Script table

 scriptRecords[1] In alphabetical order by script tag.

6B616E61 'kana' scriptTag, Hiragana and Katakana scripts

0018 KanaScriptTable offset to Script table

 scriptRecords[2] In alphabetical order by script tag.

6C61746E 'latn' scriptTag, Latin script

001C LatinScriptTable offset to Script table

Example 2: Script Table, LangSysRecord, and LangSys table

Example 2 illustrates the Script table, LangSysRecord, and LangSys table definitions for the Arabic script and
the Urdu language system. The default LangSys table defines three default Arabic script features used to
replace certain glyphs in words with their proper initial, medial, and final glyph forms. These contextual
substitutions are invariant and occur in all language systems that use the Arabic script.

Many alternative glyphs in the Arabic script have language-specific uses. For instance, the Arabic, Farsi, and
Urdu language systems use different glyphs for numerals. To maintain character-set compatibility, the
Unicode Standard includes separate character codes for the Arabic and Farsi numeral glyphs. However, the
standard uses the same character codes for Farsi and Urdu numerals, even though three of the Urdu glyphs
(4, 6, and 7) differ from the Farsi glyphs. To access and display the proper glyphs for the Urdu numerals,
users of the text-processing client must enter the character codes for the Farsi numerals. Then the text-
processing client uses a required OFF Layout glyph substitution feature, defined in the Urdu LangSys table, to
access the correct Urdu glyphs for the 4, 6, and 7 numerals.
NOTE The Urdu LangSys table repeats the default script features. This repetition is necessary because the Urdu

language system also uses alternative glyphs in the initial, medial, and final glyph positions in words.

Example 2

Hex Data Source Comment

 Script
ArabicScriptTable

Script table definition

000A DefLangSys offset to DefaultLangSys table

172

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

172 ©	ISO/IEC	2019	–	All	rights	reserved
	

0001 1 langSysCount

 langSysRecords[0] In alphabetical order by LangSys tag.

55524420 'URD ' langSysTag, Urdu language

0016 UrduLangSys offset to LangSys table for Urdu

 LangSys
DefLangSys

default LangSys table definition

0000 NULL lookupOrder, reserved, null

FFFF 0xFFFF requiredFeatureIndex, no required features

0003 3 featureIndexCount

0000 0 featureIndices[0], in arbitrary order
'init' feature (initial glyph)

0001 1 featureIndices [1], 'fina' feature (final glyph)

0002 2 featureIndices [2], for 'medi' feature (medial glyph)

 LangSys
UrduLangSys

LangSys table definition

0000 NULL lookupOrder, reserved, null

0003 3 requiredFeatureIndex, numeral subsitution in Urdu

0003 3 featureIndexCount

0000 0 featureIndices [0], in arbitrary order
'init' feature (initial glyph)

0001 1 featureIndices [1], 'fina' feature (final glyph)

0002 2 featureIndices [2], 'medi' feature (medial glyph)

Example 3: FeatureList table and Feature table

Example 3 shows the FeatureList and Feature table definitions for ligatures in the Latin script. The FeatureList
has three features, all optional and named 'liga'. One feature, also a default, implements ligatures in Latin if no
language-specific feature specifies other ligatures. Two other features implement ligatures in the Turkish and
German languages, respectively.

Three lookups define glyph substitutions for rendering ligatures in this font. The first lookup produces the "ffi"
and "fi" ligatures; the second produces the "ffl", "fl", and "ff" ligatures; and the third produces the eszet ligature.

The ligatures that begin with an "f" are separated into two sets because Turkish has a dotless "i" glyph and so
does not use "ffi" and "fi" ligatures. However, Turkish does use the "ffl", "fl", and "ff" ligatures, and the
TurkishLigatures feature table lists this one lookup.

Only the German language system uses the eszet ligature, so the GermanLigatures feature table includes a
lookup for rendering that ligature.

Because the Latin script can use both sets of ligatures, the DefaultLigatures feature table defines two
LookupList indices: one for the "ffi" and "fi" ligatures, and one for the "ffl", "fl", and "ff" ligatures. If the text-
processing client selects this feature, then the font applies both lookups.

173

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 173
	

NOTE The TurkishLigatures and DefaultLigatures feature tables both list a LookupListIndex of one (1) for the "ffl", "fl",
and "ff" ligatures lookup. This is because language-specific lookups override all default language-system lookups,
and a language-system feature table must explicitly list all lookups that apply to the language.

Example 3

Hex Data Source Comment

 FeatureList
TheFeatureList

FeatureList table definition

0003 3 featureCount

 featureRecords[0]

6C696761 'liga' featureTag

0014 TurkishLigatures offset to Feature table, FflFfFlLiga

 featureRecords[1]

6C696761 'liga' featureTag

001A DefaultLigatures offset to Feature table, FfiFiLiga, FflFfFlLiga

 featureRecords[2]

6C696761 'liga' featureTag

0022 GermanLigatures Offset to Feature table, EszetLiga

 Feature
TurkishLigatures

Feature table definition

0000 NULL featureParams, reserved, null

0001 1 lookupIndexCount

0000 1 lookupListIndices[1], ffl, fl, ff ligature substitution Lookup

 Feature
DefaultLigatures

Feature table definition

0000 NULL featureParams - reserved, null

0002 2 lookupIndexCount

0000 0 lookupListIndices [0], in arbitrary order, ffi, fi ligatures

0001 1 lookupListIndices [1], ffl, fl, ff ligature substitution Lookup

 Feature
GermanLigatures

Feature table definition

0000 NULL featureParams - reserved, null

0001 3 lookupIndexCount

0000 0 lookupListIndices [0], in arbitrary order, ffi, fi ligatures

174

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

174 ©	ISO/IEC	2019	–	All	rights	reserved
	

0001 1 lookupListIndices [1], ffl, fl, ff ligature substitution Lookup

0002 2 lookupListIndices [2], eszet ligature substitution Lookup

Example 4: LookupList table and Lookup table

A continuation of Example 3, Example 4 shows three ligature lookups in the LookupList table. The first
generates the "ffi" and "fi" ligatures; the second produces the "ffl", "fl", and "ff" ligatures; and the third
generates the eszet ligature. Each lookup table defines an offset to a subtable that contains data for the
ligature substitution.

Example 4

Hex Data Source Comment

 LookupList
TheLookupList

LookupList table definition

0003 3 lookupCount

0008 FfiFiLookup offset to lookups[0] table, in design order

0010 FflFlFfLookup offset to lookups[1] table

0018 EszetLookup offset to lookups[2] table

 Lookup
FfiFiLookup

lookups[0] table definition

0004 4 lookupType, ligature subst

000C 0x000C lookupFlag, IgnoreLigatures, IgnoreMarks

0001 1 subTableCount

0018 FfiFiSubtable offset to FfiFi ligature substitution subtable

 Lookup
FflFlFfLookup

lookups[1] table definition

0004 4 lookupType: ligature subst

000C 0x000C LookupFlag- IgnoreLigatures, IgnoreMarks

0001 1 subTableCount

0028 FflFlFfSubtable offset to FflFlFf ligature substitution subtable

 Lookup
EszetLookup

lookups[2] table definition

0004 4 lookupType: ligature subst

000C 0x000C lookupFlag: IgnoreLigatures, IgnoreMarks

0001 1 subTableCount

0038 EszetSubtable offset to Eszet ligature substitution subtable

175

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 175
	

Example 5: CoverageFormat1 table (glyph ID list)

Example 5 illustrates a Coverage table that lists the GlyphIDs of all lowercase descender glyphs in a font. The
table uses the list format instead of the range format because the GlyphIDs for the descender glyphs are not
consecutively ordered.

Example 5

Hex Data Source Comment

 CoverageFormat1
DescenderCoverage

Coverage table definition

0001 1 coverageFormat: glyph ID list

0005 5 glyphCount

0038 gGlyphID glyphArray[0], in glyph ID order

003B jGlyphID glyphArray[1]

0041 pGlyphID glyphArray[2]

0042 qGlyphID glyphArray[3]

004A yGlyphID glyphArray[4]

Example 6: CoverageFormat2 table (glyph ID ranges)

Example 6 shows a Coverage table that defines ten numeral glyphs (0 through 9). The table uses the range
format instead of the list format because the glyph IDs are ordered consecutively in the font. The
StartCoverageIndex of zero (0) indicates that the first glyph ID, for the zero glyph, returns a Coverage Index of
0. The second glyph ID, for the numeral one (1) glyph, returns a Coverage Index of 1, and so on.

Example 6

Hex Data Source Comment

 CoverageFormat2
NumeralCoverage

Coverage table definition

0002 2 coverageFormat: glyph ID ranges

0001 1 rangeCount

 rangeRecord[0]

004E 0glyphID startGlyphID

0057 9glyphID endGlyphID

0000 0 StartCoverageIndex, first CoverageIndex = 0

Example 7: ClassDefFormat1 table (Class array)

The ClassDef table in Example 7 assigns class values to the lowercase glyphs in a font. The x-height glyphs
are in Class 0, the ascender glyphs are in Class 1, and the descender glyphs are in Class 2. The array begins
with the index for the lowercase "a" glyph.

176

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

176 ©	ISO/IEC	2019	–	All	rights	reserved
	

Example 7

Hex Data Source Comment

 ClassDefFormat1
LowercaseClassDef

ClassDef table definition

0001 1 classFormat: class array

0032 aGlyphID startGlyph

001A 26 glyphCount

 classValueArray

0000 0 aGlyph, Xheight Class 0

0001 1 bGlyph, Ascender Class 1

0000 0 cGlyph, Xheight Class 0

0001 1 dGlyph, Ascender Class 1

0000 0 eGlyph, Xheight Class 0

0001 1 fGlyph, Ascender Class 1

0002 2 gGlyph, Descender Class 2

0001 1 hGlyph, Ascender Class 1

0000 0 iGlyph, Ascender Class 1

0002 2 jGlyph, Descender Class 2

0001 1 kGlyph, Ascender Class 1

0001 1 lGlyph, Ascender Class 1

0000 0 mGlyph, Xheight Class 0

0000 0 nGlyph, Xheight Class 0

0000 0 oGlyph, Xheight Class 0

0002 2 pGlyph, Descender Class 2

0002 2 qGlyph, Descender Class 2

0000 0 rGlyph, Xheight Class 0

0000 0 sGlyph, Xheight Class 0

0001 1 tGlyph, Ascender Class 1

0000 0 uGlyph, Xheight Class 0

0000 0 vGlyph, Xheight Class 0

177

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 177
	

0000 0 wGlyph, Xheight Class 0

0000 0 xGlyph, Xheight Class 0

0002 2 yGlyph, Descender Class 2

0000 0 zGlyph, Xheight Class 0

Example 8: ClassDefFormat2 table (Class ranges)

In Example 8, the ClassDef table assigns class values to four types of glyphs in the Arabic script: medium-
height base glyphs, high base glyphs, very high base glyphs, and default mark glyphs. The table lists only
Class 1, Class 2, and Class 3; all glyphs not explicitly assigned a class fall into Class 0.

The table uses the range format because the glyph IDs in each class are ordered consecutively in the font. In
the ClassRange array, ClassRange definitions are ordered by the Start glyph index in each range. The indices
of the high base glyphs, defined in ClassRange[0], are first in the font and have a class value of 2.
ClassRange[1] defines all the very high base glyphs and assigns a class value of 3. ClassRange[2] contains
all default mark glyphs; the class value is 1. Class 0 consists of all the medium-height base glyphs, which are
not explicitly assigned a class value.

Example 8

Hex Data Source Comment

 ClassDefFormat2
GlyphHeightClassDef

Class table definition

0002 2 classFormat: ranges

0003 3 classRangeCount

 classRangeRecords[0] ordered by startGlyphID

0030 tahGlyphID startGlyphID – first glyph ID in the range

0031 dhahGlyphID endGlyphID – last glyph ID in the range

0002 2 class: high base glyphs

 classRangeRecords[1]

0040 cafGlyphID startGlyphID

0041 gafGlyphID endGlyphID

0003 3 class: very high base glyphs

 classRangeRecords[2]

00D2 fathatanDefaultGlyphID startGlyphID

00D3 dammatanDefaultGlyp
hID

endGlyphID

0001 1 class: default marks

178

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

178 ©	ISO/IEC	2019	–	All	rights	reserved
	

Example 9: Device table

Example 9 defines the minimum extent value for a math script, using a Device table to adjust the value
according to the size of the output font. Here, the Device table defines single-pixel adjustments for font sizes
from 11 ppem to 15 ppem. The DeltaFormat is 1, which signifies a packed array of signed 2-bit values, eight
values per uint16.

Example 9

Hex Data Source Comment

 DeviceTableFormat1
MinCoordDeviceTable

Device Table definition

000B 11 startSize: 11 ppem

000F 15 endSize: 15 ppem

0001 1 deltaFormat: signed 2 bit value (8 values per uint16)

 1 increase 11ppem by 1 pixel

 1 increase 12ppem by 1 pixel

 1 increase 13ppem by 1 pixel

 1 increase 14ppem by 1 pixel

5540 1 increase 15ppem by 1 pixel

6.3 Advanced typographic tables

There are also several optional tables that support vertical layout as well as other advanced typographic
functions:

Advanced Typographic Tables

Tag Name

BASE Baseline data

GDEF Glyph definition data

GPOS Glyph positioning data

GSUB Glyph substitution data

JSTF Justification data

MATH Math layout data

6.3.1 BASE Baseline table

The Baseline table (BASE) provides information used to align glyphs of different scripts and sizes in a line of
text, whether the glyphs are in the same font or in different fonts. To improve text layout, the Baseline table
also provides minimum (min) and maximum (max) glyph extent values for each script, language system, or
feature in a font.

179

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 179
	

Overview

Lines of text composed with glyphs of different scripts and point sizes need adjustment to correct interline
spacing and alignment. For example, glyphs designed to be the same point size often differ in height and
depth from one font to another (see Figure 6.14). This variation can produce interline spacing that looks too
large or too small, and diacritical marks, math symbols, subscripts, and superscripts may be clipped.

Figure 6.14 – Incorrect alignment of glyphs from Latin and Kanji (Latin dominant)

In addition, different baselines can cause text lines to waver visually as glyphs from different scripts are placed
next to one another. For example, ideographic scripts position all glyphs on a low baseline. With Latin scripts,
however, the baseline is higher, and some glyphs descend below it. Finally, several Indic scripts use a high
"hanging baseline" to align the tops of the glyphs.

To solve these composition problems, the BASE table recommends baseline positions and min/max extents
for each script (see Figure 6.15). Script min/max extents can be modified for particular language systems or
features.

Figure 6.15 – Proper alignment of glyphs from Latin and Kanji (Latin dominant)

Baseline values

The BASE table uses a model that assumes one script at one size is the "dominant run" during text
processing – that is, all other baselines are defined in relation to this the dominant run.

For example, Latin glyphs and the ideographic Kanji glyphs have different baselines. If a Latin script of a
particular size is specified as the dominant run, then all Latin glyphs of all sizes will be aligned on the roman
baseline, and all Kanji glyphs will be aligned on the lower ideographic baseline defined for use with Latin text.
As a result, all glyphs will look aligned within each line of text.

The BASE table supplies recommended baseline positions; a client can specify others. For instance, the client
may want to assign baseline positions different from those in the font.

Figure 6.16 – Comparing Latin and Kanji baselines, with characters aligned according
to the dominant run

180

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

180 ©	ISO/IEC	2019	–	All	rights	reserved
	

Min/Max Extent values

The BASE table gives clients the option of using script, language system, or feature-specific extent values to
improve composition (see Figure 6.16). For example, suppose a font contains glyphs in Latin and Arabic
scripts, and the min/max extents defined for the Arabic script are larger than the Latin extents. The font also
supports Urdu, a language system that includes specific variants of the Arabic glyphs, and some Urdu variants
require larger min/max extents than the default Arabic extents. To accommodate the Urdu glyphs, the BASE
table can define language-specific min/max extent values that will override the default Arabic extents-but only
when rendering Urdu glyphs.

The BASE table also can define feature-specific min/max values that apply only when a particular feature is
enabled. Suppose that the font described earlier also supports the Farsi language system, which has one
feature that requires a minor alteration of the Arabic script extents to display properly. The BASE table can
specify these extent values and apply them only when that feature is enabled in the Farsi language.

6.3.1.1 BASE table and OFF Font variations

OFF Font variations allow a single font to support many design variations along one or more axes of design
variation. For example, a font with weight and width variations might support weights from thin to black, and
widths from ultra-condensed to ultra-expanded. For general information on OFF Font variations,
see subclause 7.1.

When different variation instances are selected, the design of individual glyphs changes, and the metric
characteristics of the font as a whole may also change. As a result, corresponding changes may also be
required for metric values in the BASE table.

Metrics in the BASE table are expressed directly in BaseCoord tables using explicit X or Y font-unit values. In
a variable font, these X and Y values apply to the default instance and may need to be adjusted for the current
variation instance. This is done using variation data with processes similar to those used for glyph outlines
and other font data, as described in the OFF Font Variations Overview chapter.

NOTE Some BASE metrics can be expressed indirectly by reference to specific glyph outline points. In a variable font,
use of glyph points to specify a metric value would require invoking the rasterizer to process the glyph-outline
variation data in order to obtain the adjusted position of the point before the BASE metric value can be used. This
may have a significant, negative impact on performance of text-layout processing. For this reason, it is
recommended that, in a variable font, any BASE metric values that require adjustment for different variation
instances should always be expressed directly as X and Y values.

Variation data for adjustment of BASE values is stored within an item variation store table within the BASE
table. The item variation store and constituent formats are described in subclause7.2. The item variation store
is also used in the 'GDEF' table, as well as in the 'MVAR' and other tables, but is different from the formats for
variation data used in the 'cvar' or 'gvar' tables.

The variation data within an item variation store is comprised of a number of adjustment deltas that get
applied to the default values of target items for variation instances within particular regions of the font’s
variation space. The item variation store format use delta-set indices to reference variation delta data for
particular target, font-data items to which they are applied. Data external to the item variation store identifies
the delta-set index to be used for each given target item. Within the BASE table, these indices are specified
within VariationIndex tables, with one VariationIndex table referenced for each item that requires variation
adjustment.

Note that the VariationIndex table is a variant of a Device table, with a distinct format value. (For full details on
the Device and VariationIndex table formats, see subclause 6.2.) This is done so that the default instance of a
variable font can be compatible with applications that do not support Font Variations. As a result, variable
fonts cannot use device tables. A VariationIndex table will be ignored in applications that do not support Font
Variations, or if the font is not a variable font.

The item variation store format uses a two-level organization for variation data: a store can have multiple item
variation data subtables, and each subtable has multiple delta-set rows. A delta-set index is a two-part index:
an outer index that selects a particular item variation data subtable, and an inner index that selects a particular
delta-set row within that subtable. A VariationIndex table specifies both the outer and inner portions of the
delta-set index.

181

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 181
	

6.3.1.2 BASE table organization

The BASE table begins with offsets to Axis tables that describe layout data for the horizontal and vertical
layout directions of text. A font can provide layout data for both text directions or for only one text direction:

 The Horizontal Axis table (HorizAxis) defines information used to lay out text horizontally. All baseline
and min/max values refer to the Y direction.

 The Vertical Axis table (VertAxis) defines information used to lay out text vertically. All baseline and
min/max values refer to the X direction.

NOTE The same baseline tags can be used for both horizontal and vertical axes. For example, the 'romn' tag
description used for the vertical axis would indicate the baseline of rotated Latin text.

The figure below shows how the BASE table is organized.

Figure 6.17 – High-level organization of BASE table

Text direction

The HorizAxis and VertAxis tables organize layout information by script in BaseScriptList tables. A
BaseScriptList enumerates all scripts in the font that are written in a particular direction (horizontal or vertical).

For example, consider a Japanese font that contains Kanji, Kana, and Latin scripts. Because all three scripts
are rendered horizontally, all three are defined in the BaseScriptList of the HorizAxis table. Kanji and Kana
also are rendered vertically, so those two scripts are defined in the BaseScriptList of the VertAxis table, too.

Baseline data

Each Axis table also references a BaseTagList, which identifies all the baselines for all scripts written in the
same direction (horizontal or vertical). The BaseTagList may also include baseline tags for scripts supported
in other fonts.

Each script in a BaseScriptList is represented by a BaseScriptRecord. This record references a BaseScript
table, which contains layout data for the script. In turn, the BaseScript table references a BaseValues table,
which contains baseline information and several MinMax tables that define min/max extent values.

The BaseValues table specifies the coordinate values for all baselines in the BaseTagList. In addition, it
identifies one of these baselines as the default baseline for the script. As glyphs in a script are scaled, they
grow or shrink from the script's default baseline position. Each baseline can have unique coordinates. This
contrasts with TrueType 1.0, which implies a single, fixed baseline for all scripts in a font. With the OFF Layout
tables, each script can be aligned independently, although more than one script may use the same baseline
values.

182

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

182 ©	ISO/IEC	2019	–	All	rights	reserved
	

Baseline coordinates for scripts in the same font must be specified in relation to each other for correct
alignment of the glyphs. Consider the font, discussed earlier, containing both Latin and Kanji glyphs. If the
BaseTagList of the HorizAxis table specifies two baselines, the roman and the ideographic, then the layout
data for both the Latin and Kanji scripts will specify coordinate positions for both baselines:

 The BaseValues table for the Latin script will give coordinates for both baselines and specify the
roman baseline as the default.

 The BaseValues table for the Kanji script will give coordinates for both baselines and specify the
ideographic baseline as the default.

Min/Max extents

The BaseScript table can define minimum and maximum extent values for each script, language system, or
feature. (These values are distinct from the min/max extent values recorded for the font as a whole in the
head, hhea, vhea, and OS/2 tables.) These extent values appear in three tables:

 The DefaultMinMax table defines the default min/max extents for the script.

 A MinMax table, referenced through a BaseLangSysRecord, specifies min/max extents to
accommodate the glyphs in a specific language system.

 A FeatMinMaxRecord, referenced from the MinMax table, provides min/max extent values to support
feature-specific glyph actions.

NOTE Language-system or feature-specific extent values may be essential to define some fonts. However, the default
min/max extent values specified for each script should usually be enough to support high-quality text layout.

The actual baseline and min/max extent values used by the BASE table reside in BaseCoord tables. Three
formats are defined for BaseCoord table data. All formats define single X or Y coordinate values in design
units, but two formats support fine adjustments to these values based on a contour point or a Device table.

The rest of this clause describes all the tables defined within the BASE table. Sample tables and lists that
illustrate typical data for a font are supplied at the end of the clause.

6.3.1.3 BASE table structure

BASE header

The BASE table begins with a header that starts with a version number. Two versions are defined. Version1.0
contains offsets to horizontal and vertical Axis tables (HorizAxis and VertAxis). Version 1.1 also includes an
offset to an Item Variation Store table.

Each Axis table stores all baseline information and min/max extents for one layout direction. The HorizAxis
table contains Y values for horizontal text layout; the VertAxis table contains X values for vertical text layout.

A font may supply information for both layout directions. If a font has values for only one text direction, the
Axis table offset value for the other direction will be set to NULL.

The optional Item Variation Store table is used in variable fonts to provide variation data for BASE metric
values within the Axis tables.

Example 1 at the end of this clause shows a sample BASE Header.

BASE Header, Version 1.0

Type Name Description

uint16 majorVersion Major version of the BASE table, =1

uint16 minorVersion Minor version of the BASE table, =0

183

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 183
	

Offset16 horizAxisOffset Offset to horizontal Axis table-from beginning of BASE table
(may be NULL)

Offset16 vertAxisOffset Offset to vertical Axis table-from beginning of BASE table (may
be NULL)

BASE Header, Version 1.1

Type Name Description

uint16 majorVersion Major version of the BASE table, = 1

uint16 minorVersion Minor version of the BASE table, = 1

Offset16 horizAxisOffset Offset to horizontal Axis table, from beginning of BASE table
(may be NULL)

Offset16 vertAxisOffset Offset to vertical Axis table, from beginning of BASE table
(may be NULL)

Offset32 itemVarStoreOffset Offset to Item Variation Store table, from beginning of BASE
table (may be null)

Axis tables: HorizAxis and VertAxis

An Axis table is used to render scripts either horizontally or vertically. It consists of offsets, measured from the
beginning of the Axis table, to a BaseTagList and a BaseScriptList:

 The BaseScriptList enumerates all scripts rendered in the text layout direction.

 The BaseTagList enumerates all baselines used to render the scripts in the text layout direction. If no
baseline data is available for a text direction, the offset to the corresponding BaseTagList may be set
to NULL.

Example 1 at the end of this clause shows an example of an Axis table.

Axis Table

Type Name Description

Offset16 baseTagListOffset Offset to BaseTagList table, from beginning of Axis table
(may be NULL)

Offset16 baseScriptListOffset Offset to BaseScriptList table, from beginning of Axis table

BaseTagList table
The BaseTagList table identifies the baselines for all scripts in the font that are rendered in the same text
direction. Each baseline is identified with a 4-byte baseline tag. The Baseline Tags of the OFF Tag Registry
lists currently registered baseline tags. The BaseTagList can define any number of baselines, and it may
include baseline tags for scripts supported in other fonts.

Each script in the BaseScriptList table must designate one of these BaseTagList baselines as its default,
which the OFF Layout Services use to align all glyphs in the script. Even though the BaseScriptList and the
BaseTagList are defined independently of one another, the BaseTagList typically includes a tag for each
different default baseline needed to render the scripts in the layout direction. If some scripts use the same
default baseline, the BaseTagList needs to list the common baseline tag only once.

184

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

184 ©	ISO/IEC	2019	–	All	rights	reserved
	

The BaseTagList table consists of an array of baseline identification tags (baselineTag), listed alphabetically,
and a count of the total number of baseline Tags in the array (baseTagCount).

Example 1 at the end of this clause shows a sample BaseTagList table.

BaseTagList table

Type Name Description

uint16 baseTagCount Number of baseline identification tags in this text
direction – may be zero (0)

Tag baselineTags[baseTagCount] Array of 4-byte baseline identification tags – must be
in alphabetical order

BaseScriptList table

The BaseScriptList table identifies all scripts in the font that are rendered in the same layout direction. If a
script is not listed here, then the text-processing client will render the script using the layout information
specified for the entire font.

For each script listed in the BaseScriptList table, a BaseScriptRecord must be defined that identifies the script
and references its layout data. BaseScriptRecords are stored in the baseScriptRecords array, ordered
alphabetically by the baseScriptTag in each record. The baseScriptCount specifies the total number of
BaseScriptRecords in the array.

Example 1 at the end of this clause shows a sample BaseScriptList table.
BaseScriptList table

Type Name Description

uint16 baseScriptCount Number of BaseScriptRecords
defined

BaseScriptRecord baseScriptRecords[baseScriptCount] Array of BaseScriptRecords, in
alphabetical order by
baseScriptTag

BaseScriptRecord

A BaseScriptRecord contains a script identification tag (baseScriptTag), which must be identical to the
ScriptTag used to define the script in the ScriptList of a GSUB or GPOS table. Each record also must include
an offset to a BaseScript table that defines the baseline and min/max extent data for the script.

Example 1 at the end of this clause shows a sample BaseScriptRecord.

BaseScriptRecord

Type Name Description

Tag baseScriptTag 4-byte script identification tag

Offset16 baseScriptOffset Offset to BaseScript table, from beginning of
BaseScriptList

185

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 185
	

BaseScript table

A BaseScript table organizes and specifies the baseline data and min/max extent data for one script. Within a
BaseScript table, the BaseValues table contains baseline information, and one or more MinMax tables contain
min/max extent data.

The BaseValues table identifies the default baseline for the script and lists coordinate positions for each
baseline named in the corresponding BaseTagList. Each script can assign a different position to each
baseline, so each script can be aligned independently in relation to any other script. (For more details, see the
BaseValues table description later in this clause.)

The default MinMax table defines the default min/max extent values for the script. (For details, see the
MinMax table description below.) If a language system or feature defined in the font has no effect on the
script's default min/max extents, the OFF Layout Services will use the default script values.

Sometimes language-specific overrides for min/max extents are needed to properly render the glyphs in a
specific language system. For example, a glyph substitution required in a language system may result in a
glyph whose extents exceed the script's default min/max extents. Each language system that specifies
min/max extent values must define a BaseLangSysRecord. The record should identify the language system
(baseLangSysTag) and contain an offset to a MinMax table of language-specific extent coordinates.

Feature-specific overrides for min/max extents also may be needed to accommodate the effects of glyph
actions used to implement a specific feature. For example, superscript or subscript features may require
changes to the default script or language system extents. Feature-specific extent values not limited to a
specific language system may be specified in the default MinMax table. However, extent values used for a
specific language system require a BaseLangSysRecord and a MinMax table. In addition to specifying
coordinate data, the MinMax table must contain offsets to FeatMinMaxRecords that define the feature-specific
min/max data.

A BaseScript table has four components:

 An offset to a BaseValues table (baseValuesOffset). If no baseline data is defined for the script or the
corresponding BaseTagList is set to NULL, the offset to the BaseValues table may be set to NULL.

 An offset to the default MinMax table. If no default min/max extent data is defined for the script, this
offset may be set to NULL.

 An array of BaseLangSysRecords (baseLangSysRecords). The individual records stored in the
BaseLangSysRecord array are listed alphabetically by baseLangSysTag.

 A count of the BaseLangSysRecords included (baseLangSysCount). If no language system or
language-specific feature min/max values are defined, the baseLangSysCount may be set to zero (0).

Example 2 at the end of this clause shows a sample BaseScript table.

BaseScript Table

Type Name Description

Offset16 baseValuesOffset Offset to BaseValues table-from beginning of
BaseScript table-may be NULL

Offset16 defaultMinMaxOffset Offset to MinMax table, from beginning of
BaseScript table (may be NULL)

uint16 baseLangSysCount Number of BaseLangSysRecords defined –
may be zero (0)

BaseLangSysRecord baseLangSysRecords
[baseLangSysCount]

Array of BaseLangSysRecords, in
alphabetical order by BaseLangSysTag

186

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

186 ©	ISO/IEC	2019	–	All	rights	reserved
	

BaseLangSysRecord

A BaseLangSysRecord defines min/max extents for a language system or a language-specific feature. Each
record contains an identification tag for the language system (baseLangSysTag) and an offset to a MinMax
table (MinMax) that defines extent coordinate values for the language system and references feature-specific
extent data.

Example 2 at the end of this clause shows a BaseLangSysRecord.

BaseLangSysRecord

Type Name Description

Tag baseLangSysTag 4-byte language system identification tag

Offset16 minMaxOffset Offset to MinMax table, from beginning of BaseScript table

BaseValues table

A BaseValues table lists the coordinate positions of all baselines named in the baselineTags array of the
corresponding BaseTagList and identifies a default baseline for a script.
NOTE When the offset to the corresponding BaseTagList is NULL, a BaseValues table is not needed. However, if the

offset is not NULL, then each script must specify coordinate positions for all baselines named in the BaseTagList.

The default baseline, one per script, is the baseline used to lay out and align the glyphs in the script. The
defaultBaselineIndex in the BaseValues table identifies the default baseline with a value that equals the array
index position of the corresponding tag in the baselineTags array.

For example, the Han and Latin scripts use different baselines to align text. If a font supports both of these
scripts, the BaselineTag array in the BaseTagList of the HorizAxis table will contain two tags, listed
alphabetically: 'ideo' in baselineTags[0] for the Han ideographic baseline, and 'romn' in baselineTags[1] for the
Latin baseline. The BaseValues table for the Latin script will specify the roman baseline as the default, so the
defaultBaselineIndex in the BaseValues table for Latin will be "1" to indicate the roman baseline tag. In the
BaseValues table for the Han script, the defaultBaselineIndex will be "0" to indicate the ideographic baseline
tag.

Two or more scripts may share a default baseline. For instance, if the font described above also supports the
Cyrillic script, the baselineTags array does not need a baseline tag for Cyrillic because Cyrillic and Latin share
the same baseline. The defaultBaselineIndex defined in the BaseValues table for the Cyrillic script will specify
"1" to indicate the roman baseline tag, listed in the second position in the baselineTags array.

In addition to identifying the defaultBaselineIndex, the BaseValues table contains an offset to an array of
BaseCoord tables (baseCoords) that list the coordinate positions for all baselines, including the default
baseline, named in the associated baselineTags array. One BaseCoord table is defined for each baseline.
The baseCoordCount field defines the total number of BaseCoord tables, which must equal the number of
baseline tags listed in baseTagCount in the BaseTagList.

Each baseline coordinate is defined as a single X or Y value in design units measured from the zero position
on the relevant X or Y axis. For example, a BaseCoord table defined in the HorizAxis table will contain a Y
value because horizontal baselines are positioned vertically. BaseCoord values may be negative. Each script
may assign a different coordinate to each baseline.

Offsets to each BaseCoord table are stored in the baseCoords array within the BaseValues table. The order of
the stored offsets corresponds to the order of the tags listed in the baselineTags array of the BaseTagList. In
other words, the first entry in the baseCoords array will define the offset to the BaseCoord table for the first
baseline named in the baselineTags array, the second position will define the offset to the BaseCoord table for
the second baseline named in the baselineTags array, and so on.

Example 3 at the end of the clause has two parts, one that shows a BaseValues table and one that shows a
chart with different baseline positions defined for several scripts.

187

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 187
	

BaseValues table

Type Name Description

uint16 defaultBaselineIndex Index number of default baseline for this script –
equals index position of baseline tag in
BaselineArray of the BaseTagList

uint16 baseCoordCount Number of BaseCoord tables defined – should
equal BaseTagCount in the BaseTagList

Offset16 baseCoords[baseCoordCount] Array of offsets to BaseCoord, from beginning of
BaseValues table – order matches baselineTags
array in the BaseTagList

The MinMax table and FeatMinMaxRecord

The MinMax table specifies extents for scripts and language systems. It also contains an array of
FeatMinMaxRecords used to define feature-specific extents.

Both the MinMax table and the FeatMinMaxRecord define offsets to two BaseCoord tables: one that defines
the mimimum extent value (minCoord), and one that defines the maximum extent value (maxCoord). Each
extent value is a single X or Y value, depending upon the text direction, and is specified in design units.
Coordinate values may be negative.

Different tables define the min/max extent values for scripts, language systems, and features:

 Min/max extent values for a script are defined in the default MinMax table, referenced in a BaseScript
table.

 Within the default MinMax table, FeatMinMaxRecords can specify extent values for features that apply
to the entire script.

 Min/max extent values for a language system are defined in the MinMax table, referenced in a
BaseLangSysRecord.

 FeatMinMaxRecords can be defined within the MinMax table to specify extent values for features
applied within a language system.

In a FeatMinMaxRecord, the minCoord and maxCoord tables specify the minimum and maximum coordinate
values for the feature, and a featureTableTag defines a 4-byte feature identification tag. The featureTableTag
shall match the tag used to identify the feature in the FeatureList of the GSUB or GPOS table.

Each feature that exceeds the default min/max values requires a FeatMinMaxRecord. All FeatMinMaxRecords
are listed alphabetically by featureTableTag in an array (featMinMaxRecords) within the MinMax table. The
featMinMaxCount field defines the total number of FeatMinMaxRecords.

Text-processing clients should use the following procedure to access the script, language system, and
feature-specific extent data:

1. Determine script extents in relation to the text content.

2. Select language-specific extent values with respect to the language system in use.

3. Have the application or user choose feature-specific extent values.

4. If no extent values are defined for a language system or for language-specific features, use the
default min/max extent values for the script.

Example 4 at the end of this clause has two parts. One shows MinMax tables and a FeatMinMaxRecord for
different script, language system, and feature extents. The second part shows how to define these tables

188

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

188 ©	ISO/IEC	2019	–	All	rights	reserved
	

when a language system needs feature-specific extent values for an obscure feature, but otherwise the
language system and script extent values match.

MinMax table

Type Name Description

Offset16 minCoord Offset to BaseCoord table that defines the
minimum extent value, from the beginning of
MinMax table (may be NULL)

Offset16 maxCoord Offset to BaseCoord table that defines the
maximum extent value, from the beginning of
MinMax table (may be NULL)

uint16 featMinMaxCount Number of FeatMinMaxRecords – may be zero
(0)

FeatMinMaxRecord featMinMaxRecords
[featMinMaxCount]

Array of FeatMinMaxRecords, in alphabetical
order by featureTableTag

FeatMinMaxRecord

Type Name Description

Tag featureTableTag 4-byte feature identification tag – must match FeatureTag in
FeatureList

Offset16 minCoord Offset to BaseCoord table that defines the minimum extent
value, from beginning of MinMax table (may be NULL)

Offset16 maxCoord Offset to BaseCoord table that defines the maximum extent
value, from beginning of MinMax table (may be NULL)

BaseCoord tables

Within the BASE table, a BaseCoord table defines baseline and min/max extent values. Each BaseCoord
table defines one X or Y value:

 If defined within the HorizAxis table, then the BaseCoord table contains a Y value.

 If defined within the VertAxis table, then the BaseCoord table contains an X value.

All values are defined in design units, which typically are scaled and rounded to the nearest integer when
scaling the glyphs. Values may be negative.

Three formats available for BaseCoord table data define single X or Y coordinate values in design units. Two
of the formats also support fine adjustments to the X or Y values based on a contour point or a Device table.
In a variable font, the third format uses a VariationIndex table (a variant of a Device table), as needed, to
reference variation data for adjustment of the X or Y values for the current variation instance.

BaseCoord Format 1

The first BaseCoord format (BaseCoordFormat1) consists of a format identifier, followed by a single design
unit coordinate that specifies the BaseCoord value. This format has the benefits of small size and simplicity,
but the BaseCoord value cannot be hinted for fine adjustments at different sizes or device resolutions.

Example 5 at the end of the clause shows a sample of a BaseCoordFormat1 table.

189

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 189
	

BaseCoordFormat1 table: Design units only

Type Name Description

uint16 baseCoordFormat Format identifier – format = 1

int16 coordinate X or Y value, in design units

BaseCoord Format 2

The second BaseCoord format (BaseCoordFormat2) specifies the BaseCoord value in design units, but also
supplies a glyph index and a contour point for reference. During font hinting, the contour point on the glyph
outline may move. The point's final position after hinting provides the final value for rendering a given font size.
NOTE Glyph positioning operations defined in the GPOS table do not affect the point's final position.

Example 6 shows a sample of a BaseCoordFormat2 table.

BaseCoordFormat2 table: Design units plus contour point

Type Name Description

uint16 baseCoordFormat Format identifier – format = 2

int16 coordinate X or Y value, in design units

uint16 referenceGlyph Glyph ID of control glyph

uint16 baseCoordPoint Index of contour point on the reference glyph

BaseCoord Format 3

The third BaseCoord format (BaseCoordFormat3) also specifies the BaseCoord value in design units, but, in a
non-variable font, it uses a Device table rather than a contour point to adjust the value. This format offers the
advantage of fine-tuning the BaseCoord value for any font size and device resolution. (For more information
about Device tables, see the clause, Common Table Formats.)

In a variable font, BaseCoordFormat3 shall be used to reference variation data to adjust the X or Y value for
different variation instances, if needed. In this case, BaseCoordFormat3 specifies an offset to a VariationIndex
table, which is a variant of the Device table that is used for referencing variation data.

NOTE 1 While separate VariationIndex table references are required for each Coordinate value that requires variation,
two or more values that require the same variation-data values can have offsets that point to the same
VariationIndex table, and two or more VariationIndex tables can reference the same variation data entries.

NOTE 2 If no VariationIndex table is used for a particular X or Y value (the offset is zero, or a different BaseCoord format
is used), then that value is used for all variation instances.

Example 7 at the end of this clause shows a sample of a BaseCoordFormat3 table.

BaseCoordFormat3 table: Design units plus Device or VariationIndex table

Type Name Description

uint16 baseCoordFormat Format identifier – format = 3

int16 coordinate X or Y value, in design units

Offset16 deviceTable Offset to Device table (non-variable font) / VariationIndex
table (variable font) for X or Y value, from beginning of
BaseCoord table (may be NULL).

190

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

190 ©	ISO/IEC	2019	–	All	rights	reserved
	

Item Variation Store Table

The format and processing of the ItemVariationStore table and its constituent formats is described
in subclause 7.2. Specification of the interpolation algorithm used to derive values for particular variation
instances is given in subclause 7.1.

The ItemVariationStore contains adjustment-delta values arranged in one or more sets of deltas that are
referenced using delta-set indices. For values that requires variation adjustment, a delta-set index is used to
reference the particular variation data needed for that target value. Within the BASE table, delta-set indices
are provided in VariationIndex tables contained within a BaseCoordFormat3 table. For a description of the
VariationIndex table, see the OFF Layout Common Table Formats chapter. For details on use of
VariationIndex tables within BaseCoord tables, see discussion earlier in this chapter.

6.3.1.4 BASE table examples

The rest of this clause describes and illustrates examples of all the BASE tables. All the examples reflect
unique parameters described below, but the samples provide a useful reference for building tables specific to
other situations.

Most of the examples have three columns showing hex data, source, and comments.

Example 1: BASE header table, Axis table, BaseTagList table, BaseScriptList table, and
BaseScriptRecord

Example 1 describes a sample font that contains four scripts: Cyrillic, Devanagari, Han, and Latin. All four
scripts are rendered horizontally; only one script, Han, is rendered vertically. As a result, the BASE header
gives offsets to two Axis tables: HorizAxis and VertAxis. Example 1 only shows data defined in the HorizAxis
table.

In the HorizAxis table, the BaseScriptList enumerates all four scripts. The BaseTagList table names three
horizontal baselines for rendering these scripts: hanging, ideographic, and roman. The hanging baseline is the
default for Devanagari, the ideographic baseline is the default for Han, and the roman baseline is the default
for both Latin and Cyrillic.

The VertAxis table (not shown) would be defined similarly: its BaseScriptList would enumerate one script, Han,
and its BaseTagList would specify the vertically centered baseline for rendering the Han script.

Example 1

Hex Data Source Comments

 BASEHeader
TheBASEHeader

BASE table header definition

00010000 0x00010000 Version

0008 HorizontalAxisTable Offset to HorizAxis table

010C VerticalAxisTable Offset to VertAxis table

 Axis
HorizontalAxisTable

Axis table definition

0004 HorizBaseTagList Offset to BaseTagList table

0012 HorizBaseScriptList Offset to BaseScriptList table

 BaseTagList
HorizBaseTagList

BaseTagList table definition

0003 3 baseTagCount

191

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 191
	

68616E67 'hang' baselineTags[0], in alphabetical order

6964656F 'ideo' baselineTags[1]

726F6D6E 'romn' baselineTags[2]

 BaseScriptList
HorizBaseScriptList

BaseScriptList table definition

0004 4 baseScriptCount

 baseScriptRecords[0] Records in alphabetical order by
baseScriptTag

6379726C 'cyrl' baseScriptTag: Cyrillic script

001A HorizCyrillicBaseScriptTable Offset to BaseScript table for Cyrillic script

 baseScriptRecords[1]

6465766E 'devn' baseScriptTag: Devanagari script

0060 HorizDevanagariBaseScriptTable Offset to BaseScript table for Devanagari
script

 baseScriptRecords[2]

68616E69 'hani' baseScriptTag: Han script

008A HorizHanBaseScriptTable Offset to BaseScript table for Han script

 baseScriptRecords[3]

6C61746E 'latn' baseScriptTag: Latin script

00B4 HorizLatinBaseScriptTable Offset to BaseScript table for Latin script

Example 2: BaseScript table and BaseLangSysRecord

Example 2 shows the BaseScript table and BaseLangSysRecord for the Cyrillic script, one of the four scripts
included in the sample font described in Example 1. The BaseScript table specifies offsets to tables that
contain the baseline and min/max extent data for Cyrillic. (The BaseScript tables for the other three scripts in
the font would be defined similarly.) Again, the table specifies only the horizontal text-layout information.

The HorizCyrillicBaseValues table contains the baseline information for the script, and the
HorizCyrillicDefaultMinMax table contains the default script extents. In addition, a BaseLangSysRecord
defines min/max extent data for the Russian language system.

Example 2

Hex Data Source Comments

 BaseScript
HorizCyrillicBaseScriptTable

BaseScript table definition for Cyrillic script

000C HorizCyrillicBaseValuesTable Offset to BaseValues table

0022 HorizCyrillicDefault
MinMaxTable

Offset to default MinMax table – default script
extents

0001 1 baseLangSysCount – BaseLangSysRecords for
language-specific extents

192

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

192 ©	ISO/IEC	2019	–	All	rights	reserved
	

 baseLangSysRecords[0] Records in alphabetical order by
baseLangSysTag.

52555320 'RUS ' BaseLangSysTag, Russian language system

0030 HorizRussianMinMaxTable Offset to MinMax table – language-specific
extents

Example 3: BaseValues table

Example 3 extends the BASE table definition for the Cyrillic script described in Examples 1 and 2. It contains
two parts:

 Example 3A illustrates a fully defined BaseValues table for Cyrillic. The table includes the
corresponding BaseCoord table definitions.

 Example 3B shows two different sets of baseline values that can be defined for each of the four
scripts in the sample font.

The examples show only horizontal text-layout data, and the font uses 2,048 design units/em.

Example 3A: BaseValues table for Cyrillic

The BaseValues table of Example 3A identifies the default baseline for Cyrillic and specifies coordinate
positions for each baseline listed in the BaseTagList shown in Example 1:

 The hanging baseline is the default for the Devanagari script, and it has the highest baseline position.

 The ideographic baseline is the default for the Han script, and it has the lowest baseline position.

 The roman baseline is the default for both the Latin and Cyrillic scripts, and its position lies between
the hanging and ideographic baselines.

Example 3A

Hex Data Source Comments

 BaseValues
HorizCyrillicBaseValuesTable

BaseValues table definition for Cyrillic
script

0002 2 defaultBaselineIndex: roman baseline
baselineTag index

0003 3 baseCoordCount, equals baseTagCount

000A HorizHangingBaseCoordForCyrl Offset to baseCoords[0] table: hanging
baseline coordinate – order matches
order of baselineTags array in
BaseTagList

000E HorizIdeographicBaseCoordForCyrl Offset to baseCoords[1] table:
ideographic baseline coordinate

0012 HorizRomanBaseCoordForCyrl Offset to baseCoords[2] table: roman
baseline coordinate

 BaseCoordFormat1
HorizHangingBaseCoordForCyrl

BaseCoord table definition

193

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 193
	

0001 1 baseCoordFormat: design units only

05DC 1500 coordinate – Y value, in design units

 BaseCoordFormat1
HorizIdeographicBaseCoordForCyrl

BaseCoord table definition

0001 1 baseCoordFormat: design units only

FEE0 -288 coordinate – Y value, in design units

 BaseCoordFormat1
HorizRomanBaseCoordinateForCyrl

BaseCoord table definition

0001 1 baseCoordFormat: design units only

0000 0 coordinate - Y value, in design units

Example 3B: Baseline values for four scripts

Example 3B shows two tables that contain baseline values for each of the four scripts in the sample font
described in Example 1:

 The first table shows what might happen if the baseline values in all four scripts are designed
consistently. Their respective BaseValues tables list identical baseline values with the roman baseline
positioned at a Y value of zero (0), the ideographic baseline at 1500, and the hanging baseline at -288.

 The second table shows what might happen if the baseline values in the scripts are designed
differently with the default baseline for each script at the zero (0) coordinate.

Either method of assigning baseline values can be used in the BASE table.

Example 3B: Identical baseline values

Baseline type Han Latin Cyrillic Devanagari

hanging 1500 1500 1500 1500

roman 0 0 0 0

ideographic -288 -288 -288 -288

Example 3B: Assigned baseline values with default baselines at 0

Baseline type Han Latin Cyrillic Devanagari

hanging 1788 1500 1500 0

roman 288 0 0 -1500

ideographic 0 -288 -288 -1788

Example 4: MinMax table and FeatMinMaxRecord

Example 4 shows MinMax table and FeatMinMaxRecord definitions for the same Cyrillic script described in
the previous example. It contains two parts:

194

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

194 ©	ISO/IEC	2019	–	All	rights	reserved
	

 Example 4A defines tables with different script, language system, and feature extents.

 Example 4B shows these same table definitions written when the language system extents match the
script extents, but an obscure feature of the language system requires feature-specific extents if that
feature is implemented.

The examples show only horizontal text-layout data, and the font uses 2,048 design units/em.

Example 4A: Min/Max extents for Cyrillic script, Russian language, and Russian feature

Example 4A shows two MinMax tables and a FeatMinMaxRecord for the Cyrillic script, along with sample
BaseCoord tables. Only the MinCoord extent data is included.

The DefaultMinMax table defines the default minimum and maximum extents for the Cyrillic script. Another
MinMax table defines language-specific min/max extents for the Russian language system to accommodate
the height and width of certain glyphs used in Russian. Also, a FeatMinMaxRecord defines min/max extents
for a single feature in the Russian language system that substitutes a tall integral math symbol when required.

Example 4A

Hex Data Source Comments

 MinMax
HorizCyrillicDefault
MinMaxTable

Default MinMax table definition, Cyrillic script

0006 HorizCyrillic
MinCoordTable

minCoord – offset to BaseCoord table

000A HorizCyrillic
MaxCoordTable

maxCoord – offset to BaseCoord table

0000 0 featMinMaxCount: no default feature extents
featMinMaxRecords[]– no FeatMinMaxRecords

 BaseCoordFormat1
HorizCyrillic
MinCoordTable

BaseCoord table definition, default Cyrillic min
extent coordinate

0001 1 baseCoordFormat: design units only

FF38 -200 coordinate – Y value, in design units

 BaseCoordFormat1
HorizCyrillic
MaxCoordTable

BaseCoord table definition, default Cyrillic max
extent coordinate

0001 1 baseCoordFormat: design units only

0674 1652 coordinate – Y value, in design units

 MinMax
HorizRussianMinMaxTable

MinMax table definition, Russian language extents

000E HorizRussianLangSys
MinCoordTable

minCoord – offset to BaseCoord table

0012 HorizRussianLangSys
MaxCoordTable

maxCoord – offset to BaseCoord table

0001 1 featMinMaxCount

 featMinMaxRecords[0] Records in alphabetical order by featureTableTab.

195

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 195
	

7469746C 'titl' featureTableTag: Titling

Feature must be same as Tag in FeatureList

0016 HorizRussianFeature
MinCoordTable

minCoord – offset to BaseCoord table

001A HorizRussianFeature
MaxCoordTable

maxCoord – offset to BaseCoord table

 BaseCoordFormat1
HorizRussianLangSys
MinCoordTable

BaseCoord table definition: Russian language min
extent coordinate

0001 1 baseCoordFormat: design units only

FF08 -248 coordinate – Y value, in design units.

Increased min extent beyond default Cyrillic min
extent

 BaseCoordFormat1
HorizRussianLangSys
MaxCoordTable

BaseCoord table definition: Russian language
feature max extent coordinate

0001 1 baseCoordFormat: design units only

06A4 1700 coordinate – Y value, in design units.

Increased max extent beyond default Cyrillic max
extent

 BaseCoordFormat1
HorizRussianFeature
MinCoordTable

BaseCoord table definition: Russian language min
extent coordinate

0001 1 baseCoordFormat: Design Units Only

FED8 -296 coordinate – Y value, in design units

Increased min extent beyond default Cyrillic script
and Russian language min extents

 BaseCoordFormat1
HorizRussianFeature
MaxCoordTable

BaseCoord table definition: Russian language
feature Max extent coordinate

0001 1 baseCoordFormat: design units only

06D8 1752 coordinate – Y value, in design units

Increased max extent beyond default Cyrillic script
and Russian language max extents

Example 4B: Min/Max extents for Cyrillic script and Russian feature

A particular language system does not need to define min/max extent coordinates if its extents match the
default extents defined for the script. However, an obscure or infrequently used feature within the language
system may require feature-specific extent values for proper rendering.

Example 4B shows the MinMax and FeatMinMaxRecord table definitions for this situation. The example also
includes a BaseScript table, but not a BaseValues tables since it is not relevant in this example. The example

196

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

196 ©	ISO/IEC	2019	–	All	rights	reserved
	

shows horizontal text layout extents for the Cyrillic script and feature-specific extents for one feature in the
Russian language system. Much of the data is repeated from Example 4A and modified here for comparison.

The BaseScript table includes a DefaultMinMax table for the Cyrillic script and a BaseLangSysRecord that
defines a BaseLangSysTag and an offset to a MinMax table for the Russian language. The MinMax table
includes a FeatMinMaxRecord and specifies a FeatMinMaxCount, but both the MinCoord and MaxCoord
offsets in the MinMax table are set to NULL since no language-specific extent values are defined for Russian.
The FeatMinMaxRecord defines the min/max coordinates for the Russian feature and specifies the correct
FeatureTableTag.

Example 4B

Hex Data Source Comments

 BaseScript
HorizCyrillicBaseScriptTable

BaseScript table definition: Cyrillic script

0000 NULL Offset to BaseValues table

000C HorizCyrillicDefault
MinMaxTable

Offset to default MinMax table for default script
extents

0001 1 baseLangSysCount

 baseLangSysRecords[0] For Russian feature-specific extents.

52555320 'RUS ' baseLangSysTag: Russian

001A HorizRussian
MinMaxTable

Offset to MinMax table for language-specific
extents

 MinMax
HorizCyrillicDefault
MinMaxTable

Default MinMax table definition: Cyrillic script

0006 HorizCyrillic
MinCoordTable

minCoord – offset to BaseCoord table

000A HorizCyrillic
MaxCoordTable

maxCoord – offset to BaseCoord table

0000 0 featMinMaxCount, no default feature extents
featMinMaxRecords[], no FeatMinMaxRecords

 BaseCoordFormat1
HorizCyrillic
MinCoordTable

BaseCoord table definition: default Cyrillic min
extent coordinate

0001 1 baseCoordFormat: design units only

FF38 -200 coordinate – Y value, in design units

 BaseCoordFormat1
HorizCyrillic
MaxCoordTable

BaseCoord table definition: default Cyrillic max
extent coordinate

0001 1 baseCoordFormat: design units only

0674 1652 coordinate – Y value, in design units

 MinMax
HorizRussian
MinMaxTable

MinMax table definition for Russian feature – no
extent differences for Russian language itself

197

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 197
	

0000 NULL minCoord – offset to min BaseCoord table not
defined, matches script default

0000 NULL maxCoord – offset to max BaseCoord table not
defined, matches script default

0001 1 featMinMaxCount

 featMinMaxRecords[0] Records in alphabetical order by
featureTableTag

7469746C 'titl' featureTableTag: Titling

Feature must be same as Tag in FeatureList

000E HorizRussianFeature
MinCoordTable

minCoord – offset to BaseCoord table

0012 HorizRussianFeature
MaxCoordTable

maxCoord – offset to BaseCoord table

 BaseCoordFormat1
HorizRussianFeature
MinCoordTable

BaseCoord table definition: Russian 'titl' feature
min extent coordinate

0001 1 baseCoordFormat: design units only

FED8 -296 coordinate – Y value, in design units

Increased min extent beyond default Cyrillic Min
extent

 BaseCoordFormat1
HorizRussianFeature
MaxCoordTable

BaseCoord table definition: Russian 'titl' feature
max extent coordinate

0001 1 baseCoordFormat: design units only

06D8 1752 coordinate – Y value, in design units

Increased max extent beyond default Cyrillic
max extent

Example 5: BaseCoordFormat1 table

Example 5 illustrates BaseCoordFormat1, which specifies single coordinate values in design units only. The
font uses 2,048 design units/em. The example defines the default minimum extent coordinate for a math script.

Example 5

Hex Data Source Comments

 BaseCoordFormat1
HorizMathMinCoordTable

Definition of BaseCoord table for Math min
coordinate

0001 1 baseCoordFormat: design units only

FEE8 -280 coordinate – Y value, in design units

198

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

198 ©	ISO/IEC	2019	–	All	rights	reserved
	

Example 6: BaseCoordFormat2 table

Example 6 illustrates the BaseCoord Format 2. Like Example 5, it specifies the minimum extent coordinate for
a math script. With this format, the coordinate value depends on the final position of a specific contour point
on one glyph, the integral math symbol, after hinting. Again, the value is in design units (2,048 units/em).

Example 6

Hex Data Source Comments

 BaseCoordFormat2
HorizMathMinCoordTable

BaseCoord table definition for Math min
coordinate

0002 2 baseCoordFormat: design units plus contour point

FEE8 -280 coordinate – Y value, in design units

0128 IntegralSignGlyphID referenceGlyph: math integral sign

0043 67 baseCoordPoint: glyph contour point index

Example 7: BaseCoordFormat3 table

Example 7 illustrates the BaseCoord Format 3. Like Examples 5 and 6, it specifies the minimum extent
coordinate for a math script in design units (2,048 units/em). This format, however, uses a Device table to
modify the coordinate value for the point size and resolution of the output font. Here, the Device table defines
pixel adjustments for font sizes from 11 ppem to 15 ppem. The adjustments add one pixel at each size.

Example 7

Hex Data Source Comments

 BaseCoordFormat3
HorizMathMinCoordTable

BaseCoord table definition for Math min coordinate

0003 3 baseCoordFormat: design units plus device table

 -280 coordinate – Y value, in design units

000C HorizMathMin
CoordDeviceTable

Offset to Device table

 DeviceTableFormat1
HorizMathMin
CoordDeviceTable

Device table definition for MinCoord

000B 11 startSize:11 ppem

000F 15 endSize:15 ppem

0001 1 deltaFormat: signed 2 bit value (8 values per uint16)

 1 Increase 11ppem by 1 pixel

 1 Increase 12ppem by 1 pixel

 1 Increase 13ppem by 1 pixel

199

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 199
	

 1 Increase 14ppem by 1 pixel

5540 1 Increase 15ppem by 1 pixel

6.3.2 GDEF – The glyph definition table

The Glyph Definition (GDEF) table contains six types of information in six independent subtables:

 The GlyphClassDef table classifies the different types of glyphs in the font.

 The AttachmentList table identifies all attachment points on the glyphs, which streamlines data access
and bitmap caching.

 The LigatureCaretList table contains positioning data for ligature carets, which the text-processing
client uses on screen to select and highlight the individual components of a ligature glyph.

 The MarkAttachClassDef table classifies mark glyphs, to help group together marks that are
positioned similarly.

 The MarkGlyphSetsTable allows the enumeration of an arbitrary number of glyph sets that can be
used as an extension of the mark attachment class definition to allow lookups to filter mark glyphs by
arbitrary sets of marks.

 The ItemVariationStore table is used in variable fonts to contain variation data used for adjustment of
values in the GDEF, GPOS or JSTF tables.

The GSUB, GPOS or JSTF tables may reference certain GDEF table information used for processing of
lookup tables. See, for example, the LookupFlag bit enumeration in "OFF layout common table formats".

In variable fonts, the GDEF, GPOS and JSTF tables may all reference variation data within the
ItemVariationStore table contained within the GDEF table. See below for further discussion of variable fonts
and the ItemVariationStore table.

6.3.2.1 Overview

A client may use any one or more of the six GDEF tables during text processing. This overview explains how
each of the six tables are organized and used (See figure below). The rest of this clause describes the
individual GDEF tables and the tables that they reference.

Figure 6.18 – High-level organization of GDEF table

200

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

200 ©	ISO/IEC	2019	–	All	rights	reserved
	

6.3.2.2 Overview of GDEF subtables

Glyph Class Definition Table Overview

The Glyph Class Definition (GlyphClassDef) table identifies four types of glyphs in a font: base glyphs, ligature
glyphs, combining mark glyphs, and component glyphs (see Figure 6.19). GSUB and GPOS lookups define
and use these glyph classes to differentiate the types of glyphs in a string. For example, GPOS uses the glyph
classes to distinguish between a simple base glyph and the mark glyph that follows it.

Figure 6.19 – A base glyph, ligature glyph, mark glyph, and component glyphs

In addition, a client uses class definitions to apply GSUB and GPOS LookupFlag data correctly. For example,
a LookupFlag may specify ignoring ligatures and marks during a glyph operation. If the font does not include a
GlyphClassDef table, the client must define and maintain this information when using the GSUB and GPOS
tables.

Attachment Point List Table Overview

The Attachment Point List table (AttachmentList) identifies all the attachment points defined in the GPOS table
and their associated glyphs so a client can quickly access coordinates for each glyph's attachment points. As
a result, the client can cache coordinates for attachment points along with glyph bitmaps and avoid
recalculating the attachment points each time it displays a glyph. Without this table, processing speed would
be slower because the client would have to decode the GPOS lookups that define attachment points and
compile the points in a list.

Ligature Caret List Table Overview

The Ligature Caret List table (LigatureCaretList), particularly useful in Arabic and other scripts with many
ligatures, specifies coordinates for positioning carets on all ligatures in a font. The client uses this data to
select and highlight ligature components in displayed text (see Figure 6.20).

Figure 6.20 – Proper ligature caret postioning

Each ligature can have more than one caret position, with each position defined as an X or Y value on the
baseline according to the writing direction of the script or language system. The font developer can use any of
three formats to represent a caret coordinate value. One format represents values in design units only,
another fine-tunes a value based on a designated contour point, and the third uses a Device table (in non-
variable fonts only) to adjust values at specific font sizes.

In a variable font, the caret positions may need to be adjusted for different variation instances. This is done
using data in an ItemVariationStore table. See below for more regarding variable fonts and the
ItemVariationStore table.

Without a Ligature Caret List table, the client would have to define caret positions without knowing the
positions of the ligature components. The resulting highlighting or hit-testing might be ambiguous. For
example, suppose a client places a caret at the midpoint position along the width of a hyphothetical "wi"
ligature. Because the "w" is wider than the "i", that position would not clearly indicate which component is
selected. Instead, for accurate selection, the caret should be moved to the right so that either the "w" or "i"
could be clearly highlighted.

201

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 201
	

Mark Attachment Class Definition Table Overview

A Mark Class Definition Table is used to assign mark glyphs into different classes that can be used in lookup
tables within the GSUB or GPOS table to control how mark glyphs within a glyph sequence are treated by
lookups. For more information on the use of mark attachment classes, see the description of lookup flags in
the “Lookup Table” section of subclause 6.2.

Mark Glyph Sets Table Overview

A Mark Glyph Sets table is used to define sets of mark glyphs that can be used in lookup tables within the
GSUB or GPOS table to control how mark glyphs within a glyph sequence are treated by lookups. For more
information on the use of mark glyph sets, see the description of lookup flags in the “Lookup Table” section
of subclause 6.2.

Item Variation Store Overview

An Item Variation Store table is used in variable fonts. OFF Font variations allow a single font to support many
design variations along one or more axes of design variation. For example, a font with weight and width
variations might support weights from thin to black, and widths from ultra-condensed to ultra-expanded. For
general information on OFF Font Variations, see subclause 7.1.

When different variation instances are selected, the design of individual glyphs changes. The same contours
and points are used, but the position in the design grid of each point can change, as can the overall glyph
metrics. As a result, corresponding changes may also be required for caret X or Y positions.

Variation data for caret positions is stored in the Item Variation Store table. This same table, within the GDEF
table, can also hold variation data used for X or Y values in the GPOS or JSTF tables. The Item Variation
Store and constituent formats are described in subclause 7.2. The Item Variation Store is also used in
the MVAR, HVAR and other tables, but is different from the formats for variation data used in the 'cvar' or
'gvar' tables.

The variation data within an Item Variation Store is comprised of a number of adjustment deltas that get
applied to the default values of target items for variation instances within particular regions of the font’s
variation space. The Item Variation Store format uses delta-set indices to reference variation delta data for
particular target, font-data items to which they are applied. Data external to the Item Variation Store identifies
the delta-set index to be used for each given target item. Within the GDEF, GPOS or JSTF tables, these
indices are specified within VariationIndex tables, with one VariationIndex table referenced for each item that
requires variation adjustment.

Note that the VariationIndex table is a variant of a Device table, with a distinct format value. (For full details on
the Device and VariationIndex table formats, see the OFF layout common table formats.) This is done so that
the default instance of a variable font can be compatible with applications that do not support Font Variations.
As a result, variable fonts cannot use device tables. A VariationIndex table will be ignored in applications that
do not support Font Variations, or if the font is not a variable font.

The Item Variation Store format uses a two-level organization for variation data: a store can have multiple Item
Variation Data subtables, and each subtable has multiple delta-set rows. A delta-set index is a two-part index:
an outer index that selects a particular item variation data subtable, and an inner index that selects a particular
delta-set row within that subtable. A VariationIndex table specifies both the outer and inner portions of the
delta-set index.

6.3.2.3 GDEF table structure

GDEF header

The GDEF table begins with a header that starts with a version number. Three versions are defined. Version
1.0 contains an offset to a Glyph Class Definition table (GlyphClassDef), an offset to an Attachment List table
(AttachList), an offset to a Ligature Caret List table (LigCaretList), and an offset to a Mark Attachment Class
Definition table (MarkAttachClassDef). Version 1.2 also includes an offset to a Mark Glyph Sets Definition
table (MarkAttachClassDef). Version 1.3 also includes an offset to an Item Variation Store table.

202

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

202 ©	ISO/IEC	2019	–	All	rights	reserved
	

Example 1 in subclause 6.3.2.3 shows a GDEF Header table.

GDEF header, Version 1.0

Type Name Description

uint16 majorVersion Major version of the GDEF table, =1

uint16 minorVersion Minor version of the GDEF table, =0

Offset16 glyphClassDefOffset Offset to class definition table for glyph type, from
beginning of GDEF header (may be NULL)

Offset16 attachListOffset Offset to attachment point list table, from beginning of
GDEF header (may be NULL)

Offset16 ligCaretListOffset Offset to ligature caret list table, from beginning of
GDEF header (may be NULL)

Offset16 markAttachClassDefOffset Offset to class definition table for mark attachment
type, from beginning of GDEF header (may be NULL)

GDEF header, Version 1.2

Type Name Description

uint16 majorVersion Major version of the GDEF table, =1

uint16 minorVersion Minor version of the GDEF table, =2

Offset16 glyphClassDefOffset Offset to class definition table for glyph type, from
beginning of GDEF header (may be NULL)

Offset16 attachListOffset Offset to attachment point list table, from beginning of
GDEF header (may be NULL)

Offset16 ligCaretListOffset Offset to ligature caret list table, from beginning of
GDEF header (may be NULL)

Offset16 markAttachClassDefOffset Offset to class definition table for mark attachment
type, from beginning of GDEF header (may be NULL)

Offset16 markGlyphSetsDefOffset Offset to the table of mark glyph set definitions, from
beginning of GDEF header (may be NULL)

GDEF Header, Version 1.3

Type Name Description

uint16 majorVersion Major version of the GDEF table, = 1

uint16 minorVersion Minor version of the GDEF table, = 3

Offset16 glyphClassDefOffset Offset to class definition table for glyph type, from
beginning of GDEF header (may be NULL)

Offset16 attachListOffset Offset to attachment point list table, from beginning of
GDEF header (may be NULL)

Offset16 ligCaretListOffset Offset to ligature caret list table, from beginning of
GDEF header (may be NULL)

Offset16 markAttachClassDefOffset Offset to class definition table for mark attachment type,
from beginning of GDEF header (may be NULL)

203

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 203
	

Offset16 markGlyphSetsDefOffset Offset to the table of mark glyph set definitions, from
beginning of GDEF header (may be NULL)

Offset32 itemVarStoreOffset Offset to the Item Variation Store table, from beginning
of GDEF header (may be NULL)

Glyph Class Definition table

The GSUB and GPOS tables use the Glyph Class Definition table (GlyphClassDef) to identify which glyph
classes to adjust with lookups.

The table uses the same format as the Class Definition table (for details, see subclause 6.2). However, the
GlyphClassDef table uses class values already defined in the GlyphClassDef Enumeration list:

GlyphClassDef Enumeration List

Class Description

1 Base glyph (single character, spacing glyph)

2 Ligature glyph (multiple character, spacing glyph)

3 Mark glyph (non-spacing combining glyph)

4 Component glyph (part of single character, spacing glyph)

The font developer does not have to classify every glyph in the font, but any glyph not assigned a class value
falls into Class zero (0). For instance, class values might be useful for the Arabic glyphs in a font, but not for
the Latin glyphs. Then the GlyphClassDef table will list only Arabic glyphs, and-by default-the Latin glyphs will
be assigned to Class 0. Component glyphs can be put together to generate ligatures. A ligature can be
generated by creating a glyph in the font that references the component glyphs, or outputting the component
glyphs in the desired sequence. Component glyphs are not used in defining any GSUB or GPOS formats.

Example 2 at the end of this clause defines a GlyphClassDef table with a sample glyph for each of the
assigned classes.

Attachment Point List table
The Attachment Point List table (AttachList) may be used to cache attachment point coordinates along with
glyph bitmaps.

The table consists of an offset to a Coverage table (Coverage) listing all glyphs that define attachment points
in the GPOS table, a count of the glyphs with attachment points (GlyphCount), and an array of offsets to
AttachPoint tables (AttachPoint). The array lists the AttachPoint tables, one for each glyph in the Coverage
table, in the same order as the Coverage Index.

AttachList table

Type Name Description

Offset16 coverageOffset Offset to Coverage table, from beginning of AttachList
table

uint16 glyphCount Number of glyphs with attachment points

Offset16 attachPointOffsets[glyphCount] Array of offsets to AttachPoint tables, from beginning
of AttachList table-in Coverage Index order

An AttachPoint table consists of a count of the attachment points on a single glyph (PointCount) and an array
of contour indices of those points (PointIndex), listed in increasing numerical order.

204

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

204 ©	ISO/IEC	2019	–	All	rights	reserved
	

Example 3 at the end of the clause demonstrates an AttachList table that defines attachment points for two
glyphs.

AttachPoint table

Type Name Description

uint16 pointCount Number of attachment points on this glyph

uint16 pointIndices[pointCount] Array of contour point indices – in increasing numerical order

Ligature Caret List table

The Ligature Caret List table (LigCaretList) defines caret positions for all the ligatures in a font. The table
consists of an offset to a Coverage table that lists all the ligature glyphs (Coverage), a count of the defined
ligatures (LigGlyphCount), and an array of offsets to LigGlyph tables (LigGlyph). The array lists the LigGlyph
tables, one for each ligature in the Coverage table, in the same order as the Coverage Index.

Example 4 at the end of this clause shows a LigCaretList table.

LigCaretList table

Type Name Description

Offset16 coverageOffset Offset to Coverage table, from beginning of
LigCaretList table

uint16 ligGlyphCount Number of ligature glyphs

Offset16 ligGlyphOffsets[ligGlyphCount] Array of offsets to LigGlyph tables, from
beginning of LigCaretList table – in Coverage
Index order

Ligature Glyph table

A Ligature Glyph table (LigGlyph) contains the caret coordinates for a single ligature glyph. The number of
coordinate values, each defined in a separate CaretValue table, equals the number of components in the
ligature minus one (1).

The LigGlyph table consists of a count of the number of CaretValue tables defined for the ligature
(CaretCount) and an array of offsets to CaretValue tables (CaretValue).

Example 4 at the end of the clause shows a LigGlyph table.

LigGlyph table

Type Name Description

uint16 caretCount Number of CaretValues for this ligature (components - 1)

Offset16 caretValueOffsets
[caretCount]

Array of offsets to CaretValue tables, from beginning of
LigGlyph table – in increasing coordinate order

Caret Values table

A Caret Values table (CaretValues), which defines caret positions for a ligature, can be any of three possible
formats. One format uses design units to define the caret position. The other two formats use a contour point
or (in non-variable fonts) a Device table to fine-tune a caret's position at specific font sizes and device
resolutions. In a variable font, the third format uses a VariationIndex table (a variant of a Device table) to
reference variation data for adjustment of the caret position for the current variation instance, as needed.
Caret coordinates are either X or Y values, depending upon the text direction.

205

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 205
	

CaretValue Format 1
The first format (CaretValueFormat1) consists of a format identifier (CaretValueFormat), followed by a single
coordinate for the caret position (Coordinate). The Coordinate is in design units.
This format has the benefits of small size and simplicity, but the Coordinate value cannot be hinted for fine
adjustments at different device resolutions.

Exampel 4 at the end of this clause shows a CaretValueFormat1 table.

CaretValueFormat1 table: Design units only

Type Name Description

uint16 caretValueFormat Format identifier: format = 1

int16 coordinate X or Y value, in design units

CaretValue Format 2
The second format (CaretValueFormat2) specifies the caret coordinate in terms of a contour point index on a
specific glyph. During font hinting, the contour point on the glyph outline may move. The point's final position
after hinting provides the final value for rendering a given font size.

The table contains a format identifier (CaretValueFormat) and a contour point index (CaretValuePoint).

Example 5 at the end of this clause demonstrates a CaretValueFormat2 table.

CaretValueFormat2 table: Contour point

Type Name Description

uint16 caretValueFormat Format identifier: format = 2

uint16 caretValuePointIndex Contour point index on glyph

CaretValue Format 3

The third format (CaretValueFormat3) also specifies the value in design units, but, in non-variable fonts, it
uses a Device table rather than a contour point to adjust the value. This format offers the advantage of fine-
tuning the Coordinate value for any device resolution. (For more information about Device tables, see the
clause, Common Table Formats.)

In variable fonts, CaretValueFormat3 must be used to reference variation data to adjust caret positions for
different variation instances, if needed. In this case, CaretValueFormat3 specifies an offset to a VariationIndex
table, which is a variant of the Device table used for variations.

NOTE 1 While separate VariationIndex table references are required for each value that requires variation, two or more
values that require the same variation-data values can have offsets that point to the same VariationIndex table,
and two or more VariationIndex tables can reference the same variation data entries.

NOTE 2 If no VariationIndex table is used for a particular caret position value, then that value is used for all variation
instances.

The format consists of a format identifier (CaretValueFormat), an X or Y value (Coordinate), and an offset to a
Device or VariationIndex table.

Example 6 at the end of this clause shows a CaretValueFormat3 table.

206

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

206 ©	ISO/IEC	2019	–	All	rights	reserved
	

CaretValueFormat3 table: Design units plus Device or VariationIndex table

Type Name Description

uint16 caretValueFormat Format identifier: format = 3

int16 coordinate X or Y value, in design units

Offset16 deviceOffset Offset to Device table (non-variable font) / Variation Index
table (variable font) for X or Y value, from beginning of
CaretValue table

Mark Attachment Class Definition table

A Mark Attachment Class Definition Table defines the class to which a mark glyph may belong. This table
uses the same format as the Class Definition table (for details, see subclause 6.2).

Example 7 in this document shows a MarkAttachClassDef table.

Mark Glyph Sets table

Mark glyph sets are used in GSUB and GPOS lookups to filter which marks in a string are considered or
ignored. Mark glyph sets are defined in a MarkGlyphSets table, which contains offsets to individual sets each
represented by a standard Coverage table.

MarkGlyphSetsTable

Type Name Description

uint16 markGlyphSetTableFormat Format identifier = 1

uint16 markGlyphSetCount Number of mark glyph sets defined

Offset32 coverageOffsets
[markGlyphSetCount]

Array of offsets to mark glyph set Coverage tables

Mark glyph sets are used for the same purpose as mark attachment classes, which is as filters for GSUB and
GPOS lookups. Mark glyph sets differ from mark attachment classes, however, in that mark glyph sets may
intersect as needed by the font developer. As for mark attachment classes, only one mark glyph set can be
referenced in any given lookup.

Note that the array of offsets for the Coverage tables uses Offset32, not Offset16.

Item Variation Store Table

The format and processing of the Item Variation Store table and its constituent formats is described in the
subcaluse "Font variations common table formats". Specification of the interpolation algorithm used to derive
values for particular variation instances is given in subclause 7.1.

The Item Variation Store contains adjustment-delta values arranged in one or more sets of deltas that are
referenced using delta-set indices. For values that require variation adjustment, a delta-set index is used to
reference the particular variation data needed for that target value. Within the GDEF, GPOS or JSTF tables,
delta-set indices are provided in VariationIndex tables associated with particular target items, such as caret
positions in the GDEF table. For a description of the VariationIndex table, see subclause 6.2. For details on
use of VariationIndex tables within the GDEF table, see discussion earlier in this chapter. For details on use of
VariationIndex tables within the GPOS or JSTF tables, see the discussion of OFF Font variations in the
chapters for each of those tables.

GDEF table examples

The rest of this subclause describes examples of all the GDEF table formats. All the examples reflect unique
parameters described below, but the samples provide a useful reference for building tables specific to other
situations.

207

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 207
	

The examples have three columns showing hex data, source, and comments.
Example 1: GDEF header
Example 1 shows a GDEF Header definition with offsets to each of the main tables in GDEF.

Hex Data Source Comments

 GDEFHeader

TheGDEFHeader

GDEFHeader table definition

00010000 0x00010000 major/minor version

000C GlyphClassDefTable Offset to GlyphClassDef table

0026 AttachListTable Offset to AttachList table

0040 LigCaretListTable Offset to LigCaretList table

005A MarkAttachClassDefTable Offset to Mark Attachment Class Definition Table

Example 2: GlyphClassDef table
The GlyphClassDef table in Example 2 specifies a glyph for the each of the glyph classes predefined in the
GlyphClassDef Enumeration List.

Hex Data Source Comments

 ClassDefFormat2
GlyphClassDefTable

ClassDef table definition

0002 2 classFormat

0004 4 classRangeCount

 classRangeRecords[0]

0024 iGlyphID startGlyphID

0024 iGlyphID endGlyphID

0001 1 class: base glyphs

 classRangeRecords[1]

009F ffiLigGlyphID startGlyphID

009F ffiLigGlyphID endGlyphID

0002 2 class: ligature glyphs

 classRangeRecords[2]

0058 umlautAccentGlyphID startGlyphID

0058 umlautAccentGlyphID endGlyphID

0003 3 class: mark glyphs

 classRangeRecords[3]

018F CurvedTailComponentGlyphID startGlyphID

018F CurvedTailComponentGlyphID endGlyphID

0004 4 class: component glyphs

208

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

208 ©	ISO/IEC	2019	–	All	rights	reserved
	

Example 3: AttachList table

In Example 3, the AttachList table enumerates the attachment points defined for two glyphs. The
GlyphCoverage table identifies the glyphs: "a" and "e". For each covered glyph, an AttachPoint table specifies
the attachment point count and point indices: one point for the "a" glyph and two for the "e" glyph.

Hex Data Source Comments

 AttachList
AttachListTable

AttachList table definition

0012 GlyphCoverage Offset to Coverage table

0002 2 glyphCount

0008 aAttachPoint attachPointOffsets[0]

000C eAttachPoint attachPointOffsets [1]

 AttachPoint
aAttachPoint

AttachPoint table definition

0001 1 pointCount

0012 18 pointIndices[0]

 AttachPoint
eAttachPoint

AttachPoint table definition

0002 2 pointCount

000E 14 pointIndices [0]

0017 23 pointIndices [1]

 CoverageFormat1
GlyphCoverage

Coverage table definition

0001 1 coverageFormat

0002 2 glyphCount

001C aGlyphID glyphArray[0]

0020 eGlyphID glyphArray[1]

Example 4: LigCaretList table, LigGlyph table and CaretValueFormat1 table

Example 4 defines a list of ligature carets. The LigCoverage table lists all the ligature glyphs that define caret
positions. In this example, two ligatures are covered, "ffi" and "fi". For each covered glyph, a LigGlyph table
specifies the number of carets for the ligature and their coordinate values. The "fi" ligature defines one caret,
positioned between the "f" and "i" components; the "ffi" ligature defines two, one positioned between the two
"f" components and the other positioned between the "f" and "i". The CaretValue tables shown here use
Format1, where values are specified in design units only.

209

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 209
	

Hex Data Source Comments

 LigCaretList
LigCaretListTable

LigCaretList table definition

0008 LigCoverage Offset to Coverage table

0002 2 ligGlyphCount

0010 fiLigGlyph ligGlyphOffsets [0]

0014 ffiLigGlyph ligGlyphOffsets [1]

 CoverageFormat1
LigCoverage

Coverage table definition

0001 1 coverageFormat

0002 2 glyphCount

009F ffiLigGlyphID glyphArray[0]

00A5 fiLigGlyphID glyphArray[1]

 LigGlyph
fiLigGlyph

LigGlyph table definition

0001 1 caretCount, equals the number of components - 1

000E CaretFI caretValueOffsets[0]

 LigGlyph
ffiLigGlyph

LigGlyph table definition

0002 2 caretCount, equals the number of components - 1

0006 CaretFFI1 caretValueOffsets [0]

000E CaretFFI2 caretValueOffsets [1]

 CaretValueFormat1
CaretFI

CaretValue table definition

0001 1 caretValueFormat: design units only

025B 603 coordinate (X or Y value)

 CaretValueFormat1
CaretFFI1

CaretValue table definition

0001 1 caretValueFormat: design units only

025B 603 coordinate (X or Y value)

 CaretValueFormat1
CaretFFI2

CaretValue table definition

210

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

210 ©	ISO/IEC	2019	–	All	rights	reserved
	

0001 1 caretValueFormat: design units only

04B6 1206 coordinate (X or Y value)

Example 5: CaretValueFormat2 table

Example 5 shows a CaretValueFormat2 table that specifies a ligature caret coordinate in terms of a contour
point index on a specific glyph. The final position of the caret depends on the location of the contour point on
the glyph after hinting.

Hex Data Source Comments

 CaretValueFormat2
Caret1

CaretValue table definition

0002 2 caretValueFormat: contour point

000D 13 caretValuePointIndex

Example 6: CaretValueFormat3 table

In Example 6, the CaretValueFormat3 table defines a caret position in design units, but includes a Device
table to adjust the X or Y coordinate for the point size and resolution of the output font. Here, the Device table
specifies pixel adjustments for font sizes from 12 ppem to 17 ppem.

Hex Data Source Comments

 CaretValueFormat3
Caret3

CaretValue table definition

0003 3 caretValueFormat: design units plus Device table

04B6 1206 coordinate (X or Y value, design units)

0006 CaretDevice Offset to Device table

 DeviceTableFormat2
CaretDevice

Device Table definition

000C 12 startSize

0011 17 endSize

0002 2 deltaFormat

 1 increase 12ppm by 1 pixel

 1 increase 13ppm by 1 pixel

 1 increase 14ppm by 1 pixel

1111 1 increase 15ppm by 1 pixel

 2 increase 16ppm by 2 pixels

2200 2 increase 17ppm by 2 pixels

211

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 211
	

Example 7: MarkAttachClassDef table

In Example 7, the MarkAttachClassDef table specifies an attachment class for the each of the glyph ranges
predefined in the GlyphClassDef Enumeration List as marks.

Hex
Data

Source Comments

 ClassDefFormat2
theMarkAttachClassDefTable

ClassDef table definition

0002 2 classFormat

0004 4 classRangeCount

 classRangeRecords[0]

0268 graveAccentGlyphID startGlyphID

026A circumflexAccentGlyphID endGlyphID

0001 1 Class: top marks

 classRangeRecords[1]

0270 diaeresisAccentGlyphID startGlyphID

0272 acuteAccentGlyphID endGlyphID

0001 1 Class: top marks

 classRangeRecords[2]

028C diaeresisBelowGlyphID startGlyphID

028F cedillaGlyphID endGlyphID

0002 2 Class: bottom marks

 classRangeRecords[3]

0295 circumflexBelowGlyphID startGlyphID

0295 circumflexBelowGlyphID endGlyphID

0002 2 Class: bottom marks

6.3.3 GPOS – The glyph positioning table

The Glyph Positioning table (GPOS) provides precise control over glyph placement for sophisticated text
layout and rendering in each script and language system that a font supports.

6.3.3.1 Overview
Complex glyph positioning becomes an issue in writing systems, such as Vietnamese, that use diacritical and
other marks to modify the sound or meaning of characters. These writing systems require controlled
placement of all marks in relation to one another for legibility and linguistic accuracy.

Figure 6.21 – Vietnamese words with marks.

212

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

212 ©	ISO/IEC	2019	–	All	rights	reserved
	

Other writing systems require sophisticated glyph positioning for correct typographic composition. For instance,
Urdu glyphs are calligraphic and connect to one another along a descending, diagonal text line that proceeds
from right to left. To properly render Urdu, a text-processing client must modify both the horizontal (X) and
vertical (Y) positions of each glyph (see Figure 6.22).

Figure 6.22 – Urdu layout requires glyph positioning control, as well as contextual substitution

With the GPOS table, a font developer can define a complete set of positioning adjustment features in an OFF
font. GPOS data, organized by script and language system, is easy for a text-processing client to use to
position glyphs.
Positioning glyphs with TrueType 1.0

Glyph positioning in TrueType uses only two values, placement and advance, to specify a glyph's position for
text layout. If glyphs are positioned with respect to a virtual "pen point" that moves along a line of text,
placement describes the glyph's position with respect to the current pen point, and advance describes where
to move the pen point to position the next glyph (see Figure 6.23). For horizontal text, placement corresponds
to the left side bearing, and advance corresponds to the advance width.

Figure 6.23 – Glyph positioning with TrueType

TrueType specifies placement and advance only in the X direction for horizontal layout and only in the Y
direction for vertical layout. For simple Latin text layout, these two values may be adequate to position glyphs
correctly. But, for texts that require more sophisticated layout, the values must cover a richer range.
Placement and advance may need adjustment vertically, as well as horizontally.

The only positioning adjustment defined in TrueType is pair kerning, which modifies the horizontal spacing
between two glyphs. A typical kerning table lists pairs of glyphs and specifies how much space a text-
processing client should add or remove between the glyphs to properly display each pair. It does not provide
specific information about how to adjust the glyphs in each pair, and cannot adjust contexts of more than two
glyphs.

Positioning glyphs with OFF

OFF fonts allow excellent control and flexibility for positioning a single glyph and for positioning multiple glyphs
in relation to one another. By using both X and Y values that the GPOS table defines for placement and
advance and by using glyph attachment points, a client can more precisely adjust the position of a glyph.

213

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 213
	

In addition, the GPOS table can reference a Device table to define subtle, device-dependent adjustments to
any placement or advance value at any font size and device resolution. For example, a Device table can
specify adjustments at 51 pixels per em (ppem) that do not occur at 50 ppem.

X and Y values specified in OFF fonts for placement operations are always within the typical Cartesian
coordinate system (origin at the baseline of the left side), regardless of the writing direction. Additionally, all
values specified are done so in font unit measurements. This is especially convenient for font designers, since
glyphs are drawn in the same coordinate system. However, it's important to note that the meaning of "advance
width" changes, depending on the writing direction.

For example, in left-to-right scripts, if the first glyph has an advance width of 100, then the second glyph
begins at 100,0. In right-to-left scripts, if the first glyph has an advance width of 100, then the second glyph
begins at -100,0. For a top-to-bottom feature, to increase the advance height of a glyph by 100, the YAdvance
= 100. For any feature, regardless of writing direction, to lower the dieresis over an 'o' by 10 units, set the
YPlacement = -10.

Other GPOS features can define attachment points to combine glyphs and position them with respect to one
another. A glyph might have multiple attachment points. The point used will depend on the glyph to be
attached. For instance, a base glyph could have attachment points for different diacritical marks.

Figure 6.24 – Base glyph with multiple attachment points.

To reduce the size of the font file, a base glyph may use the same attachment point for all mark glyphs
assigned to a particular class. For example, a base glyph could have two attachment points, one above and
one below the glyph. Then all marks that attach above glyphs would be attached at the high point, and all
marks that attach below glyphs would be attached at the low point. Attachment points are useful in scripts
such as Arabic that combine numerous glyphs with vowel marks.

Attachment points also are useful for connecting cursive-style glyphs. Glyphs in cursive fonts can be designed
to attach or overlap when rendered. Alternatively, the font developer can use OFF to create a cursive
attachment feature and define explicit exit and entry attachment points for each glyph (see Figure 6.25).

214

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

214 ©	ISO/IEC	2019	–	All	rights	reserved
	

Figure 6.25 – Entry and exit points marked on contextual Urdu glyph variations

The GPOS table supports eight types of actions for positioning and attaching glyphs:

 A single adjustment positions one glyph, such as a superscript or subscript.

 A pair adjustment positions two glyphs with respect to one another. Kerning is an example of pair
adjustment.

 A cursive attachment describes cursive scripts and other glyphs that are connected with attachment
points when rendered.

 A mark-to-base attachment positions combining marks with respect to base glyphs, as when
positioning vowels, diacritical marks, or tone marks in Arabic, Hebrew, and Vietnamese.

 A mark-to-ligature attachment positions combining marks with respect to ligature glyphs. Because
ligatures may have multiple points for attaching marks, the font developer needs to associate each
mark with one of the ligature glyph's components.

 A mark-to-mark attachment positions one mark relative to another, as when positioning tone marks
with respect to vowel diacritical marks in Vietnamese.

 Contextual positioning describes how to position one or more glyphs in context, within an identifiable
sequence of specific glyphs, glyph classes, or varied sets of glyphs. One or more positioning
operations may be performed on "input" context sequences. Figure 6.26 illustrates a context for
positioning adjustments.

 Chaining contextual positioning describes how to position one or more glyphs in a chained context,
within an identifiable sequence of specific glyphs, glyph classes, or varied sets of glyphs. One or more
positioning operations may be performed on "input" context sequences.

Figure 6.26 – Contextual positioning lowered the accent over a vowel glyph that followed an
overhanging uppercase glyph

GPOS Table and OFF Font Variations

OFF Font variations allow a single font to support many design variations along one or more axes of design
variation. For example, a font with weight and width variations might support weights from thin to black, and
widths from ultra-condensed to ultra-expanded. For general information on OFF Font variations,
see subclause 7.1.

When different variation instances are selected, the design of individual glyphs changes. The same contours
and points are used, but the position in the design grid of each point can change, as can the default horizontal
or vertical advance and side bearings. As a result, corresponding changes may also be required for
positioning and advance adjustments in the GPOS table.

Positioning actions in the GPOS table are expressed directly using explicit X or Y font-unit values. In a
variable font, these X and Y values apply to the default instance and may need to be adjusted for the current

215

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 215
	

variation instance. This is done using variation data with processes similar to those used for glyph outlines
and other font data, as described in the OFF Font variations overview.

NOTE For certain GPOS actions, positions can be expressed indirectly by reference to specific glyph outline points. In a
variable font, use of glyph points to specify a positioning action would require invoking the rasterizer to process
the glyph-outline variation data in order to obtain the adjusted position of the point before the glyph positioning
operation can be completed. This may have a significant, negative impact on performance of text-layout
processing. For this reason, it is recommended that, in a variable font, positions that require adjustment for
different variation instances should always be expressed directly as X and Y values.

Variation data for adjustment of GPOS X or Y values is stored within an Item Variation Store table located
within the GDEF table. The same Item Variation Store is also used for adjustment of values in the GDEF and
JSTF tables. The Item Variation Store and constituent formats are described in subclause 7.2. These formats
are also used in the BASE table, as well as in the MVAR and other tables, but is different from the formats for
variation data used in the 'cvar' or gvar tables.

The variation data within an Item Variation Store is comprised of a number of adjustment deltas that get
applied to the default values of target items for variation instances within particular regions of the font’s
variation space. The Item Variation Store format uses delta-set indices to reference variation delta data for
particular target, font-data items to which they are applied. Data external to the Item Variation Store identifies
the delta-set index to be used for each given target item. Within the GPOS table, these indices are specified
within VariationIndex tables, with one VariationIndex table referenced for each item that requires variation
adjustment.

Note that the VariationIndex table is a variant of a Device table, with a distinct format value. (For full details on
the Device and VariationIndex table formats, see subclause 6.2.) This is done so that the default instance of a
variable font can be compatible with applications that do not support Font Variations. As a result, variable
fonts cannot use device tables. A VariationIndex table will be ignored in applications that do not support Font
Variations, or if the font is not a variable font.

The Item Variation Store format uses a two-level organization for variation data: a store can have multiple Item
Variation Data subtables, and each subtable has multiple delta-set rows. A delta-set index is a two-part index:
an outer index that selects a particular Item Variation Data subtable, and an inner index that selects a
particular delta-set row within that subtable. A VariationIndex table specifies both the outer and inner portions
of the delta-set index.

GPOS table organization
The GPOS table begins with a header that defines offsets to a ScriptList, a FeatureList, a LookupList, and an
optional FeatureVariations table (see Figure 6.27):

 The ScriptList identifies all the scripts and language systems in the font that use glyph positioning.

 The FeatureList defines all the glyph positioning features required to render these scripts and
language systems.

 The LookupList contains all the lookup data needed to implement each glyph positioning feature.

 • The FeatureVariations table can be used to substitute an alternate set of lookup tables to use for any
given feature under specified conditions. This is currently used only in variable fonts.

For a detailed discussion of ScriptLists, FeatureLists, LookupLists, and FeatureVariations tables see the OFF
layout common table formats. The following discussion summarizes how the GPOS table works.

216

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

216 ©	ISO/IEC	2019	–	All	rights	reserved
	

Figure 6.27 – High-level organization of GPOS table

The GPOS table is organized so text processing clients can easily locate the features and lookups that apply
to a particular script or language system. To access GPOS information, clients should use the following
procedure:

1. Locate the current script in the GPOS ScriptList table.

2. If the language system is known, search the script for the correct LangSys table; otherwise, use the
script's default LangSys table.

3. The LangSys table provides index numbers into the GPOS FeatureList table to access a required
feature and a number of additional features.

217

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 217
	

4. Inspect the featureTag of each feature, and select the feature tables to apply to an input glyph string.

5. If a Feature Variation table is present, evaluate conditions in the Feature Variation table to determine
if any of the initially-selected feature tables should be substituted by an alternate feature table.

6. Each feature provides an array of index numbers into the GPOS LookupList table. Assemble all
lookups from the set of chosen feature tables, and apply the lookups in the order given in the
LookupList table.

For a detailed description of the Feature Variation table and how it is processed, see subclause 6.2.

Lookup data is defined in Lookup tables, which are defined in subclause 6.2. A LookupTable contains one or
more subtables that define the specific conditions, type, and results of a positioning action used to implement
a feature. Specific Lookup subtable types are used for glyph positioning actions, and are defined in this
subclause. All subtables within a Lookup table shall be of the same lookup type, as listed in the following table
for the GPOS LookupType Enumeration:

GPOS LookupType Enumeration

Value Type Description

1 Single adjustment Adjust position of a single glyph

2 Pair adjustment Adjust position of a pair of glyphs

3 Cursive attachment Attach cursive glyphs

4 MarkToBase attachment Attach a combining mark to a base glyph

5 MarkToLigature attachment Attach a combining mark to a ligature

6 MarkToMark attachment Attach a combining mark to another mark

7 Context positioning Position one or more glyphs in context

8 Chained Context positioning Position one or more glyphs in chained context

9 Extension positioning Extension mechanism for other positionings

10+ Reserved For future use (must be set to zero)

Each LookupType has one or more subtable formats. The "best" format depends on the type of positioning
operation and the resulting storage efficiency. When glyph information is best presented in more than one
format, a single lookup may define more than one subtable, as long as all the subtables are of the same
LookupType. For example, within a given lookup, a glyph index array format may best represent one set of
target glyphs, whereas a glyph index range format may be better for another set.

Certain structures are used across multiple GPOS Lookup subtable types and formats. All Lookup subtables
use the Coverage table, which is defined in subclause 6.2. Single and pair adjustments (LookupTypes 1 and
2) use a ValueRecord structure and associated ValueFormat enumeration, which are defined later in this
subclause. Attachment subtables (LookupTypes 3, 4, 5 and 6) use Anchor and MarkArray tables, also defined
later in this subclause.

A series of positioning operations on the same glyph or string requires multiple lookups, one for each separate
action. Positioning adjustment values are accumulated in these cases. Each lookup has a different array index
in the LookupList table and is applied in the LookupList order.

During text processing, a client applies a lookup to each glyph in the string before moving to the next lookup.
A lookup is finished for a glyph after the client locates the target glyph or glyph context and performs a
positioning action, if specified. To move to the "next" glyph, the client will typically skip all the glyphs that
participated in the lookup operation: glyphs that were positioned as well as any other glyphs that formed a
context for the operation.

218

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

218 ©	ISO/IEC	2019	–	All	rights	reserved
	

There is just one exception: the "next" glyph in a sequence may be one of those that formed a context for the
operation just performed. For example, in the case of pair positioning operations (i.e., kerning), if the
ValueRecord for the second glyph is null, that glyph is treated as the "next" glyph in the sequence.

This rest of this clause describes the GPOS header and the subtables defined for each LookupType.
Examples at the end of this clause illustrate the GPOS header and seven of the nine LookupTypes, as well as
the ValueRecord and Anchor and MarkArray tables.

GPOS header

The GPOS table begins with a header that contains a version number (Version) initially set to 1.0
(0x00010000) and offsets to three tables: ScriptList, FeatureList, and LookupList. For descriptions of these
tables, see subclause 6.2. Example 1 at the end of this clause shows a GPOS Header version 1.0 table
definition.

GPOS Header, Version 1.0

Type Name Description

uint16 majorVersion Major version of the GPOS table, = 1

uint16 minorVersion Minor version of the GPOS table, = 0

Offset16 scriptListOffset Offset to ScriptList table, from beginning of GPOS table

Offset16 featureListOffset Offset to FeatureList table, from beginning of GPOS table

Offset16 lookupListOffset Offset to LookupList table, from beginning of GPOS table

GPOS Header, Version 1.1

Type Name Description

uint16 majorVersion Major version of the GPOS table, = 1

uint16 minorVersion Minor version of the GPOS table, = 1

Offset16 scriptListOffset Offset to ScriptList table, from beginning of GPOS table

Offset16 featureListOffset Offset to FeatureList table, from beginning of GPOS
table

Offset16 lookupListOffset Offset to LookupList table, from beginning of GPOS
table

Offset32 featureVariationsOffset Offset to FeatureVariations table, from beginning of
GPOS table (may be NULL)

6.3.3.2 GPOS lookup type descriptions

Lookup Type 1: Single adjustment positioning subtable

A single adjustment positioning subtable (SinglePos) is used to adjust the position of a single glyph, such as a
subscript or superscript. In addition, a SinglePos subtable is commonly used to implement lookup data for
contextual positioning.

A SinglePos subtable will have one of two formats: one that applies the same adjustment to a series of glyphs
(Format 1), and one that applies a different adjustment for each unique glyph (Format 2).

219

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 219
	

Single Adjustment Positioning: Format 1: Single Positioning Value

A SinglePosFormat1 subtable applies the same positioning value or values to each glyph listed in its
Coverage table. For instance, when a font uses old-style numerals, this format could be applied to uniformly
lower the position of all math operator glyphs.

The Format 1 subtable consists of a format identifier (posFormat), an offset to a Coverage table that defines
the glyphs to be adjusted by the positioning values (coverageOffset), and the format identifier (valueFormat)
that describes the amount and kinds of data in the ValueRecord.

The ValueRecord specifies one or more positioning values to be applied to all covered glyphs (valueRecord).
For example, if all glyphs in the Coverage table require both horizontal and vertical adjustments, the
ValueRecord will specify values for both xPlacement and yplacement.

Example 2 at the end of this clause shows a SinglePosFormat1 subtable used to adjust the placement of
subscript glyphs.

SinglePosFormat1 subtable:

Type Name Description

uint16 posFormat Format identifier: format = 1

Offset16 coverageOffet Offset to Coverage table, from beginning of SinglePos
subtable.

uint16 valueFormat Defines the types of data in the ValueRecord.

ValueRecord valueRecord Defines positioning value(s) – applied to all glyphs in the
Coverage table.

Single Adjustment Positioning Format 2: Array of positioning values

A SinglePosFormat2 subtable provides an array of ValueRecords that contains one positioning value for each
glyph in the Coverage table. This format is more flexible than Format 1, but it requires more space in the font
file.

For example, assume that the Cyrillic script will be used in left-justified text. For all glyphs, Format 2 could
define position adjustments for left side bearings to align the left edges of the paragraphs. To achieve this, the
Coverage table would list every glyph in the script, and the SinglePosFormat2 subtable would define a
ValueRecord for each covered glyph. Correspondingly, each ValueRecord would specify an xPlacement
adjustment value for the left side bearing.
NOTE A single ValueFormat applies to all ValueRecords defined in a SinglePos subtable. In this example, if

xPlacement is the only value that a ValueRecord needs to optically align the glyphs, then the X_PLACEMENT
flag will be the only flag set in the valueFormat field of the subtable.

As in Format 1, the Format 2 subtable consists of a format identifier (posFormat), an offset to a Coverage
table that defines the glyphs to be adjusted by the positioning values (coverageOffset), and the Value Format
flags field (valueFormat) that describes the amount and kinds of data in the ValueRecords. In addition, the
Format 2 subtable includes:

 A count of the ValueRecords (valueCount). One ValueRecord is defined for each glyph in the
Coverage table.

 An array of ValueRecords that specify positioning values (valueRecords). Because the array follows
the Coverage Index order, the first ValueRecord applies to the first glyph listed in the Coverage table,
and so on.

Example 3 at the end of this clause shows how to adjust the spacing of three dash glyphs with a
SinglePosFormat2 subtable.

220

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

220 ©	ISO/IEC	2019	–	All	rights	reserved
	

SinglePosFormat2 subtable:

Type Name Description

uint16 posFormat Format identifier: format = 2

Offset16 coverageOffset Offset to Coverage table, from beginning of SinglePos
subtable.

uint16 valueFormat Defines the types of data in the ValueRecords.

uint16 valueCount Number of ValueRecords – must equal glyphCount in the
Coverage table.

ValueRecord valueRecords
[valueCount]

Array of ValueRecords – positioning values applied to
glyphs.

Lookup Type 2: Pair adjustment positioning subtable

A pair adjustment positioning subtable (PairPos) is used to adjust the positions of two glyphs in relation to one
another-for instance, to specify kerning data for pairs of glyphs. Compared to a typical kerning table, however,
a PairPos subtable offers more flexiblity and precise control over glyph positioning. The PairPos subtable can
adjust each glyph in a pair independently in both the X and Y directions, and it can explicitly describe the
particular type of adjustment applied to each glyph. In addition, a PairPos subtable can use Device tables to
subtly adjust glyph positions at each font size and device resolution.

PairPos subtables can be either of two formats: one that identifies glyphs individually by index (Format 1), and
one that identifies glyphs by class (Format 2).
Pair Adjustment Positioning Format 1:Adjustments for glyph pairs

Format 1 uses glyph indices to access positioning data for one or more specific pairs of glyphs. All pairs are
specified in the order determined by the layout direction of the text.
NOTE For text written from right to left, the right-most glyph will be the first glyph in a pair; conversely, for text written

from left to right, the left-most glyph will be first.

A PairPosFormat1 subtable contains a format identifier (posFormat) and two ValueFormat fields:

 valueFormat1 applies to the ValueRecords for the first glyph in each pair. The single ValueFormat
field applies to ValueRecords for all first glyphs. If valueFormat1 is set to zero (0), the corresponding
glyph has no ValueRecord and, therefore, should not be repositioned.

 valueFormat2 applies to the ValueRecords for the second glyph in each pair. The single ValueFormat
field applies to ValueRecords for all second glyphs. If valueFormat2 is set to 0, then the second glyph
of the pair is the "next" glyph for which a lookup should be performed.

A PairPos subtable also defines an offset to a Coverage table (coverageOffet) that lists the indices of the first
glyphs in each pair. More than one pair can have the same first glyph, but the Coverage table will list that
glyph only once.

The subtable also contains an array of offsets to PairSet tables (pairSetOffsets) and a count of the defined
tables (pairSetCount). The PairSet array contains one offset for each glyph listed in the Coverage table and
uses the same order as the Coverage Index.

PairPosFormat1 subtable

Type Name Description

uint16 posFormat Format identifier: format = 1

Offset16 coverageOffset Offset to Coverage table, from beginning of PairPos subtable-
only the first glyph in each pair.

uint16 valueFormat1 Defines the types of data in ValueRecord1 – for the first glyph in
the pair (may be zero).

221

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 221
	

uint16 valueFormat2 Defines the types of data in ValueRecord2 – for the second
glyph in the pair (may be zero).

uint16 pairSetCount Number of PairSet tables.

Offset16 pairSetOffsets
[pairSetCount]

Array of offsets to PairSet tables. Offsets are from beginning of
PairPos subtable, ordered by Coverage Index.

A PairSet table enumerates all the glyph pairs that begin with a covered glyph. An array of PairValueRecords
(PairValueRecord) contains one record for each pair and lists the records sorted by the glyph ID of the second
glyph in each pair. The pairValueCount field specifies the number of PairValueRecords in the set.

PairSet table

Type Name Description

uint16 pairValueCount Number of PairValueRecords

PairValueRecord pairValueRecords
[pairValueCount]

Array of PairValueRecords, ordered by glyph ID of
the second glyph.

A PairValueRecord specifies the second glyph in a pair (secondGlyph) and defines a ValueRecord for each
glyph (valueRecord1 and valueRecord2). If valueFormat1 in the PairPos subtable is set to zero (0),
valueRecord1 will be empty; similarly, if valueFormat2 is 0, valueRecord2 will be empty.

Example 4 at the end of this clause shows a PairPosFormat1 subtable that defines two cases of pair kerning.

PairValueRecord

Type Name Description

uint16 secondGlyph Glyph ID of second glyph in the pair (first glyph is
listed in the Coverage table).

ValueRecord valueRecord1 Positioning data for the first glyph in the pair.

ValueRecord valueRecord2 Positioning data for the second glyph in the pair.

Pair Adjustment Positioning Format 2: Class pair adjustment

Format 2 defines a pair as a set of two glyph classes and modifies the positions of all the glyphs in a class.
For example, this format is useful in Japanese scripts that apply specific kerning operations to all glyph pairs
that contain punctuation glyphs. One class would be defined as all glyphs that may be coupled with
punctuation marks, and the other classes would be groups of similar punctuation glyphs.

In a PairPosFormat2 subtable, glyph classes are defined using a Class Definition table, defined in subclause
6.2.

The PairPos Format2 subtable begins with a format identifier (posFormat) and an offset to a Coverage table
(coverageOffset), measured from the beginning of the PairPos subtable. The Coverage table lists the indices
of the first glyphs that may appear in each glyph pair. More than one pair may begin with the same glyph, but
the Coverage table lists the glyph index only once.

A PairPosFormat2 subtable also includes two ValueFormat fields:

 valueFormat1 applies to the ValueRecords for the first glyph in each pair. The single ValueFormat
field applies to ValueRecords for all first glyphs. If valueFormat1 is set to zero (0), then the
ValueRecords for the first glyph will be empty and, therefore, the first glyph is not repositioned.

 valueFormat2 applies to the ValueRecords for the second glyph in each pair. The single ValueFormat
field applies to ValueRecords for all second glyphs. If valueFormat2 is set to 0, then the ValueRecords
for the second glyph of the pair will be empty, the second glyph is not repositioned, and it becomes
the "next" glyph for which a lookup is performed.

222

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

222 ©	ISO/IEC	2019	–	All	rights	reserved
	

PairPosFormat2 requires that each glyph in all pairs be assigned to a class, which is identified by an integer
called a class value. Pairs are then represented in a two-dimensional array as sequences of two class values.
Multiple pairs can be represented in one Format 2 subtable.

A PairPosFormat2 subtable contains offsets (classDef1Offset, classDef2Offset) to two class definition tables:
one that assigns class values to all the first glyphs in all pairs (classDef1), and one that assigns class values
to all the second glyphs in all pairs (classDef2). If both glyphs in a pair use the same class definition, the offset
value can be the same for classDef1 as for classDef2, but they are not required to be the same. The subtable
also specifies the number of glyph classes defined in classDef1 (class1Count) and in classDef2 (class2Count),
including Class 0.

For each class identified in the ClassDef1 table, a Class1Record enumerates all pairs that contain a particular
class as a first component. The Class1Record array stores all Class1Records according to class value.

NOTE Class1Records are not tagged with a class value identifier. Instead, the index value of a Class1Record in the
array defines the class value represented by the record. For example, the first Class1Record enumerates pairs
that begin with a Class 0 glyph, the second Class1Record enumerates pairs that begin with a Class1 glyph, and
so on.

PairPosFormat2 subtable

Type Name Description

uint16 posFormat Format identifier: format = 2

Offset16 coverageOffset Offset to Coverage table, from beginning of PairPos
subtable

uint16 valueFormat1 ValueRecord definition – for the first glyph of the pair (may
be zero)

uint16 valueFormat2 ValueRecord definition – for the second glyph of the pair
(may be zero)

Offset16 classDef1Offset Offset to ClassDef table, from beginning of PairPos
subtable – for the first glyph of the pair

Offset16 classDef2Offset Offset to ClassDef table, from beginning of PairPos
subtable – for the second glyph of the pair

uint16 class1Count Number of classes in ClassDef1 table – includes Class0

uint16 class2Count Number of classes in ClassDef2 table – includes Class0

Class1Record class1Record
[class1Count]

Array of Class1 records, ordered by classes in classDef1

Each Class1Record contains an array of Class2Records (class2Record), which also are ordered by class
value. One Class2Record must be declared for each class in the classDef2 table, including Class 0.

Class1Record

Type Name Description

Class2Record class2Records[class2Count] Array of Class2 records, ordered by classes
in classDef 2

A Class2Record consists of two ValueRecords, one for the first glyph in a class pair (valueRecord1) and one
for the second glyph (valueRecord2). If the PairPos subtable has a value of zero (0) for valueFormat1 or
valueFormat2, then the corresponding record (valueRecord1 or valueRecord2) will be empty – that is, not
present. For example, if valueFormat1 is zero, then the Class2Record will begin with and consist solely of
valueRecord2. The text-processing client must be aware of the variable nature of the Class2Record and use
the valueFormat1 and valueFormat2 fields to determine the size and content of the Class2Record.

223

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 223
	

Example 5 at the end of this clause demonstrates pair kerning with glyph classes in a PairPosFormat2
subtable.

Class2Record

Type Name Description

ValueRecord valueRecord1 Positioning for first glyph – empty if ValueFormat1 = 0

ValueRecord valueRecord2 Positioning for second glyph – empty if ValueFormat2 = 0

Lookup Type 3: Cursive attachment positioning subtable

Some cursive fonts are designed so that adjacent glyphs join when rendered with their default positioning.
However, if positioning adjustments are needed to join the glyphs, a cursive attachment positioning
(CursivePos) subtable can describe how to connect the glyphs by aligning two anchor points: the designated
exit point of a glyph, and the designated entry point of the following glyph.

The subtable has one format: CursivePosFormat1.

Cursive attachment positioning Format1: Cursive attachment

The CursivePosFormat1 subtable begins with a format identifier (posFormat) and an offset to a Coverage
table (coverageOffset), which lists all the glyphs that define cursive attachment data. In addition, the subtable
contains one EntryExitRecord for each glyph listed in the Coverage table, a count of those records
(entryExitCount), and an array of those records in the same order as the Coverage Index (entryExitRecords).

CursivePosFormat1 subtable

Type Name Description

uint16 posFormat Format identifier: format = 1

Offset16 coverageOffset Offset to Coverage table, from
beginning of CursivePos subtable.

uint16 entryExitCount Number of EntryExit records.

EntryExitRecord entryExitRecord[entryExitCount] Array of EntryExit records, in Coverage
Index order.

Each EntryExitRecord consists of two offsets: one to an Anchor table that identifies the entry point on the
glyph (entryAnchorOffset), and an offset to an Anchor table that identifies the exit point on the glyph
(exitAnchorOffset). (For a complete description of the Anchor table, see the end of this subclause.)

To position glyphs using the CursivePosFormat1 subtable, a text-processing client aligns the ExitAnchor point
of a glyph with the EntryAnchor point of the following glyph. If no corresponding anchor point exists, either the
EntryAnchor or ExitAnchor offset may be NULL.

At the end of this clause, Example 6 describes cursive glyph attachment in the Urdu language.

EntryExitRecord

Type Name Description

Offset16 entryAnchorOffset Offset to EntryAnchor table, from beginning of CursivePos
subtable (may be NULL).

Offset16 exitAnchorOffset Offset to ExitAnchor table, from beginning of CursivePos
subtable (may be NULL).

224

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

224 ©	ISO/IEC	2019	–	All	rights	reserved
	

Lookup Type 4: Mark-to-Base attachment positioning subtable

The MarkToBase attachment (MarkBasePos) subtable is used to position combining mark glyphs with respect
to base glyphs. For example, the Arabic, Hebrew, and Thai scripts combine vowels, diacritical marks, and
tone marks with base glyphs.

In the MarkBasePos subtable, every mark glyph has an anchor point and is also assigned to a mark class.
Each base glyph then defines an anchor point for each class of marks it uses. When a mark is combined with
a given base, the mark position is adjusted so that the mark anchor is aligned with the base anchor for the
applicable mark class.

For example, assume two mark classes: all marks positioned above base glyphs (Class 0), and all marks
positioned below base glyphs (Class 1). In this case, each base glyph that uses these marks would define two
anchor points, one for attaching the mark glyphs listed in Class 0, and one for attaching the mark glyphs listed
in Class 1.

A mark class is identified by a specific integer. Within the MarkBasePos subtable, the anchor definition of
each mark, and the assignment of each mark to a mark class, is provided using a MarkArray table in
combination with a mark Coverage table. First, a mark Coverage table specifies all of the mark glyphs covered
by the subtable. Then, for every mark in the Coverage table, the MarkArray table has a corresponding
MarkRecord that defines the anchor and class assignment for the mark. The MarkArray table and MarkRecord
are defined later in this subclause.

The MarkToBase Attachment subtable has one format: MarkBasePosFormat1.

Mark-to-Base attachment positioning Format1: Mark-to-Base attachment point

The MarkBasePosFormat1 subtable begins with a format identifier (posFormat) and offsets
(markCoverageOffset, baseCoverageOffset) to two Coverage tables: one that lists all the mark glyphs
referenced in the subtable (markCoverage), and one that lists all the base glyphs referenced in the subtable
(baseCoverage).

The MarkBasePosFormat1 subtable also contains an offset (markArrayOffset) to a MarkArray table. For each
mark glyph in the mark Coverage table, a MarkRecord in the MarkArray table specifies its class and an offset
to the Anchor table that describes the mark’s attachment point. The classCount field specifies the total number
of distinct mark classes defined in all the MarkRecords.

The MarkBasePosFormat1 subtable also contains an offset to a BaseArray table (baseArrayOffset), which
defines for each base glyph an array of anchors, one for each mark class.

MarkBasePosFormat1 subtable

Type Name Description

uint16 posFormat Format identifier-format = 1

Offset16 markCoverageOffset Offset to MarkCoverage table, from beginning of
MarkBasePos subtable

Offset16 baseCoverageOffset Offset to BaseCoverage table, from beginning of
MarkBasePos subtable

uint16 markClassCount Number of classes defined for marks

Offset16 markArrayOffset Offset to MarkArray table, from beginning of MarkBasePos
subtable

Offset16 baseArrayOffset Offset to BaseArray table, from beginning of MarkBasePos
subtable

The BaseArray table consists of an array (baseRecords) and count (baseCount) of BaseRecords. The array
stores the BaseRecords in the same order as the baseCoverage Index. Each base glyph in the
BaseCoverage table has a BaseRecord.

225

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 225
	

BaseArray table

Type Name Description

uint16 baseCount Number of BaseRecords

BaseRecord baseRecords[baseCount] Array of BaseRecords, in order of baseCoverage
Index

A BaseRecord declares one Anchor table for each mark class (including Class 0) identified in the
MarkRecords of the MarkArray. Each Anchor table specifies one attachment point used to attach all the marks
in a particular class to the base glyph. A BaseRecord contains an array of offsets to Anchor tables
(BaseAnchor). The zero-based array of offsets defines the entire set of attachment points each base glyph
uses to attach marks. The offsets to Anchor tables are ordered by mark class.
NOTE Anchor tables are not tagged with class value identifiers. Instead, the index value of an Anchor table in the array

defines the class value represented by the Anchor table.

Example 7 at the end of this clause defines mark positioning above and below base glyphs with a
MarkBasePosFormat1 subtable.

BaseRecord

Type Name Description

Offset16 baseAnchorOffset[markClassCount] Array of offsets (one per mark class) to
Anchor tables. Offsets are from beginning
of BaseArray table, ordered by class.

Lookup Type 5: Mark-to-Ligature attachment positioning subtable

The MarkToLigature attachment (MarkLigPos) subtable is used to position combining mark glyphs with
respect to ligature base glyphs. With MarkToBase attachment, described previously, each base glyph has an
attachment point defined for each class of marks. MarkToLigature attachment is similar, except that each
ligature glyph is defined to have multiple components (in a virtual sense — not actual glyphs), and each
component has a separate set of attachment points defined for the different mark classes.

As a result, a ligature glyph may have multiple base attachment points for one class of marks. For a given
mark assigned to a particular class, the appropriate base attachment point is determined by which ligature
component the mark is associated with. This is dependent on the original character string and subsequent
character- or glyph-sequence processing, not the font data alone. While a text-layout client is performing any
character-based preprocessing or any glyph-substitution operations using the GSUB table, the text-layout
client must keep track of associations of marks to particular ligature-glyph components.

The MarkLigPos subtable can be used to define multiple mark-to-ligature attachments. In the subtable, every
mark glyph has an anchor point and is associated with a class of marks. As with MarkToBase attachment,
mark anchors and class assignments are defined using a MarkArray table in combination with a mark
Coverage table. Every ligature glyph specifies a two-dimensional array of data: for each component in a
ligature, an array of anchor points is defined, one for each class of marks.

For example, assume two mark classes: all marks positioned above base glyphs (Class 0), and all marks
positioned below base glyphs (Class 1). In this case, each component of a base ligature glyph may define two
anchor points, one for attaching the mark glyphs listed in Class 0, and one for attaching the mark glyphs listed
in Class 1. Alternatively, if the language system does not allow marks on the second component, the first
ligature component may define two anchor points, one for each class of marks, and the second ligature
component may define no anchor points.

To position a combining mark using a MarkToLigature attachment subtable, the text-processing client must
work backward from the mark to the preceding ligature glyph. To correctly access the subtables, the client
must keep track of the component associated with the mark. Aligning the attachment points combines the
mark and ligature.

The MarkToLigature attachment subtable has one format: MarkLigPosFormat1.

226

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

226 ©	ISO/IEC	2019	–	All	rights	reserved
	

Mark-to-Ligature attachment positioning Format1: Mark-to-Ligature Attachment

The MarkLigPosFormat1 subtable begins with a format identifier (posFormat) and two offsets
(markCoverageOffset, baseCoverageOffset) to Coverage tables that list all the mark glyphs (markCoverage)
and Ligature glyphs (ligatureCoverage) referenced in the subtable.

The MarkLigPosFormat1 subtable also contains an offset to a MarkArray table (markArrayOffset). For each
mark glyph in the mark Coverage table, a MarkRecord in the MarkArray table specifies its class and an offset
to the Anchor table that describes the mark’s attachment point. The markClassCount field specifies the total
number of distinct mark classes defined in all the MarkRecords.

The MarkLigPosFormat1 subtable also contains an offset to a LigatureArray table (ligatureArrayOffset), which
defines for each ligature glyph the two-dimensional array of anchor data: one anchor per ligature component
per mark class.

MarkLigPosFormat1 subtable

Type Name Description

uint16 posFormat Format identifier: format = 1

Offset16 markCoverageOffset Offset to markCoverage table, from beginning of
MarkLigPos subtable

Offset16 ligatureCoverageOffset Offset to ligatureCoverage table, from beginning of
MarkLigPos subtable

uint16 markClassCount Number of defined mark classes

Offset16 markArrayOffset Offset to MarkArray table, from beginning of MarkLigPos
subtable

Offset16 ligatureArrayOffset Offset to LigatureArray table, from beginning of
MarkLigPos subtable

The LigatureArray table contains a count (ligatureCount) and an array of offsets (ligatureAttachOffsets) to
LigatureAttach tables. The ligatureAttachOffsets array lists the offsets to LigatureAttach tables, one for each
ligature glyph listed in the ligatureCoverage table, in the same order as the ligatureCoverage index.

LigatureArray table

Type Name Description

uint16 ligatureCount Number of LigatureAttach table offsets

Offset16 ligatureAttachOffsets
[ligatureCount]

Array of offsets to LigatureAttach tables. Offsets are from
beginning of LigatureArray table, ordered by
ligatureCoverage Index

Each LigatureAttach table consists of an array (componentRecords) and count (componentCount) of the
component glyphs in a ligature. The array stores the ComponentRecords in the same order as the
components in the ligature. The order of the records also corresponds to the writing direction – that is, the
logical direction – of the text. For text written left to right, the first component is on the left; for text written right
to left, the first component is on the right.

LigatureAttach table

Type Name Description

uint16 componentCount Number of ComponentRecords
in this ligature.

ComponentRecord componentRecords[componentCount] Array of Component records,
ordered in writing direction.

227

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 227
	

A ComponentRecord, one for each component in the ligature, contains an array of offsets
(ligatureAnchorOffsets) to the Anchor tables that define all the attachment points used to attach marks to the
component. For each mark class (including Class 0) identified in the MarkArray records, an Anchor table
specifies the point used to attach all the marks in a particular class to the ligature base glyph, relative to the
component.

In a ComponentRecord, the zero-based ligatureAnchorOffsets array lists offsets to Anchor tables by mark
class. If a component does not define an attachment point for a particular class of marks, then the offset to the
corresponding Anchor table will be NULL.

Example 8 at the end of this clause shows a MarkLisPosFormat1 subtable used to attach mark accents to a
ligature glyph in the Arabic script.

ComponentRecord

Type Name Description

Offset16 ligatureAnchorOffsets
[markClassCount]

Array of offsets (one per class) to Anchor tables. Offsets
are from beginning of LigatureAttach table, ordered by
class (may be NULL)

Lookup Type 6: Mark-to-Mark attachment positioning subtable

The MarkToMark attachment (MarkMarkPos) subtable is identical in form to the MarkToBase attachment
subtable, although its function is different. MarkToMark attachment defines the position of one mark relative to
another mark as when, for example, positioning tone marks with respect to vowel diacritical marks in
Vietnamese.

The attaching mark is mark1, and the base mark being attached to is mark2. In the MarkMarkPos subtable,
every mark1 glyph has an anchor attachment point and is assigned to a class of marks. As for mark glyphs in
a MarkToBase attachment, the anchor point and class assignment of mark1 glyphs is defined using a
MarkArray table in combination with a mark1 Coverage table. Each mark2 glyph defines an anchor point for
each class of marks.

For example, assume two mark1 classes: all marks positioned to the left of mark2 glyphs (Class 0), and all
marks positioned to the right of mark2 glyphs (Class 1). Each mark2 glyph that uses these marks defines two
anchor points: one for attaching the mark1 glyphs listed in Class 0, and one for attaching the mark1 glyphs
listed in Class 1.

The mark2 glyph that combines with a mark1 glyph is the glyph preceding the mark1 glyph in glyph string
order (skipping glyphs according to LookupFlags). The subtable applies precisely when that mark2 glyph is
covered by mark2Coverage. To combine the mark glyphs, the mark1 glyph is moved such that the relevant
attachment points coincide. The input context for MarkToBase, MarkToLigature and MarkToMark positioning
tables is the mark that is being positioned. If a sequence contains several marks, a lookup may act on it
several times, to position them.

The MarkToMark attachment subtable has one format: MarkMarkPosFormat1.

Mark-to-Mark attachment positioning Format1: Mark-to-Mark attachment

The MarkMarkPosFormat1 subtable begins with a format identifier (posFormat) and two offsets
(mark1CoverageOffset, mark2CoverageOffset) to Coverage tables: one that lists all the mark1 glyphs
referenced in the subtable (mark1Coverage), and one that lists all the mark2 glyphs referenced in the subtable
(mark2Coverage).

The subtable also has an offset to a MarkArray table for the mark1 glyphs (mark1ArrayOffset). For each mark
glyph in the mark1Coverage table, a MarkRecord in the MarkArray table specifies its class and an offset to the
Anchor table that describes the mark's attachment point. The markClassCount field specifies the total number
of distinct mark classes defined in all the MarkRecords.

The MarkMarkPosFormat1 subtable also has an offset to a MarkArray table for mark2 glyph
(mark2ArrayOffset), which defines for each mark2 glyph an array of anchors, one for each mark1 mark class.

228

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

228 ©	ISO/IEC	2019	–	All	rights	reserved
	

MarkMarkPosFormat1 subtable

Type Name Description

uint16 posFormat Format identifier: format = 1

Offset16 mark1CoverageOffset Offset to Combining Mark Coverage table, from beginning
of MarkMarkPos subtable

Offset16 mark2CoverageOffset Offset to Base Mark Coverage table, from beginning of
MarkMarkPos subtable

uint16 markClassCount Number of Combining Mark classes defined

Offset16 mark1ArrayOffset Offset to MarkArray table for Mark1, from beginning of
MarkMarkPos subtable

Offset16 mark2ArrayOffset Offset to Mark2Array table for Mark2, from beginning of
MarkMarkPos subtable

The Mark2Array table contains one Mark2Record for each mark2Coverage table. It stores the records in the
same order as the mark2Coverage Index.

Mark2Array table

Type Name Description

uint16 mark2Count Number of Mark2 records

Mark2Record mark2Records
[mark2Count]

Array of Mark2Records, in Coverage order.

Each Mark2Record contains an array of offsets to Anchor tables (mark2AnchorOffsets). The zero-based array
of offsets, measured from the beginning of the Mark2Array table, defines the entire set of mark2 attachment
points used to attach mark1 glyphs to a specific mark2 glyph. The Anchor tables referenced in the
mark2AnchorOffsets array are ordered by mark1 class value.

A Mark2Record declares one Anchor table for each mark class (including Class 0) identified in the
MarkRecords of the MarkArray. Each Anchor table specifies one mark2 attachment point used to attach all the
mark1 glyphs in a particular class to the mark2 glyph.

Example 9 at the end of the subclause shows a MarkMarkPosFormat1 subtable for attaching one mark to
another in the Arabic script.

Mark2Record

Type Name Description

Offset16 mark2AnchorOffsets
[markClassCount]

Array of offsets (one per class) to Anchor tables. Offsets
are from beginning of Mark2Array table, in class order

Lookup Type 7: Contextual positioning subtables

A Contextual Positioning (ContextPos) subtable defines the most powerful type of glyph positioning lookup. It
describes glyph positioning in context so a text-processing client can adjust the position of one or more glyphs
within a certain pattern of glyphs. Each subtable describes one or more "input" glyph sequences and one or
more positioning operations to be performed on that sequence.

ContextPos subtables can have one of three formats, which closely mirror the formats used for contextual
glyph substitution. One format applies to specific glyph sequences (Format 1), one defines the context in
terms of glyph classes (Format 2), and the third format defines the context in terms of sets of glyphs (Format
3).

229

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 229
	

All three formats of ContextPos subtables specify positioning data in a PosLookupRecord. A description of
that record follows.

Position Lookup Record

All contextual positioning subtables specify the positioning data in a PosLookupRecord. Each record contains
a SequenceIndex, which indicates where the positioning operation will occur in the glyph sequence. In
addition, a lookupListIndex field identifies the lookup to be applied at the glyph position specified by the
sequenceIndex.

The order in which lookups are applied to the entire glyph sequence, called the "design order", can be
significant, so PosLookupRecord data should be defined accordingly.

The contextual substitution subtables defined in Examples 10, 11, and 12 show PosLookupRecords.

PosLookupRecord

Type Name Description

uint16 sequenceIndex Index (zero-based) to input glyph sequence

uint16 lookupListIndex Index (zero-based) into the LookupList for the Lookup table to
apply to that position in the glyph sequence

Context Positioning Subtable Format 1: Simple Glyph Contexts

Format 1 defines the context for a glyph positioning operation as a particular sequence of glyphs. For example,
a context could be <To>, <xyzabc>, <!?*#@>, or any other glyph sequence.

Within the context, Format 1 identifies particular glyph-sequence positions (not glyph indices) as the targets
for specific adjustments. When a text-processing client locates a context in a string of glyphs, it makes the
adjustment by applying the lookup data defined for a targeted position at that location.

For example, suppose that accent mark glyphs above lowercase x-height vowel glyphs must be lowered when
an overhanging capital letter glyph precedes the vowel. When the client locates this context in the text, the
subtable identifies the position of the accent mark and a lookup index. A lookup specifies a positioning action
that lowers the accent mark over the vowel so that it does not collide with the overhanging capital.

ContextPosFormat1 defines the context in two places. A Coverage table specifies the first glyph in the input
sequence, and a PosRule table identifies the remaining glyphs. To describe the context used in the previous
example, the Coverage table lists the glyph index of the first component of the sequence (the overhanging
capital), and a PosRule table defines indices for the lowercase x-height vowel glyph and the accent mark.

A single ContextPosFormat1 subtable may define more than one context glyph sequence. If different context
sequences begin with the same glyph, then the Coverage table should list the glyph only once because all first
glyphs in the table must be unique. For example, if three contexts each start with an "s" and two start with a "t",
then the Coverage table will list one "s" and one "t".

For each context, a PosRule table lists all the glyphs, in glyph-sequence order, that follow the first glyph. The
table also contains an array of PosLookupRecords that specify the positioning lookup data for each glyph
position (including the first glyph position) in the context.

All the PosRule tables defining contexts that begin with the same first glyph are grouped together and defined
in a PosRuleSet table. For example, the PosRule tables that define the three contexts that begin with an "s"
are grouped in one PosRuleSet table, and the PosRule tables that define the two contexts that begin with a "t"
are grouped in a second PosRuleSet table. Each unique glyph listed in the Coverage table shall have a
PosRuleSet table that defines all the PosRule tables for a covered glyph.

To locate a context glyph sequence, the text-processing client searches the Coverage table each time it
begins processing a new glyph-sequence context. If the first glyph is covered, the client reads the
corresponding PosRuleSet table and examines each PosRule table in the set to determine whether the rest of
the context defined there matches the subsequent glyphs in the glyph sequence. If the context and glyph

230

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

230 ©	ISO/IEC	2019	–	All	rights	reserved
	

sequence match, the client finds the target glyph position, applies the lookup for that position, and completes
the positioning action.

A ContextPosFormat1 subtable contains a format identifier (posFormat), an offset to a Coverage table
(coverageOffset), a count of the number of PosRuleSets that are defined (posRuleSetCount), and an array of
offsets to the PosRuleSet tables (posRuleSetOffsets). As mentioned, one PosRuleSet table shall be defined
for each glyph listed in the Coverage table.

In the posRuleSetOffsets array, offsets for the PosRuleSet tables are ordered in the Coverage index order.
The first PosRuleSet in the array applies to the first glyph ID listed in the Coverage table, the second
PosRuleSet in the array applies to the second glyph ID listed in the Coverage table, and so on.

ContextPosFormat1 subtable

Type Name Description

uint16 posFormat Format identifier: format = 1

Offset16 coverageOffset Offset to Coverage table, from beginning of ContextPos
subtable

uint16 posRuleSetCount Number of PosRuleSet tables

Offset16 posRuleSetOffsets
[posRuleSetCount]

Array of offsets to PosRuleSet tables. Offsets are from
beginning of ContextPos subtable, ordered by Coverage
Index

There is one PosRuleSet table for each glyph in the Coverage table. Each PosRuleSet table corresponds to a
given glyph in the Coverage table, and describes all of the contexts that begin with that glyph.

A PosRuleSet table consists of an array of offsets to PosRule tables (posRuleOffsets), ordered by preference,
and a count of the PosRule tables defined in the set (posRuleCount).

PosRuleSet Table

Type Name Description

uint16 posRuleCount Number of PosRule tables

Offset16 posRuleOffsets
[posRuleCount]

Array of offsets to PosRule tables. Offsets are from beginning of
PosRuleSet, ordered by preference.

A PosRule table consists of a count of the glyphs to be matched in the input context sequence (glyphCount),
including the first glyph in the sequence, and an array of glyph indices that describe the context
(inputSequence). The Coverage table specifies the index of the first glyph in the context, and the
inputSequence array begins with the second glyph in the context sequence. As a result, the first element in
the inputSequence array corresponds wtih glyph-sequence position index one (1), not zero (0). The
inputSequence array lists the indices in the order the corresponding glyphs appear in the text, in writing
direction (logical) order. For text written from right to left, the right-most glyph will be first; conversely, for text
written from left to right, the left-most glyph will be first.

A PosRule table also contains a count of the positioning operations to be performed on the input glyph
sequence (posCount) and an array of PosLookupRecords (posLookupRecords). Each record specifies a
position in the input glyph sequence and a LookupList index to the positioning lookup to be applied there. The
array should list records in design order, or the order the lookups should be applied to the entire glyph
sequence.

Example 10 at the end of this subclause demonstrates glyph kerning in context with a ContextPosFormat1
subtable.

231

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 231
	

PosRule Table

Type Name Description

uint16 glyphCount Number of glyphs in the Input glyph
sequence

uint16 posCount Number of PosLookupRecords

uint16 inputSequence
[glyphCount - 1]

Array of input glyph IDs – starting with
the second glyph

PosLookupRecord posLookupRecords[posCount] Array of positioning lookups, in design
order

Context positioning subtable Format 2: Class-based Glyph Contexts

Format 2, more flexible than Format 1, describes class-based context positioning. For this format, a specific
integer, called a class value, must be assigned to each glyph in all context glyph sequences. Contexts are
then defined as sequences of class values. This subtable may define more than one context.

In a ContextPosFormat2 subtable, glyph classes are defined using a Class Definition table, defined
in subclause 6.2.

To clarify the notion of class-based context rules, suppose that certain sequences of three glyphs need
special kerning. The glyph sequences consist of an uppercase glyph that overhangs on the right side, a
punctuation mark glyph, and then a quote glyph. In this case, the set of uppercase glyphs would constitute
one glyph class (Class1), the set of punctuation mark glyphs would constitute a second glyph class (Class 2),
and the set of quote mark glyphs would constitute a third glyph class (Class 3). The input context might be
specified with a context rule (PosClassRule) that describes "the set of glyph strings that form a sequence of
three glyph classes, one glyph from Class 1, followed by one glyph from Class 2, followed by one glyph from
Class 3".

Each ContextPosFormat2 subtable contains an offset to a class definition table (classDefOffset), which
defines the class values of all glyphs in the input contexts that the subtable describes. Generally, a unique
classDef will be declared in each instance of the ContextPosFormat2 subtable that is included in a font, even
though several Format 2 subtables may share classDef tables. Classes are exclusive sets; a glyph cannot be
in more than one class at a time. The output glyphs that replace the glyphs in the context sequence do not
need class values because they are specified elsewhere by glyph ID.

The ContextPosFormat2 subtable also contains a format identifier (posFormat) and defines an offset to a
Coverage table (coverageOffset). For this format, the Coverage table lists indices for the complete set of
glyphs (not glyph classes) that may appear as the first glyph of any class-based context. In other words, the
Coverage table contains the list of glyph indices for all the glyphs in all classes that may be first in any of the
context class sequences. For example, if the contexts begin with a Class 1 or Class 2 glyph, then the
Coverage table will list the indices of all Class 1 and Class 2 glyphs.

A ContextPosFormat2 subtable also defines an array of offsets to the PosClassSet tables
(posClassSetOffsets), along with a count (including Class 0) of the PosClassSet tables (posClassSetCount).
In the array, the PosClassSet tables are ordered by ascending class value (from 0 to posClassSetCount - 1).

The posClassSetOffsets array contains one offset for each glyph class, including Class 0. PosClassSets are
not explicitly tagged with a class value; rather, the index value of the PosClassSet in the PosClassSet array
defines the class that a PosClassSet represents. A PosClassSet enumerates all the PosClassRules that begin
with a particular glyph class.

For example, the first PosClassSet listed in the array contains all the PosClassRules that define contexts
beginning with Class 0 glyphs, the second PosClassSet contains all PosClassRules that define contexts
beginning with Class 1 glyphs, and so on. If no PosClassRules begin with a particular class (that is, if a
PosClassSet contains no PosClassRules), then the offset to that particular PosClassSet in the PosClassSet
array will be set to NULL.

232

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

232 ©	ISO/IEC	2019	–	All	rights	reserved
	

ContextPosFormat2 Subtable

Type Name Description

uint16 posFormat Format identifier: format = 2

Offset16 coverageOffset Offset to Coverage table, from beginning of ContextPos
subtable

Offset16 classDefOffset Offset to ClassDef table, from beginning of ContextPos
subtable

uint16 posClassSetCount Number of PosClassSet tables

Offset16 posClassSetOffsets
[posClassSetCount]

Array of offsets to PosClassSet tables. Offsets are from
beginning of ContextPos subtable, ordered by class (may
be NULL)

All the PosClassRules that define contexts beginning with the same class are grouped together and defined in
a PosClassSet table. Consequently, the PosClassSet table identifies the class of a context's first component.

A PosClassSet enumerates all the PosClassRules that begin with a particular glyph class. For instance,
PosClassSet0 represents all the PosClassRules that describe contexts starting with Class 0 glyphs, and
PosClassSet1 represents all the PosClassRules that define contexts starting with Class 1 glyphs.

Each PosClassSet table consists of a count of the PosClassRules defined in the PosClassSet
(posClassRuleCount) and an array of offsets to PosClassRule tables (posClassRuleOffsets). The
PosClassRule tables are ordered by preference in the posClassRuleOffsets array of the PosClassSet.

PosClassSet Table

Type Name Description

uint16 posClassRuleCount Number of PosClassRule tables

Offset16 posClassRuleOffsets[posClassRuleCount] Array of offsets to PosClassRule
tables. Offsets are from beginning of
PosClassSet, ordered by preference.

For each context, a PosClassRule table contains a count of the glyph classes in a given context (glyphCount),
including the first class in the context sequence. A class array lists the classes, beginning with the second
class, that follow the first class in the context. The first class listed indicates the second position in the context
sequence.
NOTE Text order depends on the writing direction of the text. For text written from right to left, the right-most glyph will

be first. Conversely, for text written from left to right, the left-most glyph will be first.

The values specified in the classes array are those defined in the classDef table. For example, consider a
context consisting of the sequence: Class 2, Class 7, Class 5, Class 0. The classes array will read: classes[0]
= 7, classes[1] = 5, and classes[2] = 0. The first class in the sequence, Class 2, is defined by the index into
the posClassSetOffsets array. The total number and sequence of glyph classes listed in the classes array
must match the total number and sequence of glyph classes contained in the input context.

A PosClassRule also contains a count of the positioning operations to be performed on the context
(PosCount) and an array of PosLookupRecords (PosLookupRecord) that supply the positioning data. For
each position in the context that requires a positioning operation, a PosLookupRecord specifies a LookupList
index and a position in the input glyph class sequence where the lookup is applied. The PosLookupRecord
array lists PosLookupRecords in design order, or the order in which lookups are applied to the entire glyph
sequence.

Example 11 at the end of this clause demonstrates a ContextPosFormat2 subtable that uses glyph classes to
modify accent positions in glyph strings.

233

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 233
	

PosClassRule Table

Type Name Description

uint16 glyphCount Number of glyphs to be matched

uint16 posCount Number of PosLookupRecords

uint16 classes
[glyphCount - 1]

Array of classes to be matched to the
input glyph sequence, beginning with
the second glyph position

PosLookupRecord posLookupRecords[posCount] Array of PosLookupRecords-in design
order

Context positioning subtable Format 3: Coverage-based glyph contexts

Format 3, coverage-based context positioning, defines a context rule as a sequence of coverages. Each
position in the sequence may specify a different Coverage table for the set of glyphs that matches the context
pattern. With Format 3, the glyph sets defined in the different Coverage tables may intersect, unlike Format 2
which specifies fixed class assignments for the lookup (they cannot be changed at each position in the context
sequence) and exclusive classes (a glyph cannot be in more than one class at a time).

For example, consider an input context that contains an uppercase glyph (position 0), followed by any narrow
uppercase glyph (position 1), and then another uppercase glyph (position 2). This context requires three
Coverage tables, one for each position:

 In position 0, the first position, the Coverage table lists the set of all uppercase glyphs.

 In position 1, the second position, the Coverage table lists the set of all narrow uppercase glyphs,
which is a subset of the glyphs listed in the Coverage table for position 0.

 In position 2, the Coverage table lists the set of all uppercase glyphs again.
NOTE Both position 0 and position 2 can use the same Coverage table.

Unlike Formats 1 and 2, this format defines only one context rule at a time. It consists of a format identifier
(posFormat), a count of the number of glyphs in the sequence to be matched (glyphCount), and an array of
Coverage offsets that describe the input context sequence (coverageOffsets).
NOTE The Coverage tables referenced in the coverageOffsets array must be listed in text order according to the writing

direction. For text written from right to left, the right-most glyph will be first. Conversely, for text written from left to
right, the left-most glyph will be first.

The subtable also contains a count of the positioning operations to be performed on the input Coverage
sequence (posCount) and an array of PosLookupRecords (posLookupRecords) in design order, or the order
in which lookups are applied to the entire glyph sequence.

Example 12 at the end of this subclause changes the positions of math sign glyphs in math equations with a
ContextPosFormat3 subtable.

ContextPosFormat3 subtable

Type Name Description

uint16 posFormat Format identifier: format = 3

uint16 glyphCount Number of glyphs in the input sequence

uint16 posCount Number of PosLookupRecords

Offset16 coverageOffsets
[glyphCount]

Array of offsets to Coverage tables, from
beginning of ContextPos subtable

PosLookupRecord posLookupRecords
[posCount]

Array of positioning lookups, in design order

234

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

234 ©	ISO/IEC	2019	–	All	rights	reserved
	

LookupType 8: Chaining contextual positioning subtable

A Chaining Contextual Positioning subtable (ChainContextPos) describes glyph positioning in context with an
ability to look back and/or look ahead in the sequence of glyphs. The design of the Chaining Contextual
Positioning subtable is parallel to that of the Contextual Positioning subtable, including the availability of three
formats.

To specify the context, the coverage table lists the first glyph in the input sequence, and the ChainPosRule
subtable defines the rest. Once a covered glyph is found at position i, the client reads the corresponding
ChainPosRuleSet table and examines each table to determine if it matches the surrounding glyphs in the text.
There is a match if the string <backtrack sequence>+<input sequence>+<lookahead sequence> matches with
the glyphs at position i - BacktrackGlyphCount in the text.

If there is a match, then the client finds the target glyphs for positioning and performs the operations. Please
note that (just like in the ContextPosFormat1 subtable) these lookups are required to operate within the range
of text from the covered glyph to the end of the input sequence. No positioning operations can be defined for
the backtracking sequence or the lookahead sequence.

To clarify the ordering of glyph arrays for input, backtrack and lookahead sequences, the following illustration
is provided. Input sequence match begins at i where the input sequence match begins. The backtrack
sequence is ordered beginning at i - 1 and increases in offset value as one moves away from i. The lookahead
sequence begins after the input sequence and increases in logical order.

Logical order - a b c d e f g h i j

 i

Input sequence - 0 1

Backtrack sequence - 3 2 1 0

Lookahead sequence - 0 1 2 3

Chaining context positioning Format 1: Simple glyph contexts

This Format is identical to Format 1 of Context Positioning lookup except that the PosRule table is replaced
with a ChainPosRule table. (Correspondingly, the ChainPosRuleSet table differs from the PosRuleSet table
only in that it lists offsets to ChainPosRule tables instead of PosRule tables; and the
ChainContextPosFormat1 subtable lists offsets to ChainPosRuleSet tables instead of PosRuleSet subtables.)

ChainContextPosFormat1 subtable

Type Name Description

uint16 posFormat Format identifier: format = 1

Offset16 coverageOffset Offset to Coverage table, from beginning of
ContextPos subtable

uint16 chainPosRuleSetCount Number of ChainPosRuleSet tables

Offset16 chainPosRuleSetOffsets
[chainPosRuleSetCount]

Array of offsets to ChainPosRuleSet tables. Offsets are
from beginning of ChainContextPos subtable, ordered
by Coverage Index

There is one ChainPosRuleSet table for each glyph in the Coverage table. Each ChainPosRuleSet table
corresponds to a given glyph in the Coverage table, and describes all of the contexts that begin with that glyph.

235

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 235
	

A ChainPosRuleSet table consists of an array of offsets to ChainPosRule tables (chainPosRuleOffsets),
ordered by preference, and a count of the ChainPosRule tables defined in the set (chainPosRuleCount).

ChainPosRuleSet table

Type Name Description

uint16 chainPosRuleCount Number of ChainPosRule tables

Offset16 chainPosRuleOffsets
[chainPosRuleCount]

Array of offsets to ChainPosRule tables. Offsets are from
beginning of ChainPosRuleSet, ordered by preference

ChainPosRule table

Type Name Description

uint16 backtrackGlyphCount Total number of glyphs in the backtrack
sequence

uint16 backtrackSequence
[backtrackGlyphCount]

Array of backtracking glyph IDs

uint16 inputGlyphCount Total number of glyphs in the input sequence
- includes the first glyph

uint16 inputSequence
[inputGlyphCount - 1]

Array of input glyph IDs - starts with second
glyph)

uint16 lookaheadGlyphCount Total number of glyphs in the look ahead
sequence

uint16 lookAheadSequence
[lookAheadGlyphCount]

Array of lookahead glyph IDs

uint16 posCount Number of PosLookupRecords

PosLookupRecord posLookupRecords
[posCount]

Array of PosLookupRecords, in design order

Chaining context positioning Format 2: Class-based glyph contexts

This lookup Format is parallel to the Context Positioning format 2, with PosClassSet subtable changed to
ChainPosClassSet subtable, and PosClassRule subtable changed to ChainPosClassRule subtable.

In a ChainContextPosFormat2 subtable, glyph classes are defined using a Class Definition table, defined
in subclause 6.2.

To chain contexts, three classes are used in the glyph ClassDef table: backtrackClassDef, inputClassDef, and
lookaheadClassDef.

ChainContextPosFormat2 subtable

Type Name Description

uint16 posFormat Format identifier: format = 2

Offset16 coverageOffset Offset to Coverage table, from beginning of
ChainContextPos subtable

Offset16 backtrackClassDefOffset Offset to ClassDef table containing backtrack
sequence context, from beginning of
ChainContextPos subtable

236

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

236 ©	ISO/IEC	2019	–	All	rights	reserved
	

Offset16 inputClassDefOffset Offset to ClassDef table containing input sequence
context, from beginning of ChainContextPos subtable

Offset16 lookaheadClassDefOffset Offset to ClassDef table containing lookahead
sequence context, from beginning of
ChainContextPos subtable

uint16 chainPosClassSetCnt Number of ChainPosClassSet tables

Offset16 chainPosClassSetOffsets
[chainPosClassSetCnt]

Array of offsets to ChainPosClassSet tables. Offsets
are from beginning of ChainContextPos subtable,
ordered by input class (may be NULL)

All the ChainPosClassRules that define contexts beginning with the same class are grouped together and
defined in a ChainPosClassSet table. Consequently, the ChainPosClassSet table identifies the class of a
context's first component.

ChainPosClassSet table

Type Name Description

uint16 chainPosClassRuleCount Number of ChainPosClassRule tables

Offset16 chainPosClassRuleOffsets
[chainPosClassRuleCount]

Array of offsets to ChainPosClassRule
tables. Offsets are from beginning of
ChainPosClassSet, ordered by preference

ChainPosClassRule table

Type Name Description

uint16 backtrackGlyphCount Total number of glyphs in the backtrack
sequence

uint16 backtrackSequence
[backtrackGlyphCount]

Array of backtrack-sequence classes

uint16 inputGlyphCount Total number of classes in the input sequence
- includes the first class

uint16 inputSequence
[inputGlyphCount - 1]

Array of input classes to be matched to the
input glyph sequence, beginning with the
second glyph position

uint16 lookaheadGlyphCount Total number of classes in the look ahead
sequence

uint16 lookAheadSequence
[lookAheadGlyphCount]

Array of lookahead-sequence classes

uint16 posCount Number of PosLookupRecords

PosLookupRecord posLookupRecords
[posCount]

Array of PosLookupRecords, in design order

Chaining context positioning Format 3: Coverage-based glyph contexts

Format 3 defines a chaining context rule as a sequence of Coverage tables. Each position in the sequence
may define a different Coverage table for the set of glyphs that matches the context pattern. With Format 3,
the glyph sets defined in the different Coverage tables may intersect, unlike Format 2 which specifies fixed

237

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 237
	

class assignments (identical for each position in the backtrack, input, or lookahead sequence) and exclusive
classes (a glyph cannot be in more than one class at a time).
NOTE The order of the Coverage tables listed in the Coverage array must follow the writing direction. For text written

from right to left, then the right-most glyph will be first. Conversely, for text written from left to right, the left-most
glyph will be first.

The subtable also contains a count of the positioning operations to be performed on the input Coverage
sequence (posCount) and an array of PosLookupRecords (posLookupRecords) in design order: that is, the
order in which lookups should be applied to the entire glyph sequence.

ChainContextPosFormat3 subtable

Type Name Description

uint16 posFormat Format identifier: format = 3

uint16 backtrackGlyphCount Number of glyphs in the backtracking
sequence

Offset16 backtrackCoverageOffsets
[backtrackGlyphCount]

Array of offsets to coverage tables in
backtracking sequence, in glyph sequence
order

uint16 inputGlyphCount Number of glyphs in input sequence

Offset16 inputCoverageOffsets
[inputGlyphCount]

Array of offsets to coverage tables in input
sequence, in glyph sequence order

uint16 lookaheadGlyphCount Number of glyphs in lookahead sequence

Offset16 lookaheadCoverageOffsets
[lookaheadGlyphCount]

Array of offsets to coverage tables in
lookahead sequence, in glyph sequence
order

uint16 posCount Number of PosLookupRecords

PosLookupRecord posLookupRecords
[posCount]

Array of PosLookupRecords, in design
order

LookupType 9: Extension positioning

This lookup provides a mechanism whereby any other lookup type's subtables are stored at a 32-bit offset
location in the 'GPOS' table. This is needed if the total size of the subtables exceeds the 16-bit limits of the
various other offsets in the 'GPOS' table. In this document, the subtable stored at the 32-bit offset location is
termed the "extension" subtable.

This subtable type uses one format: ExtensionPosFormat1.

Extension Pospositioning Subtable Format1

ExtensionPosFormat1 subtable

Type Name Description

uint16 posFormat Format identifier: format = 1.

uint16 extensionLookupType Lookup type of subtable referenced by ExtensionOffset
(i.e. the extension subtable).

Offset32 extensionOffset Offset to the extension subtable, of lookup type
ExtensionLookupType, relative to the start of the
ExtensionPosFormat1 subtable.

238

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

238 ©	ISO/IEC	2019	–	All	rights	reserved
	

ExtensionLookupType must be set to any lookup type other than 9. All subtables in a LookupType 9 lookup
must have the same ExtensionLookupType. All offsets in the extension subtables are set in the usual way, i.e.
relative to the extension subtables themselves.

When an OFF layout engine encounters a LookupType 9 Lookup table, it shall:

 Proceed as though the Lookup table's LookupType field were set to the extensionLookupType of the
subtables.

 Proceed as though each extension subtable referenced by extensionOffset replaced the LookupType
9 subtable that referenced it.

6.3.3.3 Shared tables: Value record, Anchor table and MarkArray table

Several lookup subtables described earlier in this clause refer to one or more of the same tables for
positioning data: ValueRecord, Anchor table, and MarkArray table. These shared tables are described here.

Example 14 at the end of the clause uses a ValueFormat table and ValueRecord to specify positioning values
in GPOS.
Value Record

GPOS subtables use ValueRecords to describe all the variables and values used to adjust the position of a
glyph or set of glyphs. A ValueRecord may define any combination of X and Y values (in design units) to add
to (positive values) or subtract from (negative values) the placement and advance values provided in the font.
In non-variable fonts, a ValueRecord may also contain an offset to a Device table for each of the specified
values. In a variable font, it may also contain an offset to a VariationIndex table for each of the specified
values.

Note that all fields of a ValueRecord are optional: to save space, only the fields that are required need be
included in a given instance. Because the GPOS table uses ValueRecords for many purposes, the sizes and
contents of ValueRecords may vary from subtable to subtable. A ValueRecord is always accompanied by a
ValueFormat flags field that specifies which of the ValueRecord fields is present. If a ValueRecord specifies
more than one value, the values should be listed in the order shown in the ValueRecord definition. If the
associated ValueFormat flags indicate that a field is not present, then the next present field follows
immediately after the last preceding, present field. The text-processing client must be aware of the flexible and
variable nature of ValueRecords in the GPOS table.

ValueRecord

Type Name Description

int16 xPlacement Horizontal adjustment for placement, in design units

int16 yPlacement Vertical adjustment for placement, in design units

int16 xAdvance Horizontal adjustment for advance, in design units - only used
for horizontal layout

int16 yAdvance Vertical adjustment for advance, in design units - only used
for vertical layout

Offset16 xPlaDeviceOffset Offset to Device table (non-variable font) / VariationIndex
table (variable font) for horizontal placement, from beginning
of positioning subtable (SimplePos, PairPos – may be NULL)

Offset16 yPlaDeviceOffset Offset to Device table (non-variable font) / VariationIndex
table (variable font) for vertical placement, from beginning of
positioning subtable (SimplePos, PairPos – may be NULL)

Offset16 xAdvDeviceOffset Offset to Device table (non-variable font) / VariationIndex
table (variable font) for horizontal advance, from beginning of
positioning subtable (SimplePos, PairPos – may be NULL)

239

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 239
	

Offset16 yAdvDeviceOffset Offset to Device table (non-variable font) / VariationIndex
table (variable font) for vertical advance, from beginning of
positioning subtable (SimplePos, PairPos – may be NULL)

NOTE 1 Device tables are used only in non-variable fonts, while VariationIndex tables are used only in variable fonts.

In variable fonts, VariationIndex tables shall be used to reference variation data for any placement or advance
value that requires adjustment for different variation instances.

NOTE 2 While a separate reference to a VariationIndex table is required for each value that requires variation, two or
more values that require the same variation data can have offsets that point to the same VariationIndex table,
and two or more VariationIndex tables can reference the same variation data entries.

NOTE 3 If no VariationIndex table is used for a particular placement or advance value, then that value is used for all
variation instances.

A ValueFormat flags field defines the types of positioning adjustment data that ValueRecords specify.
SinglePos subtables will have ValueRecords for a single glyph position in a glyph sequence; PairPos
subtables will have separate ValueRecords for two glyph positions. In a given subtable, the same
ValueFormat applies to every ValueRecord for a given glyph poistion.

The ValueFormat determines whether the ValueRecords:

 Apply to placement, advance, or both.

 Apply to the horizontal position (X coordinate), the vertical position (Y coordinate), or both.

 May refer to one or more Device tables (in non-variable fonts) or VariationIndex tables (in variable
fonts) for any of the specified values.

Each defined bit in the ValueFormat flags corresponds to a field in the ValueRecord and increases the size of
the ValueRecord by 2 bytes. A ValueFormat of 0x0000 corresponds to an empty ValueRecord, which
indicates no positioning changes.

To identify the fields in each ValueRecord, the ValueFormat flags shown below are used. To specify multiple
fields with a ValueFormat, the bit settings of the relevant fields are added with a logical OR operation.

For example, to adjust the left-side bearing of a glyph, the ValueFormat will be 0x0001, and the ValueRecord
will define the xPlacement value. To adjust the advance width of a different glyph, the ValueFormat will be
0x0004, and the ValueRecord will describe the xAdvance value. To adjust both the xPlacement and xAdvance
of a set of glyphs, the ValueFormat will be 0x0005, and the ValueRecord will specify both values in the order
they are listed in the ValueRecord definition.

ValueFormat flags

Mask Name Description

0x0001 X_PLACEMENT Includes horizontal adjustment for placement

0x0002 Y_PLACEMENT Includes vertical adjustment for placement

0x0004 X_ADVANCE Includes horizontal adjustment for advance

0x0008 Y_ADVANCE Includes vertical adjustment for advance

0x0010 X_PLACEMENT_DEVICE Includes Device table (non-variable font) /
VariationIndex table (variable font) for horizontal
placement

0x0020 Y_PLACEMENT_DEVICE Includes Device table (non-variable font) /
VariationIndex table (variable font) for vertical
placement

240

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

240 ©	ISO/IEC	2019	–	All	rights	reserved
	

0x0040 X_ADVANCE_DEVICE Includes Device table (non-variable font) /
VariationIndex table (variable font) for horizontal
advance

0x0080 Y_ADVANCE_DEVICE Includes Device table (non-variable font) /
VariationIndex table (variable font) for vertical
advance

0xFF000 Reserved For future use (set to zero)

Anchor tables

A GPOS table uses anchor points to position one glyph with respect to another. Each glyph defines an anchor
point, and the text-processing client attaches the glyphs by aligning their corresponding anchor points.

To describe an anchor point, an Anchor table can use one of three formats. The first format uses X and Y
coordinates, in design units, to specify a location for the anchor point in relation to the location of the outline
for a given glyph. The other two formats refine the location of the anchor point using contour points (Format 2)
or Device tables (Format 3). In a variable font, the third format uses a VariationIndex table (a variant of a
Device table) to reference variation data for adjustment of the anchor position for the current variation instance,
as needed.

Anchor table Format 1: Design Units

AnchorFormat1 consists of a format identifier (anchorFormat) and a pair of design-unit coordinates
(xCoordinate and yCoordinate) that specify the location of the anchor point. This format has the benefits of
small size and simplicity, but the anchor point cannot be hinted to adjust its position for different device
resolutions.

Example 15 at the end of this clause uses AnchorFormat1.

AnchorFormat1 table

Type Name Description

uint16 anchorFormat Format identifier, = 1

int16 xCoordinate Horizontal value, in design units

int16 yCoordinate Vertical value, in design units

Anchor table Format 2: Design Units Plus Contour Point

Like AnchorFormat1, AnchorFormat2 specifies a format identifier (anchorFormat) and a pair of design unit
coordinates for the anchor point (xcoordinate and ycoordinate).

For fine-tuning the location of the anchor point, AnchorFormat2 also provides an index to a glyph contour point
(anchorPoint) that is on the outline of a glyph. Hinting can be used to move the contour anchor point. In the
rendered text, the anchor point will provide the final positioning data for a given ppem size.

Example 16 at the end of this clause uses AnchorFormat2.

AnchorFormat2 table

Type Name Description

uint16 anchorFormat Format identifier, = 2

int16 xCoordinate Horizontal value, in design units

int16 yCoordinate Vertical value, in design units

uint16 anchorPoint Index to glyph contour point

241

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 241
	

Anchor table Format 3: Design Units Plus Device or VariationIndex Tables

Like AnchorFormat1, AnchorFormat3 specifies a format identifier (anchorFormat) and locates an anchor point
(xcoordinate and ycoordinate). And, like AnchorFormat 2, it permits fine adjustments in variable fonts to the
coordinate values. However, AnchorFormat3 uses Device tables, rather than a contour point, for this
adjustment.

With a Device table, a client can adjust the position of the anchor point for any font size and device resolution.
AnchorFormat3 can specify offsets to Device tables for the the X coordinate (xDeviceTable) and the Y
coordinate (yDeviceTable). If only one coordinate requires adjustment, the offset to the Device table for the
other coordinate may be set to NULL.

In variable fonts, AnchorFormat3 shall be used to reference variation data to adjust anchor points for different
variation instances, if needed. In this case, AnchorFormat3 specifies an offset to a VariationIndex table, which
is a variant of the Device table used for variations. If no VariationIndex table is used for a particular anchor
point X or Y coordinate, then that value is used for all variation instances. While separate VariationIndex table
references are required for each value that requires variation, two or more values that require the same
variation-data values can have offsets that point to the same VariationIndex table, and two or more
VariationIndex tables can reference the same variation data entries.

Example 17 at the end of the clause shows an AnchorFormat3 table.

AnchorFormat3 table

Type Name Description

uint16 anchorFormat Format identifier, = 3

int16 xCoordinate Horizontal value, in design units

int16 yCoordinate Vertical value, in design units

Offset16 xDeviceOffset Offset to Device table (non-variable font) / VariationIndex table
(variable font) for X coordinate, from beginning of Anchor table
(may be NULL)

Offset16 yDeviceOffset Offset to Device table (non-variable font) / VariationIndex table
(variable font) for Y coordinate, from beginning of Anchor table
(may be NULL)

MarkArray table

The MarkArray table defines the class and the anchor point for a mark glyph. Three GPOS subtable types –
MarkToBase attachment, MarkToLigature attachment, and MarkToMark attachment – use the MarkArray table
to specify data for attaching marks.

The MarkArray table contains a count of the number of MarkRecords (markCount) and an array of those
records (markRecord). Each mark record defines the class of the mark and an offset to the Anchor table that
contains data for the mark.

A class value can be zero (0), but the MarkRecord must explicitly assign that class value. (This differs from
the Class Definition table, in which all glyphs not assigned class values automatically belong to Class 0.) The
GPOS subtables that refer to MarkArray tables use the class assignments for indexing zero-based arrays that
contain data for each mark class.

In Example 18 at the end of the clause, a MarkArray table and two MarkRecords define two mark classes.

242

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

242 ©	ISO/IEC	2019	–	All	rights	reserved
	

MarkArray table

Type Name Description

uint16 markCount Number of MarkRecords

MarkRecord markRecords
[markCount]

Array of MarkRecords, ordered by corresponding glyphs in the
associated mark Coverage order

MarkRecord

Type Name Description

uint16 markClass Class defined for the associated mark

Offset16 markAnchorOffset Offset to Anchor table, from beginning of MarkArray table

6.3.3.4 GPOS subtable examples

The rest of this clause describes examples of all the GPOS subtable formats, including each of the three
formats available for contextual positioning. All the examples reflect unique parameters described below, but
the samples provide a useful reference for building subtables specific to other situations.

All the examples have three columns showing hex data, source, and comments.

Example 1: GPOS header table

Example 1 shows a typical GPOS Header table definition with offsets to a ScriptList, FeatureList, and
LookupList.

Example 1

Hex Data Source Comments

 GPOSHeader
TheGPOSHeader

GPOSHeader table definition

00010000 0x00010000 major / minor version

000A TheScriptList Offset to ScriptList table

001E TheFeatureList Offset to FeatureList table

002C TheLookupList Offset to LookupList table

Example 2: SinglePosFormat1 subtable

Example 2 uses the SinglePosFormat1 subtable to lower the Y placement of subscript glyphs in a font. The
LowerSubscriptsSubTable defines one Coverage table, called LowerSubscriptsCoverage, which lists one
range of glyph indices for the numeral/numeric subscript glyphs. The subtable's ValueFormat setting indicates
that the ValueRecord specifies only the YPlacement value, lowering each subscript glyph by 80 design units.

Example 2

Hex Data Source Comments

 SinglePosFormat1
LowerSubscriptsSubTable

SinglePos subtable definition

0001 1 posFormat

0008 LowerSubscriptsCoverage Offset to Coverage table

243

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 243
	

0002 0x0002 valueFormat: Y_PLACEMENT

 ValueRecord

FFB0 -80 move Y position down

 CoverageFormat2
LowerSubscriptsCoverage

Coverage table definition

0002 2 coverageFormat: ranges

0001 1 rangeCount

 rangeRecords[0]

01B3 ZeroSubscriptGlyphID Start, first glyph ID

01BC NineSubscriptGlyphID End, last glyph ID

0000 0 StartCoverageIndex

Example 3: SinglePosFormat2 subtable

This example uses a SinglePosFormat2 subtable to adjust the spacing of three dash glyphs by different
amounts. The em dash spacing changes by 10 units, the en dash spacing changes by 25 units, and spacing
of the standard dash changes by 50 units.

The DashSpacingSubTable contains one Coverage table with three dash glyph indices, plus an array of
ValueRecords, one for each covered glyph. The ValueRecords use the same ValueFormat to modify the
XPlacement and XAdvance values of each glyph. The ValueFormat bit setting of 0x0005 is produced by
adding the XPlacement and XAdvance bit settings.

Example 3

Hex Data Source Comments

 SinglePosFormat2
DashSpacingSubTable

SinglePos subtable definition

0002 2 posFormat

0014 DashSpacingCoverage Offset to Coverage table

0005 0x0005 valueFormat: X_PLACEMENT || X_ADVANCE

0003 3 valueCount

 valueRecords[0] for dash glyph

0032 50 X_PLACEMENT

0032 50 X_ADVANCE

 valueRecords[1] for en dash glyph

0019 25 X_PLACEMENT

0019 25 X_ADVANCE

 valueRecords[2] for em dash glyph

000A 10 X_PLACEMENT

244

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

244 ©	ISO/IEC	2019	–	All	rights	reserved
	

000A 10 X_ADVANCE

 CoverageFormat1
DashSpacingCoverage

Coverage table definition

0001 1 coverageFormat: lists

0003 3 glyphCount

004F DashGlyphID glyphArray[0]

0125 EnDashGlyphID glyphArray[1]

0129 EmDashGlyphID glyphArray[2]

Example 4: PairPosFormat1 subtable

Example 4 uses a PairPosFormat1 subtable to kern two glyph pairs - "Po" and "To" - by adjusting the
XAdvance of the first glyph and the XPlacement of the second glyph. Two ValueFormats are defined, one for
each glyph. The subtable contains a Coverage table that lists the index of the first glyph in each pair. It also
contains an offset to a PairSet table for each covered glyph.

A PairSet table defines an array of PairValueRecords to specify all the glyph pairs that contain a covered
glyph as their first component. In this example, the PPairSet table has one PairValueRecord that identifies the
second glyph in the "Po" pair and two ValueRecords, one for the first glyph and one for the second. The
TPairSet table also has one PairValueRecord that lists the second glyph in the "To" pair and two
ValueRecords, one for each glyph.

Example 4

Hex Data Source Comments

 PairPosFormat1
PairKerningSubTable

PairPos subtable definition

0001 1 posFormat

001E PairKerningCoverage Offset to Coverage table

0004 0x0004 valueFormat1: X_ADVANCE only

0001 0x0001 ValueFormat2: X_PLACEMENT only

0002 2 pairSetCount

000E PPairSetTable pairSetOffsets[0]

0016 TPairSetTable pairSetOffsets [1]

 PairSetTable
PPairSetTable

PairSet table definition

0001 1 pairValueCount

 pairValueRecords[0]

0059 LowercaseOGlyphID SecondGlyph

 valueRecord1 ValueRecord for first glyph

FFE2 -30 xAdvance

 valueRecord2 ValueRecord for second glyph

FFEC -20 xPlacement

245

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 245
	

 PairSetTable
PairSetTable

PairSet table definition

0001 1 pairValueCount

 pairValueRecords[0]

0059 LowercaseOGlyphID secondGlyph

 valueRecord1 ValueRecord for first glyph

FFD8 -40 xAdvance

 valueRecord2 ValueRecord for second glyph

FFE7 -25 xPlacement

 CoverageFormat1
PairKerningCoverage

Coverage table definition

0001 1 coverageFormat: lists

0002 2 glyphCount

002D UppercasePGlyphID glyphArray[0]

0031 UppercaseTGlyphID glyphArray[1]

Example 5: PairPosFormat2 subtable

The PairPosFormat2 subtable in this example defines pairs composed of two glyph classes. Two ClassDef
tables are defined, one for each glyph class. The first glyph in each pair is in a class of lowercase glyphs with
diagonal shapes (v, w, y), defined Class1 in the LowercaseClassDef table. The second glyph in each pair is in
a class of punctuation glyphs (comma and period), defined in Class1 in the PunctuationClassDef table. The
Coverage table only lists the indices of the glyphs in the LowercaseClassDef table since they occupy the first
position in the pairs.

The subtable defines two Class1Records for the classes defined in LowecaseClassDef, including Class0.
Each record, in turn, defines a Class2Record for each class defined in PunctuationClassDef, including Class0.
The Class2Records specify the positioning adjustments for the glyphs.

The pairs are kerned by reducing the XAdvance of the first glyph by 50 design units. Because no positioning
change applies to the second glyph, its ValueFormat2 is set to 0, to indicate that Value2 is empty for each pair.

Since no pairs begin with Class0 or Class2 glyphs, all the ValueRecords referenced in Class1Record[0]
contain values of 0 or are empty. However, Class1Record[1] does define an XAdvance value in its
Class2Record[1] for kerning all pairs that contain a Class1 glyph followed by a Class2 glyph.

Example 5

Hex Data Source Comments

 PairPosFormat2
PunctKerningSubTable

PairPos subtable definition

0002 2 posFormat

0018 PunctKerningCoverage Offset to Coverage table

0004 0x0004 valueFormat1: X_ADVANCE only

0000 0 valueFormat2: no ValueRecord for second glyph

0022 LowercaseClassDef Offset to ClassDef1 table for first class in pair

246

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

246 ©	ISO/IEC	2019	–	All	rights	reserved
	

0032 PunctuationClassDef Offset to ClassDef2 table for second class in pair

0002 2 Class1Count

0002 2 Class2Count

 class1Records[0] Class1Record, for contexts beginning with class 0

 class2Records[0] First Class2Record for class1Records[0];
valueFormat2 is zero, so no valueRecord2

 valueRecord1

0000 0 xAdvance: no change for first glyph

 class2Records[1] no valueRecord2

 valueRecord1

0000 0 xAdvance: no change for first glyph

 class1Records[1] for contexts beginning with Class1

 class2Records[0] no contexts with Class0 as second glyph; no
valueRecord2

 valueRecord1

0000 0 xAdvance: no change for first glyph

 class2Records[1] contexts with Class1 as second glyph; no
valueRecord2

 valueRecord1

FFCE -50 xAdvance: move punctuation glyph left

 CoverageFormat1
PunctKerningCoverage

Coverage table definition

0001 1 coverageFormat: lists

0003 3 glyphCount

0046 LowercaseVGlyphID glyphArray[0]

0047 LowercaseWGlyphID glyphArray[1]

0049 LowercaseYGlyphID glyphArray[2]

 ClassDefFormat2
LowercaseClassDef

ClassDef table definition

0002 2 classFormat: ranges

0002 2 classRangeCount

 classRangeRecords[0]

0046 LowercaseVGlyphID startGlyphID

0047 LowercaseWGlyphID endGlyphID

0001 1 class

 classRangeRecords[1]

247

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 247
	

0049 LowercaseYGlyphID startGlyphID

0049 LowercaseYGlyphID endGlyphID

0001 1 class

 ClassDefFormat2
PunctuationClassDef

ClassDef table definition

0002 2 classFormat: ranges

0001 1 classRangeCount

 classRangeRecords[0]

006A PeriodPunctGlyphID startGlyphID

006B CommaPunctGlyphID endGlyphID

0001 1 class

Example 6: CursivePosFormat1 subtable

In Example 6, the Urdu language system uses a CursivePosFormat1 subtable to attach glyphs along a
diagonal baseline that descends from right to left. Two glyphs are defined with attachment data and listed in
the Coverage table-the Kaf and Ha glyphs. For each glyph, the subtable contains an EntryExitRecord that
defines offsets to two Anchor tables, an entry attachment point, and an exit attachment point. Each Anchor
table defines X and Y coordinate values. To render Urdu down and diagonally, the entry point's Y coordinate
is above the baseline and the exit point's Y coordinate is located below the baseline.

Example 6

Hex Data Source Comments

 CursivePosFormat1
DiagonalWritingSubTable

CursivePos subtable definition

0001 1 posFormat

000E DiagonalWritingCoverage offset to Coverage table

0002 2 entryExitCount

 entryExitRecords[0] EntryExitRecord for Kaf glyph

0016 KafEntryAnchor offset to EntryAnchor table

001C KafExitAnchor offset to ExitAnchor table

 entryExitRecords[1] EntryExitRecord for Ha glyph

0022 HaEntryAnchor offset to EntryAnchor table

0028 HaExitAnchor offset to ExitAnchor table

 CoverageFormat1
DiagonalWritingCoverage

Coverage table definition

0001 1 coverageFormat: lists

0002 2 glyphCount

0203 KafGlyphID glyphArray[0]

027E HaGlyphID glyphArray[1]

 AnchorFormat1
KafEntryAnchor

Anchor table definition

0001 1 anchorFormat: design units only

248

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

248 ©	ISO/IEC	2019	–	All	rights	reserved
	

05DC 1500 xCoordinate

002C 44 yCoordinate

 AnchorFormat1
KafExitAnchor

Anchor table definition

0001 1 anchorFormat: design units only

0000 0 xCoordinate

FFEC -20 yCoordinate

 AnchorFormat1
HaEntryAnchor

Anchor table definition

0001 1 anchorFormat: design units only

05DC 1500 xCoordinate

002C 44 yCoordinate

 AnchorFormat1
HaExitAnchor

Anchor table definition

0001 1 anchorFormat: design units only

0000 0 xCoordinate

FFEC -20 yCoordinate

Example 7: MarkBasePosFormat1 subtable

The MarkBasePosFormat1 subtable in Example 7 defines one Arabic base glyph, Tah, and two Arabic mark
glyphs: a fathatan mark above the base glyph, and a kasra mark below the base glyph. The
BaseGlyphsCoverage table lists the base glyph, and the MarkGlyphsCoverage table lists the mark glyphs.

Each mark is also listed in the MarkArray, along with its attachment point data and a mark Class value. The
MarkArray defines two mark classes: Class0 consists of marks located above base glyphs, and Class1
consists of marks located below base glyphs.

The BaseArray defines attachment data for base glyphs. In this array, one BaseRecord is defined for the Tah
glyph with offsets to two BaseAnchor tables, one for each class of marks. AboveBaseAnchor defines an
attachment point for marks placed above the Tah base glyph, and BelowBaseAnchor defines an attachment
point for marks placed below it.

Example 7

Hex Data Source Comments

 MarkBasePosFormat1
MarkBaseAttachSubTable

MarkBasePos subtable definition

0001 1 posFormat

000C MarkGlyphsCoverage offset to MarkCoverage table

0014 BaseGlyphsCoverage offset to BaseCoverage table

0002 2 markClassCount

001A MarkGlyphsArray offset to MarkArray table

0030 BaseGlyphsArray offset to BaseArray table

 CoverageFormat1
MarkGlyphsCoverage

Coverage table definition

249

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 249
	

0001 1 coverageFormat: lists

0002 2 glyphCount

0333 fathatanMarkGlyphID glyphArray[0]

033F kasraMarkGlyphID glyphArray[1]

 CoverageFormat1
BaseGlyphsCoverage

Coverage table definition

0001 1 coverageFormat: lists

0001 1 glyphCount

0190 tahBaseGlyphID glyphArray[0]

 MarkArray
MarkGlyphsArray

MarkArray table definition

0002 2 markCount

 markRecords[0] MarkRecords in Coverage index order

0000 0 markClass, for marks over base

000A fathatanMarkAnchor markAnchorOffset

 markRecords[1]

0001 1 markClass, for marks under

0010 kasraMarkAnchor markAnchorOffset

 AnchorFormat1
fathatanMarkAnchor

Anchor table definition

0001 1 anchorFormat: design units only

015A 346 xCoordinate

FF9E -98 yCoordinate

 AnchorFormat1
kasraMarkAnchor

Anchor table definition

0001 1 anchorFormat: design units only

0105 261 xCoordinate

0058 88 yCoordinate

 BaseArray
BaseGlyphsArray

BaseArray table definition

0001 1 baseCount

 baseRecords[0]

0006 AboveBaseAnchor baseAnchorOffset [0]

000C BelowBaseAnchor baseAnchorOffset [1]

 AnchorFormat1
AboveBaseAnchor

Anchor table definition

250

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

250 ©	ISO/IEC	2019	–	All	rights	reserved
	

0001 1 anchorFormat: design units only

033E 830 xCoordinate

0640 1600 yCoordinate

 AnchorFormat1
BelowBaseAnchor

Anchor table definition

0001 1 anchorFormat: design units only

033E 830 xCoordinate

FFAD -83 yCoordinate

Example 8: MarkLigPosFormat1 subtable

Example 8 uses the MarkLigPosFormat1 subtable to attach marks to a ligature glyph in the Arabic script. The
hypothetical ligature is composed of three glyph components: a Lam (initial form), a meem (medial form), and
a jeem (medial form). Accent marks are defined for the first two components: the sukun accent is positioned
above lam, and the kasratan accent is placed below meem.

The LigGlyphsCoverage table lists the ligature glyph and the MarkGlyphsCoverage table lists the two accent
marks. Each mark is also listed in the MarkArray, along with its attachment point data and a mark Class value.
The MarkArray defines two mark classes: Class0 consists of marks located above base glyphs, and Class1
consists of marks located below base glyphs.

The LigGlyphsArray has an offset to one LigatureAttach table for the covered ligature glyph. This table, called
LamWithMeemWithJeemLigAttach, defines a count and array of the component glyphs in the ligature. Each
ComponentRecord defines offsets to two Anchor tables, one for each mark class.

In the example, the first glyph component, lam, specifies a high attachment point for positioning accents
above, but does not specify a low attachment point for placing accents below. The second glyph component,
meem, defines a low attachment point for placing accents below, but not above. The third component, jeem,
has no attachment points since the example defines no accents for it.

Example 8

Hex Data Source Comments

 MarkLigPosFormat1
MarkLigAttachSubTable

MarkLigPos subtable definition

0001 1 posFormat

000C MarkGlyphsCoverage offset to MarkCoverage table

0014 LigGlyphsCoverage offset to LigatureCoverage table

0002 2 markClassCount

001A MarkGlyphsArray offset to MarkArray table

0030 LigGlyphsArray offset to LigatureArray table

 CoverageFormat1
MarkGlyphsCoverage

Coverage table definition

0001 1 coverageFormat: lists

0002 2 glyphCount

033C sukunMarkGlyphID glyphArray[0]

033F kasratanMarkGlyphID glyphArray[1]

 CoverageFormat1
LigGlyphsCoverage

Coverage table definition

251

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 251
	

0001 1 coverageFormat: lists

0001 1 glyphCount

0234 LamWithMeemWithJeem
LigatureGlyphID

glyphArray[0]

 MarkArray
MarkGlyphsArray

MarkArray table definition

0002 2 markCount

 markRecords[0] MarkRecords in Coverage index order

0000 0 markClass, for marks above components

000A sukunMarkAnchor markAnchorOffset

 markRecords[1]

0001 1 markClass, for marks below components

0010 kasratanMarkAnchor markAnchorOffset

 AnchorFormat1
sukunMarkAnchor

Anchor table definition

0001 1 anchorFormat: design units only

015A 346 xCoordinate

FF9E -98 yCoordinate

 AnchorFormat1
kasratanMarkAnchor

Anchor table definition

0001 1 anchorFormat: design units only

0105 261 xCoordinate

01E8 488 yCoordinate

 LigatureArray
LigGlyphsArray

LigatureArray table definition

0001 1 ligatureCount

0004 LamWithMeemWithJeemLig
Attach

ligatureAttachOffsets[0]

 LigatureAttach
LamWithMeemWithJeemLig
Attach

LigatureAttach table definition

0003 3 componentCount

 componentRecords[0] Right-to-left text; ComponentRecords in writing-
direction (logical) order: right-most glyph first

000E AboveLamAnchor ligatureAnchorOffsets[0] – offsets ordered by
mark class

0000 NULL ligatureAnchorOffsets[1] – no attachment points
for Class1 marks

 componentRecords[1]

0000 NULL ligatureAnchorOffsets[0] – no attachment points
for Class0 marks

0014 BelowMeemAnchor ligatureAnchorOffsets[1] – for Class1 marks
(below)

 componentRecords[2]

252

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

252 ©	ISO/IEC	2019	–	All	rights	reserved
	

0000 NULL ligatureAnchorOffsets[0] – no attachment points
for Class0 marks

0000 NULL ligatureAnchorOffsets[1] – no attachment points
for Class1 marks

 AnchorFormat1
AboveLamAnchor

Anchor table definition

0001 1 anchorFormat: design units only

0271 625 xCoordinate

0708 1800 yCoordinate

 AnchorFormat1
BelowMeemAnchor

Anchor table definition

0001 1 anchorFormat: design units only

0178 376 xCoordinate

FE90 -368 yCoordinate

Example 9: MarkMarkPosFormat1 subtable

The MarkMarkPosFormat1 subtable in Example 9 defines two Arabic marks glyphs. The hanza mark, the
base mark (Mark2), is identified in the Mark2GlyphsCoverage table. The damma mark, the attaching mark
(Mark1), is defined in the Mark1GlyphsCoverage table.

Each Mark1 glyph is also listed in the Mark1Array, along with its attachment point data and a mark Class
value. The Mark1GlyphsArray defines one mark class, Class0, that consists of marks located above Mark2
base glyphs. The Mark1GlyphsArray contains an offset to a dammaMarkAnchor table to specify the
coordinate of the damma mark's attachment point.

The Mark2GlyphsArray table defines a count and an array of Mark2Records, one for each covered Mark2
base glyph. Each record contains an offset to a Mark2Anchor table for each Mark1 class. One Anchor table,
AboveMark2Anchor, specifies a coordinate value for attaching the damma mark above the hanza base mark.

Example 9

Hex Data Source Comments

 MarkMarkPosFormat1
MarkMarkAttachSubTable

MarkBasePos subtable definition

0001 1 posFormat

000C Mark1GlyphsCoverage offset to mark1Coverage table

0012 Mark2GlyphsCoverage offset to mark2Coverage table

0001 1 markClassCount

0018 Mark1GlyphsArray offset to mark1Array table

0024 Mark2GlyphsArray offset to mark2Array table

 CoverageFormat1
Mark1GlyphsCoverage

Coverage table definition

0001 1 coverageFormat: lists

0001 1 glyphCount

0296 dammaMarkGlyphID glyphArray[0]

253

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 253
	

 CoverageFormat1
Mark2GlyphsCoverage

Coverage table definition

0001 1 coverageFormat: lists

0001 1 glyphCount

0289 hanzaMarkGlyphID glyphArray[1]

 MarkArray
Mark1GlyphsArray

MarkArray table definition

0001 1 markCount

 markRecords[0] MarkRecords in Coverage index order

0000 0 markClass – for marks above base mark

0006 dammaMarkAnchor markAnchorOffset

 AnchorFormat1
dammaMarkAnchor

Anchor table definition

0001 1 anchorFormat: design units only

00BD 189 xCoordinate

FF99 -103 yCoordinate

 Mark2Array
Mark2GlyphsArray

Mark2Array table definition

0001 1 mark2Count

 mark2Records[0]

0004 AboveMark2Anchor mark2AnchorOffsets[0]

 AnchorFormat1
AboveMark2Anchor

Anchor table definition

0001 1 anchorFormat: design units only

00DD 221 xCoordinate

012D 301 yCoordinate

Example 10: ContextPosFormat1 subtable and PosLookupRecord

Example 10 uses a ContextPosFormat1 subtable to adjust the spacing between three Arabic glyphs in a word.
The context is the glyph sequence (from right to left): heh (initial form), thal (final form), and heh (isolated
form). In the rendered word, the first two glyphs are connected, but the last glyph (the isolated form of heh), is
separate. This subtable reduces the amount of space between the last glyph and the rest of the word.

The subtable contains a WordCoverage table that lists the first glyph in the word, heh (initial), and one
PosRuleSet table, called WordPosRuleSet, that defines all contexts beginning with this covered glyph.

The WordPosRuleSet contains one PosRule that describes a word context of three glyphs and identifies the
second and third glyphs (the first glyph is identified by the WordPosRuleSet). When a text-processing client
locates this context in text, it applies a SinglePos lookup (not shown in the example) at position 2 to reduce
the spacing between the glyphs.

254

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

254 ©	ISO/IEC	2019	–	All	rights	reserved
	

Example 10

Hex Data Source Comments

 ContextPosFormat1
MoveHehInSubtable

ContextPos subtable definition

0001 1 posFormat

0008 WordCoverage offset to Coverage table

0001 1 posRuleSetCount

000E WordPosRuleSet posRuleSetOffsets[0]

CoverageFormat1
WordCoverage

Coverage table offset

0001 1 coverageFormat: lists

0001 1 glyphCount

02A6 hehInitialGlyphID glyphArray[0]

 PosRuleSet
WordPosRuleSet

PosRuleSet table definition

0001 1 posRuleCount

0004 WordPosRule posRuleOffsets[0]

 PosRule
WordPosRule

PosRule table definition

0003 3 glyphCount

0001 1 posCount

02DD thalFinalGlyphID inputSequence [0]

02C6 hehIsolatedGlyphID inputSequence [1]

 posLookupRecords[0]

0002 2 sequenceIndex

0001 1 lookupListIndex

Example 11: ContextPosFormat2 subtable

The ContextPosFormat2 subtable in Example 11 defines context strings for five glyph classes: Class1
consists of uppercase glyphs that overhang and create a wide open space on their right side; Class2 consists
of uppercase glyphs that overhang and create a narrow space on their right side; Class3 contains lowercase
x-height vowels; and Class4 contains accent glyphs placed over the lowercase vowels. The rest of the glyphs
in the font fall into Class0.

The MoveAccentsSubtable defines two similar context strings. The first consists of a Class1 uppercase glyph
followed by a Class3 lowercase vowel glyph with a Class4 accent glyph over the vowel. When this context is
found in the text, the client lowers the accent glyph over the vowel so that it does not collide with the
overhanging glyph shape. The second context consists of a Class2 uppercase glyph, followed by a Class3
lowercase vowel glyph with a Class4 accent glyph over the vowel. When this context is found in the text, the
client increases the advance width of the uppercase glyph to expand the space between it and the accented
vowel.

The MoveAccents subtable defines a MoveAccentsCoverage table that identifies the first glyphs in the two
contexts and offsets to five PosClassSet tables, one for each class defined in the ClassDef table. Since no
contexts begin with Class0, Class3, or Class4 glyphs, the offsets to the PosClassSet tables for these classes
are NULL. PosClassSet[1] defines all contexts beginning with Class1 glyphs; it is called
UCWideOverhangPosClass1Set. PosClassSet[2] defines all contexts beginning with Class2 glyphs, and it is
called UCNarrowOverhangPosClass1Set.

255

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 255
	

Each PosClassSet defines one PosClassRule. The UCWideOverhangPosClass1Set uses the
UCWideOverhangPosClassRule to specify the first context. The first class in this context string is identified by
the PosClassSet that includes a PosClassRule, in this case Class1. The PosClassRule table lists the second
and third classes in the context as Class3 and Class4. A SinglePos Lookup (not shown) lowers the accent
glyph in position 3 in the context string.

The UCNarrowOverhangPosClass1Set defines the UCNarrowOverhangPosClassRule for the second context.
This PosClassRule is identical to the UCWideOverhangPosClassRule, except that the first class in the context
string is a Class2 lowercase glyph. A SinglePos Lookup (not shown) increases the advance width of the
overhanging uppercase glyph in position 0 in the context string.
Example 11

Hex Data Source Comments

 ContextPosFormat2
MoveAccentsSubtable

ContextPos subtable definition

0002 2 posFormat

0012 MoveAccentsCoverage Offset to Coverage table

0020 MoveAccentsClassDef Offset to ClassDef

0005 5 posClassSetCount

0000 NULL posClassSetOffsets[0] – no contexts begin
with Class0 glyphs

0060 UCWideOverhangPosClass1Set posClassSetOffsets[1] – contexts
beginning with Class1 glyphs

0070 UCNarrowOverhangPosClass2Set posClassSetOffsets[2] – context beginning
with Class2 glyphs

0000 NULL posClassSetOffsets[3] – no contexts begin
with Class3 glyphs

0000 NULL posClassSetOffsets[4] – no contexts begin
with Class4 glyphs

 CoverageFormat1
MoveAccentsCoverage

Coverage table definition

0001 1 coverageFormat: lists

0005 5 glyphCount

0029 UppercaseFGlyphID glyphArray[0]

0033 UppercasePGlyphID glyphArray[1]

0037 UppercaseTGlyphID glyphArray[2]

0039 UppercaseVGlyphID glyphArray[3]

003A UppercaseWGlyphID glyphArray[4]

 ClassDefFormat2
MoveAccentsClassDef

ClassDef table definition defines five
classes = 0 (all else), 1 (T, V, W:
UCUnderhang), 2 (F, P: UCOverhang), 3
(a, e, I, o, u: LCVowels), 4 (tilde, umlaut)

0002 2 classFormat: ranges

000A 10 classRangeCount

 classRangeRecords[0]

0029 UppercaseFGlyphID startGlyphID

0029 UppercaseFGlyphID endGlyphID

256

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

256 ©	ISO/IEC	2019	–	All	rights	reserved
	

0002 2 class

 classRangeRecords[1]

0033 UppercasePGlyphID startGlyphID

0033 UppercasePGlyphID endGlyphID

0002 2 class

 classRangeRecords[2]

0037 UppercaseTGlyphID startGlyphID

0037 UppercaseTGlyphID endGlyphID

0001 1 class

 classRangeRecords[3]

0039 UppercaseVGlyphID startGlyphID

003A UppercaseWGlyphID endGlyphID

0001 1 class

 classRangeRecords[4]

0042 LowercaseAGlyphID startGlyphID

0042 LowercaseAGlyphID endGlyphID

0003 3 class

 classRangeRecords[5]

0046 LowercaseEGlyphID startGlyphID

0046 LowercaseEGlyphID endGlyphID

0003 3 class

 classRangeRecords[6]

004A LowercaseIGlyphID startGlyphID

004A LowercaseIGlyphID endGlyphID

0003 3 class

 classRangeRecords[7]

0051 LowercaseOGlyphID startGlyphID

0051 LowercaseOGlyphID endGlyphID

0003 3 class

 classRangeRecords[8]

0056 LowercaseUGlyphID startGlyphID

0056 LowercaseUGlyphID endGlyphID

0003 3 class

 classRangeRecords[9]

00F5 TildeAccentGlyphID startGlyphID

00F6 UmlautAccentGlyphID endGlyphID

0004 4 class

 PosClassSet
UCWideOverhangPosClass1Set

PosClassSet table definition

0001 1 posClassRuleCount

257

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 257
	

0004 UCWideOverhangPosClassRule posClassRuleOffsets[0]

 PosClassRule
UCWideOverhangPosClassRule

PosClassRule table definition

0003 3 glyphCount

0001 1 posCount

0003 3 classes[0] – lowercase vowel

0004 4 classes[1], – accent

 posLookupRecords[0]

0002 2 sequenceIndex

0001 1 lookupListIndex – lower the accent

 PosClassSet
UCNarrowOverhangPosClass2Set

PosClassSet table definition

0001 1 posClassRuleCount

0004 UCNarrowOverhangPosClassRule posClassRuleOffsets[0]

 PosClassRule
UCNarrowOverhangPosClassRule

PosClassRule table definition

0003 3 glyphCount

0001 1 posCount

0003 3 classes[0], – lowercase vowel

0004 4 classes[1], – accent

 posLookupRecords[0]

0000 0 sequenceIndex

0002 2 lookupListIndex – increase overhang
advance width

Example 12: ContextPosFormat3 subtable

Example 12 uses a ContextPosFormat3 subtable to lower the position of math signs in math equations
consisting of a lowercase descender or x-height glyph, a math sign glyph, and any lowercase glyph. Format3
is better to use for this context than the class-based Format2 because the sets of covered glyphs for positions
0 and 2 overlap.

The LowerMathSignsSubtable contains offsets to three Coverage tables (XhtDescLCCoverage,
MathSignCoverage, and LCCoverage), one for each position in the context glyph string. When the client finds
the context in the text stream, it applies the PosLookupRecord data at position 1 and repositions the math sign.

Example 12

Hex
Data

Source Comments

 ContextPosFormat3
LowerMathSignsSubtable

ContextPos subtable definition

0003 3 posFormat

0003 3 glyphCount

0001 1 posCount

258

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

258 ©	ISO/IEC	2019	–	All	rights	reserved
	

0010 XhtDescLCCoverage coverageOffsets[0]

003C MathSignCoverage coverageOffsets[1]

0044 LCCoverage coverageOffsets[2]

 posLookupRecords[0]

0001 1 sequenceIndex

0001 1 lookupListIndex

 CoverageFormat1
XhtDescLCCoverage

Coverage table definition

0001 1 coverageFormat: lists

0014 20 glyphCount

0033 LCaGlyphID glyphArray[0]

0035 LCcGlyphID glyphArray[1]

0037 LCeGlyphID glyphArray[2]

0039 LCgGlyphID glyphArray[3]

003B LCiGlyphID glyphArray[4]

003C LCjGlyphID glyphArray[5]

003F LCmGlyphID glyphArray[6]

0040 LCnGlyphID glyphArray[7]

0041 LCoGlyphID glyphArray[8]

0042 LCpGlyphID glyphArray[9]

0043 LCqGlyphID glyphArray[10]

0044 LCrGlyphID glyphArray[11]

0045 LCsGlyphID glyphArray[12]

0046 LCtGlyphID glyphArray[13]

0047 LCuGlyphID glyphArray[14]

0048 LCvGlyphID glyphArray[15]

0049 LCwGlyphID glyphArray[16]

004A LCxGlyphID glyphArray[17]

004B LCyGlyphID glyphArray[18]

004C LCzGlyphID glyphArray[19]

 CoverageFormat1
MathSignCoverage

Coverage table definition

0001 1 coverageFormat: lists

0002 2 glyphCount

011E EqualsSignGlyphID glyphArray[0]

259

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 259
	

012D PlusSignGlyphID glyphArray[1]

 CoverageFormat2
LCCoverage

Coverage table definition

0002 2 coverageFormat: ranges

0001 1 rangeCount

 rangeRecords[0]

0033 LCaGlyphID startGlyphID

004C LCzGlyphID endGlyphID

0000 0 startCoverageIndex

Example 13: PosLookupRecord

The PosLookupRecord in Example 13 identifies a lookup to apply at the second glyph position in a context
glyph string.

Example 13

Hex
Data

Source Comments

 PosLookupRecord
PosLookupRecord[0]

PosLookupRecord definition

0001 1 sequenceIndex – for second glyph position

0001 1 lookupListIndex – apply this lookup to second glyph position

Example 14: ValueFormat table and ValueRecord
Example 14 demonstrates how to specify positioning values in the GPOS table. Here, a SinglePosFormat1
subtable defines the ValueFormat and ValueRecord. The ValueFormat bit setting of 0x0099 says that the
corresponding ValueRecord contains values for a glyph's XPlacement and YAdvance. Device tables specify
pixel adjustments for these values at font sizes from 11 ppem to 15 ppem.

Example 14

Hex Data Source Comments

 SinglePosFormat1
OnesSubtable

SinglePos subtable definition

0001 1 posFormat

000E Cov Offset to Coverage table

0099 0x0099 valueFormat: X_PLACEMENT + Y_ADVANCE +
X_PLACEMENT_DEVICE, Y_ADVANCE_DEVICE

0050 80 xPlacement

00D2 210 yAdvance

0018 XPlaDeviceTable xPlaDeviceOffset

0020 YAdvDeviceTable yAdvDeviceOffset

260

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

260 ©	ISO/IEC	2019	–	All	rights	reserved
	

 CoverageFormat2
Cov

Coverage table definition

0002 2 coverageFormat: ranges

0001 1 rangeCount

 rangeRecords[0]

00C8 200 startGlyphID

00D1 209 endGlyphID

0000 0 startCoverageIndex

 DeviceTableFormat1
XPlaDeviceTable

Device Table definition

000B 11 startSize

000F 15 endSize – five delta values (sizes 11 to 15)

0001 1 deltaFormat: LOCAL_2_BIT_DELTAS

 1 deltaValue[0]: increase 11ppem by 1 pixel

 1 deltaValue[1]: increase 12ppem by 1 pixel

 1 deltaValue[2]: increase 13ppem by 1 pixel

 1 deltaValue[3]: increase 14ppem by 1 pixel

5540 1 deltaValue[4]: increase 15ppem by 1 pixel

 DeviceTableFormat1
YAdvDeviceTable

Device Table definition

000B 11 startSize

000F 15 endSize

0001 1 deltaFormat: LOCAL_2_BIT_DELTAS

 1 deltaValue[0]: increase 11ppem by 1 pixel

 1 deltaValue[1]: increase 12ppem by 1 pixel

 1 deltaValue[2]: increase 13ppem by 1 pixel

 1 deltaValue[3]: increase 14ppem by 1 pixel

5540 1 deltaValue[4]: increase 15ppem by 1 pixel

Example 15: AnchorFormat1 table

Example 15 illustrates an Anchor table for the damma mark glyph in the Arabic script. Format1 is used to
specify X and Y coordinate values in design units.

261

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 261
	

Example 15

Hex Data Source Comments

 AnchorFormat1
dammaMarkAnchor

Anchor table definition

0001 1 anchorFormat: design units only

00BD 189 xCoordinate

FF99 -103 yCoordinate

Example 16: AnchorFormat2 table

Example 16 shows an AnchorFormat2 table for an attachment point placed above a base glyph. With this
format, the coordinate value for the Anchor depends on the final position of a specific contour point on the
base glyph after hinting. The coordinates are specified in design units.

Example 16

Hex Data Source Comments

 AnchorFormat2
AboveBaseAnchor

Anchor table definition

0002 2 anchorFormat: design units plus contour points

0142 322 xCoordinate

0384 900 ycoordinate

000D 13 anchorPoint – glyph contour point index

Example 17: AnchorFormat3 table

Example 17 shows an AnchorFormat3 table that specifies an attachment point above a base glyph. Device
tables modify the X and Y coordinates of the Anchor for the point size and resolution of the output font. Here,
the Device tables define pixel adjustments for font sizes from 12 ppem to 17 ppem.

Example 17

Hex Data Source Comments

 AnchorFormat3
AboveBaseAnchor

Anchor table definition

0003 3 anchorFormat: design units plus device table

0117 279 xCoordinate

0515 1301 yCoordinate

000A XDevice xDeviceOffset (may be NULL)

0014 YDevice yDeviceOffset (may be NULL)

 DeviceTableFormat2
XDevice

Device Table definition

000C 12 startSize

0011 17 endSize

262

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

262 ©	ISO/IEC	2019	–	All	rights	reserved
	

0002 2 deltaFormat: LOCAL_4_BIT_DELTAS

 1 deltaValue[0]: increase 12ppem by 1 pixel

 1 deltaValue[1]: increase 13ppem by 1 pixel

 1 deltaValue[2]: increase 14ppem by 1 pixel

1111 1 deltaValue[3]: increase 15ppem by 1 pixel

 2 deltaValue[4]: increase 16ppem by 1 pixel

2200 2 deltaValue[5]: increase 17ppem by 1 pixel

 DeviceTableFormat2
YDevice

Device Table definition

000C 12 startSize

0011 17 endSize

0002 2 deltaFormat: LOCAL_4_BIT_DELTAS

 1 deltaValue[0]: increase 12ppem by 1 pixel

 1 deltaValue[1]: increase 13ppem by 1 pixel

 1 deltaValue[2]: increase 14ppem by 1 pixel

1111 1 deltaValue[3]: increase 15ppem by 1 pixel

 2 deltaValue[4]: increase 16ppem by 1 pixel

2200 2 deltaValue[5]: increase 17ppem by 1 pixel

Example 18: MarkArray table and MarkRecord

Example 18 shows a MarkArray table with class and attachment point data for two accent marks, a grave and
a cedilla. Two MarkRecords are defined, one for each covered mark glyph. The first MarkRecord assigns a
mark class value of 0 to accents placed above base glyphs, such as the grave, and has an offset to a
graveMarkAnchor table. The second MarkRecord assigns a mark class value of 1 for all accents positioned
below base glyphs, such as the cedilla, and has an offset to a cedillaMarkAnchor table.

Example 18

Hex Data Source Comments

 MarkArray
MarkGlyphsArray

MarkArray table definition

0002 2 markCount

 markRecords[0] for first mark in MarkCoverage table: grave

0000 0 markClass – for marks placed above base glyphs

000A graveMarkAnchor markAnchorOffset

 markRecords[1] for second mark in MarkCoverage table: cedilla

0001 1 markClass – for marks placed below base glyphs

0010 cedillaMarkAnchor markAnchorOffset

263

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 263
	

6.3.4 GSUB – The glyph substitution table

6.3.4.1 GSUB – Table overview

The Glyph Substitution table (GSUB) contains information for substituting glyphs to render the scripts and
language systems supported in a font. Many language systems require glyph substitutes. For example, in the
Arabic script, the glyph shape that depicts a particular character varies according to its position in a word or
text string (see Figure 6.28). In other language systems, glyph substitutes are aesthetic options for the user,
such as the use of ligature glyphs in the English language (see Figure 6.29).

Figure 6.28 – Isolated, initial, medial, and final forms of the Arabic character HAH

Figure 6.29 – Two Latin glyphs and their associated ligature

OFF fonts use character encoding standards, such as the Unicode Standard, that assumes a distinction
between characters and glyphs: text is encoded as sequences of characters, and the 'cmap' table provides a
mapping from that character to a single default glyph. Multiple characters are not directly mapped to a single
glyph, as needed for ligatures; and a single character is not mapped directly to multiple glyphs, as may be
needed for some complex-script. The GSUB table provides a way to describe such substititions, enabling
applications to apply such substitions during text layout and rendering to achieve desired results.

To access substitute glyphs, GSUB maps from the glyph index or indices defined in a 'cmap' subtable to the
glyph index or indices of the substitute glyphs. For example, if a font has three alternative forms of an
ampersand glyph, the 'cmap' table associates the ampersand’s character code with only one of these glyphs.
In GSUB, the indices of the other ampersand glyphs are then referenced from this one default index.

The text-processing client uses the GSUB data to manage glyph substitution actions. GSUB identifies the
glyphs that are input to and output from each glyph substitution action, specifies how and where the client
uses glyph substitutes, and regulates the order of glyph substitution operations. Any number of substitutions
can be defined for each script or language system represented in a font.

The GSUB table supports seven types of glyph substitutions that are widely used in international typography:

 A single substitution replaces a single glyph with another single glyph. This is used to render
positional glyph variants in Arabic and vertical text in the Far East (see Figure 6.30).

Figure 6.30 – Alternative forms of parentheses used when positioning Kanji vertically

 A multiple substitution replaces a single glyph with more than one glyph. This is used to specify
actions such as ligature decomposition (see Figure 6.31).

264

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

264 ©	ISO/IEC	2019	–	All	rights	reserved
	

Figure 6.31 – Decomposing a Latin ligature glyph into its individual glyph components

 An alternate substitution identifies functionally equivalent but different looking forms of a glyph. These
glyphs are often referred to as aesthetic alternatives. For example, a font might have five different
glyphs for the ampersand symbol, but one would have a default glyph index in the cmap table. The
client could use the default glyph or substitute any of the four alternatives (see Figure 6.32).

Figure 6.32 – Alternative ampersand glyphs in a font

 A ligature substitution replaces several glyph indices with a single glyph index, as when an Arabic
ligature glyph replaces a string of separate glyphs (see Figure 6.33). When a string of glyphs can be
replaced with a single ligature glyph, the first glyph is substituted with the ligature. The remaining
glyphs in the string are deleted, this does not include those glyphs that are skipped as a result of
lookup flags.

Figure 6.33 – Three Arabic glyphs and their associated ligature glyph

 Contextual substitution, the most powerful type, describes glyph substitutions in context-that is, a
substitution of one or more glyphs within a certain pattern of glyphs. Each substitution describes one
or more input glyph sequences and one or more substitutions to be performed on that sequence.
Contextual substitutions can be applied to specific glyph sequences, glyph classes, or sets of glyphs.

 Chaining contextual substitution extends the capabilities of contextual substitution. With this, one or
more substitutions can be performed on one or more glyphs within a pattern of glyphs (input
sequence), by chaining the input sequence to a 'backtrack' and/or 'lookahead' sequence. Each such
substitution can be applied in three formats to handle glyphs, glyph classes or glyph sets in the input
sequence. Each of these formats can describe one or more of the backtrack, input and lookahead
sequences.

 Reverse Chaining contextual single substitution, allows one glyph to be substituted with another by
chaining input glyph to a 'backtrack' and/or 'lookahead' sequence. The difference between this and
other lookup types is that processing of input glyph sequence goes from end to start.

GSUB table and OFF font variations

OFF Font variations allow a single font to support many design variations along one or more axes of design
variation. For example, a font with weight and width variations might support weights from thin to black, and
widths from ultra-condensed to ultra-expanded. For general information on OFF Font variations,
see subclause 7.1.

In a variable font, it may be desirable to have different glyph-substitution actions used for different regions
within the font’s variation space. For example, for narrow or heavy instances in which counters become small,
it may be desirable to make certain glyph substitutions to use alternate glyphs with certain strokes removed or
outlines simplified to allow for larger counters. Such effects can be achieved using a FeatureVariations table

265

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 265
	

within the GSUB table. The FeatureVariations table is described in subclause 6.2. See also the Required
Variation Alternates ('rvrn') feature in the OFF Layout tag registry.

6.3.4.2 GSUB – Table organization and structure

Table organization

The GSUB table begins with a header that defines offsets to a ScriptList, a FeatureList, a LookupList, and an
optional FeatureVariations table (see Figure 6.34):

 The ScriptList identifies all the scripts and language systems in the font that use glyph substitutes.

 The FeatureList defines all the glyph substitution features required to render these scripts and
language systems.

 The LookupList contains all the lookup data needed to implement each glyph substitution feature.

 • The FeatureVariations table can be used to substitute alternate sets of lookup tables to use for any
given feature under specified conditions. This currently used only in variable fonts.

For a detailed discussion of ScriptLists, FeatureLists, LookupLists, and FeatureVariations tables
see subclause 6.2.

Figure 6.34 – High-level organization of GSUB table

266

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

266 ©	ISO/IEC	2019	–	All	rights	reserved
	

This organization helps text-processing clients to easily locate the features and lookups that apply to a
particular script or language system. To access GSUB information, clients should use the following procedure:

1. Locate the current script in the GSUB ScriptList table.

2. If the language system is known, search the script for the correct LangSys table; otherwise, use the
script's default language system (DefaultLangSys table).

3. The LangSys table provides index numbers into the GSUB FeatureList table to access a required
feature and a number of additional features.

4. Inspect the featureTag of each Feature table, and select the feature tables to apply to an input glyph
string.

5. If a Feature Variations table is present, evaluate conditions in the Feature Variation table to determine
if any of the initially-selected feature tables should be substituted by an alternate feature table.

6. Each feature provides an array of index numbers into the GSUB LookupList table. Assemble all
lookups from the set of chosen features, and apply the lookups in the order given in the LookupList
table.

For a detailed description of the FeatureVariations table and how it is processed, see the "FeatureVariations
Table" in subclause 6.2.

Lookup data is defined in Lookup tables, which are defined in subclause 6.2. A Lookup table contains one or
more Lookup subtables that define the specific conditions, type, and results of a substitution action used to
implement a feature. Specific Lookup subtable types are used for glyph substitution actions, and are defined
in this chapter. All subtables within a Lookup table shall be of the same lookup type, as listed in the following
table for the GSUB LookupType Enumeration:

GSUB LookupType Enumeration

Value Lookup Type Description

1 Single Replace one glyph with one glyph

2 Multiple Replace one glyph with more than one glyph

3 Alternate Replace one glyph with one of many glyphs

4 Ligature Replace multiple glyphs with one glyph

5 Context Replace one or more glyphs in context

6 Chaining Context Replace one or more glyphs in chained context

7 Extension
Substitution

Extension mechanism for other substitutions (i.e. this excludes
the Extension type substitution itself)

8 Reverse chaining
context single

Applied in reverse order, replace single glyph in chaining
context

9+ Reserved For future use (must be set to zero)

Each LookupType has one or more subtable formats. The "best" format depends on the type of substitution
and the resulting storage efficiency. When glyph information is best presented in more than one format, a
single lookup may define more than one subtable, as long as all the subtables are for the same LookupType.
For example, within a given lookup, a glyph index array format may best represent one set of target glyphs,
whereas a glyph index range format may be better for another set.

A series of substitution operations on the same glyph or string requires multiple lookups, one for each
separate action. Each lookup has a different array index in the LookupList table and is applied in the
LookupList order.

267

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 267
	

During text processing, a client applies a lookup to each glyph in the string before moving to the next lookup.
A lookup is finished for a glyph after the client locates the target glyph or glyph context and performs a
substitution, if specified. To move to the "next" glyph, the client will typically skip all the glyphs that participated
in the lookup operation: glyphs that were substituted as well as any other glyphs that formed a context for the
operation.

In the case of chained contextual lookups (LookupType 6), glyphs comprising backtrack and lookahead
sequences may participate in more than one context.

The rest of this subclause describes the GSUB header and the subtables defined for each GSUB LookupType.
Examples at the end of this subclause illustrate the GSUB header and six of the eight LookupTypes, including
the three formats available for contextual substitutions (LookupType 5).

GSUB header

The GSUB table begins with a header that contains a version number for the table (Version) and offsets to
three tables: ScriptList, FeatureList, and LookupList. For descriptions of each of these tables, see clause 6.2,
OFF Common Table Formats. Example 1 at the end of this subclause shows a GSUB Header table definition.

GSUB Header, Version 1.0

Type Name Description

uint16 majorVersion Major version of the GSUB table, = 1

uint16 minorVersion Minor version of the GSUB table, = 0

Offset16 scriptList Offset to ScriptList table, from beginning of GSUB table

Offset16 featureList Offset to FeatureList table, from beginning of GSUB table

Offset16 lookupList Offset to LookupList table, from beginning of GSUB table

GSUB Header, Version 1.1

Type Name Description

uint16 majorVersion Major version of the GSUB table, = 1

uint16 minorVersion Minor version of the GSUB table, = 1

Offset16 scriptList Offset to ScriptList table, from beginning of GSUB table

Offset16 featureList Offset to FeatureList table, from beginning of GSUB table

Offset16 lookupList Offset to LookupList table, from beginning of GSUB table

Offset32 featureVariations Offset to FeatureVariations table, from beginning of GSUB
table (may be NULL)

6.3.4.3 GSUB – Lookup type descriptions

LookupType 1: Single substitution subtable

Single substitution (SingleSubst) subtables tell a client to replace a single glyph with another glyph. The
subtables can be either of two formats. Both formats require two distinct sets of glyph indices: one that defines
input glyphs (specified in the Coverage table), and one that defines the output glyphs. Format 1 requires less
space than Format 2, but it is less flexible.

268

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

268 ©	ISO/IEC	2019	–	All	rights	reserved
	

Single substitution Format 1

Format 1 calculates the indices of the output glyphs, which are not explicitly defined in the subtable. To
calculate an output glyph index, Format 1 adds a constant delta value to the input glyph index. For the
substitutions to occur properly, the glyph indices in the input and output ranges shall be in the same order.
This format does not use the Coverage Index that is returned from the Coverage table.

The SingleSubstFormat1 subtable begins with a format identifier (substFormat) of 1. An offset references a
Coverage table that specifies the indices of the input glyphs. The deltaGlyphID is a constant value added to
each input glyph index to calculate the index of the corresponding output glyph. Addition of deltaGlyphID is
modulo 65536.

Example 2 at the end of this clause uses Format 1 to replace standard numerals with lining numerals.

SingleSubstFormat1 subtable:

Type Name Description

uint16 substFormat Format identifier: format = 1

Offset16 coverageOffset Offset to Coverage table, from beginning of substitution
subtable

int16 deltaGlyphID Add to original glyph ID to get substitute glyph ID

Single substitution Format 2

Format 2 is more flexible than Format 1, but requires more space. It provides an array of output glyph indices
(substituteGlyphIDs) explicitly matched to the input glyph indices specified in the Coverage table.

The SingleSubstFormat2 subtable specifies a format identifier (substFormat), an offset to a Coverage table
that defines the input glyph indices, a count of output glyph indices in the substituteGlyphIDs array
(glyphCount), as well as the list of the output glyph indices in the substitute array (substituteGlyphIDs).

The substituteGlyphIDs array shall contain the same number of glyph indices as the Coverage table. To locate
the corresponding output glyph index in the substituteGlyphIDs array, this format uses the Coverage index
returned from the Coverage table.

Example 3 at the end of this clause uses Format 2 to substitute vertically oriented glyphs for horizontally
oriented glyphs.

SingleSubstFormat2 subtable: Specified output glyph indices

Type Name Description

uint16 substFormat Format identifier: format = 2

Offset16 coverageOffset Offset to Coverage table, from beginning of Substitution
table

uint16 glyphCount Number of glyph IDs in the substituteGlyphIDs array

uint16 substituteGlyphIDs
[glyphCount]

Array of substitute glyph IDs – ordered by Coverage index

LookupType 2: Multiple substitution subtable

A Multiple Substitution (MultipleSubst) subtable replaces a single glyph with more than one glyph, as when
multiple glyphs replace a single ligature. The subtable has a single format: MultipleSubstFormat1.

269

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 269
	

Multiple Substitution Format1: Multiple output glyphs

The Multiple Substitution Format1 subtable specifies a format identifier (substFormat), an offset to a Coverage
table that defines the input glyph indices, a count of offsets in the sequenceOffsets array (sequenceCount),
and an array of offsets to Sequence tables that define the output glyph indices (sequenceOffsets). The
Sequence table offsets are ordered by the Coverage index of the input glyphs.

For each input glyph listed in the Coverage table, a Sequence table defines the output glyphs. Each
Sequence table contains a count of the glyphs in the output glyph sequence (glyphCount) and an array of
output glyph indices (substituteGlyphIDs).
NOTE The order of the output glyph indices depends on the writing direction of the text. For text written left to right, the

left-most glyph will be first glyph in the sequence. Conversely, for text written right to left, the right-most glyph will
be first.

The use of multiple substitution for deletion of an input glyph is prohibited. The glyphCount value should
always be greater than 0.

Example 4 at the end of this clause shows how to replace a single ligature with three glyphs.

MultipleSubstFormat1 subtable:

Type Name Description

uint16 substFormat Format identifier: format = 1

Offset16 coverageOffset Offset to Coverage table, from beginning of substitution table

uint16 sequenceCount Number of Sequence table offsets in the sequenceOffsets array

Offset16 sequenceOffsets
[sequenceCount]

Array of offsets to Sequence tables. Offsets are from beginning
of substitution subtable, ordered by Coverage index

Sequence table

Type Name Description

uint16 glyphCount Number of glyph IDs in the substituteGlyphIDs array. This shall
always be greater than 0.

uint16 substituteGlyphIDs
[glyphCount]

String of glyph IDs to substitute

LookupType 3: Alternate substitution subtable

An Alternate Substitution (AlternateSubst) subtable identifies any number of aesthetic alternatives from which
a user can choose a glyph variant to replace the input glyph. For example, if a font contains four variants of
the ampersand symbol, the cmap table will specify the index of one of the four glyphs as the default glyph
index, and an AlternateSubst subtable will list the indices of the other three glyphs as alternatives. A text-
processing client would then have the option of replacing the default glyph with any of the three alternatives.

The subtable has one format: AlternateSubstFormat1.

Alternate Substitution Format1: Alternative output glyphs

The Alternate Substitution Format1 subtable contains a format identifier (substFormat), an offset to a
Coverage table containing the indices of glyphs with alternative forms (coverageOffset), a count of offsets to
AlternateSet tables (alternateSetCount), and an array of offsets to AlternateSet tables (alternateSetOffets).

For each glyph, an AlternateSet subtable contains a count of the alternative glyphs (glyphCount) and an array
of their glyph indices (alternateGlyphIDs). Because all the glyphs are functionally equivalent, they can be in
any order in the array.

270

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

270 ©	ISO/IEC	2019	–	All	rights	reserved
	

Example 5 at the end of this clause shows how to replace the default ampersand glyph with alternative glyphs.

AlternateSubstFormat1 subtable:

Type Name Description

uint16 substFormat Format identifier: format = 1

Offset16 coverageOffset Offset to Coverage table, from beginning of substitution
table

uint16 alternateSetCount Number of AlternateSet tables

Offset16 alternateSetOffsets
[alternateSetCount]

Array of offsets to AlternateSet tables. Offsets are from
beginning of substitution table, ordered by Coverage index

AlternateSet table

Type Name Description

uint16 glyphCount Number of glyph IDs in the alternateGlyphIDs array

uint16 alternateGlyphIDs[glyphCount] Array of alternate glyph IDs, in arbitrary order

LookupType 4: Ligature substitution subtable

A Ligature Substitution (LigatureSubst) subtable identifies ligature substitutions where a single glyph replaces
multiple glyphs. One LigatureSubst subtable can specify any number of ligature substitutions. The subtable
has one format: LigatureSubstFormat1.

Ligature Substitution Format1: All ligature substitutions in a script

It contains a format identifier (substFormat), a Coverage table offset (coverageOffset), a count of the ligature
sets defined in this table (ligatureSetCount), and an array of offsets to LigatureSet tables (ligatureSetOffsets).
The Coverage table specifies only the index of the first glyph component of each ligature set.

LigatureSubstFormat1 subtable:

Type Name Description

uint16 substFormat Format identifier: format = 1

Offset16 coverageOffset Offset to Coverage table, from beginning of Substitution table

uint16 ligatureSetCount Number of LigatureSet tables

Offset16 ligatureSetOffsets
[ligatureSetCount]

Array of offsets to LigatureSet tables. Offsets are from
beginning of substitution subtable, ordered by Coverage
index

A LigatureSet table, one for each covered glyph, specifies all the ligature strings that begin with the covered
glyph. For example, if the Coverage table lists the glyph index for a lowercase "f", then a LigatureSet table will
define the "ffl", "fl", "ffi", "fi", and "ff" ligatures. If the Coverage table also lists the glyph index for a lowercase
"e", then a different LigatureSet table will define the "etc" ligature.

A LigatureSet table consists of a count of the ligatures that begin with the covered glyph (ligatureCount) and
an array of offsets (ligatureSetOffsets) to Ligature tables, which define the glyphs in each ligature. The order
in the Ligature offset array defines the preference for using the ligatures. For example, if the "ffl" ligature is
preferable to the "ff" ligature, then the Ligature array would list the offset to the "ffl" Ligature table before the
offset to the "ff" Ligature table.

271

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 271
	

LigatureSet table: All ligatures beginning with the same glyph

Type Name Description

uint16 ligatureCount Number of Ligature tables

Offset16 ligatureSetOffsets
[ligatureCount]

Array of offsets to Ligature tables. Offsets are from beginning
of LigatureSet table, ordered by preference

For each ligature in the set, a Ligature table specifies the glyph ID of the output ligature glyph (ligatureGlyph);
a count of the total number of component glyphs in the ligature, including the first component
(componentCount); and an array of glyph IDs for the components (componentGlyphIDs). The array starts with
the second component glyph in the ligature (glyph sequnce index = 1, componentGlyphIDs array index = 0)
because the first component glyph is specified in the Coverage table.
NOTE The componentGlyphIDs array lists glyph IDs according to the writing direction – that is, the logical order – of the

text. For text written right to left, the right-most glyph will be first. Conversely, for text written left to right, the left-
most glyph will be first.

Example 6 at the end of this clause shows how to replace a string of glyphs with a single ligature.

Ligature table: Glyph components for one ligature

Type Name Description

uint16 ligatureGlyph Glyph ID of ligature to substitute

uint16 componentCount Number of components in the ligature

uint16 componentGlyphIDs
[componentCount - 1]

Array of component glyph IDs – start with the second
component, ordered in writing direction

Substitution Lookup Record

Substitution subtable types 1 to 4 allow for describing glyph substitution actions without providing a way to
describe glyph-sequence contexts — that is, contexts in which glyphs must occur in order for substitutions to
be applied. Subtable types 5, 6 and 8, on the other hand, allow for describing glyph substitutions that occur in
particular contexts. Contextual substitution subtables of types 5 and 6 specify the substitution data in a
Substitution Lookup Record (SubstLookupRecord), which identifies which glyphs within a context sequence
are to be acted on, and which substitution action (given in a separate Lookup table) is to be applied.

Each record contains a glyphSequenceIndex, which indicates the position within a context glyph sequence
where the substitution will occur. In addition, a lookupListIndex identifies the lookup to be applied at the glyph
position specified by the glyphSequenceIndex.

The contextual substitution subtables defined in Examples 7, 8, and 9 at the end of this chapter show
SubstLookupRecords.

SubstLookupRecord

Type Name Description

uint16 glyphSequenceIndex Index into current glyph sequence – first glyph = 0

uint16 lookupListIndex Lookup to apply to that position – zero-based index.

The glyphSequenceIndex in a SubstLookupRecord must take into consideration the order in which lookups
are applied to the entire glyph sequence. Because multiple substitutions may occur in a given context, the
glyphSequenceIndex refer to the glyph sequence after the text-processing client has applied any previous
lookups. In other words, the glyphSequenceIndex identifies the location for the substitution at the time that the
lookup is to be applied.

272

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

272 ©	ISO/IEC	2019	–	All	rights	reserved
	

For example, consider an input glyph sequence of four glyphs. The first glyph does not have a substitute, but
the middle two glyphs will be replaced with a ligature, and a single glyph will replace the fourth glyph. In this
example, the ligature substitution and single substition are both to be expressed as contextual substitutions,
with a context that begins at the first glyph:

 The first glyph is in position 0. No lookups will be applied at position 0, so no SubstLookupRecord is
defined.

 The SubstLookupRecord defined for the ligature substitution specifies the glyphSequenceIndex as
position 1, which is the position of the first glyph component in the ligature string. After the ligature
replaces the glyphs in positions 1 and 2, however, the input glyph sequence consists of only three
glyphs, not the original four.

 To replace the last glyph in the sequence, the lookup subtable specifies a context that consists of
three glyphs, not four; and the SubstLookupRecord defines the glyphSequenceIndex as position 2,
not position 3. This position and that context reflect the effect of the ligature substitution applied
before this single substitution.

NOTE This example assumes that the LookupList specifies the ligature substitution lookup before the single substitution
lookup.

LookupType 5: Contextual substitution subtable

A Contextual Substitution (ContextSubst) subtable defines the most powerful type of glyph substitution lookup:
it describes glyph substitutions in context that replace one or more glyphs within a certain pattern of glyphs.

ContextSubst subtables can be any of three formats that define a context in terms of a specific sequence of
glyphs, glyph classes, or glyph sets. Each format can describe one or more input glyph sequences and one or
more substitutions for each sequence. All three formats specify substitution data in a
SubstLookupRecord,described above.

Context substitution Format 1: Simple Glyph Contexts

Format 1 defines the context for a glyph substitution as a particular sequence of glyphs. For example, a
context could be <xyz>, <holiday>, <!?*#@>, or any other glyph sequence.

Within a context sequence, Format 1 identifies particular glyph positions (not glyph indices) as the targets for
specific substitutions. When a text-processing client locates a context in a string of glyphs, it finds the lookup
data for a targeted position and makes a substitution by applying the lookup data at that location.

For example, if a client is to replace the glyph string <abc> with its reverse glyph string <cba>, the input
context is defined as the glyph sequence, <abc>, and the lookups defined for the context are (1) "a" to "c" and
(2) "c" to "a". When a client encounters the context <abc>, the lookups are performed in the order stored. First,
"c" is substituted for "a" resulting in <cbc>. Second, "a" is substituted for the "c" that has not yet been touched,
resulting in <cba>.

To specify a context, a Coverage table lists the first glyph in the sequence, and a SubRule table identifies the
remaining glyphs. To describe the <abc> context used in the previous example, the Coverage table lists the
glyph index of the first component of the sequence – the "a" glyph. A SubRule table defines indices for the "b"
and "c" glyphs.

A single ContextSubstFormat1 subtable may define more than one context glyph sequence. If different
context sequences begin with the same glyph, then the Coverage table should list the glyph only once
because all glyphs in the table must be unique. For example, if three contexts each start with an "s" and two
start with a "t", then the Coverage table will list one "s" and one "t".

For each context, a SubRule table lists all the glyphs that follow the first glyph. The table also contains an
array of SubstLookupRecords that specify the substitution lookup data for each glyph position (including the
first glyph position) in the context.

All of the SubRule tables defining contexts that begin with the same first glyph are grouped together and
defined in a SubRuleSet table. For example, the SubRule tables that define the three contexts that begin with
an "s" are grouped in one SubRuleSet table, and the SubRule tables that define the two contexts that begin

273

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 273
	

with a "t" are grouped in a second SubRuleSet table. Each glyph listed in the Coverage table must have a
SubRuleSet table defining all the SubRule tables that apply to a covered glyph.

To locate a context glyph sequence, the text-processing client searches the Coverage table each time it
encounters a new text glyph. If the glyph is covered, the client reads the corresponding SubRuleSet table and
examines each SubRule table in the set to determine whether the rest of the context matches the subsequent
glyphs in the text. If the context and text string match, the client finds the target glyph positions, applies the
lookups for those positions, and completes the substitutions.

A ContextSubstFormat1 subtable contains a format identifier (substFormat), an offset to a Coverage table
(coverageOffset), a count of defined SubRuleSets (subRuleSetCount), and an array of offsets to the
SubRuleSet tables (subRuleSetOffsets). As mentioned, one SubRuleSet table must be defined for each glyph
listed in the Coverage table.

In the SubRuleSet array, the SubRuleSet table offsets are ordered in the Coverage index order. The first
SubRuleSet in the array applies to the first glyph ID listed in the Coverage table, the second SubRuleSet in
the array applies to the second glyph ID listed in the Coverage table, and so on.

Example 7 at the end of this subclause shows how to use the ContextSubstFormat1 subtable to replace a
sequence of three glyphs with a sequence preferred for the French language system.

ContextSubstFormat1 subtable:

Type Name Description

uint16 substFormat Format identifier: format = 1

Offset16 coverageOffset Offset to Coverage table, from beginning of substitution table

uint16 subRuleSetCount Number of SubRuleSet tables – must equal glyphCount in
Coverage table

Offset16 subRuleSetOffsets
[subRuleSetCount]

Array of offsets to SubRuleSet tables. Offsets are from
beginning of Substitution table, ordered by Coverage index

A SubRuleSet table consists of an array of offsets to SubRule tables (subRuleOffsets), ordered by preference,
and a count of the SubRule tables defined in the set (subRuleCount). The order in the SubRule array can be
critical. Consider two contexts, <abc> and <abcd>. If <abc> is first in the SubRule array, all instances of
<abc> in the text – including all instances of <abcd> – will be changed. If <abcd> comes first in the array,
however, only <abcd> sequences will be changed, without affecting any instances of <abc>.

SubRuleSet table: All contexts beginning with the same glyph

Type Name Description

uint16 subRuleCount Number of SubRule tables

Offset16 subRuleOffsets
[subRuleCount]

Array of offsets to SubRule tables. Offsets are from beginning
of SubRuleSet table, ordered by preference

A SubRule table consists of a count of the glyphs to be matched in the input context sequence (glyphCount),
including the first glyph in the sequence, and an array of glyph indices that describe the context
(inputSequence). The Coverage table specifies the index of the first glyph in the context, and the Input array
begins with the second glyph in the context sequence (glyph sequence index = 1, inputSequence array index
= 0).
NOTE The Input array lists the indices in the order the corresponding glyphs appear in the text. For text written from

right to left, the right-most glyph will be first; conversely, for text written from left to right, the left-most glyph will be
first.

A SubRule table also contains a count of the substitutions to be performed on the input glyph sequence
(substitutionCount) and an array of SubstLookupRecords (substLookupRecords). Each record specifies a
position in the input glyph sequence and a LookupList index to the substitution lookup that is applied at that
position. The array should list records in design order, or the order the lookups should be applied to the entire
glyph sequence.

274

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

274 ©	ISO/IEC	2019	–	All	rights	reserved
	

SubRule table: One simple context definition

Type Name Description

uint16 glyphCount Total number of glyphs in input glyph
sequence – includes the first glyph.

uint16 substitutionCount Number of SubstLookupRecords

uint16 inputSequence
[glyphCount - 1]

Array of input glyph IDs – start with second
glyph

SubstLookupRecord substLookupRecords
[substitutionCount]

Array of SubstLookupRecords, in design order

Context substitution Format 2: Class-based Glyph Contexts

Format 2, a more flexible format than Format 1, describes class-based context substitution. For this format, a
specific integer, called a class value, must be assigned to each glyph component in all context glyph
sequences. Contexts are then defined as sequences of glyph class values. More than one context may be
defined at a time.

For example, suppose that a swash capital glyph should replace each uppercase letter glyph that is preceded
by a space glyph and followed by a lowercase letter glyph (a glyph sequence of space - uppercase -
lowercase). The set of uppercase glyphs would constitute one glyph class (Class 1), the set of lowercase
glyphs would constitute a second class (Class 2), and the space glyph would constitute a third class (Class 3).
The input context might be specified with a context rule (called a SubClassRule) that describes "the set of
glyph strings that form a sequence of three glyph classes, one glyph from Class 3, followed by one glyph from
Class 1, followed by one glyph from Class 2".

Each ContextSubstFormat2 subtable contains an offset to a class definition table (classDefOffset), which
defines the glyph class values of all input contexts. Generally, a unique ClassDef table will be declared in
each instance of the ContextSubstFormat2 table that is included in a font, even though several Format 2
tables could share ClassDef tables. Class assignments are fixed (the same for each position in the context),
and classes are exclusive (a glyph cannot be in more than one class at a time). The output glyphs that replace
the glyphs in the context sequences do not need class values because they are specified elsewhere by glyph
ID.

The ContextSubstFormat2 subtable also contains a format identifier (substFormat) and defines an offset to a
Coverage table (coverageOffset). For this format, the Coverage table lists indices for the complete set of
unique glyphs (not glyph classes) that may appear as the first glyph of any class-based context. In other
words, the Coverage table contains the list of glyph indices for all the glyphs in all classes that may be first in
any of the context class sequences. For example, if the contexts begin with a Class 1 or Class 2 glyph, then
the Coverage table will list the indices of all Class 1 and Class 2 glyphs.

A ContextSubstFormat2 subtable also defines an array of offsets to the SubClassSet tables
(subClassSetOffsets) and a count of the SubClassSet tables (subClassSetCount). The array contains one
offset for each class (including Class 0) in the ClassDef table. In the array, the class value defines an offset's
index position, and the SubClassSet offsets are ordered by ascending class value (from 0 to
subClassSetCount - 1).

For example, the first SubClassSet listed in the array contains all contexts beginning with Class 0 glyphs, the
second SubClassSet contains all contexts beginning with Class 1 glyphs, and so on. If no contexts begin with
a particular class (that is, if a SubClassSet contains no SubClassRule tables), then the offset to that particular
SubClassSet in the SubClassSet array will be set to NULL.

Example 8 at the end of this subclause uses Format 2 to substitute Arabic mark glyphs for base glyphs of
different heights.

275

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 275
	

ContextSubstFormat2 subtable:

Type Name Description

uint16 substFormat Format identifier: format = 2

Offset16 coverageOffset Offset to Coverage table, from beginning of substitution
table

Offset16 classDefOffset Offset to glyph ClassDef table, from beginning of
substitution table

uint16 subClassSetCount Number of SubClassSet tables

Offset16 subClassSetOffsets
[subClassSetCount]

Array of offsets to SubClassSet tables. Offsets are from
beginning of substitution subtable, ordered by class (may
be NULL)

Each context is defined in a SubClassRule table, and all SubClassRules that specify contexts beginning with
the same class value are grouped in a SubClassSet table. Consequently, the SubClassSet containing a
context identifies a context's first class component.

Each SubClassSet table consists of a count of the SubClassRule tables defined in the SubClassSet
(subClassRuleCount) and an array of offsets to SubClassRule tables (subClassRuleOffsets). The
SubClassRule tables are ordered by preference in the SubClassRule array of the SubClassSet.

SubClassSet subtable

Type Name Description

uint16 subClassRuleCount Number of SubClassRule tables

Offset16 subClassRuleOffsets
[subClassRuleCount]

Array of offsets to SubClassRule tables. Offsets are from
beginning of SubClassSet, ordered by preference

For each context, a SubClassRule table contains a count of the glyph classes in the context sequence
(glyphCount), including the first class. A Class array lists the classes, beginning with the class for the second
context position (glyph sequence index = 1, inputSequence array index = 0).
NOTE Text order depends on the writing direction of the text. For text written from right to left, the right-most class will

be first. Conversely, for text written from left to right, the left-most class will be first.

The values specified in the Class array are the values defined in the ClassDef table. For example, a context
consisting of the sequence "Class 2, Class 7, Class 5, Class 0" will produce a Class array of 7,5,0. The first
class in the sequence, Class 2, is identified in the ContextSubstFormat2 table by the SubClassSet array index
of the corresponding SubClassSet.

A SubClassRule also contains a count of the substitutions to be performed on the context (substitutionCount)
and an array of SubstLookupRecords (substLookupRecords) that supply the substitution data. For each
position in the context that requires a substitution, a SubstLookupRecord specifies a LookupList index and a
position in the input glyph sequence where the lookup is applied. The substLookupRecords array lists
SubstLookupRecords in design order – that is, the order in which lookups should be applied to the entire glyph
sequence.

SubClassRule table: Context definition for one class

Type Name Description

uint16 glyphCount Total number of classes specified for the
context in the rule – includes the first class

uint16 substitutionCount Number of SubstLookupRecords

276

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

276 ©	ISO/IEC	2019	–	All	rights	reserved
	

uint16 inputSequence
[glyphCount - 1]

Array of classes to be matched to the input
glyph sequence, beginning with the second
glyph position

SubstLookupRecord substLookupRecords
[substitutionCount]

Array of Substitution lookups, in design order

Context substitution Format 3: Coverage-based Glyph Contexts

Format 3, coverage-based context substitution, defines a context rule as a sequence of coverage tables. Each
position in the sequence may define a different Coverage table for the set of glyphs that matches the context
pattern. With Format 3, the glyph sets defined in the different Coverage tables may intersect, unlike Format 2
which specifies fixed class assignments (identical for each position in the context sequence) and exclusive
classes (a glyph cannot be in more than one class at a time).

For example, consider an input context that contains a lowercase glyph (position 0), followed by an uppercase
glyph (position 1), either a lowercase or numeral glyph (position 2), and then either a lowercase or uppercase
vowel (position 3). This context requires four Coverage tables, one for each position:

 In position 0, the Coverage table lists the set of lowercase glyphs.

 In position 1, the Coverage table lists the set of uppercase glyphs.

 In position 2, the Coverage table lists the set of lowercase and numeral glyphs, a superset of the
glyphs defined in the Coverage table for position 0.

 In position 3, the Coverage table lists the set of lowercase and uppercase vowels, a subset of the
glyphs defined in the Coverage tables for both positions 0 and 1.

Unlike Formats 1 and 2, this format defines only one context rule at a time. It consists of a format identifier
(substFormat), a count of the glyphs in the sequence to be matched (glyphCount), and an array of Coverage
offsets that describe the input context sequence (coverageOffsets).
NOTE The order of the Coverage tables listed in the Coverage array must follow the writing direction. For text written

from right to left, then the right-most glyph will be first. Conversely, for text written from left to right, the left-most
glyph will be first.

The subtable also contains a count of the substitutions to be performed on the input Coverage sequence
(substitutionCount) and an array of SubstLookupRecords (substLookupRecords) in design order – that is, the
order in which lookups should be applied to the entire glyph sequence.

Example 9 at the end of this subclause uses ContextSubstFormat3 to substitute a swash glyph for two out of
three glyphs in a sequence.

ContextSubstFormat3 subtable:

Type Name Description

uint16 substFormat Format identifier: format = 3

uint16 glyphCount Number of glyphs in the input glyph
sequence

uint16 substitutionCount Number of SubstLookupRecords

Offset16 coverageOffsets[glyphCount] Array of offsets to Coverage table.
Offsets are -from beginning of
substitution subtable, in glyph
sequence order

SubstLookupRecord

substLookupRecords
[substitutionCount]

Array of SubstLookupRecords, in
design order

277

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 277
	

LookupType 6: Chaining contextual substitution subtable

A Chaining Contextual Substitution subtable (ChainContextSubst) describes glyph substitutions in context with
an ability to look back and/or look ahead in the sequence of glyphs. The design of the Chaining Contextual
Substitution subtable is parallel to that of the Contextual Substitution subtable, including the availability of
three formats for handling sequences of glyphs, glyph classes, or glyph sets. Each format can describe one or
more backtrack, input, and lookahead sequences and one or more substitutions for each sequence.

Chaining context substitution Format 1: Simple chaining context glyph substitution

Format 1 defines the context for a glyph substitution as a particular sequence of glyphs. For example, a
context could be <xyz>, <holiday>, <!?*#@>, or any other glyph sequence.

Within a context sequence, Format 1 identifies particular glyph positions (not glyph indices) as the targets for
specific substitutions. When a text-processing client locates a context in a string of glyphs, it finds the lookup
data for a targeted position and makes a substitution by applying the lookup data at that location.

To specify the context, the coverage table lists the first glyph in the input sequence, and the ChainSubRule
subtable defines the rest. Once a covered glyph is found at position i, the client reads the corresponding
ChainSubRuleSet table and examines each table to determine if it matches the surrounding glyphs in the
glyph string. In the simplest of cases, there is a match if the string <backtrack sequence>+<input
sequence>+<lookahead sequence> matches with the glyphs at position i - backtrackGlyphCount in the text.
Note that LookupFlags affect backtrack/lookahead sequences.

To clarify the ordering of glyph arrays for input, backtrack and lookahead sequences, the following illustration
is provided. Input sequence match begins at i where the input sequence match begins. The backtrack
sequence is ordered beginning at i - 1 and increases in offset value as one moves away from i. The lookahead
sequence begins after the input sequence and increases in logical order.

Logical order - a b c d e f g h i j

 i

Input sequence - 0 1

Backtrack sequence - 3 2 1 0

Lookahead sequence - 0 1 2 3

If there is a match, then the client finds the target glyph positions for substitutions and completes the
substitutions. Please note that (just like in the ContextSubstFormat1 subtable) these lookups are required to
operate within the range of text from the covered glyph to the end of the input sequence. No substitutions can
be defined for the backtracking sequence or the lookahead sequence.

Once the substitutions are complete, the client should move to the glyph position immediately following the
matched input sequence and resume the lookup process from there.

A single ChainContextSubstFormat1 subtable may define more than one context glyph sequence. If different
context sequences begin with the same glyph, then the Coverage table should list the glyph only once
because all glyphs in the table must be unique. For example, if three contexts each start with an "s" and two
start with a "t", then the Coverage table will list one "s" and one "t".

All of the ChainSubRule tables defining contexts that begin with the same first glyph are grouped together and
defined in a ChainSubRuleSet table. For example, the ChainSubRule tables that define the three contexts that
begin with an "s" are grouped in one ChainSubRuleSet table, and the ChainSubRule tables that define the two
contexts that begin with a "t" are grouped in a second ChainSubRuleSet table. Each glyph listed in the
Coverage table must have a ChainSubRuleSet table defining all the ChainSubRule tables that apply to a
covered glyph.

278

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

278 ©	ISO/IEC	2019	–	All	rights	reserved
	

A ChainContextSubstFormat1 subtable contains a format identifier (substFormat), an offset to a Coverage
table (coverageOffset), a count of defined ChainSubRuleSets (chainSubRuleSetCount), and an array of
offsets to the ChainSubRuleSet tables (chainSubRuleSetOffsets). As mentioned, one ChainSubRuleSet table
must be defined for each glyph listed in the Coverage table.

In the ChainSubRuleSet array, the ChainSubRuleSet table offsets are ordered in the Coverage index order.
The first ChainSubRuleSet in the array applies to the first glyph ID listed in the Coverage table, the second
ChainSubRuleSet in the array applies to the second glyph ID listed in the Coverage table, and so on.

ChainContextSubstFormat1 subtable:

Type Name Description

uint16 substFormat Format identifier: format = 1

Offset16 coverageOffset Offset to Coverage table, from beginning of substitution
table

uint16 chainSubRuleSetCount Number of ChainSubRuleSet tables – must equal
glyphCount in Coverage table

Offset16 chainSubRuleSetOffsets
[chainSubRuleSetCount]

Array of offsets to ChainSubRuleSet tables. Offsets are
from beginning of substitution table, ordered by
Coverage index

A ChainSubRuleSet table consists of an array of offsets to ChainSubRule tables (chainSubRuleOffsets),
ordered by preference, and a count of the ChainSubRule tables defined in the set (chainSubRuleCount).

The order in the ChainSubRule array can be critical. Consider two contexts, <abc> and <abcd>. If <abc> is
first in the ChainSubRule array, all instances of <abc> in the text – including all instances of <abcd> – will be
changed. If <abcd> comes first in the array, however, only <abcd> sequences will be changed, without
affecting any instances of <abc>.

ChainSubRuleSet table: All contexts beginning with the same glyph

Type Name Description

uint16 chainSubRuleCount Number of ChainSubRule tables

Offset16 chainSubRuleOffsets
[chainSubRuleCount]

Array of offsets to ChainSubRule tables. Offsets are from
beginning of ChainSubRuleSet table, ordered by
preference

A ChainSubRule table consists of a count of the glyphs to be matched in the backtrack, input, and lookahead
context sequences, including the first glyph in each sequence, and an array of glyph indices that describe
each portion of the contexts. The Coverage table specifies the index of the first glyph in each context, and
each array begins with the second glyph in the context sequence (glyph sequence index = 1, inputSequence
array index = 0).
NOTE All arrays list the indices in the order the corresponding glyphs appear in the text. For text written from right to left,

the right-most glyph will be first; conversely, for text written from left to right, the left-most glyph will be first.

A ChainSubRule table also contains a count of the substitutions to be performed on the input glyph sequence
(substitutionCount) and an array of SubstitutionLookupRecords (substLookupRecord). Each record specifies a
position in the input glyph sequence and a LookupList index to the substitution lookup that is applied at that
position. The array should list records in design order, or the order the lookups should be applied to the entire
glyph sequence.

279

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 279
	

ChainSubRule subtable

Type Name Description

uint16 backtrackGlyphCount Total number of glyphs in the backtrack
sequence (number of glyphs to be matched
before the first glyph of the input sequence)

uint16 backtrackSequence
[backtrackGlyphCount]

Array of backtracking glyph IDs – to be
matched before the input sequence.

uint16 inputGlyphCount Total number of glyphs in the input
sequence – includes the first glyph.

uint16 inputSequence
[inputGlyphCount - 1]

Array of input glyph IDs – start with second
glyph.

uint16 lookaheadGlyphCount Total number of glyphs in the lookahead
sequence (number of glyphs to be matched
after the input sequence)

uint16 lookAheadSequence
[lookAheadGlyphCount]

Array of lookahead glyph IDs – to be
matched after the input sequence.

uint16 substitutionCount Number of SubstLookupRecords

SubstLookupRecord substLookupRecords
[substitutionCount]

Array of SubstLookupRecords, in design
order

Chaining context substitution Format 2: Class-based glyph contexts
Format 2 describes class-based chaining context substitution. For this format, a specific integer, called a class
value, must be assigned to each glyph component in all context glyph sequences. Contexts are then defined
as sequences of glyph class values. More than one context may be defined at a time.

To chain contexts, three classes are used in the glyph ClassDef table: backtrack ClassDef, input ClassDef,
and lookahead ClassDef.

The ChainContextSubstFormat2 subtable also contains a format identifier (substFormat) and defines an offset
to a Coverage table (coverageOffset). For this format, the Coverage table lists indices for the complete set of
unique glyphs (not glyph classes) that may appear as the first glyph of any class-based context. In other
words, the Coverage table contains the list of glyph indices for all the glyphs in all classes that may be first in
any of the context class sequences. For example, if the contexts begin with a Class 1 or Class 2 glyph, then
the Coverage table will list the indices of all Class 1 and Class 2 glyphs.

A ChainContextSubstFormat2 subtable also defines an array of offsets to the ChainSubClassSet tables
(chainSubClassSetOffsets) and a count of the ChainSubClassSet tables (chainSubClassSetCount). The array
contains one offset for each class (including Class 0) in the ClassDef table. In the array, the class value
defines an offset's index position, and the ChainSubClassSet offsets are ordered by ascending class value
(from 0 to chainSubClassSetCount - 1).

If no contexts begin with a particular class (that is, if a ChainSubClassSet contains no ChainSubClassRule
tables), then the offset to that particular ChainSubClassSet in the ChainSubClassSet array will be set to NULL.

ChainContextSubstFormat2 subtable:

Type Name Description

uint16 substFormat Format identifier: format = 2

Offset16 coverageOffset Offset to Coverage table, from beginning of
substitution table

Offset16 backtrackClassDef Offset to glyph ClassDef table containing backtrack
sequence data, from beginning of substitution table

Offset16 inputClassDef Offset to glyph ClassDef table containing input

280

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

280 ©	ISO/IEC	2019	–	All	rights	reserved
	

sequence data, from beginning of substitution table

Offset16 lookaheadClassDef Offset to glyph ClassDef table containing lookahead
sequence data, from beginning of substitution table

uint16 chainSubClassSetCount Number of ChainSubClassSet tables

Offset16 chainSubClassSetOffsets
[chainSubClassSetCount]

Array of offsets to ChainSubClassSet tables. Offsets
are from beginning of substitution table, ordered by
input class (may be NULL)

Each context is defined in a ChainSubClassRule table, and all ChainSubClassRules that specify contexts
beginning with the same class value are grouped in a ChainSubClassSet table. Consequently, the
ChainSubClassSet containing a context identifies a context's first class component.

Each ChainSubClassSet table consists of a count of the ChainSubClassRule tables defined in the
ChainSubClassSet (chainSubClassRuleCount) and an array of offsets to ChainSubClassRule tables
(chainSubClassRuleOffsets). The ChainSubClassRule tables are ordered by preference in the
ChainSubClassRule array of the ChainSubClassSet.

ChainSubClassSet subtable

Type Name Description
uint16 chainSubClassRuleCount Number of ChainSubClassRule tables
Offset16 chainSubClassRuleOffsets

[chainSubClassRuleCount]
Array of offsets to ChainSubClassRule tables.
Offsets are from beginning of ChainSubClassSet,
ordered by preference

For each context (backtrack, input, lookahead), a ChainSubClassRule table contains a count of the glyph
classes for each portion of the context sequence (backtrackGlyphCount, inputGlyphCount,
lookaheadGlyphCount), including the first class. A Class array lists the classes, beginning with the class for
the second context position (input glyph sequence index = 1, inputSequence array index = 0), that follow the
first class in the context.
NOTE Text order depends on the writing direction of the text. For text written from right to left, the right-most class will

be first. Conversely, for text written from left to right, the left-most class will be first.

The values specified in the Class array are the values defined in the ClassDef table. The first class in the
sequence, Class 2, is identified in the ChainContextSubstFormat2 table by the ChainSubClassSet array index
of the corresponding ChainSubClassSet.

A ChainSubClassRule also contains a count of the substitutions to be performed on the context
(substitutionCount) and an array of SubstLookupRecords (substLookupRecords) that supply the substitution
data. For each position in the context that requires a substitution, a SubstLookupRecord specifies a
LookupList index and a position in the input glyph sequence where the lookup is applied. The
SubstLookupRecord array lists SubstLookupRecords in design order – that is, the order in which lookups
should be applied to the entire glyph sequence.

ChainSubClassRule table: Chaining context definition for one class

Type Name Description

uint16 backtrackGlyphCount Total number of glyphs in the backtrack
sequence (number of glyphs to be matched
before the first glyph of the input sequence).

uint16 backtrackSequence
[BacktrackGlyphCount]

Array of backtracking classes – to be
matched before the input sequence.

uint16 inputGlyphCount Total number of classes in the input
sequence – includes the first class.

uint16 inputSequence
iInputGlyphCount - 1]

Array of classes to be matched with the
input glyph sequence – beginning with

281

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 281
	

second glyph position.

uint16 lookaheadGlyphCount Total number of glyphs in the lookahead
sequence (number of glyphs to be matched
after the input sequence).

uint16 lookAheadSequence
[lookAheadGlyphCount]

Array of lookahead classes – to be matched
with glyph sequence after the input
sequence.

uint16 substitutionCount Number of SubstLookupRecords

SubstLookupRecord substLookupRecords
[substitutionCount]

Array of SubstLookupRecords, in design
order.

Chaining context substitution Format 3: Coverage-based glyph contexts

Format 3 defines a chaining context rule as a sequence of Coverage tables. Each position in the sequence
may define a different Coverage table for the set of glyphs that matches the context pattern. With Format 3,
the glyph sets defined in the different Coverage tables may intersect, unlike Format 2 which specifies fixed
class assignments (identical for each position in the backtrack, input, or lookahead sequence) and exclusive
classes (a glyph cannot be in more than one class at a time).
NOTE The order of the Coverage tables listed in the Coverage array must follow the writing direction. For text written

from right to left, then the right-most glyph will be first. Conversely, for text written from left to right, the left-most
glyph will be first.

The subtable also contains a count of the substitutions to be performed on the input Coverage sequence
(substitutionCount) and an array of SubstLookupRecords (substLookupRecords) in design order – that is, the
order in which lookups should be applied to the entire glyph sequence.

ChainContextSubstFormat3 subtable:

Type Name Description

uint16 substFormat Format identifier: format = 3

uint16 backtrackGlyphCount Number of glyphs in the backtracking
sequence

Offset16 backtrackCoverageOffsets
[backtrackGlyphCount]

Array of offsets to coverage tables in
backtracking sequence. Offsets are from
the beginning of substitution subtable, in
glyph sequence order.

uint16 inputGlyphCount Number of glyphs in input sequence

Offset16 inputCoverageOffsets
[inputGlyphCount]

Array of offsets to coverage tables in
input sequence. Offsets are from the
beginning of substitution subtable, in
glyph sequence order

uint16 lookaheadGlyphCount Number of glyphs in lookahead
sequence

Offset16 lookaheadCoverageOffsets
[lookaheadGlyphCount]

Array of offsets to coverage tables in
lookahead sequence. Offsets are from
the beginning of substitution subtable, in
glyph sequence order.

uint16 substitutionCount Number of SubstLookupRecords

SubstLookupRecord substLookupRecords
[substitutionCount]

Array of SubstLookupRecords, in design
order

282

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

282 ©	ISO/IEC	2019	–	All	rights	reserved
	

LookupType 7: Extension substitution

This lookup provides a mechanism whereby any other lookup type's subtables are stored at a 32-bit offset
location in the 'GSUB' table. This is needed if the total size of the subtables exceeds the 16-bit limits of the
various other offsets in the 'GSUB' table. In this document, the subtable stored at the 32-bit offset location is
termed the "extension" subtable.

This subtable type uses one format: ExtensionSubstFormat1.

ExtensionSubstFormat1 subtable:

Type Name Description

uint16 substFormat Format identifier. Set to 1.

uint16 extensionLookupType Lookup type of subtable referenced by extensionOffset
(that is, the extension subtable).

Offset32 extensionOffset Offset to the extension subtable, of lookup type
extensionLookupType, relative to the start of the
ExtensionSubstFormat1 subtable.

The extensionLookupType field must be set to any lookup type other than 7. All subtables in a LookupType 7
lookup shall have the same extensionLookupType. All offsets within the extension subtables are set in the
usual way, i.e. relative to the extension subtables themselves.

When an OFF layout engine encounters a LookupType 7 Lookup table, it shall:

 Proceed as though the Lookup table's lookupType field were set to the extensionLookupType of the
subtables.

 Proceed as though each extension subtable referenced by extensionOffset replaced the LookupType
7 subtable that referenced it.

LookupType 8: Reverse chaining contextual single substitution subtable

Reverse Chaining Contextual Single Substitution subtable (ReverseChainSingleSubst) describes single-glyph
substitutions in context with an ability to look back and/or look ahead in the sequence of glyphs. The major
difference between this and other lookup types is that processing of input glyph sequence goes from end to
start.

Compared to Chaining Contextual Sustitution (lookup subtable type 6), this format is restricted to only
coverage-based subtable format, input sequence can contain only a single glyph, and only single substitutions
are allowed on this glyph. This constraint is integrated into the subtable format.

This lookup type is designed specifically for the Arabic script writing styles, like nastaliq, where the shape of
the glyph is determined by the following glyph, beginning at the last glyph of the "joor", or set of connected
glyphs.

Reverse chaining contextual single substitution Format 1: Coverage-based contexts

Format 1 defines a chaining context rule as a sequence of Coverage tables. Each position in the sequence
may define a different Coverage table for the set of glyphs that matches the context pattern. With Format 1,
the glyph sets defined in the different Coverage tables may intersect.
NOTE Despite reverse order processing, the order of the Coverage tables listed in the Coverage array must be in logical

order (follow the writing direction). The backtrack sequence is as illustrated in the LookupType 6: Chaining
Contextual Substitution subtable. The input sequence is one glyph located at i in the logical string. The backtrack
begins at i - 1 and increases in offset value as one moves toward the logical beginning of the string. The
lookahead sequence begins at i + 1 and increases in offset value as one moves toward the logical end of the
string. In processing a reverse chaining substitution, i began at the logical end of the string and moves to the
beginning.

283

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 283
	

The subtable contains a Coverage table for the input glyph and Coverage table arrays for backtrack and
lookahead sequences. It also contains an array of substitute glyphs indices (substituteGlyphIDs), which are
substititions for glyphs in the Coverage table, and a count of glyphs in the substituteGlyphIDs array. The
substituteGlyphIDs array shall contain the same number of glyph indices as the Coverage table. To locate the
corresponding output glyph index in the substituteGlyphIDs array, this format uses the Coverage index
returned from the Coverage table.

Example 10 at the end of this subclause uses ReverseChainSingleSubstFormat1 to substitute Arabic glyphs
with a correct stroke thickness on the left (exit) to match the stroke thickness on the right (entry) of the
following glyph (in logical order).

ReverseChainSingleSubstFormat1 subtable:

Type Name Description

uint16 substFormat Format identifier; format = 1

Offset16 coverageOffset Offset to Coverage table, from beginning of
substitution table

uint16 backtrackGlyphCount Number of glyphs in the backtracking sequence.

Offset16 backtrackCoverageOffsets
[backtrackGlyphCount]

Array of offsets to coverage tables in
backtracking sequence, in glyph sequence
order.

uint16 lookaheadGlyphCount Number of glyphs in lookahead sequence.

Offset16 lookaheadCoverageOffsets
[lookaheadGlyphCount]

Array of offsets to coverage tables in lookahead
sequence, in glyph sequence order.

uint16 glyphCount Number of glyph IDs in the substituteGlyphIDs
array.

uint16 substituteGlyphIDs[glyphCount] Array of substitute glyph IDs – ordered by
Coverage index.

6.3.4.4 GSUB – subtable examples

The rest of this clause describes and illustrates examples of all the GSUB subtables, including each of the
three formats available for contextual substitutions. All the examples reflect unique parameters described
below, but the samples provide a useful reference for building subtables specific to other situations.

All the examples have three columns showing hex data, source, and comments.

Example 1: GSUB header table

Example 1 shows a typical GSUB Header table definition.

Example 1

Hex Data Source Comments

 GSUBHeader
TheGSUBHeader

GSUBHeader table definition

00010000 0x00010000 major/minor version

000A TheScriptList Offset to ScriptList table

001E TheFeatureList Offset to FeatureList table

002C TheLookupList Offset to LookupList table

284

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

284 ©	ISO/IEC	2019	–	All	rights	reserved
	

Example 2: SingleSubstFormat1 subtable

Example 2 illustrates the SingleSubstFormat1 subtable, which uses ranges to replace single input glyphs with
their corresponding output glyphs. The indices of the output glyphs are calculated by adding a constant delta
value to the indices of the input glyphs. In this example, the Coverage table has a format identifier of 1 to
indicate the range format, which is used because the input glyph indices are in consecutive order in the font.
The Coverage table specifies one range that contains a startGlyphID for the "0" (zero) glyph and an
endGlyphID for the "9" glyph.

Example 2

Hex Data Source Comments

 SingleSubstFormat1
LiningNumeralSubtable

SingleSubst subtable definition

0001 1 substFormat: calculated output glyph indices

0006 LiningNumeralCoverage Offset to Coverage table for input glyphs

00C0 192 deltaGlyphID = 192: add to each input glyph index
to produce output glyph index

 CoverageFormat2
LiningNumeralCoverage

Coverage table definition

0002 2 coverageFormat: ranges

 1 rangeCount

 rangeRecord[0]

004E 78 Start glyphID for numeral zero glyph

0058 87 End glyphID for numeral nine glyph

0000 0 startCoverageIndex: first CoverageIndex = 0

Example 3: SingleSubstFormat2 subtable

Example 3 uses the SingleSubstFormat2 subtable for lists to substitute punctuation glyphs in Japanese text
that is written vertically. Horizontally oriented parentheses and square brackets (the input glyphs) are replaced
with vertically oriented parentheses and square brackets (the output glyphs).

The Coverage table, Format 1, identifies each input glyph index. The number of input glyph indices listed in
the Coverage table matches the number of output glyph indices listed in the subtable. For correct substitution,
the order of the glyph indices in the Coverage table (input glyphs) must match the order in the Substitute array
(output glyphs).

Example 3

Hex Data Source Comments

 SingleSubstFormat2
VerticalPunctuationSubtable

SingleSubst subtable definition

0002 2 substFormat: lists

000E VerticalPunctuationCoverage Offset to Coverage table

0004 4 glyphCount – equals glyphCount in
Coverage table

0131 VerticalOpenBracketGlyph substituteGlyphIDs[0], ordered by

285

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 285
	

Coverage index

0135 VerticalClosedBracketGlyph substituteGlyphIDs [1]

013E VerticalOpenParenthesisGlyph substituteGlyphIDs [2]

0143 VerticalClosedParenthesisGlyph substituteGlyphIDs [3]

 CoverageFormat1
VerticalPunctuationCoverage

Coverage table definition

0001 1 coverageFormat: lists

0004 4 glyphCount

003C HorizontalOpenBracketGlyph glyphArray[0], ordered by glyph ID

0040 HorizontalClosedBracketGlyph glyphArray[1]

004B HorizontalOpenParenthesisGlyph glyphArray[2]

004F HorizontalClosedParenthesisGlyph glyphArray[3]

Example 4: MultipleSubstFormat1 subtable

Example 4 uses a MultipleSubstFormat1 subtable to replace a single "ffi" ligature with three individual glyphs
that form the string <ffi>. The subtable defines a format identifier of 1, an offset to a Coverage table that
specifies the glyph index of the "ffi" ligature (the input glyph), an offset to a Sequence table that specifies the
sequence of glyph indices for the <ffi> string in its substitute array (the output glyph sequence), and a count of
Sequence table offsets.

Example 4

Hex Data Source Comments

 MultipleSubstFormat1
FfiDecompSubtable

MultipleSubst subtable definition

0001 1 substFormat

0008 FfiDecompCoverage Offset to Coverage table

0001 1 sequenceCount – equals glyphCount in Coverage
table

000E FfiDecompSequence sequenceOffsets[0] (offset to Sequence table 0)

 CoverageFormat1
FfiDecompCoverage

Coverage table definition

0001 1 coverageFormat: lists

0001 1 glyphCount

00F1 ffiGlyphID ligature glyph

 Sequence
FfiDecompSequence

Sequence table definition

0003 3 glyphCount

001A fGlyphID first glyph in sequence order

001A fGlyphID second glyph

001D iGlyphID third glyph

286

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

286 ©	ISO/IEC	2019	–	All	rights	reserved
	

Example 5: AlternateSubstFormat 1 subtable

Example 5 uses the AlternateSubstFormat1 subtable to replace the default ampersand glyph (input glyph)
with one of two alternative ampersand glyphs (output glyph).

In this case, the Coverage table specifies the index of a single glyph, the default ampersand, because it is the
only glyph covered by this lookup. The AlternateSet table for this covered glyph identifies the alternative
glyphs: AltAmpersand1GlyphID and AltAmpersand2GlyphID.

In Example 5, the index position of the AlternateSet table offset in the AlternateSet array is zero (0), which
correlates with the index position (also zero) of the default ampersand glyph in the Coverage table.

Example 5

Hex Data Source Comments

 AlternateSubstFormat1
AltAmpersandSubtable

AlternateSubstFormat1 subtable definition

0001 1 substFormat

0008 AltAmpersandCoverage Offset to Coverage table

0001 1 alternateSetCount – equals glyphCount in
Coverage table

000E AltAmpersandSet alternateSetOffsets[0] (offset to AlternateSet table
0)

 CoverageFormat1
AltAmpersandCoverage

Coverage table definition

0001 1 coverageFormat: lists

0001 1 glyphCount

003A DefaultAmpersandGlyphID glyphArray[0]

 AlternateSet
AltAmpersandSet

AlternateSet table definition

0002 2 glyphCount

00C9 AltAmpersand1GlyphID alternateGlyphIDs[0] – glyphs in arbitrary order

00CA AltAmpersand2GlyphID alternateGlyphIDs [1]

Example 6: LigatureSubstFormat1 subtable

Example 6 shows a LigatureSubstFormat1 subtable that defines data to replace a string of glyphs with a
single ligature glyph. Because a LigatureSubstFormat1 subtable can specify glyph substitutions for more than
one ligature, this subtable defines three ligatures: "etc", "ffi", and "fi".

The sample subtable contains a format identifier (4) and an offset to a Coverage table. The Coverage table,
which lists an index for each first glyph in the ligatures, lists indices for the "e" and "f" glyphs. The Coverage
table range format is used here because the "e" and "f" glyph indices are numbered consecutively.

In the LigatureSubst subtable, ligatureSetCount specifies two LigatureSet tables, one for each covered glyph,
and the ligatureSetOffsets array stores offsets to them. In this array, the "e" LigatureSet precedes the "f"
LigatureSet, matching the order of the corresponding first-glyph components in the Coverage table.

Each LigatureSet table identifies all ligatures that begin with a covered glyph. The sample LigatureSet table
defined for the "e" glyph contains only one ligature, "etc". A LigatureSet table defined for the "f" glyph contains
two ligatures, "ffi" and "fi".

287

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 287
	

The sample FLigaturesSet table has offsets to two Ligature tables, one for "ffi" and one for "fi". The
ligatureOffsets array lists the "ffi" Ligature table first to indicate that the "ffi" ligature is preferred to the "fi"
ligature.

Example 6

Hex Data Source Comments

 LigatureSubstFormat1
LigaturesSubtable

LigatureSubstFormat1 subtable definition

0001 1 substFormat

000A LigaturesCoverage Offset to Coverage table

0002 2 ligatureSetCount

0014 ELigaturesSet ligatureSetOffsets[0] (offset to LigatureSet table 0)
– LigatureSet tables in Coverage index order

0020 FLigaturesSet ligatureSetOffsets[1]

 CoverageFormat2
LigaturesCoverage

Coverage table definition

0002 2 coverageFormat: ranges

0001 1 rangeCount

 rangeRecord[0]

0019 eGlyphID Start, first glyph ID

001A fGlyphID End, last glyph ID in range

0000 0 startCoverageIndex: coverage index of start
glyphID = 0

 LigatureSet
ELigaturesSet

LigatureSet table definition – all ligatures that start
with e

0001 1 ligatureCount

0004 etcLigature ligatureOffsets[0] (offset to Ligature table 0)

 Ligature
etcLigature

Ligature table definition

015B etcGlyphID ligatureGlyph – output glyph ID

0003 3 componentCount

0028 tGlyphID componentGlyphIDs[0] – second component in
ligature

0017 cGlyphID componentGlyphIDs[1] – third component in
ligature

 LigatureSet
FLigaturesSet

LigatureSet table definition all ligatures start with f

0002 2 ligatureCount

0006 ffiLigature ligatureOffsets[0] – listed first because ffi ligature
is preferred to fi ligature

288

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

288 ©	ISO/IEC	2019	–	All	rights	reserved
	

000E fiLigature ligatureOffsets [1]

 Ligature
ffiLigature

Ligature table definition

00F1 ffiGlyphID ligatureGlyph – output glyph ID

0003 3 componentCount

001A fGlyphID componentGlyphIDs[0] – second component in
ligature

001D iGlyphID componentGlyphIDs[1] – third component in
ligature

 Ligature
fiLigature

Ligature table definition

00F0 fiGlyphID ligatureGlyph – output glyph ID

0002 2 componentCount

001D iGlyphID componentGlyphIDs[0] – second component in
ligature

Example 7: ContextSubstFormat1 subtable and SubstLookupRecord

Example 7 uses a ContextSubstFormat1 subtable for glyph sequences to replace a string of three glyphs with
another string. For the French language system, the subtable defines a contextual substitution that replaces
the input sequence, space-dash-space, with the output sequence, thin space-dash-thin space.

The contextual substitution, called Dash Lookup in this example, contains one ContextSubstFormat1 subtable
called the DashSubtable. The subtable specifies two contexts: a SpaceGlyph followed by a DashGlyph, and a
DashGlyph followed by a SpaceGlyph. In each sequence, a single substitution replaces the SpaceGlyph with
a ThinSpaceGlyph.

The Coverage table, labeled DashCoverage, lists two glyph IDs for the first glyphs in the SpaceGlyph and
DashGlyph sequences. One SubRuleSet table is defined for each covered glyph.

SpaceAndDashSubRuleSet lists all the contexts that begin with a SpaceGlyph. It contains an offset to one
SubRule table (SpaceAndDashSubRule), which specifies two glyphs in the context sequence, the second of
which is a DashGlyph. The SubRule table contains an offset to a SubstLookupRecord that lists the position in
the sequence where the glyph substitution should occur (position 0) and the index of the
SpaceToThinSpaceLookup applied there to replace the SpaceGlyph with a ThinSpaceGlyph.
DashAndSpaceSubRuleSet lists all the contexts that begin with a DashGlyph. An offset to a SubRule table
(DashAndSpaceSubRule) specifies two glyphs in the context sequence, and the second one is a SpaceGlyph.
The SubRule table contains an offset to a SubstLookupRecord, which lists the position in the sequence where
the glyph substitution should occur, and an index to the same lookup used in the SpaceAndDashSubRule.
The lookup replaces the SpaceGlyph with a ThinSpaceGlyph.

Example 7

Hex Data Source Comments

 ContextSubstFormat1
DashSubtable

ContextSubstFormat1 subtable definition for
Lookup[0], DashLookup

0001 1 substFormat

000A DashCoverage Offset to Coverage table

0002 2 subRuleSetCount

0012 SpaceAndDashSubRuleSet subRuleSetOffsets[0] (offset to SubRuleSet table

289

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 289
	

0) – SubRuleSets ordered by Coverage index

0020 DashAndSpaceSubRuleSet subRuleSetOffsets[1]

 CoverageFormat1
DashCoverage

Coverage table definition

0001 1 coverageFormat: lists

0002 2 glyphCount

0028 SpaceGlyph glyphArray[0] – glyphs in numeric order

005D DashGlyph glyphArray[1], dash glyph ID

 SubRuleSet
SpaceAndDashSubRuleSet

SubRuleSet[0] table definition

0001 1 subRuleCount

0004 SpaceAndDashSubRule subRuleSetOffsets[0] (offset to SubRule table 0)
– SubRule tables ordered by preference

 SubRule
SpaceAndDashSubRule

SubRule[0] table definition

0002 2 glyphCount – number in input sequence

0001 1 substitutionCount

005D DashGlyph inputSequence[0], starting with second glyph –
SpaceGlyph, in Coverage table, is first glyph

 substLookupRecords[0]

0000 0 sequenceIndex – substitution at first glyph
position (0)

0001 1 lookupListIndex – index for
SpaceToThinSpaceLookup in LookupList

 SubRuleSet
DashAndSpaceSubRuleSet

SubRuleSet[1] table definition

0001 1 subRuleCount

0004 DashAndSpaceSubRule subRuleOffsets[0] (offset to SubRule table 0) –
SubRule tables ordered by preference

 SubRule
DashAndSpaceSubRule

SubRule[0] table definition

0002 2 glyphCount – number in the input glyph
sequence

0001 1 substitutionCount

0028 SpaceGlyph inputSequence[0] – starting with second glyph

 substLookupRecords[0]

0001 1 sequenceIndex – substitution at second glyph
position (glyph sequence index = 1)

0001 1 lookupListIndex – index for
SpaceToThinSpaceLookup

290

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

290 ©	ISO/IEC	2019	–	All	rights	reserved
	

Example 8: ContextSubstFormat2 subtable

Example 8 uses a ContextSubstFormat2 subtable with glyph classes to replace default mark glyphs with their
alternative forms. Glyph alternatives are selected depending upon the height of the base glyph that they
combine with-that is, the mark glyph used above a high base glyph differs from the mark glyph above a very
high base glyph.

In the example, SetMarksHighSubtable contains a Class table that defines four glyph classes: medium-height
glyphs (Class 0), all default mark glyphs (Class 1), high glyphs (Class 2), and very high glyphs (Class 3). The
subtable also contains a Coverage table that lists each base glyph that functions as a first component in a
context, ordered by glyph index.

Two SubClassSets are defined, one for substituting high marks and one for very high marks. No
SubClassSets are specified for Class 0 and Class 1 glyphs because no contexts begin with glyphs from these
classes. The SubClassSet array lists SubClassSets in numerical order, so SubClassSet 2 precedes
SubClassSet 3.

Within each SubClassSet, a SubClassRule is defined. In SetMarksHighSubClassSet2, the SubClassRule
table specifies two glyphs in the context, the first glyph in Class 2 (a high glyph) and the second in Class 1 (a
mark glyph). The SubstLookupRecord specifies applying SubstituteHighMarkLookup at the second position in
the sequence-that is, a high mark glyph will replace the default mark glyph.

In SetMarksVeryHighSubClassSet3, the SubClassRule specifies two glyphs in the context, the first in Class 3
(a very high glyph) and the second in Class 1 (a mark glyph). The SubstLookupRecord specifies applying
SubstituteVeryHighMarkLookup at the second position in the sequence-that is, a very high mark glyph will
replace the default mark glyph.

Example 8

Hex Data Source Comments

 ContextSubstFormat2
SetMarksHighSubtable

ContextSubstFormat2 subtable definition

0002 2 substFormat

0010 SetMarksHighCoverage Offset to Coverage table

001C SetMarksHighClassDef Offset to Class Def table

0004 4 subClassSetCount

0000 NULL subClassSetOffsets[0] – NULL: no contexts
that begin with Class 0 glyphs are defined

0000 NULL subClassSetOffsets[1] – NULL: no contexts
that begin with Class 1 glyphs are defined

0032 SetMarksHighSubClassSet2 subClassSetOffsets[2] – offset to
SubClassSet table for contexts that begin
with Class 2 glyphs (high base glyphs)

0040 SetMarksVeryHighSubClassSet3 subClassSetOffsets[2] – offset to
SubClassSet table for contexts that begin
with Class 3 glyphs (very high base glyphs)

 CoverageFormat1
SetMarksHighCoverage

Coverage table definition

0001 1 coverageFormat: lists

0004 4 glyphCount

0030 tahGlyphID glyphArray[0], high base glyph

291

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 291
	

0031 dhahGlyphID glyphArray[1], high base glyph

0040 cafGlyphID glyphArray[2], very high base glyph

0041 gafGlyphID glyphArray[3], very high base glyph

 ClassDefFormat2
SetMarksHighClassDef

Class table definition

0002 2 class Format: ranges

0003 3 classRangeCount

 classRangeRecords[0] ClassRangeRecords ordered by
startGlyphID; record for Class 2, high base
glyphs

0030 tahGlyphID Start, first glyph ID in range

0031 dhahGlyphID End, last glyph ID in range

0002 2 class: 2

 classRangeRecords[1] ClassRangeRecord for Class 3, very high
base glyphs

0040 cafGlyphID Start, first glyph ID in the range

0041 gafGlyphID End, last glyph ID in the range

0003 3 class: 3

 classRangeRecords[2] ClassRangeRecord for Class 1, mark
glyphs

00D2 fathatanDefaultGlyphID Start, first glyph ID in range default fathatan
mark

00D3 dammatanDefaultGlyphID End, last glyph ID in the range default
dammatan mark

0001 1 class: 1

 SubClassSet
SetMarksHighSubClassSet2

SubClassSet[2] table definition
all contexts that begin with Class 2 glyphs

0001 1 subClassRuleCount

0004 SetMarksHighSubClassRule2 subClassRuleOffsets[0] (offset to
SubClassRule table 0) – SubClassRule
tables ordered by preference

 SubClassRule
SetMarksHighSubClassRule2

SubClassRule[0] table definition, Class 2
glyph (high base) glyph followed by a Class
1 glyph (mark)

0002 2 glyphCount

0001 1 substitutionCount

0001 1 input Sequence[0] – input sequence
beginning with the second Class in the
input context sequence; Class 1, mark
glyphs

 substLookupRecords[0] substLookupRecords array in design order

0001 1 sequenceIndex – apply substitution to

292

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

292 ©	ISO/IEC	2019	–	All	rights	reserved
	

position 2, a mark

0001 1 lookupListIndex

 SubClassSet
SetMarksVeryHighSubClassSet3

SubClassSet[3] table definition – all
contexts that begin with Class 3 glyphs

0001 1 subClassRuleCount

0004 SetMarksVeryHighSubClassRule3 subClassRuleOffsets[0]

 SubClassRule
SetMarksVeryHighSubClassRule3

SubClassRule[0] table definition – Class 3
glyph (very high base glyph) followed by a
Class 1 glyph (mark)

0002 2 glyphCount

0001 1 substitutionCount

0001 1 inputSequence[0] – input sequence
beginning with the second Class in the
input context sequence; Class 1 , mark
glyphs

 substLookupRecords[0] substLookupRecords array in design order

0001 1 sequenceIndex – apply substitution to
position 2, second glyph class (mark)

0002 2 lookupListIndex

Example 9: ContextualSubstFormat3 subtable

Example 9 uses the ContextSubstFormat3 subtable with Coverage tables to describe a context sequence of
three lowercase glyphs in the pattern: any ascender or descender glyph in position 0 (zero), any x-height
glyph in position 1, and any descender glyph in position 2. The overlapping sets of covered glyphs for
positions 0 and 2 make Format 3 better for this context than the class-based Format 2.

In positions 0 and 2, swash versions of the glyphs replace the default glyphs. The contextual-substitution
lookup is SwashLookup (LookupList index = 0), and its subtable is SwashSubtable. The SwashSubtable
defines three Coverage tables: AscenderDescenderCoverage, XheightCoverage, and DescenderCoverage-
one for each glyph position in the context sequence, respectively.

The SwashSubtable also defines two SubstLookupRecords: one that applies to position 0, and one for
position 2. (No substitutions are applied to position 1.) The record for position 0 uses a single substitution
lookup called AscDescSwashLookup to replace the current ascender or descender glyph with a swash
ascender or descender glyph. The record for position 2 uses a single substitution lookup called
DescSwashLookup to replace the current descender glyph with a swash descender glyph.

Example 9

Hex Data Source Comments

 ContextSubstFormat3
SwashSubtable

ContextSubstFormat3 subtable definition

0003 3 substFormat

0003 3 glyphCount – number in input glyph sequence

0002 2 substitutionCount

0030 AscenderDescenderCoverage coverageOffsets[0] – offsets to Coverage
tables, in context sequence order

004C XheightCoverage coverageOffsets [1]

293

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 293
	

006E DescenderCoverage coverageOffsets [2]

 substLookupRecords[0] SubstLookupRecords in glyph position order

0000 0 sequenceIndex

0001 1 lookupListIndex – single substitution to output
ascender or descender swash

 substLookupRecords[1]

0002 2 sequenceIndex

0002 2 lookupListIndex – single substitution to output
descender swash

 CoverageFormat1
AscenderDescenderCoverage

Coverage table definition

0001 1 coverageFormat: lists

000C 12 glyphCount

0033 bGlyphID glyphArray[0] – glyphs in glyph ID order

0035 dGlyphID glyphArray[1]

0037 fGlyphID glyphArray[2]

0038 gGlyphID glyphArray[3]

0039 hGlyphID glyphArray[4]

003B jGlyphID glyphArray[5]

003C kGlyphID glyphArray[6]

003D lGlyphID glyphArray[7]

0041 pGlyphID glyphArray[8]

0042 qGlyphID glyphArray[9]

0045 tGlyphID glyphArray[10]

004A yGlyphID glyphArray[11]

 CoverageFormat1
XheightCoverage

Coverage table definition

0001 1 coverageFormat: lists

000F 15 glyphCount

0032 aGlyphID glyphArray[0]

0034 cGlyphID glyphArray[1]

0036 eGlyphID glyphArray[2]

003A iGlyphID glyphArray[3]

003E mGlyphID glyphArray[4]

003F nGlyphID glyphArray[5]

0040 oGlyphID glyphArray[6]

0043 rGlyphID glyphArray[7]

294

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

294 ©	ISO/IEC	2019	–	All	rights	reserved
	

0044 sGlyphID glyphArray[8]

0045 tGlyphID glyphArray[9]

0046 uGlyphID glyphArray[10]

0047 vGlyphID glyphArray[11]

0048 wGlyphID glyphArray[12]

0049 xGlyphID glyphArray[13]

004B zGlyphID glyphArray[14]

 CoverageFormat1
DescenderCoverage

Coverage table definition

0001 1 coverageFormat: lists

0005 5 glyphCount

0038 gGlyphID glyphArray[0]

003B jGlyphID glyphArray[1]

0041 pGlyphID glyphArray[2]

0042 qGlyphID glyphArray[3]

004A yGlyphID glyphArray[4]

Example 10: ReverseChainSingleSubstFormat1 subtable and SubstLookupRecord

Example 10 uses a ReverseChainSingleSubstFormat1 subtable for glyph sequences to glyph with the correct
form that has a thick connection to the left (thick exit). This allow the glyph to correctly connect to the letter
form to the left of it.

The ThickExitCoverage table is the listing of glyphs to be matched for substitution.

The LookaheadCoverage table, labeled ThickEntryCoverage, lists four glyph IDs for the glyph following a
substitution coverage glyph. This lookahead coverage attempts to match the context that will cause the
substitution to take place.

The Substitute table maps the glyphs to replace those in the ThickConnectCoverage table.

Example 10

Hex Data Source Comments

 ReverseChainSingleSubstFormat1
ThickConnect

ReverseChainSingleSubstFormat1
subtable definition

0001 1 substFormat

0068 ThickExitCoverage Offset to Coverage table

0000 0 backtrackGlyphCount

0000 null - not used backtrackCoverageOffsets[0]

0001 1 lookaheadGlyphCount

0026 ThickEntryCoverage lookaheadCoverageOffsets[0]

000C 12 glyphCount

00A7 BEm2 substituteGlyphIDs[0] – substitute glyphs
ordered by Coverage index

295

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 295
	

00B9 BEi3 substituteGlyphIDs [1]

00C5 JIMm3 substituteGlyphIDs [2]

00D4 JIMi2 substituteGlyphIDs [3]

00EA SINm2 substituteGlyphIDs [4]

00F2 SINi2 substituteGlyphIDs [5]

00FD SADm2 substituteGlyphIDs [6]

010D SADi2 substituteGlyphIDs [7]

011B TOEm3 substituteGlyphIDs [8]

012B TOEi3 substituteGlyphIDs [9]

013B AINm2 substituteGlyphIDs [10]

0141 AINi2 substituteGlyphIDs [11]

 CoverageFormat1
ThickEntryCoverage

Coverage table definition

0001 1 coverageFormat: lists

001F 31 glyphCount

00A5 ALEFf1 glyphArray[0] – glyphs in glyph ID order

00A9 BEm4 glyphArray[1]

00AA BEm5 glyphArray[2]

00E2 DALf1 glyphArray[3]

0167 KAFf1 glyphArray[4]

0168 KAFfs1 glyphArray[5]

0169 KAFm1 glyphArray[6]

016D KAFm5 glyphArray[7]

016E KAFm6 glyphArray[8]

0170 KAFm8 glyphArray[9]

0183 GAFf1 glyphArray[10]

0184 GAFfs1 glyphArray[11]

0185 GAFm1 glyphArray[12]

0189 GAFm5 glyphArray[13]

018A GAFm6 glyphArray[14]

018C GAFm8 glyphArray[15]

019F LAMf1 glyphArray[16]

01A0 LAMm1 glyphArray[17]

01A1 LAMm2 glyphArray[18]

01A2 LAMm3 glyphArray[19]

01A3 LAMm4 glyphArray[20]

296

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

296 ©	ISO/IEC	2019	–	All	rights	reserved
	

01A4 LAMm5 glyphArray[21]

01A5 LAMm6 glyphArray[22]

01A6 LAMm7 glyphArray[23]

01A7 LAMm8 glyphArray[24]

01A8 LAMm9 glyphArray[25]

01A9 LAMm10 glyphArray[26]

01AA LAMm11 glyphArray[27]

01AB LAMm12 glyphArray[28]

01AC LAMm13 glyphArray[29]

01EC HAYf2 glyphArray[30]

 CoverageFormat1
ThickExitCoverage

Coverage table definition

0001 1 coverageFormat: lists

000C 12 glyphCount

00A6 BEm1 glyphArray[0]

00B7 BEi1 glyphArray[1]

00C3 JIMm1 glyphArray[2]

00D2 JIMi1 glyphArray[3]

00E9 SINm1 glyphArray[4]

00F1 SINi1 glyphArray[5]

00FC SADm1 glyphArray[6]

010C SADi1 glyphArray[7]

0119 TOEm1 glyphArray[8]

0129 TOEi1 glyphArray[9]

013A AINm1 glyphArray[10]

0140 AINi1 glyphArray[11]

6.3.5 JSTF – The justification table

6.3.5.1 JSTF table overview

The Justification table (JSTF) provides font developers with additional control over glyph substitution and
positioning in justified text. Text-processing clients now have more options to expand or shrink word and glyph
spacing so text fills the specified line length.

When justifying text, the text-processing client distributes the characters in each line to completely fill the
specified line length. Whether removing space to fit more characters in the line or adding more space to
spread the characters, justification can produce large gaps between words, cramped or extended glyph
spacing, uneven line break patterns, and other jarring visual effects. For example:

297

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 297
	

Figure 6.35 – Poorly justified text
To offset these effects, text-processing clients have used justification algorithms that redistribute the space
with a series of glyph spacing adjustments that progress from least to most obvious. Typically, the client will
begin by expanding or compressing the space between words. If these changes aren't enough or look
distracting, the client might hyphenate the word at the end of the line or adjust the space between glyphs in
one or more lines.

To disguise spacing inconsistencies so they won't disrupt the flow of text for a reader, the font developer can
use the JSTF table to enable or disable individual glyph substitution and positioning actions that apply to
specific scripts, language systems, and glyphs in the font.

For instance, a ligature glyph can replace multiple glyphs, shortening the line of text with an unobtrusive,
localized adjustment (see Figure 6.36). Font-specific positioning changes can be applied to particular glyphs
in a text line that combines two or more fonts. Other options include repositioning the individual glyphs in the
line, expanding the space between specific pairs of glyphs, and decreasing the spacing within particular glyph
sequences.

Figure 6.36 – JSTF shortens the top line of this example by using the "ffi" ligature
The font designer or developer defines JSTF data as prioritized suggestions. Each suggestion lists the
particular actions that the client can use to adjust the line of text. Justification actions may apply to both
vertical and horizonal text.

6.3.5.2 Table organization and structure

The JSTF table organizes data by script and language system, as do the GSUB and GPOS tables. The JSTF
table begins with a header that lists scripts in an array of JstfScriptRecords (see Figure 6.37). Each record
contains a ScriptTag and an offset to a JstfScript table that contains script and language-specific data:

 A default justification language system table (JstfLangSys) defines script-specific data that applies to
the entire script in the absence of any language-specific information.

 A justification language system table stores the justification data for each language system.

298

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

298 ©	ISO/IEC	2019	–	All	rights	reserved
	

Figure 6.37 – High-level organization of JSTF table

A JstfLangSys table contains a list of justification suggestions. Each suggestion consists of a list of GSUB or
GPOS LookupList indices to lookups that may be enabled or disabled to add or remove space in the line of
text. In addition, each suggestion can include a set of dedicated justification lookups with maximum
adjustment values to extend or shrink the amount of space.

The font developer prioritizes suggestions based on how they affect the appearance and function of the text
line, and the client applies the suggestions in that order. Low-numbered (high-priority) suggestions correspond
to "least bad" options.

Each script also may supply a list of extender glyphs, such as kashidas in Arabic. A client may use the
extender glyphs in addition to the justification suggestions.

A client begins justifying a line of text only after implementing all selected GSUB and GPOS features for the
string. Starting with the lowest-numbered suggestion, the client enables or disables the lookups specified in
the JSTF table, reassembles the lookups in the LookupList order, and applies them to each glyph in the string
one after another. If the line still is not the correct length, the client processes the next suggestion in
ascending order of priority. This continues until the line length meets the justification requirements.
NOTE 1 If any JSTF suggestion at any priority level modifies a GSUB or GPOS lookup that was previously applied to the

glyph string, then the text processing client must apply the JSTF suggestion to an unmodified version of the glyph
string.

NOTE 2 A FeatureVariations table may be used in either the GSUB or GPOS table to substitute the lookups triggered by a
given feature with an alternate set of lookups based on certain conditions. (Currently, these conditions can
pertain only to the use of variable fonts, which are discussed further below.) The actual lookups that were applied
for a given feature may be different from the default set of lookups for that feature. When processing a
justification suggestion, the list of lookups to check for previous application should be the actual lookups that
applied, with any feature variations in effect, not the default lookups. Also, when adding data in the JSTF table to
disable GSUB or GPOS lookups, the font developer should consider possible interactions with feature variation
tables, such as a need to include such alternate lookups in the set of lookups to disable. Note that this applies
only to features and lookups in the GSUB and GPOS table: for lookups contained directly within the JSTF table,
there is no analogous feature-variation mechanism.

Later in this subclause, the following tables and records used by the JSTF table for scripts and language
systems will be described:

 Script information, including the JstfScript table (plus its associated JstfLangSysRecords) and the
ExtenderGlyph table.

 Language system information, including the JstfLangSys table, JstfPriority table (and its associated
JstfDataRecord), the JstfModList table, and the JstfMax table.

299

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 299
	

JSTF table and OFF font variations

OFF font variations allow a single font to support many design variations along one or more axes of design
variation. For example, a font with weight and width variations might support weights from thin to black, and
widths from ultra-condensed to ultra-expanded. For general information on OFF font variations, see subclause
7.1.

When different variation instances are selected, the design and metrics of individual glyphs change, and the
metric characteristics of the font as a whole may also change. As metrics are relevant for justification, the
interaction between justification data and variations requires consideration.

As noted above, justification is assumed to be an iterative process in which the application tests different
suggestions defined in the font in priority order to find a suggestion that results in a line length that meets
application-determined justification requirements. When an instance of a variable font is selected, the line
layout will use glyph outlines and metrics that are adjusted for that instance. Thus, the metrics for one
variation instance may be different from another, and the text content of a given line after justification may be
different if formatted with different variation instances, but the justification processing proceeds in the same
manner.

As also noted above, justification suggestions are applied to the results after selected GSUB and GPOS
features have been processed. If the GSUB or GPOS table includes a FeatureVariations table, there may be
interactions between the effects of the FeatureVariations table and the justification suggestions. See above for
additional discussion.

As noted, justification suggestions can make use of GPOS lookups contained within the GPOS table or
directly within the JSTF table. GPOS lookup subtables contain X or Y font-unit values that specify
modifications to individual glyph positions or metrics. In a variable font, these X and Y values apply to the
default instance, and may require adjustment for different variation instances. This is done using variation data
with processes similar to those used for glyph outlines and other font data, as described in subclause 7.1
(Font variations overview). Variation data for adjustment of X or Y values in GPOS lookups is stored within an
item variation store table located within the GDEF table. This is true for lookups in either the GPOS or the
JSTF table. The same item variation store is also used for adjustment of values in the GDEF table. See the
GPOS chapter for additional details regarding variation of GPOS lookup values in variable fonts.

JSTF header

The JSTF table begins with a header that contains a version number for the table, a count of the number of
scripts used in the font (jstfScriptCount), and an array of records (jstfScriptRecord). Each record contains a
script tag (jstfScriptTag) and an offset to a JstfScript table (jstfScriptOffset).
Note that the jstfScriptTag values shall correspond with the script tags listed in the GSUB and GPOS tables.

Example 1 at the end of this clause shows a JSTF Header table and JstfScriptRecord.
JSTF header

Type Name Description

uint16 majorVersion Major version of the JSTF table, = 1

uint16 minorVersion Minor version of the JSTF table, = 0

uint16 jstfScriptCount Number of JstfScriptRecords in this
table

JstfScriptRecord jstfScriptRecords[jstfScriptCount] Array of JstfScriptRecords, in
alphabetical order by jstfScriptTag

JstfScriptRecord

Type Name Description

Tag jstfScriptTag 4-byte JstfScript identification

Offset16 jstfScriptOffset Offset to JstfScript table, from beginning of JSTF Header

300

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

300 ©	ISO/IEC	2019	–	All	rights	reserved
	

Justification script table

A Justification Script (JstfScript) table describes the justification information for a single script. It consists of an
offset to a table that defines extender glyphs (extenderGlyphOffset), an offset to a default justification table for
the script (defJstfLangSysOffset), and a count of the language systems that define justification data
(jstfLangSysCount).

If a script uses the same justification information for all language systems, the font developer defines only the
default JstfLangSys table and sets the jstfLangSysCount value to zero (0). However, if any language system
has unique justification suggestions, jstfLangSysCount will be a positive value, and the JstfScript table must
include an array of records (jstfLangSysRecords), one for each language system. Each JstfLangSysRecord
contains a language system tag (jstfLangSysTag) and an offset to a justification language system table
(jstfLangSysOffset). In the jstfLangSysRecords array, records are ordered alphabetically by jstfLangSysTag.
NOTE No JstfLangSysRecord is defined for the default script data; the data is stored in the DefJstfLangSys table

instead.

Example 2 at the end of the clause shows a JstfScript table for the Arabic script and a JstfLangSysRecord for
the Farsi language system.
JstfScript table

Type Name Description

Offset16 extenderGlyphOffset Offset to ExtenderGlyph table, from beginning
of JstfScript table (may be NULL)

Offset16 defJstfLangSysOffset Offset to Default JstfLangSys table, from
beginning of JstfScript table (may be NULL)

uint16 jstfLangSysCount Number of JstfLangSysRecords in this table,
may be zero (0)

JstfLangSysRecord jstfLangSysRecords
[jstfLangSysCount]

Array of JstfLangSysRecords, in alphabetical
order by jstfLangSysTag

JstfLangSysRecord

Type Name Description

Tag jstfLangSysTag 4-byte JstfLangSys identifier

Offset16 jstfLangSysOffset Offset to JstfLangSys table, from beginning of JstfScript table

Extender glyph table

The Extender Glyph table (ExtenderGlyph) lists indices of glyphs, such as Arabic kashidas, that a client may
insert to extend the length of the line for justification. The table consists of a count of the extender glyphs for
the script (glyphCount) and an array of extender glyph indices (extenderGlyphs), arranged in increasing
numerical order.

Example 2 at the end of this clause shows an ExtenderGlyph table for Arabic kashida glyphs.

ExtenderGlyph table

Type Name Description

uint16 glyphCount Number of extender glyphs in this script

uint16 extenderGlyphs[glyphCount] Extender glyph IDs – in increasing numerical order

Justification Language System table

The Justification Language System (JstfLangSys) table contains an array of justification suggestions, ordered
by priority. A text-processing client doing justification should begin with the suggestion that has a zero (0)
priority, and then-as necessary-apply suggestions of increasing priority until the text is justified.

301

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 301
	

The font developer defines the number and the meaning of the priority levels. Each priority level stands alone;
its suggestions are not added to the previous levels. The JstfLangSys table consists of a count of the number
of priority levels (jstfPriorityCount) and an array of offsets to Justification Priority tables (jstfPriorityOffsets),
stored in priority order. Example 2 at the end of the clause shows how to define a JstfLangSys table.

JstfLangSys table

Type Name Description

uint16 jstfPriorityCount Number of JstfPriority tables

Offset16 jstfPriorityOffsets[jstfPriorityCount] Array of offsets to JstfPriority tables, from
beginning of JstfLangSys table, in priority
order

Justification Priority table

A Justification Priority (JstfPriority) table defines justification suggestions for a single priority level. Each
priority level specifies whether to enable or disable GSUB and GPOS lookups or apply text justification
lookups to shrink and extend lines of text.

JstfPriority has offsets to four tables with line shrinkage data: two are JstfGSUBModList tables for enabling
and disabling glyph substitution lookups, and two are JstfGPOSModList tables for enabling and disabling
glyph positioning lookups. offsets to JstfGSUBModList and JstfGPOSModList tables also are defined for line
extension.

Example 3 at the end of this clause demonstrates two JstfPriority tables for two justification suggestions.

JstfPriority table

Type Name Description

Offset16 shrinkageEnableGSUB Offset to shrinkage-enable JstfGSUBModList table,
from beginning of JstfPriority table (may be NULL)

Offset16 shrinkageDisableGSUB Offset to shrinkage-disable JstfGSUBModList table,
from beginning of JstfPriority table (may be NULL)

Offset16 shrinkageEnableGPOS Offset to shrinkage-enable JstfGPOSModList table,
from beginning of JstfPriority table (may be NULL)

Offset16 shrinkageDisableGPOS Offset to shrinkage-disable JstfGPOSModList table,
from beginning of JstfPriority table (may be NULL)

Offset16 shrinkageJstfMax Offset to shrinkage JstfMax table, from beginning of
JstfPriority table (may be NULL)

Offset16 extensionEnableGSUB Offset to extension-enable JstfGSUBModList table, from
beginning of JstfPriority table (may be NULL)

Offset16 extensionDisableGSUB Offset to extension-disable JstfGSUBModList table,
from beginning of JstfPriority table (may be NULL)

Offset16 extensionEnableGPOS Offset to extension-enable JstfGPOSModList table,
from beginning of JstfPriority table (may be NULL)

Offset16 extensionDisableGPOS Offset to extension-disable JstfGPOSModList table,
from beginning of JstfPriority table (may be NULL)

Offset16 extensionJstfMax Offset to extension JstfMax table, from beginning of
JstfPriority table (may be NULL)

Justification Modification List tables

The Justification Modification List tables (JstfGSUBModList and JstfGPOSModList) contain lists of indices into
the lookup lists of either the GSUB or GPOS tables. The client can enable or disable the lookups to justify text.
For example, to increase line length, the client might disable a GSUB ligature substitution.

302

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

302 ©	ISO/IEC	2019	–	All	rights	reserved
	

Each JstfModList table consists of a count of Lookups (LookupCount) and an array of lookup indices
(LookupIndex).

To justify a line of text, a text-processing client enables or disables the specified lookups in a JstfModList table,
reassembles the lookups in the LookupList order, and applies them to each glyph in the string one after
another.
NOTE If any JSTF suggestion at any priority level modifies a GSUB or GPOS lookup previously applied to the glyph

string, then the text-processing client must apply the JSTF suggestion to an unmodified version of the glyph
string.

Example 3 at the end of this clause shows JstfGSUBModList and JstfGPOSModList tables with data for
shrinking and extending text line lengths.

JstfGSUBModList table

Type Name Description

uint16 lookupCount Number of lookups for this modification

uint16 gsubLookupIndices[lookupCount] Array of Lookup indices into the GSUB Lookup
List, in increasing numerical order

JstfGPOSModList table

Type Name Description

uint16 lookupCount Number of lookups for this modification

uint16 gposLookupIndices[lookupCount] Array of Lookup indices into the GPOS Lookup
List, in increasing numerical order

Justification Maximum table

A Justification Maximum table (JstfMax) consists of an array of offsets to justification lookups (Lookup) and a
count of the defined lookups (Lookup). JstfMax lookups typically are located after the JstfMax table in the font
definition.

JstfMax tables have the same format as lookup tables and subtables in the GPOS table, but the JstfMax
lookups reside in the JSTF table and contain justification data only. The lookup data might specify a single
adjustment value for positioning all glyphs in the script, or it might specify more elaborate adjustments, such
as different values for different glyphs or special values for specific pairs of glyphs.
NOTE All GPOS lookup types except contextual positioning lookups may be defined in a JstfMax table.

JstfMax lookup values are defined in GPOS ValueRecords and may be specified for any advance or
placement position, whether horizontal or vertical. These values define the maximum shrinkage or extension
allowed per glyph. To justify text, a text-processing client may choose to adjust a glyph's positioning by any
amount from zero (0) to the specified maximum.

Example 4 at the end of this clause shows a JstfMax table. It defines a justification lookup to change the size
of the word space glyph to extend line lengths.

JstfMax table

Type Name Description

uint16 lookupCount Number of lookup Indices for this modification

Offset16 lookupOffsets[lookupCount] Array of offsets to GPOS-type lookup tables, from
beginning of JstfMax table, in design order

303

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 303
	

6.3.5.3 JSTF table examples

The rest of this clause describes examples of all the JSTF table formats. All the examples reflect unique
parameters described below, but the samples provide a useful reference for building tables specific to other
situations.

The examples have three columns showing hex data, source, and comments.

Example 1: JSTF header table and JstfScriptRecord

Example 1 demonstrates how a script is defined in the JSTF Header with a JstfScriptRecord that identifies the
script and references its JstfScript table.

Example 1

Hex Data Source Comments

 JSTFHeader
TheJSTFHeader

JSTFHeader table definition

00010000 0x00010000 major/minor version

0001 1 jstfScriptCount

 jstfScriptRecords[0]

74686169 'thai' jstfScriptTag

000C ThaiScript Offset to JstfScript table

Example 2: JstfScript table, ExtenderGlyph table, JstfLangSysRecord, and JstfLangSys table

Example 2 shows a JstfScript table for the Arabic script and the tables it references. The default JstfLangSys
table defines justification data to apply to the script in the absence of language-specific information. In the
example, the table lists two justification suggestions in priority order.

JstfScript also supplies language-specific justification data for the Farsi language. The JstfLangSysRecord
identifies the language and references its JstfLangSys table. The FarsiJstfLangSys lists one suggestion for
justifying Farsi text.

The ExtenderGlyph table in JstfScript lists the indices of all the extender glyphs used in the script.

Example 2

Hex Data Source Comments

 JstfScript
ArabicScript

JstfScript table definition

000C ArabicExtenders extenderGlyphOffset

0012 ArabicDefJstfLangSys Offset to default JstfLangSys table

0001 1 jstfLangSysCount

 jstfLangSysRecords[0]

50455220 'FAR ' jstfLangSysTag

0018 FarsiJstfLangSys jstfLangSysOffset

 ExtenderGlyph
ArabicExtenders

ExtenderGlyph table definition

0002 2 glyphCount

304

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

304 ©	ISO/IEC	2019	–	All	rights	reserved
	

01D3 TatweelGlyphID extenderGlyphs[0]

01D4 LongTatweelGlyphID extenderGlyphs[1]

 JstfLangSys
ArabicDefJstfLangSys

JstfLangSys table definition

0002 2 jstfPriorityCount

000A ArabicScriptJstfPriority1 jstfPriorityOffsets[0]

001E ArabicScriptJstfPriority2 jstfPriorityOffsets[1]

 JstfLangSys
FarsiJstfLangSys

JstfLangSys table definition

0001 1 jstfPriorityCount

002C FarsiLangJstfPriority1 jstfPriorityOffsets[0]

Example 3: JstfPriority table, JstfGSUBModList table, and JstfGPOSModList table

Example 3 shows the JstfPriority and JstfModList table definitions for two justification suggestions defined in
priority order. The first suggestion uses ligature substitution to shrink the lengths of text lines, and it extends
line lengths by replacing ligatures with their individual glyph components. Other lookup actions are not
recommended at this priority level and are set to NULL. The associated JstfModList tables enable and disable
three substitution lookups.

The second suggestion enables glyph kerning to reduce line lenths and disables glyph kerning to extend line
lengths. Each action uses three lookups. This suggestion also includes a JstfMax table to extend line lengths,
called WordSpaceExpandMax, which is described in Example 4.

Example 3

Hex Data Source Comments

 JstfPriority
USEnglishFirstJstfPriority

JstfPriority table definition

0028 EnableGSUBLookupsToShrink shrinkageEnableGSUB (offset to shrinkage-
enable JstfGSUBModList table)

0000 NULL shrinkageDisableGSUB

0000 NULL shrinkageEnableGPOS

0000 NULL shrinkageDisableGPOS

0000 NULL shrinkageJstfMax

0000 NULL eExtensionEnableGSUB

0038 DisableGSUBLookupsToExtend extensionDisableGSUB

0000 NULL extensionEnableGPOS

0000 NULL extensionDisableGPOS

0000 NULL extensionJstfMax

 JstfPriority
USEnglishSecondJstfPriority

JstfPriority table definition

0000 NULL shrinkageEnableGSUB

0000 NULL shrinkageDisableGSUB

305

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 305
	

0000 NULL shrinkageEnableGPOS

001C DisableGPOSLookupsToShrink shrinkageDisableGPOS

0000 NULL shrinkageJstfMax

0000 NULL extensionEnableGSUB

0000 NULL extensionDisableGSUB

002C EnableGPOSLookupsToExtend extensionEnableGPOS

0000 NULL extensionDisableGPOS

0000 NULL extensionJstfMax

 JstfGSUBModList
EnableGSUBLookupsToShrink

JstfGSUBModList table definition, enable
three ligature substitution lookups

0003 3 lookupCount

002E 46 gsubLookupIndices[0]

0035 53 gsubLookupIndices [1]

0063 99 gsubLookupIndices [2]

 JstfGPOSModList
DisableGPOSLookupsToShrink

JstfGPOSModList table definition, disable
three tight kerning lookups

0003 3 lookupCount

006C 108 gposLookupIndices[0]

006E 110 gposLookupIndices [1]

0070 112 gposLookupIndices [2]

 JstfGSUBModList
DisableGSUBLookupsToExtend

JstfGSUBModList table definition, disable
three ligature substitution lookups

0003 3 lookupCount

002E 46 gsubLookupIndices [0]

0035 53 gsubLookupIndices [1]

0063 99 gsubLookupIndices [2]

 JstfGPOSModList
EnableGPOSLookupsToExtend

JstfGPOSModList table definition enable
three tight kerning lookups

0003 3 lookupCount

006C 108 gposLookupIndices [0]

006E 110 gposLookupIndices [1]

0070 112 gposLookupIndices [2]

Example 4: JstfMax table

The JstfMax table in Example 4 defines a lookup to expand the advance width of the word space glyph and
extend line lengths. The lookup definition is identical to the SinglePos lookup type in the GPOS table although
it is enabled only when justifying text. The ValueRecord in the WordSpaceExpand lookup subtable specifies
an XAdvance adjustment of 360 units, which is the maximum value the font developer recommends for
acceptable text rendering. The text-processing client may implement the lookup using any value between zero
and the maximum.

306

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

306 ©	ISO/IEC	2019	–	All	rights	reserved
	

Example 4

Hex Data Source Comments

 JstfMax
WordSpaceExpandMax

JstfMax table definition

0001 1 lookupCount

0004 WordSpaceExpandLookup lookupOffsets[0] (offset to JSTF Lookup
table)

 Lookup
WordSpaceExpandLookup

Jstf Lookup table definition

0001 1 lookupType: SinglePos Lookup

0000 0x0000 lookupFlag

0001 1 subTableCount

0008 WordSpaceExpandSubtable subtableOffsets[0], SinglePos subtable

 SinglePosFormat1
WordSpaceExpandSubtable

SinglePos subtable definition

0001 1 posFormat

0008 WordSpaceCoverage Offset to Coverage table

0004 0x0004 valueFormat: XAdvance only

0168 360 value – XAdvance value in Jstf: this is a
max value, expand word space from zero to
this amount

 CoverageFormat1
WordSpaceCoverage

Coverage table definition

0001 1 coverageFormat

0001 1 glyphCount

0022 WordSpaceGlyphID glyphArray[0]

6.3.6 MATH – The mathematical typesetting table

6.3.6.1 MATH table overview

Mathematical formulas are complex text objects in which multiple elements with various metric, style or
positioning attributes are combined. In order for a math layout engine to support layout of mathematical
formulas, several types of font-specific information particular to the layout of formulas are required. The MATH
table provides this font-specific information necessary for math formula layout.

Note that this is not a complete specification of math layout. The MATH table provides font data required for
math layout, but detailed algorithms for use of the data are not specified. Different math-layout engine
implementations can use this data to produce different layout results in accordance with different purposes or
goals.

Layout of math formulas is quite different from regular text layout that is done using tables such as GSUB and
GPOS. Regular text layout mainly deals with a line of text, often formatted with a single font. In this situation,
actions such as contextual substitution or kerning can be done with access to the complete context of the line
of text, and the rules can be expressed in terms of known glyph sequences. Math layout is quite different from
this.

307

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 307
	

The general structure of math formulas is hierarchical, with formulas composed of smaller sub-formula
expressions, where each expression may be composed of even simpler expressions, and so on down to
individual strings – operator symbols, variable names and numbers.

Figure 6.38 – Example of a complex hierarchical math formula and the diagram showing the pieces
of metal type and spacing materials used in a traditional printing application

Likewise, the process of math formula layout is also recursive. Child components are formatted first and then
arranged to form their parent’s layout with this process repeated on every level starting from simplest blocks
up to the whole formula. Each sub-formula has its own component structure and rules for how to perform
layout. For example, a fraction expression consists of numerator and denominator sub-expressions, which will
be placed on top one another with a fraction rule separating them. An integral expression contains an integral
sign, optional upper- and lower- limit expressions, and a following sub-expression.

The simplest blocks within a formula typically contain strings. In isolation, each could be layed out by regular
text-layout processing using other tables such as GSUB and GPOS. Math layout goes beyond this. It deals
mainly with layout processing involved in composing these simple blocks together into a complex, hierarchical
formula. The data provided in the MATH table allows math-layout processing to be typographically aware, so
that presentation with high typographic quality can be achieved.

A math layout engine works with boxes representing individual formula components as units of layout. During
the layout process, individual boxes can be arranged relative to each other- they can be stretched depending
on the sizes of other boxes they interact with; or they can use different glyph variants, based on the box size
or position in the formula. The MATH table provides data that informs how these operations are done. Each
box has an associated font that supplies information comprising typographic requirements for that box. These
may be requirements for that box alone, based on the results of layout operations internal to the box; or they
may be requirements on how other boxes interact with that box in layout.

By providing information about a font generally or about specific glyphs in the font, the MATH table can enable
math-layout engines to produce layout that is appropriate for the font design, and that realizes the font’s full
typographic potential by using stylistic and stretching glyph variants provided by the font.

6.3.6.2 MATH – Table organization and structure

6.3.6.2.1 Shared Formats: MathValueRecord, Coverage

MathValueRecord

MATH subtables use math value records to describe valuesthat place or adjust elements of math formulas.
These values are expressed in font design units.

308

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

308 ©	ISO/IEC	2019	–	All	rights	reserved
	

A MathValueRecord may also specify an offset to a device table which provides corrections to a given value at
particular display resolutions. The device table format is described in subclause 6.2. The device table can
provide multiple correction values to be used for several different PPEM sizes. Different formats for
representing the correction values are provided to allow for efficient representation, according to the size
requirements of the correction values. When used in MathValueRecords, format 1 is recommended.

When designing a MATH table, device tables may be specified for many values used for positioning elements
of a formula. This creates the potential that many device corrections may accumulate in a given layout.
However, such accumulation would result in metrics for formula elements that are significantly different from
scaled-adjusted dimensions of the same elements rendered on a high-resolution device. It would produce
inconsistencies between screen and print renditions, and could also lead to clipping. For these reasons,
accumulation of many corrections is undesirable.

While a font may specify device corrections, use of these corrections is under the control of a given layout
engine implementtion. To maintain consistency across devices with different resolutions, an engine may limit
the number of device corrections that are accumulated, or may ignore them altogether. A layout engine can
also supply its own corrections where none are indicated in the font. Since the accumulated size of corrections
should be kept to a minimum it is recommended that device tables referenced by a MathValueRecord use
format 1 for representation of correction values. This format allows corrections of at most -2to +1 pixels. The
recommended values to use in MathValueRecords are -1, 0, or 1.

MathValueRecord

Type Name Description

int16 value The X or Y value in design units

Offset16 deviceTableOffset Offset to the device table – from the beginning of parent
table. May be NULL. Suggested format for device table is 1.

Coverage tables

MATH subtables make use of Coverage tables, defined in subclause 6.2, to specify sets of glyphs. All
Coverage table formats may be used in the MATH table.

6.3.6.2.2 MATH Header

The MATH table begins with a header that consists of a version number for the table
(majorVersion/minorVersion), which is currently set to 1.0, and specified offsets to the following tables that
store information on positioning of math formula elements:

 MathConstants table stores font parameters to be used in typesetting of each supported mathematical
function, such as a fraction or a radical.

 MathGlyphInfo table supplies positioning information that is defined on a per-glyph basis.

 MathVariants table contains information to be used in constructing glyph variants of different height or
width, either by finding a pre-defined glyph with desired measurements in the font, or by assembling
the required shape from pieces found in the glyph set.

Math Header

Type Name Description

uint16 majorVersion Major version of the MATH table, = 1

uint16 minorVersion Minor version of the MATH table, = 0

Offset16 mathConstantsOffset Offset to MathConstants table, from the beginning of
MATH table.

Offset16 mathGlyphInfoOffset Offset to MathGlyphInfo table, from the beginning of
MATH table.

Offset16 mathVariantsOffset Offset to MathVariants table, from the beginning of MATH
table.

309

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 309
	

6.3.6.2.3 MathConstants Table

The MathConstants table defines a number of constants required to properly position elements of
mathematical formulas. These constants belong to several groups of semantically-related values, such as
values for positioning of accents, positioning of superscripts and subscripts, and positioning of elements of
fractions. The table also contains general-use constants that may affect all parts of the formula, such as axis
height and math leading. Note that most of the constants deal with aspects of vertical positioning.

In most cases, values in the MathConstants table are assumed to be positive. For example, for descenders
and shift-down values a positive constant signifies movement in a downwards direction. Most values in the
MathConstants table are represented by a MathValueRecord, which allows the font designer to supply device
corrections to those values when necessary.

For values that pertain to layout interactions between a base and dependent elements (e.g. superscripts or
limits), the specific value used is taken from the font associated with the base, and the size of the value is
relative to the size of the base.

The following naming convention are used for fields in the MathConstants table:

 Height – Specifies a distance from the main baseline.

 Kern – Represents a fixed amount of empty space to be introduced.

 Gap – Represents an amount of empty space that may need to be increased to meet certain criteria.

 Drop and Rise – Specifies the relationship between measurements of two elements to be positioned
relative to each other (but not necessarily in a stack-like manner) that must meet certain criteria. For a
Drop, one of the positioned elements has to be moved down to satisfy those criteria; for a Rise, the
movement is upwards.

 Shift – Defines a vertical shift applied to an element sitting on a baseline.

 Dist – Defines a distance between baselines of two elements.

MathConstants Table

Type Name Description

int16 scriptPercentScaleDown Percentage of scaling down for level 1
superscripts and subscripts. Suggested
value: 80%.

int16 scriptScriptPercentScaleDown Percentage of scaling down for level 2
(scriptScript) superscripts and
subscripts. Suggested value: 60%.

uint16 delimitedSubFormulaMinHeight Minimum height required for a delimited
expression (contained within
parentheses, etc.) to be treated as a
sub-formula. Suggested value: normal
line height × 1.5.

uint16 displayOperatorMinHeight Minimum height of n-ary operators (such
as integral and summation) for formulas
in display mode (that is, appearing as
standalone page elements, not
embedded inline within text).

MathValueRecord mathLeading White space to be left between math
formulas to ensure proper line spacing.
For example, for applications that treat
line gap as a part of line ascender,
formulas with ink going above
(os2.sTypoAscender +
os2.sTypoLineGap – MathLeading) or
with ink going below

310

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

310 ©	ISO/IEC	2019	–	All	rights	reserved
	

os2.sTypoDescender will result in
increasing line height.

MathValueRecord axisHeight Axis height of the font.

In math typesetting, the term axis refers
to a horizontal reference line used for
positioning elements in a formula. The
math axis is similar to but distinct from
the baseline for regular text layout. For
example, in a simple equation, a minus
symbol or fraction rule would be on the
axis, but a string for a variable name
would be set on a baseline that is offset
from the axis. The axisHeight value
determines the amount of that offset.

MathValueRecord accentBaseHeight Maximum (ink) height of accent base
that does not require raising the
accents. Suggested: x-height of the font
(os2.sxHeight) plus any possible
overshots.

MathValueRecord flattenedAccentBaseHeight Maximum (ink) height of accent base
that does not require flattening the
accents. Suggested: cap height of the
font (os2.sCapHeight).

MathValueRecord subscriptShiftDown The standard shift down applied to
subscript elements. Positive for moving
in the downward direction. Suggested:
os2.ySubscriptYOffset.

MathValueRecord subscriptTopMax Maximum allowed height of the (ink) top
of subscripts that does not require
moving subscripts further down.
Suggested: 4/5 x- height.

MathValueRecord subscriptBaselineDropMin Minimum allowed drop of the baseline of
subscripts relative to the (ink) bottom of
the base. Checked for bases that are
treated as a box or extended shape.
Positive for subscript baseline dropped
below the base bottom.

MathValueRecord superscriptShiftUp Standard shift up applied to superscript
elements. Suggested:
os2.ySuperscriptYOffset.

MathValueRecord superscriptShiftUpCramped Standard shift of superscripts relative to
the base, in cramped style.

MathValueRecord superscriptBottomMin Minimum allowed height of the (ink)
bottom of superscripts that does not
require moving subscripts further up.
Suggested: ¼ x-height.

MathValueRecord superscriptBaselineDropMax Maximum allowed drop of the baseline
of superscripts relative to the (ink) top of
the base. Checked for bases that are
treated as a box or extended shape.
Positive for superscript baseline below
the base top.

311

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 311
	

MathValueRecord subSuperscriptGapMin Minimum gap between the superscript
and subscript ink. Suggested: 4 ×
default rule thickness.

MathValueRecord superscriptBottomMaxWith
Subscript

The maximum level to which the (ink)

bottom of superscript can be pushed to

increase the gap between superscript

and subscript, before subscript starts

being moved down.

Suggested: 4/5 x-height.

MathValueRecord spaceAfterScript Extra white space to be added after
each subscript and superscript.
Suggested: 0.5 pt for a 12 pt font.

MathValueRecord upperLimitGapMin Minimum gap between the (ink) bottom
of the upper limit, and the (ink) top of the
base operator.

MathValueRecord upperLimitBaselineRiseMin Minimum distance between baseline of
upper limit and (ink) top of the base
operator.

MathValueRecord lowerLimitGapMin Minimum gap between (ink) top of the
lower limit, and (ink) bottom of the base
operator.

MathValueRecord lowerLimitBaselineDropMin Minimum distance between baseline of
the lower limit and (ink) bottom of the
base operator.

MathValueRecord stackTopShiftUp Standard shift up applied to the top
element of a stack.

MathValueRecord stackTopDisplayStyleShiftUp Standard shift up applied to the top
element of a stack in display style.

MathValueRecord stackBottomShiftDown Standard shift down applied to the
bottom element of a stack. Positive for
moving in the downward direction.

MathValueRecord stackBottomDisplayStyleShiftDown Standard shift down applied to the
bottom element of a stack in display
style. Positive for moving in the
downward direction.

MathValueRecord stackGapMin Minimum gap between (ink) bottom of
the top element of a stack, and the (ink)
top of the bottom element.
Suggested: 3 × default rule thickness.

MathValueRecord stackDisplayStyleGapMin Minimum gap between (ink) bottom of
the top element of a stack, and the (ink)
top of the bottom element in display
style. Suggested: 7 ×
default rule thickness.

MathValueRecord stretchStackTopShiftUp Standard shift up applied to the top
element of the stretch stack.

312

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

312 ©	ISO/IEC	2019	–	All	rights	reserved
	

MathValueRecord stretchStackBottomShiftDown Standard shift down applied to the
bottom element of the stretch stack.
Positive for moving in the downward
direction.

MathValueRecord stretchStackGapAboveMin Minimum gap between the ink of the
stretched element, and the (ink) bottom
of the element above. Suggested: same
value as upperLimitGapMin.

MathValueRecord stretchStackGapBelowMin Minimum gap between the ink of the
stretched element, and the (ink) top of
the element below. Suggested: same
value as lowerLimitGapMin.

MathValueRecord fractionNumeratorShiftUp Standard shift up applied to the
numerator.

MathValueRecord fractionNumeratorDisplayStyle
ShiftUp

Standard shift up applied to the
numerator in display style. Suggested:
same value as
stackTopDisplayStyleShiftUp.

MathValueRecord fractionDenominatorShiftDown Standard shift down applied to the
denominator. Positive for moving in the
downward direction.

MathValueRecord fractionDenominatorDisplay
StyleShiftDown

Standard shift down applied to the
denominator in display style. Positive for
moving in the downward direction.
Suggested: same value as
stackBottomDisplayStyleShiftDown.

MathValueRecord fractionNumeratorGapMin Minimum tolerated gap between the
(ink) bottom of the numerator and the
ink of the fraction bar. Suggested:
default rule thickness.

MathValueRecord fractionNumDisplayStyle
GapMin

Minimum tolerated gap between the
(ink) bottom of the numerator and the
ink of the fraction bar in display style.
Suggested: 3 × default rule thickness.

MathValueRecord fractionRuleThickness Thickness of the fraction bar.
Suggested: default rule thickness.

MathValueRecord fractionDenominatorGapMin Minimum tolerated gap between the
(ink) top of the denominator and the ink
of the fraction bar. Suggested:
default rule thickness.

MathValueRecord fractionDenomDisplayStyleGap
Min

Minimum tolerated gap between the
(ink) top of the denominator and the ink
of the fraction bar in display style.
Suggested: 3 × default rule thickness.

MathValueRecord skewedFractionHorizontalGap Horizontal distance between the top and
bottom elements of a skewed fraction.

MathValueRecord skewedFractionVerticalGap Vertical distance between the ink of the
top and bottom elements of a skewed
fraction.

313

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 313
	

MathValueRecord overbarVerticalGap Distance between the overbar and the
(ink) top of he base. Suggested: 3 ×
default rule thickness.

MathValueRecord overbarRuleThickness Thickness of overbar. Suggested:
default rule thickness.

MathValueRecord overbarExtraAscender Extra white space reserved above the
overbar. Suggested:
default rule thickness.

MathValueRecord underbarVerticalGap Distance between underbar and (ink)
bottom of the base. Suggested: 3 ×
default rule thickness.

MathValueRecord underbarRuleThickness Thickness of underbar. Suggested:
default rule thickness.

MathValueRecord underbarExtraDescender Extra white space reserved below the
underbar. Always positive. Suggested:
default rule thickness.

MathValueRecord radicalVerticalGap Space between the (ink) top of the
expression and the bar over it.
Suggested: 1¼ default rule thickness.

MathValueRecord radicalDisplayStyleVerticalGap Space between the (ink) top of the
expression and the bar over it.
Suggested: default rule thickness + ¼ x-
height.

MathValueRecord radicalRuleThickness Thickness of the radical rule. This is the
thickness of the rule in designed or
constructed radical signs. Suggested:
default rule thickness.

MathValueRecord radicalExtraAscender Extra white space reserved above the
radical. Suggested: same value as
radicalRuleThickness.

MathValueRecord radicalKernBeforeDegree Extra horizontal kern before the degree
of a radical, if such is present.

MathValueRecord radicalKernAfterDegree Negative kern after the degree of a
radical, if such is present.
Suggested: −10/18 of em.

int16 radicalDegreeBottomRaise
Percent

Height of the bottom of the radical
degree, if such is present, in proportion
to the ascender of the radical sign.
Suggested: 60%.

6.3.6.2.4 MathGlyphInfo Table

The MathGlyphInfo table contains positioning information that is defined on per-glyph basis. The table
consists of the following parts:

 A MathItalicsCorrectionInfo table that contains information on italics correction values.

 A MathTopAccentAttachment table that contains horizontal positions for attaching mathematical
accents.

 A Extended Shape coverage table. The glyphs covered by this table are to be considered extended
shapes.

314

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

314 ©	ISO/IEC	2019	–	All	rights	reserved
	

 A MathKernInfo table that provides per-glyph information for mathematical kerning.

MathGlyphInfo Table

Type Name Description

Offset16 mathItalicsCorrectionInfoOffset Offset to MathItalicsCorrectionInfo table, from
the beginning of the MathGlyphInfo table.

Offset16 mathTopAccentAttachmentOffset Offset to MathTopAccentAttachment table,
from the beginning of the MathGlyphInfo table.

Offset16 extendedShapeCoverageOffset Offset to ExtendedShapes coverage table,
from the beginning of the MathGlyphInfo table.
When the glyph to the left or right of a box is
an extended shape variant, the (ink) box
should be used for vertical positioning
purposes, not the default position defined by
values in MathConstants table. May be NULL.

Offset16 mathKernInfoOffset Offset to MathKernInfo table, from the
beginning of MathGlyphInfo table.

6.3.6.2.5 MathItalicsCorrectonInfo Table

The MathItalicsCorrectionInfo table contains italics correction values for slanted glyphs used in math layout.
The top portion of slanted glyphs may protrude beyond the glyph’s advance width. This can result in collision
with other interacting elements, or an appearance in the placement of other interacting elements that is
unpleasing unless some accommodation is made for the protrustion. The MathItalicsCorrectionInfo table
provides correction values to accommodate for such protrusion.

The table consists of the following parts:

 Coverage of glyphs for which the italics correction values are provided. It is assumed to be zero for all
other glyphs.

 Count of covered glyphs.

 Array of italic correction values for each covered glyph, in order of coverage. The italics correction
value can be used as an adjustment for positioning of interacting elements to make allowance for
protrusion to the right of the top part of the glyph. For example, taller letters tend to have larger italics
correction, and a V will probably have larger italics correction than an L.

Italics correction can be used in the following situations:

 When a run of slanted characters is followed by a straight character (such as an operator or a
delimiter), the italics correction of the last glyph is added to its advance width.

 When positioning limits on an N-ary operator (e.g., integral sign), the horizontal position of the upper
limit is moved to the right by ½ of the italics correction, while the position of the lower limit is moved to
the left by the same distance.

 When positioning superscripts and subscripts, their default horizontal positions are also different by
the amount of the italics correction of the preceding glyph.

MathItalicsCorrectionInfo Table

Type Name Description

Offset16 italicCorrectionCoverageOffset Offset to Coverage table, from the
beginning of MathItalicsCorrectionInfo
table.

315

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 315
	

uint16 italicsCorrectionCount Number of italics correction values.
Should coincide with the number of
covered glyphs.

MathValueRecord italicsCorrection
[italicsCorrectionCount]

Array of MathValueRecords defining
italics correction values for each
covered glyph.

6.3.6.2.6 MathTopAccentAttachment Table

The MathTopAccentAttachment table contains information on horizontal positioning of top math accents. The
table consists of the following parts:

 Coverage of glyphs for which information on horizontal positioning of math accents is provided. To
position accents over any other glyph, its geometrical center (with respect to advance width) can be
used.

 Count of covered glyphs.

 Array of top accent attachment points for each covered glyph, in order of coverage. These attachment
points are to be used for finding horizontal positions of accents over characters. It is done by aligning
the attachment point of the base glyph with the attachment point of the accent. Note that this is very
similar to mark-to-base attachment, but here alignment only happens in the horizontal direction, and
the vertical positions of accents are determined by different means.

MathTopAccentAttachment Table

Type Name Description

Offset16 topAccentCoverageOffset Offset to Coverage table, from the
beginning of MathTopAccentAttachment
table.

uint16 topAccentAttachmentCount Number of top accent attachment point
values. Must be the same as the number
of glyph IDs referenced in the Coverage
table.

MathValueRecord topAccentAttachment
[topAccentAttachmentCount]

Array of MathValueRecords defining top
accent attachment points for each
covered glyph.

6.3.6.2.7 ExtendedShapeCoverage Table

The glyphs covered by this table are to be considered extended shapes. These glyphs are variants extended
in the vertical direction, e.g., to match height of another part of the formula. Because their dimensions may be
very large in comparison with normal glyphs in the glyph set, the standard positioning algorithms will not
produce the best results when applied to them. In the vertical direction, other formula elements will be
positioned not relative to those glyphs, but instead to the ink box of the subexpression containing them.

For example, consider a fraction enclosed in parentheses with a superscript. Notice how the superscripts on
‘z’ and ‘Z’ are aligned vertically, although they have different heights. If the right parenthesis was not
considered an extended shape, the superscript would be put in position aligned with any other superscript on
the line, like this:

2 2 2x z Z
y

Because this is undesirable, the right parenthesis in this case should be considered an extended shape,
resulting in superscript positioned relative to the whole subexpression:

316

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

316 ©	ISO/IEC	2019	–	All	rights	reserved
	

2
2 2x z Z

y

6.3.6.2.8 MathKernInfo Table

The MathKernInfo table provides mathematical kerning values used for kerning of subscript and superscript
glyphs relative to a base glyph. Its purpose is to improve spacing in situations such as fω or AV .

Mathematical kerning is height dependent; that is, different kerning amounts can be specified for different
heights within a glyph's vertical extent. For any given glyph, different values can be specified for four corner
positions — top-right, to-left, etc. — allowing for different kerning adjuments according to whether the glyph
occurs as a subscript, a superscript, a base being kerned with a subscript, or a base being kerned with a
superscript.

The kerning algorithm for subscripts and superscripts is as follows:

 Calculate the vertical positions of subscripts and superscripts using the MathConstants table.

 Set the default horizontal position for the subscript immediately after the base glyph.

 Set the default horizontal position for a superscript after the base, applying a shift for italics correction
if indicated for the base glyph in the MathItalicsCorrectionInfo table.

 Calculate a superscript kerning value as follows:

 Evaluate two correction heights (illustrated in the figure below):

 At the bottom of the superscript-glyph bounding box. (The corresponding height for the base
glyph is the distance from the base-glyph baseline to the bottom of the superscript bounding
box.)

 At the top of the base-glyph bounding box. (The corresponding height for the superscript
glyph is the distance from the superscript baseline to the top of the base-glyph bounding box.)

 For each correction height, add the top-right kerning value for the base glyph to the bottom-left
kerning value for the superscript glyph.

 Take the minimum of these two sums: kern the base and superscript by that amount.

 Calculate a subscript kerning value as follows:

 Evaluate two correction heights:

 At the top of the subscript-glyph bounding box. (The corresponding height for the base glyph
is the distance from the base-glyph baseline to the top of the subscript bounding box.)

 At the bottom of the base-glyph bounding box. (The corresponding height for the subscript
glyph is the distance from the subscript baseline to the bottom of the base-glyph bounding
box.)

 For each correction height, add the bottom-right kerning value for the base glyph to the top-left
kerning value for the subscript glyph.

 Take the minimum of these two sums: kern the base and subscript by that amount.
NOTE If a base expression, subscript expression or superscript expression is a box, a math-layout engine may use

kerning values of zero for each corner of the box, or may calculate height-dependent kerning amounts by some
means

The following figure illustrates the correction heights for a base and superscript:

317

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 317
	

Fig. 6.39 Example of horizontal and vertical kerning adjustments for
superscript positioning

The MathKernInfo table consists of the following fields:

 A Coverage table of glyphs for which mathematical kerning information is provided. Mathematical
kerning amounts are assumed to be zero for all other glyphs.

 Count of MathKernInfoRecords.

 Array of MathKernInfoRecords for each covered glyph, the order of glyphs in the Coverage table.

MathKernInfo Table

Type Name Description

Offset16 mathKernCoverageOffset Offset to Coverage table, from the
beginning of the MathKernInfo table.

uint16 mathKernCount Number of mathKernInfoRecords. Must
be the same as the number of glyph IDs
referenced in the Coverage table.

MathKernInfoRecord mathKernInfoRecords
[mathKernCount]

Array of MathKernInfoRecords, one for
each covered glyph.

MathKernInfoRecord
Each MathKernInfoRecord points to up to four kern tables for each of the corners around the glyph. If no kern
table is provided for a corner, a kerning amount of zero is assumed.

MathKernInfoRecord

Type Name Description

Offset16 topRightMathKernOffset Offset to MathKern table for top right corner, from
the beginning of MathKernInfo table. May be NULL.

Offset16 topLeftMathKernOffset Offset to MathKern table for the top left corner, from
the beginning of MathKernInfo table. May be NULL.

Offset16 bottomRightMathKernOffset Offset to MathKern table for bottom right corner,
from the beginning of MathKernInfo table. May be
NULL.

fω Correction Height for Superscript

Italic Correction

Correction Height for Base

Base Character Baseline

Superscript Baseline

318

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

318 ©	ISO/IEC	2019	–	All	rights	reserved
	

Offset16 bottomLeftMathKernOffset Offset to MathKern table for bottom left corner, from
the beginning of MathKernInfo table. May be NULL.

6.3.6.2.9 MathKern Table

The MathKern table provides kerning amounts for different heights in a glyph's vertical extent. An array of
kerning values is provided, each of which applies to a height range. A corresponding array of heights indicate
the transition points between consecutive ranges.

Correction heights for each glyph are relative to the glyph baseline, with positive height values above the
baseline, and negative height values below the baseline. The correctionHeights array is sorted in increasing
order, from lowest to highest.

The kerning value corresponding to a particular height is determined by finding two consecutive entries in the
correctionHeight array such that the given height is greater than or equal to the first entry and less than the
second entry. The index of the second entry is used to look up a kerning value in the kernValues array. If the
given height is less than the first entry in the correctionHeights array, the first kerning value (index 0) is used.
For a height that is greater than or equal to the last entry in the correctionHeights array, the last entry is used.

MathKern Table

Type Name Description

uint16 heightCount Number of heights at which the kern
value changes.

MathValueRecord correctionHeight[heightCount] Array of correction heights, in design
units, sorted from lowest to highest.

MathValueRecord kernValue[heightCount+1] Array of kern values for height ranges.

Negative values are used to move
glyphs closer to each other.

6.3.6.2.10 MathVariants Table

The MathVariants table solves the following problem: given a particular default glyph shape and a certain
width or height, find a variant shape glyph (or construct created by putting several glyph together) that has the
required measurement. This functionality is needed for growing the parentheses to match the height of the
expression within, growing the radical sign to match the height of the expression under the radical, stretching
accents like tilde when they are put over several characters, for stretching arrows, horizontal curly braces, and
so forth.

The MathVariants table consists of the following fields:

 Count and coverage of glyphs that can grow in the vertical direction.

 Count and coverage of glyphs that can grow in the horizontal direction.

 The minConnectorOverlap defines by how much two glyphs need to overlap with each other when
used to construct a larger shape. Each glyph to be used as a building block in constructing extended
shapes will have a straight part at either or both ends. This connector part is used to connect that
glyph to other glyphs in the assembly. These connectors need to overlap to compensate for rounding
errors and hinting corrections at a lower resolution. The minConnectorOverlap value tells how much
overlap is necessary for this particular font.

 Two arrays of offsets to MathGlyphConstruction tables: one array for glyphs that grow in the vertical
direction, and the other array for glyphs that grow in the horizontal direction. The arrays must be
arranged in coverage order and have specified sizes.

319

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 319
	

MathVariants Table

Type Name Description

uint16 minConnectorOverlap Minimum overlap of connecting glyphs during
glyph construction, in design units.

Offset16 vertGlyphCoverageOffset Offset to Coverage table, from the beginning of
MathVariants table.

Offset16 horizGlyphCoverageOffset Offset to Coverage table, from the beginning of
MathVariants table.

uint16 vertGlyphCount Number of glyphs for which information is
provided for vertically growing variants. Must be
the same as the number of glyph IDs
referenced in the vertical Coverage table.

uint16 horizGlyphCount Number of glyphs for which information is
provided for horizontally growing variants. Must
be the same as the number of glyph IDs
referenced in the horizontal Coverage table.

Offset16 vertGlyphConstructionOffsets
[vertGlyphCount]

Array of offsets to MathGlyphConstruction
tables, from the beginning of the MathVariants
table, for shapes growing in the vertical
direction.

Offset16 horizGlyphConstructionOffsets
[horizGlyphCount]

Array of offsets to MathGlyphConstruction
tables, from the beginning of the MathVariants
table, for shapes growing in the horizontal
direction.

6.3.6.2.11 MathGlyphConstruction Table

The MathGlyphConstruction table provides information on finding or assembling extended variants for one
particular glyph. It can be used for shapes that grow in either horizontal or vertical directions.

The first entry is the offset to the GlyphAssembly table that specifies how the shape for this glyph can be
assembled from parts found in the glyph set of the font. If no such assembly exists, this offset will be set to
NULL.

The MathGlyphConstruction table also contains the count and array of ready-made glyph variants for the
specified glyph. Each variant consists of the glyph index and this glyph’s measurement in the direction of
extension (vertical or horizontal).

Note that it is quite possible that both the GlyphAssembly table and some variants are defined for a particular
glyph. For example, the font may provide several variants of curly braces with different sizes, and also a
general mechanism for constructing larger versions of curly braces by stacking parts found in the glyph set.
First, an attempt is made to find glyph among provided variants. If the required size is larger than any of the
glyph variants provided, however, then the general mechanism can be employed to typeset the curly braces
as a glyph assembly.

MathGlyphConstruction Table

Type Name Description

Offset16 glyphAssemblyOffset Offset to the GlyphAssembly table
for this shape, from the beginning of
the MathGlyphConstruction table.
May be NULL.

320

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

320 ©	ISO/IEC	2019	–	All	rights	reserved
	

uint16 variantCount Count of glyph growing variants for
this glyph.

MathGlyphVariantRecord mathGlyphVariantRecords
[variantCount]

MathGlyphVariantRecords for
alternative variants of the glyphs.

MathGlyphVariantRecord

Type Name Description

uint16 variantGlyph Glyph ID for the variant.

uint16 advanceMeasurement Advance width/height, in design units, of the
variant, in the direction of requested glyph
extension.

6.3.6.2.12 GlyphAssembly Table

The GlyphAssembly table specifies how the shape for a particular glyph can be constructed from parts found
in the glyph set. The table defines the italics correction of the resulting assembly, and a number of parts that
have to be put together to form the required shape. Some glyph parts can be designated as extenders, which
can be repeated as needed to obtain a target size.

GlyphAssembly Table

Type Name Description

MathValueRecord italicsCorrection Italics correction of this GlyphAssembly.
Should not depend on the assembly size.

uint16 partCount Number of parts in this assembly.

GlyphPartRecord partRecords[partCount] Array of GlyphPartRecords, from left to right
(for assemblies that extend horizontally) or
bottom to top (for assemblies that extend
vertically).

The result of the assembly process is an array of glyphs with an offset specified for each of those glyphs.
When drawn consecutively at those offsets, the glyphs should combine correctly and produce the required
shape.

The offsets in the direction of growth (advance offsets), as well as the number of extender parts, are
determined based on the size requirement for the resulting assembly.

Note that the glyphs comprising the assembly should be designed so that they align properly in the direction
that is orthogonal to the direction of growth.

Thus, a GlyphPartRecord consists of the following fields:

 Glyph ID for the part.

 Lengths of the connectors on each end of the glyph. The connectors are straight parts of the glyph
that can be used to link it with the next or previous part. The connectors of neighboring parts can
overlap by varying amounts, providing flexibility in how these glyphs can be put together. However,
the overlap should not be less than the minConnectorOverlap value defined in the MathVariants
tables, and it should not exceed the specified connector length for that end of the glyph. If the part
does not have a connector on one of its ends, the corresponding connector length should be set to
zero.

 The full advance of the part. It is also used to determine the measurement of the result by using the
following formula:

Size of Assembly = Offset of the Last Part + Full Advance of the Last Part

321

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 321
	

 PartFlags is the last field. It identifies certain parts as extenders: those parts that can be repeated
(that is, multiple instances of them can be used in place of one) or skipped altogether. Usually the
extenders are vertical or horizontal bars of the appropriate thickness, aligned with the rest of the
assembly.

To ensure that the width/height is distributed equally and the symmetry of the shape is preserved, following
steps can be used by the math-layout engine.

1. Assemble all parts with all extenders removed and with connectionsoverlapping by the maximum
amount. This gives the smallest possible result.

2. Determine how much extra width/height can be obtained from all existing connections between
neighboring parts by using minimal overlaps. If that is enough to achieve the size goal, extend each
connection equally by changing overlaps of connectors to finish the job.

3. If all connections have been extended to the minimum overlap and further growth is needed, add one
of each extender, and repeat the process from the first step.

Note that for assemblies growing in the vertical direction, the distribution of height between ascent and
descent is not defined. The math-layout engine is responsible for positioning the resulting assembly relative to
the baseline.

GlyphPartRecord Table

Type Name Description

uint16 glyphID Glyph ID for the part.

uint16 startConnectorLength Advance width / height, in design units, of the straight bar
connector material at the start of the glyph in the direction
of the extension (the left end for horizontal extension, the
bottom end for vertical extension).

uint16 endConnectorLength Advance width / height, in design units, of the straight bar
connector material at the end of the glyph in the direction
of the extension (the right end for horizontal extension, the
top end for vertical extension).

uint16 fullAdvance Full advance width/height for this part, in the direction of
the extension, in design units.

uint16 partFlags Part qualifiers.

PartFlags enumeration currently uses only one bit:

0x0001 fExtender If set, the part can be skipped or

repeated.

0xFFFE Reserved.

6.3.6.3 OFF layout tags used with the MATH Table

The following OFF layout tags can be used by math-layout engine to access a particular set of glyph variants.
For detailed descriptions of the feature tags see subclause 6.4.3.2.

OFF layout tags for math processing

Tag Description

math Script tag to be used for features in math layout. The only language system
supported with this tag is the default language system.

322

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

322 ©	ISO/IEC	2019	–	All	rights	reserved
	

ssty Script Style

This feature provides glyph variants adjusted to be more suitable for use in
subscripts and superscripts.

These script style forms should not be scaled or moved in the font; scaling
and moving them is done by the math-layout engine. Instead, the ssty
feature should provide glyph forms that result in shapes that look good as
superscripts and subscripts when scaled and positioned by the math
engine. When designing the script forms, the font developer may assume
that the scriptPercentScaleDown and scriptScriptPercentScaleDown values
in the MathConstants table will be scaling factors applied to the size of the
alternate glyphs by the math engine.

This feature can have a parameter indicating the script level: 1 for simple
subscripts and superscripts, 2 for second level subscripts and superscripts
(that is, scripts on scripts), and so on. (Currently, only the first two alternates
are used).

For glyphs that are not covered by this feature, the original glyph is used in
subscripts and superscripts.

Recommended format: Alternate Substitution table (Single Substitution if
there are no second level forms). There should be no context.

flac Flattened Accents over Capitals

This feature provides flattened forms of accents to be used over high-rise
bases such as capitals.

This feature should only change the shape of the accent and should not
move it in the vertical or horizontal direction. Moving of the accents is done
by the math-layout engine.

Accents are flattened by the math engine if their base is higher than
theflattenedAccentBaseHeight value in the MathConstants table.

Recommended format: Single Substitution table. There should be no
context.

dtls Dotless Forms

This feature provides dotless forms for Math Alphanumeric characters, such
as U+1D422 MATHEMATICAL BOLD SMALL I, U+1D423
MATHEMATICAL BOLD SMALL J, U+1D456 U+MATHEMATICAL ITALIC
SMALL I, U+1D457 MATHEMATICAL ITALIC SMALL J, and so on.

The dotless forms are to be used as base forms for placing mathematical
accents over them.

Recommended format: Single Substitution table. There should be no
context.

6.4 Layout tag registry

OFF Layout tags are 4-byte character strings that identify the scripts, language systems, features and
baselines in a OFF Layout font. The registry establishes conventions for naming and using these tags.
Registered tags have a specific meaning and convey precise information to developers and text-processing

323

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 323
	

clients of OFF Layout. Font developers are encouraged to use registered tags to assure compatibility and
ease of use across fonts, applications, and operating systems. Additional tags can be added to the tag registry
when necessary.

6.4.1 Scripts tags

Script tags generally correspond to a Unicode script. However, the associations between them may not
always be one-to-one, and the OFF tags are not guaranteed to be the same as Unicode Script property-value
aliases or ISO 15924 script IDs. Since the development of OFF (and the prior history of OpenType) script tags
predates the ISO 15924 or Unicode Script property, the rules for script tags defined in this document may not
always be the same as rules for ISO 15924 script IDs. The OFF script tags can also correlate with a particular
OFF layout implementation, with the result that more than one script tag may be registered for a given
Unicode script (e.g. ‘deva’ and ‘dev2’).

All tags are 4-byte character strings composed of a limited set of ASCII characters in the 0x20-0x7E range. A
script tag can consist of four or fewer lowercase letters. If a script tag consists less than four lowercase letters,
the letters are followed by the requisite number of spaces (0x20), each consisting of a single byte.

Use and processing of script tags in Script Records is described in the "Script list table and Script record"
section of subclause 6.2.4 (Scripts and Languages).

Script Script Tag

Adlam 'adlm'

Ahom 'ahom'

Anatolian Hieroglyphs 'hluw'

Arabic 'arab'

Armenian 'armn'

Avestan 'avst'

Balinese 'bali'

Bamum 'bamu'

Bassa Vah 'bass'

Batak 'batk'

Bengali 'beng'

Bengali v.2 'bng2'

Bhaiksuki 'bhks'

Bopomofo 'bopo'

Brahmi 'brah'

Braille 'brai'

Buginese 'bugi'

Buhid 'buhd'

Byzantine Music 'byzm'

Canadian Syllabics 'cans'

Carian 'cari'

Caucasian Albanian 'aghb'

Chakma 'cakm'

Cham 'cham'

324

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

324 ©	ISO/IEC	2019	–	All	rights	reserved
	

Cherokee 'cher'

CJK Ideographic 'hani'

Coptic 'copt'

Cypriot Syllabary 'cprt'

Cyrillic 'cyrl'

Default 'DFLT'

Deseret 'dsrt'

Devanagari 'deva'

Devanagari v.2 'dev2'

Dogra 'dogr'

Duployan 'dupl'

Egyptian hieroglyphs 'egyp'

Elbasan 'elba'

Ethiopic 'ethi'

Georgian 'geor'

Glagolitic 'glag'

Gothic 'goth'

Grantha 'gran'

Greek 'grek'

Gujarati 'gujr'

Gujarati v.2 'gjr2'

Gunjala Gondi 'gong'

Gurmukhi 'guru'

Gurmukhi v.2 'gur2'

Hangul 'hang'

Hangul Jamo 'jamo'

Hanifi Rohingya 'rohg'

Hanunoo 'hano'

Hatran 'hatr'

Hebrew 'hebr'

Hiragana 'kana'

Imperial Aramaic 'armi'

Inscriptional Pahlavi 'phli'

Inscriptional Parthian 'prti'

Javanese 'java'

Kaithi 'kthi'

Kannada 'knda'

Kannada v.2 'knd2'

325

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 325
	

Katakana 'kana'

Kayah Li 'kali'

Kharosthi 'khar'

Khmer 'khmr'

Khojki 'khoj'

Khudawadi 'sind'

Lao 'lao '

Latin 'latn'

Lepcha 'lepc'

Limbu 'limb'

Linear A 'lina'

Linear B 'linb'

Lisu (Fraser) 'lisu'

Lycian 'lyci'

Lydian 'lydi'

Mahajani 'mahj'

Makasar 'maka'

Malayalam 'mlym'

Malayalam v.2 'mlm2'

Mandaic, Mandaean 'mand'

Manichaean 'mani'

Masaram Gondi 'gonm'

Marchen 'marc'

Mathematical Alphanumeric Symbols 'math'

Medefaidrin (Oberi Okaime, Oberi Ɔkaimɛ) 'medf'

Meitei Mayek (Meithei, Meetei) 'mtei'

Mende Kikakui 'mend'

Meroitic Cursive 'merc'

Meroitic Hieroglyphs 'mero'

Miao 'plrd'

Modi 'modi'

Mongolian 'mong'

Mro 'mroo'

Multani 'mult'

Musical Symbols 'musc'

Myanmar 'mymr'

Myanmar v.2 'mym2'

Nabataean 'nbat'

326

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

326 ©	ISO/IEC	2019	–	All	rights	reserved
	

Newa 'newa'

New Tai Lue 'talu'

N'Ko 'nko '

Nüshu 'nshu'

Odia (formerly Oriya) 'orya'

Odia (formerly Oriya) v.2 'ory2'

Ogham 'ogam'

Ol Chiki 'olck'

Old Italic 'ital'

Old Hungarian 'hung'

Old North Arabian 'narb'

Old Permic 'perm'

Old Persian Cuneiform 'xpeo'

Old Sogdian 'sogo'

Old South Arabian 'sarb'

Old Turkic, Orkhon Runic 'orkh'

Osage 'osge'

Osmanya 'osma'

Pahawh Hmong 'hmng'

Palmyrene 'palm'

Pau Cin Hau 'pauc'

Phags-pa 'phag'

Phoenician 'phnx'

Psalter Pahlavi 'phlp'

Rejang 'rjng'

Runic 'runr'

Samaritan 'samr'

Saurashtra 'saur'

Sharada 'shrd'

Shavian 'shaw'

Siddham 'sidd'

Sign Writing 'sgnw'

Sinhala 'sinh'

Sogdian 'sogd'

Sora Sompeng 'sora'

Soyombo 'soyo'

Sumero-Akkadian Cuneiform 'xsux'

Sundanese 'sund'

327

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 327
	

Syloti Nagri 'sylo'

Syriac 'syrc'

Tagalog 'tglg'

Tagbanwa 'tagb'

Tai Le 'tale'

Tai Tham (Lanna) 'lana'

Tai Viet 'tavt'

Takri 'takr'

Tamil 'taml'

Tamil v.2 'tml2'

Tangut 'tang'

Telugu 'telu'

Telugu v.2 'tel2'

Thaana 'thaa'

Thai 'thai'

Tibetan 'tibt'

Tifinagh 'tfng'

Tirhuta 'tirh'

Ugaritic Cuneiform 'ugar'

Vai 'vai '

Warang Citi 'wara'

Yi 'yi '

Zanabazar Square (Zanabazarin Dörböljin Useg,
Xewtee Dörböljin Bicig, Horizontal Square Script)

'zanb'

6.4.2 Language tags

Language system tags identify the language systems supported in an OFF Layout font data. What is meant by
a "language system" in this context is a set of typographic conventions for how text in a given script should be
presented. Such conventions may be associated with particular languages, with particular genres of usage,
with different publications, and other such factors. For example, particular glyph variants for certain characters
may be required for particular languages, or for phonetic transcription or mathematical notation.

In principle, a given set of conventions may be shared across multiple scenarios. For instance, two different
languages (perhaps unrelated) may happen to follow the same conventions. Language system tags can be
registered on a perceived-need basis, however; as a result, there is no guarantee that each tag represents a
distinct and unique set of conventions. Tags can, however, be registered with the intent of representing
conventions that apply to multiple languages. In such cases, the documented description for the tag should
reflect that intent.

It should also be noted that there may be more than one set of typographic conventions that apply to a given
language.

Therefore, in several respects, language system tags do not correspond in a one-to-one manner with
languages. Even so, many registered tags are intended to represent typographic conventions for a particular
language. For cases in which a correlation exists between a tag and one or more languages, the language
identities are documented here by reference to ISO 639-2 and ISO 639-3.

328

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

328 ©	ISO/IEC	2019	–	All	rights	reserved
	

If information is available to an application declaring the language of text content, then the application may
make use of that to select a default language system tag to be applied when displaying that text. It is
preferable, however, to give users control over the choice of language system tag to be used. (Depending on
the application scenario, such control may be given to content authors, to content readers, or to both.)

NOTE ISO 639-2 provides identifiers for individual languages as well as for certain collections of languages. ISO 639-3
provides identifiers for a far more comprehensive set of individual languages, though not for collections. Entities
in ISO 639 that are referenced here may include any of the individual languages covered in ISO 639-2 or ISO
639-3, or to any of the collections covered in ISO 639-2.

All tags are 4-byte character strings composed of a limited set of ASCII characters in the 0x20-0x7E range.
Spaces (0x20) may only occur as a trailing sequence within the tag. As a general convention, capital letters
(0x41 – 0x5A) are used. If a language system tag consists of three or less visible letters, the letters are
followed by the requisite number of spaces, each consisting of a single byte, to complete a 4-byte tag.

Language System Language System Tag Corresponding ISO
639 ID (if applicable)

Abaza 'ABA ' abq

Abkhazian 'ABK ' abk

Acholi 'ACH ' ach

Achi 'ACR ' acr

Adyghe 'ADY ' ady

Afrikaans 'AFK ' afr

Afar 'AFR ' aar

Agaw 'AGW ' ahg

Aiton 'AIO ' aio

Akan 'AKA ' aka

Alsatian 'ALS ' gsw

Altai 'ALT ' atv, alt

Amharic 'AMH ' amh

Anglo-Saxon 'ANG ' ang

Phonetic transcription –
Americanist conventions

'APPH'

Arabic 'ARA ' ara

Aragonese 'ARG ' arg

Aari 'ARI ' aiw

Rakhine 'ARK ' mhv, rmz, rki

Assamese 'ASM ' asm

Asturian 'AST ' ast

Athapaskan 'ATH ' apk, apj, apl, apm,
apw, nav, bea, sek,
bcr, caf, crx, clc, gwi,
haa, chp, dgr, scs, xsl,
srs, ing, hoi, koy, hup,
ktw, mvb, wlk, coq,
ctc, gce, tol, tuu, kkz,
tgx, tht, aht, tfn, taa,

329

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 329
	

tau, tcb, kuu, tce, ttm,
txc

Avar 'AVR ' ava

Awadhi 'AWA ' awa

Aymara 'AYM ' aym

Torki 'AZB ' azb

Azerbaijani 'AZE ' aze

Badaga 'BAD ' bfq

Banda 'BAD0' bad

Baghelkhandi 'BAG ' bfy

Balkar 'BAL ' krc

Balinese 'BAN ' ban

Bavarian 'BAR ' bar

Baoulé 'BAU ' bci

Batak Toba 'BBC ' bbc

Berber 'BBR '

Bench 'BCH ' bcq

Bible Cree 'BCR '

Bandjalang 'BDY ' bdy

Belarusian 'BEL ' bel

Bemba 'BEM ' bem

Bengali 'BEN ' ben

Haryanvi 'BGC ' bgc

Bagri 'BGQ ' bgq

Bulgarian 'BGR ' bul

Bhili 'BHI ' bhi, bhb

Bhojpuri 'BHO ' bho

Bikol 'BIK ' bik, bhk, bcl, bto, cts,
bln

Bilen 'BIL ' byn

Bislama 'BIS ' bis

Kanauji 'BJJ ' bjj

Blackfoot 'BKF ' bla

Baluchi 'BLI ' bal

Pa'o Karen 'BLK ' blk

Balante 'BLN ' bjt, ble

Balti 'BLT ' bft

Bambara (Bamanankan) 'BMB ' bam

Bamileke 'BML '

330

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

330 ©	ISO/IEC	2019	–	All	rights	reserved
	

Bosnian 'BOS ' bos

Bishnupriya Manipuri 'BPY ' bpy

Breton 'BRE ' bre

Brahui 'BRH ' brh

Braj Bhasha 'BRI ' bra

Burmese 'BRM ' mya

Bodo 'BRX ' brx

Bashkir 'BSH ' bak

Burushaski 'BSK ' bsk

Beti 'BTI ' btb

Batak Simalungun 'BTS ' bts

Bugis 'BUG ' bug

Medumba 'BYV ' byv

Kaqchikel 'CAK ' cak

Catalan 'CAT ' cat

Zamboanga Chavacano 'CBK ' cbk

Chinantec 'CCHN' cco, chj, chq, chz, cle,
cnl, cnt, cpa, csa, cso,
cte, ctl, cuc, cvn

Cebuano 'CEB ' ceb

Chechen 'CHE ' che

Chaha Gurage 'CHG ' sgw

Chattisgarhi 'CHH ' hne

Chichewa (Chewa, Nyanja) 'CHI ' nya

Chukchi 'CHK ' ckt

Chuukese 'CHK0' chk

Choctaw 'CHO ' cho

Chipewyan 'CHP ' chp

Cherokee 'CHR ' chr

Chamorro 'CHA ' cha

Chuvash 'CHU ' chv

Cheyenne 'CHY ' chy

Chiga 'CGG ' cgg

Western Cham 'CJA ' cja

Eastern Cham 'CJM ' cjm

Comorian 'CMR ' swb, wlc, wni, zdj

Coptic 'COP ' cop

Cornish 'COR ' cor

Corsican 'COS ' cos

331

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 331
	

Creoles 'CPP ' cpp

Cree 'CRE ' cre

Carrier 'CRR ' crx, caf

Crimean Tatar 'CRT ' crh

Kashubian 'CSB ' csb

Church Slavonic 'CSL ' chu

Czech 'CSY ' ces

Chittagonian 'CTG ' ctg

San Blas Kuna 'CUK ' cuk

Danish 'DAN ' dan

Dargwa 'DAR ' dar

Dayi 'DAX ' dax

Woods Cree 'DCR ' cwd

German 'DEU ' deu

Dogri 'DGO ' dgo

Dogri 'DGR ' doi

Dhangu 'DHG ' dhg

Divehi (Dhivehi, Maldivian) 'DHV ' (deprecated) div

Dimli 'DIQ ' diq

Divehi (Dhivehi, Maldivian) 'DIV ' div

Zarma 'DJR ' dje

Djambarrpuyngu 'DJR0' djr

Dangme 'DNG ' ada

Dan 'DNJ ' dnj

Dinka 'DNK ' din

Dari 'DRI ' prs

Dhuwal 'DUJ ' duj

Dungan 'DUN ' dng

Dzongkha 'DZN ' dzo

Ebira 'EBI ' igb

Eastern Cree 'ECR ' crj, crl

Edo 'EDO ' bin

Efik 'EFI ' efi

Greek 'ELL ' ell

Eastern Maninkakan 'EMK ' emk

English 'ENG ' eng

Erzya 'ERZ ' myv

Spanish 'ESP ' spa

332

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

332 ©	ISO/IEC	2019	–	All	rights	reserved
	

Central Yupik 'ESU ' esu

Estonian 'ETI ' est

Basque 'EUQ ' eus

Evenki 'EVK ' evn

Even 'EVN ' eve

Ewe 'EWE ' ewe

French Antillean 'FAN ' acf

Fang 'FAN0' fan

Persian 'FAR ' fas

Fanti 'FAT ' fat

Finnish 'FIN ' fin

Fijian 'FJI ' fij

Dutch (Flemish) 'FLE ' vls

Fe'fe' 'FMP ' fmp

Forest Nenets 'FNE ' enf

Fon 'FON ' fon

Faroese 'FOS ' fao

French 'FRA ' fra

Cajun French 'FRC ' frc

Frisian 'FRI ' fry

Friulian 'FRL ' fur

Arpitan 'FRP ' frp

Futa 'FTA ' fuf

Fulah 'FUL ' ful

Nigerian Fulfulde 'FUV ' fuv

Ga 'GAD ' gaa

Scottish Gaelic (Gaelic) 'GAE ' gla

Gagauz 'GAG ' gag

Galician 'GAL ' glg

Garshuni 'GAR '

Garhwali 'GAW ' gbm

Ge'ez 'GEZ ' gez

Githabul 'GIH ' gih

Gilyak 'GIL ' niv

Kiribati (Gilbertese) 'GIL0' gil

Kpelle (Guinea) 'GKP ' gkp

Gilaki 'GLK ' glk

Gumuz 'GMZ ' guk

333

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 333
	

Gumatj 'GNN ' gnn

Gogo 'GOG ' gog

Gondi 'GON ' gon, gno, ggo

Greenlandic 'GRN ' kal

Garo 'GRO ' grt

Guarani 'GUA ' grn

Wayuu 'GUC ' guc

Gupapuyngu 'GUF ' guf

Gujarati 'GUJ ' guj

Gusii 'GUZ ' guz

Haitian (Haitian Creole) 'HAI ' hat

Halam 'HAL ' flm

Harauti 'HAR ' hoj

Hausa 'HAU ' hau

Hawaiian 'HAW ' haw

Haya 'HAY ' hay

Hazaragi 'HAZ ' haz

Hammer-Banna 'HBN ' amf

Herero 'HER ' her

Hiligaynon 'HIL ' hil

Hindi 'HIN ' hin

High Mari 'HMA ' mrj

Hmong 'HMN ' hmn

Hiri Motu 'HMO ' hmo

Hindko 'HND ' hno, hnd

Ho 'HO ' hoc

Harari 'HRI ' har

Croatian 'HRV ' hrv

Hungarian 'HUN ' hun

Armenian 'HYE ' hye

Armenian East 'HYE0' hye

Iban 'IBA ' iba

Ibibio 'IBB ' ibb

Igbo 'IBO ' ibo

Ijo languages 'IJO ' ijc

Ido 'IDO ' ido

Interlingue 'ILE ' ile

Ilokano 'ILO ' ilo

334

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

334 ©	ISO/IEC	2019	–	All	rights	reserved
	

Interlingua 'INA ' ina

Indonesian 'IND ' ind

Ingush 'ING ' inh

Inuktitut 'INU ' iku

Inupiat 'IPK ' ipk

Phonetic transcription – IPA
conventions

'IPPH'

Irish 'IRI ' gle

Irish Traditional 'IRT ' gle

Icelandic 'ISL ' isl

Inari Sami 'ISM ' smn

Italian 'ITA ' ita

Hebrew 'IWR ' heb

Javanese 'JAV ' jav

Yiddish 'JII ' yid

Jamaican Creole 'JAM ' jam

Japanese 'JAN ' jpn

Lojban 'JBO ' jbo

Krymchak 'JCT ' jct

Ladino 'JUD ' lad

Jula 'JUL ' dyu

Kabardian 'KAB ' kbd

Kabyle 'KAB0' kab

Kachchi 'KAC ' kfr

Kalenjin 'KAL ' kln

Kannada 'KAN ' kan

Karachay 'KAR ' krc

Georgian 'KAT ' kat

Kazakh 'KAZ ' kaz

Makonde 'KDE ' kde

Kabuverdianu (Crioulo) 'KEA ' kea

Kebena 'KEB ' ktb

Kekchi 'KEK ' kek

Khutsuri Georgian 'KGE ' kat

Khakass 'KHA ' kjh

Khanty-Kazim 'KHK ' kca

Khmer 'KHM ' khm

Khanty-Shurishkar 'KHS ' kca

335

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 335
	

Khamti Shan 'KHT ' kht

Khanty-Vakhi 'KHV ' kca

Khowar 'KHW ' khw

Kikuyu (Gikuyu) 'KIK ' kik

Kirghiz (Kyrgyz) 'KIR ' kir

Kisii 'KIS ' kqs, kss

Kirmanjki 'KIU ' kiu

Southern Kiwai 'KJD ' kjd

Eastern Pwo Karen 'KJP ' kjp

Kokni 'KKN ' kex

Kalmyk 'KLM ' xal

Kamba 'KMB ' kam

Kumaoni 'KMN ' kfy

Komo 'KMO ' kmw

Komso 'KMS ' kxc

Khorasani Turkic 'KMZ ' kmz

Kanuri 'KNR ' kau

Kodagu 'KOD ' kfa

Korean Old Hangul 'KOH ' okm

Konkani 'KOK ' kok

Kikongo 'KON ' ktu

Kongo 'KON0' kon

Komi 'KOM ' kom

Komi-Permyak 'KOP ' koi

Korean 'KOR ' kor

Kosraean 'KOS ' kos

Komi-Zyrian 'KOZ ' kpv

Kpelle 'KPL ' kpe

Krio 'KRI ' kri

Karakalpak 'KRK ' kaa

Karelian 'KRL ' krl

Karaim 'KRM ' kdr

Karen 'KRN ' kar

Koorete 'KRT ' kqy

Kashmiri 'KSH ' kas

Ripuarian 'KSH0' ksh

Khasi 'KSI ' kha

Kildin Sami 'KSM ' sjd

336

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

336 ©	ISO/IEC	2019	–	All	rights	reserved
	

S’gaw Karen 'KSW ' ksw

Kuanyama 'KUA ' kua

Kui 'KUI ' kxu

Kulvi 'KUL ' kfx

Kumyk 'KUM ' kum

Kurdish 'KUR ' kur

Kurukh 'KUU ' kru

Kuy 'KUY ' kdt

Koryak 'KYK ' kpy

Western Kayah 'KYU ' kyu

Ladin 'LAD ' lld

Lahuli 'LAH ' bfu

Lak 'LAK ' lbe

Lambani 'LAM ' lmn

Lao 'LAO ' lao

Latin 'LAT ' lat

Laz 'LAZ ' lzz

L-Cree 'LCR ' crm

Ladakhi 'LDK ' lbj

Lezgi 'LEZ ' lez

Ligurian 'LIJ ' lij

Limburgish 'LIM ' lim

Lingala 'LIN ' lin

Lisu 'LIS ' lis

Lampung 'LJP ' ljp

Laki 'LKI ' lki

Low Mari 'LMA ' mhr

Limbu 'LMB ' lif

Lombard 'LMO ' lmo

Lomwe 'LMW ' ngl

Loma 'LOM ' lom

Luri 'LRC ' lrc, luz, bqi, zum

Lower Sorbian 'LSB ' dsb

Lule Sami 'LSM ' smj

Lithuanian 'LTH ' lit

Luxembourgish 'LTZ ' ltz

Luba-Lulua 'LUA ' lua

Luba-Katanga 'LUB ' lub

337

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 337
	

Ganda 'LUG ' lug

Luyia 'LUH ' luy

Luo 'LUO ' luo

Latvian 'LVI ' lav

Madura 'MAD ' mad

Magahi 'MAG ' mag

Marshallese 'MAH ' mah

Majang 'MAJ ' mpe

Makhuwa 'MAK ' vmw

Malayalam Traditional 'MAL ' mal

Mam 'MAM ' mam

Mansi 'MAN ' mns

Mapudungun 'MAP ' arn

Marathi 'MAR ' mar

Marwari 'MAW ' mwr, dhd, rwr, mve,
wry, mtr, swv

Mbundu 'MBN ' kmb

Mbo 'MBO ' mbo

Manchu 'MCH ' mnc

Moose Cree 'MCR ' crm

Mende 'MDE ' men

Mandar 'MDR ' mdr

Me'en 'MEN ' mym

Meru 'MER ' mer

Morisyen 'MFE ' mfe

Minangkabau 'MIN ' min

Mizo 'MIZ ' lus

Macedonian 'MKD ' mkd

Makasar 'MKR ' mak

Kituba 'MKW ' mkw

Male 'MLE ' mdy

Malagasy 'MLG ' mlg

Malinke 'MLN ' mlq

Malayalam Reformed 'MLR ' mal

Malay 'MLY ' msa

Mandinka 'MND ' mnk

Mongolian 'MNG ' mon

Manipuri 'MNI ' mni

338

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

338 ©	ISO/IEC	2019	–	All	rights	reserved
	

Maninka 'MNK ' man, mnk, myq, mku,
msc, emk, mwk, mlq

Manx 'MNX ' glv

Mohawk 'MOH ' mho

Moksha 'MOK ' mdf

Moldavian 'MOL ' mol

Mon 'MON ' mnw

Moroccan 'MOR '

Mossi 'MOS ' mos

Maori 'MRI ' mri

Maithili 'MTH ' mai

Maltese 'MTS ' mlt

Mundari 'MUN ' unr

Muscogee 'MUS ' mus

Mirandese 'MWL ' mwl

Hmong Daw 'MWW ' mww

Mayan 'MYN ' myn

Mazanderani 'MZN ' mzn

Naga-Assamese 'NAG ' nag

Nahuatl 'NAH ' nah

Nanai 'NAN ' gld

Neapolitan 'NAP ' nap

Naskapi 'NAS ' nsk

Nauruan 'NAU ' nau

Navajo 'NAV ' nav

N-Cree 'NCR ' csw

Ndebele 'NDB ' nbl, nde

Ndau 'NDC ' ndc

Ndonga 'NDG ' ndo

Low Saxon 'NDS ' nds

Nepali 'NEP ' nep

Newari 'NEW ' new

Ngbaka 'NGA ' nga

Nagari 'NGR '

Norway House Cree 'NHC ' csw

Nisi 'NIS ' dap

Niuean 'NIU ' niu

Nyankole 'NKL ' nyn

339

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 339
	

N'Ko 'NKO ' ngo

Dutch 'NLD ' nld

Nimadi 'NOE ' noe

Nogai 'NOG ' nog

Norwegian 'NOR ' nob

Novial 'NOV ' nov

Northern Sami 'NSM ' sme

Sotho, Northern 'NSO ' nso

Northern Thai 'NTA ' nod

Esperanto 'NTO ' epo

Nyamwezi 'NYM ' nym

Norwegian Nynorsk (Nynorsk,
Norwegian)

'NYN ' nno

Mbembe Tigon 'NZA ' nza

Occitan 'OCI ' oci

Oji-Cree 'OCR ' ojs

Ojibway 'OJB ' oji

Odia (formerly Oriya) 'ORI ' ori

Oromo 'ORO ' orm

Ossetian 'OSS ' oss

Palestinian Aramaic 'PAA ' sam

Pangasinan 'PAG ' pag

Pali 'PAL ' pli

Pampangan 'PAM ' pam

Punjabi 'PAN ' pan

Palpa 'PAP ' plp

Papiamentu 'PAP0' pap

Pashto 'PAS ' pus

Palauan 'PAU ' pau

Bouyei 'PCC ' pcc

Picard 'PCD ' pcd

Pennsylvania German 'PDC ' pdc

Polytonic Greek 'PGR ' ell

Phake 'PHK ' phk

Norfolk 'PIH ' pih

Filipino 'PIL ' fil

Palaung 'PLG ' pce, rbb, pll

Polish 'PLK ' pol

340

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

340 ©	ISO/IEC	2019	–	All	rights	reserved
	

Piemontese 'PMS ' pms

Western Panjabi 'PNB ' pnb

Pocomchi 'POH ' poh

Pohnpeian 'PON ' pon

Provencal 'PRO ' pro

Portuguese 'PTG ' por

Western Pwo Karen 'PWO ' pwo

Chin 'QIN ' bgr, cnh, cnw, czt,
sez, tcp, csy, ctd, flm,
pck, tcz, zom, cmr,
dao, hlt, cka, cnk,
mrh, cbl, cnb, csh

K’iche’ 'QUC ' quc

Quechua (Bolivia) 'QUH ' quh

Quechua 'QUZ ' quz

Quechua (Ecuador) 'QVI ' qvi

Quechua (Peru) 'QWH ' qwh

Rajasthani 'RAJ ' raj

Rarotongan 'RAR ' rar

R-Cree 'RCR ' atj

Russian Buriat 'RBU ' bxr

Rejang 'REJ ' rej

Riang 'RIA ' ria

Tarifit 'RIF ' rif

Ritarungo 'RIT ' rit

Arakwal 'RKW ' rkw

Romansh 'RMS ' roh

Vlax Romani 'RMY ' rmy

Romanian 'ROM ' ron

Romany 'ROY ' rom

Rusyn 'RSY ' rue

Rotuman 'RTM ' rtm

Kinyarwanda 'RUA ' kin

Rundi 'RUN ' run

Aromanian 'RUP ' rup

Russian 'RUS ' rus

Sadri 'SAD ' sck

Sanskrit 'SAN ' san

Sasak 'SAS ' sas

Santali 'SAT ' sat

341

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 341
	

Sayisi 'SAY ' chp

Sicilian 'SCN ' scn

Scots 'SCO ' sco

North Slavey 'SCS ' scs

Sekota 'SEK ' xan

Selkup 'SEL ' sel

Old Irish 'SGA ' sga

Sango 'SGO ' sag

Samogitian 'SGS ' sgs

Tachelhit 'SHI ' shi

Shan 'SHN ' shn

Sibe 'SIB ' sjo

Sidamo 'SID ' sid

Silte Gurage 'SIG ' xst

Skolt Sami 'SKS ' sms

Slovak 'SKY ' slk

Slavey 'SLA ' scs, xsl

Slovenian 'SLV ' slv

Somali 'SML ' som

Samoan 'SMO ' smo

Sena 'SNA ' she

Shona 'SNA0' sna

Sindhi 'SND ' snd

Sinhala (Sinhalese) 'SNH ' sin

Soninke 'SNK ' snk

Sodo Gurage 'SOG ' gru

Songe 'SOP ' sop

Sotho, Southern 'SOT ' sot

Albanian 'SQI ' gsw

Serbian 'SRB ' srp

Sardinian 'SRD ' srd

Seraiki 'SRK ' skr

Serer 'SRR ' srr

South Slavey 'SSL ' xsl

Southern Sami 'SSM ' sma

Saterland Frisian 'STQ ' stq

Sukuma 'SUK ' suk

Sundanese 'SUN ' sun

342

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

342 ©	ISO/IEC	2019	–	All	rights	reserved
	

Suri 'SUR ' suq

Svan 'SVA ' sva

Swedish 'SVE ' swe

Swadaya Aramaic 'SWA ' aii

Swahili 'SWK ' swa

Swati 'SWZ ' ssw

Sutu 'SXT ' ngo

Upper Saxon 'SXU ' sxu

Sylheti 'SYL ' syl

Syriac 'SYR ' aii, amw, cld, syc, syr,
tru

Syriac, Estrangela script-variant
(equivalent to ISO 15924 'Syre')

'SYRE' syc, syr

Syriac, Western script-variant
(equivalent to ISO 15924 'Syrj')

'SYRJ' syc, syr

Syriac, Eastern script-variant
(equivalent to ISO 15924 'Syrn')

'SYRN' syc, syr

Silesian 'SZL ' szl

Tabasaran 'TAB ' tab

Tajik 'TAJ ' tgk

Tamil 'TAM ' tam

Tatar 'TAT ' tat

TH-Cree 'TCR ' cwd

Dehong Dai 'TDD ' tdd

Telugu 'TEL ' tel

Tetum 'TET ' tet

Tagalog 'TGL ' tgl

Tongan 'TGN ' ton

Tigre 'TGR ' tig

Tigrinya 'TGY ' tir

Thai 'THA ' tha

Tahitian 'THT ' tah

Tibetan 'TIB ' bod

Tiv 'TIV ' tiv

Turkmen 'TKM ' tuk

Tamashek 'TMH ' tmh

Temne 'TMN ' tem

Tswana 'TNA ' tsn

Tundra Nenets 'TNE ' enh

Tonga 'TNG ' toi

343

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 343
	

Todo 'TOD ' xal

Toma 'TOD0' tod

Tok Pisin 'TPI ' tpi

Turkish 'TRK ' tur

Tsonga 'TSG ' tso

Turoyo Aramaic 'TUA ' tru

Tulu 'TUL ' tcy

Tumbuka 'TUM ' tum

Tuvin 'TUV ' tyv

Tuvalu 'TVL ' tvl

Twi 'TWI ' twi

Tày 'TYZ ' tyz

Tamazight 'TZM ' tzm

Tzotzil 'TZO ' tzo

Udmurt 'UDM ' udm

Ukrainian 'UKR ' ukr

Umbundu 'UMB ' umb

Urdu 'URD ' urd

Upper Sorbian 'USB ' hsb

Uyghur 'UYG ' uig

Uzbek 'UZB ' uzb, uzn, uzs

Venetian 'VEC ' vec

Venda 'VEN ' ven

Vietnamese 'VIT ' vie

Volapük 'VOL ' vol

Võro 'VRO ' vro

Wa 'WA ' wbm

Wagdi 'WAG ' wbr

Waray-Waray 'WAR ' war

West-Cree 'WCR ' crk

Welsh 'WEL ' cym

Walloon 'WLN ' wln

Wolof 'WLF ' wol

Mewati 'WTM ' wtm

Lü 'XBD ' khb

Xhosa 'XHS ' xho

Minjangbal 'XJB ' xjb

Soga 'XOG ' xog

344

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

344 ©	ISO/IEC	2019	–	All	rights	reserved
	

Kpelle (Liberia) 'XPE ' xpe

Sakha 'YAK ' sah

Yao 'YAO ' yao

Yapese 'YAP ' yap

Yoruba 'YBA ' yor

Y-Cree 'YCR ' cre

Yi Classic 'YIC '

Yi Modern 'YIM ' iii

Zealandic 'ZEA ' zea

Standard Morrocan Tamazigh 'ZGH ' zgh

Zhuang 'ZHA ' zha

Chinese, Hong Kong SAR 'ZHH ' zho

Chinese Phonetic 'ZHP ' zho

Chinese Simplified 'ZHS ' zho

Chinese Traditional 'ZHT ' zho

Zande 'ZND ' zne

Zulu 'ZUL ' zul

Zazaki 'ZZA ' zza

6.4.3 Feature tags

Features provide information about how to use the glyphs in a font to render a script or language. For example,
an Arabic font might have a feature for substituting initial glyph forms, and a Kanji font might have a feature for
positioning glyphs vertically. All OFF Layout features define data for glyph substitution, glyph positioning,
or both.

Each OFF Layout feature has a feature tag that identifies its typographic function and effects. By examining a
feature's tag, a text-processing client can determine what a feature does and decide whether to implement it.
All tags are 4-byte character strings composed of a limited set of ASCII characters in the 0x20-0x7E range.
Windows platform-registered feature tags use four lowercase letters. For instance, the 'mark' feature manages
the placement of diacritical marks, and the 'swsh' feature renders swash glyphs.

A feature definition may not provide all the information required to properly implement glyph substitution or
positioning actions. In many cases, a text-processing client may need to supply additional data. For example,
the function of the 'init' feature is to provide initial glyph forms. Nothing in the feature's lookup tables indicates
when or where to apply this feature during text processing. To correctly use the 'init' feature in Arabic text, in
which initial glyph forms appear at the beginning of connected letter groups determined by character-joining
properties, text-processing clients must be able to identify the glyph to which the feature should be applied,
based on character context and joining properties. In all cases, the text-processing client is responsible for
applying, combining, and arbitrating among features and rendering the result.

The tag space defined by tags consisting of four uppercase letters (A-Z) with no punctuation, spaces, or
numbers, is reserved as a vendor space. Font vendors may use such tags to identify private features. For
example, the feature tag 'PKRN' might designate a private feature that may be used to kern punctuation
marks.
NOTE There is no guarantee the compatibility or usability of private features, and it cannot be ensured that two font

vendors will not choose the same tag for a private feature.

345

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 345
	

This Tag Registry describes all the OFF Layout features. Lookup information is provided for reference
purposes only; the set of lookups used to implement a feature will vary across system platforms, applications,
fonts, and font developers.

6.4.3.1 Feature tag list

Registered features

The features listed below are sorted in alphabetical order by tag name.

Feature Tag Friendly Name

'aalt' Access All Alternates

'abvf' Above-base Forms

'abvm' Above-base Mark Positioning

'abvs' Above-base Substitutions

'afrc' Alternative Fractions

'akhn' Akhands

'blwf' Below-base Forms

'blwm' Below-base Mark Positioning

'blws' Below-base Substitutions

'calt' Contextual Alternates

'case' Case-Sensitive Forms

'ccmp' Glyph Composition / Decomposition

'cfar' Conjunct Form After Ro

'cjct' Conjunct Forms

'clig' Contextual Ligatures

'cpct' Centered CJK Punctuation

'cpsp' Capital Spacing

'cswh' Contextual Swash

'curs' Cursive Positioning

'cv01-cv99' Character Variants

'c2pc' Petite Capitals From Capitals

'c2sc' Small Capitals From Capitals

'dist' Distances

'dlig' Discretionary Ligatures

'dnom' Denominators

'dtls' Dotless Forms

'expt' Expert Forms

'falt' Final Glyph on Line Alternates

'fin2' Terminal Forms #2

'fin3' Terminal Forms #3

'fina' Terminal Forms

346

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

346 ©	ISO/IEC	2019	–	All	rights	reserved
	

'flac' Flattened ascent forms

'frac' Fractions

'fwid' Full Widths

'half' Half Forms

'haln' Halant Forms

'halt' Alternate Half Widths

'hist' Historical Forms

'hkna' Horizontal Kana Alternates

'hlig' Historical Ligatures

'hngl' Hangul

'hojo' Hojo Kanji Forms (JIS X 0212-1990 Kanji Forms)

'hwid' Half Widths

'init' Initial Forms

'isol' Isolated Forms

'ital' Italics

'jalt' Justification Alternates

'jp78' JIS78 Forms

'jp83' JIS83 Forms

'jp90' JIS90 Forms

'jp04' JIS2004 Forms

'kern' Kerning

'lfbd' Left Bounds

'liga' Standard Ligatures

'ljmo' Leading Jamo Forms

'lnum' Lining Figures

'locl' Localized Forms

'ltra' Left-to-right glyph alternates

'ltrm' Left-to-right mirrored forms

'mark' Mark Positioning

'med2' Medial Forms #2

'medi' Medial Forms

'mgrk' Mathematical Greek

'mkmk' Mark to Mark Positioning

'mset' Mark Positioning via Substitution

'nalt' Alternate Annotation Forms

'nlck' NLC Kanji Forms

'nukt' Nukta Forms

'numr' Numerators

347

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 347
	

'onum' Oldstyle Figures

'opbd' Optical Bounds

'ordn' Ordinals

'ornm' Ornaments

'palt' Proportional Alternate Widths

'pcap' Petite Capitals

'pkna' Proportional Kana

'pnum' Proportional Figures

'pref' Pre-Base Forms

'pres' Pre-base Substitutions

'pstf' Post-base Forms

'psts' Post-base Substitutions

'pwid' Proportional Widths

'qwid' Quarter Widths

'rand' Randomize

'rclt' Required Contextual Alternates

'rkrf' Rakar Forms

'rlig' Required Ligatures

'rphf' Reph Forms

'rtbd' Right Bounds

'rtla' Right-to-left alternates

'rtlm' Right-to-left mirrored forms

'ruby' Ruby Notation Forms

'rvrn' Required Variation Alternates

'salt' Stylistic Alternates

'sinf' Scientific Inferiors

'size' Optical size

'smcp' Small Capitals

'smpl' Simplified Forms

'ss01' Stylistic Set 1

'ss02' Stylistic Set 2

'ss03' Stylistic Set 3

'ss04' Stylistic Set 4

'ss05' Stylistic Set 5

'ss06' Stylistic Set 6

'ss07' Stylistic Set 7

'ss08' Stylistic Set 8

'ss09' Stylistic Set 9

348

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

348 ©	ISO/IEC	2019	–	All	rights	reserved
	

'ss10' Stylistic Set 10

'ss11' Stylistic Set 11

'ss12' Stylistic Set 12

'ss13' Stylistic Set 13

'ss14' Stylistic Set 14

'ss15' Stylistic Set 15

'ss16' Stylistic Set 16

'ss17' Stylistic Set 17

'ss18' Stylistic Set 18

'ss19' Stylistic Set 19

'ss20' Stylistic Set 20

'ssty' Math script style alternates

'stch' Stretching Glyph Decomposition

'subs' Subscript

'sups' Superscript

'swsh' Swash

'titl' Titling

'tjmo' Trailing Jamo Forms

'tnam' Traditional Name Forms

'tnum' Tabular Figures

'trad' Traditional Forms

'twid' Third Widths

'unic' Unicase

'valt' Alternate Vertical Metrics

'vatu' Vattu Variants

'vert' Vertical Writing

'vhal' Alternate Vertical Half Metrics

'vjmo' Vowel Jamo Forms

'vkna' Vertical Kana Alternates

'vkrn' Vertical Kerning

'vpal' Proportional Alternate Vertical Metrics

'vrt2' Vertical Alternates and Rotation

'vrtr' Vertical Alternates for Rotation

'zero' Slashed Zero

6.4.3.2 Feature descriptions and implementations

Tag: 'aalt'

Friendly name: Access All Alternates

349

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 349
	

Function: This feature makes all variations of a selected character accessible. This serves several purposes:
An application may not support the feature by which the desired glyph would normally be accessed; the user
may need a glyph outside the context supported by the normal substitution, or the user may not know what
feature produces the desired glyph. Since many-to-one substitutions are not covered, ligatures would not
appear in this table unless they were variant forms of another ligature.

Example: A user inputs the P in Poetica, and is presented with a choice of the four standard capital forms, the
eight swash capital forms, the initial capital form and the small capital form.

Recommended implementation: The aalt table groups glyphs into semantic units. These units include the
glyph which represents the default form for the underlying Unicode value stored by the application. While
many of these substitutions are one-to-one (GSUB lookup type 1), others require a selection from a set
(GSUB lookup type 3). The manufacturer may choose to build two tables (one for each lookup type) or only
one which uses lookup type 3 for all substitutions. As in any one-from-many substitution, alternates present in
more than one face should be ordered consistently across a family, so that those alternates can work correctly
when switching between family members. This feature should be ordered first in the font, to take precedence
over other features.

Application interface: The application determines the GID for the default form of a given character (Unicode
value with no features applied). It then checks to see whether the GID is found in the aalt coverage table. If so,
the application passes this value to the feature table and gets back the GIDs in the associated group.

UI suggestion: While most one-from-many substitution features can be applied globally with reasonable
results, aalt is not designed to support this use. The application should indicate to the user which glyphs in the
user's document have alternative forms (i.e which are in the coverage table for aalt). When the user selects
one of those glyphs and applies the aalt feature, an application could display the forms sequentially in context,
or present a palette showing all the forms at once, or give the user a choice between these approaches. The
application may assume that the first glyph in a set is the preferred form, so the font developer should order
them accordingly. When only one alternate exists, this feature could toggle directly between the alternate and
default forms.

Script/language sensitivity: None.

Feature interaction: This feature may be used in combination with other features.

Tag: 'abvf'

Friendly name: Above-base Forms

Function: Substitutes the above-base form of a vowel.

Example: In complex scripts like Khmer, the vowel OE must be split into a pre-base form and an above-base
form. The above-base form of OE would be substituted to form the correct piece of the letter that is displayed
above the base consonant.

Recommended implementation: This feature substitutes the GID for OE with the above part of the glyph
(GSUB lookup type 1).

Application interface: In a sequence where a split vowel with an above form is used, the application must
insert the pre-base glyph into the correct location and then apply the above-base form feature. The application
gets back the GID for the correct form for the piece that is placed above the base glyph. The application may
also choose to position this glyph if required, after this feature is called.

UI suggestion: This feature should be on by default.

Script/language sensitivity: Required in Khmer script.

Feature interaction: This feature overrides the results of all other features.

Tag: 'abvm'

Friendly name: Above-base Mark Positioning

350

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

350 ©	ISO/IEC	2019	–	All	rights	reserved
	

Function: Positions marks above base glyphs.

Example: In complex scripts like Devanagari (Indic), the Anuswar needs to be positioned above the base
glyph. This base glyph can be a base consonant or conjunct. The base glyph and the presence/absence of
other marks above the base glyph decides the location of the Anuswar, so that they do not overlap each other.

Recommended implementation: The abvm table provides positioning information (x,y) to enable mark
positioning (GPOS lookup type 4, 5).

Application interface: The application must define the GIDs of the base glyphs above which marks need to be
positioned, and the marks themselves. If these are located in the coverage table, the application passes the
sequence to the abvm table and gets the positioning values (x,y) or positioning adjustments for the mark in
return.

UI suggestion: This feature should be on by default.

Script/language sensitivity: Required in Indic scripts.

Feature interaction: Can be used to position default marks; or those that have been selected from a number of
alternates based on contextual requirement using a feature like abvs.

Tag: 'abvs'

Friendly name: Above-base Substitutions

Function: Substitutes a ligature for a base glyph and mark that's above it.

Example: In complex scripts like Kannada (Indic), the vowel sign for the vowel I which a mark, is positioned
above base consonants. This mark combines with the consonant Ga to form a ligature.

Recommended implementation: Lookups for this feature map each sequence of consonant and vowel sign to
the corresponding ligature in the font (GSUB lookup type 4).

Application interface: The application must define the GIDs of the base glyphs and the mark that combines
with it to form a ligature. The application passes the sequence to the abvs table. If these are located in the
coverage table, it gets the GID for the ligature in return.

UI suggestion: This feature should be on by default.

Script/language sensitivity: Required in Indic scripts.

Feature interaction: None.

Tag: 'afrc'

Friendly name: Alternative Fractions

Function: Replaces figures separated by a slash with an alternative form.

Example: The user enters 3/4 in a recipe and get the threequarters nut fraction.

Recommended implementation: The afrc table maps sets of figures separated by slash (U+002F) or fraction
(U+2044) characters to corresponding fraction glyphs in the font (GSUB lookup type 4).

Application interface: The application must define the full sequence of GIDs to be replaced. When the full
sequence is found in the frac coverage table, the application passes the sequence to the afrc table and gets a
new GID in return.

UI suggestion: This feature should be off by default.

Script/language sensitivity: None.

Feature interaction: This feature overrides the results of all other features.

351

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 351
	

Tag: 'akhn'

Friendly name: Akhand

Function: Preferentially substitutes a sequence of characters with a ligature. This substitution is done
irrespective of any characters that may precede or follow the sequence.

Example: In Devanagari script, the form Kssa is considered an Akhand character (meaning unbreakable), and
the sequence Ka, Halant, Ssa should always produce the ligature Kssa, irrespective of characters that
precede/follow the above given sequence.

Recommended implementation: This feature maps the sequences for generating Akhands defined in the given
script, to the ligature they form (GSUB lookup type 4).

Application interface: The application passes the full sequence of GIDs. If these are located in the coverage
table of the Akhand table, the application gets back the GID for the akhand ligature in return.

UI suggestion: In recommended usage, this feature triggers substitutions that are required for correct display
of the given script. It should be applied in the appropriate contexts, as determined by script-specific
processing. Control of the feature should not generally be exposed to the user.

Script/language sensitivity: Required in most Indic scripts.

Feature interaction: This feature is used in conjunction with certain other features to derive required forms of
Indic scripts. The application is expected to process this feature and certain other features in an appropriate
order to obtain the correct set of basic forms: nukt, akhn, rphf, rkrf, pref, blwf, half, pstf, cjct. Other
discretionary features for optional typographic effects may also be applied. Lookups for such discretionary
features should be processed after lookups for this feature have been processed.

Tag: 'blwf'

Friendly name: Below-base Forms

Function: Substitutes the below-base form of a consonant in conjuncts.

Example: In complex scripts like Oriya (Indic), the consonant Va has a below-base form that is used to
generate conjuncts. Given a sequence Gha, Virama (Halant), Va; the below-base form of Va would be
substituted to form the conjunct GhVa.

Recommended Implementation: This feature substitutes the GID sequence of virama (halant) followed by a
consonant; by the GID of the below base form of the consonant (GSUB lookup type 4).

Application interface: In a conjunct formation sequence, if a consonant is identified as having a below base
form, the application gets back the GID for this. The application may also choose to position this glyph if
required, after this feature is called.

UI suggestion: In recommended usage, this feature triggers substitutions that are required for correct display
of the given script. It should be applied in the appropriate contexts, as determined by script-specific
processing. Control of the feature should not generally be exposed to the user.

Script/language sensitivity: Required in a number of Indic scripts.

Feature interaction: This feature is used in conjunction with certain other features to derive required forms of
Indic and Indic-related scripts. For Indic scripts, the application is expected to process this feature and certain
other features in an appropriate order to obtain the correct set of basic forms: nukt, akhn, rphf, rkrf, pref, blwf,
half, pstf, cjct. Other discretionary features for optional typographic effects may also be applied. Lookups for
such discretionary features should be processed after lookups for this feature have been processed.

Tag: 'blwm'

Friendly name: Below-base Mark Positioning

Function: Positions marks below base glyphs.

352

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

352 ©	ISO/IEC	2019	–	All	rights	reserved
	

Example: In complex scripts like Gujarati (Indic), the vowel sign U needs to be positioned below base
consonant/conjuncts that form the base glyph. This position can vary depending on the base glyph, as well as
the presence/absence of other marks below the base glyph.

Recommended implementation: The blwm table provides positioning information (x,y) to enable mark
positioning (GPOS lookup type 4, 5).

Application interface: The application must define the GIDs of the base glyphs below which marks need to be
positioned, and the marks themselves. If these are located in the coverage table, the application passes the
sequence to the blwm table and gets the positioning values (x,y) or positioning adjustments for the mark in
return.

UI suggestion: This feature should be on by default.

Script/language sensitivity: Required in Indic scripts.

Feature interaction: Can be used to position default marks; or those that have been selected from a number of
alternates based on contextual requirement using a feature like blws.

Tag: 'blws'

Friendly name: Below-base Substitutions

Function: Produces ligatures that comprise of base glyph and below-base forms.

Example: In the Malayalam script (Indic), the conjunct Kla, requires a ligature which is formed using the base
glyph Ka and the below-base form of consonant La. This feature can also be used to substitute ligatures
formed using base glyphs and below base matras in Indic scripts.

Recommended implementation: The blws table maps the identified conjunct forming sequences; or
consonant vowel sign sequences; to their ligatures (GSUB lookup type 4).

Application interface: For GIDs found in the blws coverage table, the application passes the sequence of
GIDs to the table, and gets back the GID for the ligature.

UI suggestion: This feature should be on by default.

Script/language sensitivity: Required in Indic scripts.

Feature interaction: This feature overrides the results of all other features.

Tag: 'calt'

Friendly name: Contextual Alternates

Function: In specified situations, replaces default glyphs with alternate forms which provide better joining
behavior. Used in script typefaces which are designed to have some or all of their glyphs join.

Example: In Caflisch Script, o is replaced by o.alt2 when followed by an ascending letterform.

Recommended implementation: The calt table specifies the context in which each substitution occurs, and
maps one or more default glyphs to replacement glyphs (GSUB lookup type 6).

Application interface: The application passes sequences of GIDs to the feature table, and gets back new GIDs.
Full sequences must be passed.

UI suggestion: This feature should be active by default.

Script/language sensitivity: Not applicable to ideographic scripts.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override.

353

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 353
	

Tag: 'case'

Friendly name: Case-Sensitive Forms

Function: Shifts various punctuation marks up to a position that works better with all-capital sequences or sets
of lining figures; also changes oldstyle figures to lining figures. By default, glyphs in a text face are designed to
work with lowercase characters. Some characters should be shifted vertically to fit the higher visual center of
all-capital or lining text. Also, lining figures are the same height (or close to it) as capitals, and fit much better
with all-capital text.

Example: The user selects a block of text and applies this feature. The dashes, bracketing characters,
guillemet quotes and the like shift up to match the capitals, and oldstyle figures change to lining figures.

Recommended implementation: The font may implement this change by substituting different glyphs (GSUB
lookup type 1) or by repositioning the original glyphs (GPOS lookup type 1).

Application interface: The application queries whether specific GIDs are found in the coverage table for the
case feature. If so, it passes these IDs to the table and gets back either new GIDs or positional adjustments
(XPlacement and YPlacement).

UI suggestion: It would be good to apply this feature (or turn it off) by default when the user changes case on
a sequence of more than one character. Applications could also detect words consisting only of capitals, and
apply this feature based on user preference settings.

Script/language sensitivity: Applies only to European scripts; particularly prominent in Spanish-language
setting.

Feature interaction: This feature overrides the results of other features affecting the figures (e.g. onum and
tnum).

Tag: 'ccmp'

Friendly name: Glyph Composition/Decomposition

Function: To minimize the number of glyph alternates, it is sometimes desirable to decompose the default
glyph for a character into two or more glyphs. Additionally, it may be preferable to compose default glyphs for
two or more characters into a single glyph for better glyph processing. This feature permits such
composition/decompostion. The feature should be processed as the first feature processed, and should be
processed only when it is called.

Example: In Syriac, the character 0x0732 is a combining mark that has a dot above AND a dot below the base
character. To avoid multiple glyph variants to fit all base glyphs, the character is decomposed into two glyphs
– a dot above and a dot below. These two glyphs can then be correctly placed using GPOS. In Arabic it might
be preferred to combine the shadda with fatha (0x0651, 0x064E) into a ligature before processing shapes.
This allows the font vendor to do special handling of the mark combination when doing further processing
without requiring larger contextual rules.

Recommended implementation: The ccmp table maps the character sequence to its corresponding ligature
(GSUB lookup type 4) or string of glyphs (GSUB lookup type 2). When using GSUB lookup type 4, sequences
that are made up of larger number of glyphs must be placed before those that require fewer glyphs.

Application interface: For GIDs found in the ccmp coverage table, the application passes the sequence of
GIDs to the table, and gets back the GID for the ligature, or GIDs for the multiple substitution.

UI suggestion: This feature should be on by default.

Script/language sensitivity: None.

Feature interaction: This feature needs to be implemented prior to any other feature.

Tag: 'cfar'

Friendly name: Conjunct Form After Ro

354

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

354 ©	ISO/IEC	2019	–	All	rights	reserved
	

Function: Substitutes alternate below-base or post-base forms in Khmer script when occurring after conjoined
Ro (“Coeng Ra”).

In Khmer script, the conjoined form of Ro re-orders to the left of the base consonant. It wraps under the base
consonant, however, and so can interact typographically with below-base or post-base conjoined consonant
and vowel forms. After the application has re-ordered the glyph for the conjoined Ro, it is no longer in the
immediate context of glyphs for below-base or post-base forms. The application can detect this and apply this
feature over the range for the below-base and post-base conjoining forms, triggering lookups to substitute
alternate below-base or past-base forms as may be needed.

Example: In the Khmer script, Coeng Ro is denoted by a pre-base conjoining form, and Coeng Yo is denoted
by a post-base conjoining form, but in both cases part of the form wraps under the base. The consonant
cluster TRYo is denoted with an alternate form of Coeng Ya that descends lower so that it does not collide
below the base with the Coeng Ro.

Recommended implementation: The cfar table maps below-base or post-base conjoining form into an
alternate form (GSUB lookup type 1).

Application interface: For substitutions defined in the cfar table, the application passes the GID to the table
and gets back the GID for an alternate form. The application is expected to apply this feature if a syllable
contains a Coeng Ra followed by other conjoining consonants or vowels.

UI suggestion: In recommended usage, this feature triggers substitutions that are required for correct display
of the given script. It should be applied in the appropriate contexts, as determined by script-specific
processing. Control of the feature should not generally be exposed to the user.

Script/language sensitivity: Required in Khmer scripts.

Feature interaction: This feature is used in conjunction with certain other features to derive required forms of
Khmer script. Other discretionary features for optional typographic effects may also be applied. Lookups for
such discretionary features should be processed after lookups for this feature have been processed.

Tag: 'cjct'

Friendly name: Conjunct Forms

Function: Produces conjunct forms of consonants in Indic scripts. This is similar to the Akhands feature, but is
applied at a different sequential point in the process of shaping an Indic syllable.

Indic scripts are associated with conjoining-consonant behaviors, such as the use of 'half' forms. Some
consonants may not have half forms and not exhibit conjoining behavior when combined with certain
consonants, yet may conjoin as ligature forms with other consonants. Whether a given pair of consonants
conjoins may impact other shaping behaviors for a syllable, such as where a re-ordering vowel mark or reph is
placed. The Conjunct Forms feature can be used at a point in the shaping process immediately before final re-
ordering such that the application can determine whether a re-ordering vowel or reph is placed in relation to
the consonants.

More generally, the Akhands feature and Conjunct Forms feature can be used at two points in the shaping of
an Indic syllable, together with other features such as Half Forms and Below Forms applied in between,
providing the font developer with flexibility in how the shapes for Indic syllables are derived from the default
glyphs for the character sequence.

Example: In Hindi (Devanagari script), the consonant cluster DGa is denoted with a conjunct ligature form.

Recommended implementation: The cjct table maps the sequence of a consonant (the nominal form) followed
by a virama (halant) followed by a second consonant (the nominal form or a half form) to the corresponding
conjunct form (GSUB lookup type 4).

Application interface: For substitution sequences defined in the cjct table, the application passes the sequence
of GIDs to the table, and gets back the GID for the conjunct form.

355

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 355
	

UI suggestion: In recommended usage, this feature triggers substitutions that are required for correct display
of the given script. It should be applied in the appropriate contexts, as determined by script-specific
processing. Control of the feature should not generally be exposed to the user.

Script/language sensitivity: Required in Indic scripts that show similarity to Devanagari.

Feature interaction: This feature is used in conjunction with certain other features to derive required forms of
Indic scripts. The application is expected to process this feature and certain other features in an appropriate
order to obtain the correct set of basic forms: nukt, akhn, rphf, rkrf, pref, blwf, half, pstf, cjct. Other
discretionary features for optional typographic effects may also be applied. Lookups for such discretionary
features should be processed after lookups for this feature have been processed.

Tag: 'clig'

Friendly name: Contextual Ligatures

Function: Replaces a sequence of glyphs with a single glyph which is preferred for typographic purposes.
Unlike other ligature features, clig specifies the context in which the ligature is recommended. This capability
is important in some script designs and for swash ligatures.

Example: The glyph for ft replaces the sequence f t in Bickham Script, except when preceded by an ascending
letter.

Recommended implementation: The clig table maps sequences of glyphs to corresponding ligatures in a
chained context (GSUB lookup type 8). Ligatures with more components must be stored ahead of those with
fewer components in order to be found. The set of contextual ligatures will vary by design and script.

Application interface: For sets of GIDs found in the clig coverage table, the application passes the sequence
of GIDs to the table and gets back a single new GID. Full sequences must be passed.
NOTE This may include a change of character code. Besides the original character code, the application should store

the code for the new character.

UI suggestion: This feature should be active by default.

Script/language sensitivity: Applies to virtually all scripts.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override. See also dlig.

Tag: 'cpct'

Friendly name: Centered CJK Punctuation

Function: Centers specific punctuation marks for those fonts that do not include centered and non-centered
forms.

Example: The user may invoke this feature in a Chinese font to get centered punctuation in case it is desired.
Examples include U+3001 and U+3002, including their vertical variants, specifically U+FE11 and U+FE12,
respectively.

Recommended implementation: The font specifies X- and Y-axis adjustments for a small number of full-width
glyphs (GPOS lookup type 1).

Application interface: For GIDs found in the cpct coverage table, the application passes the GIDs to the table
and gets back positional adjustments (XPlacement, XAdvance, YPlacement and YAdvance).

UI suggestion: This feature would be off by default.

Script/language sensitivity: Used primarily in Chinese fonts.

Feature interaction: This feature is mutually exclusive with all other glyph-width features (e.g. tnum, fwid, hwid,
halt, palt, twid), which should be turned off when it's applied.

356

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

356 ©	ISO/IEC	2019	–	All	rights	reserved
	

Tag: 'cpsp'

Friendly name: Capital Spacing

Function: Globally adjusts inter-glyph spacing for all-capital text. Most typefaces contain capitals and
lowercase characters, and the capitals are positioned to work with the lowercase. When capitals are used for
words, they need more space between them for legibility and esthetics. This feature would not apply to
monospaced designs. Of course the user may want to override this behavior in order to do more pronounced
letterspacing for esthetic reasons.

Example: The user sets a title in all caps, and the Capital Spacing feature opens the spacing.

Recommended implementation: The cpsp table stores alternate advance widths for the capital letters covered,
generally increasing them by a uniform percentage (GPOS lookup type 1).

Application interface: For GIDs found in the cpsp coverage table, the application passes a sequence of GIDs
to the cpsp table and gets back a set of XPlacement and XAdvance adjustments. The application may rely on
the user to apply this feature (e.g., by selecting text for a change to all-caps) or apply its own heuristics for
recognizing words consisting of capitals.

UI suggestion: This feature should be on by default. Applications may want to allow the user to respecify the
percentage to fit individual tastes and functions.

Script/language sensitivity: Should not be used in connecting scripts (e.g. most Arabic).

Feature interaction: May be used in addition to any other feature.
NOTE This feature is additive with other GPOS features like kern.

Tag: 'cswh'

Friendly name: Contextual Swash

Function: This feature replaces default character glyphs with corresponding swash glyphs in a specified
context. There may be more than one swash alternate for a given character.

Example: The user sets the word "HOLIDAY" in Poetica with this feature active, and is presented with a
choice of three alternate forms appropriate for an initial H and one alternate appropriate for a medial L.

Recommended implementation: The cswh table maps GIDs for default forms to those for one or more
corresponding swash forms in a chained context, which may require a selection from a set (GSUB lookup type
8). If several styles of swash are present across the font, the set of forms for each character should be
ordered consistently.

Application interface: For GIDs found in the cswh coverage table, the application passes the GIDs to the swsh
table and gets back one or more new GIDs. If more than one GID is returned, the application must provide a
means for the user to select the one desired.

UI suggestion: This feature should be inactive by default. When more than one GID is returned, an application
could display the forms sequentially in context, or present a palette showing all the forms at once, or give the
user a choice between these approaches. The application may assume that the first glyph in a set is the
preferred form, so the font developer should order them accordingly.

Script/language sensitivity: Does not apply to ideographic scripts.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override. See also swsh and init.

Tag: 'curs'

Friendly name: Cursive Positioning

Function: In cursive scripts like Arabic, this feature cursively positions adjacent glyphs.

357

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 357
	

Example: In Arabic, the Meem followed by a Reh are cursively positioned by overlapping the exit point of the
Meem on the entry point of the Reh.

Recommended implementation: The curs table provides entry and exit points (x,y) for glyphs to be cursively
positioned (GPOS lookup type 3).

Application interface: For GIDs located in the coverage table, the application gets back positioning point
locations for the preceding and following glyphs.

UI suggestion: This feature could be made active or inactive by default, at the user's preference.

Script/language sensitivity: Can be used in any cursive script.

Feature interaction: None.

Tag: 'cv01' – 'cv99'

Friendly name: Character Variant 1 – Character Variant 99

Registered by: Microsoft

Function: A font may have stylistic-variant glyphs for one or more characters where the variations for one
character are not systematically related to those for other characters. Or, a variation may exist for a character
and its casing pair (or related pre-composed characters), but not be applicable to other unrelated characters.
In some usage scenarios, it may be necessary to provide the application with control over glyph variations for
different Unicode characters individually

The function of these features is similar to the function of the Stylistic Alternates feature (‘salt’) and the
Stylistic Set features (see ‘ss01’ – ‘ss20’). Whereas the Stylistic Set features assume recurring stylistic
variations that apply to a broad set of Unicode characters, these features are intended for scenarios in which
particular characters have variations not applicable to a broad set of characters. The Stylistic Alternates
feature provides access to glyph variants, but does not allow an application to control these on a character-by-
character basis; the Character Variant features provide the greater granularity of control.

The function of these features is also related to that of the Localized Forms (‘locl’) feature, in that particular
variations for a character may be preferred for particular languages. In practice, though, it may not be feasible
to associate particular glyph variants with particular language systems for all the relevant languages; for
example, the requirements of particular languages may not be known when a font is being developed.

The distinction between these features and the Stylistic set features is most easily understood in terms of
variations applying to a single character versus variations applying across a range of characters. In practice, if
a variation applies to a character in a bicameral script, then the casing-pair character may have the same
variation. Also, Unicode includes pre-composed characters for certain base + mark combinations, hence a
single abstract character may be incorporated into a number of Unicode characters. Therefore, a variation for
a particular abstract character may be applicable to several related Unicode characters. The Character
Variant features can be used for sets of related characters in these cases. The key distinction between such
use and the intended use for Stylistic Set features is that a Character Variant feature should apply only to one
character or a set of characters closely related in this way, while Stylistic Set features are intended for broader
sets of characters.

Recommended implementation: A cvXX table maps the GID for the default form of a character to the GIDs for
stylistic alternatives of that character. Each cvXX feature uses alternate (GSUB lookup type 3) substitutions.
(If there is only one variant for a character, a single-substitution lookup, type 1, can also be used.)

The FeatureParams field of the Feature Table of these GSUB features may be set to 0, or to an offset to a
Feature Parameters table. The Feature Parameters table for this feature is structured as follows:

Type Name Description

uint16 format Format number is set to 0.

uint16 featUiLabelNameId The ‘name’ table name ID that specifies a string (or
strings, for multiple languages) for a user-interface

358

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

358 ©	ISO/IEC	2019	–	All	rights	reserved
	

label for this feature. (May be NULL.)

uint16 featUiTooltipTextNameId The ‘name’ table name ID that specifies a string (or
strings, for multiple languages) that an application
can use for tooltip text for this feature. (May be
NULL.)

uint16 sampleTextNameId The ‘name’ table name ID that specifies sample text
that illustrates the effect of this feature. (May be
NULL.)

uint16 numNamedParameters Number of named parameters. (May be zero.)

uint16 firstParamUiLabelNameId The first ‘name’ table name ID used to specify
strings for user-interface labels for the feature
parameters. (Must be zero if numParameters is
zero.)

uint16 charCount The count of characters for which this feature
provides glyph variants. (May be zero.)

uint24 character[charCount] The Unicode Scalar Value of the characters for
which this feature provides glyph variants.

The name ID provided by featUiLabelNameId is intended to provide a user-interface string for the feature; for
example, “Capital-eng variants”. If set to NULL, no ‘name’ table string is used for the feature name.

The name ID provided by featUiTooltipTextNameId is intended to provide a user-interface string that provides
a brief description of the feature that applications can use in popup “tooltip” help windows (e.g. “Select glyph
variants for capital eng”). If set to NULL, no ‘name’ table string is used for the feature “tooltip” help text.

The name ID provided by sampleTextNameId is intended to provide a string that can be used in a user-
interface to illustrate the effect of the feature. If multiple characters are affected by the feature or if the feature
affects a combining mark, it may not be evident to an application what string to use to present an illustrative
sample; a ‘name’ table string can be provided for that purpose.

If numNamedParameters is non-zero, then firstParamUiLabelNameId and numNamedParameters specify a
sequence of consecutive name IDs in the name table. These are used to provide user-interface strings for
individual variants. The range of name IDs start at firstParamUiLabelNameId and end at
firstParamUiLabelNameId + numNamedParameters – 1. Each of these name IDs corresponds to a feature
parameter value used to select a particular GID from the array of GIDs returned by a type 3 substitution
lookup; the relation between parameter values and name IDs is: name ID = parameter +
firstParamUiLabelNameId - 1. The value of numNamedParameters should not exceed the number of alternate
glyphs in lookups associated with the feature; note, however, that the number of GIDs in the returned array for
a GSUB type 3 lookup should not be assumed to be equal to numNamedParameters: numNamedParameters
should not be more than the number of GIDs in the array, but it may be less. If numNamedParameters is zero,
then no ‘name’ table strings are associated with feature parameters.

The values of featUiLabelNameId, featUiTooltipTextNameId, sampleTextNameId and
firstParamUiLabelNameId are expected to be in the font-specific name ID range (256–32767), though that is
not a requirement in this Feature Parameters specification. The value of firstParamUiLabelNameId +
numNamedParameters – 1 should not exceed 32767.

The user-interface label for the feature, for “tooltip” help text, or for feature parameters can be provided in
multiple languages. English strings for each should be included as a fallback. A sample-text string likely would
not need to be localized, though different sample-text strings for different UI languages can be used. If only
one sample-text string is provided, applications may use it with any UI language.

The charCount field and character array are used to identify the Unicode characters for which this feature
provides glyph variants. Applications can use this information in presenting user interface or for other
purposes. Content of the character list is at the discretion of the font developer — the list may be exhaustive,
representative, or empty — and does not affect the operation of the feature. If a font developer chooses not to
include such information, charCount can be set to zero, in which case no character array can be included.

359

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 359
	

It is left to the discretion of application developers to determine whether or how to use the data provided in the
feature parameters table or associated strings in the ‘name’ table.

NOTE Since the strings provided using this feature parameter table will be used in application user interface, length is
an important consideration. Strings should be as short as possible. It is recommended that the length of the
feature or feature-parameter names be 25 characters or less, and that the length of “tooltip” help text be 250
characters or less.

Application interface: The application is responsible for counting and enumerating the number of features in
the font with tag names of the format 'cv01' to 'cv99', and for presenting the user with an appropriate selection
mechanism. The application is also responsible for interpreting any feature parameter tables (if the application
developer wishes to use that data) and presenting referenced strings in user interface. For GIDs found in the
cvXX coverage table, the application passes the GIDs to the cvXX table and gets back one or more new
GIDs; the application selects one of the returned GIDs for display. The application may use an index
parameter as an index into the array of returned GIDs.

UI suggestion: This feature should be off by default. An application can display glyph variants for a given
character as a glyph palette in the user interface. If a Feature Parameters table is provided, the feature UI
label or the feature and parameter UI labels (if provided) can be presented in the application user interface; or
the sample-text string (if provided) can be presented in the application user interface.

Script/language sensitivity: None. For each respective[/distinct] 'cvXX' feature, the FeatureParams in the FeatureList
must point to the same set of values.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override. Note that after a cvXX feature has been applied, the user may wish to apply other
typographic features, e.g. 'smcp'; font developers are responsible for ordering substitution lookups to obtain
desired user experience. If it is to be used in conjunction with a complex script that requires obligatory
substitution of ligatures or contextual forms, this feature should be applied before features for obligatory script
behaviors.

Tag:'c2pc'

Friendly name: Petite Capitals From Capitals

Function: This feature turns capital characters into petite capitals. It is generally used for words which would
otherwise be set in all caps, such as acronyms, but which are desired in petite-cap form to avoid disrupting the
flow of text. See the pcap feature description for notes on the relationship of caps, smallcaps and petite caps.

Example: The user types UNICEF or NASA, applies c2pc and gets petite cap text.

Recommended implementation: The c2pc table maps capital glyphs to the corresponding petite cap forms
(GSUB lookup type 1).

Application interface: For GIDs found in the c2pc coverage table, the application passes GIDs to the c2pc
table, and gets back new GIDs.

UI suggestion: This feature should be off by default.

Script/language sensitivity: Applies only to scripts with both upper- and lowercase forms (e.g. Latin, Cyrillic,
Greek).

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override. Also see pcap.

Tag: 'c2sc'

Friendly name: Small Capitals From Capitals

Function: This feature turns capital characters into small capitals. It is generally used for words which would
otherwise be set in all caps, such as acronyms, but which are desired in small-cap form to avoid disrupting the
flow of text.

Example: The user types UNICEF or SCUBA, applies c2sc and gets small cap text.

360

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

360 ©	ISO/IEC	2019	–	All	rights	reserved
	

Recommended implementation: The c2sc table maps capital glyphs to the corresponding small-cap forms
(GSUB lookup type 1).

Application interface: For GIDs found in the c2sc coverage table, the application passes GIDs to the c2sc
table, and gets back new GIDs.

UI suggestion: This feature should be off by default.

Script/language sensitivity: Applies only to bicameral scripts (i.e. those with case differences), such as Latin,
Greek, Cyrillic, and Armenian.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override. Also see smcp.

Tag: 'dist'

Friendly name: Distances

Function: Provides a means to control distance between glyphs.

Example: In the Devanagari (Indic) script, the distance between the vowel sign U and a consonant can be
adjusted using this.

Recommended implementation: The dist table provides distances by which a glyph needs to move towards or
away from another glyph (GPOS lookup type 2).

Application interface: For GIDs found in the dist coverage table, the application passes their GID to the table
and gets back the distance that needs to be maintained between them.

UI suggestion: This feature could be made active or inactive by default, at the user's preference.

Script/language sensitivity: Required in Indic scripts.

Feature interaction: None.

Tag: 'dlig'

Friendly name: Discretionary Ligatures

Function: Replaces a sequence of glyphs with a single glyph which is preferred for typographic purposes. This
feature covers those ligatures which may be used for special effect, at the user's preference.

Example: The glyph for ct replaces the sequence of glyphs c t, or U+322E (Kanji ligature for "Friday") replaces
the sequence U+91D1 U+66DC U+65E5.

Recommended implementation: The dlig table maps sequences of glyphs to corresponding ligatures (GSUB
lookup type 4). Ligatures with more components must be stored ahead of those with fewer components in
order to be found. The set of discretionary ligatures will vary by design and script.

Application interface: For sets of GIDs found in the dlig coverage table, the application passes the sequence
of GIDs to the table and gets back a single new GID. Full sequences must be passed. This may include a
change of character code. Besides the original character code, the application should store the code for the
new character.

UI suggestion: This feature should be off by default.

Script/language sensitivity: Applies to virtually all scripts.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override. See also clig.

Tag: 'dnom'

Friendly name: Denominators

361

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 361
	

Function: Replaces selected figures which follow a slash with denominator figures.

Example: In the string 11/17 selected by the user, the application turns the 17 into denominators when the
user applies the fraction feature (frac).

Recommended implementation: The dnom table maps sets of figures and related characters to corresponding
numerator glyphs in the font (GSUB lookup type 1).

Application interface: For GIDs found in the dnom coverage table, the application passes a GID to the table
and gets back a new GID.

UI suggestion: This feature should normally be called by an application when the user applies the frac feature.

Script/language sensitivity: None.

Feature interaction: This feature supports frac. It may be used in combination with other substitution (GSUB)
features, whose results it may override.

Tag: 'dtls'

Friendly name: Dotless forms

Function: This feature provides dotless forms for Math Alphanumeric characters, such as U+1D422
MATHEMATICAL BOLD SMALL I, U+1D423 MATHEMATICAL BOLD SMALL J, U+1D456
U+MATHEMATICAL ITALIC SMALL I, U+1D457 MATHEMATICAL ITALIC SMALL J, and so on.

The dotless forms are to be used as base forms for placing mathematical accents over them.

Example: In formula dotted I is substituted with dotless form before attaching tilde accent on top of it.

Recommended implementation: Single substitution, for all dotted characters.

Application interface: Feature is invoked automatically by math layout handler depending on height of the
base formula box.

UI suggestion: In recommended usage, this feature triggers substitutions that are required for correct display
of math formula. It should be applied in the appropriate contexts, as determined by math layout handler.
Control of the feature should not generally be exposed to the user.

Script/language sensitivity: Applied to math formula layout.

Feature interaction: This feature is applied to individual glyphs during layout of math formula.

Tag: 'expt'

Friendly name: Expert Forms

Function: Like the JIS78 Forms described above, this feature replaces standard forms in Japanese fonts with
corresponding forms preferred by typographers. Although most of the JIS78 substitutions are included, the
expert substitution goes on to handle many more characters.

Example: The user would invoke this feature to replace kanji character U+5516 with U+555E.

Recommended implementation: The expt table maps many default (JIS90) GIDs to corresponding alternates
(GSUB lookup type 1).

Application interface: For GIDs found in the expt coverage table, the application passes the GIDs to the table
and gets back one new GID for each.
NOTE This is a change of character code. Besides the original character code, the application should store the code for

the new character.

UI suggestion: Applications may choose to have this feature active or inactive by default, depending on their
target markets.

362

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

362 ©	ISO/IEC	2019	–	All	rights	reserved
	

Script/language sensitivity: Applies only to Japanese.

Feature interaction: This feature is mutually exclusive with all other features, which should be turned off when
it's applied, except the palt, vpal, vert and vrt2 features, which may be used in addition.

Tag: 'falt'

Friendly name: Final Glyph on Line Alternates

Function: Replaces line final glyphs with alternate forms specifically designed for this purpose (they would
have less or more advance width as need may be), to help justification of text.

Example: In the Arabic script, providing alternate forms for line final glyphs would result in better justification.
eg. replacing a long tailed Yeh-with-tail with one that has a slightly longer/shorter tail.

Recommended implementation: The falt table maps line final glyphs (in isolated or final forms) to their
corresponding alternate forms (GSUB lookup type 3).

Application interface: For GIDs found in the falt coverage table, the application passes a GID to the table and
gets back a new GID.

UI suggestion: This feature could be made active or inactive by default, at the user's preference.

Script/language sensitivity: Can be used in any cursive script.

Feature interaction: Would need to be applied last, only after all other features have been applied to the run.

Tag: 'fin2'

Friendly name: Terminal Form #2

Function: Replaces the Alaph glyph at the end of Syriac words with its appropriate form, when the preceding
base character cannot be joined to, and that preceding base character is not a Dalath, Rish, or dotless Dalath-
Rish.

Example: When an Alaph is preceded by a He, the Alaph would be replaced by an appropriate form.
This feature is used only for the Syriac script alaph character.

Recommended implementation: The fin2 table maps default alphabetic forms to corresponding final forms
(GSUB lookup type 5).

Application interface: The application is responsible for noting word boundaries. For GIDs in the middle of
words and found in the fin2 coverage table, the application passes a GID to the feature and gets back a new
GID.

UI suggestion: This feature should be on by default.

Script/language sensitivity: Used only with the Syriac script.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override. See also init and fina.

Tag: 'fin3'

Friendly name: Terminal Form #3

Function: Replaces Alaph glyphs at the end of Syriac words when the preceding base character is a Dalath,
Rish, or dotless Dalath-Rish.

Example: When an Alaph is preceded by a Dalath, the Alaph would be replaced by an appropriate form.
This feature is used only for the Syriac script alaph character.

Recommended implementation: The fin3 table maps default alphabetic forms to corresponding final forms
(GSUB lookup type 5).

363

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 363
	

Application interface: The application is responsible for noting word boundaries. For GIDs in the middle of
words and found in the fin3 coverage table, the application passes a GID to the feature and gets back a new
GID.

UI suggestion: This feature should be on by default.

Script/language sensitivity: Used only with the Syriac script.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override. See also init and fina.

Tag: 'fina'

NOTE This feature description was significantly revised in 2016.

Friendly name: Terminal Forms

Registered by: Microsoft/Adobe

Function: Replaces glyphs for characters that have applicable joining properties with an alternate form when
occurring in a final context. This applies to characters that have one of the following Unicode Joining_Type
property values:

 Right_Joining, if the characters are from a right-to-left script.

 Left_Joining, if the characters are from a left-to-right script.

 Dual_Joining.

Unicode Joining_Type property values are obtained from the Unicode Character Database (UCD) [22].
Specifically, Joining_Type property values are documented in the Unicode Character Database file for joining-
script properties [20].

Example: In an Arabic-script font, the application would apply the 'fina' feature to the letter ARABIC LETTER
WAW (U+0648 “و”) when it follows a left-joining character, thereby replacing the default “و” glyph with its right-
joining, final form.

Recommended implementation: The 'fina' feature is used to map default forms to corresponding single-joining,
final forms. This will usually be implemented using a single substitution (type 1) GSUB lookup, though
contextual substitution GSUB lookups (types 5, 6 or 8) may also be appropriate.

Application interface: The application is responsible for parsing character strings and identifying which of the
joining-related features — initial forms ('init'), medial forms ('medi'), terminal forms ('fina'), and isolated forms
('isol') — to apply to which GIDs, based on character Joining_Type properties. Additional factors, such as the
presence of control characters, may also be considered. For GIDs to which the 'fina' feature is applied and
that are found in the 'fina' coverage table, the application passes a GID to the lookup tables associate with the
feature and gets back a new GID.

UI suggestion: In recommended usage, this feature triggers substitutions that are required for correct display
of the given script. It should be applied by default in the appropriate contexts, as determined by script-specific
processing. Control of the feature should not generally be exposed to the user.

Script/language sensitivity: Can be used in any script with joining behavior — that is, the scripts for which
Joining_Type properties are given explicitly in Unicode Character Database file for joining-script properties
[20].

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override. See also ‘init’, ‘isol’, and ‘medi’.

364

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

364 ©	ISO/IEC	2019	–	All	rights	reserved
	

Tag: 'flac'

Friendly name: Flattened ascent forms

Function: This feature provides flattened forms of accents to be used over high-rise bases such as capitals.
This feature should only change the shape of the accent and should not move it in the vertical or horizontal
direction. Moving of the accents is done by the math handling client. Accents are flattened by the Math engine
if their base is higher than MATH.MathConstants. FlattenedAccentBaseHeight.

Example: Depending on the font parameters, in formula tilde may used in default form and in it may use

flattened form

Recommended implementation: Single substitution, replacing ascent glyph with its flattened form. See MATH
table specification for details.

Application interface: Feature is invoked automatically by math layout handler depending on height of the
base formula box.

UI suggestion: In recommended usage, this feature triggers substitutions that are required for correct display
of math formula. It should be applied in the appropriate contexts, as determined by math layout handler.
Control of the feature should not generally be exposed to the user.

Script/language sensitivity: Applied to math formula layout.

Feature interaction: This feature is applied to individual glyphs during layout of math formula.

Tag: 'frac'

Friendly name: Fractions

Function: Replaces figures separated by a slash with 'common' (diagonal) fractions.

Example: The user enters 3/4 in a recipe and gets the threequarters fraction.

Recommended implementation: The frac table maps sets of figures separated by slash or fraction characters
to corresponding fraction glyphs in the font. These may be precomposed fractions (GSUB lookup type 4) or
arbitrary fractions (GSUB lookup type 1).

Application interface: The application must define the full sequence of GIDs to be replaced, based on user
input (i.e. user selection determines the string's delimitation). When the full sequence is found in the frac
coverage table, the application passes the sequence to the frac table and gets a new GID in return. When the
frac table does not contain an exact match, the application performs two steps. First, it uses the numr feature
(see below) to replace figures (as used in the numr coverage table) preceding the slash with numerators, and
to replace the typographic slash character (U+002F) with the fraction slash character (U+2044). Second, it
uses the dnom feature (see below) to replace all remaining figures (as listed in the dnom coverage table) with
denominators.

UI suggestion: This feature should be off by default.

Script/language sensitivity: None.

Feature interaction: This feature may require the application to call the numr and dnom features. It may be
used in combination with other substitution (GSUB) features, whose results it may override.

Tag: 'fwid'

Friendly name: Full Widths

Function: Replaces glyphs set on other widths with glyphs set on full (usually em) widths. In a CJKV font, this
may include "lower ASCII" Latin characters and various symbols. In a European font, this feature replaces
proportionally-spaced glyphs with monospaced glyphs, which are generally set on widths of 0.6 em.

365

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 365
	

Example: The user may invoke this feature in a Japanese font to get full monospaced Latin glyphs instead of
the corresponding proportionally-spaced versions.

Recommended implementation: The font may contain alternate glyphs designed to be set on full widths
(GSUB lookup type 1), or it may specify alternate (full-width) metrics for the proportional glyphs (GPOS lookup
type 1).

Application interface: For GIDs found in the fwid coverage table, the application passes the GIDs to the table
and gets back either new GIDs or positional adjustments (XPlacement and XAdvance).

UI suggestion: This feature would normally be off by default.

Script/language sensitivity: Applies to any script which can use monospaced forms.

Feature interaction: This feature is mutually exclusive with all other glyph-width features (e.g. tnum, halt, hwid,
palt, pwid, qwid and twid), which should be turned off when it's applied. It deactivates the kern feature.

Tag: 'half'

Friendly name: Half Forms

Function: Produces the half forms of consonants in Indic scripts.

Example: In Hindi (Devanagari script), the conjunct KKa, obtained by doubling the Ka, is denoted with a half
form of Ka followed by the full form.

Recommended implementation: The half table maps the sequence of a consonant followed by a virama
(halant) to its half form (GSUB lookup type 4).

Application interface: For substitution sequences defined in the half table [consonant followed by the virama
(halant)], the application passes the sequence of GIDs to the table, and gets back the GID for the half form.

UI suggestion: In recommended usage, this feature triggers substitutions that are required for correct display
of the given script. It should be applied in the appropriate contexts, as determined by script-specific
processing. Control of the feature should not generally be exposed to the user.

Script/language sensitivity: Required in Indic scripts that show similarity to Devanagari.

Feature interaction: This feature is used in conjunction with certain other features to derive required forms of
Indic scripts. The application is expected to process this feature and certain other features in an appropriate
order to obtain the correct set of basic forms: nukt, akhn, rphf, rkrf, pref, blwf, half, pstf, cjct. Other
discretionary features for optional typographic effects may also be applied. Lookups for such discretionary
features should be processed after lookups for this feature have been processed.

Tag: 'haln'

Friendly name: Halant Forms

Function: Produces the halant forms of consonants in Indic scripts.

Example: In Sanskrit (Devanagari script), syllable final consonants are frequently required in their halant form.

Recommended implementation: The haln table maps the sequence of a consonant followed by a virama
(halant) to its halant form (GSUB lookup type 4).

Application interface: For substitutions defined in the halant table, the application passes the sequence of
GIDs to the feature (essentially the consonant and virama), and gets back the GID for the halant form.

UI suggestion: This feature should be on by default.

Script/language sensitivity: Required in Indic scripts.

Feature interaction: This feature overrides the results of all other features.

366

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

366 ©	ISO/IEC	2019	–	All	rights	reserved
	

Tag: 'halt'

Friendly name: Alternate Half Widths

Function: Respaces glyphs designed to be set on full-em widths, fitting them onto half-em widths. This differs
from hwid in that it does not substitute new glyphs.

Example: The user may invoke this feature in a CJKV font to get better fit for punctuation or symbol glyphs
without disrupting the monospaced alignment.

Recommended implementation: The font specifies alternate metrics for the full-width glyphs (GPOS lookup
type 1).

Application interface: For GIDs found in the halt coverage table, the application passes the GIDs to the table
and gets back positional adjustments (XPlacement, XAdvance, YPlacement and YAdvance).

UI suggestion: In general, this feature should be off by default. Different behavior should be used, however, in
applications that conform to Requirements for Japanese Text Layout (JLREQ [21]) or similar CJK text-layout
specifications that expect half-width forms of characters whose default glyphs are full-width. Such
implementations should turn this feature on by default, or should selectively apply this feature to particular
characters that require special treatment for CJK text-layout purposes, such as brackets, punctuation, and
quotation marks.

Script/language sensitivity: Used only in CJKV fonts.

Feature interaction: This feature is mutually exclusive with all other glyph-width features (e.g. tnum, fwid, hwid,
palt, twid), which should be turned off when it's applied. It deactivates the kern feature. See also vhal.

Tag: 'hist'

Friendly name: Historical Forms

Function: Some letterforms were in common use in the past, but appear anachronistic today. The best-known
example is the long form of s; others would include the old Fraktur k. Some fonts include the historical forms
as alternates, so they can be used for a 'period' effect. This feature replaces the default (current) forms with
the historical alternates. While some ligatures are also used for historical effect, this feature deals only with
single characters.

Example: The user applies this feature in Adobe Jenson to get the archaic forms of M, Q and Z.

Recommended implementation: The hist table maps default forms to corresponding historical forms (GSUB
lookup type 1).

Application interface: For GIDs found in the hist coverage table, the application passes the GIDs to the hist
table and gets back new GIDs.

UI suggestion: This feature should be off by default.

Script/language sensitivity: None.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override.

Tag: 'hkna'

Friendly name: Horizontal Kana Alternates

Function: Replaces standard kana with forms that have been specially designed for only horizontal writing.
This is a typographic optimization for improved fit and more even color. Also see vkna.

Example: Standard full-width kana (hiragana and katakana) are replaced by forms that are designed for
horizontal use.

367

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 367
	

Recommended implementation: The font includes a set of specially-designed glyphs, listed in the hkna
coverage table. The hkna feature maps the standard full-width forms to the corresponding special horizontal
forms (GSUB lookup type 1).

Application interface: For GIDs found in the hkna coverage table, the application passes GIDs to the feature,
and gets back new GIDs.

UI suggestion:This feature would be off by default.

Script/language sensitivity: Applies only to fonts that support kana (hiragana and katakana).

Feature interaction: This feature may be used with the kern feature. Since it is for horizontal use, features
applying to vertical behaviors (e.g. vkna, vert, vrt2 or vkrn) do not apply.

Tag: 'hlig'

Friendly name: Historical Ligatures

Function: Some ligatures were in common use in the past, but appear anachronistic today. Some fonts include
the historical forms as alternates, so they can be used for a 'period' effect. This feature replaces the default
(current) forms with the historical alternates.

Example: The user applies this feature using Palatino Linotype, and historic ligatures are formed for all long s
forms, including: long s+t, long s+b, long s+h, long s+k, and several others.

Recommended implementation: The hlig table maps default ligatures and character combinations to
corresponding historical ligatures (GSUB lookup type 1).

Application interface: For GIDs found in the hlig coverage table, the application passes the GIDs to the hlig
table and gets back new GIDs.

UI suggestion: This feature should be off by default.

Script/language sensitivity: None.

Feature interaction: This feature overrides the results of all other features.

Tag: 'hngl' (DEPRECATED in 2016)

Friendly name: Hangul

Function: Replaces hanja (Chinese-style) Korean characters with the corresponding hangul (syllabic)
characters. This effectively reverses the standard input methods, in which hangul are entered and replaced by
hanja. Many of these substitutions are one-to-one (GSUB lookup type 1), but hanja substitution often requires
the user to choose from several possible hangul characters (GSUB lookup type 3).

Example: The user may call this feature to get U+AC00 from U+4F3D.

Recommended implementation: This table associates each hanja character in the font with one or more
hangul characters. The manufacturer may choose to build two tables (one for each lookup type) or only one
which uses lookup type 3 for all substitutions. As in any one-from-many substitution, alternates should be
ordered consistently across a family, so that those alternates can work correctly when switching between
family members.

Application interface: For GIDs found in the hngl coverage table, the application passes the GIDs to the table
and gets back one or more new GIDs. If more than one GID is returned, the application must provide a means
for the user to select the one desired.
NOTE This is a change of semantic value. Besides the original character codes (when entered as hanja), the application

should store the code for the new character.

UI suggestion: This feature should be inactive by default. The application may note the user's choice when
selecting from multiple hangul, and offer it as a default the next time the source hanja character is

368

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

368 ©	ISO/IEC	2019	–	All	rights	reserved
	

encountered. In the absence of such prior information, the application may assume that the first hangul in a
set is the preferred form, so the font developer should order them accordingly.

Script/language sensitivity: Korean only.

Feature interaction: This feature is mutually exclusive with all other features, which should be turned off when
it's applied, except the palt, vert and vrt2 may be used in addition.

Tag: 'hojo'

Friendly name: Hojo Kanji Forms (JIS X 0212-1990 Kanji Forms)

Registered by: Adobe

Function: The JIS X 0212-1990 (aka, "Hojo Kanji") and JIS X 0213:2004 character sets overlap significantly.
In some cases their prototypical glyphs differ. When building fonts that support both JIS X 0212-1990 and JIS
X 0213:2004 (such as those supporting the Adobe-Japan 1-6 character collection), it is recommended that JIS
X 0213:2004 forms be preferred as the encoded form. The 'hojo' feature is used to access the JIS X 0212-
1990 glyphs for the cases when the JIS X 0213:2004 form is encoded.

Example: The glyph is replaced by the glyph .

Recommended implementation: One-for-one substitution of JIS X 0213:2004 glyphs by the corresponding JIS
X 0212-1990 glyph.

Application interface: For GIDs found in the hojo coverage table, the application passes the GIDs to the table
and gets back one new GID for each.

UI suggestion: This feature should be off by default.

Script/language sensitivity: Used only with Kanji script.

Feature interaction: This feature is exclusive with jp78, jp83, jp90, nlck and similar features. It can be
combined with the palt, vpal, vert and vrt2 features.

Tag: 'hwid'

Friendly name: Half Widths

Function: Replaces glyphs on proportional widths, or fixed widths other than half an em, with glyphs on half-
em (en) widths. Many CJKV fonts have glyphs which are set on multiple widths; this feature selects the half-
em version. There are various contexts in which this is the preferred behavior, including compatibility with
older desktop documents.

Example: The user may replace a proportional Latin glyph with the same character set on a half-em width.

Recommended implementation: The font may contain alternate glyphs designed to be set on half-em widths
(GSUB lookup type 1), or it may specify alternate metrics for the original glyphs (GPOS lookup type 1) which
adjust their spacing to fit in half-em widths.

Application interface: For GIDs found in the hwid coverage table, the application passes the GIDs to the table
and gets back either new GIDs or positional adjustments (XPlacement and XAdvance).

UI suggestion: This feature would normally be off by default.

Script/language sensitivity: Generally used only in CJKV fonts.

Feature interaction: This feature is mutually exclusive with all other glyph-width features (e.g. tnum, fwid, halt,
qwid and twid), which should be turned off when it's applied. It deactivates the kern feature.

369

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 369
	

Tag: 'init'

NOTE This feature description was significantly revised in 2016.

Friendly name: Initial Forms

Registered by: Microsoft/Adobe

Function: Replaces glyphs for characters that have applicable joining properties with an alternate form when
occurring in an initial context. This applies to characters that have one of the following Unicode Joining_Type
property values:

 Right_Joining, if the characters are from a left-to-right script.

 Left_Joining, if the characters are from a right-to-left script.

 Dual_Joining.

Unicode Joining_Type property values are obtained from the Unicode Character Database (UCD) [22].
Specifically, Joining_Type property values are documented in the Unicode Character Database file for joining-
script properties [20].

Example: In an Arabic-script font, the application would apply the 'init' feature to the letter ARABIC LETTER
SEEN (U+0633 “س”) when it precedes a right-joining character, thereby replacing the default “س” glyph with its
left-joining, initial form.

Recommended implementation: The 'init' feature is used to map default forms to corresponding single-joining,
iniital forms. This will usually be implemented using a single substitution (type 1) GSUB lookup, though
contextual substitution GSUB lookups (types 5, 6 or 8) may also be appropriate.

Application interface: The application is responsible for parsing character strings and identifying which of the
joining-related features — initial forms ('init'), medial forms ('medi'), terminal forms ('fina'), and isolated forms
('isol') — to apply to which GIDs, based on character Joining_Type properties. Additional factors, such as the
presence of control characters, may also be considered. For GIDs to which the 'init' feature is applied and that
are found in the 'init' coverage table, the application passes a GID to the lookup tables associate with the
feature and gets back a new GID.

UI suggestion: This feature should be active by default.

Script/language sensitivity: Can be used in any script with joining behavior — that is, the scripts for which
Joining_Type properties are given explicitly in Unicode Character Database file for joining-script properties
[20].

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override. See also ‘fina’, ‘isol’, and ‘medi’.

Tag: 'isol'

NOTE This feature description was significantly revised in 2016.

Friendly name: Isolated Forms

Registered by: Microsoft

Function: Replaces glyphs for characters that have applicable joining properties with an alternate form when
occurring in a isolate (non-joining) context. This applies to characters that have one of the following Unicode
Joining_Type property values:

 Right_Joining.

 Left_Joining.

 Dual_Joining.

370

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

370 ©	ISO/IEC	2019	–	All	rights	reserved
	

 Non_Joining, if the characters are from a script with joining behavior.

Unicode Joining_Type property values are obtained from the Unicode Character Database (UCD) [22].
Specifically, Joining_Type property values are documented in the Unicode Character Database file for joining-
script properties [20]. Scripts that have joining behavior are those scripts with character properties given
explicitly in [20].

Note that, in many fonts that support the relevant scripts, this feature may not be implemented since the
default forms of the relevant characters are the isolated forms. In some fonts, this feature may involve
contextual substitution based on the specific, isolated context.

Example: In an Arabic-script font, the application would apply the 'isol' feature to the letter ARABIC LETTER
HEH (U+0647 “ه”) when not adjacent to any joining character, thereby potentially replacing the default “ه” glyph
with a special, isolated form (likely, a contextual and language-specific substitution, substituting one isolated
form for another).

Recommended implementation: The 'isol' feature is used to map default forms to alternate non-joining, isolate
forms. This will usually be implemented using a single substitution (type 1) GSUB lookup or, often, a
contextual substitution GSUB lookup (types 5, 6 or 8).

Application interface: The application is responsible for parsing character strings and identifying which of the
joining-related features — initial forms ('init'), medial forms ('medi'), terminal forms ('fina'), and isolated forms
('isol') — to apply to which GIDs, based on character Joining_Type properties. Additional factors, such as the
presence of control characters, may also be considered. For GIDs to which the 'isol' feature is applied and that
are found in the 'isol' coverage table, the application passes a GID to the lookup tables associated with the
feature and gets back a new GID.

UI suggestion: In recommended usage, this feature triggers substitutions that are required for correct display
of the given script. It should be applied by default in the appropriate contexts, as determined by script-specific
processing. Control of the feature should not generally be exposed to the user.

Script/language sensitivity: Can be used in any script with joining behavior — that is, the scripts for which
Joining_Type properties are given explicitly in Unicode Character Database file for joining-script properties
[20].

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override. See also ‘fina’, ‘init’, and ‘medi’.

Tag: 'ital'

Friendly name: Italics

Function: Some fonts (such as Adobe's Pro Japanese fonts) will have both Roman and Italic forms of some
characters in a single font. This feature replaces the Roman glyphs with the corresponding Italic glyphs.

Example: The user would apply this feature to replace B with B.

Recommended implementation: The ital table maps the Roman forms in a font to the corresponding Italic
forms (GSUB lookup type 1).

Application interface: For GIDs found in the ital coverage table, the application passes the GIDs to the table
and gets back one new GID for each.

UI suggestion: When a user selects text and applies an Italic style, an application should check for this feature
and use it if present.

Script/language sensitivity: Applies mostly to Latin; but it should be noted that many non-Latin fonts contain
Latin as well.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override. In CJKV fonts it should activate the kern feature (which would be on anyway in other
scripts).

371

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 371
	

Tag: 'jalt'

Friendly name: Justification Alternates

Function: Improves justification of text by replacing glyphs with alternate forms specifically designed for this
purpose (they would have less or more advance width as need may be).

Example: In the Arabic script, providing alternate forms for line final glyphs would result in better justification
and reduce the use of tatweels (Kashidas). eg. replacing a Swash Kaf with an alternate form.

Recommended implementation: The jalt table maps the initial, medial, final or isolated forms to their
corresponding alternate forms (GSUB lookup type 3).

Application interface: The application is responsible for noting line ends/boundaries. For GIDs found in the jalt
coverage table, the application passes a GID to the feature and gets back a new GID.

UI suggestion: This feature could be made active or inactive by default, at the user's preference.

Script/language sensitivity: Can be used in any cursive script.

Feature interaction: If the font contains init, medi, fina, isol features, these need to be called prior to calling
this feature.

Tag: 'jp78'

Friendly name: JIS78 Forms

Function: This feature replaces default (JIS90) Japanese glyphs with the corresponding forms from the JIS C
6226-1978 (JIS78) specification.

Example: The user would invoke this feature to replace kanji character U+5516 with U+555E.

Recommended implementation: When JIS90 glyphs correspond to JIS78 forms, the jp78 table maps each of
those glyphs to their alternates. While many of these substitutions are one-to-one (GSUB lookup type 1),
others require a selection from a set (GSUB lookup type 3). The manufacturer may choose to build two tables
(one for each lookup type) or only one which uses lookup type 3 for all substitutions.

Application interface: For GIDs found in the jp78 coverage table, the application passes the GIDs to the table
and gets back one or more new GIDs. If more than one GID is returned, the application must provide a means
for the user to select the one desired. The application may assume that the first glyph in a set is the preferred
form, so the font developer should order them accordingly.
NOTE This is a change of character code. Besides the original character code, the application should store the code for

the new character.

UI suggestion: This feature should be off by default.

Script/language sensitivity: Applies only to Japanese.

Feature interaction: This feature is mutually exclusive with all other features, which should be turned off when
it's applied, except the palt, vpal, vert and vrt2 features, which may be used in addition.

Tag: 'jp83'

Friendly name: JIS83 Forms

Function: This feature replaces default (JIS90) Japanese glyphs with the corresponding forms from the JIS X
0208-1983 (JIS83) specification.

Example: Because of the Han unification in Unicode, there are no JIS83 glyphs which have distinct Unicode
values, so the substitution cannot be described specifically.

Recommended implementation: When JIS90 glyphs correspond to JIS83 forms, the jp83 table maps each of
those glyphs to their alternates (GSUB lookup type 1).

372

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

372 ©	ISO/IEC	2019	–	All	rights	reserved
	

Application interface: For GIDs found in the jp83 coverage table, the application passes the GIDs to the table
and gets back one or more new GIDs. If more than one GID is returned, the application must provide a means
for the user to select the one desired.

UI suggestion: This feature should be off by default.

Script/language sensitivity: Applies only to Japanese.

Feature interaction: This feature is mutually exclusive with all other features, which should be turned off when
it's applied, except the palt, vpal, vert and vrt2 features, which may be used in addition.

Tag: 'jp90'

Friendly name: JIS90 Forms

Function: This feature replaces Japanese glyphs from the JIS78 or JIS83 specifications with the
corresponding forms from the JIS X 0208-1990 (JIS90) specification.

Example: The user would invoke this feature to replace kanji character U+555E with U+5516.

Recommended implementation: The jp90 table maps each JIS78 and JIS83 form in a font to JIS90 forms
(GSUB lookup type 1). The application stores a record of any simplified forms which resulted from
substitutions (the jp78 or jp83 features); for such forms, applying the jp90 feature undoes the previous
substitution. When there is no record of a substitution, the application uses the jp90 table to get back to the
default form.

Application interface: For GIDs found in the jp90 coverage table, the application passes the GIDs to the table
and gets back one new GID for each.
NOTE This is a change of character code. Besides the original character code, the application should store the code for

the new character.

UI suggestion: This feature should be off by default.

Script/language sensitivity: Applies only to Japanese.

Tag: 'jp04'

Friendly name: JIS2004 Forms

Registered by: Adobe

Function: The National Language Council (NLC) of Japan has defined new glyph shapes for a number of JIS
characters, which were incorporated into JIS X 0213:2004 as new prototypical forms. The 'jp04' feature is a
subset of the 'nlck' feature, and is used to access these prototypical glyphs in a manner that maintains the
integrity of JIS X 0213:2004.

Example: The glyph is replaced by the glyph .

Recommended implementation: One-for-one substitution of non-JIS X 0213:2004 glyphs by the corresponding
JIS X 0213:2004 glyph.

Application interface: For GIDs found in the jp04 coverage table, the application passes the GIDs to the table
and gets back one new GID for each.

UI suggestion: This feature should be off by default.

Script/language sensitivity: Used only with Kanji script.

373

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 373
	

Feature interaction: This feature is exclusive with jp78, jp83, jp90, nlck and similar features. It can be
combined with the palt, vpal, vert and vrt2 features.

Tag: 'kern'

Friendly name: Kerning

Function: Adjusts amount of space between glyphs, generally to provide optically consistent spacing between
glyphs. Although a well-designed typeface has consistent inter-glyph spacing overall, some glyph
combinations require adjustment for improved legibility. Besides standard adjustment in the horizontal
direction, this feature can supply size-dependent kerning data via device tables, "cross-stream" kerning in the
Y text direction, and adjustment of glyph placement independent of the advance adjustment.
NOTE This feature may apply to runs of more than two glyphs, and would not be used in monospaced fonts. This

feature does not apply to text set vertically.

Example: The o is shifted closer to the T in the combination "To".

Recommended implementation: The font stores a set of adjustments for pairs of glyphs (GPOS lookup type 2
or 8). These may be stored as one or more tables matching left and right classes, &/or as individual pairs.
Additional adjustments may be provided for larger sets of glyphs (e.g. triplets, quadruplets, etc.) to overwrite
the results of pair kerns in particular combinations.

Application interface: The application passes a sequence of GIDs to the kern table, and gets back adjusted
positions (XPlacement, XAdvance, YPlacement and YAdvance) for those GIDs. When using the type 2 lookup
on a run of glyphs, it's critical to remember to not consume the last glyph, but to keep it available as the first
glyph in a subsequent run (this is a departure from normal lookup behavior).

UI suggestion: This feature should be active by default for horizontal text setting. Applications may wish to
allow users to add further manually-specified adjustments to suit specific needs and tastes.

Script/language sensitivity: None.

Feature interaction: If 'kern' is activated, 'palt' must also be activated if it exists. (If 'palt' is activated, there is no
requirement that 'kern' must also be activated.) May be used in addition to any other feature except those
which result in fixed (uniform) advance widths (e.g. fwid, halt, hwid, qwid and twid).

Tag: 'lfbd'

Friendly name: Left Bounds

Function: Aligns glyphs by their apparent left extents at the left ends of horizontal lines of text, replacing the
default behavior of aligning glyphs by their origins. This feature is called by the Optical Bounds (opbd) feature
above.

Example: Succeeding lines beginning with T, D and W would shift to the left by varying amounts when the text
is left-justified and this feature is applied.

Recommended implementation: Values for affected glyphs describe the amount by which the placement and
advance width should be altered (GPOS lookup type 1).

Application interface: For GIDs found in the lfbd coverage table, the application passes a GID to the table and
gets back a new XPlacement and XAdvance value.

UI suggestion: This feature is called by an application when the user invokes the opbd feature.

Script/language sensitivity: None.

Feature interaction: Should not be applied to glyphs which use fixed-width features (e.g. fwid, halt, hwid, qwid
and twid) or vertical features (e.g. vert, vrt2, vpal, valt and vhal). Is called by the opbd feature.

Tag: 'liga'

Friendly name: Standard Ligatures

374

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

374 ©	ISO/IEC	2019	–	All	rights	reserved
	

Function: Replaces a sequence of glyphs with a single glyph which is preferred for typographic purposes. This
feature covers the ligatures which the designer/manufacturer judges should be used in normal conditions.

Example: The glyph for ffl replaces the sequence of glyphs f f l.

Recommended implementation: The liga table maps sequences of glyphs to corresponding ligatures (GSUB
lookup type 4). Ligatures with more components must be stored ahead of those with fewer components in
order to be found. The set of standard ligatures will vary by design and script.

Application interface: For sets of GIDs found in the liga coverage table, the application passes the sequence
of GIDs to the table and gets back a single new GID. Full sequences must be passed.

UI suggestion: This feature serves a critical function in some contexts, and should be active by default.

Script/language sensitivity: Applies to virtually all scripts.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override.

Tag: 'ljmo'

Friendly name: Leading Jamo Forms

Function: Substitutes the leading jamo form of a cluster.

Example: In Hangul script, the jamo cluster is composed of three parts (leading consonant, vowel, and trailing
consonant). When a sequence of leading class jamos are found, their combined leading jamo form is
substituted.

Recommended implementation: The ljmo table maps the sequence required to convert a series of jamos into
its leading jamo form (GSUB lookup type 4).

Application interface: For substitutions defined in the ljmo table, the application passes the sequence of GIDs
to the feature, and gets back the GID for the leading jamo form.

UI suggestion: This feature should be on by default.

Script/language sensitivity: Required for Hangul script when Ancient Hangul writing system is supported.

Feature interaction: This feature overrides the results of all other features.

Tag: 'lnum'

Friendly name: Lining Figures

Function: This feature changes selected non-lining figures to lining figures.

Example: The user invokes this feature in order to get lining figures, which fit better with all-capital text.
Various characters designed to be used with figures may also be covered by this feature. In cases where
lining figures are the default form, this feature would undo previous substitutions.

Recommended implementation: The lnum table maps each oldstyle figure, and any associated characters to
the corresponding lining form (GSUB lookup type 1). If the default figures are non-lining, they too are mapped
to the corresponding lining form.

Application interface: For GIDs found in the lnum coverage table, the application passes a GID to the lnum
table and gets back a new GID. Even if the current figures resulted from an earlier substitution, it may not be
correct to simply revert to the original GIDs, because of interaction with the figure width features, so it's best to
use this table.

UI suggestion: This feature should be inactive by default. Users can switch between the lining and oldstyle
sets by turning this feature on or off.

375

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 375
	

NOTE This feature is distinct from the figure width features (pnum and tnum). When the user invokes this feature, the
application may wish to inquire whether a change in width is also desired.

Script/language sensitivity: None.

Feature interaction: This feature overrides the results of the Oldstyle Figures feature (onum).

Tag: 'locl'

Friendly name: Localized Forms

Function: Many scripts used to write multiple languages over wide geographical areas have developed
localized variant forms of specific letters, which are used by individual literary communities. For example, a
number of letters in the Bulgarian and Serbian alphabets have forms distinct from their Russian counterparts
and from each other. In some cases the localized form differs only subtly from the script 'norm', in others the
forms are radically distinct. This feature enables localized forms of glyphs to be substituted for default forms.

Example: The user applies this feature to text to enable localized Bulgarian forms of Cyrillic letters;
alternatively, the feature might enable localized Russian forms in a Bulgarian manufactured font in which the
Bulgarian forms are the default characters.

Recommended implementation: For a given Unicode value, the font contains glyphs for two or more locales.
The locl table maps GIDs for default forms to GIDs for corresponding localized alternatives. These are one-to-
one substitutions (GSUB lookup type 1).

Application interface: Localized forms are associated with specific languages and are activated by language
tags. Which glyph is used as the localized form should be determined by the language the user has specified.
The user can switch localized forms by selecting a new language, or may enable default forms by switching
off the locl feature.

UI suggestion: This feature should be active by default.

Script/language sensitivity: Applies to all scripts and languages; but of course behavior differs by script and
language.

Feature interaction: This feature can be used in combination with any other feature. It replaces and extends
the earlier locale-specific tags zhcn, zhtw, jajp, kokr and vivn which had been defined for CJKV scripts.

Tag: 'ltra'

Friendly name: Left-to-right glyph alternates

Registered by: Adobe

Function: This feature applies glyphic variants (other than mirrored forms) appropriate for left-to-right text. (For
mirrord forms, see 'ltrm'.)

Recommended implementation: These are required to be glyph substitutions, and it is recommended that they
be one-to-one (GSUB lookup type 1).

Application interface: See section “Left-to-right and right-to-left text” in subclause 6.1.4 (Text processing with
OFF Layout).

UI suggestion: None

Script/language sensitivity: Left-to-right runs of text.

Feature interaction: This feature is to be applied simultaneously with other pre-shaping features such as
'ccmp' and 'locl'.

Tag: 'ltrm'

Friendly name: Left-to-right mirrored forms

376

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

376 ©	ISO/IEC	2019	–	All	rights	reserved
	

Registered by: Adobe

Function: This feature applies mirrored forms appropriate for left-to-right text. (For left-to-right glyph alternates,
see 'ltra'.)

Example: The Old South Arabian script is a case of a strong right-to-left script that can have lines laid out left-
to-right, in which case some glyphs would need to be mirrored with the ‘ltrm’ feature.

Recommended implementation: These are required to be glyph substitutions, and it is recommended that they
be one-to-one (GSUB lookup type 1).

Application interface: See section “Left-to-right and right-to-left text” in subclause 6.1.4 (Text processing with
OFF Layout).

UI suggestion: None

Script/language sensitivity: Left-to-right runs of text, also see Example above.

Feature interaction: This feature is to be applied simultaneously with other pre-shaping features such as
'ccmp' and 'locl'.

Tag: 'mark'

Friendly name: Mark Positioning

Function: Positions mark glyphs with respect to base glyphs.
Example: In the Arabic script, positioning the Hamza above the Yeh.

Recommended implementation: This feature may be implemented as a MarkToBase Attachment lookup
(GPOS LookupType = 4) or a MarkToLigature Attachment lookup (GPOS LookupType = 5).

Application interface: For GIDs found in the mark coverage table, the application gets back the positioning or
position adjustment values for the mark glyph.

UI suggestion: This feature should be active by default.

Script/language sensitivity: None.

Feature interaction: None.

Tag: 'med2'

Friendly name: Medial Forms #2

Function: Replaces Alaph glyphs in the middle of Syriac words when the preceding base character cannot be
joined to.

Example: When an Alaph is preceded by a Waw, the Alaph would be replaced by an appropriate form.
This feature is used only for the Syriac script alaph character.

Recommended implementation: The med2 table maps default alphabetic forms to corresponding medial
forms (GSUB lookup type 5).

Application interface: The application is responsible for noting word boundaries. For GIDs in the middle of
words and found in the med2 coverage table, the application passes a GID to the feature and gets back a new
GID.

UI suggestion: This feature should be on by default.

Script/language sensitivity: Used only with the Syriac script.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override. See also init and fina.

377

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 377
	

Tag: 'medi'

NOTE This feature description was significantly revised in 2016.

Friendly name: Medial Forms

Registered by: Microsoft/Adobe

Function: Replaces glyphs for characters that have applicable joining properties with an alternate form when
occurring in a medial context. This applies to characters that have the Unicode Joining_Type property value
Dual_Joining.

Unicode Joining_Type property values are obtained from the Unicode Character Database (UCD) [22].
Specifically, Joining_Type property values are documented in the Unicode Character Database file for joining-
script properties [20].

Example: In an Arabic-script font, the application would apply the 'medi' feature to the letter ARABIC LETTER
QAF (U+0642 “ق”) when it follows a left-joining character and precedes a right-joining character, thereby
replacing the default “ق” glyph with its dual-joining, medial form.

Recommended implementation: The 'medi' feature is used to map default forms to corresponding dual-joining,
medial forms. This will usually be implemented using a single substitution (type 1) GSUB lookup, though
contextual substitution GSUB lookups (types 5, 6 or 8) may also be appropriate.

Application interface: The application is responsible for parsing character strings and identifying which of the
joining-related features — initial forms ('init'), medial forms ('medi'), terminal forms ('fina'), and isolated forms
('isol') — to apply to which GIDs, based on character Joining_Type properties. Additional factors, such as the
presence of control characters, may also be considered. For GIDs to which the 'medi' feature is applied and
that are found in the 'medi' coverage table, the application passes a GID to the lookup tables associate with
the feature and gets back a new GID.

UI suggestion: In recommended usage, this feature triggers substitutions that are required for correct display
of the given script. It should be applied by default in the appropriate contexts, as determined by script-specific
processing. Control of the feature should not generally be exposed to the user.

Script/language sensitivity: Can be used in any script with joining behavior — that is, the scripts for which
Joining_Type properties are given explicitly in Unicode Character Database file for joining-script properties
[20].

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override. See also ‘fina’, ‘init’, and ‘isol’.

Tag: 'mgrk'

Friendly name: Mathematical Greek

Function: Replaces standard typographic forms of Greek glyphs with corresponding forms commonly used in
mathematical notation (which are a subset of the Greek alphabet).

Example: The user applies this feature to U+03A3 (Sigma), and gets U+2211 (summation).

Recommended implementation: The mgrk table maps Greek glyphs to the corresponding forms used for
mathematics (GSUB lookup type 1).

Application interface: For GIDs found in the mgrk coverage table, the application passes a GID to the feature
table and gets back a new GID.
NOTE This is a change of semantic value. Besides the original character codes, the application should store the code

for the new character.

UI suggestion: This feature should be off by default in most applications. Math-oriented applications may want
to activate this feature by default.

Script/language sensitivity: Could apply to any font which includes coverage for the Greek script.

378

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

378 ©	ISO/IEC	2019	–	All	rights	reserved
	

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override.

Tag: 'mkmk'

Friendly name: Mark to Mark Positioning

Function: Positions marks with respect to other marks. Required in various non-Latin scripts like Arabic.

Example: In Arabic, the ligaturised mark Ha with Hamza above it; can also be obtained by positioning these
marks relative to one another.

Recommended implementation: This feature may be implemented as a MarkToMark Attachment lookup
(GPOS lookup type 6).

Application interface: The application gets back positioning values or positional adjustments for marks.

UI suggestion: This feature should be active by default.

Script/language sensitivity: None.

Feature interaction: None.

Tag: 'mset'

Function: Positions Arabic combining marks in fonts for Windows 95 using glyph substitution

Example: In Arabic, the Hamza is positioned differently when placed above a Yeh Barree as compared to the
Alef.

Tag: 'nalt'

Friendly name: Alternate Annotation Forms

Function: Replaces default glyphs with various notational forms (e.g. glyphs placed in open or solid circles,
squares, parentheses, diamonds or rounded boxes). In some cases an annotation form may already be
present, but the user may want a different one.

Example: The user invokes this feature to get U+3200 (the circled form of 'ga') from U+3131 (hangul 'ga').

Recommended implementation: The nalt table maps GIDs for various standard forms to one or more
corresponding annotation forms. While many of these substitutions are one-to-one (GSUB lookup type 1),
others require a selection from a set (GSUB lookup type 3). The manufacturer may choose to build two tables
(one for each lookup type) or only one which uses lookup type 3 for all substitutions. If more than one form is
present, the set of forms for each character should be ordered consistently - both within the font and across
the family.

Application interface: For GIDs found in the nalt coverage table, the application passes a GID and gets back a
set of new GIDs, then stores the one selected by the user.

UI suggestion: This feature should be inactive by default. The application must provide a means for the user to
select the desired form from the set returned by the table. It can note the position of the selected form in a set
of alternates, and offer the glyph at that position as the default selection the next time this feature is invoked.
In the absence of such prior information, the application may assume that the first glyph in a set is the
preferred form, so the font developer should order them accordingly.

Script/language sensitivity: Used mostly in CJKV fonts, but can apply to European scripts.

Feature interaction: This feature is mutually exclusive with all other features, which should be turned off when
it's applied, except the vert and vrt2 features, which may be used in addition.

Tag: 'nlck'

Friendly name: NLC Kanji Forms

379

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 379
	

Function: The National Language Council (NLC) of Japan has defined new glyph shapes for a number of JIS
characters. The 'nlck' feature is used to access those glyphs.

Example: The glyph is replaced by the glyph .

Recommended implementation: One-for-one substitution of non-NLC glyphs by the corresponding NLC glyph.

UI suggestion: This feature should be off by default.

Script/language sensitivity: Used only with Kanji script.

Feature interaction: This feature is exclusive with the 'jp78', 'jp83', 'jp90' and similar features. It can be
combined with the 'palt', 'vpal', 'vert' and 'vrt2' features.

Tag: 'nukt'

Friendly name: Nukta Forms

Function: Produces Nukta forms in Indic scripts.

Example: In Hindi (Devanagari script), a consonant when combined with a nukta gives its nukta form.

Recommended implementation: The nukt table maps the sequence of a consonant followed by a nukta to the
consonant's nukta form (GSUB lookup type 4).

Application interface: The application passes the sequence of GIDs (consonant and nukta), to the table, and
gets back the GID for the nukta form.

UI suggestion: This feature should be on by default.

Script/language sensitivity: Required in Indic scripts.

Feature interaction: This feature overrides the results of all other features.

Tag: 'numr'

Friendly name: Numerators

Function: Replaces selected figures which precede a slash with numerator figures, and replaces the
typographic slash with the fraction slash.

Example: In the string 11/17 selected by the user, the application turns the 11 into numerators, and the slash
into a fraction slash when the user applies the fraction feature (frac).

Recommended implementation: The numr table maps sets of figures and related characters to corresponding
numerator glyphs in the font. It also maps the typographic slash (U+002F) to the fraction slash (U+2044). All
mappings are one-to-one (GSUB lookup type 1).

Application interface: For GIDs found in the numr coverage table, the application passes a GID to the table
and gets back a new GID.

UI suggestion: This feature should normally be called by an application when the user applies the frac feature.

Script/language sensitivity: None.

Feature interaction: This feature supports frac. It may be used in combination with other substitution (GSUB)
features, whose results it may override.

380

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

380 ©	ISO/IEC	2019	–	All	rights	reserved
	

Tag: 'onum'

Friendly name: Oldstyle Figures

Function: This feature changes selected figures from the default or lining style to oldstyle form.

Example: The user invokes this feature to get oldstyle figures, which fit better into the flow of normal upper-
and lowercase text. Various characters designed to be used with figures may also have oldstyle versions.

Recommended implementation: The onum table maps each lining figure, and any associated characters, to
the corresponding oldstyle form (GSUB lookup type 1). If the default figures are non-lining, they too are
mapped to the corresponding oldstyle form.

Application interface: For GIDs found in the onum coverage table, the application passes a GID to the onum
table and gets back a new GID.

UI suggestion: This feature should be inactive by default. Users can switch between the default and oldstyle
figure sets by turning this feature on or off.
NOTE This feature is separate from the figure-width features pnum and tnum. When the user changes figure style, the

application may want to query whether a change in width is also desired.

Script/language sensitivity: None.

Feature interaction: This feature overrides the results of the Lining Figures feature (lnum).

Tag: 'opbd'

Friendly name: Optical Bounds

Function: Aligns glyphs by their apparent left or right extents in horizontal setting, or apparent top or bottom
extents in vertical setting, replacing the default behavior of aligning glyphs by their origins. Another name for
this behavior would be visual justification. The optical edge of a given glyph is only indirectly related to its
advance width or bounding box; this feature provides a means for getting true visual alignment.

Example: Succeeding lines beginning with T, D and W would shift to the left by varying amounts when the text
is left-justified and this feature is applied. Succeeding lines ending with r, h and y would likewise shift to the
right by differing degrees when the text is right-justified and this feature is applied.

Recommended implementation: Values for affected glyphs are defined with a separate record for left, right,
top, and bottom. Each record describes the amount by which the placement and advance width should be
altered (GPOS lookup type 1).

Application interface: For GIDs found in the opbd coverage table, the application calls one of two related
tables, depending on the position of the glyph. For glyphs at the left end of a horizontal line, it calls the lfbd
table, for glyphs at the right end of a horizontal line, it calls the rtbd table.

UI suggestion: This feature should be active by default. It effectively changes the line length, so justification
algorithms should account for this adjustment.

Script/language sensitivity: None.

Feature interaction: Should not be applied to glyphs which use fixed-width features (e.g. fwid, halt, hwid, qwid
and twid) or vertical features (e.g. vert, vrt2, vpal, valt and vhal). Uses lfbd and rtbd features.

Tag: 'ordn'

Friendly name: Ordinals

Function: Replaces default alphabetic glyphs with the corresponding ordinal forms for use after figures. One
exception to the follows-a-figure rule is the numero character (U+2116), which is actually a ligature
substitution, but is best accessed through this feature.

Example: The user applies this feature to turn 2.o into 2.o (abbreviation for secundo).

381

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 381
	

Recommended implementation: The ordn table maps various lowercase letters to corresponding ordinal forms
in a chained context (GSUB lookup type 6), and the sequence No to the numero character (GSUB lookup type
4).

Application interface: For sets of GIDs found in the clig coverage table, the application passes the sequence
of GIDs to the table and gets back new GIDs. Full sequences must be passed.
NOTE This may be a change of semantic value. Besides the original character codes, the application should store the

code for the new character.

UI suggestion: This feature should be off by default.

Script/language sensitivity: Applies mostly to Latin script.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override.

Tag: 'ornm'

Friendly name: Ornaments

Function: This is a dual-function feature, which uses two input methods to give the user access to ornament
glyphs (e.g. fleurons, dingbats and border elements) in the font. One method replaces the bullet character with
a selection from the full set of available ornaments; the other replaces specific "lower ASCII" characters with
ornaments assigned to them. The first approach supports the general or browsing user; the second supports
the power user.

Example: The user inputs qwwwwwwwwwe to form the top of a flourished box in Adobe Caslon, or inputs the
bullet character, then chooses the thistle dingbat.

Recommended implementation: The ornm table maps all ornaments in a font to the bullet character (GSUB
lookup type 3) and each ornament in a font to a corresponding alphanumeric character (GUSB lookup type 1).
The manufacturer may choose to build two tables (one for each lookup type) or only one which uses lookup
type 3 for all substitutions. As in any one-from-many substitution, alternates present in more than one face
should be ordered consistently across a family, so that those alternates can work correctly when switching
between family members.

Application interface: When this feature is invoked, the application must note whether the selected text is the
bullet character (U+2022) or alphanumeric characters. In the first case, it passes the GID for bullet to the ornm
table and gets back a set of GIDs, and gives the user a means to select from among them. In the second case,
for GIDs found in the ornm coverage table, it passes GIDs to the ornm table and gets back new GIDs.

UI suggestion: This feature should be inactive by default. When more than one GID is returned (the bullet
case), an application could display the forms sequentially in context, or present a palette showing all the forms
at once, or give the user a choice between these approaches. Once the user has selected a specific ornament,
that one should be the default selection the next time the bullet is typed. In the absence of such prior
information, the application may assume that the first ornament in a set is the preferred form, so the font
developer should order them accordingly.

Script/language sensitivity: None.

Feature interaction: This feature is mutually exclusive with all other substitution (GSUB) features, which
should be turned off when it's applied.

Tag: 'palt'

Friendly name: Proportional Alternate Widths

Function: Respaces glyphs designed to be set on full-em widths, fitting them onto individual (more or less
proportional) horizontal widths. This differs from pwid in that it does not substitute new glyphs (GPOS, not
GSUB feature). The user may prefer the monospaced form, or may simply want to ensure that the glyph is
well-fit and not rotated in vertical setting (Latin forms designed for proportional spacing would be rotated).

382

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

382 ©	ISO/IEC	2019	–	All	rights	reserved
	

Example: The user may invoke this feature in a Japanese font to get Latin, Kanji, Kana or Symbol glyphs with
the full-width design but individual metrics.

Recommended implementation: The font specifies alternate metrics for the full-width glyphs (GPOS lookup
type 1).

Application interface: For GIDs found in the palt coverage table, the application passes the GIDs to the table
and gets back positional adjustments (XPlacement, XAdvance, YPlacement and YAdvance).

UI suggestion: This feature would be off by default.

Script/language sensitivity: Used mostly in CJKV fonts.

Feature interaction: This feature is mutually exclusive with all other glyph-width features (e.g. fwid, halt, hwid,
qwid and twid), which should be turned off when it's applied. If palt is activated, there is no requirement that
kern must also be activated. If kern is activated, palt must also be activated if it exists.. See also vpal.

Tag:'pcap'

Friendly name: Petite Capitals

Function: Some fonts contain an additional size of capital letters, shorter than the regular smallcaps and
whimsically referred to as petite caps. Such forms are most likely to be found in designs with a small
lowercase x-height, where they better harmonise with lowercase text than the taller smallcaps (for examples
of petite caps, see the Emigre type families Mrs Eaves and Filosofia). This feature turns lowercase characters
into petite capitals. Forms related to petite capitals, such as specially designed figures, may be included.

Example: The user enters text as lowercase or mixed case, and gets petite cap text or text with regular
uppercase and petite caps.
NOTE Some designers, might extend the petite cap lookups to include uppercase-to-smallcap substitutions, creating a

shifting hierarchy of uppercase forms.

Recommended implementation: The pcap table maps lowercase glyphs to the corresponding petite cap forms
(GSUB lookup type 1).

Application interface: For GIDs found in the pcap coverage table, the application passes GIDs to the pcap
table, and gets back new GIDs. Petite cap substitutions should follow language rules for smallcap (smcp)
substitutions.

UI suggestion: This feature should be off by default.

Script/language sensitivity: Applies only to scripts with both upper- and lowercase forms (e.g. Latin, Cyrillic,
Greek).

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override.

Tag: 'pkna'

Friendly name: Proportional Kana

Function: Replaces glyphs, kana and kana-related, set on uniform widths (half or full-width) with proportional
glyphs.

Example: The user may invoke this feature in a Japanese font to get a proportional glyph instead of a
corresponding half- or full-width kana glyph.

383

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 383
	

Recommended implementation: The font contains alternate kana and kana-related glyphs designed to be set
on proportional widths (GSUB lookup type 1).

Application interface: For GIDs found in the pkna coverage table, the application passes the GIDs to the table
and gets back new GIDs.

UI suggestion: This feature would normally be off by default.

Script/language sensitivity: Generally used only in Japanese fonts.

Feature interaction: This feature is mutually exclusive with all other glyph-width features (e.g. fwid, halt, hwid,
palt, pwid, qwid, twid, and vhal), which should be turned off when it's applied. Applying this feature should
activate the kern feature.

Tag: 'pnum'

Friendly name: Proportional Figures

Function: Replaces figure glyphs set on uniform (tabular) widths with corresponding glyphs set on glyph-
specific (proportional) widths. Tabular widths will generally be the default, but this cannot be safely assumed.
Of course this feature would not be present in monospaced designs.

Example: The user may apply this feature to get even spacing for lining figures used as dates in an all-cap
headline.

Recommended implementation: In order to simplify associated kerning and get the best glyph design for a
given width, this feature should use new glyphs for the figures, rather than only adjusting the fit of the tabular
glyphs (although some may be simple copies); i.e. not a GPOS feature. The pnum table maps tabular
versions of lining and/or oldstyle figures to corresponding proportional glyphs (GSUB lookup type 1).

Application interface: For GIDs found in the pnum coverage table, the application passes GIDs to the pnum
table and gets back new GIDs.

UI suggestion: This feature should be off by default. The application may want to query the user about this
feature when the user changes figure style (onum or lnum).

Script/language sensitivity: None.

Feature interaction: This feature overrides the results of the Tabular Figures feature (tnum).

Tag: 'pref'

Friendly name: Pre-base Forms

Function: Substitutes the pre-base form of a consonant.

In some scripts of south or southeast Asia, such as Khmer, the conjoined form of certain consonants is always
denoted as a pre-base form. In the case of some scripts of south India, variations in writing conventions exist
such that a conjoined Ra consonant may be written as a pre-base form, or a below-base or post-base form.
Fonts may be designed to support one or another convention. If a font is designed to support a writing
convention in which conjoined Ra is a pre-base form, the Pre-Base Forms feature would be used.

Example: In the Khmer script, the consonant Ra has a pre-base subscript form subscript called Coeng Ra.
When the sequence of Coeng followed by Ra, its pre-base form is substituted.

Recommended implementation: The pref table maps the sequence required to convert a consonant into its
pre-base form (GSUB lookup type 4).

Application interface: For substitutions defined in the pref table, the application passes the sequence of GIDs
to the table, and gets back the GID for the pre base form of the consonant. When shaping scripts of south
India, the application may examine the results of processing this feature to determine if the conjoining
consonant form needs to be re-ordered.

384

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

384 ©	ISO/IEC	2019	–	All	rights	reserved
	

UI suggestion: In recommended usage, this feature triggers substitutions that are required for correct display
of the given script. It should be applied in the appropriate contexts, as determined by script-specific
processing. Control of the feature should not generally be exposed to the user.

Script/language sensitivity: Required in Khmer and Myanmar (Burmese) scripts that have pre-base forms for
consonants.It is also required for southern Indic scripts that may display a pre-base form of Ra, such as
Malayalam or Telugu.

Feature interaction: This feature is used in conjunction with certain other features to derive required forms of
certain Indic and southeast Asian scripts. The application is expected to process this feature and certain other
features in an appropriate order to obtain the correct set of basic forms for the given script. For Indic scripts,
the following features should be applied in order: nukt, akhn, rphf, rkrf, pref, blwf, half, pstf, cjct. Other
discretionary features for optional typographic effects may also be applied. Lookups for such discretionary
features should be processed after lookups for this feature have been processed.

Tag: 'pres'

Friendly name: Pre-base Substitutions

Function: Produces the pre-base forms of conjuncts in Indic scripts. It can also be used to substitute the
appropriate glyph variant for pre-base vowel signs.

Example: In the Gujarati (Indic) script, the doubling of consonant Ka requires the first Ka to be substituted by
its pre-base form. This in turn ligates with the second Ka. Applying this feature would result in the ligaturised
version of the doubled Ka.

Recommended implementation: The pres table maps a sequence of consonants separated by the virama
(halant), to the ligated conjunct form (GSUB lookup type 4). In the case of pre-base matra substitution, the
appropriate matra can be substituted using contextual substitution (GSUB lookup type 5).

Application interface: For substitutions defined in the pres table, the application passes the sequence of GIDs
to the feature, and gets back the GID for the ligature (or matra as the case may be).

UI suggestion: This feature should be on by default.

Script/language sensitivity: Required in Indic scripts.

Feature interaction: This feature overrides the results of all other features.

Tag: 'pstf'

Friendly name: Post-base Forms

Function: Substitutes the post-base form of a consonant.

Example: In the Gurmukhi (Indic) script, the consonant Ya has a post base form. When the Ya is used as the
second consonant in conjunct formation, its post-base form is substituted.

Recommended implementation: The pstf table maps the sequence required to convert a consonant into its
post-base form (GSUB lookup type 4).

Application interface: For substitutions defined in the pstf table, the application passes the sequence of GIDs
to the feature, and gets back the GID for the post base form of the consonant.

UI suggestion: In recommended usage, this feature triggers substitutions that are required for correct display
of the given script. It should be applied in the appropriate contexts, as determined by script-specific
processing. Control of the feature should not generally be exposed to the user.

Script/language sensitivity: Required in scripts of south and southeast Asia that have post-base forms for
consonants eg: Gurmukhi, Malayalam, Khmer.

Feature interaction: This feature is used in conjunction with certain other features to derive required forms of
Indic and other related scripts. The application is expected to process this feature and certain other features in

385

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 385
	

an appropriate order to obtain the correct set of basic forms for the given script. For Indic scripts, the following
features should be applied in order: nukt, akhn, rphf, rkrf, pref, blwf, half, pstf, cjct. Other discretionary features
for optional typographic effects may also be applied. Lookups for such discretionary features should be
processed after lookups for this feature have been processed.

Tag: 'psts'

Friendly name: Post-base Substitutions

Function: Substitutes a sequence of a base glyph and post-base glyph, with its ligaturised form.

Example: In the Malayalam (Indic) script, the consonant Va has a post base form. When the Va is doubled to
form a conjunct- VVa; the first Va [base] and the post base form that follows it, is substituted with a ligature.

Recommended implementation: The psts table maps identified conjunct formation sequences to
corresponding ligatures (GSUB lookup type 4).

Application interface: For substitutions defined in the psts table, the application passes the sequence of GIDs
to the feature, and gets back the GID for the ligature.

UI suggestion: This feature should be on by default.

Script/language sensitivity: Can be used in any alphabetic script. Required in Indic scripts.

Feature interaction: This feature overrides the results of all other features.

Tag: 'pwid'

Friendly name: Proportional Widths

Function: Replaces glyphs set on uniform widths (typically full or half-em) with proportionally spaced glyphs.
The proportional variants are often used for the Latin characters in CJKV fonts, but may also be used for Kana
in Japanese fonts.

Example: The user may invoke this feature in a Japanese font to get a proportionally-spaced glyph instead of
a corresponding half-width Roman glyph or a full-width Kana glyph.

Recommended implementation: The font contains alternate glyphs designed to be set on proportional widths
(GSUB lookup type 1).

Application interface: For GIDs found in the pwid coverage table, the application passes the GIDs to the table
and gets back new GIDs.

UI suggestion: Applications may want to have this feature active or inactive by default depending on their
markets.

Script/language sensitivity: Although used mostly in CJKV fonts, this feature could be applied in European
scripts.

Feature interaction: This feature is mutually exclusive with all other glyph-width features (e.g. fwid, halt, hwid,
palt, qwid, twid, valt and vhal), which should be turned off when it's applied. Applying this feature should
activate the kern feature.

Tag: 'qwid'

Friendly name: Quarter Widths

Function: Replaces glyphs on other widths with glyphs set on widths of one quarter of an em (half an en). The
characters involved are normally figures and some forms of punctuation.

Example: The user may apply qwid to place a four-digit figure in a single slot in a column of vertical text.

386

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

386 ©	ISO/IEC	2019	–	All	rights	reserved
	

Recommended implementation: The font may contain alternate glyphs designed to be set on quarter-em
widths (GSUB lookup type 1), or it may specify alternate metrics for the original glyphs (GPOS lookup type 1)
which adjust their spacing to fit in quarter-em widths.

Application interface: For GIDs found in the qwid coverage table, the application passes the GIDs to the table
and gets back either new GIDs or positional adjustments (XPlacement and XAdvance).

UI suggestion: This feature would normally be off by default.

Script/language sensitivity: Generally used only in CJKV fonts.

Feature interaction: This feature is mutually exclusive with all other glyph-width features (e.g. fwid, halt, hwid
and twid), which should be turned off when it's applied. It deactivates the kern feature.

Tag: 'rand'

Friendly name: Randomize

Function: In order to emulate the irregularity and variety of handwritten text, this feature allows multiple
alternate forms to be used.

Example: The user applies this feature in FF Kosmic to get three forms of f in one word.

Recommended implementation: The rand table maps GIDs for default glyphs to one or more GIDs for
corresponding alternates (GSUB lookup type 3).

Application interface: For GIDs found in the rand coverage table, the application passes a GID to the rand
table and gets back one or more new GIDs. The application selects one of these either by a pseudo-random
algorithm, or by noting the sequence of IDs returned, storing that sequence, and stepping through that set as
the corresponding character code is invoked.

UI suggestion: This feature should be enabled/disabled via a preference setting; "enabled" is the
recommended default.

Script/language sensitivity: None.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override.

Tag: 'rclt'

Friendly name: Required Contextual Alternates

Function: In specified situations, replaces default glyphs with alternate forms which provide for better joining
behavior or other glyph relationships. Especially important in 'script' typefaces which are designed to have
some or all of their glyphs join, but applicable also to e.g. variants to improve spacing. This feature is similar to
'calt', but with the difference that it should not be possible to turn off 'rclt' substitutions: they are considered
essential to correct layout of the font.

387

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 387
	

Example: In an Arabic calligraphic font the 'rclt' feature is used to contextually substitute variant forms of
letters sin and yeh providing for a correct join between these two letters that differs from the default join of
either to other letters.

Recommended implementation: The rclt table specifies the context in which each substitution occurs, and
maps one or more default glyphs to replacement glyphs (GSUB lookup type 6).

Application interface: The application passes sequences of GIDs to the feature table, and gets back new GIDs.
Note that full sequences must be passed.

UI suggestion: This feature should be active by default. It is recommended that this feature not be turned off,
to avoid breaking obligatory shaping.

Script/language sensitivity: May apply to any script, but is especially important for many styles of Arabic.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override. For complex scripts, lookups for this feature should be ordered and processed after
basic script and language shaping features.

Tag: 'rkrf'

Friendly name: Rakar Forms

Function: Produces conjoined forms for consonants with rakar in Devanagari and Gujarati scripts.

In Devanagari and Gujarati scripts, consonant clusters involving Ra following another consonant are denoted
by conjoining an alternate form of Ra to the preceding consonant. Depending on the particular syllable, the
preceding consonant may be denoted in its full form or as a half form. Because of interactions involving other
behaviors of these scripts, a font implementation may need to process substitution lookups for rakar forms
and half forms in a particular sequence in order to derive the appropriate display for various sequences. In
recommended usage, the Rakar Forms feature is processed before the Half Forms feature; a half form for a
given consonant-Ra combination can be derived by subsequent application of the Half Forms feature. This
sequential ordering allows for correct display results.

Example: In Hindi (Devanagari script), the conjunct KRa is denoted with a conjunct ligature form.

Recommended implementation: The rkrf table maps the sequence of a consonant (the nominal form only)
followed by a virama (halant) followed by Ra (the nominal form) to the corresponding conjoined form (GSUB
lookup type 4).

Application interface: For substitution sequences defined in the rkrf table, the application passes the sequence
of GIDs to the table, and gets back the GID for the half form.

UI suggestion: In recommended usage, this feature triggers substitutions that are required for correct display
of the given script. It should be applied in the appropriate contexts, as determined by script-specific
processing. Control of the feature should not generally be exposed to the user.

388

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

388 ©	ISO/IEC	2019	–	All	rights	reserved
	

Script/language sensitivity: Required in Devanagari and Gujarati scripts.

Feature interaction: This feature is used in conjunction with certain other features to derive required forms of
Indic scripts. The application is expected to process this feature and certain other features in an appropriate
order to obtain the correct set of basic forms: nukt, akhn, rphf, rkrf, pref, blwf, half, pstf, cjct. Other
discretionary features for optional typographic effects may also be applied. Lookups for such discretionary
features should be processed after lookups for this feature have been processed.

Tag: 'rlig'

Friendly name: Required Ligatures

Function: Replaces a sequence of glyphs with a single glyph which is preferred for typographic purposes. This
feature covers those ligatures, which the script determines as required to be used in normal conditions. This
feature is important for some scripts to insure correct glyph formation.

Example: The Arabic character lam followed by alef will always form a ligated lamalef form. This ligated form
is a requirement of the script's shaping. The same happens with the Syriac script.

Recommended implementation: The rlig table maps GIDs for default glyphs to one or more GIDs for
corresponding alternates (GSUB lookup type 3).

Application interface: The rlig table maps sequences of glyphs to corresponding ligatures (GSUB lookup type
4). Ligatures with more components must be stored ahead of those with fewer components in order to be
found. The set of standard ligatures will normally remain constant by script.

UI suggestion: This feature should be active by default. It is recommended that this feature not be turned off to
avoid breaking obligatory script shaping.

Script/language sensitivity: Applies to Arabic and Syriac. May apply to some other scripts.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override. See also liga.

Tag: 'rphf'

Friendly name: Reph Form

Function: Substitutes the Reph form for a consonant and halant sequence.

Example: In the Devanagari (Indic) script, the consonant Ra possesses a reph form. When the Ra is a syllable
initial consonant and is followed by the virama, it is repositioned after the post base vowel sign within the
syllable, and also substituted with a mark that sits above the base glyph.

Recommended implementation: The rphf table maps the sequence of default form of Ra and virama to the
Reph (GSUB lookup type 4).

Application interface: The application passes the GIDs for Ra and virama to the table and gets back the GID
for the reph mark. The application may examine the results of processing other features to determine where in
the sequence the reph mark should be re-ordered to.

UI suggestion: In recommended usage, this feature triggers substitutions that are required for correct display
of the given script. It should be applied in the appropriate contexts, as determined by script-specific
processing. Control of the feature should not generally be exposed to the user.

Script/language sensitivity: Required in Indic scripts. eg: Devanagari, Kannada.

Feature interaction: This feature is used in conjunction with certain other features to derive required forms of
Indic scripts. The application is expected to process this feature and certain other features in an appropriate
order to obtain the correct set of basic forms: nukt, akhn, rphf, rkrf, pref, blwf, half, pstf, cjct. Other
discretionary features for optional typographic effects may also be applied. Lookups for such discretionary
features should be processed after lookups for this feature have been processed.

389

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 389
	

Tag: 'rtbd'

Friendly name: Right Bounds

Function: Aligns glyphs by their apparent right extents at the right ends of horizontal lines of text, replacing the
default behavior of aligning glyphs by their origins. This feature is called by the Optical Bounds (opbd) feature
above.

Example: Succeeding lines ending with r, h and y would shift to the right by differing degrees when the text is
right-justified and this feature is applied.

Recommended implementation: Values for affected glyphs describe the amount by which the placement and
advance width should be altered (GPOS lookup type 1).

Application interface: For GIDs found in the rtbd coverage table, the application passes a GID to the table and
gets back a new XPlacement and XAdvance value.

UI suggestion: This feature is called by an application when the user invokes the opbd feature.

Script/language sensitivity: None.

Feature interaction: Should not be applied to glyphs which use fixed-width features (e.g. fwid, halt, hwid, qwid
and twid) or vertical features (e.g. vert, vrt2, vpal, valt and vhal). Is called by opbd feature.

Tag: 'rtla'

Friendly name: Right-to-left alternates

Registered by: Adobe

Function: This feature applies glyphic variants (other than mirrored forms) appropriate for right-to-left text. (For
mirrored forms, see 'rtlm'.)

Recommended implementation: These are required to be glyph substitutions, and it is recommended that they
be one-to-one (GSUB lookup type 1).

Application interface: See section “Left-to-right and right-to-left text” in subclause 6.1.4 (Text processing with
OFF Layout).

UI suggestion: None.

Script/language sensitivity: Right-to-left runs of text.

Feature interaction: This feature is to be applied simultaneously with other pre-shaping features such as
'ccmp' and 'locl'.

Tag: 'rtlm'

Friendly name: Right-to-left mirrored forms

Registered by: Adobe

Function: This feature applies mirrored forms appropriate for right-to-left text other than for those characters
that would be covered by the character-level mirroring step performed by an OFF layout engine. (For right-to-
left glyph alternates, see 'rtla'.)

Example: The ‘rtlm’ feature replaces the glyph for U+2232, CLOCKWISE CONTOUR INTEGRAL, with one in
which the integral sign is mirrored but the circular arrow has retained its direction.

Recommended implementation: These are required to be glyph substitutions, and it is recommended that they
be one-to-one (GSUB lookup type 1).

Application interface: See section “Left-to-right and right-to-left text” in subclause 6.1.4 (Text processing with
OFF Layout).

390

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

390 ©	ISO/IEC	2019	–	All	rights	reserved
	

UI suggestion: None.

Script/language sensitivity: Right-to-left runs of text.

Feature interaction: This feature is to be applied simultaneously with other pre-shaping features such as
'ccmp' and 'locl'.

Tag: 'ruby'

Friendly name: Ruby Notation Forms

Function: Japanese typesetting often uses smaller kana glyphs, generally in superscripted form, to clarify the
meaning of kanji which may be unfamiliar to the reader. These are called ruby, from the old typesetting term
for four-point-sized type. This feature identifies glyphs in the font which have been designed for this use,
substituting them for the default designs.

Example: The user applies this feature to the kana character U+3042, to get the ruby form for annotation.

Recommended implementation: The font contains alternate glyphs for all kana characters which are enabled
for ruby notation. The ruby table maps GIDs for default forms to GIDs for corresponding ruby alternates.
These are one-to-one substitutions (GSUB lookup type 1).

Application interface: For GIDs found in the ruby coverage table, the application passes the GIDs for default
forms to the table and gets back new GIDs for ruby forms. The application then scales and positions these
forms according to its defaults, which may take user parameters.

UI suggestion: This feature should be inactive by default. Applications may offer the user an opportunity to
specify the degree of scaling and baseline shift.

Script/language sensitivity: Applies only to Japanese.

Feature interaction: This feature overrides the results of any other feature for the affected characters.

Tag: 'rvrn'

Friendly name: Required Variation Alternates

Registered by: Microsoft

Function: This feature is used in fonts that support OFF Font Variations in order to select alternate glyphs for
particular variation instances. (For background on OFF font variations, see "Font variations overview".)

When a variable font is used, all of the interpolated variants of a given glyph ID have exactly the same
contours and points. It is possible to use glyph variation mechanisms to make significant outline changes,
such as reducing strokes in heavy-weight or narrow-width variants, but this approach may be difficult to
implement and may not produce desired results for all variation instances. Instead, better results for these
scenarios might be achieved by substitution to a different glyph ID. The specific substitutions applied would be
conditioned by the particular variation instance that is selected by the user. This conditional behavior is
implemented using the required variation alternates feature in conjunction with a FeatureVariations table
within the GSUB table.

Example: A variable font supports weight variations ranging from thin to black. The default glyph for the dollar
sign has two vertical strokes running through the full extent of the glyph. In the bold variation instance, the
default glyph is substituted to an alternate glyph that has only one vertical stroke. In the black variation
instance, the default glyph is substituted to an alternate glyph have has only single vertical bars at the top and
bottom extremities, with no vertical bars in the two counters in between.

Recommended implementation: The feature is used to activate single substitution (GSUB type 1) lookups, and
is always used in conjunction with a FeatureVariations table. Typically, a FeatureTable referenced in a
FeatureRecord with the 'rvrn' tag will have LookupCount set to 0; in this way, the default variation instance
does not have any glyph substitution applied but, rather, uses default glyphs. Alternate glyphs for particular
variation instances are obtained by adding a substitution of the feature table to an alternate feature table

391

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 391
	

within a FeatureVariations table. Different alternate feature tables may be selected using condition sets that
specify particular variation-axis value ranges.

One or more Condition tables is used to determine variation-axis value ranges for which an alternate feature
table (and associated lookups) is selected. The axis values used to trigger a condition should normally be
midway between values used for named instances. This will avoid any possibility of inconsistent behavior in
different applications when using named instances that might arise due to small discrepancies in processing
the numeric values.

The default language system for the 'DFLT' script can reference a feature record for this feature with a feature
table that will be substituted for particular variation instances to use lookups that apply default, language-
independent glyph substitutions; this feature record should be the first feature record for this feature. Some
applications may choose to process this feature without processing other features or the script/language
system hierarchy; for this purpose, they should choose the first feature record for this feature to obtain the
most suitable substitutions for language-independent results.

Application interface: Application of the 'rvrn' feature is mandatory in implementations that support OFF Font
Variations whenever a variable font is in use. The feature should be processed in any layout process that
supports use of variations, even if other OFF Layout processing is not supported.

The feature is applied only during the process of deriving final glyph IDs (GSUB); it is not used for glyph
positioning (GPOS). It should be processed early in GSUB processing, before application of the localized
forms feature or features related to shaping of complex scripts or discretionary typographic effects.

Processing of the 'rvrn' feature also requires processing of the FeatureVariations table. ConditionSet tables
are scanned for a ConditionSet matching the current variation instance, and then a corresponding
FeatureTableSubstitution table is used to locate an alternate feature table. For complete details on processing
a FeatureVariations table, see "OFF layout common table formats".

When an applicable feature table is located, only single substitution (GSUB type 1) lookups are processed;
any other lookup types are ignored. For any glyph IDs in the coverage table, the application passes the glyph
ID to the lookup, and gets back the new glyph ID.

UI suggestion: The 'rvrn' feature is mandatory: it should be active by default and not directly exposed to user
control.

Script/language sensitivity: Used for all languages and scripts.

Feature interaction: The feature should be processed early after initial character-to-glyph mapping, before
application of the localized forms ('locl') feature, any features related to shaping of complex scripts, or any
discretionary features.

Tag: 'salt'

Friendly name: Stylistic Alternates

Function: Many fonts contain alternate glyph designs for a purely esthetic effect; these don't always fit into a
clear category like swash or historical. As in the case of swash glyphs, there may be more than one alternate
form. This feature replaces the default forms with the stylistic alternates.

Example: The user applies this feature to Industria to get the alternate form of g.

Recommended implementation: The salt table maps GIDs for default forms to one or more GIDs for
corresponding stylistic alternatives. While many of these substitutions are one-to-one (GSUB lookup type 1),
others require a selection from a set (GSUB lookup type 3). The manufacturer may choose to build two tables
(one for each lookup type) or only one which uses lookup type 3 for all substitutions. As in any one-from-many
substitution, alternates present in more than one face should be ordered consistently across a family, so that
those alternates can work correctly when switching between family members.

Application interface: For GIDs found in the salt coverage table, the application passes the GIDs to the salt
table and gets back one or more new GIDs. If more than one GID is returned, the application must provide a
means for the user to select the one desired.

392

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

392 ©	ISO/IEC	2019	–	All	rights	reserved
	

UI suggestion: This feature should be inactive by default. When more than one GID is returned, an application
could display the forms sequentially in context, or present a palette showing all the forms at once, or give the
user a choice between these approaches. The application may assume that the first glyph in a set is the
preferred form, so the font developer should order them accordingly.

Script/language sensitivity: None.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override.

Tag: 'sinf'

Friendly name: Scientific Inferiors

Function: Replaces lining or oldstyle figures with inferior figures (smaller glyphs which sit lower than the
standard baseline, primarily for chemical or mathematical notation). May also replace lowercase characters
with alphabetic inferiors.

Example: The application can use this feature to automatically access the inferior figures (more legible than
scaled figures).

Recommended implementation: The sinf table maps figures to the corresponding inferior forms (GSUB lookup
type 1).

Application interface: For GIDs found in the sinf coverage table, the application passes a GID to the feature
and gets back a new GID.

UI suggestion: This feature should be off by default.

Script/language sensitivity: Can apply to nearly any script.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override.

Tag: 'size'
NOTE Use of this feature has been superseded by the 'STAT' table. See subclause 9.9 in the "General

recommendations" for more information.

Friendly name: Optical size

Function: This feature stores two kinds of information about the optical size of the font: design size (the point
size for which the font is optimized) and size range (the range of point sizes which the font can serve well), as
well as other information which helps applications use the size range. The design size is useful for
determining proper tracking behavior. The size range is useful in families which have fonts covering several
ranges. Additional values serve to identify the set of fonts which share related size ranges, and to identify their
shared name.
NOTE Sizes refer to nominal final output size, and are independent of viewing magnification or resolution.

Required implementation:

The Feature table of this GPOS feature contains no lookups; its Feature Parameters field records an offset
from the beginning of the Feature table to an array of five 16-bit unsigned integer values. The size feature
must be implemented in all fonts in any family which uses the feature. In this usage, a family is a set of fonts
which share a TypographicFamily name (name ID 16), or Font Family name (name ID 1) if the
TypographicFamily name is absent.

 The first value represents the design size in 720/inch units (decipoints). The design size entry must be
non-zero. When there is a design size but no recommended size range, the rest of the array will
consist of zeros.

 The second value has no independent meaning, but serves as an identifier that associates fonts in a
subfamily. All fonts which share a Typographic or Font Family name and which differ only by size

393

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 393
	

range shall have the same subfamily value, and no fonts which differ in weight or style shall have the
same subfamily value. If this value is zero, the remaining fields in the array will be ignored.

 The third value enables applications to use a single name for the subfamily identified by the second
value. If the preceding value is non-zero, this value must be set in the range 256 - 32767 (inclusive). It
records the value of a field in the name table, which must contain English-language strings encoded in
Windows Unicode and Macintosh Roman, and may contain additional strings localized to other scripts
and languages. Each of these strings is the name an application should use, in combination with the
family name, to represent the subfamily in a menu. Applications will choose the appropriate version
based on their selection criteria.

 The fourth and fifth values represent the small end of the recommended usage range (exclusive) and
the large end of the recommended usage range (inclusive), stored in 720/inch units (decipoints).
Ranges must not overlap, and should generally be contiguous.

Example: The size information in Bell Centennial is [60 0 0 0 0]. This tells an application that the fontâs design
size is six points, so larger sizes may need proportionate reduction in default inter-glyph spacing. The size
information in Minion Pro Semibold Condensed Subhead is [180 3 257 139 240]. These values tell an
application that:

 The font's design size is 18 points;

 This font is part of a subfamily of fonts that differ only by the size range which each covers, and which
share the arbitrary identifier number 3;

 ID 257 in the name table is the suggested menu name for this subfamily. In this case, the string at
name ID 257 is Semibold Condensed;

 This font is the recommended choice from sizes greater than 13.9-point up through 24-points.

Application interface: When the user specifies a size, the application checks for a size feature in the active
font. If none is found, the application follows its default behavior. If one is found, the application follows the
specified offset to retrieve the five values.

 Design size: Applications which offer size-based tracking have a pre-defined curve which they can
apply. By default, this curve should be set to produce no adjustment at the font's design size (first
value in the array, in decipoints).

 Size ranges: If the second value in the size array is non-zero, the font has a recommended size range.
When any such font is selected by the user, the application builds a list of all fonts with this subfamily
value and the same TypographicFamily name, and notes the size range in the current font.
Applications may want to cache the subfamily list at this point. If the specified size falls in the current
font's range, the application uses the current font. If not, the application checks the other ranges in the
subfamily, and if the specified size falls in one of them, uses that font. If the specified size is not in any
range present, the font with the range closest to the specified value is used. If the specified size falls
exactly between two ranges, the range with the larger values is used. Since adding or removing fonts
from a subfamily may cause reflow, applications should note which fonts are used for which text.

UI suggestion: This feature should be active by default. Applications may want to present the tracking curve to
the user for adjustments via a GUI. At start-up, and when fonts are added or removed, applications may want
to build a list of fonts with such ranges, and display the filtered subfamily names in their font selection UI, with
each filtered name representing the full set of related sizes. Applications may also present a setting which
allows the user to select non-default sizes (for example, in the case where final output is intended for on-
screen viewing, a smaller optical size will produce better results). In such a case, the font-selection UI should
present the unfiltered names. Applications should notify the user if fonts are removed or added from a
subfamily with size ranges, and query about desired behavior.

Script/language sensitivity: None. The FeatureParams of all ‘size’ features in the GPOS FeatureList must
point to the same set of values.

394

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

394 ©	ISO/IEC	2019	–	All	rights	reserved
	

Feature interaction: None.

Tag: 'smcp'

Friendly name: Small Capitals

Function: This feature turns lowercase characters into small capitals. This corresponds to the common SC
font layout. It is generally used for display lines set in Large & small caps, such as titles. Forms related to
small capitals, such as oldstyle figures, may be included.

Example: The user enters text as mixed capitals and lowercase, and gets Large & small cap text.

Recommended implementation: The smcp table maps lowercase glyphs to the corresponding small-cap forms
(GSUB lookup type 1).

Application interface: For GIDs found in the smcp coverage table, the application passes GIDs to the smcp
table, and gets back new GIDs.
NOTE Applications should treat ß (U+00DF) as a pair of s characters, and that the Turkish dotless i maps to the normal

small cap I.

UI suggestion: This feature should be off by default.

Script/language sensitivity: Applies only to bicameral scripts (i.e. those with case differences), such as Latin,
Greek, Cyrillic, and Armenian.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override. Also see c2sc.

Tag: 'smpl'

Friendly name: Simplified Forms

Function: Replaces 'traditional' Chinese or Japanese forms with the corresponding 'simplified' forms.

Example: The user gets U+53F0 when U+6AAF, U+81FA, or U+98B1 is entered.

Recommended implementation: The smpl table maps each traditional form in a font to a corresponding
simplified form (GSUB lookup type 1).
NOTE More than one traditional form may map to a single simplified form.

Application interface: For GIDs found in the smpl coverage table, the application passes the GIDs to the table
and gets back one new GID for each.
NOTE This is a change of character code. Besides the original character code, the application should store the code for

the new character.

UI suggestion: This feature would be off by default, but could be made the default by a preference setting.

Script/language sensitivity: Applies only to Chinese and Japanese.

Feature interaction: This feature is mutually exclusive with all other features, which should be turned off when
it’s applied, except the palt, vert and vrt2 features, which may be used in addition; trad and tnam are mutally
exclusive, and override the results of smpl.

Tag: 'ss01' - 'ss20'

Friendly name: Stylistic Set 1 - Stylistic Set 20

Function: In addition to, or instead of, stylistic alternatives of individual glyphs (see 'salt' feature), some fonts
may contain sets of stylistic variant glyphs corresponding to portions of the character set, e.g. multiple variants
for lowercase letters in a Latin font. Glyphs in stylistic sets may be designed to harmonise visually, interract in

395

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 395
	

particular ways, or otherwise work together. Examples of fonts including stylistic sets are Zapfino Linotype and
Adobe's Poetica. Individual features numbered sequentially with the tag name convention 'ss01' 'ss02' 'ss03' .
'ss20' provide a mechanism for glyphs in these sets to be associated via GSUB lookup indexes to default
forms and to each other, and for users to select from available stylistic sets.

Recommended implementation: An ssXX table maps GIDs for default forms to one GIDs for corresponding
stylistic alternatives in each set. Each ssXX feature uses one-to-one (GSUB lookup type 1) substitutions. Font
developers may choose to map only from default forms to variants for each stylistic set, or may choose to map
between all stylistic sets in each feature, depending on intended user experience. For example, feature 'ss03'
might contain lookups mapping variant glyphs from 'ss01' and 'sso2' to corresponding variants in 'ss03', in
addition to mapping from default forms.

The FeatureParams field of the Feature Table of these GSUB features may be set to 0, or to an offset to a
Feature Parameters table comprising two successive uint16 values, as follows:

 Version (set to 0): This corresponds to a "minor" version number. Additional data may be added to the
end of this Feature Parameters table in the future.

 UI Name ID: The 'name' table name ID that specifies a string (or strings, for multiple languages) for a
user-interface label for this feature. The value of uiLabelNameId is expected to be in the font-specific
name ID range (256–32767), though that is not a requirement in this Feature Parameters specification.
The user-interface label for the feature can be provided in multiple languages. An English string
should be included as a fallback. The string should be kept to a minimal length to fit comfortably with
different application interfaces.

Application interface: The application is responsible for counting and enumerating the number of features in
the font with tag names of the format 'ss01' to 'ss20', and for presenting the user with an appropriate selection
mechanism. For GIDs found in the ssXX coverage table, the application passes the GIDs to the ssXX table
and gets back one or more new GIDs.

UI suggestion: This feature should be off by default.

Script/language sensitivity: None. For each respective[/distinct] 'ssXX' feature, the FeatureParams in the
FeatureList must point to the same set of values.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override. After an ssXX feature has been applied, the user may wish to apply glyph-specific
features, e.g. 'salt', to individual glyphs in the resulting layout; font developers are responsible for ordering
substitution lookups to obtain desired user experience.

Tag: 'ssty'

Friendly name: Math script style alternates
Function: This feature provides glyph variants adjusted to be more suitable for use in subscripts and
superscripts. The script style forms should not be scaled or moved in the font; scaling and moving them is
done by the math handling client. Instead, the ssty feature should provide glyph forms that result in shapes
that look good as superscripts and subscripts when scaled and positioned by the Math engine. When
designing the script forms, the font developer may assume that
MATH.MathConstants.ScriptPercentScaleDown and MATH.MathConstants.ScriptScriptPercentScaleDown
will be the scaling factors used by the Math engine.
This feature can have a parameter indicating the script level: 1 for simple subscripts and superscripts, 2 for
second level subscripts and superscripts (that is, scripts on scripts), and so on. (Currently, only the first two
alternates are used). For glyphs that are not covered by this feature, the original glyph is used in subscripts
and superscripts..

Example: Depending In formula letter b will be substituted with script level 1 variant and letter c will be

substituted with level 2 variant

Recommended implementation: Alternate substitution, with parameter 1 or 2 corresponding to sub- or super-
script level alternate glyphs. If there are no second-level alternates defined in the font, single substitution may

396

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

396 ©	ISO/IEC	2019	–	All	rights	reserved
	

also be used. Glyphs that don’t have script alternates can be omitted from this table. See MATH table
specification for details.

Application interface: Feature is invoked automatically by math layout handler depending on nesting level
inside the math formula.

UI suggestion: In recommended usage, this feature triggers substitutions that are required for correct display
of math formula. It should be applied in the appropriate contexts, as determined by math layout handler.
Control of the feature should not generally be exposed to the user.

Script/language sensitivity: Applied to math formula layout.

Feature interaction: This feature is applied to individual glyphs during layout of math formula.

Tag: 'stch'

Friendly name: Stretching Glyph Decomposition

Function: Unicode characters, such as the Syriac Abbreviation Mark (U+070F), that enclose other characters need to be
able to stretch in order to dynamically adapt to the width of the enclosed text. This feature defines a decomposition set
consisting of an odd number of glyphs which describe the stretching glyph. The odd numbered glyphs in the
decomposition are fixed reference points which are distributed evenly from the start to the end of the enclosed text. The
even numbered glyphs may be repeated as necessary to fill the space between the fixed glyphs. The first and last glyphs
may either be simple glyphs with width at the baseline, or mark glyphs. All other decomposition glyphs should have width,
but must be defined as mark glyphs.

Example: In Syriac, the character 0x070F is a control character that is rendered as a line above an abbreviation in Syriac
script. The line should have a circle at each end and at the mid point. The decomposition sequence for this character
should consist of a circle at the start of a line, a connecting line, a circle on a line for the mid point, a second connecting
line, and a circle at the end of the line. The connecting lines will repeat in order to fill the space between the circle glyphs.

Recommended implementation: The stch table maps the character to a set containing an odd number of corresponding
glyphs (GSUB lookup type 2). The rendering engine reorders the last glyph from the substituted set to the end of the set of
characters being enclosed. The remaining glyphs from the substituted set are positioned at the start of the set of
characters being enclosed. Odd-numbered glyphs in the decomposition set are positioned so that they are distributed
evenly over the width of the text being enclosed. Even-numbered glyphs in the decomposition set are repeated by the
rendering engine so the width of the space between fixed, odd-numbered glyphs is filled by the spacing, even-numbered
glyphs.

Application interface: For GIDs found in the stch coverage table, the application passes the sequence of GIDs to the table,
and gets back the GIDs for the multiple substitution.

UI suggestion: This feature should be on by default.

Script/language sensitivity: None.

Feature interaction: None.

Tag: 'subs'

Friendly name: Subscript

Function: The 'subs' feature may replace a default glyph with a subscript glyph, or it may combine a glyph
substitution with positioning adjustments for proper placement.

Recommended implementation: First, a single or contextual substitution lookup implements the subscript
glyph (GSUB lookup type 1). Then, if the glyph needs repositioning, an application may apply a single
adjustment, pair adjustment, or contextual adjustment positioning lookup to modify its position.

Application interface: For GIDs found in the subs coverage table, the application passes a GID to the feature
and gets back a new GID. This is a change of semantic value. Besides the original character codes, the
application should store the code for the new character.

UI suggestion: This feature should be off by default.

Script/language sensitivity: Can apply to nearly any script.

397

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 397
	

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override.

Tag: 'sups'

Friendly name: Superscript

Function: Replaces lining or oldstyle figures with superior figures (primarily for footnote indication), and
replaces lowercase letters with superior letters (primarily for abbreviated French titles).

Example: The application can use this feature to automatically access the superior figures (more legible than
scaled figures) for footnotes, or the user can apply it to Mssr to get the classic form.

Recommended implementation: The sups table maps figures and lowercase letters to the corresponding
superior forms (GSUB lookup type 1).

Application interface: For GIDs found in the sups coverage table, the application passes a GID to the feature
and gets back a new GID.
NOTE This can include a change of semantic value. Besides the original character codes, the application should store

the code for the new character.

UI suggestion: This feature should be off by default.

Script/language sensitivity: Can apply to nearly any script.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override.

Tag: 'swsh'

Friendly name: Swash

Function: This feature replaces default character glyphs with corresponding swash glyphs. It should be noted
that there may be more than one swash alternate for a given character.

Example: The user inputs the ampersand character when setting text with Poetica with this feature active, and
is presented with a choice of the 63 ampersand forms in that face.

Recommended implementation: The swsh table maps GIDs for default forms to those for one or more
corresponding swash forms. While many of these substitutions are one-to-one (GSUB lookup type 1), others
require a selection from a set (GSUB lookup type 3). The manufacturer may choose to build two tables (one
for each lookup type) or only one which uses lookup type 3 for all substitutions. If several styles of swash are
present across the font, the set of forms for each character should be ordered consistently.

Application interface: For GIDs found in the swsh coverage table, the application passes the GIDs to the swsh
table and gets back one or more new GIDs. If more than one GID is returned, the application must provide a
means for the user to select the one desired.

UI suggestion: This feature should be inactive by default. When more than one GID is returned, an application
could display the forms sequentially in context, or present a palette showing all the forms at once, or give the
user a choice between these approaches. The application may assume that the first glyph in a set is the
preferred form, so the font developer should order them accordingly.

Script/language sensitivity: Does not apply to ideographic scripts.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override.

398

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

398 ©	ISO/IEC	2019	–	All	rights	reserved
	

Tag: 'titl'

Friendly name: Titling

Function: This feature replaces the default glyphs with corresponding forms designed specifically for titling.
These may be all-capital and/or larger on the body, and adjusted for viewing at larger sizes.

Example: The user applies this feature in Adobe Garamond to get the titling caps.

Recommended implementation: The titl table maps default forms to corresponding titling forms (GSUB lookup
type 1).

Application interface: For GIDs found in the titl coverage table, the application passes the GIDs to the titl table
and gets back new GIDs.

UI suggestion: This feature should be off by default.

Script/language sensitivity: None.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override.

Tag: 'tjmo'

Friendly name: Trailing Jamo Forms

Function: Substitutes the trailing jamo form of a cluster.

Example: In Hangul script, the jamo cluster is composed of three parts (leading consonant, vowel, and trailing
consonant). When a sequence of trailing class jamos are found, their combined trailing jamo form is
substituted.

Recommended implementation: The tjmo table maps the sequence required to convert a series of jamos into
its trailing jamo form (GSUB lookup type 4).

Application interface: For substitutions defined in the tjmo table, the application passes the sequence of GIDs
to the feature, and gets back the GID for the trailing jamo form.

UI suggestion: This feature should be on by default.

Script/language sensitivity: Required for Hangul script when Ancient Hangul writing system is supported.

Feature interaction: This feature overrides the results of all other features.

Tag: 'tnam'

Friendly name: Traditional Name Forms

Function: Replaces 'simplified' Japanese kanji forms with the corresponding 'traditional' forms. This is
equivalent to the Traditional Forms feature, but explicitly limited to the traditional forms considered proper for
use in personal names (as many as 205 glyphs in some fonts).

Example: The user inputs U+4E9C and gets U+4E9E.

Recommended implementation: The tnam table maps simplified forms in a font to corresponding traditional
forms which can be used in personal names (GSUB lookup type 1). The application stores a record of any
simplified forms which resulted from substitutions (the smpl feature); for such forms, applying the tnam feature
undoes the previous substitution.

Application interface: For GIDs found in the tnam coverage table, the application passes the GIDs to the table
and gets back new GIDs.
NOTE This is a change of character code. Besides the original character code, the application should store the code for

the new character.

399

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 399
	

UI suggestion: This feature should be off by default.

Script/language sensitivity: Applies only to Japanese.

Feature interaction: May include some characters affected by the Proportional Alternate Widths feature (palt);
trad and tnam are mutually exclusive, and override the results of smpl.

Tag: 'tnum'

Friendly name: Tabular Figures

Function: Replaces figure glyphs set on proportional widths with corresponding glyphs set on uniform (tabular)
widths. Tabular widths will generally be the default, but this cannot be safely assumed. Of course this feature
would not be present in monospaced designs.

Example: The user may apply this feature to get oldstyle figures to align vertically in a column.

Recommended implementation: In order to simplify associated kerning and get the best glyph design for a
given width, this feature should use new glyphs for the figures, rather than only adjusting the fit of the
proportional glyphs (although some may be simple copies); i.e. not a GPOS feature. The tnum table maps
proportional versions of lining &/or oldstyle figures to corresponding tabular glyphs (GSUB lookup type 1).

Application interface: For GIDs found in the tnum coverage table, the application passes GIDs to the tnum
table and gets back new GIDs.

UI suggestion: This feature should be off by default. The application may want to query the user about this
feature when the user changes figure style (onum or lnum).

Script/language sensitivity: None.

Feature interaction: This feature overrides the results of the Proportional Figures feature (pnum).

Tag: 'trad'

Friendly name: Traditional Forms

Function: Replaces 'simplified' Chinese hanzi or Japanese kanji forms with the corresponding 'traditional'
forms.

Example: The user inputs U+53F0 and is offered a choice of U+6AAF, U+81FA, or U+98B1.

Recommended implementation: The trad table maps each simplified form in a font to one or more traditional
forms. While many of these substitutions are one-to-one (GSUB lookup type 1), others require a selection
from a set (GSUB lookup type 3). The manufacturer may choose to build two tables (one for each lookup type)
or only one which uses lookup type 3 for all substitutions. As in any one-from-many substitution, alternates
present in more than one face should be ordered consistently across a family, so that those alternates can
work correctly when switching between family members.

Application interface: For GIDs found in the trad coverage table, the application passes the GIDs to the table
and gets back one or more new GIDs. If more than one GID is returned, the application must provide a means
for the user to select the one desired. The application stores a record of any simplified forms which resulted
from substitutions (the smpl feature); for such forms, applying the trad feature undoes the previous
substitution.
NOTE This is a change of character code. Besides the original character code, the application should store the code for

the new character.

UI suggestion: This feature should be inactive by default. If there's no record of a conversion from traditional
to simplified, the user must be offered a set of possibilities from which to select. The application may note the
user's choice, and offer it as a default the next time the source simplified character is encountered. In the
absence of such prior information, the application may assume that the first glyph in a set is the preferred form,
so the font developer should order them accordingly.

400

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

400 ©	ISO/IEC	2019	–	All	rights	reserved
	

Script/language sensitivity: Applies only to Chinese and Japanese.

Feature interaction: May include some characters affected by the Proportional Alternate Widths feature (palt);
trad and tnam are mutually exclusive, and override the results of smpl.

Tag: 'twid'

Friendly name: Third Widths

Function: Replaces glyphs on other widths with glyphs set on widths of one third of an em. The characters
involved are normally figures and some forms of punctuation.

Example: The user may apply twid to place a three-digit figure in a single slot in a column of vertical text.

Recommended implementation: The font may contain alternate glyphs designed to be set on third-em widths
(GSUB lookup type 1), or it may specify alternate metrics for the original glyphs (GPOS lookup type 1) which
adjust their spacing to fit in third-em widths.

Application interface: For GIDs found in the twid coverage table, the application passes the GIDs to the table
and gets back either new GIDs or positional adjustments (XPlacement and XAdvance).

UI suggestion: This feature would normally be off by default.

Script/language sensitivity: Generally used only in CJKV fonts.

Feature interaction: This feature is mutually exclusive with all other glyph-width features (e.g. fwid, halt, hwid
and qwid), which should be turned off when it's applied. It deactivates the kern feature.

Tag: 'unic'

Friendly name: Unicase

Function: This feature maps upper- and lowercase letters to a mixed set of lowercase and small capital forms,
resulting in a single case alphabet (for an example of unicase, see the Emigre type family Filosofia). The
letters substituted may vary from font to font, as appropriate to the design. If aligning to the x-height, smallcap
glyphs may be substituted, or specially designed unicase forms might be used. Substitutions might also
include specially designed figures.

Example: The user enters text as uppercase, lowercase or mixed case, and gets unicase text.

Recommended implementation: The unic table maps some uppercase and lowercase glyphs to corresponding
unicase forms (GSUB lookup type 1).

Application interface: For GIDs found in the unic coverage table, the application passes GIDs to the unic table,
and gets back new GIDs.

UI suggestion: This feature should be off by default.

Script/language sensitivity: Applies only to scripts with both upper- and lowercase forms (e.g. Latin, Cyrillic,
Greek).

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override.

Tag: 'valt'

Friendly name: Alternate Vertical Metrics

401

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 401
	

Function: Repositions glyphs to visually center them within full-height metrics, for use in vertical setting.
Typically applies to full-width Latin glyphs, which are aligned on a common horizontal baseline and not rotated
when set vertically in CJKV fonts.

Example: Applying this feature would shift a Roman h down, or y up, from their default full-width positions.

Recommended implementation: The font specifies alternate metrics for the original glyphs (GPOS lookup type
1).

Application interface: For GIDs found in the valt coverage table, the application passes the GIDs to the table
and gets back positional adjustments (YPlacement).

UI suggestion: This feature should be active by default in vertical-setting contexts.

Script/language sensitivity: Applies only to scripts with vertical writing modes.

Feature interaction: This feature is mutually exclusive with all other glyph-height features (e.g. vhal and vpal),
which should be turned off when it's applied. It deactivates the kern feature.

Tag: 'vatu'

Friendly name: Vattu Variants

Function: : In an Indic consonant conjunct, substitutes a ligature glyph for a base consonant and a following
vattu (below-base) form of a conjoining consonant, or for a half form of a consonant and a following vattu form.

Example: In the Devanagari (Indic) script, the consonant Ra takes a vattu form, when it is not the syllable
initial consonant in a conjunct. This vattu form ligates with the base consonant as well as half forms of
consonants.

Recommended implementation: The vatu table maps consonant and vattu form combinations to their
respective ligatures (GSUB lookup type 4).

Lookups associated with the Vattu Variants feature apply to glyphs derived using the Below-base Forms
feature and (for half-form plus vattu ligatures) the Half Forms features. The Below-base Forms feature should
be used to derive the nominal vattu form of a consonant; the Vattu Variants feature should only be used to
substitute the nominal vattu form and a base consonant or half form with a ligature glyph. If the Rakar Forms
feature is used, the Vattu Variants feature is not required.

Application interface: For substitutions defined in the vatu table, the application passes the sequence of GIDs
to the table, and gets back the GID for the vattu variant ligature.

UI suggestion: In recommended usage, this feature triggers substitutions that are required for correct display
of the given script. It should be applied in the appropriate contexts, as determined by script-specific
processing. Control of the feature should not generally be exposed to the user.

Script/language sensitivity: Used in Indic scripts. eg: Devanagari.

Feature interaction: This feature may be used in conjunction with certain other features to derive required
forms of Indic scripts. For Indic script implementations that use the Vattu Variants feature, the application is
expected to process this feature and certain other features in an appropriate order to obtain the correct set of
basic forms: nukt, akhn, rphf, rkrf, pref, blwf, half, pstf, cjct. Other discretionary features for optional
typographic effects may also be applied. Lookups for such discretionary features should be processed after
lookups for this feature have been processed.

Tag: 'vert'

Friendly name: Vertical Alternates

Registerd by: Adobe/Microsoft

Function: Transforms default glyphs into glyphs that are appropriate for upright presentation in vertical writing
mode. While the glyphs for most characters in East Asian writing systems remain upright when set in vertical
writing mode, some must be transformed – usually by rotation, shifting, or different component ordering – for
vertical writing mode.

402

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

402 ©	ISO/IEC	2019	–	All	rights	reserved
	

Example: In vertical writing mode, the opening parenthesis (U+FF08) is replaced by the rotated form
(U+FE35).
In vertical writing mode, the glyph for HIRAGANA LETTER SMALL A (U+3041; "ぁ") is transformed into a
glyph that is shifted up and to the right, which is properly positioned for upright presentation in vertical writing
mode.
In vertical writing mode, the glyph for SQUARE MAIKURO (U+3343; "㍃"), whose component katakana
characters are ordered from left to right then top to bottom (like horizontal writing mode), is transformed into a
glyph whose component katakana characters are ordered from top to bottom then right to left (like vertical
writing mode line progression).

Recommended implementation: The font includes versions of the glyphs covered by this feature that differ in
some visual way from the default glyphs, such as by rotation, shifting, or different component ordering. The
'vert' feature maps the default glyphs to the corresponding, alternate glyphs for vertical writing mode using a
type 1 (single substitution) GSUB lookup.

Application interface: For GIDs found in the 'vert' coverage table, the layout engine passes GIDs to the feature,
then gets back new GIDs.

UI suggestion: This feature should be active by default in vertical writing mode.

Script/language sensitivity: Applies only to scripts with vertical writing capability.

Feature interaction: The 'vert' and 'vrtr' features are intended to be used in conjunction: 'vert' for glyphs to be
presented upright in vertical writing, and 'vrtr' for glyphs intended to be presented sideways. Since they must
never be activated simultaneously for a given glyph, there should be no interaction between the two features.
These features are intended for layout engines that graphically rotate glyphs for sideways runs in vertical
writing mode, such as those conforming to Unicode Technical Report #50: Unicode vertical text Layout.
Note that layout engines that instead depend on the font to supply pre-rotated glyphs for all sideways glyphs
should use the 'vrt2' feature in lieu of 'vert' and 'vrtr'. Because 'vrt2' supplies pre-rotated glyphs, the 'vert'
feature should never be used with 'vrt2', but may be used in addition to any other feature.

Tag: 'vhal'

Friendly name: Alternate Vertical Half Metrics

Function: Respaces glyphs designed to be set on full-em heights, fitting them onto half-em heights.

Example: The user may invoke this feature in a CJKV font to get better fit for punctuation or symbol glyphs
without disrupting the monospaced alignment.

Recommended implementation: The font specifies alternate metrics for the full-height glyphs (GPOS lookup
type 1).

Application interface: For GIDs found in the vhal coverage table, the application passes the GIDs to the table
and gets back positional adjustments (XPlacement, XAdvance, YPlacement and YAdvance).

UI suggestion: In general, this feature should be off by default. Different behavior should be used, however, in
applications that conform to Requirements for Japanese Text Layout (JLREQ [21]) or similar CJK text-layout
specifications that expect half-width forms of characters whose default glyphs are full-width. Such
implementations should turn this feature on by default, or should selectively apply this feature to particular
characters that require special treatment for CJK text-layout purposes, such as brackets, punctuation, and
quotation marks.

Script/language sensitivity: Used only in CJKV fonts.

Feature interaction: This feature is mutually exclusive with all other glyph-height features (e.g. valt and vpal),
which should be turned off when it’s applied. It deactivates the kern feature. See also halt.

Tag: 'vjmo'

Friendly name: Vowel Jamo Forms

Function: Substitutes the vowel jamo form of a cluster.

403

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 403
	

Example: In Hangul script, the jamo cluster is composed of three parts (leading consonant, vowel, and trailing
consonant). When a sequence of vowel class jamos are found, their combined vowel jamo form is substituted.

Recommended implementation: The vjmo table maps the sequence required to convert a series of jamos into
its vowel jamo form (GSUB lookup type 4).

Application interface: For substitutions defined in the vjmo table, the application passes the sequence of GIDs
to the feature, and gets back the GID for the vowel jamo form.

UI suggestion: This feature should be on by default.

Script/language sensitivity: Required for Hangul script when Ancient Hangul writing system is supported.

Feature interaction: This feature overrides the results of all other features.

Tag: 'vkna'

Friendly name: Vertical Kana Alternates

Function: Replaces standard kana with forms that have been specially designed for only vertical writing. This
is a typographic optimization for improved fit and more even color. Also see hkna.

Example: Standard full-width kana (hiragana and katakana) are replaced by forms that are designed for
vertical use.

Recommended implementation: The font includes a set of specially-designed glyphs, listed in the vkna
coverage table. The vkna feature maps the standard full-width forms to the corresponding special vertical
forms (GSUB lookup type 1).

Application interface: For GIDs found in the vkna coverage table, the application passes GIDs to the feature,
and gets back new GIDs.

UI suggestion: This feature would be off by default.

Script/language sensitivity: Applies only to fonts that support kana (hiragana and katakana).

Feature interaction: Since this feature is only for vertical use, features applying to horizontal behaviors (e.g.
kern) do not apply.

Tag: 'vkrn'

Friendly name: Vertical Kerning

Function: Adjusts amount of space between glyphs, generally to provide optically consistent spacing between
glyphs. Although a well-designed typeface has consistent inter-glyph spacing overall, some glyph
combinations require adjustment for improved legibility. Besides standard adjustment in the vertical direction,
this feature can supply size-dependent kerning data via device tables, "cross-stream" kerning in the X text
direction, and adjustment of glyph placement independent of the advance adjustment.
NOTE This feature may apply to runs of more than two glyphs, and would not be used in monospaced fonts. This

feature applies only to text set vertically.

Example: When the katakana character U+30B9 or U+30D8 is followed by U+30C8 in a vertical setting,
U+30C8 is shifted up to fit more evenly.

Recommended implementation: The font stores a set of adjustments for pairs of glyphs (GPOS lookup type 2
or 8). These may be stored as one or more tables matching left and right classes, &/or as individual pairs.
Additional adjustments may be provided for larger sets of glyphs (e.g. triplets, quadruplets, etc.) to overwrite
the results of pair kerns in particular combinations.

Application interface: The application passes a sequence of GIDs to the kern table, and gets back adjusted
positions (XPlacement, XAdvance, YPlacement and YAdvance) for those GIDs. When using the type 2 lookup
on a run of glyphs, it's critical to remember to not consume the last glyph, but to keep it available as the first
glyph in a subsequent run (this is a departure from normal lookup behavior).

404

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

404 ©	ISO/IEC	2019	–	All	rights	reserved
	

UI suggestion: This feature should be active by default for vertical text setting. Applications may wish to allow
users to add further manually-specified adjustments to suit specific needs and tastes.

Script/language sensitivity: None

Feature interaction: If 'vkrn' is activated, 'vpal' must also be activated if it exists. (If 'vpal' is activated, there is
no requirement that 'vkrn' must also be activated.) May be used in addition to any other feature except those
which result in fixed (uniform) advance heights.

Tag: 'vpal'

Friendly name: Proportional Alternate Vertical Metrics

Function: Respaces glyphs designed to be set on full-em heights, fitting them onto individual (more or less
proportional) vertical heights. This differs from valt in that it does not substitute new glyphs (GPOS, not GSUB
feature). The user may prefer the monospaced form, or may simply want to ensure that the glyph is well-fit.

Example: The user may invoke this feature in a Japanese font to get Latin, Kanji, Kana or Symbol glyphs with
the full-height design but individual metrics.

Recommended implementation: The font specifies alternate heights for the full-height glyphs (GPOS lookup
type 1).

Application interface: For GIDs found in the vpal coverage table, the application passes the GIDs to the table
and gets back positional adjustments (XPlacement, XAdvance, YPlacement and YAdvance).

UI suggestion: This feature would be off by default.

Script/language sensitivity: Used mostly in CJKV fonts.

Feature interaction: This feature is mutually exclusive with all other glyph-height features (e.g. valt and vhal),
which should be turned off when it's applied. If vpal is activated, there is no requirement that vkrn must also be
activated. If vkrn is activated then vpal must also be activated if it exists.

Tag: 'vrt2'

Friendly name: Vertical Alternates and Rotation

Function: Replaces some fixed-width (half-, third- or quarter-width) or proportional-width glyphs (mostly Latin
or katakana) with forms suitable for vertical writing (that is, rotated 90 degrees clockwise).
NOTE These are a superset of the glyphs covered in the vert table.

Adobe Type Manager /NT 4.1 and the Windows 2000 OTF driver impose the following requirements for an
OFF font with CFF outlines to be used for vertical writing: the vrt2 feature must be present in the GSUB table,
it must comprises a single lookup of LookupType 1 and LookupFlag 0, and the lookup must have a single
subtable. The predecessor feature, vert, is ignored.

A rotated glyph must be designed such that its top side bearing and vertical advance as recorded in the
Vertical Metrics ('vmtx') table are identical to the left side bearing and horizontal advance, respectively, of the
corresponding upright glyph as recorded in the Horizontal Metrics ('hmtx') table. (The horizontal advance of
the rotated glyph may be set to any value, since the glyph is intended only for vertical writing use. The vendor
may however set it to head.unitsPerEm, to prevent overlap during font proofing tests, for example.)

Thus, proportional-width glyphs with rotated forms in the vrt2 feature will appear identically spaced in both
vertical and horizontal writing. In order for kerning to produce identical results as well, developers must ensure
that the Vertical Kerning (vkrn) feature record kern values between the rotated glyphs that are the same as
kern values between their corresponding upright glyphs in the Kerning (kern) feature.

Example: Proportional- or half-width Latin and half-width katakana characters are rotated 90 degrees
clockwise for vertical writing.

405

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 405
	

Recommended implementation: The font includes rotated versions of the glyphs covered by this feature. The
vrt2 table maps the standard (horizontal) forms to the corresponding vertical (rotated) forms (GSUB lookup
type 1). This feature should be the last substitution in the font, and take input from other features.

Application interface: For GIDs found in the vrt2 coverage table, the application passes GIDs to the feature,
and gets back new GIDs.

UI suggestion: This feature should be active by default when vertical writing mode is on, although the user
must be able to override it.

Script/language sensitivity: Applies only to scripts with vertical writing capability.

Feature interaction: Overrides the vert (Vertical Writing) feature, which is a subset of this one. May be used in
addition to any other feature.

Tag: 'vrtr'

Friendly name: Vertical Alternates for Rotation

Registered by: Adobe/Microsoft/W3C

Function: Transforms default glyphs into glyphs that are appropriate for sideways presentation in vertical
writing mode. While the glyphs for most characters in East Asian writing systems remain upright when set in
vertical writing mode, glyphs for other characters (such as those of other scripts or for particular Western-style
punctuation) are expected to be presented sideways in vertical writing.

Example: As a first example, the glyphs for FULLWIDTH LESS-THAN SIGN (U+FF1C; "<") and FULLWIDTH
GREATER-THAN SIGN (U+FF1E; ">") in a font with a non-square em-box are transformed into glyphs whose
aspect ratio differs from the default glyphs, which are properly sized for sideways presentation in vertical
writing mode. As a second example, the glyph for LEFT SQUARE BRACKET (U+005B, "[") in a brush-script
font that exhibits slightly rising horizontal strokes may use an obtuse angle for its upper-left corner when in
horizontal writing mode, but an alternate glyph with an acute angle for that corner is supplied for vertical
writing mode.

Recommended implementation: The font includes versions of the glyphs covered by this feature that, when
rotated 90° clockwise by the layout engine for sideways presentation in vertical writing, differ in some visual
way from rotated versions of the default glyphs, such as by shifting or shape. The 'vrtr' feature maps the
default glyphs to the corresponding to-be-rotated glyphs (GSUB lookup type 1).

Application interface: For GIDs found in the 'vrtr' coverage table, the application passes GIDs to the lookup
tables associated with the feature, then gets back new GIDs.

UI suggestion: This feature should be active by default for sideways runs in vertical writing mode.

Script/language sensitivity: Applies to any script when set in vertical writing mode.

Feature interaction: The 'vrtr' and 'vert' features are intended to be used in conjunction: 'vrtr' for glyphs
intended to be presented sideways in vertical writing, and 'vert' for glyphs to be presented upright. Since they
must never be activated simultaneously for a given glyph, there should be no interaction between the two
features. These features are intended for layout engines that graphically rotate glyphs for sideways runs in
vertical writing mode, such as those conforming to Unicode Technical Report #50: Unicode Vertical Text
Layout [23].
Note that layout engines that instead depend on the font to supply pre-rotated glyphs for all sideways glyphs
should use the 'vrt2' feature in lieu of 'vrtr' and vert. Because 'vrt2' supplies pre-rotated glyphs, the 'vrtr' feature
should never be used with 'vrt2', but it may be used in addition to any other feature.
Tag: 'zero'

Friendly name: Slashed Zero

Function: Some fonts contain both a default form of zero, and an alternative form which uses a diagonal slash
through the counter. Especially in condensed designs, it can be difficult to distinguish between 0 and O (zero
and capital O) in any situation where capitals and lining figures may be arbitrarily mixed. This feature allows
the user to change from the default 0 to a slashed form.

406

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

406 ©	ISO/IEC	2019	–	All	rights	reserved
	

Example: When setting labels, the user applies this feature to get the slashed 0.

Recommended implementation: The zero table maps the GIDs for the lining forms of zero to corresponding
slashed forms (GSUB lookup type 1).

Application interface: For GIDs in the zero coverage table, the application passes a GID to the zero table and
gets back a new GID.

UI suggestion: Optimally, the application would store this as a preference setting, and the user could use the
feature to toggle back and forth between the two forms. Most applications will want the default setting to
disable this feature.

Script/language sensitivity: Does not apply to scripts which use forms other than 0 for zero.

Feature interaction: Applies only to lining figures, so is inactivated by oldstyle figure features (e.g. onum).

6.4.4 Baseline tags

This clause defines the standard OFF Layout baseline tags. A registered baseline tag has a specific meaning
when used in the horizontal writing direction (used in the 'BASE' table's HorizAxis table), vertical writing
direction (used in the 'BASE' table's VertAxis table), or both, and conveys information to font users about a
baseline's use. For example, the 'romn' baseline tag is commonly used to identify the baseline to layout Latin
text in the horizontal, vertical, or both directions for Latin text layout.
This version of the Tag Registry identifies the baselines. All baseline tags are 4-byte character strings
composed of a limited set of ASCII characters in the 0x20-0x7E range. Baseline tags consist of four lowercase
letters.

Baseline
Tag

Baseline for
HorizAxis

Baseline for VertAxis

'hang' The hanging
baseline. This is the
horizontal line from
which syllables seem
to hang in Tibetan
script.

The hanging baseline, (which now appears vertical) for
Tibetan characters rotated 90 degrees clockwise, for
vertical writing mode.

'icfb' Ideographic
character face
bottom edge
baseline.
(See Ideographic
Character Face
below for usage.)

Ideographic character face left edge baseline.
(See clause Ideographic Character Face below for
usage.)

'icft' Ideographic
character face top
edge baseline.
(See Ideographic
Character Face
below for usage.)

Ideographic character face right edge baseline.
(See clause Ideographic Character Face below for
usage.)

'ideo' Ideographic em-box
bottom edge
baseline.
(See clause
Ideographic Em-Box
below for usage.)

Ideographic em-box left edge baseline. If this tag is
present in the VertAxis, the value must be set to 0.
(See clause Ideographic Em-Box below for usage.)

'idtp' Ideographic em-box
top edge baseline.
(See Ideographic
Em-Box below for

Ideographic em-box right edge baseline. If this tag is
present in the VertAxis, the value is strongly
recommended to be set to head.unitsPerEm. (See clause

407

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 407
	

usage.) Ideographic Em-Box below for usage.)

'math' The baseline about
which mathematical
characters are
centered.

The baseline about which mathematical characters, when
rotated 90 degrees clockwise for vertical writing mode,
are centered.

'romn' The baseline used
by simple alphabetic
scripts such as Latin,
Cyrillic and Greek.

The alphabetic baseline for characters rotated 90
degrees clockwise for vertical writing mode. (This would
not apply to alphabetic characters that remain upright in
vertical writing mode, since these characters are not
rotated.)

Ideographic Em-box

[The notation <Axis>.<Baseline Tag> is used in the following description to mean the baseline tag as defined
in the specified axis. For example, HorizAxis.ideo means the ideo baseline tag as defined in the HorizAxis of
the BASE table. See above for a list of registered baseline tags.]

A font's ideographic em-box is the rectangle that defines a standard escapement around the full-width
ideographic glyphs of the font, for both the horizontal and vertical writing directions. It is usually a square, but
may be non-square as in the case of fonts used in Japanese newspaper layout that have a vertically
condensed design.

The left, right, top and bottom edges of the ideographic em-box are to be determined as follows:

ideoEmboxLeft = 0
If HorizAxis.ideo defined:

ideoEmboxBottom = HorizAxis.ideo
If HorizAxis.idtp defined:

ideoEmboxTop = HorizAxis.idtp
Else:

ideoEmboxTop = HorizAxis.ideo + head.unitsPerEm
If VertAxis.idtp defined:

ideoEmboxRight = VertAxis.idtp
Else:

ideoEmboxRight = head.unitsPerEm
If VertAxis.ideo defined and non-zero:

Warning: Bad VertAxis.ideo value
Else If this is a CJK font:

ideoEmboxBottom = OS/2.sTypoDescender
ideoEmboxTop = OS/2.sTypoAscender
ideoEmboxRight = head.unitsPerEm

Else:

ideoEmbox cannot be determined for this font

408

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

408 ©	ISO/IEC	2019	–	All	rights	reserved
	

Determining whether a font is CJK (Chinese, Japanese, or Korean) or not, as in the second-last "Else" clause
above, can be done by checking the CJK-related bits of the OS/2.ulUnicodeRange fields.
NOTE Font designers can specify a HorizAxis.ideo baseline in their non-CJK fonts; this can be used by applications

when aligning the font with an ideographic font used on the same line of text, when the user has specified
ideographic em-box alignment.

The ideographic em-box center baseline is defined as halfway between the ideographic em-box top and
bottom baselines in the horizontal axis, and halfway between the ideographic em-box left and right baselines
in the vertical axis. These center baselines are defined in whole character units. The division used in the
calculation must round to the character unit nearest 0 if needed. Thus, for maximal precision of center
baseline placement, vendors should ensure that opposite edges of the ideographic em-box box are an even
number of character units apart.

Example:

The values of the ideographic baseline tags for the Kozuka Mincho font family (designed on a 1000-unit em)
are:

HorizAxis.ideo = -120; HorizAxis.idtp = 880.
Since this describes a square ideographic em-box, it is sufficient to record only the following:
HorizAxis.ideo = -120.
If HorizAxis.ideo is not present, then the following will be used for the ideographic em-box bottom
and top, since this is a CJK font:
OS/2.sTypoDescender = -120; OS/2.sTypoAscender = 880.

Compatibility notes:

a. Most applications expect the width of full-width ideographs in a CJK font to be exactly one em, thus it
is strongly recommended that VertAxis.idtp, if present, be set to head.unitsPerEm. (The idtp
baseline tag was introduced in OpenType 1.3.)

b. While the OFF specification allows for CJK fonts' OS/2.sTypoDescender and OS/2.sTypoAscender
fields to specify metrics different from the HorizAxis.ideo and HorizAxis.idtp in the 'BASE' table,
CJK font developers should be aware that existing applications may not read the 'BASE' table at all
but simply use the OS/2.sTypoDescender and OS/2.sTypoAscender fields to describe the bottom and
top edges of the ideographic em-box. If developers want their fonts to work correctly with such
applications, they should ensure that any ideographic em-box values in the 'BASE' table of their CJK
fonts describe the same bottom and top edges as the OS/2.sTypoDescender and
OS/2.sTypoAscender fields.

c. Applications on platforms other than Windows that don't parse the 'OS/2' table won't have access to
the OS/2.sTypoDescender and OS/2.sTypoAscender fields Thus, CJK fonts will typically have the
same descender value recorded in hhea.Descender, OS/2.sTypoDescender, and HorizAxis.ideo (if
present), and the same Ascender value recorded in hhea.Ascender, OS/2.sTypoAscender, and
HorizAxis.idtp (if present).

See subclause 9.8 for more information about constructing CJK fonts.

Ideographic character face

[The notation <Axis>.<Baseline Tag> is used in the following description to mean the baseline tag as
defined in the specified axis. For example, HorizAxis.icfb means the icfb baseline tag as defined in the
HorizAxis of the BASE table. See above for a list of registered baseline tags.]

The Ideographic Character Face (ICF), also known as the Average Character Face (ACF), specifies the
approximate bounding box of the full-width ideographic and kana glyphs in a CJK font. (This is different from
the FontBBox, as described in the PostScript programming language, which is the bounding box of all glyphs
in the font.) In Japanese, the term for ICF is heikin jizura.

It is typically expressed as a percentage that represents the ratio of the length of an ICF box edge to the
length of an ideographic em-box edge, and is conceptualized as a square centered within the ideographic em-
box. However, in OFF, the ICF box's left, bottom, right, and top edges are specified as the VertAxis.icfb,

409

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 409
	

HorizAxis.icfb, VertAxis.icft, and HorizAxis.icft baselines, respectively, thus giving font designers the
flexibility to specify a non-square and/or non-centered ICF box.

Font designers should set the value of the ICF box edges based on how tight or loose they want the font to
appear when text is set with no tracking or kerning (beta gumi in Japanese). Therefore, the left-over boundary
of the ideographic em-box around the ICF box is the default escapement of the font.

Applications can use the ICF box as an alignment tool, to ensure that glyphs touch the edges of the text frame
and page objects are visually aligned to text edges. It is also useful for aligning glyphs of different sizes on the
same line. In Japanese traditional paper-based workflow, the ICF box was often used for these purposes. It
provides optically aligned results that are superior to using the ideographic em-box.

HorizAxis.icfb is the mininum piece of information required to define the ICF, in a CJK font. First, the
ideographic em-box dimensions must be calculated as in the clause "Ideographic Em-Box" above. The ICF
edges are then calculated in the following order:

If HorizAxis.icfb defined:
icfBottom = HorizAxis.icfb
margin = HorizAxis.icfb – ideoEmboxBottom
If HorizAxis.icft defined:

icfTop = HorizAxis.icft
Else:

icfTop = ideoEmboxTop – margin
If VertAxis.icfb defined:

icfLeft = VertAxis.icfb
Else:

icfLeft = margin
If VertAxis.icft defined:

icfRight = VertAxis.icft
Else:

icfRight = ideoEmBoxRight – icfLeft
Else:

ICF cannot be determined for this font

For the last case above, i.e. fonts that don't have ICF information in their 'BASE' table, an application may
choose to apply a heuristic such as calculating the bounding box of some or all of the ideographic and kana
glyphs, and then averaging its margin with the ideographic em-box.

The ICF center baseline is defined as halfway between the ICF top and bottom baselines in the horizontal axis,
and halfway between the ICF left and right baselines in the vertical axis. These center baselines are defined in
whole character units. The division used in the calculation must round to the character unit nearest 0 if needed.
Thus, for maximal precision of center baseline placement, vendors should ensure that opposite edges of the
ICF box are an even number of character units apart.

Example:

The values of the ICF baselines for the Extra Light and Heavy weights of the Kozuka Mincho font family
(designed on a 1000-unit em, with ideographic em-box as given in the example in the previous clause) are:

Kozuka Mincho Extra Light:
VertAxis.icfb = 41; HorizAxis.icfb = -79;
VertAxis.icft = 959; HorizAxis.icft = 839.
Since this describes a square ICF centered in a square ideographic em-box, it is sufficient to record
only the following:
HorizAxis.icfb = -79.

410

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

410 ©	ISO/IEC	2019	–	All	rights	reserved
	

Kozuka Mincho Heavy:
VertAxis.icfb = 26; HorizAxis.icfb = -94;
VertAxis.icft = 974; HorizAxis.icft = 854.
It is sufficient to record only:
HorizAxis.icfb = -94.

It is strongly recommended that each of the edges of the ICF box be equidistant from the corresponding edge
of the ideographic em-box. Following this will result in more predictable results in applications that use these
values. That is, for fonts based on a square ideographic em-box, the ICF box should be a centered square.

See subclause 9.8 for more information about constructing CJK fonts.

7 OFF font variations

7.1 Font variations overview

This chapter provides an overview of OFF Font Variations, including an introduction to essential concepts, a
glossary of terminology, and a specification of key algorithms: coordinate normalization, and interpolation of
instance values.

7.1.1 General

OFF Font Variations allow a font designer to incorporate multiple font faces within a font family into a single
font resource. Variable fonts – fonts that use OFF Font Variations mechanisms – provide great flexibility for
content authors and designers while also allowing the font data to be represented in an efficient format.

A variable font allows for continuous variation along some given design axis, such as weight:

Figure 7.1: Continuous variation along a design axis

Conceptually, variable fonts define one or more axes over which design characteristics can vary. Weight is
one possible axis of variation, but many different kinds of variation are possible. Variable fonts can combine
two or more different axes of variation. For example, the following illustrates a combination of weight and
width variation:

411

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 411
	

Figure 7.2: Continuous variation along multiple design axes

A variable font includes a table, the font variations ('fvar') table, that describes the axes of variation used by
that font. This table determines how a variable font and its variation parameters will be presented to users and
applications. Each axis is defined by a numeric range, using 16.16 floating values. Conceptually, this provides
a continuous gradient of variation, a allowing for a large number of design-variation instances to be selected.
Each instance would be designated by a coordinates array within the design-variation space – a specific value
along each of the design axes. So, for instance, if a user or application requires a very-slightly narrower width
or slightly more pronounced serifs, fine control over such axes of variation is available.

A font designer can also pre-define certain of those instances to have particular names. For example, a font
can have continuous variation on a weight axis, but the designer may identify particular variation instances as
“Light” or “Semibold”. Named instances can be used for any instance in the supported design-variation space.
For example, in a font with weight and width axes, named instances might include “Light”, “Extended”, or
“Semibold Condensed”. Details regarding named instances are also included in the font variations table.

Weight and width are commonly-used axes of design variation, but a variable font may use a wide range of
other, possible axes of variation. For more information regarding supported axes, see the font variations
('fvar') table description.

In addition to a feature variations table, a variable font also includes a style attributes ('STAT') table that
describes additional details about each axis of variation and about particular values (chosen by the designer)
along each axis. These details include descriptor strings for those values, such as “Bold”, “Extended” or
“Semi-sans”. For example, a weight/width variable font might support a “Bold Extended” variation, and the
'STAT' table would provide strings for “Bold” and “Extended” corresponding to the particular values along the
weight and width axes, respectively. These strings can be used in creation of font-picker user interfaces. They

412

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

412 ©	ISO/IEC	2019	–	All	rights	reserved
	

can also be used for projecting members of a multi-axis font family into different models for font families that
assume a limited number of axes of sub-family variation, such as a weight/width/slant model. For example, a
named instance “Semi-sans Light Condensed” might be projected into a “Light Condensed” member of a
separate “Semi-sans” family. Because the 'STAT' table identifies values on each axis, software never needs to
parse subfamily strings and guess that string tokens such as “Halbfett” refer to a particular value on some axis.

NOTE The style attributes table makes it possible for fonts with many design axes to be defined as a single, multi-axis
family, yet still have instances across all of those axes supported in older applications that may only recognize a
limited set of axes of variation, or a limited number of values on an axis. The host platform, which must support
the style attributes table, can translate instances in a multi-axis family into fewer instances in multiple families that
older applications will recognize.

As different variation instances of a font are selected, various items of data within a font must be adjusted
accordingly. For example, a 'glyf' table can provide the default outline of a given glyph, but the outline would
need to be adjusted in some manner to reflect different design variations. Several other data items besides
glyph outlines may also need similar adjustments, including font-wide metrics, CVT values, or anchor
positions within glyph-positioning lookup tables. A variable font includes required and optional tables that
describe how such items within the font change from default values to different values as needed for different
design-variation instances. For example, while a 'glyf' table can provide default outlines for glyphs, a glyph
variations ('gvar') table would provide corresponding data that describes how each glyph outline changes for
different variation instances.

A variable font has a default instance, with axis parameter values set to the defaults defined for each axis in
the 'fvar' table. Several tables in the font provide default values for many different data items – such as
positions of glyph outline points in the 'glyf' table, or a font-wide ascender distance in the OS/2 table. The
default instance of a font uses the default values for such items without any adjustments, and the variation-
specific tables are not needed. If the variation-specific tables – 'fvar', 'gvar', 'MVAR', etc. – were to be removed
from the font or ignored, the remaining data would comprise a complete font for the default instance.

Font variation mechanisms for fonts using TrueType outlines were first introduced by Apple in “TrueType GX”.
Some of the tables used for OFF Font Variations have been adapted from Apple's earlier specifications with
some enhancements and revisions. (In particular, there are significant changes in the 'fvar' table specification
in regard to both format and data values used, and the 'fmtx' table is not used.) Other extensions have also
been created in order to integrate variation mechanisms into OFF. Implementers may wish to refer to Apple's
specifications for historical insights, but should refer to the OFF specification as the reference for
implementation of OFF Font Variations.

7.1.2 Terminology

Several terms are useful in discussing font variations and will be used in this document.

OFF Font Variations: The name of the technology described in this chapter.

Font face: A logical collection of glyph data sharing specific design parameters, along with associated metric
data, and names or other metadata.

Font resource: OFF data that includes (at least) the minimal set of tables needed to comprise a functional
font face.

NOTE Within OFF font files, each offset table and the tables it references comprise a font resource. A well-formed .OTF
or .TTF file includes a single font resource; a well-formed .OTC or .TTC file includes one or more font resources.
A font resource without variation-related tables provides data for a single font face. A single font resource that
includes variation-related tables can provide data for multiple font faces.

Font family: A set of font resources that have a common family name – the same string values for name ID
16 (Typographic Family Name) or name ID 1.

NOTE It is assumed that all fonts within a family will share certain design characteristics, but differ in others. The design
characteristics that are different potentially might be supported using variations.

Axis of variation: A designer-determined variable in a font face design that can be used to derive multiple,
variant designs within a family.

413

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 413
	

Variable font: A font resource that supports multiple font faces in a family along designer-defined axes of
variation using OFF Font Variations mechanisms – that is, by means of variation tables and other variation
data in tables generally.

Glyph design grid: The visual, two-dimensional space in which a font’s glyph outlines are designed.

Design-variation space: An abstract, multi-dimensional space defined by the axes of variation used by a font
designer when designing a font family. In the context of a variable font, the variation space refers to the n-
dimensional space defined by the axes of variation specified in the font’s 'fvar' table.

NOTE A variation space can have one or more axes. In a variable font, the variation space is bounded by minimum and
maximum values specified in the 'fvar' table. The zero origin has no special significance within a design-variation
space. Within a variable font, however, the zero origin (using normalized coordinate scales – defined below) is a
marked position since it corresponds to the font face represented directly by the font resource's name, glyph and
metric tables without reference to any variation tables or other variation data.

Variation data: Data used in a variable font to describe the way that values for data items in the font are
adjusted from default values to alternate values needed for different instances within the variation space.

Variation tables: OFF tables specifically related to Font Variations, including the following:

 Axis variations (‘avar’) table
 CVT variations (‘cvar’) table
 Font variations (‘fvar’) table
 Glyph variations (‘gvar’) table
 Horizontal metrics variations (‘HVAR’) table
 Metrics variations (‘MVAR’) table
 Vertical metrics variations (‘VVAR’) table

NOTE The 'fvar' table describes a font’s variation space, and other variation tables provide variation data to describe
how different data items are varied across the font’s variation space. Note that not all of these tables are required
in a variable font. Also note that variation data for certain font data items may be contained in other tables not
specifically related to Font Variations. In addition, certain tables not specifically related to Font Variations are
required in variable fonts. See subclause 7.1.6 (Variation data tables and miscellaneous requirements) for more
details.

Point: In order to avoid ambiguity, point will be used only to refer to (X, Y) positions within the glyph design
grid. When discussing the design variation space, position will be used to refer to positions within that space.

Variation instance: A font face corresponding to a particular position within the variation space of a variable
font.

Named instance: A variation instance that is specifically defined and assigned a name within the ‘fvar’ table.

User coordinate scale: The numeric scale used to characterize a given axis of variation, and the scale used
by applications when selecting instances of a variable font.

NOTE Some axes of variation have a prescribed, limited range, expressed in terms of the user scale. When using a
particular variable font, the user scale for a given axis is bounded by minimum and maximum specified within the
'fvar' table, and may be a sub-range of the valid range for that axis generally.

Normalized coordinate scale: When processing variation data in a variable font to derive values for
particular instances, a normalization process is applied to map user-scale values on each axis to a normalized
scale applicable within that font that ranges from -1 to 1.

NOTE The 'fvar' table specifies user-scale minimum, default and maximum values for each axis. In the normalization
process, these get mapped to -1, 0 and 1 respectively, with other values along each axis mapping to intervening
points. Mapping of other values is modulated by the 'avar' table, if present. All of the variation data within the font
makes reference to axis values or positions within the font’s variation space in terms of normalized-scale values.

Tuple / N-tuple: An ordered set of coordinate values used to designate a position within the variation space of
a font.

414

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

414 ©	ISO/IEC	2019	–	All	rights	reserved
	

NOTE “Tuple” is used here with a meaning that is consistent with conventional usage in computer science and
mathematics. In Apple TrueType specifications, “tuple” has been used with a different meaning to refer to sets of
variation data associated with a particular region of the font’s design variation space. In this document, “tuple
variation data” is used for that meaning, and “n-tuple” is used in many cases so as to avoid confusion with usage
in Apple specifications.

Region: A sub-space (that is, some portion or subset) of the design variation space over which a variation
adjustment is described.

NOTE A region involves all of the axes of the font’s variation space; it is not a “sub-space” in the sense of involving only
a subset of axes. In normalized coordinates, regions are always rectilinear: they have straight edges and right-
angled corners. Variation data may be defined for up to 65,535 regions in a font’s variation space.

Master: A set of source font data that includes complete outline data for a particular font face, used in a font-
development workflow.

NOTE Some font-development workflows utilize several masters as source data for creating font resources for different
faces within a family. Multiple source masters might also be used to create a variable font. Each source master
would correspond to a single instance in the variation space, and possibly might correspond to variation data for
a particular region in the variable font. Whereas each master includes complete outline data, however, the
variable font includes only a single set of complete outline data (in the 'glyf' or 'CFF2' table), which is
complemented with variation data for different regions to represent the full range of instances supported by the
font.

Deltas / Adjustment deltas: Numeric values in variation data that specify adjustments to default values of
data items for particular regions within the variation space or for sub-ranges within a particular axis.

Delta set: A set of adjustment deltas associated with a particular region of the variation space.

Scalars: Co-efficient values applied to deltas to derive adjustment values needed for a particular variation
instance.

Interpolation: The process of deriving adjusted values for some font data items, such as the X and Y
coordinates of glyph outline points, for a particular variation instance.

7.1.3 Variation space, default instances and adjustment deltas

A variable font supports one or more axes of variation. Commonly-used axes of variation should be registered,
though custom, designer-defined axes can also be used. Each axis has a distinct tag that is used to identify it
in the 'fvar' table. See the 'fvar' table description for more details about axis tags.

The specification of axes used for a variable font is given in the 'fvar' table, along with minimum, default and
maximum values for each axis. This defines a variation space for the font. It is entirely up to the designer what
range of design variation is supported for each axis, and how the designs align with the scale for each axis.

For example, a variable font may support a full range of weights from thin to black:

Font A: Thin to black weight variation

But a designer might also choose to support only a limited weight range:

Font B: Regular to black weight variation

415

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 415
	

The variable font has a default instance, which corresponds to the position in the variation space with
coordinates set to the default values for each axis specified in the 'fvar' table. The default instance uses
default values for various data items that are provided directly in non-variations-specific font tables, such as
the grid coordinates of outlines points for a glyph in the 'glyf' table.

Default glyph outline data in a ‘glyf’ table entry

All other instances have non-default coordinate values for one or more axes. These other instances are
supported by variation data that provide adjustment deltas for various font data items that produce an
adjustment from their default values.

Default glyph outline and adjusted point positions for a non-default instance

Detail inset showing contour point adjustments

Typically, deltas are provided for the extremes on each variation axis, though deltas can be provided for other
positions in the variation space as well. (See below for more details.) For axis positions between the default
and minimum or maximum extreme, other values are interpolated.

The font designer can determine which design is considered the default, and what deltas are provided. For
example, a font with thin-to-black weight variation might be implemented with Regular (400) as the default,
and Thin (100) and Black (900) as minimum/maximum values. In this case, variation data would include deltas
for the Thin extreme and also deltas for the Black extreme.

416

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

416 ©	ISO/IEC	2019	–	All	rights	reserved
	

But a different font with thin-to-black weight variation might be implemented with Thin as the default and
minimum value and Black as the maximum. In this case, variation data might include deltas for only the Black
extreme.

Note that a consideration in the choice of default is desired behavior in legacy applications or platforms that do
not support Font Variations: in such software, only the default instance of a variable font will be supported.

A common process for developing a variable font involves the use of multiple, master source fonts. Each
master provides complete glyph outline data for designs for a different position within a variation space. For
example, a font designer might create fonts for thin and heavy extremes along a weight axis.

From these two source masters, font tools can derive a variable font that has complete glyph outlines for a
default weight plus deltas for one or more non-default weights, including the minimum or maximum weights.

Note that each of the source, master fonts has complete outline data for a particular design variant. In contrast,
the variable font has complete outlines for only one variation instance, with all other instances derived using
the default outlines plus deltas. Each source master may correspond to a region with associated variation data
in the variable font, though the relationship between source masters and the sets of variation data within the
font will depend on the nature of the designs and on the tools used to produce the variable font.

Also note that a requirement for using multiple, master, font sources to derive a variable font is that
corresponding glyph outlines must be point-compatible: they shall have the same number of contours and the
same number of points in each contour.

417

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 417
	

7.1.4 Coordinate scales and normalization

Positions within the variation space can be represent as an n-tuple – an ordered list of coordinate values.
Examples will be seen below. The coordinate values of an n-tuple may use user-axis scales, or may use
normalized scales. The precise relationship between these scales will be described.

User coordinates refers to an n-tuple of coordinate values expressed using user axis scales . User scales
refer to the numeric scales used to describe a variation axis within the 'fvar' table. Each variation axis uses its
own numeric scale, as appropriate to the nature of that axis of variation. The scales for registered axis tags
are defined as part of the axis tag registration, though different fonts may support different sub-ranges of an
axis scale. In this way, the 'fvar' table of a given font defines a particular coordinate system for the variation
space of that font that may be unlike that of other fonts.

Whereas the definitions in the 'fvar' table are expressed in user coordinates, the variation data formats used
within a variable font use a normalized coordinate system – normalized coordinates – in which the minimum,
default and maximum values specified for each axis in the 'fvar' table are mapped to -1, 0 and 1, respectively.

For example, the following figure illustrates the user coordinate system of the variation space for a possible
font with weight and width axes of variation:

(900, 200)

(900, 100)

(900, 50)

(100, 200)

(100, 100)

(100, 50) (400, 50)

(400, 200)

(400, 100)

(184, 148)

418

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

418 ©	ISO/IEC	2019	–	All	rights	reserved
	

The following figure illustrates the normalized coordinate system for the same font:

The normalization transformation uses a default transformation followed by a secondary modification of the
transformation defined in the 'avar' table, if present. An 'avar' table does not affect the mapping of minimum,
default, and maximum values to -1, 0 and 1; it can only affect mapping of intervening values. For more details
on this modification, see the 'avar' table description.

The default normalization mapping divides the variation range for each axis into two segments: minimum
value to default value, and default value to maximum value. The minimum, default and maximum values are
mapped into -1, 0 and 1 respectively. Within each segment, all other values are interpolated linearly, as
follows:

Let userValue be the user-scale coordinate value for a user-selected instance value for a given axis, let
normalizedValue be the normalized instance value, let axisMin be the minimum value for the axis
specified in the ‘fvar’ table, etc.

Force the user-scale coordinate value to be in range by clamping to the minimum and maximum values:

if userValue < axisMin
 userValue = axisMin;
if userValue > axisMax
 userValue = axisMax;

Interpolate values linearly within the different segments:

if (userValue < axisDefault)
{
 normalizedValue = -(axisDefault - userValue) / (axisDefault – axisMin);
}
else if (userValue > axisDefault)
{
 normalizedValue = (userValue – axisDefault) / (axisMax – axisDefault);
}
else
{
 normalizedValue = 0;
}

When processing variation instance coordinates and variation data, the amount of precision used and the
handling of rounding can potentially have noticeable impacts on visual results. In order to ensure consistent
behavior for a given font across implementations, implementations must observe the following requirements in
relation to precision and rounding:

(1, 1)

(1, 0)

(1, -1)

(-1, 1)

(-1, 0)

(-1, -1) (0, -1)

(0, 1)

(0, 0)

(-0.72, 0.48)

419

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 419
	

1. The input to normalization must be in 16.16 format. If an application provides an input value
represented as either a float or double data type, the method described below must be used for
conversion to 16.16.

2. The math calculations for normalization, specified above, are done in 16.16.
3. After the default normalization calculation is performed, some results may be slightly outside the

range [-1, +1]. Values must be clamped to this range:
if result < -1
 result = -1;
if result > 1
 result = 1;

4. If an ‘avar’ table is present, math calculations are done in 16.16, and results are clamped to the
range [-1, +1] as above.

5. Convert the final, normalized 16.16 coordinate value to 2.14 by this method: add 0x00000002,
and sign-extend shift to the right by 2.

6. The 2.14 result must be stored and returned in certain operations, as described below.
7. For subsequent calculations – calculation of interpolation scalars or accumulation of scaled delta

values – the 2.14 representation may be converted to float, 16.16 or other implementation-specific
representations. It is recommended that at least 16 fractional bits of precision be maintained, and
that any rounding be done at the last point before a value is used.

When converting from float or double data types to 16.16, the following method shall be used:

1. Multiply the fractional component by 65536, and round the result to the nearest integer (for
fractional values of 0.5 and higher, take the next higher integer; for other fractional values,
truncate). Store the result in the low-order word.

2. Move the two’s-complement representation of the integer component into the high-order word.

A normalized value in 2.14 representation must be obtained exactly as specified in steps 1 to 5 above. In fonts
with TrueType instructions, this exact value must be returned by the GETVARIATION instruction. (See
TrueType InstructionSet [[# Get Variation]].) If a font has OFF Layout tables in which FeatureVariation tables
are used, this exact value must be used when comparing with axis range values specified in a condition table.

7.1.5 Variation data

Variation data provide data that describes variation of particular font values over the variation space. For
example, variation data in the 'gvar' table describes how glyph outlines in the 'glyf' table are transformed by
specifying how individual points in a glyph outline get moved for different variation instances.

Variation for a given font value is expressed as combinations of deltas that apply to different regions of the
variation space, and that are combined in a weighted manner to derive adjustments for instances at different
positions in the variation space. Each delta in the variation data is associated with a specific region of the
variation space over which it has an effect. The aggregate combination of deltas and their associated regions
comprise the variation data. The variation data for different items in a font are stored in different locations. For
example, variation data for entries in a 'glyf' table are stored in a 'gvar' table; variation data for certain entries
in the 'OS/2' table is stored in an 'MVAR' table. In the case of outline data in a 'CFF2' table, variation data is
stored within the 'CFF2' table itself. See the following section below for more details.

As mentioned, each delta value is associated with a particular region of the variation space over which it
applies. The effective region for a delta is always rectilinear (in normalized coordinates). Therefore, this region
can always be specified by a pair of n-tuples designating positions at diagonal-opposite corners of the region.
Within the specified region, variation effects will vary from zero change to some peak change at a particular
position within the region. Thus, in the general case, there are three positions that matter: the diagonal-
opposite corners that define the extent of the region, and a position at which the peak change occurs.

NOTE The figures shown below will use two axes of variation. The concepts and the statements made, however, apply
to fonts with any number of axes of variation: regions are always rectilinear, and the diagonal-opposite corners
plus a peak are the positions that describe a region.

420

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

420 ©	ISO/IEC	2019	–	All	rights	reserved
	

This general case is not the most common in practice. In most cases, there is a need to describe a maximal
variation at an outer position of the variation space that diminishes to zero change at the zero origin — the
default instance. In this case, then, the zero origin is one of the corner positions for the applicable region, and
the peak change occurs at the diagonal-opposite position. For this common case, then, the effective region
and peak position can be described using a single n-tuple.

The more general, but less common, case involves arbitrary regions, illustrated earlier; these are referred to
as intermediate regions. In these cases, the variation data requires three n-tuples: one for the peak-change
position, and two for start and end positions at diagonal-opposite corners.

Delta values in the variation data specify a maximal adjustment for an instance at the peak position. The
effects taper off for other instances, falling to zero adjustment for instances outside the region of applicability.
When a given variation instance is selected, a scalar value is calculated and applied to a given delta to derive
a net adjustment associated with that delta for that instance. These scalars will always be in the range 0 (zero
adjustment) to 1 (maximal adjustment). Specific details on this scalar calculation are provided below.

An example will help to explain these concepts. Consider a single-axis font with weight variation. A particular
glyph outline defined in the ‘glyf’ table might have a pair of points (among others) that are on-curve points on
opposite sides of a stem. The entry in the ‘glyf’ table would specify glyph-design-grid coordinates for these
points for the default instance of the font, perhaps corresponding to the regular weight:

(1, 1)

421

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 421
	

Variation data would be defined for the maximum value on the weight axis, corresponding to 1.0 in the
normalized weight scale. This data would provide X and Y deltas for the two contour points to shift their
positions as needed for the heaviest-supported weight instance:

In this example, the first point would have X and Y deltas of +40 and +10, respectively; the second point would
have deltas of +140 and +10. These provide a maximal adjustment of the outline points, applied when the
user-selected instance is at the maximum weight. For weights between the default and the maximum, such as
a normalized weight value of 0.5, the effect is scaled back.

In this case, a scalar co-efficient of 0.5 is applied to the delta values.

(840, 700)
(720, 700)

(980, 710)

(760, 710)

(910, 705)

(740, 705)

422

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

422 ©	ISO/IEC	2019	–	All	rights	reserved
	

The scalar calculation can be thought of as a function that maps each normalized axis value from -1 to 1 onto
a scalar range of 0 to 1. Each region that has associated variation data has its own scalar function, and the
scalar function is defined precisely by the region description.

For example, in a single-axis font, if a delta is provided for the region from 0 to 1 with the peak effect at 1, the
scalar function would be as follows:

+1.0 -1.0 Axis values

1.
0

0
Sc

al
ar

This example considers a non-intermediate region. The same concepts can be generalized to intermediate
regions. An intermediate region has start and end axis values between which there is some adjustment effect,
and a peak axis value at which the full adjustment effect is applied. The scalar function has a triangular shape
within the applicable range, with a value of 1.0 at the peak axis value, 0 at or below the start axis value, and 0
above the end axis value.

+1.0 -1.0 Axis values

1.
0

0
Sc

al
ar

When generalizing to two or more axes, similar concepts apply, but contributions for each axis are combined
into an overall effect. Scalars are calculated for each axis, and the per-axis scalars are multiplied together to
produce an overall scalar for the given delta and the given instance. For example, the following graph
illustrates an approximation of the scalar function for a region in a two-axis font with peak at (1, 1):

423

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 423
	

Since the scalar value calculated for each axis is between 0 and 1, the product when scalars for each axis are
multiplied together is also between 0 and 1. The maximal adjustment effect for a given delta is obtained only
when the instance axis values for all axes align with the peak coordinate values for the region associated with
that delta.

The minimum and maximum values specified for an axis in the ‘fvar’ table determine limits on instances that
can be selected by a user. If a user requests an instance with an axis value below the minimum, the minimum
value is used; or if an axis value above the maximum is requested, the maximum is used. Thus, when
processing variation data for a selected instance, the normalized axis values will always be between -1 and 1.

With that constraint assumed, let us consider the scalar value for a given delta when instance axis values are
outside the region of applicability. If the selected instance is out of range on any axis, then the scalar value
pertaining to that axis will be 0. As mentioned, per-axis scalars are multiplied together to produce an overall
scalar. Thus, if the selected instance is out of range on any axis, then the overall scalar for that delta will be 0,
and no adjustment from that delta will be applied.

When a delta is provided for a region defined by n-tuples that have a peak value of 0 for some axis, then that
axis does not factor into scalar calculations. This means that the adjustment effect is the same for any value in
that axis, if other axis values remain constant. In effect, the region of applicability spans the full range for the
zeroed axis. For example, suppose a font has two axes, weight and width, and that deltas are provided for a
region from (0, 0) to (1, 0). In this case, the deltas are applicable for any instance value on the second axis
(width), so long as the instance value in the first axis (weight) is in range:

424

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

424 ©	ISO/IEC	2019	–	All	rights	reserved
	

(1, 0)

weight

w
id

th

In this case, the scalar function for the second axis (width) is, effectively, a constant value of 1, with no effect
on the net scalar calculation. The following graphs illustrate the scalar functions for each of the two axes,
weight and width, in this example:

+1.0 -1.0 weight

1.
0

0
Sc

al
ar

+1.0 -1.0 width

1.
0

0
Sc

al
ar

For a given font value, deltas may be provided for several different regions in the variation space. When a
particular variation instance is selected, zero, one or many of those deltas may have an effect, according to
whether the position of the instance falls within the region of applicability for each delta. Different scalars are

425

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 425
	

calculated for each applicable delta, and the scaled values for applicable deltas are combined to derive a net
adjustment.

When creating a single-axis font, deltas will be required for both the minimum and maximum extremes of that
axis. (Both extremes, that is, unless one is also the default.) Additional intermediate-region deltas may also be
provided. When creating a multi-axis font, deltas would typically be provided for the minimum and maximum
extremes on each axis. The following figure illustrates this for a two-axis font:

Two-axis font with deltas at minimum/maximum extremes on each axis

As noted above, when deltas are specified for a region with some axis value being zero, then the deltas apply
to all values on that axis. Therefore, for the instance at position (1, 1), deltas for (1, 0) and (0, 1) will both
apply. This means that the adjustments for the (1, 0) deltas and the adjustments for the (0, 1) deltas will both
be applied to produce a combined effect. If the adjustments made for each axis are entirely independent of the
adjustments for the other axis, then the two sets of deltas may be sufficient to provide the intended values for
the (1, 1) instance.

Often, however, these two sets of deltas alone will not be sufficient to provide the desired results for all
instances, and that additional deltas are required for the (1, 1) position in addition. Generalizing, in a multi-axis
font, it will often be the case that at least some deltas are needed for the corner extremes as well as for the
axis end points.

Deltas
for peak
at (1, 0)

Deltas for
peak at (-

1, 0)

Deltas for peak at (0, -1)

Deltas for peak at (0, 1)

Default values

426

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

426 ©	ISO/IEC	2019	–	All	rights	reserved
	

Deltas at minimum/maximum extreme plus extrema-intersection corners

As noted in the Variation Space, Default Instances and Adjustment Deltas section above, the default instance
can correspond to the minimum or maximum value on one or more axes. This can allow variations across a
variation space to be implemented using fewer regions and associated delta data. The following figures
illustrate some additional possibilities for a two-axis font.

Two-axis font with default at minimum for one axis

Deltas for
peak at
(1, 1)

Deltas
for peak
at (1, 0)

Deltas
for peak
at (1, -1)

Deltas
for peak
at (-1, 1)

Deltas
for peak
at (-1, 0)

Deltas
for peak
at (-1, -1) Deltas for peak at (0, -1)

Deltas for peak at (0, 1)

Default values

Deltas
for peak
at (1, 0)

Deltas for peak at (0, -1)

Deltas for peak at (0, 1)

Default
values

Deltas
for peak
at (1, 1)

427

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 427
	

Two-axis font with default at minimum for both axes

As noted above, an intermediate region provides an axis scalar function with a triangular, or “tooth”, shape. A
pair of intermediate regions that barely overlap and that have a sharp incline at the overlap can be used to
provide an inflection point along an axis in regard to some variation behavior.

+1.0 -1.0 Axis values

1.
0

0
Sc

al
ar

Note that each intermediate region has its own associated delta values, and deltas can be used to give some
sharp transition at the overlap point. For example, contour points could suddenly shift to make some element
of a glyph's structure appear or disappear, as illustrated in the following figure:

Glyph structure simplified at heavier weights

NOTE When using such techniques, placement of such a transition point along an axis and placement of named
instances should be considered together so that sharp transitions do not occur close to a named instance. This
will avoid any possibility of inconsistent behavior in different applications when using named instances that might
arise due to small discrepancies in processing the numeric values.

Deltas
for peak
at (1, 0)

Deltas for
peak at
(0, 1)

Deltas
for peak
at (1, 1)

Default
values

428

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

428 ©	ISO/IEC	2019	–	All	rights	reserved
	

NOTE When using such techniques, it is important to bear in mind that some applications will support selection of
arbitrary instances, including those with axis values in the overlapping range, and that, in the overlapping range,
scaled deltas for both of the intermediate regions will apply with cumulative effect. Some design iteration may be
needed, with small adjustments to delta values or the way that the regions overlap, in order to avoid unexpected
or undesired results in the transitional range.

NOTE The above figure illustrates the use of intermediate regions to implement a “stroke-reduction” effect. Another
implementation technique that can be used to change the structure of a glyph for particular variation-axis value
ranges is glyph substitution. The OFF Layout [[Require Variation Alternates]] feature in combination with a
[[FeatureVariations]] table within the 'GSUB' table can be used to perform glyph substitutions when a variation
instance is selected in some range along one or more axes. This may be an easier and more-easily maintained
technique, and is generally recommended for achieving such effects.

The above has provided an overview of the basic concepts involved in variation data: regions of applicability,
per-axis and overall scalars, and combined effects of multiple, applicable deltas. A detailed specification of the
interpolation process is provided below.

7.1.6 Variation data tables and miscellaneous requirements

The previous subclause identified X and Y coordinates of glyph outline points as data items requiring
adjustment for different variation instances. Many other data items in a font may also require similar
adjustment, including the following:

 Font-wide metric values in the ‘OS/2’, ‘hhea’, vhea’ or ‘post’ tables.
 Glyph metric values in the ‘hmtx’, ‘vmtx’ or VORG tables.
 PPEM ranges in the ‘gasp’ table.
 Anchor positions, and adjustments to glyph positions or advance in the ‘GPOS’ or ‘JSTF’ tables.
 X or Y coordinates for ligature caret positions in the ‘GDEF’ table.
 X or Y coordinates for baseline metrics in the ‘BASE’ table.
 CVT values.

A variable font may contain variation data for any or all of these. The variation data for different items is
provided in various tables within a font.

NOTE While several data items in a font may require adjustment for different instances, there will be other items that do
not change across instances. For example, the font family and unitsPerEm are not impacted by variation. It
should be noted in particular, however, that certain values that can potentially be impacted by variations are not
supported with variation data. In particular, the xMin, yMin, xMax, yMax, macStyle and lowestRecPPEM fields in
the font header (‘head’) table are not supported by variation data and should only be used in relation to the
default instance for the font. Also, variations for values in the kerning (‘kern’) table are not supported; variable
fonts should handle kerning using the ‘GPOS’ table.

Two tables are required in all variable fonts:

 A font variations (‘fvar’) table is required to describe the variations supported by the font.
 A style attributes (‘STAT’) table is required and is used to establish relationships between different

fonts belonging to a family and to provide some degree of compatibility with legacy implementations.

If a variable font has TrueType outlines in a ‘glyf’ table, the outline variation data will be provided in the glyph
variations (‘gvar’) table, which is required. Variation data for CVT values can be provided in the optional CVT
variations (‘cvar’) table.

If a variable font has PostScript-style outlines in a Compact Font Format 2.0 (‘CFF2’) table, the ‘CFF2’ table
itself also contains the associated variation data.

NOTE A ‘CFF2’ table can be used in non-variable fonts as well as in variable fonts. Also note that variations for outlines
using the Compact Font Format version 1.0 (‘CFF ’) table are not supported.

The metrics variations (‘MVAR’) table is used to provide variation data for various font-wide metrics or other
numeric values in the ‘gasp’, ‘hhea’, ‘OS/2’, ‘post’ and ‘vhea’ tables. An ‘MVAR’ table should be added if
adjustments to any of these values are required. Note that it is not required to provide variation data for all of
the data items covered by the ‘MVAR’ table: variation data is optional for all items. If there is no variation data
for a given item, the default value applies to all instances.

429

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 429
	

NOTE Apple platforms allow for use of a font metrics (‘fmtx’) table to specify various font-wide metric values by
reference to the X or Y coordinates of contour points for a specified glyph. OFF font variations does not use the
font metrics table.

The ‘hmtx’ and ‘vmtx’ tables provide horizontal and vertical glyph metrics. Variation data for horizontal and
vertical glyph metrics can be provided using the horizontal metrics variations (‘HVAR’) and vertical metrics
(‘VVAR’) tables.

In a font with TrueType outlines, the rasterizer combines ‘hmtx’ and ‘vmtx’ values with glyph xMin, xMax, yMin
and yMax values in the ‘glyf’ table to generate four “phantom” points that correspond to the glyph horizontal
and vertical metric values. (See "Instructing TrueType Glyphs" [24] for more background on phantom points.)
In a variable font, the variation data for a glyph in the ‘gvar’ table will include adjustment deltas for the glyph’s
phantom points. As a result, interpolated glyph metrics for a given instance can be obtained by interpolating
the phantom point positions for the instance. This may be costly for some text-layout operations, however. In
order to provide the best performance on all platforms, it is recommended that all variable fonts with TrueType
outlines include an ‘HVAR’ table. If the font supports vertical layout and includes ‘vhea’ and ‘vmtx’ tables, it is
recommended that the font include a ‘VVAR’ table.

The CFF2 rasterizer does not generate phantom points, and CFF2 variation data will not include adjustment
deltas for phantom points. For this reason, in a variable font with CFF2 outlines, an ‘HVAR’ table is required. If
the font supports vertical layout, then a ‘VVAR’ table is required.

NOTE The ‘hdmx’ and ‘VDMX’ tables are not used in variable fonts.

If a font has OFF Layout tables, variation data for values from the ‘GDEF’, ‘GPOS’ or ‘JSTF’ table will be
included, as needed, within the ‘GDEF’ table. Variation data for the ‘BASE’ table will be included, as needed,
within the ‘BASE’ table itself.

In some variable fonts, it may be desirable to have different glyph-substitution or glyph-positioning actions
used for different regions within the font’s variation space. For example, for narrow-width or heavy-weight
instances in which counters become small, it may be desirable to make certain glyph substitutions to use
alternate glyphs with certain strokes removed or outlines simplified to allow for larger counters. Such effects
can be achieved using a feature variations subtable within either the ‘GSUB’ or ‘GPOS’ table. See "OFF
Layout Common Table Formats" for more information.

In a variable font with TrueType outlines, the left side bearing for each glyph must equal xMin, and bit 1 in the
flags field of the ‘head’ table must be set.

In all variable fonts, bit 5 in the flags field of the ‘head’ table must be cleared. (On certain platforms, bit 5
affects metrics in vertical layout. Bit 5 must be clear to ensure compatible behavior on all platforms.)

7.1.7 Algorithm for interpolation of instance values

The process of interpolating adjusted values for different variation instances is used for all font data items that
require variation — positions of outline glyph points, ascender or other font-wide metrics, etc. The interpolation
process involves the following:

 Determining the deltas that are applicable for that instance.
 For each applicable delta, calculating per-axis scalars for that instance, then multiplying the per-axis

scalars together to produce an overall scalar for that delta.
 Scaling each applicable delta by the calculated scalar for that delta.
 Combining all of the scaled deltas to produce an overall adjustment.

When processing the ‘gvar’ table, there is an additional step in calculations, which is to infer delta adjustments
for points when deltas are not given explicitly. This applies only to the ‘gvar’ table, and is described in the
‘gvar’ table subclause.

As described earlier, an instance axis value that is outside the region of applicability for a given delta is
equivalent to having a per-axis scalar value of zero. Also, having an axis that has no effect in relation to a
given delta (the n-tuples have a peak value of zero for that axis) is equivalent to having a per-axis scalar value
of one. Thus, determination of applicability and axis interactions can all be combined into a step of deriving an
overall scalar.

430

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

430 ©	ISO/IEC	2019	–	All	rights	reserved
	

The description of the interpolation process below will refer to start, peak, and end coordinate values. As
described earlier, an intermediate region is described using three n-tuples, two for diagonal-opposite corners
(start and end) that specify the extent of the region, and a peak. Non-intermediate regions have one of the
corners at the peak and the other corner at the zero origin. In some variation data structures, a non-
intermediate region is specified using a single n-tuple, that of the peak. In this case, the start and end
coordinates are implicit: one is the same as the peak, and the other is the zero origin.

In order for the definition of a region within variation data to be valid, start, peak and end values must be well
ordered. That is, for each axis, the start axis coordinate must be less than or equal to the peak coordinate,
and the peak coordinate must be less than or equal to the end. Also, the start and end coordinates must both
be non-negative or non-positive — they cannot cross zero.

In the discussion to this point, individual deltas have been described as having an associated region of
applicability. Variation data can be organized in different ways. In some cases, as in the ‘gvar’ table, several
deltas corresponding to many target items (all the outline points of a glyph) and a single region of the variation
space are organized together. In some other cases, as in the ‘MVAR’ or ‘CFF2’ tables, deltas covering
multiple regions are organized together by individual target items. In either case, each individual delta is
associated with a particular region of the variation space. The following description of the interpolation process
will refer to interpolating a value for an individual item, but when applied to particular contexts such as the
‘gvar’ table, it should be understood that the same calculations are applied to many different items in parallel.

As described above, the effect of a given delta is modulated by a scalar function ranging from 0 to 1, with a
value of 1 for an instance at the peak position of the region associated with that delta. The overall scalar is the
product of per-axis scalars, and each per-axis scalar is calculated as a proportion of the proximity of the
instance coordinate value to the peak coordinate value relative to the distance of the peak from the edges of
the region.

For example, consider an intermediate region (green in the figure below) in a two-axis variation space, with
corners at (0.3, 0.15) and (1, 1), and a peak (blue in the figure below) at (0.7, 0.5):

Then consider the instance (red in the figure below) at (0.5, 0.35). The per-axis scalars will be the ratio of the
distance of the instance coordinate value from the nearest edge of the region divided by the distance of the
peak from that edge:

(1, 1)

(0.7, 0.5)

(0.3, 0.1)

431

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 431
	

The overall scalar for the instance in relation to this region will be the product of the two axis scalars:
0.5 × 0.571429 = 0.285714.

The detailed algorithm for calculating the interpolated value for a given target item and for a given instance is
as follows.

 Let instanceCoords be the normalized instance coordinate n-tuple for the instance, with axis elements
instanceCoords[i].

 Let Regions be the set of regions for which associated deltas are provided for the given item, and let
R be a region within that set.

 Let startCoords, peakCoords and endCoords be the start, peak and end n-tuples for some specified
region, R. Let startCoords[i], etc. be coordinate values for a given axis.

 Let AS be a per-axis scalar, and let S be an overall scalar for a given region.
 Let d be the delta value in the variation data associated with a given region, and let scaledDelta be

the scaled delta for a given region and instance.
 Let netAdjustment be the accumulated adjustment for the given item.
 Let defaultValue be the default value of the item specified in the font, and let interpolatedValue be the

interpolated value of the item for a given instance.

The following pseudo-code provides a specification of the interpolation algorithm:

netAdjustment = 0; /* initialize the accumulated adjustment to zero */

(for each R in Regions) /* For each region, calculate a scalar S */
{
 S = 1; /* initialize the overall scalar for the region to one */

 /* for each axis, calculate a per-axis scalar AS */
 (for i = 0; i < axisCount; i++)
 {
 /* If a region definition is not valid in relation to some axis,
 then ignore the axis. For a region to be valid in relation to a
 given axis, it must have a peak that is between the start and
 end values, and the start and end values cannot have different
 signs if the peak is non-zero. (Start and end can have different
 signs if the peak is zero, however: this can be used if an axis is
 to be ignored in the scalar calculation.) */
 if (startCoords[i] > peakCoords[i] || peakCoords[i] > endCoords[i])
 AS = 1;
 else if (startCoords[i] < 0 && endCoords[i] > 0 && peakCoords[i] != 0)
 AS = 1;

 /* Note: for remaining cases, start, peak and end will all be <= 0 or
 will all be >= 0, or else peak will be == 0. */

 /* If the peak is zero for some axis, then ignore the axis. */
 else if (peakCoords[i] == 0)
 AS = 1;

(1, 1)

(0.7, 0.5)

(0.3, 0.15)
(0.5, 0.35)

432

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

432 ©	ISO/IEC	2019	–	All	rights	reserved
	

 /* If the instance coordinate is out of range for some axis, then the
 region and its associated deltas are not applicable. */
 else if (instanceCoords[i] < startCoords[i]
 || instanceCoords[i] > endCoords[i])
 AS = 0;

 /* The region is applicable: calculate a per-axis scalar as a proportion
 of the proximity of the instance to the peak within the region. */
 else
 {
 if (instanceCoords[i] == peakCoords[i])
 AS = 1;
 else if (instanceCoords[i] < peakCoords[i])
 {
 AS = (instanceCoords[i] – startCoords[i])
 / (peakCoords[i] – startCoords[i]);
 }
 else /* instanceCoords[i] > peakCoords[i] */
 {
 AS = (endCoords[i] – instanceCoords[i])
 / (endCoords[i] – peakCoords[i]);
 }
 }

 /* The overall scalar is the product of all per-axis scalars.
 Note: the axis scalar and the overall scalar will always be
 >= 0 and <= 1. */
 S = S * AS;

 } /* per-axis loop */

 /* get the scaled delta for this region */
 scaledDelta = S * delta;

 /* accumulate the adjustments from each region */
 netAdjustment = netAdjustment + scaledDelta;

} /* per-region loop */

/* apply the accumulated adjustment to the default to derive the interpolated value */
interpolatedValue = defaultValue + netAdjustment;

7.1.8 Interpolation example

The following example illustrates the interpolation process for a particular instance. This example is based on
glyph 45 of the Skia font, which is the glyph for the hyphen-minus character.

NOTE The Skia font is included in Apple's OSX platform. At the time of publication of the ISO/IEC 14496-22 OFF (4th
edition) specification, existing versions of the Skia font do not conform to the OFF specification as a whole, but
the implementation of variation data in the 'gvar' table, which is what is illustrated here, does conform.

The glyph entry in the ‘glyf’ table has one contour with four points. Based on values for glyph 45 in the ‘hmtx’
table, “phantom” points are inferred in the rasterizer to represent left and right side-bearings. (For this example,
horizontal layout is assumed, and so top and bottom phantom points are ignored.) These phantom points are
at (0, 0) and (698, 0). Thus, there are six points requiring interpolation.

433

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 433
	

The Skia font has weight and width axes. The variation data for glyph 45 in the ‘gvar’ table has deltas
associated with 8 regions within the weight-width variation space. Three of these will be considered, and will
be referred to as R1, R2 and R3. Each of these is a non-intermediate region, and so is defined using a single
n-tuple. The n-tuples for each are as follows:

Region (weight, width)

R1 (1, 0)

R2 (0, 1)

R3 (1, 1)

The following figures illustrate the range of applicability over the variation space for each of these regions:

R1: (1, 0)

weight

w
id

th

R1 has a zero coordinate value for the width axis, which means that changes in width for the variation
instance have no effect on the scalar calculations for this region.

pt 3: (621, 647)

pt 0: (621, 512) pt 1: (78, 512)

pt 2: (78, 647)

pt 4: (0, 0) pt 5: (698, 0)

434

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

434 ©	ISO/IEC	2019	–	All	rights	reserved
	

R2: (0, 1)
w

id
th

weight

R2 has a zero coordinate value for the weight axis, which means that changes in weight for the variation
instance have no effect on the scalar calculations for this region.

R3: (1, 1)

w
id

th

weight

R3 has non-zero coordinate values for both weight and width axes, which means that changes for the
variation instance in either weight or width will affect the scalar calculations for this region.

Now consider the delta values specified in the font for each point in association with these three regions. X
and Y deltas are specified for each point.

R1 has the following associated deltas:

 pt 0 pt 1 pt 2 pt 3 pt 4 pt 5

X 234 -26 -26 234 0 209

Y -135 -135 175 175 0 0

Applying these deltas to the original point positions, the maximal effect of deltas associated with R1 would be
to modify the outline as follows:

435

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 435
	

For a variation instance of (1, 0) (heaviest weight, default width), the scalars for other regions would be zero,
and so this would be the resulting glyph outline for that instance. Reducing the weight value of the instance
would attenuate the extent of the change, with the outline interpolated in between the original outline and this
maximal modification of the outline.

Now consider R2: it has the following deltas associated with it:

 pt 0 pt 1 pt 2 pt 3 pt 4 pt 5

X 165 20 20 165 0 187

Y -2 -2 2 2 0 0

Applying these deltas to the original point positions, the maximal effect of deltas associated with R2 would be
to modify the outline as follows:

pt 3: (833, 822)

pt 0: (855, 377) pt 1: (52, 377)

pt 2: (52, 822)

pt 4: (0, 0) pt 5: (907, 0)

pt 3: (786, 649)

pt 0: (786, 510) pt 1: (98, 510)

pt 2: (98, 649)

pt 4: (0, 0) pt 5: (885, 0)

436

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

436 ©	ISO/IEC	2019	–	All	rights	reserved
	

For a variation instance of (0, 1) (regular weight, widest width), the scalars for other regions would be zero,
and so this would be the resulting, interpolated glyph outline for that instance.

Now consider R3: it has the following associated deltas:

 pt 0 pt 1 pt 2 pt 3 pt 4 pt 5

X 0 0 0 0 0 0

Y 0 0 0 0 0 0

Since all of the delta values are zero, the data associated with this region has no effect at all on the glyph
outline. (In fact, this data is superfluous.)

Now, consider a variation instance of (1, 1) (heaviest weight, widest width). All three regions, R1, R2 and R3,
are applicable for this instance. As noted, the variation data associated with R3 will have no effect on the
glyph. But the data for regions R1 and R2 would also be applicable for this instance, and their maximal effects
would be combined. That is, the X and Y deltas for each point from data associated with both R1 and R2
would be applied to the point X and Y coordinates. This would result in the glyph outline being modified as
follows:

For other variation instances with weight > 0 and < 1 and with width > 0 and < 1, the data for regions R1 and
R2 would both be applied, but scalars for the two regions would vary, resulting in different proportional effects
on the outline of the data for each region. For example, consider a variation instance with coordinates (0.2,
0.7) — a slight weight increase and a large width increase. The region scalars for R1 and R2 would be 0.2
and 0.7. Each of these would be applied to the deltas for each region, and the scaled delta values for a given
point combined:

 pt 0 pt 1 pt 2 pt 3 pt 4 pt 5

X 0.2 × 234 +
0.7 × 165
= 162.3

0.2 × -26 +
0.7 × 20
= 8.8

0.2 × -26 +
0.7 × 20
= 8.8

0.2 × 234 +
0.7 × 165
= 162.3

0.2 × 0 +
0.7 × 0
= 0

0.2 × 209 +
0.7 × 187
= 172.7

Y 0.2 × -135 +
0.7 × -2
= -134.8

0.2 × -135 +
0.7 × -2
= -134.8

0.2 × 175 +
0.7 × 2
= 36.4

0.2 × 175 +
0.7 × 2
= 36.4

0.2 × 0 +
0.7 × 0
= 0

0.2 × 0 +
0.7 ×
= 0

pt 3: (1020, 822)

pt 0: (1020, 375) pt 1: (72, 375)

pt 2: (72, 822)

pt 4: (0, 0) pt 5: (1094, 0)

437

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 437
	

This would result in the glyph outline being modified as follows:

7.1.9 Dynamic generation of static instance fonts

In certain application workflows, it may be necessary to dynamically generate a static font resource for a
particular instance – that is, conventional, non-variation font tables that use interpolated values for a particular
instance. This may be needed in order to provide font data to legacy software or data formats that do not
understand or support variable fonts, such as legacy printer drivers, or PDF or XPS files with embedded font
data.

For example, it may be necessary to process ‘glyf’ and ‘gvar’ tables in a variable font to generate a new ‘glyf’
table that has interpolated outline data for a particular instance; or to process ‘hhea’ and ‘MVAR’ tables to
generate a new ‘hhea’ table with data for a particular instance.

Different application scenarios may require more- or less-complete font data, entailing different sets of non-
variations-specific font tables that need to be generated. No minimal requirements are specified here. The
following points should be noted, however:

 Some scenarios may require use of a PostScript name (name ID 6) in instance font data, with distinct
names for each instance that is used. An Adobe technical note provides a specification for Postscript
name generation that can be used for instance fonts derived from variable fonts. See Adobe
Technical Note #5902: “PostScript Name Generation for Variation Fonts” [27].

 For a variable font with CFF2 outlines, some workflows – for example, printing – may require an
instance font to be generated with a ‘CFF ’ table. In such cases, if the variable font has more than one
Font DICT in the FDArray, then a CID-keyed CFF font should be generated, with an ROS of “Adobe-
Identity-0”. If the variable font has one Font DICT in the FDArray, then a name-keyed CFF font can be
generated if glyph names are supplied in the ‘post’ table (some legacy workflows look to a glyph name
for semantics); otherwise, a CID-keyed CFF can be generated as above. Converting CFF2
CharStrings to Type2 CharStrings would involve re-optimizing the CharString arguments and
operators to avoid exceeding the maximum permitted stack depth. Most of the CFF fields removed
from the CFF2 specification can be omitted, so that they will inherit the CFF default values. The
source information for filling the rest of the fields is documented in "CFF2 changes from CFF 1.0" [28].

 A variable font that has a ‘glyf’ table may utilize the GET VARIATION instruction to provide current
variation axis coordinates to the glyph program. In scenarios that require dynamic generation of
instance font data, it should be assumed that this instruction will not be supported. In the process for
generating an interpolated ‘glyf’ table, special treatment of the GETVARIATION instruction will be
needed to ensure that the program gets appropriate axis coordinate values for the given instance. For
details, see TrueType InstructionSet [[# Get Variation]].

pt 3: (783, 683)

pt 0: (783, 484) pt 1: (87, 484)

pt 2: (87, 683)

pt 4: (0, 0) pt 5: (871, 0)

438

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

438 ©	ISO/IEC	2019	–	All	rights	reserved
	

7.2 Font variations common table formats

OFF font variations allow a font designer to incorporate multiple faces within a font family into a single font
resource. Variable fonts allow for continuous variation along one or more design axes, such as weight or width.
Applications can select arbitrary variation instances in a font’s design variation space to format text. The font
has default values for various data items, such as the X and Y coordinates of glyph outline points. Layout and
rendering processes combine these default values with variation data to interpolate new values appropriate to
the instance.

An overview of font variations and a specification of the algorithm for interpolating variation instance values is
provided in subclause 7.1, which should be read first. This subclause documents the formats for variation data
that are used in various font tables, such as the ‘gvar’ or ‘MVAR’ tables.

7.2.1 Overview

A font has many different data items found in several different font tables that provide values that are specific
to a particular font face. Examples include glyph-specific values, such as the positions of glyph outline points
and glyph advance widths, and face-wide values, such as a sub-family name, a weight class, or ascender and
descender values. In a variable font, most or all of these values may need to vary for different variation
instances. When an application selects a particular variation instance within the font’s variation space, new
values for such items appropriate to that instance need to be derived. This is done using delta adjustment
values that are specified for a given font data item and a particular region within the variation space.

For example, the OS/2 table of a font may provide a default sxHeight value of 970. The ‘MVAR’ table might
provide a delta value of +50 that is used for weight-axis values from the default to the heaviest-supported
weight. For a particular instance, the interpolation process might scale that delta with a scalar co-efficient of
0.4, deriving an instance sxHeight value of 990.

These concepts and the interpolation algorithm for deriving instance values are described in detail in the Font
variations overview.

The variation data for a font consists of a number of delta adjustment values. Each individual delta applies to a
particular, target data item – the X coordinate of a particular point of a particular glyph, or the font’s
sTypoAscender – and is also associated with a specific region within the font’s design variation space over
which it is applicable. Thus, a given delta is logically keyed by the target data item and the applicable region.

A variable font includes a large number of deltas. At the highest level, deltas are organized into collections for
different target item sets:

 Deltas for positions of points of a ‘glyf’ table are stored in a ‘gvar’ table.
 Deltas for positions of points of a ‘CFF2’ table are stored within the ‘CFF2’ table.
 Deltas for CVT values are stored in a ‘cvar’ table.
 Deltas for glyph metrics in an ‘hmtx’ table are stored in an ‘HVAR’ table; and deltas for glyph metrics

in a ‘vmtx’ or ‘VORG’ table are stored in a ‘VVAR’ table.
 Deltas for anchor positions in ‘GPOS’ lookups and other items used in ‘GDEF’, ‘GPOS’ or ‘JSTF’

tables are stored within variation data contained in the ‘GDEF’ table.
 Deltas for baseline metrics in a ‘BASE’ table are stored within the ‘BASE’ table.
 Deltas for font-wide metrics and other items from the ‘OS/2’, ‘hhea’, ‘gasp’ or other tables are stored in

an ‘MVAR’ table.

In a variable font, the largest group of deltas are for the positions of glyph outline points. For TrueType
outlines in a ‘glyf’ table, the deltas are stored within the ‘gvar’ table, with a second level of organization is to
group deltas by glyph ID. See the [[‘gvar’ table specification]] for details.

Below these higher levels of organization, most variation data is organized in one of two ways. (Variation data
for CFF2 outlines is a partial exception – see below.)

 Organize sets of deltas for several target items into groupings by the variation-space region over
which they apply. Since regions are defined using n-tuples (or “tuples”), such data sets will be referred
to as tuple variation stores.

 Organize sets of deltas associated with different regions into groupings by the target item to which
they apply. Such data sets will be referred to as item variation stores.

439

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 439
	

The two formats have different ways of representing n-tuples that define regions of applicability, and different
ways of associating deltas with target font-data items. The tuple variation store format is optimized for
compact representation of glyph outline variation data that is all processed for a given variation instance. The
item variation store format, on the other hand, is designed to allow direct access to variation data for arbitrary
target items, allowing more efficient processing in contexts that do not require interpolated values for all items
to be computed. (Additional details are provided below.) The 'gvar' and 'cvar' table use the tuple variation
store format, while variation data in most other tables, including the 'MVAR', 'HVAR' and 'GDEF' tables, use
item variation store formats.

Variation data for CFF2 outlines are handled slightly differently than other cases. The deltas for glyph outline
descriptions are interleaved directly within the outline descriptions in the Compact Font Format 2 (‘CFF2’)
table. The sets of regions which are associated with the delta sets are defined in an item variation store,
contained as a subtable within the CFF2 table.

7.2.2 Tuple variation store

Tuple variation stores are used in the ‘gvar’ and ‘cvar’ tables, and organize sets of variation data into
groupings, each of which is associated with a particular region of applicability within the variation space.
Within the ‘gvar’ table, there is a separate variation store for each glyph. Within the ‘cvar’ table, there is one
variation store providing variations for all CVT values.

There is a minor difference in the top-level structure of the store in these two contexts. Within the ‘cvar’ table,
it is the entire ‘cvar’ table that comprises the specific variation store format, with a header that begins with
major/minor version fields. The specific variation store format for glyph-specific data within the ‘gvar’ table is
the GlyphVariationData table (one per glyph ID), which does not include any version fields. In other respects,
the ‘cvar’ table and GlyphVariationData table formats are the same. There is also a minor difference in certain
data that can occur in a GlyphVariationData table versus a ‘cvar’ table. Differences between the ‘gvar’ and
‘cvar’ tables will be summarized later in this subclause.

In terms of logical information content, the GlyphVariationData and ‘cvar’ tables consist of a set of logical,
tuple variation data tables, each for a particular region of the variation space. In physical layout, however, the
logical tuple variation tables are divided into separate parts that get stored separately: a header portion, and a
serialized-data portion.

In terms of overall structure, the GlyphVariationData table and the ‘cvar’ table each begin with a header, which
is followed by serialized data. The header includes an array with all of the tuple variation headers. The
serialized data include deltas and other data that will be explained below.

7.2.2.1 Tuple records

The tuple variation store formats make reference to regions within the font’s variation space using tuple
records. These references identify positions in terms of normalized coordinates, which use F2DOT14 values.

glyphVariationData table / ‘cvar’ table

header
(includes tuple variation headers)

Serialized data
(adjustment deltas and other data)

440

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

440 ©	ISO/IEC	2019	–	All	rights	reserved
	

Tuple Record (F2DOT14)

Type Name Description

F2DOT14 coordinates[axisCount] Coordinate array specifying a position within the font’s
variation space. The number of elements must match the
axisCount specified in the ‘fvar’ table.

7.2.2.2 Tuple variation store header

The two variants of a tuple variation store header, the GlyphVariationData table header and the ‘cvar’ header,
are only slightly different. The formats of each are as follows:

GlyphVariationData Header:

Type Name Description

uint16 tupleVariationCount A packed field. The high 4 bits are flags (see below),
and the low 12 bits are the number of tuple variation
tables for this glyph. The count can be any number
between 1 and 4095.

Offset16 dataOffset Offset from the start of the GlyphVariationData table to
the serialized data

TupleVariationHeader tupleVariationHeaders
[tupleVariationCount]

Array of tuple variation headers.

‘cvar’ table header

Type Name Description

uint16 majorVersion Major version number of the CVT variations
table – set to 1.

uint16 minorVersion Minor version number of the CVT variations
table – set to 0.

uint16 tupleVariationCount A packed field. The high 4 bits are flags (see
below), and the low 12 bits are the number of
tuple variation tables for this glyph. The count
can be any number between 1 and 4095.

Offset16 dataOffset Offset from the start of the ‘cvar’ table to the
serialized data.

TupleVariationHeader tupleVariationHeaders
[tupleVariationCount]

Array of tuple variation headers.

The tupleVariationCount field contains a packed value that includes flags and the number of logical tuple
variation tables — which is also the number of physical tuple variation headers. The format of the
tupleVariationCount value is as follows:

Value Name Description

0x8000 SHARED_POINT_NUMBERS Flag indicating that some or all tuple variation tables reference
a shared set of “point” numbers. These shared numbers are
represented as packed point number data at the start of the
serialized data.

0x7000 Reserved Reserved for future use.

0x0FFF COUNT_MASK Mask for the low bits to give the number of tuple variation
tables.

441

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 441
	

If the sharedPointNumbers flag is set, then the serialized data following the header begins with packed “point”
number data. In the context of a GlyphVariationData table within the ‘gvar’ table, these identify outline point
numbers for which deltas are explicitly provided. In the context of the ‘cvar’ table, these are interpreted as
CVT indices rather than point indices. The format of packed point number data is described below.

7.2.2.3 TupleVariationHeader

The GlyphVariationData and ‘cvar’ header formats include an array of tuple variation headers. The
TupleVariationHeader format is as follows:

TupleVariationHeader

Type Name Description

uint16 variationDataSize The size in bytes of the serialized data for this tuple variation
table.

uint16 tupleIndex A packed field. The high 4 bits are flags (see below). The low
12 bits are an index into a shared tuple records array.

Tuple peakTuple Peak tuple record for this tuple variation table — optional,
determined by flags in the tupleIndex value.

NOTE this must always be included in the ‘cvar’ table.

Tuple intermediateStartTuple Intermediate start tuple record for this tuple variation table —
optional, determined by flags in the tupleIndex value.

Tuple intermediateEndTuple Intermediate end tuple record for this tuple variation table —
optional, determined by flags in the tupleIndex value.

Note that the size of the TupleVariationHeader is variable, depending on whether peak or intermediate tuple
records are included. (See below for more information.)

The variationDataSize value indicates the size of serialized data for the given tuple variation table that is
contained in the serialized data. It does not include the size of the TupleVariationHeader.

Every tuple variation table has an associated peak tuple record. Most tuple variation tables use non-
intermediate regions, and so require only the peak tuple record to define the region. In the ‘cvar’ table, there is
only one variation store, and so any given region will only need to be referenced once. Within the ‘gvar’ table,
however, there is a GlyphVariationData table for each glyph ID, and so any region may be referenced
numerous times; in fact, most regions will be referenced within the GlyphVariationData tables for most glyphs.
To provide a more efficient representation, the tuple variation store formats allow for an array of tuple records,
stored outside the tuple variation store structures that can be shared across many tuple variation stores. This
is used only within the ‘gvar’ table; it is not needed or supported in the ‘cvar’ table. The formats alternately
allow for a peak tuple record that is non-shared, specific to the given tuple variation table, to be embedded
directly within a TupleVariationHeader. This is optional within the ‘gvar’ table, but required in the ‘cvar’ table,
which does not use shared peak tuple records.

See the glyph variations (‘gvar’) table description for details on the representation of shared tuple records
within that table.

The tupleIndex field contains a packed value that includes flags and an index into a shared tuple records array
(not used in the ‘cvar’ table). The format of the tupleIndex field is as follows:

442

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

442 ©	ISO/IEC	2019	–	All	rights	reserved
	

tupleIndex format

Mask Name Description

0x8000 EMBEDDED_PEAK_TUPLE Flag indicating that this tuple variation header includes an
embedded peak tuple record, immediately after the tupleIndex
field. If set, the low 12 bits of the tupleIndex value are ignored.

NOTE this must always be set within the ‘cvar’ table.

0x4000 INTERMEDIATE_REGION Flag indicating that this tuple variation table applies to an
intermediate region within the variation space. If set, the
header includes the two intermediate-region, start and end
tuple records, immediately after the peak tuple record (if
present).

0x2000 PRIVATE_POINT_NUMBERS Flag indicating that the serialized data for this tuple variation
table includes packed “point” number data. If set, this tuple
variation table uses that number data; if clear, this tuple
variation table uses shared number data found at the start of
the serialized data for this glyph variation data or ‘cvar’ table.

0x1000 Reserved Flag reserved for future use.

0x0FFF TUPLE_INDEX_MASK Mask for the low 12 bits to give the shared tuple records
index.

Note that the intermediateRegion flag is independent of the embeddedPeakTuple flag or the shared tuple
records index. Every tuple variation table has a peak n-tuple indicated either by an embedded tuple record
(always true in the ‘cvar’ table) or by an index into a shared tuple records array (only in the ‘gvar’ table). An
intermediate-region tuple variation table additionally has start and end n-tuples that also get used in the
interpolation process; these are always represented using embedded tuple records.

Also note that the privatePointNumbers flag is independent of the sharedPointNumbers flag in the
tupleVariationCount field of the GlyphVariationData or ‘cvar’ header. A GlyphVariationData or ‘cvar’ table may
have shared point number data used by multiple tuple variation tables, but any given tuple variation table may
have private point number data that it uses instead.

As noted, the size of tuple variation headers is variable. The next TupleVariationHeader can be calculated as
follows:

const TupleVariationHeader*
NextHeader(const TupleVariationHeader* currentHeader, int axisCount)
{
 int bump = 2 * sizeof(uint16);
 int tupleIndex = currentHeader->tupleIndex;
 if (tupleIndex & embeddedPeakTuple)
 bump += axisCount * sizeof(F2DOT14);
 if (tupleIndex & intermediateRegion)
 bump += 2 * axisCount * sizeof(F2DOT14);
 return (const TupleVariationHeader*)((char*)currentHeader + bump);
}

7.2.2.4 Serialized data

After the GlyphVariationData or ‘cvar’ header (including the TupleVariationHeader array) is a block of
serialized data. The offset to this block of data is provided in the header.

The serialized data block begins with shared “point” number data, followed by the variation data for the tuple
variation tables. The shared point number data is optional: it is present if the corresponding flag is set in the
tupleVariationCount field of the header. If present, the shared number data is represented as packed point
numbers, described below.

443

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 443
	

The remaining data contains runs of data specific to individual tuple variation tables, in order of the tuple
variation headers. Each TupleVariationHeader indicates the data size for the corresponding run of data for
that tuple variation table.

The per-tuple-variation-table data optionally begins with private “point” numbers, present if the
privatePointNumbers flag is set in the tupleIndex field of the TupleVariationHeader. Private point numbers are
represented as packed point numbers, described below.

After the private point number data (if present), the tuple variation data will include packed delta data. The
format for packed deltas is given below. Within the ‘gvar’ table, there are packed deltas for X coordinates,
followed by packed deltas for Y coordinates.

Within the ‘cvar’ table, there is one set of packed deltas.

The data size indicated in the TupleVariationHeader includes the size of the private point number data, if
present, plus the size of the packed deltas.

7.2.2.5 Packed “point” numbers

Tuple variation data specify deltas to be applied to specific items: X and Y coordinates for glyph outline points
within the ‘gvar’ table, and CVT values in the ‘cvar’ table. For a given glyph, deltas may be provided for any or
all of a glyph’s points, including “phantom” points generated within the rasterizer that represent glyph side
bearing points. (See "Instructing TrueType Glyphs" [24] for more background on phantom points.) Similarly,

Serialized data block

Shared “point” numbers
(optional per flag in the header)

Per-tuple-variation data

Private point numbers
(optional per flag in tupleVariationHeader)

X coordinate packed deltas

Y coordinate packed deltas

Per-tuple-variation data — ‘gvar’

Private point numbers
(optional per flag in tupleVariationHeader)

CVT packed deltas

Per-tuple-variation data — ‘cvar’

444

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

444 ©	ISO/IEC	2019	–	All	rights	reserved
	

within the ‘cvar’ table, deltas may be provided for any or all CVTs. The set of glyph points or CVTs for which
deltas are provided is specified by packed point numbers.

NOTE If a glyph is a composite glyph, then “point” numbers are interpreted as indices for the components that make up
the composite glyph. See the ‘gvar’ table chapter for complete details. Likewise, in the context of the ‘cvar’ table,
“point” numbers are indices for CVT entries.

NOTE Within the ‘gvar’ table, if deltas are not provided explicitly for some points, then inferred delta values may need to
be calculated – see the ‘gvar’ table chapter for details. This does not apply to the ‘cvar’ table, however: if deltas
are not provided for some CVT values, then no adjustments are made to those CVTs in connection with the
particular tuple variation table.

Packed point numbers are stored as a count followed by one or more runs of point number data.

The count may be stored in one or two bytes. After reading the first byte, the need for a second byte can be
determined. The count bytes are processed as follows:

 If the first byte is 0, then a second count byte is not used. This value has a special meaning: the tuple
variation data provides deltas for all glyph points (including the “phantom” points), or for all CVTs.

 If the first byte is non-zero and the high bit is clear (value is 1 to 127), then a second count byte is not
used. The point count is equal to the value of the first byte.

 If the high bit of the first byte is set, then a second byte is used. The count is read from interpreting the
two bytes as a big-endian word, with the high-order bit masked out.

Thus, if the count fits in 7 bits, it is stored in a single byte, with the value 0 having a special interpretation. If
the count does not fit in 7 bits, then the count is stored in the first two bytes with the high bit of the first byte set
as a flag that is not part of the count – the count uses 15 bits.

For example, a count of 0x00 indicates that deltas are provided for all point numbers / all CVTs, with no
additional point number data required; a count of 0x32 indicates that there are a total of 50 point numbers
specified; a count of 0x81 0x22 indicates that there are a total of 290 (= 0x0122) point numbers specified.

Point number data runs follow after the count. Each data run begins with a control byte that specifies the
number of point numbers defined in the run, and a flag bit indicating the format of the run data. The control
byte’s high bit specifies whether the run is represented in bytes or words. The low 7 bits specify the number of
elements in the run minus 1. The format of the control byte is as follows:

Mask Name Description

0x80 POINTS_ARE_WORDS Flag indicating the data type used for point numbers in this
run. If set, the point numbers are stored as unsigned words
(uint16); if clear, the point numbers are stored as unsigned
bytes (uint8).

0x7F POINT_RUN_COUNT_MASK Mask for the low 7 bits of the control byte to give the number
of point number elements, minus 1.

For example, a control byte of 0x02 indicates that the run has three elements represented as uint8s; a control
byte of 0xD4 indicates that the run has 0x54 + 1 = 85 elements represented as uint16s.

In the first point run, the first point number is represented directly (that is, as a difference from zero). Each
subsequent point number in that run is stored as the difference between it and the previous point number. In
subsequent runs, all elements, including the first, represent a difference from the last point number.

Since the values in the packed data are all unsigned, point numbers will be given in increasing order. Since
the packed representation can include zero values, it is possible for a given point number to be repeated in
the derived point number list. If that case, there will be multiple delta values in the deltas data associated with
that point number. All of these deltas must be applied cumulatively to the given point.

7.2.2.6 Packed deltas

Tuple variation data specify deltas to be applied to glyph point coordinates or to CVT values. As in the case of
point number data, deltas are stored in a packed format.

445

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 445
	

Packed delta data does not include the total number of delta values within the data. Logically, there are deltas
for every point number or CVT index specified in the point-number data. Thus, the count of logical deltas is
equal to the count of point numbers specified for that tuple variation table. But since the deltas are
represented in a packed format, the actual count of stored values is typically less than the logical count. The
data is read until the expected logic count of deltas is obtained.

NOTE In the ‘gvar’ table, there will be two logical deltas for each point number: one that applies to the X coordinate, and
one that applies to the Y coordinate. Therefore, the total logical delta count is two times the point number count.
The packed deltas are arranged with all of the deltas for X coordinates first, followed by the deltas for Y
coordinates.

Packed deltas are stored as a series of runs. Each delta run consists of a control byte followed by the actual
delta values of that run. The control byte is a packed value with flags in the high two bits and a count in the
low six bits. The flags specify the data size of the delta values in the run. The format of the control byte is as
follows:

Mask Name Description

0x80 DELTAS_ARE_ZERO Flag indicating that this run contains no data (no explicit delta
values are stored), and that all of the deltas for this run are
zero.

0x40 DELTAS_ARE_WORDS Flag indicating the data type for delta values in the run. If set,
the run contains 16-bit signed deltas (int16); if clear, the run
contains 8-bit signed deltas (int8).

0x3F DELTA_RUN_COUNT_MASK Mask for the low 6 bits to provide the number of delta values
in the run, minus one.

For example, a control byte of 0x03 indicates that there are four 8-bit signed delta values following the control
byte; a control byte of 0x40 indicates that there is one 16-bit signed delta value following the control byte; a
control byte of 0x94 indicates that there is no additional data for this run, and that the run represents a
sequence of 0x14 + 1 = 21 deltas equal to zero.

The following is an example of a block of packed delta data:

03 0A 97 00 C6 87 41 10 22 FB 34

This data has three runs: a run of four 8-bit values, a run interpreted as eight zeroes, and a run of two 16-bit
values:

Run 1: 03 0A 97 00 C6

Run 2: 87

Run 3: 41 10 22 FB 34

This packed data would represent the following logical sequence of delta values:

10, -105, 0, -58, 0, 0, 0, 0, 0, 0, 0, 0, 4130, -1228

7.2.2.7 Processing tuple variation store data

When a particular variation instance has been selected, an application needs to process the variation store
data to derive interpolated values for that instance – interpolated grid coordinates for outline points, or
interpolated CVT values. In the case of the ‘gvar’ table, this will be done glyph-by-glyph as needed. The
application can process the TupleVariationHeaders to filter the tuple variation tables that are applicable for the
current instance, or to calculate a scalar for each tuple variation table directly. Scalars can then be applied to
deltas in each tuple variation table, and the net adjustments applied to the target items.

NOTE In the ‘cvar’ table, there is a logical delta for each CVT index given in the packed point number data. In the ‘gvar’
table, there are two logical deltas for each point number: one for the point’s X coordinate, and one for the X
coordinate. The delta data is organized with all of the deltas for X coordinates first, followed by deltas for Y
coordinates.

446

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

446 ©	ISO/IEC	2019	–	All	rights	reserved
	

NOTE In the ‘gvar’ table, if the data for a given glyph lists point numbers for some points in a contour but not others,
then delta values for the omitted point numbers must be inferred. See the ‘gvar’ table description for details.

For details on determining applicability of a given tuple variation table, and on calculation of scalars and net
adjustments to target items, see OFF Font variations overview.

Because point number and delta data are stored in a packed representation, the data shall be processed from
the start in order to determine the presence of any particular point number, or to retrieve the delta for a
particular item. For this reason, the format is best suited to processing all of the data in a given tuple variation
table at once rather than processing data for individual target items. In the case of glyph outlines, this is
reasonable since there is no common application scenario for interpolating an adjusted position of a single
outline point.

The “phantom” points, which provide side-bearing and advance width information, are a possible exception to
that generalization, however. (See "Instructing TrueType Glyphs" [24] for more background on phantom
points.) In particular, some text-layout operations require glyph metrics (advance widths or side bearings)
without necessarily requiring glyph outline data. Yet the tuple variation store formats used in the ‘gvar’ table
require that interpolated outlines be computed in order to obtain the interpolated glyph metrics. The ‘HVAR’
table and ‘VVAR’ table provide an alternative way to represent horizontal and vertical glyph metric variation
data, and these use the item variation store format which is specifically designed to be suitable for processing
data for particular target items.

7.2.2.8 Differences between ‘gvar’ and ‘cvar’ tables

The following is a summary of key differences between tuple variation stores in the ‘gvar’ and ‘cvar’ tables.

 The ‘gvar’ table is a parent table for tuple variation stores, and contains one tuple variation store (the
glyph variation data table) for each glyph ID. In contrast, the entire ‘cvar’ table is comprised of a
single, slightly-extended (with version fields) tuple variation store.

 Because the ‘gvar’ table contains multiple tuple variation stores, sharing of data between tuple
variation stores is possible, and is used for shared tuple records. Because the ‘cvar’ table has a single
tuple variation store, no possibility of shared data arises.

 The tupleIndex field of TupleVariationHeader structures within a tuple variation store includes a flag
that indicates whether the structure instance includes an embedded peak tuple record. In the ‘gvar’
table, this is optional. In the ‘cvar’ table, it is mandatory.

 The serialized data includes packed “point” numbers. In the ‘gvar’ table, these refer to glyph contour
point numbers or, in the case of a composite glyph, to component indices. In the context of the ‘cvar’
table, these are indices for CVT entries.

 In the ‘gvar’ table, point numbers cover the points or components defined in a ‘glyf’ entry plus four
additional “phantom” points that represent the glyph’s horizontal and vertical advance and side
bearings. (See "Instructing TrueType Glyphs" [24] for more background on phantom points.) The last
four point numbers for any glyph, including composite glyphs, are for the phantom points.

 In the ‘gvar’ table, if deltas are not provided for some points and the point indices are not represented
in the point number data, then interpolated deltas for those points will in some cases be inferred. This
is not done in the ‘cvar’ table, however.

 In the ‘gvar’ table, the serialized data for a given region has two logical deltas for each point number:
one for the X coordinate, and one for the Y coordinate. Hence the total number of deltas is twice the
count of control points. In the ‘cvar’ table, however, there is only one delta for each point number.

7.2.3 Item variation stores

Item variation stores are used for most variation data other than that used for TrueType glyph outlines,
including the variation data in ‘MVAR’, ‘HVAR’ and ‘GDEF’ tables.

NOTE For CFF2 glyph outlines, delta values are interleaved directly within glyph outline description in the ‘CFF2’ table.
The sets of regions which are associated with the delta sets are defined in an item variation store, contained as a
subtable within the CFF2 table. See the ‘CFF2’ table description for additional details.

The item variation store formats organize sets of variation data into groupings by the target items. This makes
the formats well-suited to computing interpolated instance values for particular font data items. This is useful

447

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 447
	

for certain text layout operations in which only certain data items are required, such as the advance widths of
specific glyphs or anchor positions used in specific ‘GPOS’ lookup tables.

The different tables that use item variation stores have their own top-level formats. Each will include an offset
to an itemVariationStore table, containing the variation data. This chapter describes the shared formats: the
itemVariationStore and its component structures.

Variation data is comprised of delta adjustment values that apply to particular target items and that have effect
for instances within particular regions of the font’s variation space. Some mechanism is needed to associate
delta values with target items. In the tuple variation store formats (described earlier in this subclause), data
containing a set of deltas also includes a set of point number indices to identify the target items to which the
deltas apply. In the item variation store, however, a block of delta values has implicit delta-set indices, and
separate data outside the item variation store is provided that indicates the delta-set index associated with a
particular target item. For example, the ‘MVAR’ table header includes an array of records that identify target
font data items and the delta-set index for each item.

The itemVariationStore table includes a variation region list, which defines all of the different regions of the
font’s variation space for which variation data is defined. It also includes a set of itemVariationData subtables,
each of which provides a portion of the total variation data. Each subtable is associated with some subset of
the defined regions, and will include deltas used for one or more target items. Conceptually, the deltas form a
two-dimensional array, with delta-set rows that include a delta for each of the regions referenced by that
subtable. From this perspective, the table columns correspond to regions.

The item variation store includes a variation region list and an array of item variation data subtables. The
following figure illustrates the overall structure.

Note that multiple subtables are necessary only if the number of distinct delta-set data exceeds 65,536.
Multiple subtables may also be used, however, to provide more compact data representation. There are
different ways that the delta data can be made more compact.

First, deltas with a value of zero have no impact on their target items. If there are several delta-set rows that
have a zero delta for the same region, then those rows could be moved into a subtable that does not
reference that region. As a result, there will be fewer delta values in each row, making the size of data for
those rows smaller.

Also, some delta values require 16-bit representations, but some require only 8 bits. For a given subtable,
deltas in each row correspond in order to the regions that are referenced, but the ordering of regions has no
effect. Hence, regions and corresponding deltas within each row can be re-ordered. Thus, regions that require
16-bit delta representations can be ordered together. The itemVariationData format specifies a count of
regions (columns) for which a 16-bit delta representation is used, with the remaining deltas in each row using
8 bits. By reordering columns, the size required for a given delta-set row can potentially be reduced. If a set of
rows have similar requirements in regard to which columns have deltas requiring 16-bit versus 8-bit
representations, then those rows can be moved into a subtable with a column order that allows a maximal
number of deltas using 8-bit rather than 16-bit representations.

Note that there is minimal overhead for each subtable: 10 bytes (6 bytes in the subtable header and 4 bytes
for the offset in the parent table) plus 2 bytes for each region that is referenced.

VariationRegionList

Region indices array

Deltas table

ItemVariationStore table

ItemVariationData subtables:

Region indices array

Deltas

448

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

448 ©	ISO/IEC	2019	–	All	rights	reserved
	

A complete delta-set index involves an outer-level index into the itemVariationData subtable array, plus an
inner-level index to a delta-set row within that subtable. As noted above, delta-set indices are stored outside
the variation store. Different parent tables that use an item variation store will store indices in different ways,
and may utilize different schemes for how to represent the indices in an efficient manner. For example, the
‘HVAR’ and ‘VVAR’ tables allow the outer and inner indices to be combined into one-byte, two-byte, three-byte
or four-byte representations depending on the indexing requirements of the variation store. For larger sets of
variation data, such as may be needed for ‘HVAR’ or ‘VVAR’ tables, optimization of the indices data as well as
the delta data may have a significant impact on overall size. Optimizing compilers may need to consider the
impact on representation of indices in tandem as it optimizes the item variation store to achieve the best
overall results.

7.2.3.1 Variation regions

As noted above, variation data is comprised of delta adjustment values that have effect over particular regions
within the font’s variation space. In a tuple variation store (described earlier in this chapter), the deltas are
organized into groupings by region of applicability, with each grouping associated with a particular region. In
contrast, the item variation store format organizes deltas into groupings by the target items to which they apply,
with each grouping having deltas for several regions. Accordingly, the item variation store uses different
formats for describing the regions in which a set of deltas apply.

For a given item variation store, a set of regions is specified using a VariationRegionList.

VariationRegionList

Type Name Description

uint16 axisCount The number of variation axes for this font.
This must be the same number as axisCount
in the ‘fvar’ table.

uint16 regionCount The number of variation region tables in the
variation region list.

VariationRegion variationRegions
[regionCount]

Array of variation regions.

The regions can be in any order. Each region is defined using an array of RegionAxisCoordinates records,
one for each axis defined in the ‘fvar’ table:

VariationRegion record

Type Name Description

RegionAxisCoordinates regionAxes[axisCount] Array of region axis coordinates records, in the order
of axes given in the ‘fvar table.

Each RegionAxisCoordinates record provides coordinate values for a region along a single axis:

RegionAxisCoordinates Record

Type Name Description

F2DOT14 startCoord The region start coordinate value for the current axis.

F2DOT14 peakCoord The region peak coordinate value for the current axis.

F2DOT14 endCoord The region end coordinate value for the current axis.

The three values shall all be within the range -1.0 to +1.0. startCoord must be less than or equal to peakCoord,
and peakCoord must be less than or equal to endCoord. The three values must be either all non-positive or all
non-negative with one possible exception: if peakCoord is zero, then startCoord can be negative or 0 while
endCoord can be positive or zero.

NOTE The following guidelines are used for setting the three values in different scenarios:

449

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 449
	

 In the case of a non-intermediate region for which the given axis should factor into the scalar calculation for
the region, either startCoord and peakCoord are set to a negative value (typically, -1.0) and endCoord is set
to zero, or startCoord is set to zero and peakCoord and endCoord are set to a positive value (typically +1.0).

 In the case of an intermediate region for which the given axis should factor into the scalar calculation for the
region, startCoord, peakCoord and endCoord are all set to non-positive values or are all set to non-negative
values.

 If the given axis should not factor into the scalar calculation for a region. This is achieved by setting
peakCoord to zero. In this case, startCoord can be any non-positive value, and endCoord can be any non-
negative value. It is recommended either that all three be set to zero, or that startCoord be set to -1.0 and
endCoord be set to +1.0.

The full algorithm for interpolation of instance values is given in subclause 7.1 (Font variations overview). The
logical algorithm involves computing per-axis scalar values for a given region and a given instance. The per-
axis scalars for a region are then combined to yield an overall scalar for the region that is then applied to delta
adjustment values. Given a selected variation instance, a per-axis scalar can be calculated for each
RegionAxisCoordinates record. The overall scalar for a region can be calculated by combining the per-axis
scalars for that region.

7.2.3.2 Item variation store and item variation data tables

The item variation store table has the following structure.

ItemVariationStore table

Type Name Description

uint16 format Set to 1.

Offset32 variationRegionListOffset Offset in bytes from the start of the item variation store
to the variation region list

uint16 itemVariationDataCount The number of item variation data subtables.

Offset32 itemVariationDataOffsets
[itemVariationDataCount]

Offsets in bytes from the start of the item variation
store to each item variation data subtable.

The item variation store includes an array of offsets to item variation data subtables. Each item variation data
subtable includes deltas for some number of items, and some subset of regions. The regions are indicated by
an array of indices into the variation region list.

ItemVariationData subtable

Type Name Description

uint16 itemCount The number of delta sets for distinct items.

uint16 shortDeltaCount The number of deltas in each delta set that use a
16-bit representation. Must be less than or equal to
regionCount.

uint16 regionIndexCount The number of variation regions referenced.

uint16 regionIndexes[regionCount] Array of indices into the variation region list for the
regions referenced by this item variation data table.

DeltaSet deltaSets[itemCount] Delta-set rows.

DeltaSet record

Type Name Description

uint8 deltaData
[shortDeltaCount + regionCount]

Variation delta values – a table with itemCount rows
and regionCount columns.

In a logical view, the item variation data table contains a two-dimensional array of delta values with itemCount
rows and regionCount columns. In each delta-set row, the first shortDeltaCount elements are represented as

450

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

450 ©	ISO/IEC	2019	–	All	rights	reserved
	

signed 16-bit values (int16), and the remaining regionCount – shortDeltaCount elements are represented as
signed 8-bit values (int8). The length of the data for each row is shortDeltaCount + regionCount.

NOTE Delta values are each represented directly. They are not packed as in the tuple variation store.

7.2.3.3 Processing item variation store data

When a particular variation instance has been selected, an application needs to process the variation store
data associated with particular target items to derive interpolated values for those items and that instance.

For a given target item, data outside the item variation store provides a delta-set outer-/inner-index pair for
that item. The associations between target items and delta-set indices are represented in different ways in
different parent tables; the specification of each font table should be referred to for the formats used.

To compute the interpolated instance value for a given target item, the application uses data in the parent
table to get the delta-set index for that item. It uses the outer-level index portion to select an item variation
data subtable within the item variation store, and the inner-level index portion to select a delta-set row within
that subtable. The delta set contains one delta for each region referenced by the subtable, in order of the
region indices given in the regionIndices array. The delta values in the delta set are read with the first
shortDeltaCount elements read as int16, and the remaining regionCount – shortDeltaCount values read as
int8. The application uses the regionIndices array for that subtable to identify applicable regions and to
compute a scalar for each of these regions based on the selected instance. Each of the scalars is then applied
to the corresponding delta within the delta set to derive a scaled adjustment. The scaled adjustments for the
row are then combined to obtain the overall adjustment for the item.

Complete details on the interpolation algorithm logic are provided in subclause 7.1.

When a particular variation instance has been selected, an application will often need to interpolate values for
several items that may use deltas in different item variation data subtables. All of the subtables will reference
region definitions in the shared variation region list. When the instance has been selected, applications can
pre-compute and cache a scalar for that instance for each region in the region list. Then when processing
different target items, the cached scalar array can be used without needing to re-compute region scalars for
each target item.

7.2.4 Design-variation axis tag registry

This registry defines design-variation axis tags for use in OpenType fonts. By providing registered tags with
well-defined semantics and associated numeric scales for variation, this provides some degree of
interoperability between different fonts from different vendors, or between fonts and applications.

Design-variation axis tags are used within the 'fvar' table in variable fonts, and also within the 'STAT' table.
Note that they are relevant for non-variable fonts as well as variable fonts: even though a font might not be a
variable font, it is still a design variant within its font family. The 'STAT'' table allows applications to understand
relationships of font design variants within a given family, whether they are implemented as non-variable fonts
or as variation instances of a variable font.

Syntactic requirements for design-variation axis tags

Design-variation axis tags are arrays of four unsigned bytes (uint8[4]) that can equivalently be interpreted as a
string of four ASCII characters. Axis tags must begin with a letter (0x41 to 0x5A, 0x61 to 0x7A) and must use
only letters, digits (0x30 to 0x39) or space (0x20). Space characters must only occur as trailing characters in
tags that have fewer than four letters or digits.

Fonts may use tags defined in this registry, or may use foundry-defined tags. (Foundry-defined tags can also
be referred to as “custom” or “private” tags.) Foundry-defined tags must begin with an uppercase letter (0x41
to 0x5A), and must use only uppercase letters or digits. Registered axis tags must not use that pattern, but
can use any other valid pattern. This ensures that foundry-defined tags and registered tags are never
conflicting.

Documentation of registered axis tags

For every axis tag defined in this registry, certain information is required or recommended:

451

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 451
	

 The tag specification must include a US English name for the axis that may be used as a display
string in application user interfaces to refer to the axis, or as the basis of localized display strings.

 The tag specification must include a description of the intended meaning and design-variation
behavior for the axis.

 The tag specification must include information regarding the numeric scale used for the axis. This
must include a specification of the range of values that are valid for the axis. Depending on the nature
of the axis, this may or may not be a bounded range. It must also provide information regarding the
semantic interpretation for values, specifying either some objective measure or some convention by
which values can be interpreted.

 Whenever appropriate, the tag specification should also indicate a numeric value that is
recommended or required (by definition of the scale) for that axis in a “Regular” font.

NOTE The “Regular” font in a font family often has a sub-family name that omits axis qualifiers. For example, one
foundry may create an optical-size font suited to 12 point size with “Text” included in the name as an
indicator of the intended optical size, but another foundry may create a similar font without any indicator for
optical size in the name. The choice for a recommended “Regular” axis value should be made with this in
mind.

Additional information may also be provided, such as suggestions for programmatic selection of axis values
that may be useful in applications.

The specification for the semantic interpretation of numeric values is required as a means to provide some
degree of interoperability between different fonts, between fonts and software implementations, and between
OpenType Font Variations and other specifications, such as font-weight values in CSS.

Note that interoperability is assumed to be attained in varying degrees, depending on the nature of an axis
and the scale that it uses. For example, the scale for the Weight axis provides a limited degree of
interoperability. Two different fonts with a Weight axis value of 700 (or “Bold”) may not result in the same
amount of darkness or “color” when applied to the same text; but in both cases, a user can expect these to be
darker than the “Regular” or “Semibold” fonts from each respective font family, and application developers can
produce results that will be predictable for users if they associate that axis value with a particular state of a
user-interface control or with a markup tag.

In contrast to this, the scale for the Optical size axis is designed to provide a much stronger degree of
interoperability. For instance, two different fonts with an optical-size value of 20 are assumed to be best suited
to text set at 20 points, because the scale is designed that way. If this axis had been defined with a different
numeric scale, then an application might not be able to assume that two fonts with the same optical-size value
are equally-well suited for a given context.

Not all axes will be equally amenable to a precise or objective measure. For example, there is no objective
scale for an amount of italicness. But an Italic axis can be defined with a range from 0.0 to 1.0, representing
whatever the font developer considers to be a non-italic design and a fully-italic design, and that is sufficient
for applications to associate those numeric variation values with off/on states of an Italic toggle in a user
interface to provide a meaningful and familiar experience. It also provides a useful basis of comparison
between different fonts, which may be important, for instance, in font-fallback implementations: if the
requested font face had an Italic axis setting of 1 but a font-fallback font must be used when displaying text,
the application is able to select an appropriate Italic axis setting in the fallback font.

If an axis is intended to interact with programmatic mechanisms that automatically select axis values to
provide some effect, then a more precise definition of the numeric scale and its interpretation may be needed.
It must be clear to application and platform developers what independent variables should contribute as inputs
for selection of axis values, and how the numeric values of the axis scale can be derived from those inputs.

For variable font implementations that support a given axis, the “Regular” value will often be a good choice for
the default value of that axis in the 'fvar' variation axis record. The default values set in the 'fvar' table,
however, are implementation-specific, and fonts are not required to use this “Regular” value as the axis
default value.

452

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

452 ©	ISO/IEC	2019	–	All	rights	reserved
	

How to register a design-variation axis tag

While font developers can always use foundry-defined axis tags however they might choose, we encourage
font developers to use registered axis tags when implementing designs for which the registered axis is
applicable. We welcome submissions for new design-variation axis tag registration.

Registration of an axis tag can be useful for two key purposes. One is to foster conventionality and familiarity
for a kind of design variation. For example, by defining the 'opsz' tag for optical-size variation, to use for
tailoring glyph outlines according to the font size, different vendors can incorporate this kind of design
variation into fonts, and the variations in these various fonts can be presented to font users as the same kind
of variation. The more fonts that are implemented using an 'opsz' axis, the more familiar designers and
content authors will become with this kind of design variation. They will benefit from greater consistency in
experience when fonts use the same concepts than if different fonts were using similar but different concepts.

Another key purpose for registration of axis tags is to facilitate interoperability between different fonts or
between fonts and applications. For example, by specifying a numeric scale for the 'opsz' axis that
corresponds to text size in points, this makes it possible for applications to implement mechanisms for
automatic selection of optical-size variation that can work with any fonts that support variation in the 'opsz'
axis.

The merits for adding a variation axis tag to the registry is primarily determined in relation to these two key
purposes: What is the likelihood that an axis of design variation will be implemented in fonts from multiple
vendors and found to be useful to designers; and what is the likelihood that applications will implement
mechanisms that make use of an interoperable understanding of the axis.

To qualify for registration, a complete description of the axis must be provided, including each of the
categories of information listed above. If the axis is intended to interact with mechanisms that select axis
values programmatically, then the description must include a clear specification for the numeric scale. There
must be reasonable indication of alignment with one or both of the two key purposes for registration described
above, and a reasonable indication that the axis will be implemented in fonts from multiple vendors and
supported in software platforms and applications. It is recommended that the party proposing the new
registration seek input from and get consensus among multiple font and software vendors regarding the
definition of the proposed axis and its merits.

7.2.4.1 Registered axis tags list

The following design-variation axes and tags have been registered; the linked pages provide the axis tag
descriptions. These are listed in alphabetic order of the tags.

Axis Tag Name

'ital' Italic

'opsz' Optical size

'slnt' Slant

'wdth' Width

'wght' Weight

7.2.4.2 Registered axis tags definitions

Tag: 'ital'

Name: Italic

Description: Used to vary between non-italic and italic.

Valid numeric range: Values must be in the range 0 to 1.

Scale interpretation: A value of 0 can be interpreted as “Roman” (non-italic); a value of 1 can be interpreted as
(fully) italic.

453

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 453
	

Recommended or required “Regular” value: 0 is required.

Additional information:

The Italic axis has long been treated as a kind of design variation within a font family. The 'ital' axis tag is
used within a 'STAT' table of italic fonts to provide a complete characterization of a font in relation to its
family within the 'STAT' table. The Italic axis can be used as a variation axis within a variable font, though
this is not expected to be common.

The Italic axis is distinct from the Slant axis ('slnt'). Fonts may use one or the other, depending on the
nature of the design, but should rarely use both. While an italic design often incorporates some slant in
the design, use of the Italic axis does not require use of the Slant axis. An italic font should not be
characterized in the 'STAT' table as being italic and also having some slant, unless the font family
includes multiple italic designs with different amounts of slant.

Tag: 'opsz'

Name: Optical size

Description: Used to vary design to suit different text sizes.

Valid numeric range: Values must be strictly greater than zero.

Scale interpretation: Values can be interpreted as text size, in points.

Recommended or required “Regular” value: A value in the range 9 to 13 is recommended.

Suggested programmatic interactions: Applications may choose to select an optical-size variant automatically
based on the text size.

Additional information:

The Optical size axis can be used as a variation axis within a variable font. It can also be used within a
'STAT' table in non-variable fonts within a family that has optical-size variants to provide a complete
characterization of a font in relation to its family within the 'STAT' table. In the 'STAT' table of a non-
variable font, a format 2 axis value table is recommended to characterize the range of text sizes for which
the optical-size variant is intended.

The scale for the Optical size axis is text size in points. For these purposes, the text size is as determined
by the document or application for its intended use; the actual physical size on a display may be different
due to document or application zoom settings or intended viewing distance.

In applications that automatically select an Optical size variant, this should normally be done based on the
text size with a default or “100%” zoom level, not on a combination of text size and zoom level.

Tag: 'slnt'

Name: Slant

Description: Used to vary between upright and slanted text.

Valid numeric range: Values must be greater than -90 and less than +90.

Scale interpretation: Values can be interpreted as the angle, in counter-clockwise degrees, of oblique slant
from whatever the designer considers to be upright for that font design.

Recommended or required “Regular” value: 0 is required.

Additional information:

The Slant axis can be used as a variation axis within a variable font. It can also be used within a 'STAT'
table in non-variable, oblique fonts to provide a complete characterization of a font in relation to its family
within the 'STAT' table.

454

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

454 ©	ISO/IEC	2019	–	All	rights	reserved
	

The Slant axis is distinct from the Italic axis ('ital'). Fonts may use one or the other, depending on the
nature of the design, but should rarely use both. While an italic design often incorporates some slant in
the design, use of the Italic axis does not require use of the Slant axis. An italic font should not be
characterized in the 'STAT' table as being italic and also having some slant, unless the font family
includes multiple italic designs with different amounts of slant.

Note that the scale for the Slant axis is interpreted as the angle of slant in counter-clockwise degrees from
upright. This means that a typical, right-leaning oblique design will have a negative slant value. This
matches the scale used for the italicAngle field in the 'post' table.

In a variable font that implements 'slnt' variations, the value in the italicAngle field of the 'post' table must
match the default 'slnt' value specified in the 'fvar' table. For non-default instances of a variable font, the
'slnt' axis value can be used as the post.italicAngle value for the instance.

Tag: 'wdth'

Name: Width

Description: Used to vary width of text from narrower to wider.

Valid numeric range: Values must be strictly greater than zero.

Scale interpretation: Values can be interpreted as a percentage of whatever the font designer considers
“normal width” for that font design.

Recommended or required “Regular” value: 100 is required.

Suggested programmatic interactions: Applications may choose to select a width variant in a variable font
automatically in order to fit a span of text into a target width.

Additional information:

The Width axis has long been used in conjunction with face names such as “Condensed” or “Extended”.
Change in glyph width is typically the primary aspect of the design that varies, though other secondary
details such as stroke thickness may also be encompassed in this variation.

The Width axis can be used as a variation axis within a variable font. It can also be used within a 'STAT'
table in non-variable fonts within a family that has width variants to provide a complete characterization of
a font in relation to its family within the 'STAT' table.

The Width axis uses a scale that correlates with but is different from the scale used for the usWidthClass
field of the 'OS/2' table. The description of usWeightClass in the 'OS/2' table documentation provides a
table of mappings from usWidthClass values to “% of normal” values. Because usWidthClass is limited to
nine integer values, is has much less granularity than the Width axis.

When mapping from 'wdth' values to usWidthClass, interpolate fractional values between the mapped
values and then round, and clamp to the range 1 to 9.

In a variable font that implements 'wdth' variations, the value in the usWidthClass field of the 'OS/2' table
must correspond to the default 'wdth' value specified in the 'fvar' table. For non-default instances of a
variable font, the 'wdth' axis value can be used to derive the OS/2.usWidthClass value for that instance.

Percentage of normal width is a comparitive scale that will depend on the specific items being compared.
The width of a line of text very much depends on the content of the text. No specific reference string is
specified here as the basis for comparisons; a font designer can choose what they consider to be
representative strings assigning a 'wdth' value to a design variant. Ideally, the 'wdth' value should provide
a good estimate for most strings in the target languages of how the width of the string formatted with that
'wdth' variant compares to the width of the same string when formatted with the “normal” variant.

When using a variable font, applications may choose to make small, automated 'wdth' adjustments in
order to fit a span of text to some target size. This might be done, for instance, to fit headings within a
column, or to improve paragraphy layout. The relative change in 'wdth' value (ratio of the original 'wdth' to
the adjusted 'wdth') may be used as a first approximation of the adjustment needed. Since the relative

455

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 455
	

change in width may depend on the actual text content, however, this may not provide the exact
adjustment needed to obtain the desired width adjustment. The application will likely need to refine the
adjustment over multiple attempts.

Tag: 'wght'

Name: Weight

Description: Used to vary stroke thicknesses or other design details to give variation from lighter to blacker.

Valid numeric range: Values must be in the range 1 to 1000.

Scale interpretation: Values can be interpreted in direct comparison to values for usWeightClass in the 'OS/2'
table, or the CSS font-weight property.

Recommended or required “Regular” value: 400 is required.

Additional information:

The Weight axis has long been used in conjunction with face names such as “Regular”, “Light” or “Bold”.
Change in stroke thickness is typically the primary aspect of the design that varies, though other
secondary details such as glyph width or thick-thin contrast may also be encompassed in this variation.

The Weight axis can be used as a variation axis within a variable font. It can also be used within a 'STAT'
table in non-variable fonts within a family that has weight variants to provide a complete characterization
of a font in relation to its family within the 'STAT' table.

In a variable font that implements 'wght' variations, the value in the usWeightClass field of the 'OS/2' table
must match the default 'wght' value specified in the 'fvar' table. For non-default instances of a variable font,
the 'wght' axis value can be used as the OS/2.usWeightClass value for the instance.

7.3 Font variations tables

For an overview of OFF font variations and the specification of the interpolation algorithm used for variations,
see OFF "Font variations overview". For details regarding which tables are required or optional in variable
fonts, see "Variation data tables and miscellaneous requirements".

For information on common table formats used for variations, see OFF "Font variations common table
formats".

Note that some variation-related formats may be used in tables other than the variations-specific tables listed
above. In particular, the 'GDEF' or 'BASE' tables in a variable font can include variation data using common
table formats. A 'CFF2' table in a variable font can also include variation data, though using formats that are
specific to the 'CFF2' table.

7.3.1 avar – Axis variations table

The axis variations table ('avar') is an optional table used in variable fonts that use OFF Font Variations
mechanisms. It can be used to modify aspects of how a design varies for different instances along a particular
design-variation axis. Specifically, it allows modification of the coordinate normalization that is used when
processing variation data for a particular variation instance.

The 'avar' table shall be used in combination with a font variations ('fvar') table and other required or optional
tables used in variable fonts.

7.3.1.1 Overview

The 'fvar' table defines a range of design variations supported by a font — the font’s variation space. It
specifies certain axes of variation that are used, and a range of supported values for each axis using scales
appropriate to the nature of each axis. When processing a font’s variation data to derive glyph outlines or
other values for a particular variation instance, the coordinates selected by the user must be mapped from the
scales that are used to define the axes in the 'fvar' table to a normalized scale that is the same for every axis.

456

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

456 ©	ISO/IEC	2019	–	All	rights	reserved
	

A default normalization mapping is defined that maps the minimum, default and maximum values specified for
each axis in the 'fvar' table to -1, 0, and 1, respectively, and that maps other values in between by linear
interpolation between those values. The default mapping can be represented by the following pseudo-code.

 if (userValue < axisDefaultValue)
 {
 defaultNormalizedValue = -(axisDefault - userValue) / (axisDefault – axisMin);
 }
 else if (userValue > axisDefaultValue)
 {
 defaultNormalizedValue = (userValue – axisDefault) / (axisMax – axisDefault);
 }
 else
 {
 defaultNormalizedValue = 0;
 }

Take notice that, if the user selects an axis value that is outside the minimum/maximum range specified in the
font, then the value used must be clamped to the minimum or maximum value.

The default normalization uses a predefined mapping of three positions along each axis to particular values,
dividing the overall range of each axis into two segments. If an 'avar' table is present, then the output of the
default normalization can be further modified by allowing mappings to be defined for additional positions along
each scale, creating multiple segments, with other values within each segment interpolated. The following
figure illustrates an example of such a modification.

Figure 7.3: Example of 'avar'-modified normalization – horizontal axis is user scale, vertical axis

is normalized scale

The conceptual effect of these additional scale mappings is to make the variation along an axis less linear.
Values change linearly within each segment, but additional segments make the way that values change
across the entire axis range less linear overall. The effect might also be described as compressing some
portions of the scale while making other portions less compressed.

The visual effects of additional axis-value mappings in the 'avar' table is seen in how glyph outlines change as
the user-scale values for an axis change. The same amount of change in the user-scale value may
correspond to a subtle change in glyph outlines in one portion of the axis range, but more dramatic changes in
the glyph outlines in another portion of the axis range.

Note that it may be possible to achieve the same or similar effects by adding glyph variation data for additional
regions of the variation space. That approach requires more work and more font data, however, and tedious

457

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 457
	

design iteration may be needed to obtain the desired results. The 'avar' table may provide a simple and light-
weight way to achieve a particular effect.

Note also that the variation data created by the font designer will also have a significant effect on whether
user-scale values and glyph outlines change uniformly. When an 'avar' table is used, the 'avar' table and the
glyph variation data (for TrueType or CFF2) are both factors in the variation behavior that the user will see.

7.3.1.2 Table formats

The 'avar' table is comprised of a small header plus segment maps for each axis.

Axis variation table

Type Name Description

uint16 majorVersion Major version number of the axis variations
table – set to 1.

uint16 minorVersion Minor version number of the axis variations
table – set to 0.

Uint16 <reserved> Permanently reserved, set to 0.

uint16 axisCount The number of variation axes for this font.
This must be the same number as axisCount
in the 'fvar' table.

SegmentMaps axisSegmentMaps[axisCount] The segment maps array – one segment
map for each axis, in the order of axes
specified in the ‘fvar’ table.

There must be one segment map for each axis defined in the 'fvar' table, and the segment maps for the
different axes shall be given in the order of axes specified in the 'fvar' table. The segment map for each axis is
comprised of a list of axis-value mapping records.

SegmentMaps record

Type Name Description

uint16 positionMapCount The number of correspondence pairs for this
axis.

AxisValueMap axisValueMaps[positionMapCount] The array of axis value map records for this
axis.

Each axis value map record provides a single axis-value mapping correspondence.

AxisValueMap record

Type Name Description

F2DOT14 fromCoordinate A normalized coordinate value obtained using
default normalization.

F2DOT14 toCoordinate The modified, normalized coordinate value.

Axis value maps can be provided for any axis, but are required only if the normalization mapping for an axis is
being modified. If the segment map for a given axis has any value maps, then it must include at least three
value maps: -1 to -1, 0 to 0, and 1 to 1. These value mappings are essential to the design of the variation
mechanisms and are required even if no additional maps are specified for a given axis. If any of these is
missing, then no modification to axis coordinate values will be made for that axis.

458

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

458 ©	ISO/IEC	2019	–	All	rights	reserved
	

All of the axis value map records for a given axis shall have different fromCoordinate values, and axis value
map records shall be arranged in increasing order of the fromCoordinate value. If the fromCoordinate value of
a record is less than or equal to the fromCoordinate value of a previous record in the array, then the given
record may be ignored.

Also, for any given record except the first, the toCoordinate value must be greater than or equal to the
toCoordinate value of the preceding record. This requirement ensures that there are no retrograde behaviors
as the user-scale value range is traversed. If a toCoordinate value of a record is less than that of the previous
record, then the given record may be ignored.

7.3.1.3 Processing

Each pair of axis value map records for a given axis defines a segment within the range for that axis. Within a
segment, intermediate values are interpolated linearly. For a given user-scale coordinate, the full
normalization process, with 'avar' modifications applied, is as follows.

1. Compute the default normalized coordinate value, defaultNormalizedValue, as described above.

2. Using the SegmentMaps record for the given axis, scan the AxisValueMap records to find the first
record that has a fromCoordinate value greater than or equal to defaultNormalizedValue. Designate
this record as endSeg.

3. If endSeg.fromCoordinate equals defaultNormalizedValue, then the final, modified normalized
value is endSeg.toCoordinate. Return this result and end.

4. The else case (endSeg.fromCoordinate is strictly greater than defaultNormalizedValue — endSeg
cannot be the first map record, which is for -1): Designate the preceding record as startSeg.

5. The final, modified normalized value, finalNormalizedValue, is computed as follows:

Take notice that certain requirements regarding the level of precision used and how rounding is handled must
be observed by implementations.

7.3.1.4 Axis segments example

The following example illustrates how the 'avar' mappings work. This example is illustrated by the figure
shown earlier in this chapter.

Suppose that the 'avar' table of a font has the following mappings for a particular axis:

Record index fromCoordinate toCoordinate

0 -1.0 -1.0

1 -0.75 -0.5

2 0 0

3 0.4 0.4

4 0.6 0.9

5 1 1

459

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 459
	

Suppose that the user selects an instance, and the default normalized value for this instance is -0.5. The
relevant segment for this value is defined by record 1 and record 2. The final normalized value is computed as
follows:

The following table shows how several normalized coordinate values would be modified by this 'avar' data:

Default normalized
value

Final normalized
value

-1.0 -1.0

-0.75 -0.5

-0.5 -0.3333

-0.25 -0.1667

0 0

0.25 0.25

0.5 0.65

0.75 0.9375

1.0 1.0

7.3.2 cvar – CVT variations table

The control value table (CVT) variations table is used in variable fonts to provide variation data for CVT values.

Fonts that use the Truetype outline format for glyphs and that have hinting instructions will typically also have
a CVT table. The CVT table provides an indexed list of control values that can be referenced by instructions.
Example values are the height of a serif, x-height, or the width of upper case stems. When glyph outline points
are adjusted by instructions to improve rasterization at a particular PPEM size, the control values may be used
by the instructions to provide design-distance values for those adjustments – typically, values that need to be
kept constant across all glyphs in the font for a given PPEM size.

Within a variable font, the numeric value of particular control values may need to be adjusted for different
variation instances, to match the changes to outlines for different instances. The CVT variations table provides
variation data for that purpose. By using interpolation to derive adjusted CVT values for a particular instance,
instructions can obtain instance-appropriate values, and the same instructions can be used for all variations.

The CVT variations table must be used in combination with TrueType outlines and a 'cvt ' table, and also in
combination with a font variations ('fvar') table and other required or optional tables used in variable fonts.

7.3.2.1 Table format

The 'cvar' table uses a variant of the tuple variation store format. The 'gvar' table uses a very-slightly different
variant of this format for each glyph.

In terms of overall structure, the ‘cvar’ table begins with a header, which is followed by serialized variation
data.

460

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

460 ©	ISO/IEC	2019	–	All	rights	reserved
	

Figure 7.4: High-level organization of the 'cvar' table

The variation data includes logical groupings of data that apply to different regions of the variation space –
tuple-variation data tables. These logical groupings are stored in two parts: a header, and serialized data. The
'cvar' header includes an array of tuple-variation data headers, each of which is associated with a particular
portion of the serialized data.

The serialized data includes adjustment delta values and also packed “point number” data that identify the
CVT entries to which the deltas apply. The serialized data for a given region can include point number data
that applies to that specific tuple-variation data, but there can also be a shared set of point number data,
stored at the start of the serialized data, that can be used in relation to multiple tuple-variation data tables.

The format of the ‘cvar’ header is as follows.

‘cvar’ table header

Type Name Description

uint16 majorVersion Major version number of the CVT variations
table — set to 1.

uint16 minorVersion Minor version number of the CVT variations
table — set to 0.

uint16 tupleVariationCount A packed field. The high 4 bits are flags, and
the low 12 bits are the number of tuple-
variation data tables for this glyph. The
count can be any number between 1 and
4095.

Offset16 dataOffset Offset from the start of the 'cvar' table to the
serialized data.

TupleVariationHeader tupleVariationHeaders
[tupleVariationCount]

Array of tuple variation headers.

Complete details regarding the tupleVariationCount field, the flags used in the tupleVariationCount, the
TupleVariationHeader format and the format of the serialized data are provided in the OFF "Font variations
common table formats". Details regarding how the data are processed to derive interpolated CVT values for
particular instances are provided in that subclause and in the OFF "Font variations overview".

As noted above, the format of the 'cvar' table is closely related to formats used in the 'gvar' table. The
following are key differences to note:

 The TupleVariationHeader structure includes a particular field, tupleIndex. This is a packed field that
includes flag bits, one of which indicates whether the structure includes an embedded peak tuple
record. In the 'gvar' table, this is optional, and the flag does not always need to be set. In the 'cvar'
table, however, the embedded peak tuple record is mandatory, and this flag shall always be set.

461

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 461
	

 The serialized data includes packed “point” numbers. In the context of the 'gvar' table, these are
indices for the outline points of a particular glyph. In the 'cvar' table, these are indices for CVT values
within the 'cvt ' table.

 In the 'gvar' table, there are two logical deltas for each enumerated outline point: one for the X
coordinate, and one for the Y coordinate. Hence, the total number of logical deltas is twice the count
of point numbers. In the 'cvar' table, there is exactly one logical delta for each point number.

Note that the CVT values are all FWORDs, and that the total number of CVT values is determined by the
length of the 'cvt ' table. Hence, CVT index values range from 0 to floor(cvtLength / sizeof(FWORD)) – 1.

7.3.3 fvar – Font variations table

Font Variations allow a font designer to incorporate multiple faces within a font family into a single font
resource. Variable fonts can provide great flexibility for content authors and designers while also allowing the
font data to be represented in an efficient format.

A variable font allows for continuous variation along some given design axis, such as weight:

Figure 7.5: Continuous variation along a design axis

Conceptually, variable fonts define one or more axes over which design characteristics can vary. Weight is
one possible axis of variation, but many different kinds of variation are possible. Variable fonts are not limited
to a single axis of variation, but can combine two or more different axes of variation. For example, the
following illustrates a combination of weight and width variation:

462

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

462 ©	ISO/IEC	2019	–	All	rights	reserved
	

Figure 7.6: Continuous variation along multiple design axes

The set of axes supported by a font define a variation space for that font, supporting a potentially-vast number
of design-variation instances at positions across that space.

The font variations table ('fvar') provides the global definition of variations supported within the font. It specifies
the axes of variation that are used and the ranges of variation for each axis. It also allows the font designer to
specify certain coordinate positions within the font's variation space as named instances. Named instances
have designer-provided names, effectively equivalent to sub-family names, that applications can use as a
short list of “pre-chosen” design variants they can offer to users.

All variable fonts shall include a font variations table, as well as other required or optional tables used in
variable fonts.

Note that some of the information in the font variations table also needs to be reflected in the style attributes
('STAT') table, which is also required in all variable fonts. In particular, each axis and each named instance
specified in the font variations table shall have matching axis records and axis value tables in the style
attributes table.

463

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 463
	

7.3.3.1 Table formats

The font variations table consists of a table header, followed by an array of variation axis records, followed by
an array of named-instance records:

Figure 7.7: High-level organization of the font variations table

'fvar' Header

The format of the font variations table header is as follows.

Font variations header

Type Name Description

uint16 majorVersion Major version number of the font variations table –
set to 1.

uint16 minorVersion Minor version number of the font variations table –
set to 0.

Offset16 axesArrayOffset Offset in bytes from the beginning of the table to
the start of the variation axis array – set to 16
(0x0010) for this version.

uint16 (reserved) This field is permanently reserved. Set to 2.

uint16 axisCount The number of variation axes in the font (the
number of records in the axes array).

uint16 axisSize The size in bytes of each VariationAxisRecord –
set to 20 (0x0014) for this version.

uint16 instanceCount The number of named instances defined in the font
(the number of records in the instances array).

uint16 instanceSize The size in bytes of each InstanceRecord – set to
either axisCount * sizeof(Fixed) + 4, or axisCount *
sizeof(Fixed) + 6.

The header is followed by axes and instances arrays. The location of the axes array is specified in the
axisArrayOffset field; the instances array directly follows the axes array.

464

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

464 ©	ISO/IEC	2019	–	All	rights	reserved
	

VariationAxisRecord axes[axisCount] The variation axis array.

InstanceRecord instances[instanceCount] The named instance array.

NOTE The axisSize and instanceSize fields indicate the size of the VariationAxisRecord and InstanceRecord structures.
In this version of the 'fvar' table, the InstanceRecord structure has an optional field, and so two different size
formulations are possible. Future minor-version updates of the 'fvar' table may define compatible extensions to
either formats. Implementations must use the axisSize and instanceSize fields to determine the start of each
record.

The set of axes that make up the font's variation space are defined by an array of variation axis records. The
number of records, and the number of axes, is determined by the axisCount field. A functional variable font
must have an axisCount value that is greater than zero. If axisCount is zero, then the font is not functional as
a variable font, and must be treated as a non-variable font; any variation-specific tables or data is ignored.

VariationAxisRecord

The format of the variation axis record is as follows:

VariationAxisRecord

Type Name Description

Tag axisTag Tag identifying the design variation for the axis.

Fixed minValue The minimum coordinate value for the axis.

Fixed defaultValue The default coordinate value for the axis.

Fixed maxValue The maximum coordinate value for the axis.

uint16 flags Axis qualifiers – see details below.

uint16 axisNameID The name ID for entries in the 'name' table that
provide a display name for this axis.

Each axis has a tag that identifies the design variation for the axis. For example, the tag 'wght' designates a
weight variation. Tags are registered for commonly-used design axes, but foundry-defined tags may also be
used. Registered tags define valid ranges of coordinate values for the axis across all fonts. The variation axis
record defines minimum and maximum values supported by the font, which may be more limited that the valid
ranges defined for a registered tag.

NOTE Axis values given in the variation axis record use user scale coordinates that are specific to each axis tag. The
user scale for each registered tag is described with the definition of each tag. In most other font tables that
contain variation-related data, axis coordinate values are expressed using normalized coordinate scales. For
more information regarding user scales and normalized scales, and a specification of the normalization process,
see the "Coordinate Scales and Normalization" section in the OFF "Font Variations Overview".

Axis tags must conform to certain requirements to be valid. Also, the valid patterns for registered tags and for
foundry-defined tags are mutually exclusive. This is required to ensure there is never a future conflict between
foundry-defined tags in existing fonts and newly-registered tags.

For more details on axis tags and definitions for registered design-variation axes, see "Design-variations axis
tags registry".

The default value interacts with the glyph and glyph variations tables in a particular way: the variation instance
that has the default coordinate value for each axis will use glyph outlines as defined in the glyph table, without
any variations from the glyph variations table applied. This instance is referred to as the default instance.

465

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 465
	

Flags can be assigned to indicate certain uses or behaviors for a given axis, independent of the specific axis
tag and its definition. If no flags are set, then no assumptions are to be made beyond the definition for a
registered axis. The following flags are defined.

Mask Name Description

0x0001 HIDDEN_AXIS The axis should not be exposed directly in user
interfaces.

0xFFFE Reserved Reserved for future use – set to 0.

The HIDDEN_AXIS flag is provided to indicate a recommendation by the font developer that the axis not be
exposed directly to end users in application user interfaces. Reasons for setting this flag might include that the
axis is intended only for programmatic interaction, or is intended for font-internal use by the font developer. If
this flag is set, the axis should not be exposed to users in application user interfaces except in specialized
scenarios, such as a font inspection utility. The flag should not affect handling of named instances, which
should always be exposed in text-formatting user interfaces. If this flag is not set, then applications may
expose the given axis in a default user interface or, based on the nature of the axis, may choose to expose it
in an advanced-user interface.

The axisNameID field provides a name ID that can be used to obtain strings from the 'name' table that can be
used to refer to the axis in application user interfaces. The name ID must be greater than 255 and less than
32768. For registered axis tags, a conventional US English axis name is provided; it is recommended that that
name, or localized derivative names, be used in application user interfaces to provide greater consistency in
user experience between different fonts.

InstanceRecord

The instance record format includes an array of n-tuple coordinate arrays that define position within the font’s
variation space. The n-tuple array has the following format:

Tuple Record (Fixed):

Type Name Description

Fixed coordinates[axisCount] Coordinate array specifying a position within the font’s
variation space.

The format of the instance record is as follows:

InstanceRecord:

Type Name Description

uint16 subfamilyNameID The name ID for entries in the 'name' table that
provide subfamily names for this instance.

uint16 flags Reserved for future use – set to zero.

Tuple coordinates The coordinate array for this instance.

uint16 postscriptNameID Optional. The name ID for entries in the 'name'
table that provide PostScript names for this
instance.

The postScriptNameID field is optional, but should be included in all variable fonts, and may be required in
some platforms. Note that all of the instance records in a given font must be the same size, with all either
including or omitting the postScriptNameID field.

466

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

466 ©	ISO/IEC	2019	–	All	rights	reserved
	

The subfamilyNameID field provides a name ID that can be used to obtain strings from the 'name' table that
can be treated as equivalent to name ID 17 (typographic subfamily) strings for the given instance. Values of 2
or 17 can be used; otherwise, values must be greater than 255 and less than 32768. The values 2 or 17
should only be used if the named instance corresponds to the font's default instance.

The postScriptNameID field provides a name ID that can be used to obtain strings from the 'name' table that
can be treated as equivalent to name ID 6 (PostScript name) strings for the given instance. Values of 6 and
0xFFFF can be used; otherwise, values must be greater than 255 and less than 32768. If the value is 0xFFFF,
then the value is ignored, and no PostScript name equivalent is provided for the instance. The value 6 should
only be used if the named instance corresponds to the font's default instance.

All of the instance records in a font should have distinct coordinates and distinct subfamilyNameID and
postScriptName ID values. If two or more records share the same coordinates, the same nameID values or
the same postScriptNameID values, then all but the first can be ignored.

The default instance of a font is that instance for which the coordinate value of each axis is the defaultValue
specified in the corresponding variation axis record. An instance record is not required for the default instance,
though an instance record can be provided. When enumerating named instances, the default instance should
be enumerated even if there is no corresponding instance record. If an instance record is included for the
default instance (that is, an instance record has coordinates set to default values), then the nameID value
should be set to either 2 or 17, and the postScriptNameID value should be set to 6.

NOTE Since an instance record for the default instance is not required, a variable font that has no instance records
defined in the 'fvar' table (instanceCount is zero) still has one named instance.

7.3.3.2 Variation Instance Selection

When formatting text using a variable font, applications must select a particular variation instance; that is,
specific, in-range values must be specified for each of the axes defined in the font variation table. An instance
may be selected by reference to a named instanced defined in an instance record, or by using a set of
arbitrary axis values for the various axes. If a value is not specified for any particular axis, the default value for
that axis defined in the font is used. If an application specifies a value for an axis that is less than the
minValue defined in the font, then minValue must be used. Similarly, if an application specifies a value greater
than the maxValue defined in the font, then maxValue must be used.

7.3.3.3 Example

This example is for a hypothetical font with family name “SelawikV” that has two axes of variation, for weight
and width. This table summarizes the description of the axes for the font:

Axis tag Mininum value Default value Maximum value Axis name ID

‘wght’ 300 400 700 256

‘wdth’ 62.5 100 150 257

This font also has the following named instances:

Instance
subfamily

name

Subfamily
name ID

PostScript name PostScript
name ID

‘wght’
value

‘wdth’
value

Regular 258 SelawikV-Regular 262 400 100

Bold 259 SelawikV-Bold 263 700 100

Condensed 260 SelawikV-Condensed 264 400 75

Condensed Bold 261 SelawikV-
CondensedBold

265 700 75

467

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 467
	

The 'fvar' table is constructed as follows:

Hex data Field Comment

 Header

0001 majorVersion

0000 minorVersion

0010 axesArrayOffset 16 bytes – combined size of fields before the
axes array

0002 countSizePairs 2 count/size pairs: axis, instance

0002 axisCount 2 axes ('wght', 'wdth')

0014 axisSize Size of each variation axis record is 20
bytes.

0004 instanceCount 4 named instances.

000E instanceSize Size of instance records is 14 bytes.

 First variation axis record

77676874 axisTag Axis tag 'wght'.

012C0000 minValue Minimum 'wght' value is 300 (Fixed format).

01900000 defaultValue Default 'wght' value is 400.

02BC0000 maxValue Maximum 'wght' value is 700.

0000 flags

0100 axisNameID Display names for axis use name ID 256

 Second variation axis
record

77647468 axisTag Axis tag 'wdth'

003E8000 minValue Minimum 'wdth' value is 62.5 (Fixed format).

00640000 defaultValue Default 'wdth' value is 100.

00960000 maxValue Maximum 'wdth' value is 150.

0000 flags

0101 axisNameID Display names for axis use name ID 257.

 First instance record

0102 subfamilyNameID Instance subfamily name "Regular" uses
name ID 258.

0000 flags

468

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

468 ©	ISO/IEC	2019	–	All	rights	reserved
	

01900000 coordinates[0] ‘wght’ coordinate is 400.

00640000 coordinates[1] ‘wdth’ coordinate is 100.

0106 postscriptNameID Instance PostScript name "SelawikV-
Regular" uses name ID 262.

 Second instance record

0103 subfamilyNameID Instance subfamily name "Bold" uses name
ID 259.

0000 flags

02BC0000 coordinates[0] 'wght' coordinate is 700.

00640000 coordinates[1] 'wdth' coordinate is 100.

0107 postscriptNameID Instance PostScript name "SelawikV-Bold"
uses name ID 263.

 Third instance record

0104 subfamilyNameID Instance subfamily name "Condensed" uses
name ID 260.

0000 flags

01900000 coordinates[0] 'wght' coordinate is 400.

004B0000 coordinates[1] 'wdth' coordinate is 75.

0108 postscriptNameID Instance PostScript name "SelawikV-
Condensed" uses name ID 264.

 Fourth instance record

0105 subfamilyNameID Instance subfamily name "Condensed Bold"
uses name ID 261.

0000 flags

02BC0000 coordinates[0] 'wght' coordinate is 700.

004B0000 coordinates[1] 'wdth' coordinate is 75.

0109 postscriptNameID Instance PostScript name "SelawikV-
CondensedBold" uses name ID 265.

The total size of the table is 112 bytes.

7.3.4 gvar – Glyph variations table

Font Variations allow a font designer to incorporate multiple faces within a font family into a single font
resource. In a variable font, the font variations ('fvar') table defines a set of design variations supported by the
font, and then various tables provide data that specify how different font values, such as X-height or X and Y
coordinates for glyph outline points, are adjusted for different variation instances. The glyph variations ('gvar')
table provides all of the variation data that describe how TrueType glyph outlines in a 'glyf' table change
across the font’s variation space.

469

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 469
	

The glyph variations table shall be used in combination with TrueType outlines — a glyph ('glyf') table – and
also in combination with a font variations ('fvar') table and other required or optional tables used in variable
fonts.

The 'gvar' table contains glyph variation data sub-tables with variation data for each glyph in the 'glyf' table.
The glyph variation data is a specific variant of the tuple variation store format. Another variant of the tuple
variation store is also used in the 'cvar' table.

Variation data is comprised of many adjustment-delta values. These deltas apply to particular target items,
such as the X or Y coordinate of some glyph outline point, and are applicable for instances within a particular
region of the font’s variation space. The tuple variation store format organizes deltas into groupings by region
of applicability, with a different group of data for each region. As glyph outlines often comprise the largest
volume of data in a font, the tuple variation store format uses run-length encoding and other optimization
mechanisms to provide efficient representation of the variation data.

Each region-specific grouping of data includes data covering all of the outline points for the given glyph. This
means that the tuple variation store formats are suited to unpacking and processing delta values for all outline
points at once, rather than for random outline points. In most application scenarios, glyph outline processing
involves the entire glyph outline at once, so this bias in the format is generally not a particular limitation.

A notable exception, however, is the use of horizontal or vertical glyph metrics in text-layout operations that
occur prior to rendering. The TrueType rasterizer dynamically generates “phantom” points for each glyph that
represent horizontal and vertical advance widths and side bearings, and the variation data within the 'gvar'
table includes data for these phantom points. (See "Instructing TrueType Glyphs" [24] for more background on
phantom points.) Thus, a text-layout implementation could utilize the 'gvar' table to obtain interpolated glyph
metrics for a given variation instance. Doing so, however, would require invocation of the rasterizer and
processing of data for all outline points of each glyph rather than just the glyph-metric phantom points. As an
alternative, the horizontal metrics variations ('HVAR') and vertical metrics variations ('VVAR') tables can
provide variation data for glyph metrics that can be processed without invoking the rasterizer, and that use
different formats that are better suited to processing data for particular items — advances or side bearings for
specific glyphs. For this reason, it is recommended that variable fonts include an 'HVAR' table, and also a
'VVAR' table if the font has 'vhea' and 'vmtx' tables to support vertical layout.

7.3.4.1 Glyph variations table format

The glyph variations table is comprised of a header followed by GlyphVariationData subtables for each glyph
that describe the ways that each glyph is transformed across the font’s variation space.

Each glyph variation data table includes sets of data that reference various regions within the font’s variation
space. Each region is defined using one or three tuple records, with a “peak” tuple record required. In many
cases, a region referenced by one glyph will also be referenced by many other glyphs. As an optimization, the
'gvar' table allows for a shared set of tuple records that can be referenced by the tuple variation store data for
any glyph.

The high-level structure of the 'gvar' table is as follows:

Figure 7.8: High-level organization of 'gvar' table

470

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

470 ©	ISO/IEC	2019	–	All	rights	reserved
	

The header includes offsets to the start of the shared tuples data, and to the start of the glyph variation data
tables.

Each glyph variation data table provides variation data for a particular glyph. These are variable in size. For
this reason, the header also includes an array of offsets for each glyph variation data table from the start of
the glyph variation data table array. There is one offset corresponding to each glyph ID, plus one extra offset.
(Note that the same scheme is also used in the index to location (‘loca’) table.) The difference between two
consecutive offsets in the array indicates the size of a given table, with an extra offset in the array to indicate
the size of the last table. Some sizes derived in this way may be zero, in which case there is no glyph variation
data for that particular glyph, and the same outline is used for that glyph ID across the entire variation space.

7.3.4.1.1 'gvar' header

The glyph variations table header format is as follows:

‘gvar’ header

Type Name Description

uint16 majorVersion Major version number of the glyph variations table – set
to 1.

uint16 minorVersion Minor version number of the glyph variations table – set
to 0.

uint16 axisCount The number of variation axes for this font. This must be
the same number as axisCount in the 'fvar' table.

uint16 sharedTupleCount The number of shared tuple records. Shared tuple
records can be referenced within glyph variation data
tables for multiple glyphs, as opposed to other tuple
records stored directly within a glyph variation data
table.

Offset32 sharedTuplesOffset Offset from the start of this table to the shared tuple
records.

uint16 glyphCount The number of glyphs in this font. This must match the
number of glyphs stored elsewhere in the font.

uint16 flags Bit-field that gives the format of the offset array that
follows. If bit 1 is clear, the offsets are uint16; if bit 1 is
set, the offsets are uint32.

Offset32 glyphVariationDataArrayOffset Offset from the start of this table to the array of
GlyphVariationData tables.

Offset16 or
Offset32

glyphVariationDataOffsets
[glyphCount + 1]

Offsets from the start of the GlyphVariationData array to
each GlyphVariationData table.

If the short format (uint16) is used for offsets, the value stored is the offset divided by 2. Hence, the actual
offset for the location of the GlyphVariationData table within the font will be the value stored in the offsets
array multiplied by 2.

7.3.4.1.2 Shared tuples array

The shared tuples array provides a set of variation-space positions that can be referenced by variation data
for any glyph. The shared tuples array follows the glyphVariationData offsets array at the end of the 'gvar'
header. This data is simply an array of tuple records, each representing a position in the font’s variation space.

471

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 471
	

Shared tuples array:

Type Name Description

TupleRecord sharedTuples[sharedTupleCount] Array of tuple records shared across all glyph
variation data tables.

Tuple records that are in the shared array or that are contained directly within a given glyph variation data
table use 2.14 values to represent normalized coordinate values.

7.3.4.1.3 The glyphVariationData table array

The glyphVariationData table array follows the 'gvar' header and shared tuples array. Each
glyphVariationData table describes the variation data for a single glyph in the font.

The glyph variation data table is a specific form of the tuple variation store format. It is comprised of a header,
followed by serialized data.

Figure 7.9: High-level organization of glyphVariationData table

The variation data includes logical groupings of data that apply to different regions of the variation space –
tuple variation data tables. These logical groupings are stored in two parts: a header, and serialized data. The
glyph variation data header includes an array of tuple variation-data headers, each of which is associated with
a particular portion of the serialized data.

The serialized data includes adjustment delta values and also packed “point” numbers that identify the points
in the glyph outline to which the deltas apply. In the case of a composite glyph, these numbers are component
indices rather than point number indices. The serialized data for a given region can include point number data
that applies to that specific tuple-variation data, but there can also be a shared set of point number data,
stored at the start of the serialized data. Shared point number data can be used in relation to multiple tuple-
variation data tables for the given glyph.

The glyphVariationData header is structured as follows:

GlyphVariationData header:

Type Name Description

uint16 tupleVariationCount A packed field. The high 4 bits are flags, and the low
12 bits are the number of tuple variation tables for this
glyph. The number of tuple variation tables can be any
number between 1 and 4095.

Offset16 dataOffset Offset from the start of the GlyphVariationData table to
the serialized data

TupleVariationHeader tupleVariationHeaders
[tupleCount]

Array of tuple variation headers.

472

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

472 ©	ISO/IEC	2019	–	All	rights	reserved
	

7.3.4.2 Processing the 'gvar' table

When processing glyph data in a variable font for a particular variation instance, default glyph outline data will
be obtained from 'glyf' table, which is combined with the corresponding glyph variation data subtable within the
'gvar' table.

The tuple variation headers within the selected glyph variation data table will each specify a particular region
of applicability within the font’s variation space. These will be compared with the coordinates for the selected
variation instance to determine which of the tuple-variation data tables are applicable, and to calculate a
scalar value for each. These comparisons and scalar calculations are done using normalized-scale coordinate
values.

For each of the tuple-variation data tables that are applicable, the point number and delta data will be
unpacked and processed. The data for applicable regions can be processed in any order. Derived delta
values will correspond to particular point numbers derived from the packed point number data. For a given
point number, the computed scalar is applied to the X coordinate and Y coordinate deltas as a coefficient, and
then resulting delta adjustments applied to the X and Y coordinates of the point.

There are two aspects of processing that are specific to the 'gvar' table. First, in the case of composite glyphs,
point numbers refer either to components or to phantom points. Adjustments of phantom points are handled
as for regular points, but adjustments to components are handled differently. Additional information regarding
processing of variation data for composite glyphs is provided below.

Secondly, within a given tuple-variation data table, deltas may be provided for all of the glyph’s points (and
phantom points), or only for some points. If deltas are provided for only some point numbers in a glyph outline,
then delta values for un-referenced points may need to be inferred using interpolation. This is additional
processing specific to the 'gvar' table, and is described below.

7.3.4.3 Point Numbers and processing for composite glyphs

The general discussion above and in the description of interpolation in the Overview chapter assumes simple
glyphs. Certain special considerations apply to composite glyphs.

The variation data for composite glyphs also use packed point number data representing a series of numbers,
but the numbers in this case, apart from the last four “phantom” point numbers, refer to the components that
make up the glyph rather than to outline points. The glyph components of a composite glyph are assigned
these pseudo-point numbers according to the order the components are given in the glyph entry, starting with
0. The four phantom point numbers representing side bearings are still added at the end, as for simple glyphs.

For example, consider a composite glyph for “é” made up of two components: the base glyph “e”, and a glyph
for the accent, positioned at a specified offset. Pseudo- and phantom point numbers would be as follows:

Point number Element

0 Base glyph

1 Accent glyph

2 Left side bearing point

3 Right side bearing point

4 Top side bearing point

5 Bottom side bearing point

Packed point number data for this glyph could include numbers referencing any or all of these elements.

The adjustment deltas for component glyphs adjust the placement of the component. If a glyph component is
not referenced in the packed point numbers, then its position is not adjusted. Each component glyph within a

473

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 473
	

composite will have its own glyph entry that, itself, has its own variation data. The processing of component
glyphs must begin with the most deeply-nested, non-composite glyphs.

The position of a component can be represented in one of two ways: directly using X and Y offset values, or
indirectly using point numbers in the parent and component glyphs that get aligned. Which method is used is
determined by a bit in the flags field of a composite glyph description: if ARGS_ARE_XY_VALUES (bit 1) is
set, then X and Y offsets are used; if that bit is clear, then point numbers are used. If the position of a
component is represented using X and Y offsets – the ARGS_ARE_XY_VALUES flag is set – then adjustment
deltas can be applied to those offsets. However, if the position of a component is represented using point
numbers – the ARGS_ARE_XY_VALUES flag is not set – then adjustment deltas have no effect on that
component and should not be specified.

In addition to a component’s placement, the composite glyph description can also specify a scale value or a
2 × 2 matrix transformation to be applied to the component. Adjustment deltas do not have any effect on
scaling or 2 × 2 transformations applied to a component. The deltas only affect the positioning of the
component.

If any component entry in a composite glyph has the USE_MY_METRICS flag set, then the hinted glyph
metrics for the composite as a whole are taken from that component, rather than using the values given for
the composite glyph itself. That is, the positions of phantom points for the composite glyph are set to the
hinted positions of the component’s phantom points. If more than one component glyph has this flag set, then
the metrics for the composite glyph are taken from the last component that has this flag set. In a variable font,
if a component entry has this flag set, then the phantom point positions for the composite glyph are set to the
interpolated and hinted positions of the component’s phantom point, and delta values for the composite
glyph’s phantom points are not used.

NOTE When a composite glyph has a component with the USE_MY_METRICS flag set, the ‘hmtx’ and 'HVAR' data for
the composite glyph are used in the same manner in which the ‘hmtx’ data would be used for a non-variable font.
The ‘hmtx’ and 'HVAR' data should be set to appropriate values for the composite glyph, though the hinted
phantom point positions may not exactly match the linearly-scaled metrics obtained from the ‘hmtx’ and 'HVAR'
data.

The process for transforming a composite glyph is as follows:

Let componentCount be the number of components in the composite glyph. Let components[] be the
component descriptions of a composite glyph (base 0 index), and let C be a component entry in a
composite glyph description.

Using the standard variation interpolation algorithm, process the variation data for the glyph to obtain
net X and Y delta adjustments for each of the components and phantom points.

Apply the net X and Y delta adjustments to the phantom points (p = componentCount to
componentCount + 3; note that the phantom point positions may be later overridden by a component):

For AW and LSB points, apply the net X delta adjustments, and ignore Y deltas.

For AH and TSB points, apply the net Y delta adjustments, and ignore X deltas.

For p = 0 to componentCount - 1:

C = components[p]

For the glyph at C.glyphIndex, apply the variation interpolation process and run the hinting
program.

If ARGS_ARE_XY_VALUES is set in C.flags:

Apply net X and Y delta adjustments for index p to the X and Y positioning offsets for C:

X position offset = C.argument1 + netAdjustmentX
Y position offset = C.argument2 + netAdjustmentY

Else (ARGS_ARE_XY_VALUES is not set):

474

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

474 ©	ISO/IEC	2019	–	All	rights	reserved
	

Ignore any delta adjustments provided for this component.

Apply scaling to C as applicable — if positioning offsets are scaled, it is the delta-adjusted
offsets that are scaled.

If USE_MY_METRICS is set in C.flags:

Set the positions of the composite’s phantom points equal to the hinted positions of
the phantom points for C.

Loop (next p)

For example, consider glyph 128 of the Skia font, which is the glyph for “Ä”. The glyph entry has two
component entries, both with ARGS_ARE_XY_VALUES set. The advance width in the ‘hmtx’ table is 1358,
and the left side bearing is 16; this puts left side bearing and right side bearing phantom points (point indices 2
and 3) at (0, 0) and (1358, 0). Relevant details from the composite glyph description are as follows:

Component glyphIndex argument1 (X offset) argument2 (Y offset)

0 65 0 0

1 315 286 0

Glyph 128 has tuple variation data for various regions within the variation space; three will be considered for
this example, with normalized coordinate positions as follows:

Region (weight, width)

R1 (1, 0)

R2 (0, 1)

R3 (1, 1)

The data for R1 the following deltas:

 pt 0 pt 1 pt 2 pt 3

X 0 69 58 145

Y 0 0 0 0

The data for R2 the following deltas:

 pt 0 pt 1 pt 2 pt 3

X 0 53 38 351

Y 0 0 0 0

The data for R3 the following deltas:

 pt 0 pt 1 pt 2 pt 3

X 0 21 -6 25

Y 0 0 0 0

As all of the Y delta values are zero, there is no adjustment to Y coordinate values.

475

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 475
	

Now consider a variation instance with coordinates (0.2, 0.7). Variation data for all three of the regions above
will have an effect, with scalar values as follow:

Region Scalar

R1 0.2

R2 0.7

R3 0.14

The net adjustment to X coordinate values for component offsets and phantom points will be as follows:

Item Derived X coordinate adjustment

Component 1 X offset 0.2 × 69 + 0.7 × 53 + 0.14 × 21 = 53.84

Left side bearing point X
coordinate

0.2 × 58 + 0.7 × 38 + 0.14 × -6 = 37.36

Right side bearing point X
coordinate

0.2 × 145 + 0.7 × 351 + 0.14 × 25 = 278.2

Combining these adjustments with the default values in the 'glyf' entry yields the following:

Component 0 (X, Y) offset (0, 0)

Component 1 (X, Y) offset (286 + 53.84, 0) = (339.84, 0)

Left side bearing phantom point (0 + 37.36, 0) = (37.36, 0)

Right side bearing phantom point (1358 + 278.2, 0) = (1636.2, 0)

7.3.4.4 Inferred deltas for un-referenced point numbers

The tuple variation data for a given glyph and region (a given tuple variation data set) may include deltas for
all outline points, or for only some. The packed point number data identify the points for which deltas are
provided. If some points are omitted from the list of point numbers, then the data does not explicitly include
delta values for them, and deltas may need to be inferred. This is done for a given glyph on a region-by-region
basis based on the point numbers specified with each set of tuple variation data.

NOTE Inferring of deltas for un-referenced points applies only to simple glyphs, not to composite glyphs.

A single set of point-number data is used for both X- and Y-direction deltas. If a point has explicit deltas, then
it has explicit deltas for both X and Y directions. If the point requires inferred deltas, then both X and Y deltas
are inferred. The values of inferred X and Y deltas are calculated separately.

The scalar calculated for a given region and variation instance is applied to the inferred deltas to obtain scaled
delta adjustments that are applied to the point coordinates, just as for explicit deltas.

The process of calculating inferred variation deltas is somewhat comparable to the TrueType Interpolate
Untouched Points (IUP) instruction. Both calculate an adjustment for an unaffected point based on the
adjustments to adjacent, affected points. In the case of the IUP instruction, however, the calculated
adjustment is based on the position of adjacent points after other instructions have applied. In contrast,
calculation of inferred variation deltas is based on the default positions of points and the unscaled delta values
for a given region. It is not impacted by the order in which the tuple-variation data for different regions is
processed, and the inferred deltas can be pre-computed before any processing for a specific instance is done.
Also, the calculations used for deriving the value of inferred deltas are slightly different from the calculations
used for the IUP instruction.

476

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

476 ©	ISO/IEC	2019	–	All	rights	reserved
	

Calculation of inferred deltas is done for a given glyph and a given region on a contour-by-contour basis.

For a given contour, if the point number list does not include any of the points in that contour, then none of the
points in the contour are affected and no inferred deltas need to be computed.

If the point number list includes some but not all of the points in a given contour, then inferred deltas must be
derived for the points that were not included in the point number list, as follows.

First, for any un-referenced point, identify the nearest points before and after, in point number order, that are
referenced. Note that the same referenced points will be used for calculating both X and Y inferred deltas. If
there is no lower point number from that contour that was referenced, then the highest, referenced point
number from that contour is used. Similarly, if no higher point number from that contour was referenced, then
the lowest, referenced point number is used.

Once the adjacent, referenced points are identified, then inferred-delta calculation is done separately for X
and Y directions.

Next, the (X or Y) grid coordinate values of the adjacent, referenced points are compared. If these coordinates
are the same, then the delta values for the adjacent points are compared: if the delta values are the same,
then this value is used as the inferred delta for the target, un-referenced point. If the delta values are different,
then the inferred delta for the target point is zero.

NOTE If exactly one point from the contour is referenced in the point number list, then every point in that contour uses
the same X and Y delta values as that point. This follows as a specific case of the above: for all other points that
are not referenced, the one referenced point is at once both the preceding adjacent point and the following
adjacent point. Hence, the adjacent points have the same coordinate value and the same delta, and therefore the
un-referenced points get an inferred delta of the same value.

If the coordinates of the adjacent, reference points are different, then the coordinate for the same (X or Y)
direction of the target point is compared to those coordinates. If the coordinate of the target point is between
the coordinates of the adjacent points, then a delta is interpolated, as described below. But if the coordinate of
the target point is not between the coordinates of the adjacent points, then the inferred delta is the delta for
whichever of the adjacent points is closer in the given direction.

The following pseudo-code summarizes the above details.

if precedingPoint.coord = followingPoint.coord
{
 if precedingPoint.delta = followingPoint.delta
 targetPoint.delta = precedingPoint.delta
 else
 targetPoint.delta = 0
}
else /* precedingPoint.coord <> followingPoint.coord */
{
 if targetPoint.coord <= min(precedingPoint.coord, followingPoint.coord)
 {
 if precedingPoint.coord < followingPoint.coord
 targetPoint.delta = precedingPoint.delta
 else /* followingPoint.coord < precedingPoint.coord */
 targetPoint.delta = followingPoint.delta
 }
 else if targetPoint.coord >= max(precedingPoint.coord, followingPoint.coord)
 {
 if precedingPoint.coord > followingPoint.coord, then
 targetPoint.delta = precedingPoint.delta
 else /* followingPoint.coord > precedingPoint.coord */
 targetPoint.delta = followingPoint.delta
 }
 else /* target point coordinate is between adjacent point coordinates */
 {

477

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 477
	

 /* target point delta is derived from the adjacent point deltas
 using linear interpolation */
 }
}

When the coordinates of the two adjacent points are different and the coordinate of the target point is between
those coordinates, then a delta for the target point is computed by linear interpolation of the deltas for the two
adjacent points. The following describes this calculation for either X or Y direction.

NOTE The logical flow of the algorithm to this point implies that the coordinates of the two adjacent points are different.
This avoids a division by zero in the following calculations that would otherwise occur.

Select one of the two adjacent points as the reference point, and let the other be the comparison point. It
doesn’t matter which is which. Let refCoord be the grid coordinate for the current direction of the former, and
let compCoord be the grid coordinate for the latter. Let targetCoord be the grid coordinate for the target, un-
referenced point. Calculate a proportion, proportion, as follows:

Now let deltaRef and deltaComp be the unscaled adjustment-delta values in the variation data for the
reference and comparison points. The inferred delta for the target point, deltaTarget, is calculated as follows:

The following example illustrates the process for obtaining inferred deltas. Suppose P1, P2 and P3 are points
in the same contour, with coordinate positions as shown below, and that P1 and P3 are referenced in the point
number data while P2 is not.

Note that P1 and P3 have different X and Y coordinates. Also note that, in the X direction, P2 is between the
two adjacent points, while in the Y direction it is not. For the Y direction, the inferred delta will be the delta of
the closer point, P3.

For the X direction, let P1 be the reference point; P3 is the comparison point. A proportion is calculated:

Now suppose that P1 and P3 have X and Y deltas in the variation data as follows:

Point X delta Y delta

P1 +28 -62

P3 -42 -57

The inferred X delta for P2, deltaX_P2, is calculated as follows:

478

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

478 ©	ISO/IEC	2019	–	All	rights	reserved
	

The inferred Y delta for P2 is the value of the Y delta for P3. Thus, the deltas for all three points is obtained:

Point X delta Y delta

P1 +28 -62

P2 +10.5 -57

P3 -42 -57

These delta values can now be used in the interpolation algorithm, with a scalar applied to each based on the
region coordinates and the coordinates for the current variation instance.

7.3.5 HVAR – Horizontal metrics variations table

The 'HVAR' table is used in variable fonts to provide variations for horizontal glyph metrics values. This can be
used to provide variation data for advance widths in the ‘hmtx’ table. In fonts with TrueType outlines, it can
also be used to provide variation data for left and right side bearings obtained from the ‘hmtx’ table and glyph
bounding box.

For a general overview of OFF Font variations and terminology related to variations, see subclause 7.1.

In a font with TrueType outlines, the rasterizer will generate “phantom” points that represent left, right, top and
bottom side bearings. (See "Instructing TrueType Glyphs" [24] for more background on phantom points.) In a
TrueType variable font, the glyph variations (‘gvar’) table will include variation data for the phantom points of
each glyph, allowing glyph metrics to be interpolated for different variation instances as part of deriving the
interpolated glyph outlines. For this reason, the 'HVAR' table is not required in variable fonts that have
TrueType outlines. For text-layout operations that require glyph metrics but not actual glyph outlines, however,
there can be significant performance benefits by being able to obtain adjusted glyph metrics for an instance
without needing to interpolate glyph outlines. For this reason, it is recommended that an 'HVAR' table be
included in variable fonts that have TrueType outlines.

The CFF2 rasterizer does not generate phantom points as in the TrueType rasterizer. For this reason, an
'HVAR' table is required to handle any variation in horizontal glyph metrics in a variable font with CFF2
outlines.

Take note that, in a variable font with TrueType outlines, the left side bearing for each glyph must equal xMin,
and bit 1 in the flags field of the 'head' table must be set.

The 'HVAR' table contains an item variation store table to represent variation data. The item variation store
and constituent formats are described in subclause 7.2. The item variation store is also used in
the 'VVAR', 'GDEF' and certain other tables, but is different from the formats for variation data used in
the 'cvar' or 'gvar' tables.

The item variation store format uses delta-set indices to reference variation delta data for particular target,
font-data items to which they are applied, such as the advance width of a particular glyph. Data external to the
item variation store identifies the delta-set index to be used for each given target item. Within the 'HVAR' table,
glyph IDs can be used as implicit indices for advance width variations, or an optional delta-set index mapping
table can be used that explicitly provides delta-set indices for advance widths to be associated with each
glyph ID.

An advance width mapping table adds additional data within the 'HVAR' table, but it also makes it possible to
use a more compact representation of the data in the item variation store. For example, if multiple glyphs have
the same advance widths, the mapping table allows all of them to reference a single delta set within the store.
Additional optimizations within the item variation store are possible. See the Common Table Formats chapter
for more discussion about size optimization. In general, inclusion of an advance width mapping is
recommended.

479

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 479
	

Optional mapping tables can also be used to provide delta-set indices for glyph side bearings. In variable fonts
with TrueType outlines, variation data for side bearings is recommended. If variation data for side bearings is
provided, it should include data for both left and right side bearings. Mapping tables for left and right side
bearings must also be included.

7.3.5.1 Related and co-requisite tables

The 'HVAR' table is used only in variable fonts. It shall be used in combination with a horizontal metrics
('hmtx') table, and also in combination with a font variations ('fvar') table, and other required or optional tables
used in variable fonts. See subclause 7.1.6 in the OFF Font variations overview for general information.

For variable fonts that have TrueType outlines, the 'HVAR' table is optional but recommended. For variable
fonts that have CFF2 outlines, the 'HVAR' table is required if there is any variation in glyph advance widths
across the variation space.

NOTE The 'hdmx' table is not used in variable fonts.

7.3.5.2 Table formats

The horizontal metrics variations table has the following format:

Horizontal metrics variations table

Type Name Description

uint16 majorVersion Major version number of the metrics variations
table – set to 1.

uint16 minorVersion Minor version number of the metrics variations
table – set to 0.

Offset32 itemVariationStoreOffset Offset in bytes from the start of this table to the
item variation store table.

Offset32 advanceWidthMappingOffset Offset in bytes from the start of this table to the
delta-set index mapping for advance widths (may
be NULL).

Offset32 lsbMappingOffset Offset in bytes from the start of this table to the
delta-set index mapping for left side bearings (may
be NULL).

Offset32 rsbMappingOffset Offset in bytes from the start of this table to the
delta-set index mapping for right side bearings
(may be NULL).

The item variation store table is documented in subclause 7.2.

Mapping tables are optional. If a given mapping table is not provided, the offset is set to NULL.

Variation data for advance widths is required. A delta-set index mapping table for advance widths can be
provided, but is optional. If a mapping table is not provided, glyph indices are used as implicit delta-set indices.
To access the delta set for the advance of given glyph, the delta-set outer-level index is zero, and the glyph ID
is used as the inner-level index.

Variation data for side bearings are optional. If included, mapping tables are required to provide the delta-set
index for each glyph.

The delta-set index mapping table has the following format:

480

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

480 ©	ISO/IEC	2019	–	All	rights	reserved
	

DeltaSetIndexMap table

Type Name Description

uint16 entryFormat A packed field that describes the compressed
representation of delta-set indices. See details
below.

uint16 mapCount The number of mapping entries.

uint8 mapData[variable] The delta-set index mapping data. See details
below.

The mapCount field indicates the number of delta-set index mapping entries. Glyph IDs are used as the index
into the mapping array. If a given glyph ID is greater than mapCount – 1, then the last entry is used.

Each mapping entry represents a delta-set outer-level index and inner-level index combination. Logically,
each of these indices is a 16-bit, unsigned value. These are represented in a packed format that uses one,
two, three or four bytes. The entryFormat field is a packed field that describes the compressed representation
used in the mapData field of the given deltaSetIndexMap table. The format of the entryFormat field is as
follows:

EntryFormat Field Masks

Mask Name Description

0x000F INNER_INDEX_BIT_COUNT_MASK Mask for the low 4 bits, which give the count of bits
minus one that are used in each entry for the inner-level
index.

0x0030 MAP_ENTRY_SIZE_MASK Mask for bits that indicate the size in bytes minus one of
each entry.

0xFFC0 Reserved Reserved for future use – set to 0.

The size of each mapping entry is ((entryFormat & mapEntrySizeMask) >> 4 + 1). The total size of the map
data array is entrySize * mapCount.

For a given entry, the outer-level and inner-level indices can be obtained as follows:

outerIndex = entry >> (entryFormat & innerIndexBitCountMask)

innerIndex = entry & ((1 << (entryFormat & innerIndexBitCountMask)) – 1)

7.3.5.3 Processing

When performing text layout using a particular variation instance of a variable font, the application will need to
obtain adjusted glyph metrics for that instance. The application obtains default values from the 'hmtx' and 'glyf'
tables, and uses the 'HVAR' table to obtain interpolated adjustment values that are applied to the defaults.

Delta-set indices are obtained based on the glyph ID. If there is no delta-set index mapping table for advance
widths, then glyph IDs implicitly provide the indices: for a given glyph ID, the delta-set outer-level index is zero,
and the glyph ID is the delta-set inner-level index.

If delta-set index mappings are provided, the outer- and inner-level indices are combined in a packed format
that uses one to four bytes for each mapping entry. Each mapping table provides information describing the
packed format; this is used to extract the separate outer- and inner-level indices.

The indices are used to reference a delta set within the item variation store for the target advance width or
side bearing. The two-level organization of data within the item variation store is described in subclause 7.2.
Each delta set includes different deltas that apply to variation instances falling within different regions of the

481

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 481
	

variation space. The process by which the deltas are processed to derive an interpolated value for a given
target item is described in subclause 7.1.

7.3.6 MVAR – Metrics variations table

The metrics variations table is used in variable fonts to provide variations for font-wide metric values found in
the OS/2 table and other font tables. For a general overview of OFF Font Variations and terminology related to
variations, see subclause 7.1.

The metrics variations table contains an item variation store structure to represent variation data. The item
variation store and constituent formats are described in subclause 7.2. The item variation store is also used in
the 'HVAR' and 'GDEF' tables, but is different from the formats for variation data used in the 'cvar' or 'gvar'
tables.

The item variation store format uses delta-set indices to reference variation delta data for particular target font-
data items to which they are applied. Data external to the item variation store identifies the delta-set index to
be used for each given target item. Within the 'MVAR' table, an array of value tag records identifies a set of
target items, and provides the delta-set index used for each. The target items are identified by four-byte tags,
with a given tag representing some font-wide value found in another table. For example, the tag 'hasc'
represents the OS/2.sTypoAscender value. More details on tags are provided below.

The item variation store format uses a two-level organization for variation data: a store can have multiple item
variation data subtables, and each subtable has multiple delta-set rows. A delta-set index is a two-part index:
an outer index that selects a particular item variation data subtable, and an inner index that selects a particular
delta-set row within that subtable. A value record specifies both the outer and inner portions of the delta-set
index.

NOTE Apple platforms allow for use of a font metrics ('fmtx') table to specify various font-wide metric values by
reference to the X or Y coordinates of contour points for a specified “magic” glyph. OFF Font variations does not
use the font metrics table.

The metrics variations table shall be used in combination with a font variations ('fvar') table and other required
or optional tables used in variable fonts. See "Variation data tables and miscellaneous requirements" for
additional details.

7.3.6.1 Table formats

The metrics variations table has the following format:

Metrics variations table

Type Name Description

uint16 majorVersion Major version number of the metrics variations
table – set to 1.

uint16 minorVersion Minor version number of the metrics variations
table – set to 0.

uint16 (reserved) Not used; set to 0.

uint16 valueRecordSize The size in bytes of each value record.

uint16 valueRecordCount The number of value records.

Offset16 itemVariationStoreOffset Offset in bytes from the start of this table to the
item variation store table. If valueRecordCount is
zero, set to zero; if valueRecordCount is greater
than zero, must be greater than zero.

482

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

482 ©	ISO/IEC	2019	–	All	rights	reserved
	

ValueRecord valueRecords[valueRecord
Count]

Array of value tag records that identify target items
and the associated delta-set index for each. The
valueTag records must be in binary order of their
valueTag field.

The valueRecordSize field indicates the size of each value record. Future, minor version updates of the
'MVAR' table may define compatible extensions to the value record format with additional fields.
Implementations shall use the valueRecordSize field to determine the start of each record.

The valueRecords array is an array of value records that identify the target, font-wide measures for which
variation adjustment data is provided (target items), and outer and inner delta-set indices for each item into
the item variation store data.

ValueRecord:

Type Name Description

Tag valueTag Four-byte tag identifying a font-wide measure.

uint16 deltaSetOuterIndex A delta-set outer index — used to select an item
variation data subtable within the item variation store.

uint16 deltaSetInnerIndex A delta-set inner index — used to select a delta-set row
within an item variation data subtable.

The value records must be given in binary order of the valueTag values. Each tag identifies a font-wide
measure found in some other font table. For example, if a value record has a value tag of 'hasc', this
corresponds to the OS/2.sTypoAscender field. Details on the tags used within the 'MVAR' table are provided
below.

7.3.6.2 Processing

When reading a value within a variable font, such as the OS/2.sCapHeight value (the target item), the value
tags array in the metrics variations table is scanned to find the tag that corresponds to that target item.
Records in the array are stored in binary order of values in the valueTag fields. If the tag does not occur in the
tag array, then the item is constant across the font’s variation space. If the tag does occur, however, then the
delta-set index is used to reference a set of deltas within the item variation store. The two-level organization of
data within the item variation store is described in subclause 7.2. Each delta set includes different deltas that
apply to variation instances falling within different regions of the variation space. The process by which the
deltas are processed to derive an interpolated value for a given target item is described in the OFF Font
variations overview.

7.3.6.3 Value tags

Four-byte tags are used to represent particular metric or other values. For example, the tag 'hasc' (horizontal
ascent) is used to represent the OS/2.sTypoAscender value. Tags are defined for various values found in
the OS/2 and Windows metrics ('OS/2') table, the horizontal header ('hhea') table, the grid-fitting and scan-
conversion ('gasp') table, the PostScript ('post') table, and the vertical metrics header ('vhea') table.

NOTE The OS/2.usWeightClass, OS/2.usWidthClass and post.italicAngle values are not supported by variation data in
the 'MVAR' table. This is because values for these three fields correspond directly to input axis values for the
'wght', 'wdth' and 'slnt' variation axes. See the discussion of these axes in the "Design-variation axis tags registry"
for details on the relationship between these fields and the corresponding design axes.

Tags in the metrics variations table are case sensitive. Tags defined in this table use only lowercase letters or
digits.

Tags that are used in a font’s metrics variations table should be those that are documented in this table
specification. A font may also use privately-defined tags, which have semantics known only by private

483

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 483
	

agreement. Private-use tags must begin with an uppercase letter and use only uppercase letters or digits. If a
private-use tag is used in a given font, any application that does not recognize that tag should ignore it.

The following tags are defined:

Value tags, ordered by logical groupings

Value Mnemonic Value represented

'hasc' Horizontal ascender OS/2.sTypoAscender

'hdsc' Horizontal descender OS/2.sTypoDescender

'hlgp' Horizontal line gap OS/2.sTypoLineGap

'hcla' Horizontal clipping ascent OS/2.usWinAscent

'hcld' Horizontal clipping decent OS/2.usWinDescent

'vasc' Vertical ascender vhea.ascent

'vdsc' Vertical descender vhea.descent

'vlgp' Vertical line gap vhea.lineGap

'hcrs' Horizontal caret rise hhea.caretSlopeRise

'hcrn' Horizontal caret run hhea.caretSlopeRun

'hcof' Horizontal caret offset hhea.caretOffset

'vcrs' Vertical caret rise vhea.caretSlopeRise

'vcrn' Vertical caret run vhea.caretSlopeRun

'vcof' Vertical caret offset vhea.caretOffset

'xhgt' X height OS/2.sxHeight

'cpht' Cap height OS/2.sCapHeight

'sbxs' Subscript em x size OS/2.ySubscriptXSize

'sbys' Subscript em y size OS/2.ySubscriptYSize

'sbxo' Subscript em x offset OS/2.ySubscriptXOffset

'sbyo' Subscript em y offset OS/2.ySubscriptYOffset

'spxs' Superscript em x size OS/2.ySuperscriptXSize

'spys' Superscript em y size OS/2.ySuperscriptYSize

'spxo' Superscript em x offset OS/2.ySuperscriptXOffset

'spyo' Superscript em y offset OS/2.ySuperscriptYOffset

'strs' Strikeout size OS/2.yStrikeoutSize

'stro' Strikeout offset OS/2.yStrikeoutPosition

484

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

484 ©	ISO/IEC	2019	–	All	rights	reserved
	

'unds' Underline size post.underlineThickness

'undo' Underline offset post.underlinePosition

'gsp0' gaspRange[0] gasp.gaspRange[0].rangeMaxPPEM

'gsp1' gaspRange[1] gasp.gaspRange[1].rangeMaxPPEM

'gsp2' gaspRange[2] gasp.gaspRange[2].rangeMaxPPEM

'gsp3' gaspRange[3] gasp.gaspRange[3].rangeMaxPPEM

'gsp4' gaspRange[4] gasp.gaspRange[4].rangeMaxPPEM

'gsp5' gaspRange[5] gasp.gaspRange[5].rangeMaxPPEM

'gsp6' gaspRange[6] gasp.gaspRange[6].rangeMaxPPEM

'gsp7' gaspRange[7] gasp.gaspRange[7].rangeMaxPPEM

'gsp8' gaspRange[8] gasp.gaspRange[8].rangeMaxPPEM

'gsp9' gaspRange[9] gasp.gaspRange[9].rangeMaxPPEM

Value tags, in alphabetical order of tags:

Value Mnemonic Value represented

'cpht Cap height OS/2.sCapHeight

'gsp0' gaspRange[0] gasp.gaspRange[0].rangeMaxPPEM

'gsp1' gaspRange[1] gasp.gaspRange[1].rangeMaxPPEM

'gsp2' gaspRange[2] gasp.gaspRange[2].rangeMaxPPEM

'gsp3' gaspRange[3] gasp.gaspRange[3].rangeMaxPPEM

'gsp4' gaspRange[4] gasp.gaspRange[4].rangeMaxPPEM

'gsp5' gaspRange[5] gasp.gaspRange[5].rangeMaxPPEM

'gsp6' gaspRange[6] gasp.gaspRange[6].rangeMaxPPEM

'gsp7' gaspRange[7] gasp.gaspRange[7].rangeMaxPPEM

'gsp8' gaspRange[8] gasp.gaspRange[8].rangeMaxPPEM

'gsp9' gaspRange[9] gasp.gaspRange[9].rangeMaxPPEM

'hasc' Horizontal ascender OS/2.sTypoAscender

'hcla' Horizontal clipping ascent OS/2.usWinAscent

'hcld' Horizontal clipping decent OS/2.usWinDescent

'hcof' Horizontal caret offset hhea.caretOffset

485

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 485
	

'hcrn' Horizontal caret run hhea.caretSlopeRun

'hcrs' Horizontal caret rise hhea.caretSlopeRise

'hdsc' Horizontal descender OS/2.sTypoDescender

'hlgp' Horizontal line gap OS/2.sTypoLineGap

'sbxo' Subscript em x offset OS/2.ySubscriptXOffset

'sbxs' Subscript em x size OS/2.ySubscriptXSize

'sbyo' Subscript em y offset OS/2.ySubscriptYOffset

'sbys' Subscript em y size OS/2.ySubscriptYSize

'spxo' Superscript em x offset OS/2.ySuperscriptXOffset

'spxs' Superscript em x size OS/2.ySuperscriptXSize

'spyo' Superscript em y offset OS/2.ySuperscriptYOffset

'spys' Superscript em y size OS/2.ySuperscriptYSize

'stro' Strikeout offset OS/2.yStrikeoutPosition

'strs' Strikeout size OS/2.yStrikeoutSize

'undo' Underline offset post.underlinePosition

'unds' Underline size post.underlineThickness

'vasc' Vertical ascender vhea.ascent

'vcof' Vertical caret offset vhea.caretOffset

'vcrn' Vertical caret run vhea.caretSlopeRun

'vcrs' Vertical caret rise vhea.caretSlopeRise

'vdsc' Vertical descender vhea.descent

'vlgp' Vertical line gap vhea.lineGap

'xhgt' X height OS/2.sxHeight

Note that the tags 'gsp0' to 'gsp9' are used to provide variation data for the rangeMaxPPEM member of
records in a grid-fitting and scan-conversion procedure ('gasp') table. The last 'gasp' table entry always uses a
rangeMaxPPEM value of 0xFFFF. The maximum number of value records for 'gasp' entries must never be
more than one less the number of entries in the 'gasp' table.

7.3.7 STAT – Style attributes table

The style attributes table describes design attributes that distinguish font-style variants within a font family. It
also provides associations between those attributes and name elements that may be used to present font
options within application user interfaces.

A font family is a set of font faces that share key aspects of design. These aspects of design are common to
all of the fonts in the family, and differentiate that family from other font families. But the fonts within a family
also differ from one another in particular ways: differences in stroke thicknesses, differences in contrast, etc.;

486

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

486 ©	ISO/IEC	2019	–	All	rights	reserved
	

or combinations of such differences. In this way, the fonts within a family are style variants of the family design.
A given family will have a particular set of attribute types by which the member fonts differ: the axes of
variation.

Style variants within a family may be implemented as static variants in discrete fonts, such as Arial Light or
Arial Bold. They may also be implemented as dynamic variations in a variable font, using a font variations
('fvar') table and related tables; for example, weight or width variations in the Skia font. A single font may also
combine dynamic variations using 'fvar' and related tables along with static style attributes. For example, a
family may have variants in relation to weight attributes and also a Roman versus italic distinction, with weight
implemented as a dynamic variation using 'fvar' and related tables, but with Roman and italic as static design
attributes — a Roman font with weight variation, and a corresponding italic font with weight variation.

The style attributes table allows software implementations to understand relationships among the various
fonts or design-variation instances within a family. It provides strings that can be used to create user
interfaces with controls for individual style attributes, or used to compose strings that may be required for use
in legacy applications.

NOTE The style attributes table provides a characterization of a font relative to the entire family to which it belongs, not
just that one font in isolation. This characterization may involve attributes that users would not associate with the
font itself. For example, part of the characterization of a Regular font would include an italic-axis value (non-italic)
if the font family includes italic members, even though that font is not an italic font. (See Example 2, below.) In the
case of variable fonts, the set of axes that are relevant may be a superset of the axes used in the 'fvar' table, if
those axes are relevant for the entire family. For example, a family may include a Roman variable font with
weight variation, and a paired italic font, also with weight variation. The italic axis is relevant to the complete
characterization of both fonts, since the italic axis is relevant to the family as a whole. (See Example 5, below.)

A style attributes table is required in all variable fonts, and is optional for non-variable fonts. For a general
overview of OFF Font Variations, see subclause 7.1.

The style attributes table is also recommended for all new, non-variable fonts, especially if fonts have style
attributes in axes other than weight, width, or slope.

When used in multi-axis fonts, the style attributes table can accomplish the intended purpose of name IDs 21
and 22, but using a more general and flexible mechanism. For fonts used only in newer applications, strings
for name IDs 21 and 22 may not be required if a style attributes table is present. When fonts need to work in
older applications as well, however, name IDs 21 and 22 should continue to be used when applicable.

7.3.7.1 Style attributes header

The style attributes table begins with a header comprised of a major/minor version plus arrays of design-axis
and axis-value records.

Style attributes header

Type Name Description

uint16 majorVersion Major version number of the style attributes
table – set to 1.

uint16 minorVersion Minor version number of the style attributes
table – set to 2.

uint16 designAxisSize The size in bytes of each axis record.

uint16 designAxisCount The number of design axis records. In a font
with an ‘fvar’ table, this value must be
greater than or equal to the axisCount value
in the ‘fvar’ table.

Offset32 offsetToDesignAxes Offset in bytes from the beginning of the
'STAT' table to the start of the design axes
array.

487

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 487
	

uint16 axisValueCount The number of axis value tables.

Offset32 offsetToAxisValueOffsets Offset in bytes from the beginning of the
'STAT' table to the start of the design axes
value offsets array.

uint16 elidedFallbackNameID Name ID used as fallback when projection of
names into a particular font model produces
a subfamily name containing only elidable
elements.

In version 1.0 of the style attributes table, the elidedFallbackNameId field was omitted. Use of version 1.0 is
deprecated. Version 1.1 adds the elidedFallbackNameId field. Version 1.2 adds support for the format 4 axis
value table; otherwise, version 1.2 and version 1.1 are the same.

The elidedFallbackNameId field provides a name that can be used when composing a name if all of the axis-
value names are elidable. For example, "Normal" weight and "Roman" slant may both be marked as elidable
axis-value names, and so a composed name for normal weight and Roman slant may result in an empty string.
The elidedFallbackNameId is used to provide an alternative name ID to use in this case, such as "Regular". In
many fonts, this may reference name ID 17 or name ID 2.

The header is followed by the design axes and axis value offsets arrays, the location of which are provided by
offset fields.

AxisRecord designAxes
[designAxisCount]

The design-axes array.

Offset16 axisValueOffsets
[axisValueCount]

Array of offsets to axis value tables, in bytes
from the start of the axis value offsets array.

The designAxisSize field indicates the size of each axis record. Future minor-version updates of the 'STAT'
table may define compatible extensions to the axis record format with additional fields. Implementations must
use the designAxisSize designAxisSize field to determine the start of each record.

7.3.7.2 Axis records

The axis record provides information about a single design axis.

AxisRecord

Type Name Description

Tag axisTag A tag identifying the axis of design variation.

uint16 axisNameID The name ID for entries in the 'name' table that
provide a display string for this axis.

uint16 axisOrdering A value that applications can use to determine
primary sorting of face names, or for ordering of
descriptors when composing family or face names.

Each axis record has a tag designating the axis. Take note that tag values must follow the rules for tags
described in the "Design-variation axis tags registry".

The axisNameID field provides a name ID that can be used to obtain strings from the 'name' table that can be
used to refer to the axis in application user interfaces. The name ID must be greater than 255 and less than
32768.

In a variable font, there must be an axis record for every axis defined in the font variations table, and it shall
use the same name ID used in the font variations table. If a variation axis is omitted from the 'STAT' table, or if

488

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

488 ©	ISO/IEC	2019	–	All	rights	reserved
	

different name IDs are used, applications may have unexpected behavior in the use of 'STAT' table data.
However, the order of axis records in the 'STAT' table is arbitrary and does not need to match the order of
records in the 'fvar' table.

If a variable font has additional axes that are not implemented as dynamic-variation axes in the font variations
table, but that are relevant for the font or the family of which it is a member, axis records should also be
included.

A non-variable font should include axis records for any axes that are relevant for the font or the family of which
it is a member, especially if axes other than weight, width and slope are used.

NOTE For every axis declared using an axis record, the axis should be a variation axis defined in an 'fvar' table, or else
it should be reflected in the font’s sub-family name (name ID 17 or name ID 2) except in the case that the font’s
value on that axis is a “normal” value that is suppressed from the sub-family name.

The axis ordering field allows the font developer to influence ordering of axes in user interfaces, and the
ordering of axis-value descriptors when face names are projected into different font-family models. Lower
values are assumed to have an earlier sort order or higher priority than higher values. Values need not be
contiguous, and records are not required to be well-ordered in relation to the axis ordering field. No two
records should have the same value. Beyond this, no strict requirements are specified here regarding how
these values are used in applications.

One way in which axisOrdering values might be used is in presenting an enumerated list of face names within
a family: rather than listing faces in an arbitrary order, they might be sorted using these values to determine
primary, secondary, etc. orderings. For example, if width is given a lower value than weight, then all weights
with one particular width would be listed before the different weights with the next width, and so on.

Another way in which axisOrdering might be used is in composing names. A particular scenario for this is
generating family and subfamily names that conform to expectations of applications that use four-member
regular, bold, italic, bold italic (R/B/I/BI)or weight/width/slope (WWS) models for font families. In non-variable
fonts, the designer can include name ID pairs 1/2 and 21/22 to support these models, but there is no other
provision for this in a variable font. The style attributes table provides individual axis value descriptor strings
that can be combined in different ways as needed to fit the requirements for name IDs 1/2 or 21/22. But when
doing so, there is no independent specification for how the different elements should be ordered in a family
name. For example, “Arial Serif Caption” and “Arial Caption Serif” are both possible as a name ID 21
equivalent. The axisOrdering value could be used in applications to choose the ordering when composing
such names.

To ensure consistency in how face names are presented to users, the axis ordering given in axis records
should be consistent across different fonts within a family, and with the ordering of axis-value descriptors used
in the typographic subfamily (name ID 17). In a variable font, the axis ordering should also be consistent with
the ordering of axis-value descriptors used in the strings referenced by named instances defined in the 'fvar'
table.

Some legacy applications may serialize face names in document markup to indicate text formatting. Such
applications can use the axis ordering field to generate names for serialization purposes in order to improve
the likelihood of successful interchange with other applications that read the same document formats.
However, use of face names in serialized markup is not recommended. This includes use of strings
referenced by axis value records within the STAT table. Instead, applications should use the typographic
family name (name ID 16) plus a design vector comprised of axis tag-value pairs, or one of the fully-qualified,
non-localized names: the unique font identifier (name ID 3), or the Postscript name (name ID 6).

Different fonts belonging to the same family should have matching axis record values. However, if a set of
fonts for a family are released, and then at some later time the family is extended with additional fonts using
new axes of variation, the previously-shipped fonts do not need to be updated with the additional axis records;
the newer fonts will provide the axis details.

7.3.7.3 Axis value tables

Axis value tables provide details regarding a specific style-attribute value on some specific axis of design
variation, or a combination of design-variation axis values, and the relationship of those values to name
elements. This information can be useful for presenting fonts in application user interfaces.

489

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 489
	

A particular use of axis value tables is to assist platforms in supporting typographic families that involve a wide
range of design variations in older applications that assume more limited options for variation within a family.
Specifically, axis value tables can be used to transform typographic family and subfamily names into alternate
names appropriate to different family models. For example, some applications assume a WWS family model
(a family can only include weight, width, or Italic or Oblique variants); and some applications may assume an
R/B/I/BI family model (a family can include only Regular, Bold, Italic or Bold Italic variants). This use for axis
value tables is similar in purpose to the alternate family/subfamily name ID pairs in the 'name' table:

 Name IDs 1 and 2 for an R/B/I/BI family model.

 Name IDs 21 and 22 for a WWS family model.

 Name IDs 16 and 17 for an unrestricted, typographic family model.

In a variable font, however, the names provided for name instances include only name ID 16 and 17
equivalents; there are are no name ID 1/2 or name ID 21/22 equivalents. Thus, axis value tables are
especially important in variable fonts, to allow the named instances to be supported in older applications,
particularly when any variations beyond weight, width, or italic or oblique are used.

In a variable font, every element of typographic subfamily names for all of the named instances defined in the
'fvar' table should be reflected in an axis value table. Additional axis value tables may be included for name
elements that do not appear in any named instances; these may be used in some font-picking user interfaces,
but are not required for mapping typography family/subfamily names into legacy naming models. Some
variable fonts may include axes that are not reflected in subfamily names for any named instances — that is,
variants along these axes are selectable only by means of numeric axis values. In such cases, there is no
requirement to assign names or to create axis value tables for values on these axes.

In many cases, a name element will be associated with a particular value on a single axis. For example, “Bold”
representing a specific weight-axis value; or “Condensed” representing a specific width value. Such name
elements are assumed to be combinable with name elements associated with values on other axes, as in an
instance name “Bold Condensed”. Name elements of this type are referred to as analytic names.

In other cases, a name element may be associated with a particular combination of values on multiple axes,
and not be amenable to analysis into simpler, independent elements. For example, a variable font for lettering
might use several custom axes to provide different stroke or swash-terminal modifications, and named
instances may be defined for certain combinations of values for these axes with non-decomposable names for
those combinations; for example, “Florid” for a particular combination of stroke- and termination-axes values.
Name elements of this type are referred to as non-analytic. Note that a font with non-analytic names might
also use an axis such as weight that uses analytic names, leading to some named instances that combine
non-analytic and analytic elements, such as “Florid Bold” and “Florid Semibold”.
NOTE If an application transforms family and subfamily names to be compatible with an R/B/I/BI family model, then any

subfamily name elements that are not “Regular”, “Bold”, “Italic” or “Oblique” will be moved into a family name. For
example, given a family name “Selawik” and a subfamily name “Condensed Bold”, this will be transformed into
the R/B/I/BI model as family name “Selawik Condensed” and subfamily name “Bold”. (“Selawik” and “Selawik
Condensed” will be treated as separate families in the R/B/I/BI model.) Similarly, when names are transformed to
the WWS family model, any subfamily name elements that do not represent a weight value, a width value, or
italic or oblique will be moved into family names. For this reason, it is recommended that width, weight and
italic/oblique descriptors always be placed last in a subfamily name, to minimize differences in how names will
appear in different appliations that use different family models.

Note that a variable font may have some distinguishing, subfamily attributes that are static, not implemented
as a variation, but that are relevant in relation to the complete typographic family. For example, a weight-
variation font may have a paired, italic weight-variation font. Axis value records should also be provided for
any such distinctions that are relevant within a family.

Axis value tables are particularly important for variable fonts, but can also be used in non-variable fonts. Note
that newer platform implementations may utilize axis value tables, if included in a non-variable font, in
preference to name ID 1/2 or name ID 21/22 pairs, for supporting older applications. In a non-variable font,
axis value records can be provided for any style-variant distinction that is applicable to the font and relevant
for the font family to which it belongs.

490

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

490 ©	ISO/IEC	2019	–	All	rights	reserved
	

When used in non-variable fonts, axis value tables for particular values should be implemented consistently
across fonts in the family. In particular, two different fonts within a family may share certain style attributes in
common, and axis value tables for these values should be implemented consistently. For example, Bold
Condensed and Bold Semi-Condensed fonts both have the same weight attribute, Bold, and should have
matching axis value tables for Bold. If they are not consistent, some applications may exhibit unexpected
behavior in font-related operations, such as how the fonts are presented in user interfaces, or how the fonts
are chosen in fallback or other font-selection operations.

Four different axis value table formats are defined. Formats 1, 2 and 3 are appropriate for single-axis values
associated with analytic name elements. Format 4 is used for multi-axis value combinations associated with
non-analytic name elements. Additional formats may be supported in the future, with a minor-version update
of the 'STAT' table.

NOTE 1 Use of format 1, format 2, or format 3 axis value tables is especially recommended for values on 'wght' and 'wdth'
axes, and also for “Italic” (value 1.0 on the 'ital' axis) or “Oblique” (a non-zero value on the 'slnt' axis) variants.

NOTE 2 Use of format 4 axis value tables is especially recommended for non-analytic sub-family names and the
corresponding axis-value combinations in static-font families or in variable fonts that also involve 'wght' or 'wdth'
axes, or “Italic” or “Oblique” variants.

For any format of axis value table, the first field is read to determine the format. If the format is not recognized,
then the axis value table can be ignored.

Each format includes a valueNameID field, which references a display string to be associated with the
numeric axis value or combination of axis values. Defined name IDs, such as name IDs 2, 17 or 22, can be
used if those have the appropriate string for an axis value. Otherwise, name IDs must be greater than 255 and
less than 32768.

The different formats all include fields with numeric axis values. For any axis with a registered axis tag, the
numeric values in the axis value tables will be interpreted in the same manner as they would be interpreted in
the font variations table. In particular, they will be interpreted according to the user-coordinate scale and
conventions specified for that axis. Similarly, if a variable font has a variation axis defined using a non-
registered, custom tag, it is assumed that the values in axis value tables and in the font variations table are
interpreted using the same custom scale, even if it is not conventionally defined.

In some cases, an attribute using a new design axis may be introduced into a family after other fonts have
been released, with the new attribute not anticipated in any way in the initial fonts. For example, a font
designer might initially create Regular, Bold and Italic variants of a design, and then later add width variants
such as Condensed. In that case, the initial fonts might not have identified that they represent the “Normal”
attribute on the width scale. The newer fonts should include axis value records that describe the earlier fonts.
A flag is defined to designate such axis value records; this is described in detail below.

No two tables should provide information for the same axis value.

Axis value table, format 1

AxisValueFormat1:

Type Name Description

uint16 format Format identifier – set to 1

uint16 axisIndex Index into the axis record array identifying the axis
of design variation to which the axis value record
applies.

uint16 flags Flags – see below for details.

uint16 valueNameID The name ID for entries in the 'name' table that
provide a display string for this attribute value.

Fixed value A numeric value for this attribute value.

491

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 491
	

A format 1 table is used simply to associate a specific axis value with a name.

Axis value table, format 2

AxisValueFormat2:

Type Name Description

uint16 format Format identifier – set to 2

uint16 axisIndex Index into the axis record array identifying the axis of design
variation to which the axis value record applies.

uint16 flags Flags – see below for details.

uint16 valueNameID The name ID for entries in the 'name' table that provide a
display string for this attribute value.

Fixed nominalValue A nominal numeric value for this attribute value.

Fixed rangeMinValue The minimum value for a range associated with the specified
name ID.

Fixed rangeMaxValue The maximum value for a range associated with the specified
name ID.

A format 2 table can be used if a given name is associated with a particular axis value, but is also associated
with a range of values. For example, in a family that supports optical size variations, “Subhead” may be used
in relation to a range of sizes. The rangeMinValue and rangeMaxValue fields are used to define that range. In
a variable font, a named instance has specific coordinates for each axis. The nominalValue field allows some
specific, nominal value to be associated with a name, to align with the named instances defined in the font
variations table, while the rangeMinValue and rangeMaxValue fields allow the same name also to be
associated with a range of axis values.

Some design axes may be open ended, having an effective minimum value of negative infinity, or an effective
maximum value of positive infinity. To represent an effective minimum of negative infinity, set rangeMinValue
to 0x80000000. To represent an effective maximum of positive infinity, set rangeMaxValue to 0x7FFFFFFF.

Two format 2 tables for a given axis should not have ranges with overlap greater than zero. If a font has two
format 2 tables for a given axis, T1 and T2, with overlapping ranges, the following rules will apply:

 If the range of T1 overlaps the higher end of the range of T2 with a greater max value than T2
(T1.rangeMaxValue > T2.rangeMaxValue and T1.rangeMinValue <= T2.rangeMaxValue), then T1 is
used for all values within its range, including the portion that overlaps the range of T2.

 If the range of T2 is contained entirely within the range of T1 (T2.rangeMinValue >=
T1.rangeMinValue and T2.rangeMaxValue <= T1.rangeMaValue), then T2 is ignored.

In the case of two tables with identical ranges for the same axis, it will be up to the implementation which is
used and which is ignored.

492

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

492 ©	ISO/IEC	2019	–	All	rights	reserved
	

Axis value table, format 3

AxisValueFormat3:

Type Name Description

uint16 format Format identifier – set to 3

uint16 axisIndex Index into the axis record array identifying the axis
of design variation to which the axis value record
applies.

uint16 flags Flags – see below for details.

uint16 valueNameID The name ID for entries in the 'name' table that
provide a display string for this attribute value.

Fixed value A numeric value for this attribute value.

Fixed linkedValue The numeric value for a style-linked mapping from
this value.

A format 3 table can be used to indicate another value on the same axis that is to be treated as a style-linked
counterpart to the current value. This is primarily intended for “bold” style linking on a weight axis. These
mappings may be used in applications to determine which style within a family should be selected when a
user selects a “Bold” formatting option. A mapping is defined from a “non-bold” value to its “bold” counterpart.
It is not necessary to provide a “bold” mapping for every weight value; mappings should be provided for lighter
weights, but heavier weights (typically, semibold or above) would already be considered “bold” and would not
require a “bold” mapping.

NOTE Applications are not required to use these style-linked mappings when implementing text formatting user
interfaces. This data can be provided in a font for the benefit of applications that choose to do so. If a given
application does not apply such style mappings for the given axis, then the linkedValue field is ignored.

Axis value table, format 4

AxisValueFormat4:

Type Name Description

uint16 format Format identifier – set to 4

uint16 axisCount The total number of axes contributing to this
axis-values combination.

uint16 flags Flags – see below for details.

uint16 valueNameID The name ID for entries in the 'name' table that
provide a display string for this combination of
axis values.

AxisValue axisValues[axisCount] Array of AxisValue records that provide the
combination of axis values, one for each
contributing axis.

The axisValues array uses AxisValue records, which have the following format.

493

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 493
	

AxisValue record:

Type Name Description

uint16 axisIndex Zero-base index into the axis record array
identifying the axis to which this value applies.
Must be less than designAxisCount.

Fixed value A numeric value for this attribute value.

Each AxisValue record shall have a different axisIndex value. The records can be in any order.

Flags

The following axis value table flags are defined:

Mask Name Description

0x0001 OLDER_SIBLING_FONT_ATTRIBUTE If set, this axis value table provides axis value
information that is applicable to other fonts
within the same font family. This is used if the
other fonts were released earlier and did not
include information about values for some axis.
If newer versions of the other fonts include the
information themselves and are present, then
this record is ignored.

0x0002 ELIDABLE_AXIS_VALUE_NAME If set, it indicates that the axis value represents
the “normal” value for the axis and may be
omitted when composing name strings.

When the OlderSiblingFontAttribute flag is used, implementations may use the information provided to
determine behavior associated with a different font in the same family. If a previously-released family is
extended with fonts for style variations from a new axis of design variation, then all of them should include a
OlderSiblingFontAttribute table for the “normal” value of earlier fonts. The values in the different fonts should
match; if they do not, application behavior may be unpredictable.

NOTE 1 When the OlderSiblingFontAttribute flag is set, that axis value table is intended to provide default information
about other fonts in the same family, but not about the font in which that axis value table is contained. The font
should contain different axis value tables that do not use this flag to make declarations about itself.

The ElidableAxisValueName flag can be used to designate a “normal” value for an axis that should not
normally appear in a face name. For example, the designer may prefer that face names not include “Normal”
width or “Regular” weight. If this flag is set, applications are permitted to omit these descriptors from face
names, though they may also include them in certain scenarios.

NOTE 2 Fonts should provide axis value tables for “normal” axis values even if they should not normally be reflected in
face names.

NOTE 3 If a font or a variable-font instance is selected for which all axis values have the ElidableAxisValueName flag set,
then applications may keep the name for the weight axis, if present, to use as a constructed subfamily name, with
names for all other axis values omitted.

When the OlderSiblingFontAttribute flag is set, this will typically be providing information regarding the
“normal” value on some newly-introduced axis. In this case, the ElidableAxisValueName flag may also be set,
as desired. When applied to the earlier fonts, those likely would not have included any descriptors for the new
axis, and so the effects of the ElidableAxisValueName flag are implicitly assumed.

If multiple axis value tables have the same axis index, then one of the following should be true:

 The font is a variation font, and the axis is defined in the font variations table as a variation axis.
 The OlderSiblingFontAttribute flag is set in one of the records.

494

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

494 ©	ISO/IEC	2019	–	All	rights	reserved
	

Two different fonts within a family may share certain style attributes in common. For example, Bold
Condensed and Bold Semi Condensed fonts both have the same weight attribute, Bold. Axis value tables for
particular values should be implemented consistently across a family. If they are not consistent, applications
may exhibit unpredictable behaviors.

7.3.7.4 Examples

The following examples illustrate data provided by a style attributes table for various font scenarios.

7.3.7.4.1 Example 1: Non-variation font family with different weight variants

Suppose a font family has Regular, Bold and Heavy weight variants. These fonts would have matching axis
records:

Axis tag Axis Name Axis ordering

‘wght’ Weight 0

The three fonts would have axis value data as follows:

Font Axis tag Value Name string Flag Other data

Font 1 ‘wght’ 400 Regular ElidableAxisValueName linkedValue = 700

Font 2 ‘wght’ 700 Bold

Font 3 ‘wght’ 900 Heavy

7.3.7.4.2 Example 2: Non-variation family with weight values plus italic

Suppose the font family from example 1 also has italic variants. The fonts would have matching axis records
reflecting weight and italic axes:

Axis tag Axis Name Axis ordering

‘wght’ Weight 0

‘ital’ Italic 1

Each of the three non-italic fonts would include an additional axis value record to reflect the non-italic attribute.
The six fonts would have data as follows:

495

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 495
	

Font Axis tag Value Name string Flag Other data

Font 1 ‘wght’ 400 Regular ElidableAxisValueName linkedValue = 700

Font 1 ‘ital’ 0 Regular ElidableAxisValueName

Font 2 ‘wght’ 700 Bold

Font 2 ‘ital’ 0 Regular ElidableAxisValueName

Font 3 ‘wght’ 900 Heavy

Font 3 ‘ital’ 0 Regular ElidableAxisValueName

Font 4 ‘wght’ 400 Regular ElidableAxisValueName linkedValue = 700

Font 4 ‘ital’ 1 Italic

Font 5 ‘wght’ 700 Bold

Font 5 ‘ital’ 1 Italic

Font 6 ‘wght’ 900 Heavy

Font 6 ‘ital’ 1 Italic

7.3.7.4.3 Example 3: Non-variation family with weight and variants, later extended to add width
variants

Suppose the font family from example 2 is later extended with different width variants. The new fonts in the
family would include matching axis records reflecting three axes:

Axis tag Axis Name Axis ordering

‘wdth’ Width 0

 ‘wght’ Weight 1

‘ital’ Italic 2

Newer versions of the initially-released fonts would also include the additional axis record. When newer fonts
co-exist with the original version of the earlier fonts, the ordering from the more-complete axis records in the
newer fonts is used.

To allow for situations in which one of the newer fonts co-exists with the older fonts, which did not reference
the width axis, the newer fonts should each include an axis record to describe the “Normal” width, which is
inferred onto the earlier fonts.

Axis tag Value Name string Flag Other data

‘wdth’ 100 Normal OlderSiblingFontAttribute

7.3.7.4.4 Example 4: A weight/width variation font

Consider a family comprised of a single variation font with weight and width variations. This font would have
axis records for the two variation axes:

496

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

496 ©	ISO/IEC	2019	–	All	rights	reserved
	

Axis tag Axis Name Axis ordering

‘wght’ Weight 0

‘wdth’ Width 1

Suppose the variation font has 6 named instances that correspond to three different weights for each of two
widths. The style attributes table should include axis value records for at least those three weights and those
two widths, but could also include records for other weight or width values. The font may include the following
axis value records:

Axis tag Value Name string Flag Other data

‘wght’ 300 Light linkedValue = 600

‘wght’ 400 Regular ElidableAxisValueName linkedValue = 700

‘wght’ 600 Semibold

‘wght’ 700 Bold

‘wght’ 900 Black

‘wdth’ 62.6 Extra-
Condensed

‘wdth’ 75 Condensed

‘wdth’ 100 Normal ElidableAxisValueName

‘wdth’ 125 Expanded

‘wdth’ 150 Extra-
Expanded

7.3.7.4.5 Example 5: A family comprised of a non-italic variation font plus an italic variation font

Consider a family comprised of a non-italic, weight/width variation font plus a corresponding italic,
weight/width variation font. Each font would have axis records for three axes:

Axis tag Axis Name Axis ordering

‘wght’ Weight 0

‘wdth’ Width 1

‘ital’ Italic 2

In addition to axis value records for various weight or width values, the first font would also include a record to
reflect the non-italic attribute:

Axis tag Value Name string Flag Other data

‘ital’ 0 Normal ElidableAxisValueName

The second font would include a record to reflect the italic attribute, in addition to the records for various
weight and width values:

497

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 497
	

Axis tag Value Name string Flag Other data

‘ital’ 1 Italic

The pattern in this example can be applied to other cases involving a family with style variations implemented
using a combination of font-variation (‘fvar’) mechanisms plus static, non-variation designs. The axis records
in each font would span both variation and non-variation axes. Axis value records in a given font would include
multiple values for axes implemented using variation mechanisms, plus single records for the relevant
attribute values of other axes.

7.3.7.4.6 Example 6: A varible font with non-analytic subfamily names associated with multiple axis
values

Consider a variable font that uses several custom axes, 'TRM1', 'TRM2', 'STK1', 'STK2', and also the
registered 'wght' axis. Suppose that this font has named instances “Florid” and “Jagged” that involve particular
combinations of values for the custom axes; and additional named instances that correspond to those two
named instances but with other 'wght' values: “Florid Bold”, “Florid Semibold”, etc. The font would have axis
value tables for 'wght' values, with data such as the following:

Axis tag Value Name string Flag Other data

‘wght’ 400 Regular ElidableAxisValueName linkedValue = 700

‘wght’ 700 Bold

‘wght’ 900 Heavy

The font would also have format 4 axis value tables corresponding to “Florid” and “Jagged”, with data such as
the following:

Name string AxisValue records

Florid 'TRM1' = 250
'TRM2' = 1000
'STK1' = 550
'STK2' = 0

Jagged 'TRM1' = 900
'TRM2' = 4500
'STK1' = 0

'STK2' = 310

7.3.8 VVAR – Vertical metrics variations table

The 'VVAR' table is used in variable fonts to provide variations for vertical glyph metric values. This can be
used to provide variation data for advance heights in the 'vmtx' table. In fonts with TrueType outlines, it can
also be used to provide variation data for top and bottom side bearings obtained from the 'vmtx' table and
glyph bounding box. In addition, it can also be used in fonts that have CFF2 outlines to provide vertical-origin
variation data.

For a general overview of OFF Font variations and terminology related to variations, see subclause 7.1.

In a font with TrueType outlines, the rasterizer will generate “phantom” points that represent left, right, top and
bottom side bearings. (See "Instructing TrueType Glyphs" [24] for more background on phantom points.) In a
TrueType variable font, the glyph variations ('gvar') table will include variation data for the phantom points of
each glyph, allowing glyph metrics to be interpolated for different variation instances as part of deriving the
interpolated glyph outlines. For this reason, the 'VVAR' table is not required in variable fonts that have
TrueType outlines. For text-layout operations that require glyph metrics but not actual glyph outlines, however,

498

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

498 ©	ISO/IEC	2019	–	All	rights	reserved
	

there can be significant performance benefits by being able to obtain adjusted glyph metrics for an instance
without needing to interpolate glyph outlines. For this reason, it is recommended that a 'VVAR' table be
included in variable fonts that have TrueType outlines and that support vertical layout.

The CFF2 rasterizer does not generate phantom points as in the TrueType rasterizer. For this reason, an
'VVAR' table is required to handle any variation in vertical glyph metrics in a variable font with CFF2 outlines.

The format and processing of the 'VVAR' table is analogous to the horizontal metrics variations ('HVAR') table.

7.3.8.1 Related and co-requisite tables

The 'VVAR' table is used only in variable fonts that support vertical layout. It must be used in combination with
a vertical metrics ('vmtx') table, and also in combination with a font variations ('fvar') table, and other required
or optional tables used in variable fonts. See Variation Data Tables and Miscellaneous Requirements in the
Font Variations Overview chapter for general information.

For variable fonts that have TrueType outlines and that support vertical layout, the 'VVAR' table is optional but
recommended. For variable fonts that have CFF2 outlines and that support vertical layout, the 'VVAR' table is
required if there is any variation in glyph advance heights across the variation space.

NOTE The 'VDMX' table is not used in variable fonts.

7.3.8.2 Table formats

The vertical metrics variations table has the following format:

Vertical metrics variations table

Type Name Description

uint16 majorVersion Major version number of the vertical metrics
variations table — set to 1.

uint16 minorVersion Minor version number of the vertical metrics
variations table — set to 0.

Offset32 itemVariationStoreOffset Offset in bytes from the start of this table to the
item variation store table.

Offset32 advanceHeightMappingOffset Offset in bytes from the start of this table to the
delta-set index mapping for advance heights (may
be NULL).

Offset32 tsbMappingOffet Offset in bytes from the start of this table to the
delta-set index mapping for top side bearings
(may be NULL).

Offset32 bsbMappingOffset Offset in bytes from the start of this table to the
delta-set index mapping for bottom side bearings
(may be NULL).

Offset32 vOrgMappingOffset Offset in bytes from the start of this table to the
delta-set index mapping for Y coordinates of
vertical origins (may be NULL).

The item variation store table is documented in subclause 7.2.

Mapping tables are optional. If a given mapping table is not provided, the offset is set to NULL.

Variation data for advance heights is required. A delta-set index mapping table for advance heights can be
provided, but is optional. If a mapping table is not provided, glyph indices are used as implicit delta-set indices,
as in the HVAR table.

499

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 499
	

Variation data for side bearings are optional. If included, mapping tables are required to provide the delta-set
index for each glyph.

Mappings and variation data for vertical origins are not used in fonts with TrueType outlines, but can be
included in variable fonts with CFF2 outlines if there is variability in the Y coordinates of glyph vertical origins,
the default values of which are recorded in the 'VORG' table. A mapping table is required for vertical-origin
variation data.
See the horizontal metrics variations ('HVAR') table description for remaining details.

8 Recommendations for OFF fonts

This clause outlines recommendations for creating OFF fonts.

8.1 Byte ordering

All OFF fonts use Motorola-style byte ordering (Big Endian).

8.2 'sfnt' version

OFF fonts that contain TrueType outlines should use the value of 1.0 for the sfnt version. OFF fonts containing
CFF data should use the tag 'OTTO' as the sfnt version number.

8.3 Mixing outline formats
It is not recommended to mix outline formats within a single font. Choose the format that meets your feature
requirements.

8.4 Filenames

OFF fonts may have the extension .OTF, .TTF, .OTC or .TTC, depending on the kind of outlines in the font
and the desired backward compatibility.

 A file containing a single font resource with TrueType outlines should have either .OTF or .TTF as the
extension. The choice between .OTF and .TTF may depend on the desire for backward compatibility
on older systems or with previous versions of the font.

 A file containing a single font resource with only CFF outline data (no TrueType outlines) should have
an .OTF extension.

 A font collection file (one that contains multiple font resources) should have either .OTC or .TTC as
the extension, regardless of whether or not layout tables are present in any of the font resources, and
regardless of the kind of outline data used. The .TTC extension may be used for font collection files
containing font resources that use CFF outline data if needed for backward compatibility with older
software that was not aware of the .OTC extension.

 A variable font that uses OFF font variations mechanisms and associated tables should use the
extensions .OTF, .TTF, .OTC or .TTC following the above guidance. If there is a need to provide
some indication wihtin a filename that the file contains a variable font, a recommended convention is
to append “VF” (with a preceding delimiter character) at the end of the file name (before the
extension) — e.g., “Selawik-VF.ttf”.

In all cases, software must determine the kind of outlines present in a font not from the filename extension but
from the contents of the file.

500

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

500 ©	ISO/IEC	2019	–	All	rights	reserved
	

8.5 Table alignment and length

All tables should be aligned to begin at offsets which are multiples of four bytes. While this is not required by
the TrueType rasterizer, it does prevent ambiguous checksum calculations and greatly speeds table access
on some processors.

All tables should be recorded in the table directory with their actual length. To ensure that checksums are
calculated correctly, it is suggested that tables begin on 32-bit boundaries. Any extra space after a table (and
before the next 32-bit boundary) should be padded with zeros.

8.6 Glyph 0: the .notdef glyph

Glyph 0 must be assigned to a .notdef glyph. The .notdef glyph is very important for providing the user
feedback that a glyph is not found in the font. This glyph should not be left without an outline as the user will
only see what looks like a space if a glyph is missing and not be aware of the active font's limitation.

It is recommended that the shape of Glyph ID 0 be either an empty rectangle, a rectangle with a question
mark inside of it, or a rectangle with an 'X'. Creative shapes, like swirls or other symbols, may not be
recognized by users as indicating that a glyph is missing from the font and is not being displayed at that
location.

8.7 'BASE' table

The 'BASE' table allows for different scripts in the font to specify different values for the same baseline tag.
This situation could arise when a developer makes a Unicode font, for example, by combining glyphs from
fonts that use different baseline systems.

However, glyphs from different scripts in this font may not appear correctly aligned relative to each other when
used with applications that either don't support the 'BASE' table or that support it but assume that a particular
baseline will not vary across scripts. Furthermore, it is not always possible to determine the script of every
glyph in the font, some "weakly-scripted" characters such as punctuation may be used in several scripts, and
some glyphs such as ornaments may not have a script at all.

Thus, it is strongly recommended that developers construct their fonts so that all scripts in the 'BASE' table
record the same value for a particular baseline if they want their fonts to work as expected in the above
situations.

If baselines vary by script, then it is strongly recommended that the vendor add a DFLT script entry to the
BASE table, which can be used if the script requested by the client is not matched or if the client does not or
can not determine the script.

8.8 'cmap' table

When building a Unicode font for Windows, the platform ID should be 3 and the encoding ID should be 1 (this
subtable must use cmap format 4). When building a symbol font for Windows, the platform ID should be 3 and
the encoding ID should be 0.

When building a font to support surrogate characters i.e. the UCS-4 (4 byte) form of ISO/IEC 10646 (ISO/IEC
10646 UCS-4 contains 2^31 code positions and the Unicode transformation formats UTF-8 and UTF-16
access a subset of these code positions using surrogate characters), use platform ID 3, encoding ID 10 and
format 12. Depending on support installed and the content of text being displayed, Windows 2000 may use

501

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 501
	

either the format 4 or format 12 cmap. Therefore the first 64k codepoint to glyph mappings must be identical
for any font containing both cmap format 4 and format 12. Please note that the content of format 12 subtable,
needs to be a super set of the content in the format 4 subtable. The format 4 subtable needs to be included,
for backward compatibility needs.

The number of glyphs that may be included in one font is limited to 64k.

Remember that, despite references to 'first' and 'second' subtables, the subtables must be stored in sorted
order by platform and encoding ID.

8.9 'cvt' table

Should be defined only if required by font instructions.

8.10 'fpgm' table

Should be defined only if required by TrueType font instructions.

8.11 'glyf' table

The 'glyf' table contains TrueType outline data, and can be optimized by applying Microtype Express
compression defined in ISO/IEC 14496-18.
NOTE It is recommended that developers perform this optimization prior to finalizing and adding a digital signature to

the font. This is necessary for the creator's signature to remain valid in embedded OFF fonts.

8.12 'hdmx' table

This table improves the performance of OFF fonts with TrueType outlines. This table is not necessary at all
unless instructions are used to control the "phantom points", and should be omitted if bits 2 and 4 of the flags
field in the 'head' table are zero. (See the 'head' table description.) It is recommended that this table be
included for fonts with one or more non-linearly scaled glyphs (i.e., bit 2 or 4 of the 'head' table flags field are
set).

Device records should be defined for all sizes from 8 through 14 point, and even point sizes from 16 through
24 point. However, the table requires pixel-per-em sizes, which depend on the horizontal resolution of the
output device. The records in 'hdmx' should cover both 96 dpi devices (CGA, EGA, VGA) and 300 dpi devices
(laser and ink jet printers).

Thus, 'hdmx' should contain entries for the following pixel sizes (PPEM): 11, 12, 13, 15, 16, 17, 19, 21, 24, 27,
29, 32, 33, 37, 42, 46, 50, 54, 58, 67, 75, 83, 92, 100. These values have been rounded to the nearest pixel.
For instance, 12 points at 300 dpi would measure 37.5 pixels, but this is rounded down to 37 for this list.

This will add approximately 9,600 bytes to the font file. However, there will be a significant improvement in
speed when a client requests advance widths covered by these device records.

If the font includes an 'LTSH' table, the hdmx values are not needed above the linearity threshold.

8.13 'head' table

Although historical usage of the fontRevision value is varied, the recommended use of the field is to set it as
a Fixed 16.16 value, and to report it rounded and zero-padded to three fractional decimal places. Examples:
Decimal 1.5 is set as 0x00018000 and is reported as "1.500"; decimal 1.001 is set as 0x00010041 and is
reported as "1.001". All data required. If the font has been compressed with Microtype Express compression
defined in ISO/IEC 14496-18 this must be indicated in the flags field of the 'head' table.

8.14 'hhea' table

All data required. It is suggested that monospaced fonts set numberOfHMetrics to three (see hmtx).

502

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

502 ©	ISO/IEC	2019	–	All	rights	reserved
	

8.15 'hmtx' table

All data required. It is suggested that monospaced fonts have three entries in the numberOfHMetrics field.

8.16 'kern' table

Should contain a single kerning pair subtable (format 0). Windows will not support format 2 (two-dimensional
array of kern values by class); nor multiple tables (only the first format 0 table found will be used) nor
coverage bits 0 through 4 (i.e. assumes horizontal data, kerning values, no cross stream, and override).
The OFF specification allows CFF OT fonts to express their kerning in a kern table. Many OFF text layout
engines support this. Windows GDI’s CFF OT driver, however, ignores the kern table in a CFF OT font when it
prepares kerning pairs to report via its pair kerning API.

When a kern table and GPOS table are both present in a font, and an OFF layout engine is requested to apply
kerning to a run of text of a particular script and language system: (a) If the number of kern feature lookups in
the resolved language system in the GPOS table is zero, then the kern table should be applied, followed by
any remaining GPOS features requested. (b) If the number of kern feature lookups in the resolved language
system in the GPOS table is non-zero, then all GPOS lookups, including the kern lookups, should be applied
in the usual way and the kern table data ignored.

If a kern table present but no GPOS table is present in the font, then an OFF layout engine should apply the
kern table to the text, regardless of the resolved language system of the text.

If compatibility with legacy environments is not a concern, font vendors are encouraged to record kerning in
the GPOS table's kern feature and not in the kern table.

OFF Font Variations mechanisms do not include any way to represent variation of data within a kern table.
Therefore, kerning in a variable should be implemented using the GPOS table.

8.17 'loca' table

All data required for fonts with TrueType outlines. We recommend that local offsets should be word-aligned, in
both the short and long formats of this table.

The actual ordering of the glyphs in the font can be optimized based on expected utilization, with the most
frequently used glyphs appearing at the beginning of the font file. Additionally, glyphs that are often used
together should be grouped together in the file. The will help to minimize the amount of swapping required
when the font is loaded into memory.

8.18 'LTSH' table

This table improves the performance of OFF fonts with TrueType outlines. The table should be used if bit 2 or
4 of flags in 'head' is set.

8.19 'maxp' table

All data required for a font with TrueType outlines. Fonts with CFF or CFF2 data must only fill the numGlyphs
field.

8.20 'name' table

Platform and encoding ID's in the name table should be consistent with those in the 'cmap' table. If they are
not, the font will not load in Windows. When building a Unicode font for Windows, the platform ID should be 3
and the encoding ID should be 1. When building a symbol font for Windows, the platform ID should be 3 and
the encoding ID should be 0, and the referenced string data must be encoded in UTF-16.

When building a font containing Roman characters that will be used on the Macintosh, an additional name
record is required, specifying platform ID of 1 and encoding ID of 0.

503

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 503
	

Each set of name records should appear for US English (language ID = 0x0409 for Microsoft records,
language ID = 0 for Macintosh records); additional language strings for the Microsoft set of records (platform
ID 3) may be added at the discretion of the font vendor.

Remember that, despite references to "first" and "second", the name record must be stored in sorted order (by
platform ID, encoding ID, language ID, name ID). The 'name' table platform/encoding IDs must match the
'cmap' table platform/encoding IDs, which is how Windows knows which name set to use.

Name strings

We recommend using name ID's 8 – 12, to identify manufacturer, designer, description, URL of the vendor,
and URL of the designer. URL's must contain the protocol of the site: for example, http:// or mailto: or ftp://.
The OFF font properties extension can enumerate this information to the users.

The Subfamily string in the 'name' table should be used for variants of weight (ultra light to extra black) and
style (oblique/italic or not). So, for example, the full font name of "Helvetica Narrow Italic" should be defined as
Family name "Helvetica Narrow" and Subfamily "Italic". This is so that Windows can group the standard four
weights of a font in a reasonable fashion for non-typographically aware applications which only support
combinations of "bold" and "italic".

The Full font name string usually contains a concatenation of strings 1 and 2. If the font is 'Regular' as
indicated in string 2, then sometimes only the family name contained in string 1 is used for the full font name.
In many contexts, the full font name is what will be exposed to users.

In variable fonts, the Typographic Family and Typographic Subfamily names (name IDs 16 and 17) are
required. Applications that support OFF font variations will typically present to users the Typographic Family
name along with the Typographic Subfamily name or alternative subfamily names for named instances, as
specified in the font variations ('fvar') table. In some situations, a font vendor may want to make available a
variable font as well as some set of non-variable fonts corresponding to the named instances of the variable
font. In such situations, the vendor may want to have distinct family names for the family implemented as a
variable font and the family implemented using several non-variable fonts. In that case, a suggested
convention is to append “VF” at the end of the variable-font family name. Note, however, that this will result in
distinct families, and content formatted with the one may not display as intended in some contexts if only the
other is available. For example, if a document is formatted using the regular and bold instances of a variable
font with family name "Selawik VF" and then the document is viewed in a context in which only the non-
variable fonts Selawik Regular and Selawik Bold are available, the viewing application will generally not be
able to associate the non-variable fonts available to it with the formatting declarations in the content.

OFF fonts that include a name with name ID of 6 should include these two names with name ID 6, and
characteristics as follows:

a. Platform: 1 [Macintosh]; Platform-specific encoding: 0 [Roman]; Language: 0 [English].
b. Platform: 3 [Windows]; Platform-specific encoding: 1 [Unicode]; Language: 0x409 [English

(American)].

Names with name ID 6 other than the above two, if present, may be ignored.

When translated to ASCII, these two name strings must be identical and restricted to the printable ASCII
subset, codes 33 through 126, except for the 10 characters: '[', ']', '(', ')', '{', '}', '<', '>', '/', '%'. Some
implementations have a 63-character length limit; however, a 127-character length limit is recommended.

The term "PostScript Name" here means a string identical to the two identical name ID 6 strings described
above.

Depending on the particular font format that PostScript language font uses, the invocation method for the
PostScript font differs, and the semantics of the resulting PostScript language font differ. The method used to
invoke this font depends on the presence of Name ID 20.

If a Name ID 20 is present in this font, then the default assumption should be that the PostScript Name
defined by name ID 6 should be used with the "composefont" invocation. This PostScript Name is then the
name of a PostScript language CIDFont resource which corresponds to the glyphs of the OFF font. This name

504

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

504 ©	ISO/IEC	2019	–	All	rights	reserved
	

is valid to pass, with an appropriate PostScript language CMap reference, and an instance name, to the
PostScript language "composefont" operator.

If no Name ID 20 is present in this font, then the default assumption should be that the PostScript Name
defined by name ID 6 should be used with the "findfont" invocation, for locating the font in the context of a
PostScript interpreter. This PostScript Name is then the name of a PostScript language Font resource which
corresponds to the glyphs of the OFF font. This name is valid to pass to the PostScript language "findfont"
operator. This does not necessarily imply that the resulting font dictionary accepts an /Encoding array, such as
when the font referenced is a Type 0 PostScript font.

This requirement applies only to data fork OFF fonts. Macintosh resource-fork TrueType and other Macintosh
sfnt-wrapped fonts supply the PostScript font name to be used with the "findfont" invocation, in order to invoke
the font in a PostScript interpreter, in the FOND resource style-mapping table.

Developers may choose to ignore the default usage when appropriate. For example, PostScript printers
whose version is earlier than 2015 cannot process CID font resources and a CJK OFF/CFF-CID font can be
downloaded only as a set of Type 1 PostScript fonts. Legacy CJK TrueType fonts, which do not have a Name
ID 20, may still be most effectively downloaded as a CID font resource. Definition of the full set of situations in
which the defaults should not be followed is outside the scope of this document.

The value held in the name ID 20 string is interpreted as a PostScript font name that is meant to be used with
the "findfont" invocation, in order to invoke the font in a PostScript interpreter.

If the name ID 20 is present in a font, there must be one name ID 20 record for every Macintosh platform
cmap subtable in that font. A particular name ID 20 record is associated with the encoding specified by the
matching cmap subtable. A name ID 20 record is matched to a cmap subtable when they have the same
platform and platform-specific encoding IDs, and corresponding language/version IDs. Name ID 20 records
are meant to be used only with Macintosh cmap subtables. The version field for a cmap subtable is one more
than the language ID value for the corresponding name ID 20 record, with the exception of the cmap subtable
version field 0. This version field, meaning "not language-specific", corresponds to the language ID value
0xFFFF, or decimal 65535, for the corresponding name ID 20 record.

When translated to ASCII, this name string must be restricted to the printable ASCII subset, codes 33 through
126, except for the 10 characters: '[', ']', '(', ')', '{', '}', '<', '>', '/', '%'.

This requirement applies only to data fork OFF fonts. Macintosh resource-fork TrueType and other Macintosh
sfnt-wrapped fonts supply the PostScript font name to be used with the "findfont" invocation, in order to invoke
the font in a PostScript interpreter, in the FOND resource style-mapping table.

A particular Name ID 20 string always corresponds to a particular Macintosh cmap subtable. However, some
host OFF/TTF fonts also contain a post table, format 4, which provides a mapping from glyph ID to encoding
value, and also corresponds to a particular Macintosh cmap subtable. Unfortunately, the post table format 4
contains no provision for identifying which Macintosh cmap subtable it matches, nor for providing more than
one mapping. Host fonts which contain a post table format 4, should also contain only a single Macintosh
cmap subtable, and a single Name ID 20 string. In the case where there is more than one Macintosh cmap
subtable and more than one Name ID 20 string, there is no definition of which one matches the post table
format 4.

8.21 'OS/2' table

All data required. We recommend applying PANOSE values to fonts to improve the user's experience when
using the Windows fonts folder or other font management utilities. If the font is a symbol font, the first byte of
the PANOSE value must be set to 'Latin Pictorial’ (value = 5).

In a variable font that uses OFF Font Variation mechanisms, there is no way to represent different PANOSE
values for different instances supported by the font. The PANOSE values can be set based on the default
instance

505

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 505
	

sTypoAscender, sTypoDescender and sTypoLineGap

sTypoAscender is used to determine the optimum offset from the top of a text frame to the first baseline.
sTypoDescender is used to determine the optimum offset from the last baseline to the bottom of the text frame.
The value of (sTypoAscender - sTypoDescender) is recommended to equal one em.

While the OFF specification allows for CJK (Chinese, Japanese, and Korean) fonts' sTypoDescender and
sTypoAscender fields to specify metrics different from the HorizAxis.ideo and HorizAxis.idtp baselines in the
'BASE' table, CJK font developers should be aware that existing applications may not read the 'BASE' table at
all but simply use the sTypoDescender and sTypoAscender fields to describe the bottom and top edges of the
ideographic em-box. If developers want their fonts to work correctly with such applications, they should ensure
that any ideographic em-box values in the 'BASE' table describe the same bottom and top edges as the
sTypoDescender and sTypoAscender fields. See subclause 9.8 "OFF CJK Font Guidelines" and "Ideographic
Em-Box" respectively for more details.

For Western fonts, the Ascender and Descender fields in Type 1 fonts' AFM files are a good source of
sTypoAscender and sTypoDescender, respectively. The Minion Pro font family (designed on a 1000-unit em),
for example, sets sTypoAscender = 727 and sTypoDescender = -273.

sTypoAscender, sTypoDescender and sTypoLineGap specify the recommended line spacing for single-
spaced horizontal text. The baseline-to-baseline value is expressed by:

OS/2.sTypoAscender - OS/2.sTypoDescender + OS/2.sTypoLineGap

sTypoLineGap will usually be set by the font developer such that the value of the above expression is
approximately 120% of the em. The application can use this value as the default horizontal line spacing. The
Minion Pro font family (designed on a 1000-unit em), for example, sets sTypoLineGap = 200.

8.22 'post' table

All information required, although the VM Usage fields may be set to zero. OFF fonts containing CFF outlines
use only format 3.0 of the 'post' table. Glyph names are described in the Adobe document "Unicode and
Glyph Names" [3], which specifies glyph naming conventions for all Unicode characters as well as those that
don't have standard Unicode values such as certain ligatures or glyphic variants.
NOTE Names for all glyphs must be supplied as it cannot be assumed that all Windows platforms will support the

default names supplied on the Macintosh.

NOTE The PostScript glyph name must be no longer than 31 characters, include only uppercase or lowercase
English letters, European digits, the period or the underscore, i.e. from the set [A-Za-z0-9_.] and start with a letter,
except the special glyph names “,notdef” and “.null” which start with a period.

8.23 'prep' table

Should be defined only if required by the TrueType font instructions.

8.24 'VDMX' table

This table improves the performance of OFF fonts with TrueType outlines. It should be present if hints cause
the font to scale non-linearly. If not present, the font is assumed to scale linearly. Clipping may occur if values
in this table are absent and font exceeds linear height.

8.25 TrueType Collections
The process of building TTC files involves paying close attention to the issue of glyph renumbering in a font
and the side effects that can result, in the 'cmap' table and elsewhere. The fonts to be merged must also have
compatible TrueType instructions – i.e. their pre-programs, function definitions, and control values must not
conflict.

506

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

506 ©	ISO/IEC	2019	–	All	rights	reserved
	

9 General recommendations

9.1 Optimized table ordering

OFF fonts with TrueType outlines are more efficient in the Windows operating system when the tables are
ordered as follows (from first to last):

head, hhea, maxp, OS/2, hmtx, LTSH, VDMX, hdmx, cmap, fpgm, prep, cvt, loca, glyf, kern, name, post, gasp,
PCLT, DSIG

The initial loading of an OFF font containing CFF data will be more efficiently handled if the following sfnt table
ordering is used within the body of the sfnt (listed from first to last):

head, hhea, maxp, OS/2, name, cmap, post, CFF, (other tables, as convenient)

9.2 Non-standard (Symbol) fonts

Non-standard fonts such as Symbol or Wingdings™ have special requirements for Windows platforms. These
requirements affect the 'cmap,' 'name,' and 'OS/2' tables; the requirements and recommendations for all other
tables remain the same.

For non-standard fonts on Windows platforms, however, the 'cmap' and 'name' tables must use platform ID 3
() and encoding ID 0 (Unicode, non-standard character set). Remember that 'name' table encodings should
agree with the 'cmap' table. Additionally, the first byte of the PANOSE value in the 'OS/2' table must be set to
'Latin Pictorial’ (value = 5).

The 'cmap' subtable (platform 3, encoding 0) must use format 4. The character codes should start at 0xF000,
which is in the Private Use Area of Unicode. It is suggested to derive the format 4 encodings by simply adding
0xF000 to the format 0 (Macintosh) encodings.

Under Windows, only the first 224 characters of non-standard fonts will be accessible: a space and up to 223
printing characters. It does not matter where in user space these start, but 0xF020 is suggested. The
usFirstCharIndex and usLastCharIndex values in the 'OS/2' table would be set based on the actual minimum
and maximum character indices used.

9.3 Baseline to baseline distances

The 'OS/2' table fields sTypoAscender, sTypoDescender, and sTypoLineGap free applications from
Macintosh- or Windows-specific metrics which are constrained by backward compatibility requirements. The
following discussion only pertains to the platform-specific metrics.

The suggested Baseline to Baseline Distance (BTBD) is computed differently for Windows and the Macintosh,
and it is based on different OFF metrics. However, if the recommendations below are followed, the BTBD will
be the same for both Windows and the Mac.

Windows

The Windows metrics in the table below are returned as part of the logical font data structure.

Windows
Metric

OFF Metric

Ascent usWinAscent

descent usWinDescent

internal leading usWinAscent + usWinDescent - unitsPerEm

external
leading

MAX(0, LineGap - ((usWinAscent + usWinDescent) - (Ascender -
Descender)))

507

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 507
	

The suggested BTBD = ascent + descent + external leading

It should be clear that the "external leading" can never be less than zero. Pixels above the ascent or below the
descent will be clipped from the character; this is true for all output devices.

The usWinAscent and usWinDescent are values from the 'OS/2' table. The unitsPerEm value is from the
'head' table. The LineGap, Ascender and Descender values are from the 'hhea' table.

Macintosh

Ascender and Descender are metrics defined and are not to be confused with the Windows ascent or descent,
nor should they be confused with the true typographic ascender and descender that are found in AFM files.

Macintosh
Metric

OFF Metric

ascender Ascender

descender Descender

Leading LineGap

The suggested BTBD = ascent + descent + leading

If pixels extend above the ascent or below the descent, the character will be squashed in the vertical direction
so that all pixels fit within these limitations; this is true for screen display only.

Making Them Match

If you perform some simple algebra, you will see that the suggested BTBD across both Macintosh and
Windows will be identical if and only if:
LineGap >= (yMax - yMin) - (Ascender - Descender)

9.4 Style bits

For backwards compatibility with previous versions of Windows, the macStyle bits in the 'head' table will be
used to determine whether or not a font is regular, bold or italic (in the absence of an 'OS/2' table). This is
completely independent of the usWeightClass and PANOSE information in the 'OS/2' table, the ItalicAngle in
the 'post' table, and all other related metrics. If the 'OS/2' table is present, then the fsSelection bits are used to
determine this information.

9.5 Drop-out control

Drop-out control is needed if there is a difference in bitmaps with dropout control on and off. Two cases where
drop-out control is needed are when the font is rotated or when the size of the font is at or below 8 ppem. Do
not use SCANCTRL unless needed. SCANCTRL or the drop-out control rasterizer should be avoided for
Roman fonts above 8 points per em (ppem) when the font is not under rotation. SCANCTRL should not be
used for "stretched" fonts (e.g. fonts displayed at non-square aspect ratios, like that found on an EGA).

9.6 Embedded bitmaps

Three tables are used to embed bitmaps in OFF fonts. They are the 'EBLC' table for embedded bitmap
locators, the 'EBDT' table for embedded bitmap data, and the 'EBSC' table for embedded bitmap scaling
information. OFF embedded bitmaps are also called 'sbits'.

The behavior of sbits within an OFF font is essentially transparent to the client. A client need not be aware
whether the bitmap returned by the rasterizer comes from an sbit or from a scan-converted outline.

The metrics in 'sbit' tables overrule the outline metrics at all sizes where sbits are defined. Fonts with 'hdmx'
tables should correct those tables with 'sbit' values.

508

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

508 ©	ISO/IEC	2019	–	All	rights	reserved
	

'Sbit only' fonts, that is fonts with embedded bitmaps but without outline data, are permitted. Care must be
taken to ensure that all required OFF tables except 'glyf' and 'loca' are present in such a font. Obviously, such
fonts will only be able to return glyphs and sizes for which sbits are defined. These metrics are returned as
part of the logical font data structure in the Macintosh platform.

9.7 OFF CJK font guidelines

This clause provides a checklist of links to various CJK-related clauses of the OFF specification. Some items
are requirements; others, recommendations:

1. The ideographic em-box of an OFF font will be determined as described in "Ideographic Em-Box" in
the Baseline Tags of the OFF Layout Tag Registry. Also see the description for OS/2.sTypoAscender
and OS/2.sTypoDescender, and the 'BASE' table recommendation in clause 6.above.

2. CJK font vendors can choose to provide the ideographic character face (ICF) metrics, which
applications can use for accurate text alignment. This is described in "Ideographic Character Face" in
the Baseline Tags clause of the OFF Layout Tag Registry.

3. All OFF fonts that are used for vertical writing must include a Vertical Header ('vhea') table and a
Vertical Metrics ('vmtx') table. It is strongly recommended that CFF fonts that are used for vertical
writing include a Vertical Origin ('VORG') table.

4. If an OFF font with CFF outlines is to be used for vertical writing, Adobe Type Manager/NT 4.1 and
the Windows 2000 OTF driver require that a Vertical Rotation ('vrt2') feature be present in the Glyph
Substitution ('GSUB') table. See the Feature Tags (subclause 6.4.3) and informative reference [11] in
the bibliography for a description of and further requirements for this feature.

5. See the Feature Tags (subclause 6.4.3) and Reference [11] for descriptions of currently registered
OFF layout features, such as Alternate Half Widths ('halt') and Traditional Forms ('trad') that can be
specified in the font.

9.8 Stroke reduction in variable fonts

When designing a font family to support a number of variations, there may be cases in which it is desirable to
make significant, structural changes to particular glyphs for certain variations. A common example is stroke
reduction for heavier weights or narrower widths, simplifying the structure of a glyph so that counters do not
become filled and disappear at smaller text sizes. Within a variable font, two techniques might be used to
implement a stroke-reduction effect:

 Use a pair of slightly-overlapping intermediate regions within the variation data for a glyph in order to
introduce deltas for particular contour points that result in the desired structural change and that apply
for only problem ranges on one or more axes.

 Use an OFF Layout Required Variation Alternates feature in combination with a FeatureVariations
table wihthin the 'GSUB' table to perform a glyph substitution when a variation instance is selected in
some range along one or more axes.

While both techniques are possible, it should be noted that the first technique, using overlapping intermediate-
regions, can be tricky to implement and may result in unexpected or undesired results if an instance is
selected using arbitrary axis values in the range over which the transition occurs. The second technique is
recommended as it will generally be easier to implement and maintain, and provides the font designer better
control over behavior near the point of transition.

9.9 Families with optical size variants

In families that have fonts for different optical sizes or in variable fonts that support the optical size ('opsz')
design axis, a 'STAT' table with format 2 axis value tables should be used to indicate text size ranges for
which the different optical-size variants or variable-font named instances are recommended. This supersedes
the use of the usLowerOpticalPointSize and usUpperOpticalPointSize fields in the 'OS/2' table, and the OFF
Layout 'size' feature.

509

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 509
	

When creating an axis value table to correspond to the font or named instance that is intended for the largest
text sizes, the upper text size limit should be, effectively, infinity. To represent this in a format 2 axis value
table, set the rangeMaxValue to 0x7FFFFFFF.

510

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

510 ©	ISO/IEC	2019	–	All	rights	reserved
	

Annex A
(informative)

Font Class and Font Subclass parameters

A.1 General

This annex defines the Font Class and the Font Subclass parameter values to be used in the classification of
font designs by the font designer or supplier. This information is stored in the sFamilyClass field of a font's
OS/2 table.

A.2 sFamilyClass

Format: int16

Title: Font-family class and subclass.

Description: This parameter is a classification of font-family design.

Comments: The font class and font subclass are registered values assigned by IBM to each font family. This
parameter is intended for use in selecting an alternate font when the requested font is not available. The font
class is the most general and the font subclass is the most specific. The high byte of this field contains the
family class, while the low byte contains the family subclass.

These values classify a font design as to its appearance, but do not identify the specific font family, typeface
variation, designer, supplier, size, or metric table differences. It should be noted that some font designs may
be classified equally well into more than IBM Font Class or Subclass. Such designs should be matched to a
classification for which substitution of another font design from the same class or subclass would generally
result in a similar appearance of the presented document.

A.3 Class ID=0 No Classification

This class ID is used to indicate that the associated font has no design classification or that the design
classification is not of significance to the creator or user of the font resource.

A.4 Class ID=1 Oldstyle Serifs

This style is generally based upon the Latin printing style of the 15th to 17th century, with a mild diagonal
contrast in stroke emphasis (lighter in upper left to lower right, heavier in upper right to lower left) and
bracketed serifs. This Class reflects the ISO Serif Class, Oldstyle and Legibility Subclasses as documented in
the ISO/IEC 9541-1 Amendment 1 standard.

A.4.1 Subclass ID = 0 : No Classification

This subclass ID is used to indicate that the associated font has no design sub-classification or that the design
subclassification is not of significance to the creator or user of the font resource.

A.4.2 Subclass ID = 1 : IBM Rounded Legibility

This style is generally characterized by a large x-height, with short ascenders and descenders. Specifically, it
is distinguished by a medium resolution, hand tuned, bitmap rendition of the more general rounded legibility
subclass. This IBM Subclass is not strictly specified in the ISO/IEC 9541-1 Amendment 1 standard.

511

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 511
	

A.4.3 Subclass ID = 2 : Garalde

This style is generally characterized by a medium x-height, with tall ascenders. An example of this font style is
the ITC Garamond family. This IBM Subclass reflects the ISO Serif Class, Oldstyle Subclass, and Garalde
Specific Group as documented in the ISO/IEC 9541-1 Amendment 1 standard.

A.4.4 Subclass ID = 3 : Venetian

This style is generally characterized by a medium x-height, with a relatively monotone appearance and
sweeping tails based on the designs of the early Venetian printers. This IBM Subclass is not strictly specified
in the ISO/IEC 9541-1 Amendment 1 standard.

A.4.5 Subclass ID = 4 : Modified Venetian

This style is generally characterized by a large x-height, with a relatively monotone appearance and sweeping
tails based on the designs of the early Venetian printers. An example of this font style is the Allied Linotype
Palatino family. This IBM Subclass reflects the ISO Serif Class, Transitional Subclass, and Modified Specific
Group as documented in the ISO/IEC 9541-1 Amendment 1 standard.

A.4.6 Subclass ID = 5 : Dutch Modern

This style is generally characterized by a large x-height, with wedge shaped serifs and a circular appearance
to the bowls similar to the Dutch Traditional Subclass below, but with lighter stokes. This IBM Subclass is not
strictly specified in the ISO/IEC 9541-1 Amendment 1 standard.

A.4.7 Subclass ID = 6 : Dutch Traditional

This style is generally characterized by a large x-height, with wedge shaped serifs and a circular appearance
of the bowls. An example of this font style is the IBM Press Roman family. This IBM Subclass reflects the ISO
Serif Class and Legibility Subclass as documented in the ISO/IEC 9541-1 Amendment 1 standard.

A.4.8 Subclass ID = 7 : Contemporary

This style is generally characterized by a small x-height, with light stokes and serifs. An example of this font
style is the University family. This IBM Subclass reflects the ISO Serif Class and Contemporary Subclass as
documented in the ISO/IEC 9541-1 Amendment 1 standard.

A.4.9 Subclass ID = 8 : Calligraphic

This style is generally characterized by the fine hand writing style of calligraphy, while retaining the
characteristic Oldstyle appearance. This IBM Subclass is not reflected in the ISO/IEC 9541-1 Amendment 1
standard.

A.4.10 Subclass ID = 9-14 : (reserved for future use)

These subclass IDs are reserved for future assignment.

A.4.11 Subclass ID = 15 : Miscellaneous

This subclass ID is used for miscellaneous designs of the associated design class that are not covered by
another Subclass.

512

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

512 ©	ISO/IEC	2019	–	All	rights	reserved
	

A.5 Class ID=2 Transitional Serifs

This style is generally based upon the Latin printing style of the 18th to 19th century, with a pronounced
vertical contrast in stroke emphasis (vertical strokes being heavier than the horizontal strokes) and bracketed
serifs. This IBM Class reflects the ISO Serif Class, Transitional Subclass as documented in the ISO/IEC 9541-
1 Amendment 1 standard.

A.5.1 Subclass ID = 0 : No Classification

This subclass ID is used to indicate that the associated font has no design sub-classification or that the design
sub-classification is not of significance to the creator or user of the font resource.

A.5.2 Subclass ID = 1 : Direct Line

This style is generally characterized by a medium x-height, with fine serifs, noticeable contrast, and capitol
letters of approximately the same width. An example of this font style is the Monotype Baskerville family. This
IBM Subclass reflects the ISO Serif Class, Transitional Subclass, and Direct Line Specific Group as
documented in the ISO/IEC 9541-1 Amendment 1 standard.

A.5.3 Subclass ID = 2 : Script

This style is generally characterized by a hand written script appearance while retaining the Transitional Direct
Line style. An example of this font style is the IBM Nasseem (Arabic) family. This IBM Subclass is not strictly
specified in the ISO/IEC 9541-1 Amendment 1 standard, though the ISO Serif Class, Transitional Subclass,
and Direct Line Specific Group would be a close approximation.

A.5.4 Subclass ID = 3-14 : (reserved for future use)

These subclass IDs are reserved for future assignment.

A.5.5 Subclass ID = 15 : Miscellaneous

This subclass ID is used for miscellaneous designs of the associated design class that are not covered by
another Subclass.

A.6 Class ID=3 Modern Serifs

This style is generally based upon the Latin printing style of the 20th century, with an extreme contrast
between the thick and thin portion of the strokes. This IBM Class reflects the ISO Serif Class, Modern
Subclass as documented in the ISO/IEC 9541-1 Amendment 1 standard.

A.6.1 Subclass ID = 0 : No Classification

This subclass ID is used to indicate that the associated font has no design sub-classification or that the design
sub-classification is not of significance to the creator or user of the font resource.

A.6.2 Subclass ID = 1 : Italian

This style is generally characterized by a medium x-height, with thin hairline serifs. An example of this font
style is the Monotype Bodoni family. This IBM Subclass reflects the ISO Serif Class, Modern Subclass, and
Italian Specific Group as documented in the ISO/IEC 9541-1 Amendment 1 standard.

513

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 513
	

A.6.3 Subclass ID = 2 : Script

This style is generally characterized by a hand written script appearance while retaining the Modern Italian
style. An example of this font style is the IBM Narkissim (Hebrew) family. This IBM Subclass is not strictly
specified in the ISO/IEC 9541-1 Amendment 1 standard, though the ISO Serif Class, Modern Subclass, and
Italian Specific Group would be a close approximation.

A.6.4 Subclass ID = 3-14 : (reserved for future use)

These subclass IDs are reserved for future assignment.

A.6.5 Subclass ID = 15 : Miscellaneous

This subclass ID is used for miscellaneous designs of the associated design class that are not covered by
another Subclass.

A.7 Class ID=4 Clarendon Serifs

This style is a variation of the Oldstyle Serifs and the Transitional Serifs, with a mild vertical stroke contrast
and bracketed serifs. This IBM Class reflects the ISO Serif Class, Square Serif Subclass as documented in
the ISO/IEC 9541-1 Amendment 1 standard.

A.7.1 Subclass ID = 0 : No Classification

This subclass ID is used to indicate that the associated font has no design sub-classification or that the design
sub-classification is not of significance to the creator or user of the font resource.

A.7.2 Subclass ID = 1 : Clarendon

This style is generally characterized by a large x-height, with serifs and strokes of equal weight. An example of
this font style is the Allied Linotype Clarendon family. This IBM Subclass reflects the ISO Serif Class, Square
Serif Subclass, and Clarendon Specific Group as documented in the ISO/IEC 9541-1 Amendment 1 standard.

A.7.3 Subclass ID = 2 : Modern

This style is generally characterized by a large x-height, with serifs of a lighter weight than the strokes and the
strokes of a lighter weight than the Traditional. An example of this font style is the Monotype Century
Schoolbook family. This IBM Subclass reflects the ISO Serif Class, Square Serif Subclass, and Clarendon
Specific Group as documented in the ISO/IEC 9541-1 Amendment 1 standard.

A.7.4 Subclass ID = 3 : Traditional

This style is generally characterized by a large x-height, with serifs of a lighter weight than the strokes. An
example of this font style is the Monotype Century family.This IBM Subclass reflects the ISO Serif Class,
Square Serif Subclass, and Clarendon Specific Group as documented in the ISO/IEC 9541-1 Amendment 1
standard.

A.7.5 Subclass ID = 4 : Newspaper

This style is generally characterized by a large x-height, with a simpler style of design and serifs of a lighter
weight than the strokes. An example of this font style is the Allied Linotype Excelsior Family. This IBM
Subclass reflects the ISO Serif Class, Square Serif Subclass, and Clarendon Specific Group as documented
in the ISO/IEC 9541-1 Amendment 1 standard.

514

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

514 ©	ISO/IEC	2019	–	All	rights	reserved
	

A.7.6 Subclass ID = 5 : Stub Serif

This style is generally characterized by a large x-height, with short stub serifs and relatively bold stems. An
example of this font style is the Cheltenham Family. This IBM Subclass reflects the ISO Serif Class, Square
Serif Subclass, and Short Specific Group as documented in the ISO/IEC 9541-1 Amendment 1 standard.

A.7.7 Subclass ID = 6 : Monotone

This style is generally characterized by a large x-height, with monotone stems. An example of this font style is
the ITC Korinna Family. This IBM Subclass is not strictly specified in the ISO/IEC 9541-1 Amendment 1
standard.

A.7.8 Subclass ID = 7 : Typewriter

This style is generally characterized by a large x-height, with moderate stroke thickness characteristic of a
typewriter. An example of this font style is the Prestige Elite Family. This IBM Subclass reflects the ISO Serif
Class, Square Serif Subclass, and Typewriter Specific Group as documented in the ISO/IEC 9541-1
Amendment 1 standard.

A.7.9 Subclass ID = 8-14: (reserved for future use)

These subclass IDs are reserved for future assignment.

A.7.10 Subclass ID = 15 : Miscellaneous

This subclass ID is used for miscellaneous designs of the associated design class that are not covered by
another Subclass.

A.8 Class ID=5 Slab Serifs

This style is characterized by serifs with a square transition between the strokes and the serifs (no brackets).
This IBM Class reflects the ISO Serif Class, Square Serif Subclass (except the Clarendon Specific Group) as
documented in the ISO/IEC 9541-1 Amendment 1 standard.

A.8.1 Subclass ID = 0 : No Classification

This subclass ID is used to indicate that the associated font has no design sub-classification or that the design
sub-classification is not of significance to the creator or user of the font resource.

A.8.2 Subclass ID = 1 : Monotone

This style is generally characterized by a large x-height, with serifs and strokes of equal weight. An example of
this font style is the ITC Lubalin Family. This IBM Subclass reflects the ISO Serif Class, Square Serif
Subclass, and Monotone Specific Group as documented in the ISO/IEC 9541-1 Amendment 1 standard.

A.8.3 Subclass ID = 2 : Humanist

This style is generally characterized by a medium x-height, with serifs of lighter weight that the strokes. An
example of this font style is the Candida Family. This IBM Subclass reflects the ISO Serif Class, Square Serif
Subclass, and Monotone Specific Group as documented in the ISO/IEC 9541-1 Amendment 1 standard.

A.8.4 Subclass ID = 3 : Geometric

This style is generally characterized by a large x-height, with serifs and strokes of equal weight and a
geometric (circles and lines) design. An example of this font style is the Monotype Rockwell Family. This IBM

515

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 515
	

Subclass reflects the ISO Serif Class, Square Serif Subclass, and Monotone Specific Group as documented in
the ISO/IEC 9541-1 Amendment 1 standard.

A.8.5 Subclass ID = 4 : Swiss

This style is generally characterized by a large x-height, with serifs and strokes of equal weight and an
emphasis on the white space of the characters. An example of this font style is the Allied Linotype Serifa
Family. This IBM Subclass reflects the ISO Serif Class, Square Serif Subclass, and Monotone Specific Group
as documented in the ISO/IEC 9541-1 Amendment 1 standard.

A.8.6 Subclass ID = 5 : Typewriter

This style is generally characterized by a large x-height, with serifs and strokes of equal but moderate
thickness, and a geometric design. An example of this font style is the IBM Courier Family. This IBM Subclass
is not strictly specified in the ISO/IEC 9541-1 Amendment 1 standard, though the ISO Serif Class, Square
Serif Subclass, and Monotone Specific Group would be a close approximation.

A.8.7 Subclass ID = 6-14 : (reserved for future use)

These subclass IDs are reserved for future assignment, and shall not be used without formal assignment by
IBM.

A.8.8 Subclass ID = 15 : Miscellaneous

This subclass ID is used for miscellaneous designs of the associated design class that are not covered by
another Subclass.

A.9 Class ID=6 (reserved for future use)

This class ID is reserved for future assignment.

A.10 Class ID=7 Freeform Serifs

This style includes serifs, but which expresses a design freedom that does not generally fit within the other
serif design classifications. This IBM Class reflects the remaining ISO Serif Class subclasses as documented
in the ISO/IEC 9541-1 Amendment 1 standard.

A.10.1 Subclass ID = 0 : No Classification

This subclass ID is used to indicate that the associated font has no design sub-classification or that the design
sub-classification is not of significance to the creator or user of the font resource.

A.10.2 Subclass ID = 1 : Modern

This style is generally characterized by a medium x-height, with light contrast in the strokes and a round full
design. An example of this font style is the ITC Souvenir Family. This IBM Subclass is not reflected in the
ISO/IEC 9541-1 Amendment 1 standard.

A.10.3 Subclass ID = 2-14 : (reserved for future use)

These subclass IDs are reserved for future assignment.

516

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

516 ©	ISO/IEC	2019	–	All	rights	reserved
	

A.10.4 Subclass ID = 15 : Miscellaneous

This subclass ID is used for miscellaneous designs of the associated design class that are not covered by
another Subclass.

A.11 Class ID=8 Sans Serifs

This style includes most basic letter forms (excluding Scripts and Ornamentals) that do not have serifs on the
strokes. This IBM Class reflects the ISO Sans Serif Class as documented in the ISO/IEC 9541-1 Amendment
1 standard.

A.11.1 Subclass ID = 0 : No Classification

This subclass ID is used to indicate that the associated font has no design sub-classification or that the design
sub-classification is not of significance to the creator or user of the font resource.

A.11.2 Subclass ID = 1 : IBM Neo-grotesque Gothic

This style is generally characterized by a large x-height, with uniform stroke width and a simple one story
design distinguished by a medium resolution, hand tuned, bitmap rendition of the more general Neo-grotesque
Gothic Subclass. An example of this font style is the IBM Sonoran Sans Serif family. This IBM Subclass is not
strictly specified in the ISO/IEC 9541-1 Amendment 1 standard.

A.11.3 Subclass ID = 2 : Humanist

This style is generally characterized by a medium x-height, with light contrast in the strokes and a classic
Roman letterform. An example of this font style is the Allied Linotype Optima family. This IBM Subclass
reflects the ISO Sans Serif Class, Humanist Subclass as documented in the ISO/IEC 9541-1 Amendment 1
standard.

A.11.4 Subclass ID = 3 : Low-x Round Geometric

This style is generally characterized by a low x-height, with monotone stroke weight and a round geometric
design. An example of this font style is the Fundicion Tipograficia Neufville Futura family. This IBM Subclass
reflects the ISO Sans Serif Class, Geometric Subclass, Round Specific Group as documented in the ISO/IEC
9541-1 Amendment 1 standard.

A.11.5 Subclass ID = 4 : High-x Round Geometric

This style is generally characterized by a high x-height, with uniform stroke weight and a round geometric
design. An example of this font style is the ITC Avant Garde Gothic family. This IBM Subclass reflects the ISO
Sans Serif Class, Geometric Subclass, Round Specific Group as documented in the ISO/IEC 9541-1
Amendment 1 standard.

A.11.6 Subclass ID = 5 : Neo-grotesque Gothic

This style is generally characterized by a high x-height, with uniform stroke width and a simple one story
design. An example of this font style is the Allied Linotype Helvetica family. This IBM Subclass reflects the ISO
Sans Serif Class, Gothic Subclass, Neo-grotesque Specific Group as documented in the ISO/IEC 9541-1
Amendment 1 standard.

A.11.7 Subclass ID = 6 : Modified Neo-grotesque Gothic

This style is similar to the Neo-grotesque Gothic style, with design variations to the G and Q. An example of
this font style is the Allied Linotype Univers family. This IBM Subclass is not strictly specified in the ISO/IEC

517

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 517
	

9541-1 Amendment 1 standard, though the ISO Sans Serif Class, Gothic Subclass, Neo-grotesque Specific
Group would be a close approximation.

A.11.8 Subclass ID = 7-8 : (reserved for future use)

These subclass IDs are reserved for future assignment.

A.11.9 Subclass ID = 9 : Typewriter Gothic

This style is similar to the Neo-grotesque Gothic style, with moderate stroke thickness characteristic of a
typewriter. An example of this font style is the IBM Letter Gothic family. This IBM Subclass reflects the ISO
Sans Serif Class, Gothic Subclass, Typewriter Specific Group as documented in the ISO/IEC 9541-1
Amendment 1 standard.

A.11.10 Subclass ID = 10 : Matrix

This style is generally a simple design characteristic of a dot matrix printer. An example of this font style is the
IBM Matrix Gothic family. This IBM Subclass is not reflected in the ISO/IEC 9541-1 Amendment 1 standard.

A.11.11 Subclass ID = 11-14 : (reserved for future use)

These subclass IDs are reserved for future assignment.

A.11.12 Subclass ID = 15 : Miscellaneous

This subclass ID is used for miscellaneous designs of the associated design class that are not covered by
another Subclass.

A.12 Class ID=9 Ornamentals

This style includes highly decorated or stylized character shapes that are typically used in headlines. This IBM
Class reflects the ISO Ornamental Class and the ISO Blackletter Class as documented in the ISO/IEC 9541-1
Amendment 1 standard.

A.12.1 Subclass ID = 0 : No Classification

This subclass ID is used to indicate that the associated font has no design sub-classification or that the design
sub-classification is not of significance to the creator or user of the font resource.

A.12.2 Subclass ID = 1 : Engraver

This style is characterized by fine lines or lines engraved on the stems. An example of this font style is the
Copperplate family. This IBM Subclass reflects the ISO Ornamental Class and Inline Subclass, or the Serif
Class and Engraving Subclass as documented in the ISO/IEC 9541-1 Amendment 1 standard.

A.12.3 Subclass ID = 2 : Black Letter

This style is generally based upon the printing style of the German monasteries and printers of the 12th to
15th centuries. An example of this font style is the Old English family. This IBM Subclass reflects the ISO
Blackletters Class as documented in the ISO/IEC 9541-1 Amendment 1 standard.

A.12.4 Subclass ID = 3 : Decorative

This style is characterized by ornamental designs (typically from nature, such as leaves, flowers, animals,
etc.) incorporated into the stems and strokes of the characters. An example of this font style is the Saphire

518

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

518 ©	ISO/IEC	2019	–	All	rights	reserved
	

family. This IBM Subclass reflects the ISO Ornamental Class and Decorative Subclass as documented in the
ISO/IEC 9541-1 Amendment 1 standard.

A.12.5 Subclass ID = 4 : Three Dimensional

This style is characterized by a three dimensional (raised) appearance of the characters created by shading or
geometric effects. An example of this font style is the Thorne Shaded family. This IBM Subclass reflects the
ISO Ornamental Class and Three Dimensional Subclass as documented in the ISO/IEC 9541-1 Amendment 1
standard.

A.12.6 Subclass ID = 5-14 : (reserved for future use)

These subclass IDs are reserved for future assignment.

A.12.7 Subclass ID = 15 : Miscellaneous

This subclass ID is used for miscellaneous designs of the associated design class that are not covered by
another Subclass.

A.13 Class ID=10 Scripts

This style includes those typefaces that are designed to simulate handwriting. This IBM Class reflects the ISO
Script Class and Uncial Class as documented in the ISO/IEC 9541-1 Amendment 1 standard.

A.13.1 Subclass ID = 0 : No Classification

This subclass ID is used to indicate that the associated font has no design sub-classification or that the design
sub-classification is not of significance to the creator or user of the font resource.

A.13.2 Subclass ID = 1 : Uncial

This style is characterized by unjoined (nonconnecting) characters that are generally based on the hand
writing style of Europe in the 6th to 9th centuries. An example of this font style is the Libra family. This IBM
Subclass reflects the ISO Uncial Class as documented in the ISO/IEC 9541-1 Amendment 1 standard.

A.13.3 Subclass ID = 2 : Brush Joined

This style is characterized by joined (connecting) characters that have the appearance of being painted with a
brush, with moderate contrast between thick and thin strokes. An example of this font style is the Mistral
family. This IBM Subclass reflects the ISO Script Class, Joined Subclass, and Informal Specific Group as
documented in the ISO/IEC 9541-1 Amendment 1 standard.

A.13.4 Subclass ID = 3 : Formal Joined

This style is characterized by joined (connecting) characters that have a printed (or drawn with a stiff brush)
appearance with extreme contrast between the thick and thin strokes. An example of this font style is the
Coronet family. This IBM Subclass reflects the ISO Script Class, Joined Subclass, and Formal Specific Group
as documented in the ISO/IEC 9541-1 Amendment 1 standard.

A.13.5 Subclass ID = 4 : Monotone Joined

This style is characterized by joined (connecting) characters that have a uniform appearance with little or no
contrast in the strokes. An example of this font style is the Kaufmann family. This IBM Subclass reflects the
ISO Script Class, Joined Subclass, and Monotone Specific Group as documented in the ISO/IEC 9541-1
Amendment 1 standard.

519

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 519
	

A.13.6 Subclass ID = 5 : Calligraphic

This style is characterized by beautifully hand drawn, unjoined (non-connecting) characters that have an
appearance of being drawn with a broad edge pen. An example of this font style is the Thompson Quillscript
family. This IBM Subclass reflects the ISO Script Class, Unjoined Subclass, and Calligraphic Specific Group
as documented in the ISO/IEC 9541-1 Amendment 1 standard.

A.13.7 Subclass ID = 6 : Brush Unjoined

This style is characterized by unjoined (non-connecting) characters that have the appearance of being painted
with a brush, with moderate contrast between thick and thin strokes. An example of this font style is the
Saltino family. This IBM Subclass reflects the ISO Script Class, Unjoined Subclass, and Brush Specific Group
as documented in the ISO/IEC 9541-1 Amendment 1 standard.

A.13.8 Subclass ID = 7 : Formal Unjoined

This style is characterized by unjoined (non-connecting) characters that have a printed (or drawn with a stiff
brush) appearance with extreme contrast between the thick and thin strokes. An example of this font style is
the Virtuosa family. This IBM Subclass reflects the ISO Script Class, Unjoined Subclass, and Formal Specific
Group as documented in the ISO/IEC 9541-1 Amendment 1 standard.

A.13.9 Subclass ID = 8 : Monotone Unjoined

This style is characterized by unjoined (non-connecting) characters that have a uniform appearance with little
or no contrast in the strokes. An example of this font style is the Gilles Gothic family. This IBM Subclass
reflects the ISO Script Class, Unjoined Subclass, and Monotone Specific Group as documented in the
ISO/IEC 9541-1 Amendment 1 standard.

A.13.10 Subclass ID = 9-14 : (reserved for future use)

These subclass IDs are reserved for future assignment, and shall not be used without formal assignment by
IBM.

A.13.11 Subclass ID = 15 : Miscellaneous

This subclass ID is used for miscellaneous designs of the associated design class that are not covered by
another Subclass.

A.14 Class ID=11 (reserved for future use)

This class ID is reserved for future assignment.

A.15 Class ID=12 Symbolic

This style is generally design independent, making it suitable for Pi and special characters (icons, dingbats,
technical symbols, etc.) that may be used equally well with any font. This IBM Class reflects various ISO
Specific Groups, as noted below and documented in the ISO/IEC 9541-1 Amendment 1 standard.

A.15.1 Subclass ID = 0 : No Classification

This subclass ID is used to indicate that the associated font has no design sub-classification or that the design
sub-classification is not of significance to the creator or user of the font resource.

A.15.2 Subclass ID = 1-2 : (reserved for future use)

These subclass IDs are reserved for future assignment.

520

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

520 ©	ISO/IEC	2019	–	All	rights	reserved
	

A.15.3 Subclass ID = 3 : Mixed Serif

This style is characterized by either both or a combination of serif and sans serif designs on those characters
of the font for which design is important (e.g., superscript and subscript characters, numbers, copyright or
trademark symbols, etc.). An example of this font style is found in the IBM Symbol family. This IBM Subclass
is not reflected in the ISO/IEC 9541-1 Amendment 1 standard.

A.15.4 Subclass ID = 4-5 : (reserved for future use)

These subclass IDs are reserved for future assignment.

A.15.5 Subclass ID = 6 : Oldstyle Serif

This style is characterized by a Oldstyle Serif IBM Class design on those characters of the font for which
design is important (e.g., superscript and subscript characters, numbers, copyright or trademark symbols,
etc.). An example of this font style is found in the IBM Sonoran Pi Serif family. This IBM Subclass is not
directly reflected in the ISO/IEC 9541-1 Amendment 1 standard, though it is indirectly by the ISO Serif Class
and Legibility Subclass (implies that all characters of the font exhibit the design appearance, while only a
subset of the characters actually exhibit the design).

A.15.6 Subclass ID = 7 : Neo-grotesque Sans Serif

This style is characterized by a Neo-grotesque Sans Serif IBM Font Class and Subclass design on those
characters of the font for which design is important (e.g., superscript and subscript characters, numbers,
copyright or trademark symbols, etc.). An example of this font style is found in the IBM Sonoran Pi Sans Serif
family. This IBM Subclass is not directly reflected in the ISO/IEC 9541-1 Amendment 1 standard, though it is
indirectly by the ISO Sans Serif Class and Gothic Subclass (implies that all characters of the font exhibit the
design appearance, while only a subset of the characters actually exhibit the design).

A.15.7 Subclass ID = 8-14 : (reserved for future use)

These subclass IDs are reserved for future assignment.

A.15.8 Subclass ID = 15 : Miscellaneous

This subclass ID is used for miscellaneous designs of the associated design class that are not covered by
another Subclass.

A.16 Class ID=13 Reserved

A.17 Class ID=14 Reserved

521

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 521
	

Annex B
(informative)

Earlier versions of OS/2 – OS/2 and Windows metrics

B.1 OS/2 - OS/2 and Windows metrics (version 0)

NOTE This is maintained for purposes of being able to validate version 0 OS/2 tables. Please
note that the description of the OS/2 table version 0 in the original Apple TrueType specification [7]
differs from this document – the fields ‘sTypoAscender’, ‘sTypoDescender’, ‘sTypoLineGap’,
‘usWinAscent’ and ‘usWinDescent’ are missing in the Apple TrueType specification.

The OS/2 table consists of a set of metrics that are required in OFF fonts. The layout of
version 0 of this table is as follows:

Type Name of Entry Comments

uint16 version 0x0000

int16 xAvgCharWidth

uint16 usWeightClass

uint16 usWidthClass

uint16 fsType

int16 ySubscriptXSize

int16 ySubscriptYSize

int16 ySubscriptXOffset

int16 ySubscriptYOffset

int16 ySuperscriptXSize

int16 ySuperscriptYSize

int16 ySuperscriptXOffset

int16 ySuperscriptYOffset

int16 yStrikeoutSize

int16 yStrikeoutPosition

int16 sFamilyClass

uint8 panose[10]

uint32 ulCharRange[4] Bits 0-31

Tag achVendID[4]

uint16 fsSelection

uint16 usFirstCharIndex

uint16 usLastCharIndex

522

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

522 ©	ISO/IEC	2019	–	All	rights	reserved
	

int16 sTypoAscender

int16 sTypoDescender

int16 sTypoLineGap

uint16 usWinAscent

uint16 usWinDescent

version

Format: uint16

Units: n/a

Title: OS/2 table version number.

Description: The version number for this OS/2 table.

Comments: The version number allows for identification of the precise contents and
layout for the OS/2 table. The version number for this layout is zero (0).

xAvgCharWidth

Format: int16

Units: Pels / em units

Title: Average weighted escapement.

Description: The Average Character Width parameter specifies the arithmetic average
of the escapement (width) of all of the 26 lowercase letters a through z of
the Latin alphabet and the space character. If any of the 26 lowercase
letters are not present, this parameter should equal the weighted average
of all glyphs in the font. For non-UGL (platform 3, encoding 0) fonts, use
the unweighted average.

Comments: This parameter is a descriptive attribute of the font that specifies the
spacing of characters for comparing one font to another for selection or
substitution. For proportionally spaced fonts, this value is useful in
estimating the length for lines of text. The weighting factors provided with
this example are only valid for Latin lowercase letters. If other character
sets, or capital letters are used, the corresponding frequency of use values
should be used. One needs to be careful when comparing fonts that use
different frequency of use values for font mapping. The average character
width for the following set of upper and lowercase letters only, is calculated
according to this formula: Sum the individual character widths multiplied by
the following weighting factors and then divide by 1000. For example:

Letter Weight
Factor

Letter Weight
Factor

a 64 o 56

b 14 p 17

c 27 q 4

523

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 523
	

d 35 r 49

e 100 s 56

f 20 t 71

g 14 u 31

h 42 v 10

i 63 w 18

j 3 x 3

k 6 y 18

l 35 z 2

m 20 space 166

n 56

usWeightClass

Format: uint16

Title: Weight class.

Description: Indicates the visual weight (degree of blackness or thickness of strokes) of
the characters in the font.

Comments:

Value Description C Definition (from windows.h)

100 Thin FW_THIN

200 Extra-light (Ultra-light) FW_EXTRALIGHT

300 Light FW_LIGHT

400 Normal (Regular) FW_NORMAL

500 Medium FW_MEDIUM

600 Semi-bold (Demi-bold) FW_SEMIBOLD

700 Bold FW_BOLD

800 Extra-bold (Ultra-bold) FW_EXTRABOLD

900 Black (Heavy) FW_BLACK

usWidthClass

Format: uint16

Title: Width class.

Description: Indicates a relative change from the normal aspect ratio (width to height
ratio) as specified by a font designer for the glyphs in a font.

Comments: Although every character in a font may have a different numeric aspect
ratio, each character in a font of normal width has a relative aspect ratio of
one. When a new type style is created of a different width class (either by

524

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

524 ©	ISO/IEC	2019	–	All	rights	reserved
	

a font designer or by some automated means) the relative aspect ratio of
the characters in the new font is some percentage greater or less than
those same characters in the normal font -- it is this difference that this
parameter specifies.

Value Description C Definition % of normal

1 Ultra-condensed FWIDTH_ULTRA_CONDENSED 50

2 Extra-condensed FWIDTH_EXTRA_CONDENSED 62.5

3 Condensed FWIDTH_CONDENSED 75

4 Semi-condensed FWIDTH_SEMI_CONDENSED 87.5

5 Medium (normal) FWIDTH_NORMAL 100

6 Semi-expanded FWIDTH_SEMI_EXPANDED 112.5

7 Expanded FWIDTH_EXPANDED 125

8 Extra-expanded FWIDTH_EXTRA_EXPANDED 150

9 Ultra-expanded FWIDTH_ULTRA_EXPANDED 200

fsType
Format: uint16

Title: Type flags.

Description: Indicates font embedding licensing rights for the font. Embeddable fonts
may be stored in a document. When a document with embedded fonts is
opened on a system that does not have the font installed (the remote
system), the embedded font may be loaded for temporary (and in some
cases, permanent) use on that system by an embedding-aware
application. Embedding licensing rights are granted by the vendor of the
font.

Applications that implement support for font embedding, either through use
of the Font Embedding DLL or through other means, must not embed fonts
which are not licensed to permit embedding. Further, applications loading
embedded fonts for temporary use (see Preview & Print and Editable
embedding below) must delete the fonts when the document containing
the embedded font is closed.

Bit Bit Mask Description

 0x0000 Installable Embedding: No fsType bit is set.
Thus fsType is zero.
Fonts with this setting indicate that they may
be embedded and permanently installed on
the remote system by an application. The user
of the remote system acquires the identical
rights, obligations and licenses for that font as
the original purchaser of the font, and is
subject to the same end-user license
agreement, copyright, design patent, and/or
trademark as was the original purchaser.

0 0x0001 Reserved, must be zero.

1 0x0002 Restricted License embedding:
Fonts that have only this bit set must not be
modified, embedded or exchanged in any
manner without first obtaining permission of

525

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 525
	

the legal owner.
Caution: For Restricted License embedding to
take effect, it must be the only level of
embedding selected.

2 0x0004 Preview & Print embedding: When this bit is
set, the font may be embedded, and
temporarily loaded on the remote system.
Documents containing Preview & Print fonts
must be opened "read-only;" no edits can be
applied to the document.

3 0x0008 Editable embedding: When this bit is set, the
font may be embedded but must only be
installed temporarily on other systems. In
contrast to Preview & Print fonts, documents
containing Editable fonts may be opened for
reading, editing is permitted, and changes
may be saved.

4-
15

 Reserved, must be zero.

Comments: If multiple embedding bits are set, the least restrictive license granted takes
precedence. For example, if bits 1 and 3 are set, bit 3 takes precedence
over bit 1and the font may be embedded with Editable rights. For
compatibility purposes, most vendors granting Editable embedding rights
are also setting the Preview & Print bit (0x000C). This will permit an
application that only supports Preview & Print embedding to detect that font
embedding is allowed.

 Restricted License embedding (0x0002): Fonts that have this bit set must
not be modified, embedded or exchanged in any manner without first
obtaining permission of the legal owner. Caution: note that for Restricted
License embedding to take effect, it must be the only level of embedding
selected (as noted in the previous paragraph).

 Preview & Print embedding (0x0004): Fonts with this bit set indicate that
they may be embedded within documents but must only be installed
temporarily on the remote system. Any document which includes a Preview
& Print embedded font must be opened “read-only;” the application must
not allow the user to edit the document; it can only be viewed and/or
printed.

 Editable embedding (0x0008): Fonts with this bit set indicate that they may
be embedded in documents, but must only be installed temporarily on the
remote system. In contrast to Preview & Print fonts, documents containing
Editable fonts may be opened “read-write;” editing is permitted, and
changes may be saved.

 Installable embedding (0x0000): Fonts with this setting indicate that they
may be embedded and permanently installed on the remote system by an
application. The user of the remote system acquires the identical rights,
obligations and licenses for that font as the original purchaser of the font,
and is subject to the same end-user license agreement, copyright, design
patent, and/or trademark as was the original purchaser.

526

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

526 ©	ISO/IEC	2019	–	All	rights	reserved
	

ySubscriptXSize

Format: int16

Units: Font design units

Title: Subscript horizontal font size.

Description: The recommended horizontal size in font design units for subscripts for
this font.

Comments: If a font has two recommended sizes for subscripts, e.g., numerics and
other, the numeric sizes should be stressed. This size field maps to the em
square size of the font being used for a subscript. The horizontal font size
specifies a font designer's recommended horizontal font size for subscript
characters associated with this font. If a font does not include all of the
required subscript characters for an application, and the application can
substitute characters by scaling the character of a font or by substituting
characters from another font, this parameter specifies the recommended
em square for those subscript characters.

For example, if the em square for a font is 2048 and ySubScriptXSize is
set to 205, then the horizontal size for a simulated subscript character
would be 1/10th the size of the normal character.

ySubscriptYSize

Format: int16

Units: Font design units

Title: Subscript vertical font size.

Description: The recommended vertical size in font design units for subscripts for this
font.

Comments: If a font has two recommended sizes for subscripts, e.g. numerics and
other, the numeric sizes should be stressed. This size field maps to the
emHeight of the font being used for a subscript. The horizontal font size
specifies a font designer's recommendation for horizontal font size of
subscript characters associated with this font. If a font does not include all
of the required subscript characters for an application, and the application
can substitute characters by scaling the characters in a font or by
substituting characters from another font, this parameter specifies the
recommended horizontal EmInc for those subscript characters.

For example, if the em square for a font is 2048 and ySubScriptYSize is
set to 205, then the vertical size for a simulated subscript character would
be 1/10th the size of the normal character.

ySubscriptXOffset

Format: int16

527

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 527
	

Units: Font design units

Title: Subscript x offset.

Description: The recommended horizontal offset in font design untis for subscripts for
this font.

Comments: The Subscript X offset parameter specifies a font designer's recommended
horizontal offset -- from the character origin of the font to the character
origin of the subscript's character -- for subscript characters associated
with this font. If a font does not include all of the required subscript
characters for an application, and the application can substitute
characters, this parameter specifies the recommended horizontal position
from the character escapement point of the last character before the first
subscript character. For upright characters, this value is usually zero;
however, if the characters of a font have an incline (italic characters) the
reference point for subscript characters is usually adjusted to compensate
for the angle of incline.

ySubscriptYOffset

Format: int16

Units: Font design units

Title: Subscript y offset.

Description: The recommended vertical offset in font design units from the baseline for
subscripts for this font.

Comments: The Subscript Y offset parameter specifies a font designer's recommended
vertical offset from the character baseline to the character baseline for
subscript characters associated with this font. Values are expressed as a
positive offset below the character baseline. If a font does not include all of
the required subscript for an application, this parameter specifies the
recommended vertical distance below the character baseline for those
subscript characters.

ySuperscriptXSize

Format: int16

Units: Font design units

Title: Superscript horizontal font size.

Description: The recommended horizontal size in font design units for superscripts for
this font.

Comments: If a font has two recommended sizes for subscripts, e.g., numerics and
other, the numeric sizes should be stressed. This size field maps to the em
square size of the font being used for a subscript. The horizontal font size
specifies a font designer's recommended horizontal font size for

528

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

528 ©	ISO/IEC	2019	–	All	rights	reserved
	

superscript characters associated with this font. If a font does not include
all of the required superscript characters for an application, and the
application can substitute characters by scaling the character of a font or
by substituting characters from another font, this parameter specifies the
recommended em square for those superscript characters.

For example, if the em square for a font is 2048 and ySuperScriptXSize is
set to 205, then the horizontal size for a simulated superscript character
would be 1/10th the size of the normal character.

ySuperscriptYSize

Format: int16

Units: Font design units

Title: Superscript vertical font size.

Description: The recommended vertical size in font design units for superscripts for this
font.

Comments: If a font has two recommended sizes for subscripts, e.g., numerics and
other, the numeric sizes should be stressed. This size field maps to the
emHeight of the font being used for a subscript. The vertical font size
specifies a font designer's recommended vertical font size for superscript
characters associated with this font. If a font does not include all of the
required superscript characters for an application, and the application can
substitute characters by scaling the character of a font or by substituting
characters from another font, this parameter specifies the recommended
EmHeight for those superscript characters.

For example, if the em square for a font is 2048 and ySuperScriptYSize is
set to 205, then the vertical size for a simulated superscript character
would be 1/10th the size of the normal character.

ySuperscriptXOffset

Format: int16

Units: Font design units

Title: Superscript x offset.

Description: The recommended horizontal offset in font design units for superscripts for
this font.

Comments: The Superscript X offset parameter specifies a font designer's
recommended horizontal offset -- from the character origin to the
superscript character's origin for the superscript characters associated with
this font. If a font does not include all of the required superscript characters
for an application, this parameter specifies the recommended horizontal
position from the escapement point of the character before the first
superscript character. For upright characters, this value is usually zero;
however, if the characters of a font have an incline (italic characters) the
reference point for superscript characters is usually adjusted to
compensate for the angle of incline.

529

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 529
	

ySuperscriptYOffset

Format: int16

Units: Font design units

Title: Superscript y offset.

Description: The recommended vertical offset in font design units from the baseline for
superscripts for this font.

Comments: The Superscript Y offset parameter specifies a font designer's
recommended vertical offset -- from the character baseline to the
superscript character's baseline associated with this font. Values for this
parameter are expressed as a positive offset above the character baseline.
If a font does not include all of the required superscript characters for an
application, this parameter specifies the recommended vertical distance
above the character baseline for those superscript characters.

yStrikeoutSize

Format: int16

Units: Font design units

Title: Strikeout size.

Description: Width of the strikeout stroke in font design units.

Comments: This field should normally be the width of the em dash for the current font.
If the size is one, the strikeout line will be the line represented by the
strikeout position field. If the value is two, the strikeout line will be the line
represented by the strikeout position and the line immediately above the
strikeout position. For a Roman font with a 2048 em square, 102 is
suggested.

yStrikeoutPosition

Format: int16

Units: Font design units

Title: Strikeout position.

Description: The position of the top of the strikeout stroke relative to the baseline in font
design units.

Comments: Positive values represent distances above the baseline, while negative
values represent distances below the baseline. A value of zero falls
directly on the baseline, while a value of one falls one pel above the
baseline. The value of strikeout position should not interfere with the
recognition of standard characters, and therefore should not line up with
crossbars in the font. For a Roman font with a 2048 em square, 460 is
suggested.

530

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

530 ©	ISO/IEC	2019	–	All	rights	reserved
	

sFamilyClass

Format: int16

Title: Font-family class and subclass.

Description: This parameter is a classification of font-family design.

Comments: The font class and font subclass are registered values assigned by IBM to
each font family. This parameter is intended for use in selecting an
alternate font when the requested font is not available. The font class is
the most general and the font subclass is the most specific. The high byte
of this field contains the family class, while the low byte contains the family
subclass.

Panose

Format: 10 byte array

Title: PANOSE classification number

International: Additional specifications are required for PANOSE to classify non-Latin
character sets.

Description: This 10 byte series of numbers is used to describe the visual
characteristics of a given typeface. If provided, these characteristics are
then used to associate the font with other fonts of similar appearance
having different names; the default values should be set to 'zero'. The
variables for each digit are listed below.

Comments: The specification for assigning PANOSE values [14] can be found in
bibliography and is maintained by Monotype Imaging Inc.

PANOSE

Type Name Description

uint8 bFamilyType; Family Type

uint8 bSerifStyle; Serif Style

uint8 bWeight; Weight

uint8 bProportion; Proportion

uint8 bContrast; Contrast

uint8 bStrokeVariation; Stroke Variation

uint8 bArmStyle; Arm Style

uint8 bLetterform; Letterform

uint8 bMidline; Midline

uint8 bXHeight; X Height

531

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 531
	

Family Type

Value Description

0 Any

1 No Fit

2 Text and Display

3 Script

4 Decorative

5 Pictorial

Serif Style

Value Description

0 Any

1 No Fit

2 Cove

3 Obtuse Cove

4 Square Cove

5 Obtuse Square Cove

6 Square

7 Thin

8 Bone

9 Exaggerated

10 Triangle

11 Normal Sans

12 Obtuse Sans

13 Perp Sans

14 Flared

15 Rounded

Weight

Value Description

0 Any

1 No Fit

2 Very Light

3 Light

4 Thin

5 Book

6 Medium

532

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

532 ©	ISO/IEC	2019	–	All	rights	reserved
	

7 Demi

8 Bold

9 Heavy

10 Black

11 Nord

Proportion

Value Description

0 Any

1 No Fit

2 Old Style

3 Modern

4 Even Width

5 Expanded

6 Condensed

7 Very Expanded

8 Very Condensed

9 Monospaced

Contrast

Value Description

0 Any

1 No Fit

2 None

3 Very Low

4 Low

5 Medium Low

6 Medium

7 Medium High

8 High

9 Very High

Stroke Variation

Value Description

0 Any

1 No Fit

2 Gradual/Diagonal

3 Gradual/Transitional

533

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 533
	

4 Gradual/Vertical

5 Gradual/Horizontal

6 Rapid/Vertical

7 Rapid/Horizontal

8 Instant/Vertical

Arm Style

Value Description

0 Any

1 No Fit

2 Straight Arms/Horizontal

3 Straight Arms/Wedge

4 Straight Arms/Vertical

5 Straight Arms/Single Serif

6 Straight Arms/Double Serif

7 Non-Straight Arms/Horizontal

8 Non-Straight Arms/Wedge

9 Non-Straight Arms/Vertical

10 Non-Straight Arms/Single Serif

11 Non-Straight Arms/Double Serif

Letterform

Value Description

0 Any

1 No Fit

2 Normal/Contact

3 Normal/Weighted

4 Normal/Boxed

5 Normal/Flattened

6 Normal/Rounded

7 Normal/Off Center

8 Normal/Square

9 Oblique/Contact

10 Oblique/Weighted

11 Oblique/Boxed

12 Oblique/Flattened

13 Oblique/Rounded

14 Oblique/Off Center

534

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

534 ©	ISO/IEC	2019	–	All	rights	reserved
	

15 Oblique/Square

 Midline

Value Description

0 Any

1 No Fit

2 Standard/Trimmed

3 Standard/Pointed

4 Standard/Serifed

5 High/Trimmed

6 High/Pointed

7 High/Serifed

8 Constant/Trimmed

9 Constant/Pointed

10 Constant/Serifed

11 Low/Trimmed

12 Low/Pointed

13 Low/Serifed

X-height

Value Description

0 Any

1 No Fit

2 Constant/Small

3 Constant/Standard

4 Constant/Large

5 Ducking/Small

6 Ducking/Standard

7 Ducking/Large

ulCharRange

Format: 16-byte unsigned long array (4 elements)

Title: Character Range

Description: This field is split conceptually into two bit fields of 96 and 32 bits each. The
low 96 bits are used to specify the Unicode blocks encompassed by the
font file. The high 32 bits are used to specify the character or script sets
that are covered by the font file. The actual bit assignments are not yet
completed; presently, all bits must be set to zero (0).

535

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 535
	

achVendID

Format: 4-byte Tag

Title: Font Vendor Identification

Description: The four character identifier for the vendor of the given type face.

Comments: This is not the royalty owner of the original artwork. This is the company
responsible for the marketing and distribution of the typeface that is being
classified. It is reasonable to assume that there will be 6 vendors of ITC
Zapf Dingbats for use on desktop platforms in the near future (if not
already). It is also likely that the vendors will have other inherent benefits
in their fonts (more kern pairs, unregularized data, hand hinted, etc.). This
identifier will allow for the correct vendor's type to be used over another,
possibly inferior, font file. The Vendor ID value is not required. The Vendor
ID list can be accessed via the informative reference 6 in the bibliolgraphy.

fsSelection

Format: 2-byte bit field.

Title: Font selection flags.

Description: Contains information concerning the nature of the font patterns, as follows:

Bit # macStyle bit C definition Description

0 bit 1 ITALIC Font contains Italic characters,
otherwise they are upright.

1 UNDERSCORE Characters are underscored.

2 NEGATIVE Characters have their
foreground and background
reversed.

3 OUTLINED Outline (hollow) characters,
otherwise they are solid.

4 STRIKEOUT Characters are overstruck.

5 bit 0 BOLD Characters are emboldened.

6 REGULAR Characters are in the standard
weight/style for the font.

Comments: All undefined bits must be zero.

This field contains information on the original design of the font. Bits 0 & 5
can be used to determine if the font was designed with these features or
whether some type of machine simulation was performed on the font to
achieve this appearance. Bits 1-4 are rarely used bits that indicate the font
is primarily a decorative or special purpose font.

If bit 6 is set, then bits 0 and 5 must be clear, else the behavior is
undefined. As noted above, the settings of bits 0 and 1 must be reflected in

536

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

536 ©	ISO/IEC	2019	–	All	rights	reserved
	

the macStyle bits in the 'head' table. While bit 6 on implies that bits 0 and 1
of macStyle are clear (along with bits 0 and 5 of fsSelection), the reverse is
not true. Bits 0 and 1 of macStyle (and 0 and 5 of fsSelection) may be clear
and that does not give any indication of whether or not bit 6 of fsSelection
is clear (e.g., Arial Light would have all bits cleared; it is not the regular
version of Arial).

usFirstCharIndex

Format: uint16uint16

Description: The minimum Unicode index (character code) in this font, according to the
cmap subtable for platform ID 3 and platform- specific encoding ID 0 or 1.
For most fonts supporting Win-ANSI or other character sets, this value
would be 0x0020.

usLastCharIndex

Format: 2-byte uint16

Description: The maximum Unicode index (character code) in this font, according to the
cmap subtable for platform ID 3 and encoding ID 0 or 1. This value
depends on which character sets the font supports.

sTypoAscender

Format: int16

Description: The typographic ascender for this font. One good source for
sTypoAscender in Latin based fonts is the Ascender value from an AFM
file. For CJK fonts see below.

The suggested usage for sTypoAscender is that it be used in conjunction
with unitsPerEm to compute typographically-correct default line spacing.
The goal is to free applications from Macintosh or Windows-specific
metrics which are constrained by backward compatibility requirements.
These new metrics, when combined with the character design widths, will
allow applications to lay out documents in a typographically correct and
portable fashion. These metrics will be exposed through Windows APIs.
Macintosh applications will need to access the 'sfnt' resource and parse it
to extract this data from the "OS/2" table.

For CJK (Chinese, Japanese, and Korean) fonts that are intended to be
used for vertical writing (in addition to horizontal writing), the required
value for sTypoAscender is that which describes the top of the of the
ideographic em-box. For example, if the ideographic em-box of the font
extends from coordinates 0,-120 to 1000,880 (that is, a 1000x1000 box set
120 design units below the Latin baseline), then the value of
sTypoAscender must be set to 880. Failing to adhere to these
requirements will result in incorrect vertical layout.

sTypoDescender

Format: int16

Description: The typographic descender for this font. Remember that this is not the
same as the Descender value in the 'hhea' table, One good source for
sTypoDescender in Latin based fonts is the Descender value from an AFM

537

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 537
	

file. For CJK fonts see below.

The suggested usage for sTypoDescender is that it be used in conjunction
with unitsPerEm to compute typographically-correct default line spacing.
The goal is to free applications from Macintosh or Windows-specific
metrics which are constrained by backward compatability requirements.
These new metrics, when combined with the character design widths, will
allow applications to lay out documents in a typographically correct and
portable fashion. These metrics will be exposed through Windows APIs.
Macintosh applications will need to access the 'sfnt' resource and parse it
to extract this data from the "OS/2" table.

For CJK (Chinese, Japanese, and Korean) fonts that are intended to be
used for vertical writing (in addition to horizontal writing), the required
value for sTypoDescender is that which describes the bottom of the of the
ideographic em-box. For example, if the ideographic em-box of the font
extends from coordinates 0,-120 to 1000,880 (that is, a 1000x1000 box set
120 design units below the Latin baseline), then the value of
sTypoDescender must be set to -120. Failing to adhere to these
requirements will result in incorrect vertical layout.

sTypoLineGap

Format: int16

Description: The typographic line gap for this font. Remember that this is not the same
as the LineGap value in the 'hhea' table.

The suggested usage for sTypoLineGap is that it be used in conjunction
with unitsPerEm to compute typographically-correct default line spacing.
Typical values average 7-10% of units per em. The goal is to free
applications from Macintosh or Windows-specific metrics which are
constrained by backward compatability requirements (see chapter,
"Recommendations for Windows Fonts). These new metrics, when
combined with the character design widths, will allow applications to lay
out documents in a typographically correct and portable fashion. These
metrics will be exposed through Windows APIs. Macintosh applications will
need to access the 'sfnt' resource and parse it to extract this data from the
"OS/2" table.

usWinAscent

Format: uint16

Description: The ascender metric for Windows. For platform 3 encoding 0 fonts, it is the
same as yMax. Windows will clip the bitmap of any portion of a glyph that
appears above this value. Some applications use this value to determine
default line spacing. This is strongly discouraged. The typographic
ascender, descender and line gap fields in conjunction with unitsPerEm
should be used for this purpose. Developers should set this field keeping
the above factors in mind.

If any clipping is unacceptable, then the value should be set to yMax.
However, if a developer desires to provide appropriate default line spacing
using this field, for those applications that continue to use this field for
doing so (against OFF recommendations), then the value should be set
appropriately. In such a case, it may result in some glyph bitmaps being
clipped.

538

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

538 ©	ISO/IEC	2019	–	All	rights	reserved
	

usWinDescent

Format: uint16

Description: The descender metric for Windows.. For platform 3 encoding 0 fonts, it is
the same as -yMin. Windows will clip the bitmap of any portion of a glyph
that appears below this value. Some applications use this value to
determine default line spacing. This is strongly discouraged. The
typographic ascender, descender and line gap fields in conjunction with
unitsPerEm should be used for this purpose. Developers should set this
field keeping the above factors in mind.

If any clipping is unacceptable, then the value should be set to yMin.

However, if a developer desires to provide appropriate default line spacing
using this field, for those applications that continue to use this field for
doing so (against OFF recommendations), then the value should be set
appropriately. In such a case, it may result in some glyph bitmaps being
clipped.

B.2 OS/2 - OS/2 and Windows metrics (version 1)

NOTE This is maintained for purposes of being able to validate version 1 OS/2 tables.

The OS/2 table consists of a set of metrics that are required in OFF fonts. The layout of
version 1 of this table is as follows:

Type Name of Entry Comments

uint16 version 0x0001

int16 xAvgCharWidth

uint16 usWeightClass

uint16 usWidthClass

uint16 fsType

int16 ySubscriptXSize

int16 ySubscriptYSize

int16 ySubscriptXOffset

int16 ySubscriptYOffset

int16 ySuperscriptXSize

int16 ySuperscriptYSize

int16 ySuperscriptXOffset

int16 ySuperscriptYOffset

int16 yStrikeoutSize

int16 yStrikeoutPosition

int16 sFamilyClass

uint8 panose[10]

uint32 ulUnicodeRange1 Bits 0-31

uint32 ulUnicodeRange2 Bits 32-63

539

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 539
	

uint32 ulUnicodeRange3 Bits 64-95

uint32 ulUnicodeRange4 Bits 96-127

Tag achVendID[4]

uint16 fsSelection

uint16 usFirstCharIndex

uint16 usLastCharIndex

int16 sTypoAscender

int16 sTypoDescender

int16 sTypoLineGap

uint16 usWinAscent

uint16 usWinDescent

uint32 ulCodePageRange1 Bits 0-31

uint32 ulCodePageRange2 Bits 32-63

version

Format: uint16

Units: n/a

Title: OS/2 table version number.

Description: The version number for this OS/2 table.

Comments: The version number allows for identification of the precise contents and
layout for the OS/2 table. The version number for this layout is one (1).
The version number for the previous layout (in rev.1.5 of this spec and
earlier) was zero (0). Version 0 of the OS/2 table was 78 bytes; Version 1
is 86 bytes, having added the ulCodePageRange1 and
ulCodePageRange2 fields.

xAvgCharWidth

Format: int16

Units: Pels / em units

Title: Average weighted escapement.

Description: The Average Character Width parameter specifies the arithmetic average
of the escapement (width) of all of the 26 lowercase letters a through z of
the Latin alphabet and the space character. If any of the 26 lowercase
letters are not present, this parameter should equal the weighted average
of all glyphs in the font. For non-UGL (platform 3, encoding 0) fonts, use
the unweighted average.

Comments: This parameter is a descriptive attribute of the font that specifies the
spacing of characters for comparing one font to another for selection or
substitution. For proportionally spaced fonts, this value is useful in
estimating the length for lines of text. The weighting factors provided with
this example are only valid for Latin lowercase letters. If other character
sets, or capital letters are used, the corresponding frequency of use
values should be used. One needs to be careful when comparing fonts
that use different frequency of use values for font mapping. The average
character width for the following set of upper and lowercase letters only,

540

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

540 ©	ISO/IEC	2019	–	All	rights	reserved
	

is calculated according to this formula: Sum the individual character
widths multiplied by the following weighting factors and then divide by
1000. For example:

Letter Weight
Factor

Letter Weight
Factor

a 64 O 56

b 14 P 17

c 27 Q 4

d 35 R 49

e 100 S 56

f 20 T 71

g 14 U 31

h 42 V 10

i 63 W 18

j 3 X 3

k 6 Y 18

l 35 Z 2

m 20 space 166

n 56

usWeightClass

Format: uint16

Title: Weight class.

Description: Indicates the visual weight (degree of blackness or thickness of strokes)
of the characters in the font.

Comments:

Value Description C Definition (from windows.h)

100 Thin FW_THIN

200 Extra-light (Ultra-light) FW_EXTRALIGHT

300 Light FW_LIGHT

400 Normal (Regular) FW_NORMAL

500 Medium FW_MEDIUM

600 Semi-bold (Demi-bold) FW_SEMIBOLD

700 Bold FW_BOLD

800 Extra-bold (Ultra-bold) FW_EXTRABOLD

900 Black (Heavy) FW_BLACK

541

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 541
	

usWidthClass

Format: uint16

Title: Width class.

Description: Indicates a relative change from the normal aspect ratio (width to height
ratio) as specified by a font designer for the glyphs in a font.

Comments: Although every character in a font may have a different numeric aspect
ratio, each character in a font of normal width has a relative aspect ratio
of one. When a new type style is created of a different width class (either
by a font designer or by some automated means) the relative aspect ratio
of the characters in the new font is some percentage greater or less than
those same characters in the normal font -- it is this difference that this
parameter specifies.

Value Description C Definition % of normal

1 Ultra-condensed FWIDTH_ULTRA_CONDENSED 50

2 Extra-condensed FWIDTH_EXTRA_CONDENSED 62.5

3 Condensed FWIDTH_CONDENSED 75

4 Semi-condensed FWIDTH_SEMI_CONDENSED 87.5

5 Medium (normal) FWIDTH_NORMAL 100

6 Semi-expanded FWIDTH_SEMI_EXPANDED 112.5

7 Expanded FWIDTH_EXPANDED 125

8 Extra-expanded FWIDTH_EXTRA_EXPANDED 150

9 Ultra-expanded FWIDTH_ULTRA_EXPANDED 200

fsType

Format: uint16

Title: Type flags.

Description: Indicates font embedding licensing rights for the font. Embeddable fonts
may be stored in a document. When a document with embedded fonts is
opened on a system that does not have the font installed (the remote
system), the embedded font may be loaded for temporary (and in some
cases, permanent) use on that system by an embedding-aware
application. Embedding licensing rights are granted by the vendor of the
font.

The Font Embedding DLL Specification and DLL release notes
describe the APIs used to implement support for OFF font embedding
and loading. Applications that implement support for font embedding,
either through use of the Font Embedding DLL or through other means,
must not embed fonts which are not licensed to permit embedding.
Further, applications loading embedded fonts for temporary use (see
Preview & Print and Editable embedding below) must delete the fonts
when the document containing the embedded font is closed.

542

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

542 ©	ISO/IEC	2019	–	All	rights	reserved
	

Bit Bit
Mask

Description

 0x0000 Installable Embedding: No fsType bit is set.
Thus fsType is zero.
Fonts with this setting indicate that they may
be embedded and permanently installed on
the remote system by an application. The
user of the remote system acquires the
identical rights, obligations and licenses for
that font as the original purchaser of the font,
and is subject to the same end-user license
agreement, copyright, design patent, and/or
trademark as was the original purchaser.

0 0x0001 Reserved, must be zero.

1 0x0002 Restricted License embedding:
Fonts that have only this bit set must not be
modified, embedded or exchanged in any
manner without first obtaining permission of
the legal owner.
Caution: For Restricted License embedding
to take effect, it must be the only level of
embedding selected.

2 0x0004 Preview & Print embedding: When this bit is
set, the font may be embedded, and
temporarily loaded on the remote system.
Documents containing Preview & Print fonts
must be opened "read-only;" no edits can be
applied to the document.

3 0x0008 Editable embedding: When this bit is set, the
font may be embedded but must only be
installed temporarily on other systems. In
contrast to Preview & Print fonts, documents
containing Editable fonts may be opened for
reading, editing is permitted, and changes
may be saved.

4-15 Reserved, must be zero.

Comments: If multiple embedding bits are set, the least restrictive license granted
takes precedence. For example, if bits 1 and 3 are set, bit 3 takes
precedence over bit 1and the font may be embedded with Editable rights.
For compatibility purposes, most vendors granting Editable embedding
rights are also setting the Preview & Print bit (0x000C). This will permit an
application that only supports Preview & Print embedding to detect that
font embedding is allowed.

 Restricted License embedding (0x0002): Fonts that have this bit set
must not be modified, embedded or exchanged in any manner
without first obtaining permission of the legal owner. Caution:

NOTE For Restricted License embedding to take effect, it must be the only level
of embedding selected (as noted in the previous paragraph).

 Preview & Print embedding (0x0004): Fonts with this bit set indicate
that they may be embedded within documents but must only be installed
temporarily on the remote system. Any document which includes a
Preview & Print embedded font must be opened “read-only;” the

543

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 543
	

application must not allow the user to edit the document; it can only be
viewed and/or printed.

 Editable embedding (0x0008): Fonts with this bit set indicate that they
may be embedded in documents, but must only be installed temporarily
on the remote system. In contrast to Preview & Print fonts, documents
containing Editable fonts may be opened “read-write;” editing is permitted,
and changes may be saved.

 Installable embedding (0x0000): Fonts with this setting indicate that
they may be embedded and permanently installed on the remote system
by an application. The user of the remote system acquires the identical
rights, obligations and licenses for that font as the original purchaser of
the font, and is subject to the same end-user license agreement,
copyright, design patent, and/or trademark as was the original purchaser.

ySubscriptXSize

Format: int16

Units: Font design units

Title: Subscript horizontal font size.

Description: The recommended horizontal size in font design units for subscripts for
this font.

Comments: If a font has two recommended sizes for subscripts, e.g., numerics and
other, the numeric sizes should be stressed. This size field maps to the
em square size of the font being used for a subscript. The horizontal font
size specifies a font designer's recommended horizontal font size for
subscript characters associated with this font. If a font does not include all
of the required subscript characters for an application, and the application
can substitute characters by scaling the character of a font or by
substituting characters from another font, this parameter specifies the
recommended em square for those subscript characters.

For example, if the em square for a font is 2048 and ySubScriptXSize is
set to 205, then the horizontal size for a simulated subscript character
would be 1/10th the size of the normal character.

ySubscriptYSize

Format: int16

Units: Font design units

Title: Subscript vertical font size.

Description: The recommended vertical size in font design units for subscripts for this
font.

Comments: If a font has two recommended sizes for subscripts, e.g. numerics and
other, the numeric sizes should be stressed. This size field maps to the
emHeight of the font being used for a subscript. The horizontal font size
specifies a font designer's recommendation for horizontal font size of
subscript characters associated with this font. If a font does not include all
of the required subscript characters for an application, and the application
can substitute characters by scaling the characters in a font or by
substituting characters from another font, this parameter specifies the

544

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

544 ©	ISO/IEC	2019	–	All	rights	reserved
	

recommended horizontal EmInc for those subscript characters.

For example, if the em square for a font is 2048 and ySubScriptYSize is
set to 205, then the vertical size for a simulated subscript character would
be 1/10th the size of the normal character.

ySubscriptXOffset

Format: int16

Units: Font design units

Title: Subscript x offset.

Description: The recommended horizontal offset in font design untis for subscripts for
this font.

Comments: The Subscript X offset parameter specifies a font designer's
recommended horizontal offset -- from the character origin of the font to
the character origin of the subscript's character -- for subscript characters
associated with this font. If a font does not include all of the required
subscript characters for an application, and the application can substitute
characters, this parameter specifies the recommended horizontal position
from the character escapement point of the last character before the first
subscript character. For upright characters, this value is usually zero;
however, if the characters of a font have an incline (italic characters) the
reference point for subscript characters is usually adjusted to
compensate for the angle of incline.

ySubscriptYOffset

Format: int16

Units: Font design units

Title: Subscript y offset.

Description: The recommended vertical offset in font design units from the baseline for
subscripts for this font.

Comments: The Subscript Y offset parameter specifies a font designer's
recommended vertical offset from the character baseline to the character
baseline for subscript characters associated with this font. Values are
expressed as a positive offset below the character baseline. If a font does
not include all of the required subscript for an application, this parameter
specifies the recommended vertical distance below the character
baseline for those subscript characters.

ySuperscriptXSize

Format: int16

Units: Font design units

Title: Superscript horizontal font size.

Description: The recommended horizontal size in font design units for superscripts for
this font.

Comments: If a font has two recommended sizes for subscripts, e.g., numerics and
other, the numeric sizes should be stressed. This size field maps to the
em square size of the font being used for a subscript. The horizontal font
size specifies a font designer's recommended horizontal font size for

545

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 545
	

superscript characters associated with this font. If a font does not include
all of the required superscript characters for an application, and the
application can substitute characters by scaling the character of a font or
by substituting characters from another font, this parameter specifies the
recommended em square for those superscript characters.
For example, if the em square for a font is 2048 and ySuperScriptXSize is
set to 205, then the horizontal size for a simulated superscript character
would be 1/10th the size of the normal character.

ySuperscriptYSize

Format: int16

Units: Font design units

Title: Superscript vertical font size.

Description: The recommended vertical size in font design units for superscripts for
this font.

Comments: If a font has two recommended sizes for subscripts, e.g., numerics and
other, the numeric sizes should be stressed. This size field maps to the
emHeight of the font being used for a subscript. The vertical font size
specifies a font designer's recommended vertical font size for superscript
characters associated with this font. If a font does not include all of the
required superscript characters for an application, and the application can
substitute characters by scaling the character of a font or by substituting
characters from another font, this parameter specifies the recommended
EmHeight for those superscript characters.
For example, if the em square for a font is 2048 and ySuperScriptYSize is
set to 205, then the vertical size for a simulated superscript character
would be 1/10th the size of the normal character.

ySuperscriptXOffset

Format: int16

Units: Font design units

Title: Superscript x offset.

Description: The recommended horizontal offset in font design units for superscripts
for this font.

Comments: The Superscript X offset parameter specifies a font designer's
recommended horizontal offset -- from the character origin to the
superscript character's origin for the superscript characters associated
with this font. If a font does not include all of the required superscript
characters for an application, this parameter specifies the recommended
horizontal position from the escapement point of the character before the
first superscript character. For upright characters, this value is usually
zero; however, if the characters of a font have an incline (italic characters)
the reference point for superscript characters is usually adjusted to
compensate for the angle of incline.

ySuperscriptYOffset

Format: int16

Units: Font design units

Title: Superscript y offset.

546

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

546 ©	ISO/IEC	2019	–	All	rights	reserved
	

Description: The recommended vertical offset in font design units from the baseline for
superscripts for this font.

Comments: The Superscript Y offset parameter specifies a font designer's
recommended vertical offset -- from the character baseline to the
superscript character's baseline associated with this font. Values for this
parameter are expressed as a positive offset above the character
baseline. If a font does not include all of the required superscript
characters for an application, this parameter specifies the recommended
vertical distance above the character baseline for those superscript
characters.

yStrikeoutSize

Format: int16

Units: Font design units

Title: Strikeout size.

Description: Width of the strikeout stroke in font design units.

Comments: This field should normally be the width of the em dash for the current font.
If the size is one, the strikeout line will be the line represented by the
strikeout position field. If the value is two, the strikeout line will be the line
represented by the strikeout position and the line immediately above the
strikeout position. For a Roman font with a 2048 em square, 102 is
suggested.

yStrikeoutPosition

Format: int16

Units: Font design units

Title: Strikeout position.

Description: The position of the top of the strikeout stroke relative to the baseline in
font design units.

Comments: Positive values represent distances above the baseline, while negative
values represent distances below the baseline. A value of zero falls
directly on the baseline, while a value of one falls one pel above the
baseline. The value of strikeout position should not interfere with the
recognition of standard characters, and therefore should not line up with
crossbars in the font. For a Roman font with a 2048 em square, 460 is
suggested.

sFamilyClass

Format: int16

Title: Font-family class and subclass.

Description: This parameter is a classification of font-family design.

Comments: The font class and font subclass are registered values assigned by IBM
to each font family. This parameter is intended for use in selecting an
alternate font when the requested font is not available. The font class is
the most general and the font subclass is the most specific. The high byte
of this field contains the family class, while the low byte contains the
family subclass.

547

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 547
	

Panose

Format: 10 byte array

Title: PANOSE classification number

International: Additional specifications are required for PANOSE to classify non-Latin
character sets.

Description: This 10 byte series of numbers is used to describe the visual
characteristics of a given typeface. If provided, these characteristics are
then used to associate the font with other fonts of similar appearance
having different names; the default values should be set to 'zero'. The
variables for each digit are listed below.

Comments: The specification for assigning PANOSE values [14] can be found in
bibliography and is maintained by Monotype Imaging Inc.

PANOSE

Type Name Description

uint8 bFamilyType; Family Type

uint8 bSerifStyle; Serif Style

uint8 bWeight; Weight

uint8 bProportion; Proportion

uint8 bContrast; Contrast

uint8 bStrokeVariation; Stroke Variation

uint8 bArmStyle; Arm Style

uint8 bLetterform; Letterform

uint8 bMidline; Midline

uint8 bXHeight; X Height

Family Type

Value Description

0 Any

1 No Fit

2 Text and Display

3 Script

4 Decorative

5 Pictorial

Serif Style

Value Description

0 Any

1 No Fit

548

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

548 ©	ISO/IEC	2019	–	All	rights	reserved
	

2 Cove

3 Obtuse Cove

4 Square Cove

5 Obtuse Square Cove

6 Square

7 Thin

8 Bone

9 Exaggerated

10 Triangle

11 Normal Sans

12 Obtuse Sans

13 Perp Sans

14 Flared

15 Rounded

Weight

Value Description

0 Any

1 No Fit

2 Very Light

3 Light

4 Thin

5 Book

6 Medium

7 Demi

8 Bold

9 Heavy

10 Black

11 Nord

Proportion

Value Description

0 Any

1 No Fit

2 Old Style

3 Modern

4 Even Width

5 Expanded

6 Condensed

549

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 549
	

7 Very Expanded

8 Very Condensed

9 Monospaced

Contrast

Value Description

0 Any

1 No Fit

2 None

3 Very Low

4 Low

5 Medium Low

6 Medium

7 Medium High

8 High

9 Very High

Stroke Variation

Value Description

0 Any

1 No Fit

2 Gradual/Diagonal

3 Gradual/Transitional

4 Gradual/Vertical

5 Gradual/Horizontal

6 Rapid/Vertical

7 Rapid/Horizontal

8 Instant/Vertical

Arm Style

Value Description

0 Any

1 No Fit

2 Straight Arms/Horizontal

3 Straight Arms/Wedge

4 Straight Arms/Vertical

5 Straight Arms/Single Serif

6 Straight Arms/Double Serif

550

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

550 ©	ISO/IEC	2019	–	All	rights	reserved
	

7 Non-Straight Arms/Horizontal

8 Non-Straight Arms/Wedge

9 Non-Straight Arms/Vertical

10 Non-Straight Arms/Single Serif

11 Non-Straight Arms/Double Serif

Letterform

Value Description

0 Any

1 No Fit

2 Normal/Contact

3 Normal/Weighted

4 Normal/Boxed

5 Normal/Flattened

6 Normal/Rounded

7 Normal/Off Center

8 Normal/Square

9 Oblique/Contact

10 Oblique/Weighted

11 Oblique/Boxed

12 Oblique/Flattened

13 Oblique/Rounded

14 Oblique/Off Center

15 Oblique/Square

Midline

Value Description

0 Any

1 No Fit

2 Standard/Trimmed

3 Standard/Pointed

4 Standard/Serifed

5 High/Trimmed

6 High/Pointed

7 High/Serifed

8 Constant/Trimmed

9 Constant/Pointed

10 Constant/Serifed

551

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 551
	

11 Low/Trimmed

12 Low/Pointed

13 Low/Serifed

X-height

Value Description

0 Any

1 No Fit

2 Constant/Small

3 Constant/Standard

4 Constant/Large

5 Ducking/Small

6 Ducking/Standard

7 Ducking/Large

ulUnicodeRange1 (Bits 0-31)
ulUnicodeRange2 (Bits 32-63)
ulUnicodeRange3 (Bits 64-95)
ulUnicodeRange4 (Bits 96-127)

Format: 32-bit unsigned long(4 copies) totaling 128 bits.

Title: Unicode Character Range

Description: This field is used to specify the Unicode blocks or ranges encompassed
by the font file in the 'cmap' subtable for platform 3, encoding ID 1
(Microsoft platform). If the bit is set (1) then the Unicode range is
considered functional. If the bit is clear (0) then the range is not
considered functional. Each of the bits is treated as an independent flag
and the bits can be set in any combination. The determination of
"functional" is left up to the font designer, although character set selection
should attempt to be functional by ranges if at all possible.

All reserved fields must be zero. Each long is in Big-Endian form. See the
Basic Multilingual Plane of ISO/IEC 10646 or the Unicode Standard for
the list of Unicode ranges and characters.

Bit Description

0 Basic Latin

1 Latin-1 Supplement

2 Latin Extended-A

3 Latin Extended-B

4 IPA Extensions

5 Spacing Modifier Letters

6 Combining Diacritical Marks

552

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

552 ©	ISO/IEC	2019	–	All	rights	reserved
	

7 Basic Greek

8 Greek Symbols and Coptic

9 Cyrillic

10 Armenian

11 Basic Hebrew

12 Hebrew Extended (A and B blocks combined)

13 Basic Arabic

14 Arabic Extended

15 Devanagari

16 Bengali

17 Gurmukhi

18 Gujarati

19 Oriya

20 Tamil

21 Telugu

22 Kannada

23 Malayalam

24 Thai

25 Lao

26 Basic Georgian

27 Georgian Extended

28 Hangul Jamo

29 Latin Extended Additional

30 Greek Extended

31 General Punctuation

32 Superscripts And Subscripts

33 Currency Symbols

34 Combining Diacritical Marks For Symbols

35 Letterlike Symbols

36 Number Forms

37 Arrows

38 Mathematical Operators

39 Miscellaneous Technical

40 Control Pictures

41 Optical Character Recognition

42 Enclosed Alphanumerics

43 Box Drawing

44 Block Elements

553

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 553
	

45 Geometric Shapes

46 Miscellaneous Symbols

47 Dingbats

48 CJK Symbols And Punctuation

49 Hiragana

50 Katakana

51 Bopomofo

52 Hangul Compatibility Jamo

53 CJK Miscellaneous

54 Enclosed CJK Letters And Months

55 CJK Compatibility

56 Hangul

57 Reserved for Unicode SubRanges

58 Reserved for Unicode SubRanges

59 CJK Unified Ideographs

60 Private Use Area

61 CJK Compatibility Ideographs

62 Alphabetic Presentation Forms

63 Arabic Presentation Forms-A

64 Combining Half Marks

65 CJK Compatibility Forms

66 Small Form Variants

67 Arabic Presentation Forms-B

68 Halfwidth And Fullwidth Forms

69 Specials

70-127 Reserved for Unicode SubRanges

achVendID

Format: 4-byte Tag

Title: Font Vendor Identification

Description: The four character identifier for the vendor of the given type face.

Comments: This is not the royalty owner of the original artwork. This is the company
responsible for the marketing and distribution of the typeface that is being
classified. It is reasonable to assume that there will be 6 vendors of ITC
Zapf Dingbats for use on desktop platforms in the near future (if not
already). It is also likely that the vendors will have other inherent benefits
in their fonts (more kern pairs, unregularized data, hand hinted, etc.). This
identifier will allow for the correct vendor's type to be used over another,
possibly inferior, font file. The Vendor ID value is not required. The
Vendor ID list can be accessed via the informative reference 6 in the
bibliolgraphy.

554

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

554 ©	ISO/IEC	2019	–	All	rights	reserved
	

fsSelection

Format: 2-byte bit field.

Title: Font selection flags.

Description: Contains information concerning the nature of the font patterns, as
follows:

Bit # macStyle bit C definition Description

0 bit 1 ITALIC Font contains Italic
characters, otherwise they
are upright.

1 UNDERSCORE Characters are
underscored.

2 NEGATIVE Characters have their
foreground and
background reversed.

3 OUTLINED Outline (hollow)
characters, otherwise they
are solid.

4 STRIKEOUT Characters are
overstruck.

5 bit 0 BOLD Characters are
emboldened.

6 REGULAR Characters are in the
standard weight/style for
the font.

Comments: All undefined bits must be zero.

This field contains information on the original design of the font. Bits 0 & 5
can be used to determine if the font was designed with these features or
whether some type of machine simulation was performed on the font to
achieve this appearance. Bits 1-4 are rarely used bits that indicate the
font is primarily a decorative or special purpose font.

If bit 6 is set, then bits 0 and 5 must be clear, else the behavior is
undefined. As noted above, the settings of bits 0 and 1 must be reflected
in the macStyle bits in the 'head' table. While bit 6 on implies that bits 0
and 1 of macStyle are clear (along with bits 0 and 5 of fsSelection), the
reverse is not true. Bits 0 and 1 of macStyle (and 0 and 5 of fsSelection)
may be clear and that does not give any indication of whether or not bit 6
of fsSelection is clear (e.g., Arial Light would have all bits cleared; it is not
the regular version of Arial).

usFirstCharIndex

Format: 2-byte USHORT

Description: The minimum Unicode index (character code) in this font, according to
the cmap subtable for platform ID 3 and platform- specific encoding ID 0
or 1. For most fonts supporting Win-ANSI or other character sets, this
value would be 0x0020.

555

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 555
	

usLastCharIndex

Format: uint16

Description: The maximum Unicode index (character code) in this font, according to
the cmap subtable for platform ID 3 and encoding ID 0 or 1. This value
depends on which character sets the font supports.

sTypoAscender

Format: int16

Description: The typographic ascender for this font. Remember that this is not the
same as the Ascender value in the 'hhea' table. One good source for
sTypoAscender in Latin based fonts is the Ascender value from an AFM
file. For CJK fonts see below.

The suggested usage for sTypoAscender is that it be used in conjunction
with unitsPerEm to compute typographically-correct default line spacing.
The goal is to free applications from Macintosh or Windows-specific
metrics which are constrained by backward compatibility requirements.
These new metrics, when combined with the character design widths, will
allow applications to lay out documents in a typographically correct and
portable fashion. These metrics will be exposed through Windows APIs.
Macintosh applications will need to access the 'sfnt' resource and parse it
to extract this data from the "OS/2" table.

For CJK (Chinese, Japanese, and Korean) fonts that are intended to be
used for vertical writing (in addition to horizontal writing), the required
value for sTypoAscender is that which describes the top of the of the
ideographic em-box. For example, if the ideographic em-box of the font
extends from coordinates 0,-120 to 1000,880 (that is, a 1000x1000 box
set 120 design units below the Latin baseline), then the value of
sTypoAscender must be set to 880. Failing to adhere to these
requirements will result in incorrect vertical layout.

sTypoDescender

Format: int16

Description: The typographic descender for this font. Remember that this is not the
same as the Descender value in the 'hhea' table One good source for
sTypoDescender in Latin based fonts is the Descender value from an
AFM file. For CJK fonts see below.

The suggested usage for sTypoDescender is that it be used in
conjunction with unitsPerEm to compute typographically-correct default
line spacing. The goal is to free applications from Macintosh or Windows-
specific metrics which are constrained by backward compatability
requirements. These new metrics, when combined with the character
design widths, will allow applications to lay out documents in a
typographically correct and portable fashion. These metrics will be
exposed through Windows APIs. Macintosh applications will need to
access the 'sfnt' resource and parse it to extract this data from the "OS/2"
table.

For CJK (Chinese, Japanese, and Korean) fonts that are intended to be
used for vertical writing (in addition to horizontal writing), the required
value for sTypoDescender is that which describes the bottom of the of the
ideographic em-box. For example, if the ideographic em-box of the font
extends from coordinates 0,-120 to 1000,880 (that is, a 1000x1000 box
set 120 design units below the Latin baseline), then the value of
sTypoDescender must be set to -120. Failing to adhere to these

556

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

556 ©	ISO/IEC	2019	–	All	rights	reserved
	

requirements will result in incorrect vertical layout.

sTypoLineGap

Format: int16

Description: The typographic line gap for this font. Remember that this is not the same
as the LineGap value in the 'hhea' table.

The suggested usage for sTypoLineGap is that it be used in conjunction
with unitsPerEm to compute typographically-correct default line spacing.
Typical values average 7-10% of units per em. The goal is to free
applications from Macintosh or Windows-specific metrics which are
constrained by backward compatability requirements (see chapter,
"Recommendations for Windows Fonts). These new metrics, when
combined with the character design widths, will allow applications to lay
out documents in a typographically correct and portable fashion. These
metrics will be exposed through Windows APIs. Macintosh applications
will need to access the 'sfnt' resource and parse it to extract this data
from the "OS/2" table.

usWinAscent

Format: uint16

Description: The ascender metric for Windows. For platform 3 encoding 0 fonts, it is
the same as yMax. Windows will clip the bitmap of any portion of a glyph
that appears above this value. Some applications use this value to
determine default line spacing. This is strongly discouraged. The
typographic ascender, descender and line gap fields in conjunction with
unitsPerEm should be used for this purpose. Developers should set this
field keeping the above factors in mind.

If any clipping is unacceptable, then the value should be set to yMax.
However, if a developer desires to provide appropriate default line
spacing using this field, for those applications that continue to use this
field for doing so (against OFF recommendations), then the value should
be set appropriately. In such a case, it may result in some glyph bitmaps
being clipped.

usWinDescent

Format: uint16

Description: The descender metric for Windows. For platform 3 encoding 0 fonts, it is
the same as -yMin. Windows will clip the bitmap of any portion of a glyph
that appears below this value. Some applications use this value to
determine default line spacing. This is strongly discouraged. The
typographic ascender, descender and line gap fields in conjunction with
unitsPerEm should be used for this purpose. Developers should set this
field keeping the above factors in mind.

If any clipping is unacceptable, then the value should be set to yMin.
However, if a developer desires to provide appropriate default line
spacing using this field, for those applications that continue to use this
field for doing so (against OFF recommendations), then the value should
be set appropriately. In such a case, it may result in some glyph bitmaps
being clipped.

ulCodePageRange1 Bits 0-31
ulCodePageRange2 Bits 32-63

557

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 557
	

Format: 32-bit unsigned long(2 copies) totaling 64 bits.

Title: Code Page Character Range

Description: This field is used to specify the code pages encompassed by the font file
in the 'cmap' subtable for platform 3, encoding ID 1 (Microsoft platform). If
the font file is encoding ID 0, then the Symbol Character Set bit should be
set. If the bit is set (1) then the code page is considered functional. If the
bit is clear (0) then the code page is not considered functional. Each of
the bits is treated as an independent flag and the bits can be set in any
combination. The determination of "functional" is left up to the font
designer, although character set selection should attempt to be functional
by code pages if at all possible.

Symbol character sets have a special meaning. If the symbol bit (31) is
set, and the font file contains a 'cmap' subtable for platform of 3 and
encoding ID of 1, then all of the characters in the Unicode range 0xF000 -
0xF0FF (inclusive) will be used to enumerate the symbol character set. If
the bit is not set, any characters present in that range will not be
enumerated as a symbol character set.

All reserved fields must be zero. Each long is in Big-Endian form.

Bit Code Page Description

0 1252 Latin 1

1 1250 Latin 2: Eastern Europe

2 1251 Cyrillic

3 1253 Greek

4 1254 Turkish

5 1255 Hebrew

6 1256 Arabic

7 1257 Windows Baltic

8-15 Reserved for Alternate ANSI

16 874 Thai

17 932 JIS/Japan

18 936 Chinese: Simplified chars--PRC and
Singapore

19 949 Korean Wansung

20 950 Chinese: Traditional chars--Taiwan
and Hong Kong

21 1361 Korean Johab

22-28 Reserved for Alternate ANSI & OEM

29 Macintosh Character Set (US
Roman)

30 OEM Character Set

31 Symbol Character Set

32-47 Reserved for OEM

48 869 IBM Greek

558

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

558 ©	ISO/IEC	2019	–	All	rights	reserved
	

49 866 MS-DOS Russian

50 865 MS-DOS Nordic

51 864 Arabic

52 863 MS-DOS Canadian French

53 862 Hebrew

54 861 MS-DOS Icelandic

55 860 MS-DOS Portuguese

56 857 IBM Turkish

57 855 IBM Cyrillic; primarily Russian

58 852 Latin 2

59 775 MS-DOS Baltic

60 737 Greek; former 437 G

61 708 Arabic; ASMO 708

62 850 WE/Latin 1

63 437 US

B.3 OS/2 - OS/2 and Windows metrics (version 3)

The OS/2 table consists of a set of metrics that are required in OFF fonts.

NOTE This is maintained for purposes of being able to validate version 3 OS/2 tables.

Type Name of Entry Comments

uint16 Version 0x0003

int16 xAvgCharWidth

uint16 usWeightClass

uint16 usWidthClass

uint16 fsType

int16 ySubscriptXSize

int16 ySubscriptYSize

int16 ySubscriptXOffset

int16 ySubscriptYOffset

int16 ySuperscriptXSize

int16 ySuperscriptYSize

int16 ySuperscriptXOffset

int16 ySuperscriptYOffset

int16 yStrikeoutSize

int16 yStrikeoutPosition

int16 sFamilyClass

559

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 559
	

uint8 Panose[10]

uint32 ulUnicodeRange1 Bits 0-31

uint32 ulUnicodeRange2 Bits 32-63
version 0x0001 and later

uint32 ulUnicodeRange3 Bits 64-95
version 0x0001 and later

uint32 ulUnicodeRange4 Bits 96-127
version 0x0001 and later

Tag achVendID[4]

uint16 fsSelection

uint16 usFirstCharIndex

uint16 usLastCharIndex

int16 sTypoAscender

int16 sTypoDescender

int16 sTypoLineGap

uint16 usWinAscent

uint16 usWinDescent

uint32 ulCodePageRange1 Bits 0-31
version 0x0001 and later

uint32 ulCodePageRange2 Bits 32-63
version 0x0001 and later

int16 sxHeight version 0x0002 and later

int16 sCapHeight version 0x0002 and later

uint16 usDefaultChar version 0x0002 and later

uint16 usBreakChar version 0x0002 and later

uint16 usMaxContext version 0x0002 and later

version

Format: uint16

Units: n/a

Title: OS/2 table version number.

Description: The version number for this OS/2 table.

Comments: The version number allows for identification of the precise contents and
layout for the OS/2 table. The version number for this layout is three (3).
See Annex A.

xAvgCharWidth

Format: int16

560

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

560 ©	ISO/IEC	2019	–	All	rights	reserved
	

Units: Pels / em units

Title: Average weighted escapement.

Description: The Average Character Width parameter specifies the arithmetic average
of the escapement (width) of all non-zero width glyphs in the font.

Comments: The value for xAvgCharWidth is calculated by obtaining the arithmetic
average of the width of all non-zero width glyphs in the font. Furthermore, it
is strongly recommended that implementers do not rely on this value for
computing layout for lines of text. Especially, for cases where complex
scripts are used. The calculation algorithm differs from one being used in
previous versions of OS/2 table. For details see Annex A.

usWeightClass

Format: uint16

Title: Weight class.

Description: Indicates the visual weight (degree of blackness or thickness of strokes) of
the characters in the font.

Comments:

Value Description C Definition (from windows.h)

100 Thin FW_THIN

200 Extra-light (Ultra-light) FW_EXTRALIGHT

300 Light FW_LIGHT

400 Normal (Regular) FW_NORMAL

500 Medium FW_MEDIUM

600 Semi-bold (Demi-bold) FW_SEMIBOLD

700 Bold FW_BOLD

800 Extra-bold (Ultra-bold) FW_EXTRABOLD

900 Black (Heavy) FW_BLACK

usWidthClass

Format: uint16

Title: Width class.

Description: Indicates a relative change from the normal aspect ratio (width to height ratio) as specified by a
font designer for the glyphs in a font.

Comments: Although every character in a font may have a different numeric aspect ratio, each character in
a font of normal width has a relative aspect ratio of one. When a new type style is created of a
different width class (either by a font designer or by some automated means) the relative aspect
ratio of the characters in the new font is some percentage greater or less than those same
characters in the normal font -- it is this difference that this parameter specifies.

561

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 561
	

Value Description C Definition % of normal

1 Ultra-
condensed

FWIDTH_ULTRA_CONDENSED 50

2 Extra-
condensed

FWIDTH_EXTRA_CONDENSED 62.5

3 Condensed FWIDTH_CONDENSED 75

4 Semi-
condensed

FWIDTH_SEMI_CONDENSED 87.5

5 Medium
(normal)

FWIDTH_NORMAL 100

6 Semi-
expanded

FWIDTH_SEMI_EXPANDED 112.5

7 Expanded FWIDTH_EXPANDED 125

8 Extra-
expanded

FWIDTH_EXTRA_EXPANDED 150

9 Ultra-
expanded

FWIDTH_ULTRA_EXPANDED 200

fsType

Format: uint16

Title: Type flags.

Description: Indicates font embedding licensing rights for the font. Embeddable fonts
may be stored in a document. When a document with embedded fonts is
opened on a system that does not have the font installed (the remote
system), the embedded font may be loaded for temporary (and in some
cases, permanent) use on that system by an embedding-aware application.
Embedding licensing rights are granted by the vendor of the font.

The OFF Font Embedding DLL Applications that implement support for
font embedding, either through use of the Font Embedding DLL or through
other means, must not embed fonts which are not licensed to permit
embedding. Further, applications loading embedded fonts for temporary
use (see Preview & Print and Editable embedding below) must delete the
fonts when the document containing the embedded font is closed.

This version of the OS/2 table makes bits 0 - 3 a set of exclusive bits.
In other words, at most one bit in this range may be set at a time. The
purpose is to remove misunderstandings caused by previous
behavior of using the least restrictive of the bits that are set.

Bit Bit Mask Description

 0x0000 Installable Embedding: No fsType bit is set. Thus
fsType is zero.
Fonts with this setting indicate that they may be
embedded and permanently installed on the remote
system by an application. The user of the remote
system acquires the identical rights, obligations and
licenses for that font as the original purchaser of the

562

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

562 ©	ISO/IEC	2019	–	All	rights	reserved
	

font, and is subject to the same end-user license
agreement, copyright, design patent, and/or trademark
as was the original purchaser.

0 0x0001 Reserved, must be zero.

1 0x0002 Restricted License embedding:
Fonts that have only this bit set must not be modified,
embedded or exchanged in any manner without first
obtaining permission of the legal owner.
Caution: For Restricted License embedding to take
effect, it must be the only level of embedding selected.

2 0x0004 Preview & Print embedding: When this bit is set, the
font may be embedded, and temporarily loaded on the
remote system. Documents containing Preview & Print
fonts must be opened "read-only;" no edits can be
applied to the document.

3 0x0008 Editable embedding: When this bit is set, the font may
be embedded but must only be installed temporarily
on other systems. In contrast to Preview & Print fonts,
documents containing Editable fonts may be opened for
reading, editing is permitted, and changes may be
saved.

4-7 Reserved, must be zero.

8 0x0100 No subsetting: When this bit is set, the font may not be
subsetted prior to embedding. Other embedding
restrictions specified in bits 0-3 and 9 also apply.

9 0x0200 Bitmap embedding only: When this bit is set, only
bitmaps contained in the font may be embedded. No
outline data may be embedded. If there are no bitmaps
available in the font, then the font is considered
unembeddable and the embedding services will fail.
Other embedding restrictions specified in bits 0-3 and 8
also apply.

10-15 Reserved, must be zero.

ySubscriptXSize

Format: int16

Units: Font design units

Title: Subscript horizontal font size.

Description: The recommended horizontal size in font design units for subscripts for this font.

Comments: If a font has two recommended sizes for subscripts, e.g., numerics and other,
the numeric sizes should be stressed. This size field maps to the em square
size of the font being used for a subscript. The horizontal font size specifies a
font designer's recommended horizontal font size for subscript characters
associated with this font. If a font does not include all of the required subscript
characters for an application, and the application can substitute characters by
scaling the character of a font or by substituting characters from another font,
this parameter specifies the recommended em square for those subscript
characters.

563

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 563
	

For example, if the em square for a font is 2048 and ySubScriptXSize is set to
205, then the horizontal size for a simulated subscript character would be 1/10th
the size of the normal character.

ySubscriptYSize

Format: int16

Units: Font design units

Title: Subscript vertical font size.

Description: The recommended vertical size in font design units for subscripts for this font.

Comments: If a font has two recommended sizes for subscripts, e.g. numerics and other, the
numeric sizes should be stressed. This size field maps to the emHeight of the font
being used for a subscript. The horizontal font size specifies a font designer's
recommendation for horizontal font size of subscript characters associated with this
font. If a font does not include all of the required subscript characters for an
application, and the application can substitute characters by scaling the characters
in a font or by substituting characters from another font, this parameter specifies the
recommended horizontal EmInc for those subscript characters.

For example, if the em square for a font is 2048 and ySubScriptYSize is set to 205,
then the vertical size for a simulated subscript character would be 1/10th the size of
the normal character.

ySubscriptXOffset

Format: int16

Units: Font design units

Title: Subscript x offset.

Description: The recommended horizontal offset in font design untis for subscripts for this font.

Comments: The Subscript X offset parameter specifies a font designer's recommended horizontal offset --
from the character origin of the font to the character origin of the subscript's character -- for
subscript characters associated with this font. If a font does not include all of the required
subscript characters for an application, and the application can substitute characters, this
parameter specifies the recommended horizontal position from the character escapement point
of the last character before the first subscript character. For upright characters, this value is
usually zero; however, if the characters of a font have an incline (italic characters) the reference
point for subscript characters is usually adjusted to compensate for the angle of incline.

ySubscriptYOffset

Format: int16

Units: Font design units

Title: Subscript y offset.

Description: The recommended vertical offset in font design units from the baseline for subscripts for this
font.

Comments: The Subscript Y offset parameter specifies a font designer's recommended vertical offset from

564

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

564 ©	ISO/IEC	2019	–	All	rights	reserved
	

the character baseline to the character baseline for subscript characters associated with this
font. Values are expressed as a positive offset below the character baseline. If a font does not
include all of the required subscript for an application, this parameter specifies the
recommended vertical distance below the character baseline for those subscript characters.

ySuperscriptXSize

Format: int16

Units: Font design units

Title: Superscript horizontal font size.

Description: The recommended horizontal size in font design units for superscripts for this font.

Comments: If a font has two recommended sizes for subscripts, e.g., numerics and other, the numeric sizes
should be stressed. This size field maps to the em square size of the font being used for a
subscript. The horizontal font size specifies a font designer's recommended horizontal font size
for superscript characters associated with this font. If a font does not include all of the required
superscript characters for an application, and the application can substitute characters by
scaling the character of a font or by substituting characters from another font, this parameter
specifies the recommended em square for those superscript characters.

For example, if the em square for a font is 2048 and ySuperScriptXSize is set to 205, then the
horizontal size for a simulated superscript character would be 1/10th the size of the normal
character.

ySuperscriptYSize

Format: int16

Units: Font design units

Title: Superscript vertical font size.

Description: The recommended vertical size in font design units for superscripts for this font.

Comments: If a font has two recommended sizes for subscripts, e.g., numerics and other, the numeric sizes
should be stressed. This size field maps to the emHeight of the font being used for a subscript.
The vertical font size specifies a font designer's recommended vertical font size for superscript
characters associated with this font. If a font does not include all of the required superscript
characters for an application, and the application can substitute characters by scaling the
character of a font or by substituting characters from another font, this parameter specifies the
recommended EmHeight for those superscript characters.

For example, if the em square for a font is 2048 and ySuperScriptYSize is set to 205, then the
vertical size for a simulated superscript character would be 1/10th the size of the normal
character.

ySuperscriptXOffset

Format: int16

Units: Font design units

565

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 565
	

Title: Superscript x offset.

Description: The recommended horizontal offset in font design units for superscripts for this font.

Comments: The Superscript X offset parameter specifies a font designer's recommended horizontal offset --
from the character origin to the superscript character's origin for the superscript characters
associated with this font. If a font does not include all of the required superscript characters for
an application, this parameter specifies the recommended horizontal position from the
escapement point of the character before the first superscript character. For upright characters,
this value is usually zero; however, if the characters of a font have an incline (italic characters)
the reference point for superscript characters is usually adjusted to compensate for the angle of
incline.

ySuperscriptYOffset

Format: int16

Units: Font design units

Title: Superscript y offset.

Description: The recommended vertical offset in font design units from the baseline for superscripts for this
font.

Comments: The Superscript Y offset parameter specifies a font designer's recommended vertical offset --
from the character baseline to the superscript character's baseline associated with this font.
Values for this parameter are expressed as a positive offset above the character baseline. If a
font does not include all of the required superscript characters for an application, this parameter
specifies the recommended vertical distance above the character baseline for those superscript
characters.

yStrikeoutSize

Format: int16

Units: Font design units

Title: Strikeout size.

Description: Width of the strikeout stroke in font design units.

Comments: This field should normally be the width of the em dash for the current font. If the size is one, the
strikeout line will be the line represented by the strikeout position field. If the value is two, the
strikeout line will be the line represented by the strikeout position and the line immediately
above the strikeout position. For a Roman font with a 2048 em square, 102 is suggested.

yStrikeoutPosition

Format: int16

Units: Font design units

Title: Strikeout position.

Description: The position of the top of the strikeout stroke relative to the baseline in font design units.

566

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

566 ©	ISO/IEC	2019	–	All	rights	reserved
	

Comments: Positive values represent distances above the baseline, while negative values represent
distances below the baseline. A value of zero falls directly on the baseline, while a value of one
falls one pel above the baseline. The value of strikeout position should not interfere with the
recognition of standard characters, and therefore should not line up with crossbars in the font.
For a Roman font with a 2048 em square, 460 is suggested.

sFamilyClass

Format: int16

Title: Font-family class and subclass.

Description: This parameter is a classification of font-family design.

Comments: The font class and font subclass are registered values per Annex A. the to each font family.
This parameter is intended for use in selecting an alternate font when the requested font is not
available. The font class is the most general and the font subclass is the most specific. The high
byte of this field contains the family class, while the low byte contains the family subclass.

Panose

Format: 10 byte array

Title: PANOSE classification number

International: Additional specifications are required for PANOSE to classify non-Latin character sets.

Description: This 10 byte series of numbers is used to describe the visual characteristics of a given
typeface. If provided, these characteristics are then used to associate the font with other fonts
of similar appearance having different names; the default values should be set to 'zero'. The
variables for each digit are listed below.

Comments: The specification for assigning PANOSE values [14] can be found in bibliography and is
maintained by Monotype Imaging Inc.

Type Name

uint8 bFamilyType;

uint8 bSerifStyle;

uint8 bWeight;

uint8 bProportion;

uint8 bContrast;

uint8 bStrokeVariation;

uint8 bArmStyle;

uint8 bLetterform;

uint8 bMidline;

uint8 bXHeight;

ulUnicodeRange

ulUnicodeRange1 (Bits 0-31)
ulUnicodeRange2 (Bits 32-63)

567

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 567
	

ulUnicodeRange3 (Bits 64-95)
ulUnicodeRange4 (Bits 96-127)

Format: 32-bit unsigned long(4 copies) totaling 128 bits.

Title: Unicode Character Range

Description: This field is used to specify the Unicode blocks or ranges encompassed by the font file in the
'cmap' subtable for platform 3, encoding ID 1 (Windows platform). If the bit is set (1) then the
Unicode range is considered functional. If the bit is clear (0) then the range is not considered
functional. Each of the bits is treated as an independent flag and the bits can be set in any
combination. The determination of "functional" is left up to the font designer, although character
set selection should attempt to be functional by ranges if at all possible.

All reserved fields must be zero. Each long is in Big-Endian form. See the Basic Multilingual
Plane of ISO/IEC 10646 or the Unicode Standard for the list of Unicode ranges and characters.

Bit Description

0 Basic Latin

1 Latin-1 Supplement

2 Latin Extended-A

3 Latin Extended-B

4 IPA Extensions

5 Spacing Modifier Letters

6 Combining Diacritical Marks

7 Greek and Coptic

8 Reserved for Unicode SubRanges

9 Cyrillic

 Cyrillic Supplementary

10 Armenian

11 Hebrew

12 Reserved for Unicode SubRanges

13 Arabic

14 Reserved for Unicode SubRanges

15 Devanagari

16 Bengali

17 Gurmukhi

18 Gujarati

19 Oriya

20 Tamil

21 Telugu

22 Kannada

23 Malayalam

568

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

568 ©	ISO/IEC	2019	–	All	rights	reserved
	

24 Thai

25 Lao

26 Georgian

27 Reserved for Unicode SubRanges

28 Hangul Jamo

29 Latin Extended Additional

30 Greek Extended

31 General Punctuation

32 Superscripts And Subscripts

33 Currency Symbols

34 Combining Diacritical Marks For Symbols

35 Letterlike Symbols

36 Number Forms

37 Arrows

 Supplemental Arrows-A

 Supplemental Arrows-B

38 Mathematical Operators

 Supplemental Mathematical Operators

 Miscellaneous Mathematical Symbols-A

 Miscellaneous Mathematical Symbols-B

39 Miscellaneous Technical

40 Control Pictures

41 Optical Character Recognition

42 Enclosed Alphanumerics

43 Box Drawing

44 Block Elements

45 Geometric Shapes

46 Miscellaneous Symbols

47 Dingbats

48 CJK Symbols And Punctuation

49 Hiragana

50 Katakana

 Katakana Phonetic Extensions

51 Bopomofo

 Bopomofo Extended

52 Hangul Compatibility Jamo

53 Reserved for Unicode SubRanges

54 Enclosed CJK Letters And Months

569

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 569
	

55 CJK Compatibility

56 Hangul Syllables

57 Non-Plane 0 *

58 Reserved for Unicode SubRanges

59 CJK Unified Ideographs

 CJK Radicals Supplement

 Kangxi Radicals

 Ideographic Description Characters

 CJK Unified Ideograph Extension A

 CJK Unified Ideographs Extension B

 Kanbun

60 Private Use Area

61 CJK Compatibility Ideographs

 CJK Compatibility Ideographs Supplement

62 Alphabetic Presentation Forms

63 Arabic Presentation Forms-A

64 Combining Half Marks

65 CJK Compatibility Forms

66 Small Form Variants

67 Arabic Presentation Forms-B

68 Halfwidth And Fullwidth Forms

69 Specials

70 Tibetan

71 Syriac

72 Thaana

73 Sinhala

74 Myanmar

75 Ethiopic

76 Cherokee

77 Unified Canadian Aboriginal Syllabics

78 Ogham

79 Runic

80 Khmer

81 Mongolian

82 Braille Patterns

83 Yi Syllables

 Yi Radicals

570

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

570 ©	ISO/IEC	2019	–	All	rights	reserved
	

84 Tagalog

 Hanunoo

 Buhid

 Tagbanwa

85 Old Italic

86 Gothic

87 Deseret

88 Byzantine Musical Symbols

 Musical Symbols

89 Mathematical Alphanumeric Symbols

90 Private Use (plane 15)

 Private Use (plane 16)

91 Variation Selectors

92 Tags

93-127 Reserved for Unicode SubRanges

NOTE * Setting bit 57 implies that there is at least one codepoint beyond the Basic Multilingual Plane that is supported
by this font.

achVendID

Format: 4-byte Tag

Title: Font Vendor Identification

Description: The four character identifier for the vendor of the given type face.

Comments: This is not the royalty owner of the original artwork. This is the company responsible
for the marketing and distribution of the typeface that is being classified. It is
reasonable to assume that there will be 6 vendors of ITC Zapf Dingbats for use on
desktop platforms in the near future (if not already). It is also likely that the vendors
will have other inherent benefits in their fonts (more kern pairs, unregularized data,
hand hinted, etc.). This identifier will allow for the correct vendor's type to be used
over another, possibly inferior, font file. The Vendor ID value is not required. The
Vendor ID list can be accessed via the informative reference 6 in the bibliolgraphy.

fsSelection

Format: 2-byte bit field.

Title: Font selection flags.

Description: Contains information concerning the nature of the font patterns, as follows:

Bit # macStyle bit C definition Description

0 bit 1 ITALIC Font contains Italic characters, otherwise they
are upright.

571

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 571
	

1 UNDERSCORE Characters are underscored.

2 NEGATIVE Characters have their foreground and
background reversed.

3 OUTLINED Outline (hollow) characters, otherwise they are
solid.

4 STRIKEOUT Characters are overstruck.

5 bit 0 BOLD Characters are emboldened.

6 REGULAR Characters are in the standard weight/style for
the font.

Comments: All undefined bits must be zero.

This field contains information on the original design of the font. Bits 0 & 5 can be used to
determine if the font was designed with these features or whether some type of machine
simulation was performed on the font to achieve this appearance. Bits 1-4 are rarely used bits
that indicate the font is primarily a decorative or special purpose font.

If bit 6 is set, then bits 0 and 5 must be clear, else the behavior is undefined. As noted above,
the settings of bits 0 and 1 must be reflected in the macStyle bits in the 'head' table. While bit 6
on implies that bits 0 and 1 of macStyle are clear (along with bits 0 and 5 of fsSelection), the
reverse is not true. Bits 0 and 1 of macStyle (and 0 and 5 of fsSelection) may be clear and that
does not give any indication of whether or not bit 6 of fsSelection is clear (e.g., Arial Light would
have all bits cleared; it is not the regular version of Arial).

usFirstCharIndex

Format: uint16

Description: The minimum Unicode index (character code) in this font, according to the cmap subtable for
platform ID 3 and platform- specific encoding ID 0 or 1. For most fonts supporting Win-ANSI or
other character sets, this value would be 0x0020. This field cannot represent supplementary
character values (codepoints greater than 0xFFFF). Fonts that support supplementary
characters should set the value in this field to 0xFFFF if the minimum index value is a
supplementary character.

usLastCharIndex

Format: uint16

Description: The maximum Unicode index (character code) in this font, according to the cmap subtable for
platform ID 3 and encoding ID 0 or 1. This value depends on which character sets the font
supports. This field cannot represent supplementary character values (codepoints greater than
0xFFFF). Fonts that support supplementary characters should set the value in this field to
0xFFFF.

sTypoAscender

Format: int16

Description: The typographic ascender for this font. Remember that this is not the same as the Ascender
value in the 'hhea' table, . One good source for sTypoAscender in Latin based fonts is the
Ascender value from an AFM file. For CJK fonts see below.

572

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

572 ©	ISO/IEC	2019	–	All	rights	reserved
	

The suggested usage for sTypoAscender is that it be used in conjunction with unitsPerEm to
compute typographically-correct default line spacing. The goal is to free applications from
Macintosh or Windows-specific metrics which are constrained by backward compatibility
requirements. These new metrics, when combined with the character design widths, will allow
applications to lay out documents in a typographically correct and portable fashion.

For CJK (Chinese, Japanese, and Korean) fonts that are intended to be used for vertical writing
(in addition to horizontal writing), the required value for sTypoAscender is that which describes
the top of the of the ideographic em-box. For example, if the ideographic em-box of the font
extends from coordinates 0,-120 to 1000,880 (that is, a 1000x1000 box set 120 design units
below the Latin baseline), then the value of sTypoAscender must be set to 880. Failing to
adhere to these requirements will result in incorrect vertical layout.

Also see the Recommendations clause 7 for more on this field.

sTypoDescender

Format: int16

Description: The typographic descender for this font.. One good source for sTypoDescender in Latin based
fonts is the Descender value from an AFM file. For CJK fonts see below.

The suggested usage for sTypoDescender is that it be used in conjunction with unitsPerEm to
compute typographically-correct default line spacing. The goal is to free applications from
Macintosh or Windows-specific metrics which are constrained by backward compatability
requirements. These new metrics, when combined with the character design widths, will allow
applications to lay out documents in a typographically correct and portable fashion.
For CJK (Chinese, Japanese, and Korean) fonts that are intended to be used for vertical writing
(in addition to horizontal writing), the required value for sTypoDescender is that which describes
the bottom of the of the ideographic em-box. For example, if the ideographic em-box of the font
extends from coordinates 0,-120 to 1000,880 (that is, a 1000x1000 box set 120 design units
below the Latin baseline), then the value of sTypoDescender must be set to -120. Failing to
adhere to these requirements will result in incorrect vertical layout.

Also see the Recommendations clause 7 for more on this field.

sTypoLineGap

Format: int16

Description: The typographic line gap for this font. Remember that this is not the same as the LineGap value
in the 'hhea' table.

The suggested usage for sTypoLineGap is that it be used in conjunction with unitsPerEm to
compute typographically-correct default line spacing. Typical values average 7-10% of units per
em. The goal is to free applications from Macintosh or Windows-specific metrics which are
constrained by backward compatability requirements (see clause 7, "Recommendations for
OFF Fonts"). These new metrics, when combined with the character design widths, will allow
applications to lay out documents in a typographically correct and portable fashion.

usWinAscent

Format: uint16

Description: The ascender metric for Windows. For platform 3 encoding 0 fonts, it is the same as yMax.
Windows will clip the bitmap of any portion of a glyph that appears above this value. Some
applications use this value to determine default line spacing. This is strongly discouraged. The
typographic ascender, descender and line gap fields in conjunction with unitsPerEm should be
used for this purpose. Developers should set this field keeping the above factors in mind.

573

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 573
	

If any clipping is unacceptable, then the value should be set to yMax.

However, if a developer desires to provide appropriate default line spacing using this field, for
those applications that continue to use this field for doing so (against OFF recommendations),
then the value should be set appropriately. In such a case, it may result in some glyph bitmaps
being clipped.

usWinDescent

Format: uint16

Description: The descender metric for Windows. For platform 3 encoding 0 fonts, it is the same as -yMin.
Windows will clip the bitmap of any portion of a glyph that appears below this value. Some
applications use this value to determine default line spacing. This is strongly discouraged. The
typographic ascender, descender and line gap fields in conjunction with unitsPerEm should be
used for this purpose. Developers should set this field keeping the above factors in mind.
If any clipping is unacceptable, then the value should be set to yMin.

However, if a developer desires to provide appropriate default line spacing using this field, for
those applications that continue to use this field for doing so (against OFF recommendations),
then the value should be set appropriately. In such a case, it may result in some glyph bitmaps
being clipped.

ulCodePageRange

ulCodePageRange1 Bits 0-31
ulCodePageRange2 Bits 32-63

Format: 32-bit unsigned long (2 copies) totaling 64 bits.

Title: Code Page Character Range

Description: This field is used to specify the code pages encompassed by the font file in the 'cmap' subtable
for platform 3, encoding ID 1 (Windows platform). If the font file is encoding ID 0, then the
Symbol Character Set bit should be set. If the bit is set (1) then the code page is considered
functional. If the bit is clear (0) then the code page is not considered functional. Each of the bits
is treated as an independent flag and the bits can be set in any combination. The determination
of "functional" is left up to the font designer, although character set selection should attempt to
be functional by code pages if at all possible.

Symbol character sets have a special meaning. If the symbol bit (31) is set, and the font file
contains a 'cmap' subtable for platform of 3 and encoding ID of 1, then all of the characters in
the Unicode range 0xF000 - 0xF0FF (inclusive) will be used to enumerate the symbol character
set. If the bit is not set, any characters present in that range will not be enumerated as a symbol
character set.

All reserved fields must be zero. Each long is in Big-Endian form.

Bit Code Page Description

0 1252 Latin 1

1 1250 Latin 2: Eastern Europe

2 1251 Cyrillic

3 1253 Greek

4 1254 Turkish

574

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

574 ©	ISO/IEC	2019	–	All	rights	reserved
	

5 1255 Hebrew

6 1256 Arabic

7 1257 Windows Baltic

8 1258 Vietnamese

9-15 Reserved for Alternate ANSI

16 874 Thai

17 932 JIS/Japan

18 936 Chinese: Simplified chars--PRC and
Singapore

19 949 Korean Wansung

20 950 Chinese: Traditional chars--Taiwan and
Hong Kong

21 1361 Korean Johab

22-28 Reserved for Alternate ANSI & OEM

29 Macintosh Character Set (US Roman)

30 OEM Character Set

31 Symbol Character Set

32-47 Reserved for OEM

48 869 IBM Greek

49 866 MS-DOS Russian

50 865 MS-DOS Nordic

51 864 Arabic

52 863 MS-DOS Canadian French

53 862 Hebrew

54 861 MS-DOS Icelandic

55 860 MS-DOS Portuguese

56 857 IBM Turkish

57 855 IBM Cyrillic; primarily Russian

58 852 Latin 2

59 775 MS-DOS Baltic

60 737 Greek; former 437 G

61 708 Arabic; ASMO 708

62 850 WE/Latin 1

63 437 US

sxHeight

Format: int16

Description: This metric specifies the distance between the baseline and the approximate height of non-
ascending lowercase letters measured in font design units. This value would normally be

575

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 575
	

specified by a type designer but in situations where that is not possible, for example when a
legacy font is being converted, the value may be set equal to the top of the unscaled and
unhinted glyph bounding box of the glyph encoded at U+0078 (LATIN SMALL LETTER X). If no
glyph is encoded in this position the field should be set to 0.

This metric, if specified, can be used in font substitution: the xHeight value of one font can be
scaled to approximate the apparent size of another.

sCapHeight

Format: int16

Description: This metric specifies the distance between the baseline and the approximate height of
uppercase letters measured in font design units. This value would normally be specified by a
type designer but in situations where that is not possible, for example when a legacy font is
being converted, the value may be set equal to the top of the unscaled and unhinted glyph
bounding box of the glyph encoded at U+0048 (LATIN CAPITAL LETTER H). If no glyph is
encoded in this position the field should be set to 0.

This metric, if specified, can be used in systems that specify type size by capital height
measured in millimeters. It can also be used as an alignment metric; the top of a drop capital,
for instance, can be aligned to the sCapHeight metric of the first line of text.

usDefaultChar

Format: uint16

Description: Whenever a request is made for a character that is not in the font, Windows provides this
default character. If the value of this field is zero, glyph ID 0 is to be used for the default
character otherwise this is the Unicode encoding of the glyph that Windows uses as the default
character. This field cannot represent supplementary character values (codepoints greater than
0xFFFF).

usBreakChar

Format: uint16

Description: This is the Unicode encoding of the glyph that Windows uses as the break character. The break
character is used to separate words and justify text. Most fonts specify 'space' as the break
character. This field cannot represent supplementary character values (codepoints greater than
0xFFFF).

usMaxContext

Format: uint16

Description: The maximum length of a target glyph context for any feature in this font. For example, a font
which has only a pair kerning feature should set this field to 2. If the font also has a ligature
feature in which the glyph sequence 'f f i' is substituted by the ligature 'ffi', then this field should
be set to 3. This field could be useful to sophisticated line-breaking engines in determining how
far they should look ahead to test whether something could change that effect the line breaking.
For chaining contextual lookups, the length of the string (covered glyph) + (input sequence) +
(lookahead sequence) should be considered.

576

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

576 ©	ISO/IEC	2019	–	All	rights	reserved
	

B.4 OS/2 - OS/2 and Windows metrics (version 4)

The OS/2 table consists of a set of metrics that are required in OFF fonts.

NOTE This is maintained for purposes of being able to validate version 4 OS/2 tables.

Type Name of Entry Comments

uint16 Version 0x0004

int16 xAvgCharWidth

uint16 usWeightClass

uint16 usWidthClass

uint16 fsType

int16 ySubscriptXSize

int16 ySubscriptYSize

int16 ySubscriptXOffset

int16 ySubscriptYOffset

int16 ySuperscriptXSize

int16 ySuperscriptYSize

int16 ySuperscriptXOffset

int16 ySuperscriptYOffset

int16 yStrikeoutSize

int16 yStrikeoutPosition

int16 sFamilyClass

uint8 Panose[10]

uint32 ulUnicodeRange1 Bits 0-31

uint32 ulUnicodeRange2 Bits 32-63
version 0x0001 and later

uint32 ulUnicodeRange3 Bits 64-95
version 0x0001 and later

uint32 ulUnicodeRange4 Bits 96-127
version 0x0001 and later

Tag achVendID[4]

uint16 fsSelection

uint16 usFirstCharIndex

uint16 usLastCharIndex

int16 sTypoAscender

int16 sTypoDescender

int16 sTypoLineGap

uint16 usWinAscent

uint16 usWinDescent

577

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 577
	

uint32 ulCodePageRange1 Bits 0-31
version 0x0001 and later

uint32 ulCodePageRange2 Bits 32-63
version 0x0001 and later

int16 sxHeight version 0x0002 and later

int16 sCapHeight version 0x0002 and later

uint16 usDefaultChar version 0x0002 and later

uint16 usBreakChar version 0x0002 and later

uint16 usMaxContext version 0x0002 and later

version

Format: uint16

Units: n/a

Title: OS/2 table version number.

Description: The version number for this OS/2 table.

Comments: The version number allows for identification of the precise contents and layout for the OS/2
table. The version number for this layout is four (4). See Annex B.

xAvgCharWidth

Format: int16

Units: Pels / em units

Title: Average weighted escapement.

Description: The Average Character Width parameter specifies the arithmetic average of the escapement
(width) of all non-zero width glyphs in the font.

Comments: The value for xAvgCharWidth is calculated by obtaining the arithmetic average of the width of
all non-zero width glyphs in the font. Furthermore, it is strongly recommended that
implementers do not rely on this value for computing layout for lines of text. Especially, for
cases where complex scripts are used. The calculation algorithm differs from one being used in
previous versions of OS/2 table. For details see Annex A.

usWeightClass

Format: uint16

Title: Weight class.

Description: Indicates the visual weight (degree of blackness or thickness of strokes) of the characters in the
font.

Comments:

578

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

578 ©	ISO/IEC	2019	–	All	rights	reserved
	

Value Description C Definition (from windows.h)

100 Thin FW_THIN

200 Extra-light (Ultra-light) FW_EXTRALIGHT

300 Light FW_LIGHT

400 Normal (Regular) FW_NORMAL

500 Medium FW_MEDIUM

600 Semi-bold (Demi-bold) FW_SEMIBOLD

700 Bold FW_BOLD

800 Extra-bold (Ultra-bold) FW_EXTRABOLD

900 Black (Heavy) FW_BLACK

usWidthClass

Format: uint16

Title: Width class.

Description: Indicates a relative change from the normal aspect ratio (width to height ratio) as specified by a
font designer for the glyphs in a font.

Comments: Although every character in a font may have a different numeric aspect ratio, each character in
a font of normal width has a relative aspect ratio of one. When a new type style is created of a
different width class (either by a font designer or by some automated means) the relative aspect
ratio of the characters in the new font is some percentage greater or less than those same
characters in the normal font -- it is this difference that this parameter specifies.

Value Description C Definition % of normal

1 Ultra-condensed FWIDTH_ULTRA_CONDENSED 50

2 Extra-condensed FWIDTH_EXTRA_CONDENSED 62.5

3 Condensed FWIDTH_CONDENSED 75

4 Semi-condensed FWIDTH_SEMI_CONDENSED 87.5

5 Medium (normal) FWIDTH_NORMAL 100

6 Semi-expanded FWIDTH_SEMI_EXPANDED 112.5

7 Expanded FWIDTH_EXPANDED 125

8 Extra-expanded FWIDTH_EXTRA_EXPANDED 150

9 Ultra-expanded FWIDTH_ULTRA_EXPANDED 200

fsType

Format: uint16

579

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 579
	

Title: Type flags.

Description: Indicates font embedding licensing rights for the font. Embeddable fonts may be stored in a
document. When a document with embedded fonts is opened on a system that does not have
the font installed (the remote system), the embedded font may be loaded for temporary (and in
some cases, permanent) use on that system by an embedding-aware application. Embedding
licensing rights are granted by the vendor of the font.

The OFF Font Embedding DLL Applications that implement support for font embedding, either through
use of the Font Embedding DLL or through other means, must not embed fonts which are not licensed to
permit embedding. Further, applications loading embedded fonts for temporary use (see Preview & Print
and Editable embedding below) must delete the fonts when the document containing the embedded font
is closed.

This version of the OS/2 table makes bits 0 - 3 a set of exclusive bits. In other words, at most one bit in
this range may be set at a time. The purpose is to remove misunderstandings caused by previous
behavior of using the least restrictive of the bits that are set.

Bit Bit Mask Description

 0x0000 Installable Embedding: No fsType bit is set. Thus fsType is
zero.
Fonts with this setting indicate that they may be embedded
and permanently installed on the remote system by an
application. The user of the remote system acquires the
identical rights, obligations and licenses for that font as the
original purchaser of the font, and is subject to the same end-
user license agreement, copyright, design patent, and/or
trademark as was the original purchaser.

0 0x0001 Reserved, must be zero.

1 0x0002 Restricted License embedding:
Fonts that have only this bit set must not be modified,
embedded or exchanged in any manner without first
obtaining permission of the legal owner.
Caution: For Restricted License embedding to take effect, it
must be the only level of embedding selected.

2 0x0004 Preview & Print embedding: When this bit is set, the font may
be embedded, and temporarily loaded on the remote system.
Documents containing Preview & Print fonts must be opened
"read-only;" no edits can be applied to the document.

3 0x0008 Editable embedding: When this bit is set, the font may be
embedded but must only be installed temporarily on other
systems. In contrast to Preview & Print fonts, documents
containing Editable fonts may be opened for reading, editing
is permitted, and changes may be saved.

4-7 Reserved, must be zero.

8 0x0100 No subsetting: When this bit is set, the font may not be
subsetted prior to embedding. Other embedding restrictions
specified in bits 0-3 and 9 also apply.

9 0x0200 Bitmap embedding only: When this bit is set, only bitmaps
contained in the font may be embedded. No outline data may
be embedded. If there are no bitmaps available in the font,
then the font is considered unembeddable and the embedding

580

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

580 ©	ISO/IEC	2019	–	All	rights	reserved
	

services will fail. Other embedding restrictions specified in bits
0-3 and 8 also apply.

10-15 Reserved, must be zero.

ySubscriptXSize

Format: int16

Units: Font design units

Title: Subscript horizontal font size.

Description: The recommended horizontal size in font design units for subscripts for this font.

Comments: If a font has two recommended sizes for subscripts, e.g., numerics and other, the numeric sizes
should be stressed. This size field maps to the em square size of the font being used for a
subscript. The horizontal font size specifies a font designer's recommended horizontal font size
for subscript characters associated with this font. If a font does not include all of the required
subscript characters for an application, and the application can substitute characters by scaling
the character of a font or by substituting characters from another font, this parameter specifies
the recommended em square for those subscript characters.

For example, if the em square for a font is 2048 and ySubScriptXSize is set to 205, then the
horizontal size for a simulated subscript character would be 1/10th the size of the normal
character.

ySubscriptYSize

Format: int16

Units: Font design units

Title: Subscript vertical font size.

Description: The recommended vertical size in font design units for subscripts for this font.

Comments: If a font has two recommended sizes for subscripts, e.g. numerics and other, the numeric sizes
should be stressed. This size field maps to the emHeight of the font being used for a subscript.
The horizontal font size specifies a font designer's recommendation for horizontal font size of
subscript characters associated with this font. If a font does not include all of the required
subscript characters for an application, and the application can substitute characters by scaling
the characters in a font or by substituting characters from another font, this parameter specifies
the recommended horizontal EmInc for those subscript characters.

For example, if the em square for a font is 2048 and ySubScriptYSize is set to 205, then the
vertical size for a simulated subscript character would be 1/10th the size of the normal
character.

ySubscriptXOffset

Format: int16

Units: Font design units

581

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 581
	

Title: Subscript x offset.

Description: The recommended horizontal offset in font design untis for subscripts for this font.

Comments: The Subscript X offset parameter specifies a font designer's recommended horizontal offset --
from the character origin of the font to the character origin of the subscript's character -- for
subscript characters associated with this font. If a font does not include all of the required
subscript characters for an application, and the application can substitute characters, this
parameter specifies the recommended horizontal position from the character escapement point
of the last character before the first subscript character. For upright characters, this value is
usually zero; however, if the characters of a font have an incline (italic characters) the reference
point for subscript characters is usually adjusted to compensate for the angle of incline.

ySubscriptYOffset

Format: int16

Units: Font design units

Title: Subscript y offset.

Description: The recommended vertical offset in font design units from the baseline for subscripts for this
font.

Comments: The Subscript Y offset parameter specifies a font designer's recommended vertical offset from
the character baseline to the character baseline for subscript characters associated with this
font. Values are expressed as a positive offset below the character baseline. If a font does not
include all of the required subscript for an application, this parameter specifies the
recommended vertical distance below the character baseline for those subscript characters.

ySuperscriptXSize

Format: int16

Units: Font design units

Title: Superscript horizontal font size.

Description: The recommended horizontal size in font design units for superscripts for this font.

Comments: If a font has two recommended sizes for subscripts, e.g., numerics and other, the numeric sizes
should be stressed. This size field maps to the em square size of the font being used for a
subscript. The horizontal font size specifies a font designer's recommended horizontal font size
for superscript characters associated with this font. If a font does not include all of the required
superscript characters for an application, and the application can substitute characters by
scaling the character of a font or by substituting characters from another font, this parameter
specifies the recommended em square for those superscript characters.

For example, if the em square for a font is 2048 and ySuperScriptXSize is set to 205, then the
horizontal size for a simulated superscript character would be 1/10th the size of the normal
character.

ySuperscriptYSize

Format: int16

582

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

582 ©	ISO/IEC	2019	–	All	rights	reserved
	

Units: Font design units

Title: Superscript vertical font size.

Description: The recommended vertical size in font design units for superscripts for this font.

Comments: If a font has two recommended sizes for subscripts, e.g., numerics and other, the numeric sizes
should be stressed. This size field maps to the emHeight of the font being used for a subscript.
The vertical font size specifies a font designer's recommended vertical font size for superscript
characters associated with this font. If a font does not include all of the required superscript
characters for an application, and the application can substitute characters by scaling the
character of a font or by substituting characters from another font, this parameter specifies the
recommended EmHeight for those superscript characters.

For example, if the em square for a font is 2048 and ySuperScriptYSize is set to 205, then the
vertical size for a simulated superscript character would be 1/10th the size of the normal
character.

ySuperscriptXOffset

Format: int16

Units: Font design units

Title: Superscript x offset.

Description: The recommended horizontal offset in font design units for superscripts for this font.

Comments: The Superscript X offset parameter specifies a font designer's recommended horizontal offset --
from the character origin to the superscript character's origin for the superscript characters
associated with this font. If a font does not include all of the required superscript characters for
an application, this parameter specifies the recommended horizontal position from the
escapement point of the character before the first superscript character. For upright characters,
this value is usually zero; however, if the characters of a font have an incline (italic characters)
the reference point for superscript characters is usually adjusted to compensate for the angle of
incline.

ySuperscriptYOffset

Format: int16

Units: Font design units

Title: Superscript y offset.

Description: The recommended vertical offset in font design units from the baseline for superscripts for this
font.

Comments: The Superscript Y offset parameter specifies a font designer's recommended vertical offset --
from the character baseline to the superscript character's baseline associated with this font.
Values for this parameter are expressed as a positive offset above the character baseline. If a
font does not include all of the required superscript characters for an application, this parameter
specifies the recommended vertical distance above the character baseline for those superscript
characters.

583

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 583
	

yStrikeoutSize

Format: int16

Units: Font design units

Title: Strikeout size.

Description: Width of the strikeout stroke in font design units.

Comments: This field should normally be the width of the em dash for the current font. If the size is one, the
strikeout line will be the line represented by the strikeout position field. If the value is two, the
strikeout line will be the line represented by the strikeout position and the line immediately
above the strikeout position. For a Roman font with a 2048 em square, 102 is suggested.

yStrikeoutPosition

Format: int16

Units: Font design units

Title: Strikeout position.

Description: The position of the top of the strikeout stroke relative to the baseline in font design units.

Comments: Positive values represent distances above the baseline, while negative values represent
distances below the baseline. A value of zero falls directly on the baseline, while a value of one
falls one pel above the baseline. The value of strikeout position should not interfere with the
recognition of standard characters, and therefore should not line up with crossbars in the font.
For a Roman font with a 2048 em square, 460 is suggested.

sFamilyClass

Format: int16

Title: Font-family class and subclass.

Description: This parameter is a classification of font-family design.

Comments: The font class and font subclass are registered values per Annex A. the to each font family.
This parameter is intended for use in selecting an alternate font when the requested font is not
available. The font class is the most general and the font subclass is the most specific. The high
byte of this field contains the family class, while the low byte contains the family subclass.

Panose

Format: 10 byte array

Title: PANOSE classification number

International: Additional specifications are required for PANOSE to classify non-Latin character sets.

Description: This 10 byte series of numbers is used to describe the visual characteristics of a given
typeface. If provided, these characteristics are then used to associate the font with other fonts
of similar appearance having different names; the default values should be set to 'zero'.

584

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

584 ©	ISO/IEC	2019	–	All	rights	reserved
	

Comments: The specification for assigning PANOSE values [14] can be found in bibliography.

ulUnicodeRange

ulUnicodeRange1 (Bits 0-31)
ulUnicodeRange2 (Bits 32-63)
ulUnicodeRange3 (Bits 64-95)
ulUnicodeRange4 (Bits 96-127)

Format: 32-bit unsigned long(4 copies) totaling 128 bits.

Title: Unicode Character Range

Description: This field is used to specify the Unicode blocks or ranges encompassed by the font file in the 'cmap'
subtable for platform 3, encoding ID 1 (Microsoft platform, Unicode) and platform 3, encoding ID 10
(Microsoft platform, UCS-4). If the bit is set (1) then the Unicode range is considered functional. If the bit is
clear (0) then the range is not considered functional. Each of the bits is treated as an independent flag and
the bits can be set in any combination. The determination of "functional" is left up to the font designer,
although character set selection should attempt to be functional by ranges, if at all possible.

All reserved fields must be zero. Each long is in Big-Endian form. See ISO/IEC 10646 or the
most recent version of the Unicode Standard for the list of Unicode ranges and characters.

Bit Unicode Range Block range

0 Basic Latin 0000-007F

1 Latin-1 Supplement 0080-00FF

2 Latin Extended-A 0100-017F

3 Latin Extended-B 0180-024F

4 IPA Extensions 0250-02AF

 Phonetic Extensions 1D00-1D7F

 Phonetic Extensions Supplement 1D80-1DBF

5 Spacing Modifier Letters 02B0-02FF

 Modifier Tone Letters A700-A71F

6 Combining Diacritical Marks 0300-036F

 Combining Diacritical Marks Supplement 1DC0-1DFF

7 Greek and Coptic 0370-03FF

8 Coptic 2C80-2CFF

9 Cyrillic 0400-04FF

 Cyrillic Supplement 0500-052F

 Cyrillic Extended-A 2DE0-2DFF

 Cyrillic Extended-B A640-A69F

10 Armenian 0530-058F

11 Hebrew 0590-05FF

12 Vai A500-A63F

585

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 585
	

13 Arabic 0600-06FF

 Arabic Supplement 0750-077F

14 NKo 07C0-07FF

15 Devanagari 0900-097F

16 Bengali 0980-09FF

17 Gurmukhi 0A00-0A7F

18 Gujarati 0A80-0AFF

19 Oriya 0B00-0B7F

20 Tamil 0B80-0BFF

21 Telugu 0C00-0C7F

22 Kannada 0C80-0CFF

23 Malayalam 0D00-0D7F

24 Thai 0E00-0E7F

25 Lao 0E80-0EFF

26 Georgian 10A0-10FF

 Georgian Supplement 2D00-2D2F

27 Balinese 1B00-1B7F

28 Hangul Jamo 1100-11FF

29 Latin Extended Additional 1E00-1EFF

 Latin Extended-C 2C60-2C7F

 Latin Extended-D A720-A7FF

30 Greek Extended 1F00-1FFF

31 General Punctuation 2000-206F

 Supplemental Punctuation 2E00-2E7F

32 Superscripts And Subscripts 2070-209F

33 Currency Symbols 20A0-20CF

34 Combining Diacritical Marks For Symbols 20D0-20FF

35 Letterlike Symbols 2100-214F

36 Number Forms 2150-218F

37 Arrows 2190-21FF

 Supplemental Arrows-A 27F0-27FF

 Supplemental Arrows-B 2900-297F

 Miscellaneous Symbols and Arrows 2B00-2BFF

38 Mathematical Operators 2200-22FF

 Supplemental Mathematical Operators 2A00-2AFF

 Miscellaneous Mathematical Symbols-A 27C0-27EF

 Miscellaneous Mathematical Symbols-B 2980-29FF

39 Miscellaneous Technical 2300-23FF

586

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

586 ©	ISO/IEC	2019	–	All	rights	reserved
	

40 Control Pictures 2400-243F

41 Optical Character Recognition 2440-245F

42 Enclosed Alphanumerics 2460-24FF

43 Box Drawing 2500-257F

44 Block Elements 2580-259F

45 Geometric Shapes 25A0-25FF

46 Miscellaneous Symbols 2600-26FF

47 Dingbats 2700-27BF

48 CJK Symbols And Punctuation 3000-303F

49 Hiragana 3040-309F

50 Katakana 30A0-30FF

 Katakana Phonetic Extensions 31F0-31FF

51 Bopomofo 3100-312F

 Bopomofo Extended 31A0-31BF

52 Hangul Compatibility Jamo 3130-318F

53 Phags-pa A840-A87F

54 Enclosed CJK Letters And Months 3200-32FF

55 CJK Compatibility 3300-33FF

56 Hangul Syllables AC00-D7AF

57 Non-Plane 0 * D800-DFFF

58 Phoenician 10900-1091F

59 CJK Unified Ideographs 4E00-9FFF

 CJK Radicals Supplement 2E80-2EFF

 Kangxi Radicals 2F00-2FDF

 Ideographic Description Characters 2FF0-2FFF

 CJK Unified Ideographs Extension A 3400-4DBF

 CJK Unified Ideographs Extension B 20000-2A6DF

 Kanbun 3190-319F

60 Private Use Area (plane 0) E000-F8FF

61 CJK Strokes 31C0-31EF

 CJK Compatibility Ideographs F900-FAFF

 CJK Compatibility Ideographs Supplement 2F800-2FA1F

62 Alphabetic Presentation Forms FB00-FB4F

63 Arabic Presentation Forms-A FB50-FDFF

64 Combining Half Marks FE20-FE2F

65 Vertical Forms FE10-FE1F

 CJK Compatibility Forms FE30-FE4F

66 Small Form Variants FE50-FE6F

587

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 587
	

67 Arabic Presentation Forms-B FE70-FEFF

68 Halfwidth And Fullwidth Forms FF00-FFEF

69 Specials FFF0-FFFF

70 Tibetan 0F00-0FFF

71 Syriac 0700-074F

72 Thaana 0780-07BF

73 Sinhala 0D80-0DFF

74 Myanmar 1000-109F

75 Ethiopic 1200-137F

 Ethiopic Supplement 1380-139F

 Ethiopic Extended 2D80-2DDF

76 Cherokee 13A0-13FF

77 Unified Canadian Aboriginal Syllabics 1400-167F

78 Ogham 1680-169F

79 Runic 16A0-16FF

80 Khmer 1780-17FF

 Khmer Symbols 19E0-19FF

81 Mongolian 1800-18AF

82 Braille Patterns 2800-28FF

83 Yi Syllables A000-A48F

 Yi Radicals A490-A4CF

84 Tagalog 1700-171F

 Hanunoo 1720-173F

 Buhid 1740-175F

 Tagbanwa 1760-177F

85 Old Italic 10300-1032F

86 Gothic 10330-1034F

87 Deseret 10400-1044F

88 Byzantine Musical Symbols 1D000-1D0FF

 Musical Symbols 1D100-1D1FF

 Ancient Greek Musical Notation 1D200-1D24F

89 Mathematical Alphanumeric Symbols 1D400-1D7FF

90 Private Use (plane 15) F0000-FFFFD

 Private Use (plane 16) 100000-10FFFD

91 Variation Selectors FE00-FE0F

 Variation Selectors Supplement E0100-E01EF

92 Tags E0000-E007F

93 Limbu 1900-194F

588

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

588 ©	ISO/IEC	2019	–	All	rights	reserved
	

94 Tai Le 1950-197F

95 New Tai Lue 1980-19DF

96 Buginese 1A00-1A1F

97 Glagolitic 2C00-2C5F

98 Tifinagh 2D30-2D7F

99 Yijing Hexagram Symbols 4DC0-4DFF

100 Syloti Nagri A800-A82F

101 Linear B Syllabary 10000-1007F

 Linear B Ideograms 10080-100FF

 Aegean Numbers 10100-1013F

102 Ancient Greek Numbers 10140-1018F

103 Ugaritic 10380-1039F

104 Old Persian 103A0-103DF

105 Shavian 10450-1047F

106 Osmanya 10480-104AF

107 Cypriot Syllabary 10800-1083F

108 Kharoshthi 10A00-10A5F

109 Tai Xuan Jing Symbols 1D300-1D35F

110 Cuneiform 12000-123FF

 Cuneiform Numbers and Punctuation 12400-1247F

111 Counting Rod Numerals 1D360-1D37F

112 Sundanese 1B80-1BBF

113 Lepcha 1C00-1C4F

114 Ol Chiki 1C50-1C7F

115 Saurashtra A880-A8DF

116 Kayah Li A900-A92F

117 Rejang A930-A95F

118 Cham AA00-AA5F

119 Ancient Symbols 10190-101CF

120 Phaistos Disc 101D0-101FF

121 Carian 102A0-102DF

 Lycian 10280-1029F

 Lydian 10920-1093F

122 Domino Tiles 1F030-1F09F

 Mahjong Tiles 1F000-1F02F

123-127 Reserved

NOTE * Setting bit 57 implies that there is at least one codepoint beyond the Basic Multilingual Plane that is supported
by this font.

589

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 589
	

achVendID

Format: 4-byte Tag

Title: Font Vendor Identification

Description: The four character identifier for the vendor of the given type face.

Comments: This is not the royalty owner of the original artwork. This is the company responsible for the
marketing and distribution of the typeface that is being classified. It is reasonable to assume that
there will be 6 vendors of ITC Zapf Dingbats for use on desktop platforms in the near future (if
not already). It is also likely that the vendors will have other inherent benefits in their fonts (more
kern pairs, unregularized data, hand hinted, etc.). This identifier will allow for the correct
vendor's type to be used over another, possibly inferior, font file. The Vendor ID value is not
required. The Vendor ID list can be accessed via the informative reference 6 in the
bibliolgraphy.

fsSelection

Format: 2-byte bit field.

Title: Font selection flags.

Description: Contains information concerning the nature of the font patterns, as follows:

Bit # macStyle bit C definition Description

0 bit 1 ITALIC Font contains Italic or oblique characters,
otherwise they are upright.

1 UNDERSCORE Characters are underscored.

2 NEGATIVE Characters have their foreground and
background reversed.

3 OUTLINED Outline (hollow) characters, otherwise they
are solid.

4 STRIKEOUT Characters are overstruck.

5 bit 0 BOLD Characters are emboldened.

6 REGULAR Characters are in the standard weight/style
for the font.

7 USE_TYPO_METRICS If set, it is strongly recommended to use
OS/2.sTypoAscender -
OS/2.sTypoDescender+
OS/2.sTypoLineGap as a value for default
line spacing for this font.

(OS/2 version 4 and later)

8 WWS The font family this face belongs to is
composed of faces that only differ in weight,
width and slope (please see more detailed
description below.)

(OS/2 version 4 and later)

9 OBLIQUE Font contains oblique characters.

590

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

590 ©	ISO/IEC	2019	–	All	rights	reserved
	

(OS/2 version 4 and later)

Comments: All undefined bits must be zero.

This field contains information on the original design of the font. Bits 0 & 5 can be used to
determine if the font was designed with these features or whether some type of machine
simulation was performed on the font to achieve this appearance. Bits 1-4 are rarely used bits
that indicate the font is primarily a decorative or special purpose font.

If bit 6 is set, then bits 0 and 5 must be clear, else the behavior is undefined. As noted above, the
settings of bits 0 and 5 must be reflected in the macStyle bits in the 'head' table. While bit 6 on
implies that bits 0 and 1 of macStyle are clear (along with bits 0 and 5 of fsSelection), the
reverse is not true. Bits 0 and 1 of macStyle (and 0 and 5 of fsSelection) may be clear and that
does not give any indication of whether or not bit 6 of fsSelection is clear (e.g., Arial Light would
have all bits cleared; it is not the regular version of Arial).

Bit 7 was specified in OS/2 table v. 4. If fonts created with an earlier version of the OS/2 table
are updated to the current version of the OS/2 table, then, in order to minimize potential reflow of
existing documents which use the fonts, the bit would be set only for fonts for which using the
OS/2.usWin* metrics for line height would yield significantly inferior results than using the
OS/2.sTypo* values. New fonts, however, are not constrained by backward compatibility
situations, and so are free to set this bit always.

If bit 8 is set in OS/2 table v. 4, then the font’s typographic family contains faces that differ only in
one or more of the attributes weight, width and slope. For example, a family with only weight and
slope attributes will set this bit.

If unset in OS/2 table v. 4, then this font’s typographic family contains faces that differ in
attributes other than weight, width or slope. For example, a family with faces that differ only by
weight, slope, and optical size will not set this bit.

This bit must be unset in OS/2 table versions less than 4. In these cases, it is not possible to
determine any information about the typographic family’s attributes by examining this bit.

In this context, "typographic family" is the Microsoft Unicode string for name ID 16, if present,
else the Microsoft Unicode string for name ID 1; "weight" is OS/2.usWeightClass; "width" is
OS/2.usWidthClass; "slope" is OS/2.fsSelection bit 0 (ITALIC) and bit 9 (OBLIQUE).

If bit 9 is set in OS/2 table v. 4, then this font is to be considered an "oblique" style by processes
which make a distinction between oblique and italic styles, e.g. Cascading Style Sheets font
matching. For example, a font created by algorithmically slanting an upright face will set this bit.

If unset in OS/2 table v. 4, then this font is not to be considered an "oblique" style. For example,
a font that has a classic italic design will not set this bit.

This bit must be unset in OS/2 table versions less than 4. In these cases, it is not possible to
determine any information about this font's attributes by examining this bit.

This bit, unlike the ITALIC bit, is not related to style-linking for Windows GDI or Mac OS
applications in a traditional four-member family of regular, italic, bold and bold italic". It may be
set or unset independently of the ITALIC bit. In most cases, if OBLIQUE is set, then ITALIC will
also be set, though this is not required.

usFirstCharIndex

Format: uint16

Description: The minimum Unicode index (character code) in this font, according to the cmap subtable for
platform ID 3 and platform- specific encoding ID 0 or 1. For most fonts supporting Win-ANSI or
other character sets, this value would be 0x0020. This field cannot represent supplementary
character values (codepoints greater than 0xFFFF). Fonts that support supplementary
characters should set the value in this field to 0xFFFF if the minimum index value is a

591

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 591
	

supplementary character.

usLastCharIndex

Format: uint16

Description: The maximum Unicode index (character code) in this font, according to the cmap subtable for
platform ID 3 and encoding ID 0 or 1. This value depends on which character sets the font
supports. This field cannot represent supplementary character values (codepoints greater than
0xFFFF). Fonts that support supplementary characters should set the value in this field to
0xFFFF.

sTypoAscender

Format: int16

Description: The typographic ascender for this font. Remember that this is not the same as the Ascender
value in the 'hhea' table, . One good source for sTypoAscender in Latin based fonts is the
Ascender value from an AFM file. For CJK fonts see below.

The suggested usage for sTypoAscender is that it be used in conjunction with unitsPerEm to
compute typographically-correct default line spacing. The goal is to free applications from
Macintosh or Windows-specific metrics which are constrained by backward compatibility
requirements. These new metrics, when combined with the character design widths, will allow
applications to lay out documents in a typographically correct and portable fashion.

For CJK (Chinese, Japanese, and Korean) fonts that are intended to be used for vertical writing
(in addition to horizontal writing), the required value for sTypoAscender is that which describes
the top of the of the ideographic em-box. For example, if the ideographic em-box of the font
extends from coordinates 0,-120 to 1000,880 (that is, a 1000x1000 box set 120 design units
below the Latin baseline), then the value of sTypoAscender must be set to 880. Failing to
adhere to these requirements will result in incorrect vertical layout.

Also see the Recommendations clause 7 for more on this field.

sTypoDescender

Format: int16

Description: The typographic descender for this font.. One good source for sTypoDescender in Latin based
fonts is the Descender value from an AFM file. For CJK fonts see below.

The suggested usage for sTypoDescender is that it be used in conjunction with unitsPerEm to
compute typographically-correct default line spacing. The goal is to free applications from
Macintosh or Windows-specific metrics which are constrained by backward compatability
requirements. These new metrics, when combined with the character design widths, will allow
applications to lay out documents in a typographically correct and portable fashion.
For CJK (Chinese, Japanese, and Korean) fonts that are intended to be used for vertical writing
(in addition to horizontal writing), the required value for sTypoDescender is that which describes
the bottom of the ideographic em-box. For example, if the ideographic em-box of the font
extends from coordinates 0,-120 to 1000,880 (that is, a 1000x1000 box set 120 design units
below the Latin baseline), then the value of sTypoDescender must be set to -120. Failing to
adhere to these requirements will result in incorrect vertical layout.

Also see the Recommendations clause 7 for more on this field.

592

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

592 ©	ISO/IEC	2019	–	All	rights	reserved
	

sTypoLineGap

Format: int16

Description: The typographic line gap for this font. Remember that this is not the same as the LineGap value
in the 'hhea' table.

The suggested usage for sTypoLineGap is that it be used in conjunction with unitsPerEm to
compute typographically-correct default line spacing. Typical values average 7-10% of units per
em. The goal is to free applications from Macintosh or Windows-specific metrics which are
constrained by backward compatability requirements (see clause 7, "Recommendations for
OFF Fonts"). These new metrics, when combined with the character design widths, will allow
applications to lay out documents in a typographically correct and portable fashion.

usWinAscent

Format: uint16

Description: The ascender metric for Windows. For platform 3 encoding 0 fonts, it is the same as yMax.
Windows will clip the bitmap of any portion of a glyph that appears above this value. Some
applications use this value to determine default line spacing. This is strongly discouraged. The
typographic ascender, descender and line gap fields in conjunction with unitsPerEm should be
used for this purpose. Developers should set this field keeping the above factors in mind.
If any clipping is unacceptable, then the value should be set to yMax.

However, if a developer desires to provide appropriate default line spacing using this field, for
those applications that continue to use this field for doing so (against OFF recommendations),
then the value should be set appropriately. In such a case, it may result in some glyph bitmaps
being clipped.

usWinDescent

Format: uint16

Description: The descender metric for Windows. For platform 3 encoding 0 fonts, it is the same as -yMin.
Windows will clip the bitmap of any portion of a glyph that appears below this value. Some
applications use this value to determine default line spacing. This is strongly discouraged. The
typographic ascender, descender and line gap fields in conjunction with unitsPerEm should be
used for this purpose. Developers should set this field keeping the above factors in mind.
If any clipping is unacceptable, then the value should be set to yMin.

However, if a developer desires to provide appropriate default line spacing using this field, for
those applications that continue to use this field for doing so (against OFF recommendations),
then the value should be set appropriately. In such a case, it may result in some glyph bitmaps
being clipped.

ulCodePageRange

ulCodePageRange1 Bits 0-31
ulCodePageRange2 Bits 32-63

Format: 32-bit unsigned long (2 copies) totaling 64 bits.

Title: Code Page Character Range

593

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 593
	

Description: This field is used to specify the code pages encompassed by the font file in the 'cmap' subtable
for platform 3, encoding ID 1 (Windows platform). If the font file is encoding ID 0, then the
Symbol Character Set bit should be set. If the bit is set (1) then the code page is considered
functional. If the bit is clear (0) then the code page is not considered functional. Each of the bits
is treated as an independent flag and the bits can be set in any combination. The determination
of "functional" is left up to the font designer, although character set selection should attempt to
be functional by code pages if at all possible.

Symbol character sets have a special meaning. If the symbol bit (31) is set, and the font file
contains a 'cmap' subtable for platform of 3 and encoding ID of 1, then all of the characters in
the Unicode range 0xF000 - 0xF0FF (inclusive) will be used to enumerate the symbol character
set. If the bit is not set, any characters present in that range will not be enumerated as a symbol
character set.

All reserved fields must be zero. Each long is in Big-Endian form.

Bit Code Page Description

0 1252 Latin 1

1 1250 Latin 2: Eastern Europe

2 1251 Cyrillic

3 1253 Greek

4 1254 Turkish

5 1255 Hebrew

6 1256 Arabic

7 1257 Windows Baltic

8 1258 Vietnamese

9-15 Reserved for Alternate ANSI

16 874 Thai

17 932 JIS/Japan

18 936 Chinese: Simplified chars--PRC and
Singapore

19 949 Korean Wansung

20 950 Chinese: Traditional chars--Taiwan and
Hong Kong

21 1361 Korean Johab

22-28 Reserved for Alternate ANSI & OEM

29 Macintosh Character Set (US Roman)

30 OEM Character Set

31 Symbol Character Set

32-46 Reserved for OEM

47 Reserved

48 869 IBM Greek

49 866 MS-DOS Russian

50 865 MS-DOS Nordic

594

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

594 ©	ISO/IEC	2019	–	All	rights	reserved
	

51 864 Arabic

52 863 MS-DOS Canadian French

53 862 Hebrew

54 861 MS-DOS Icelandic

55 860 MS-DOS Portuguese

56 857 IBM Turkish

57 855 IBM Cyrillic; primarily Russian

58 852 Latin 2

59 775 MS-DOS Baltic

60 737 Greek; former 437 G

61 708 Arabic; ASMO 708

62 850 WE/Latin 1

63 437 US

sxHeight

Format: int16

Description: This metric specifies the distance between the baseline and the approximate height of non-
ascending lowercase letters measured in font design units. This value would normally be
specified by a type designer but in situations where that is not possible, for example when a
legacy font is being converted, the value may be set equal to the top of the unscaled and
unhinted glyph bounding box of the glyph encoded at U+0078 (LATIN SMALL LETTER X). If no
glyph is encoded in this position the field should be set to 0.

This metric, if specified, can be used in font substitution: the xHeight value of one font can be
scaled to approximate the apparent size of another.

sCapHeight

Format: int16

Description: This metric specifies the distance between the baseline and the approximate height of
uppercase letters measured in font design units. This value would normally be specified by a
type designer but in situations where that is not possible, for example when a legacy font is
being converted, the value may be set equal to the top of the unscaled and unhinted glyph
bounding box of the glyph encoded at U+0048 (LATIN CAPITAL LETTER H). If no glyph is
encoded in this position the field should be set to 0.

This metric, if specified, can be used in systems that specify type size by capital height
measured in millimeters. It can also be used as an alignment metric; the top of a drop capital,
for instance, can be aligned to the sCapHeight metric of the first line of text.

usDefaultChar

Format: uint16

Description: Whenever a request is made for a character that is not in the font, Windows provides this default
character. If the value of this field is zero, glyph ID 0 is to be used for the default character

595

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 595
	

otherwise this is the Unicode encoding of the glyph that Windows uses as the default character.
This field cannot represent supplementary character values (codepoints greater than 0xFFFF),
and so applications are strongly discouraged from using this field.

usBreakChar

Format: uint16

Description: This is the Unicode encoding of the glyph that Windows uses as the break character. The break
character is used to separate words and justify text. Most fonts specify 'space' as the break
character. This field cannot represent supplementary character values (codepoints greater than
0xFFFF), and so applications are strongly discouraged from using this field.

usMaxContext

Format: uint16

Description: The maximum length of a target glyph context for any feature in this font. For example, a font
which has only a pair kerning feature should set this field to 2. If the font also has a ligature
feature in which the glyph sequence 'f f i' is substituted by the ligature 'ffi', then this field should
be set to 3. This field could be useful to sophisticated line-breaking engines in determining how
far they should look ahead to test whether something could change that effect the line breaking.
For chaining contextual lookups, the length of the string (covered glyph) + (input sequence) +
(lookahead sequence) should be considered.

596

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

596 ©	ISO/IEC	2019	–	All	rights	reserved
	

Annex C
(informative)

OFF Mirroring Pairs List

This file is a copy of the Bidi_Mirroring_Glyph Property of Unicode 5.1
(http://www.unicode.org/Public/5.1.0/ucd/BidiMirroring.txt), with header comments changed and the
commented list at the end removed. Consult the URL above for specifications for the format of the data.

The data in this Annex will not be revised.

See the section "Left-to-right and right-to-left text" in subclause 6.1.4 for a description of how this file is to be
used by a text layout engine.

0028; 0029 # LEFT PARENTHESIS
0029; 0028 # RIGHT PARENTHESIS
003C; 003E # LESS-THAN SIGN
003E; 003C # GREATER-THAN SIGN
005B; 005D # LEFT SQUARE BRACKET
005D; 005B # RIGHT SQUARE BRACKET
007B; 007D # LEFT CURLY BRACKET
007D; 007B # RIGHT CURLY BRACKET
00AB; 00BB # LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
00BB; 00AB # RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
0F3A; 0F3B # TIBETAN MARK GUG RTAGS GYON
0F3B; 0F3A # TIBETAN MARK GUG RTAGS GYAS
0F3C; 0F3D # TIBETAN MARK ANG KHANG GYON
0F3D; 0F3C # TIBETAN MARK ANG KHANG GYAS
169B; 169C # OGHAM FEATHER MARK
169C; 169B # OGHAM REVERSED FEATHER MARK
2039; 203A # SINGLE LEFT-POINTING ANGLE QUOTATION MARK
203A; 2039 # SINGLE RIGHT-POINTING ANGLE QUOTATION MARK
2045; 2046 # LEFT SQUARE BRACKET WITH QUILL
2046; 2045 # RIGHT SQUARE BRACKET WITH QUILL
207D; 207E # SUPERSCRIPT LEFT PARENTHESIS
207E; 207D # SUPERSCRIPT RIGHT PARENTHESIS
208D; 208E # SUBSCRIPT LEFT PARENTHESIS
208E; 208D # SUBSCRIPT RIGHT PARENTHESIS
2208; 220B # ELEMENT OF
2209; 220C # NOT AN ELEMENT OF
220A; 220D # SMALL ELEMENT OF
220B; 2208 # CONTAINS AS MEMBER
220C; 2209 # DOES NOT CONTAIN AS MEMBER
220D; 220A # SMALL CONTAINS AS MEMBER
2215; 29F5 # DIVISION SLASH
223C; 223D # TILDE OPERATOR
223D; 223C # REVERSED TILDE
2243; 22CD # ASYMPTOTICALLY EQUAL TO
2252; 2253 # APPROXIMATELY EQUAL TO OR THE IMAGE OF
2253; 2252 # IMAGE OF OR APPROXIMATELY EQUAL TO
2254; 2255 # COLON EQUALS
2255; 2254 # EQUALS COLON
2264; 2265 # LESS-THAN OR EQUAL TO
2265; 2264 # GREATER-THAN OR EQUAL TO
2266; 2267 # LESS-THAN OVER EQUAL TO
2267; 2266 # GREATER-THAN OVER EQUAL TO

597

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 597
	

2268; 2269 # [BEST FIT] LESS-THAN BUT NOT EQUAL TO
2269; 2268 # [BEST FIT] GREATER-THAN BUT NOT EQUAL TO
226A; 226B # MUCH LESS-THAN
226B; 226A # MUCH GREATER-THAN
226E; 226F # [BEST FIT] NOT LESS-THAN
226F; 226E # [BEST FIT] NOT GREATER-THAN
2270; 2271 # [BEST FIT] NEITHER LESS-THAN NOR EQUAL TO
2271; 2270 # [BEST FIT] NEITHER GREATER-THAN NOR EQUAL TO
2272; 2273 # [BEST FIT] LESS-THAN OR EQUIVALENT TO
2273; 2272 # [BEST FIT] GREATER-THAN OR EQUIVALENT TO
2274; 2275 # [BEST FIT] NEITHER LESS-THAN NOR EQUIVALENT TO
2275; 2274 # [BEST FIT] NEITHER GREATER-THAN NOR EQUIVALENT TO
2276; 2277 # LESS-THAN OR GREATER-THAN
2277; 2276 # GREATER-THAN OR LESS-THAN
2278; 2279 # [BEST FIT] NEITHER LESS-THAN NOR GREATER-THAN
2279; 2278 # [BEST FIT] NEITHER GREATER-THAN NOR LESS-THAN
227A; 227B # PRECEDES
227B; 227A # SUCCEEDS
227C; 227D # PRECEDES OR EQUAL TO
227D; 227C # SUCCEEDS OR EQUAL TO
227E; 227F # [BEST FIT] PRECEDES OR EQUIVALENT TO
227F; 227E # [BEST FIT] SUCCEEDS OR EQUIVALENT TO
2280; 2281 # [BEST FIT] DOES NOT PRECEDE
2281; 2280 # [BEST FIT] DOES NOT SUCCEED
2282; 2283 # SUBSET OF
2283; 2282 # SUPERSET OF
2284; 2285 # [BEST FIT] NOT A SUBSET OF
2285; 2284 # [BEST FIT] NOT A SUPERSET OF
2286; 2287 # SUBSET OF OR EQUAL TO
2287; 2286 # SUPERSET OF OR EQUAL TO
2288; 2289 # [BEST FIT] NEITHER A SUBSET OF NOR EQUAL TO
2289; 2288 # [BEST FIT] NEITHER A SUPERSET OF NOR EQUAL TO
228A; 228B # [BEST FIT] SUBSET OF WITH NOT EQUAL TO
228B; 228A # [BEST FIT] SUPERSET OF WITH NOT EQUAL TO
228F; 2290 # SQUARE IMAGE OF
2290; 228F # SQUARE ORIGINAL OF
2291; 2292 # SQUARE IMAGE OF OR EQUAL TO
2292; 2291 # SQUARE ORIGINAL OF OR EQUAL TO
2298; 29B8 # CIRCLED DIVISION SLASH
22A2; 22A3 # RIGHT TACK
22A3; 22A2 # LEFT TACK
22A6; 2ADE # ASSERTION
22A8; 2AE4 # TRUE
22A9; 2AE3 # FORCES
22AB; 2AE5 # DOUBLE VERTICAL BAR DOUBLE RIGHT TURNSTILE
22B0; 22B1 # PRECEDES UNDER RELATION
22B1; 22B0 # SUCCEEDS UNDER RELATION
22B2; 22B3 # NORMAL SUBGROUP OF
22B3; 22B2 # CONTAINS AS NORMAL SUBGROUP
22B4; 22B5 # NORMAL SUBGROUP OF OR EQUAL TO
22B5; 22B4 # CONTAINS AS NORMAL SUBGROUP OR EQUAL TO
22B6; 22B7 # ORIGINAL OF
22B7; 22B6 # IMAGE OF
22C9; 22CA # LEFT NORMAL FACTOR SEMIDIRECT PRODUCT
22CA; 22C9 # RIGHT NORMAL FACTOR SEMIDIRECT PRODUCT
22CB; 22CC # LEFT SEMIDIRECT PRODUCT
22CC; 22CB # RIGHT SEMIDIRECT PRODUCT
22CD; 2243 # REVERSED TILDE EQUALS
22D0; 22D1 # DOUBLE SUBSET
22D1; 22D0 # DOUBLE SUPERSET
22D6; 22D7 # LESS-THAN WITH DOT
22D7; 22D6 # GREATER-THAN WITH DOT

598

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

598 ©	ISO/IEC	2019	–	All	rights	reserved
	

22D8; 22D9 # VERY MUCH LESS-THAN
22D9; 22D8 # VERY MUCH GREATER-THAN
22DA; 22DB # LESS-THAN EQUAL TO OR GREATER-THAN
22DB; 22DA # GREATER-THAN EQUAL TO OR LESS-THAN
22DC; 22DD # EQUAL TO OR LESS-THAN
22DD; 22DC # EQUAL TO OR GREATER-THAN
22DE; 22DF # EQUAL TO OR PRECEDES
22DF; 22DE # EQUAL TO OR SUCCEEDS
22E0; 22E1 # [BEST FIT] DOES NOT PRECEDE OR EQUAL
22E1; 22E0 # [BEST FIT] DOES NOT SUCCEED OR EQUAL
22E2; 22E3 # [BEST FIT] NOT SQUARE IMAGE OF OR EQUAL TO
22E3; 22E2 # [BEST FIT] NOT SQUARE ORIGINAL OF OR EQUAL TO
22E4; 22E5 # [BEST FIT] SQUARE IMAGE OF OR NOT EQUAL TO
22E5; 22E4 # [BEST FIT] SQUARE ORIGINAL OF OR NOT EQUAL TO
22E6; 22E7 # [BEST FIT] LESS-THAN BUT NOT EQUIVALENT TO
22E7; 22E6 # [BEST FIT] GREATER-THAN BUT NOT EQUIVALENT TO
22E8; 22E9 # [BEST FIT] PRECEDES BUT NOT EQUIVALENT TO
22E9; 22E8 # [BEST FIT] SUCCEEDS BUT NOT EQUIVALENT TO
22EA; 22EB # [BEST FIT] NOT NORMAL SUBGROUP OF
22EB; 22EA # [BEST FIT] DOES NOT CONTAIN AS NORMAL SUBGROUP
22EC; 22ED # [BEST FIT] NOT NORMAL SUBGROUP OF OR EQUAL TO
22ED; 22EC # [BEST FIT] DOES NOT CONTAIN AS NORMAL SUBGROUP OR EQUAL
22F0; 22F1 # UP RIGHT DIAGONAL ELLIPSIS
22F1; 22F0 # DOWN RIGHT DIAGONAL ELLIPSIS
22F2; 22FA # ELEMENT OF WITH LONG HORIZONTAL STROKE
22F3; 22FB # ELEMENT OF WITH VERTICAL BAR AT END OF HORIZONTAL STROKE
22F4; 22FC # SMALL ELEMENT OF WITH VERTICAL BAR AT END OF HORIZONTAL STROKE
22F6; 22FD # ELEMENT OF WITH OVERBAR
22F7; 22FE # SMALL ELEMENT OF WITH OVERBAR
22FA; 22F2 # CONTAINS WITH LONG HORIZONTAL STROKE
22FB; 22F3 # CONTAINS WITH VERTICAL BAR AT END OF HORIZONTAL STROKE
22FC; 22F4 # SMALL CONTAINS WITH VERTICAL BAR AT END OF HORIZONTAL STROKE
22FD; 22F6 # CONTAINS WITH OVERBAR
22FE; 22F7 # SMALL CONTAINS WITH OVERBAR
2308; 2309 # LEFT CEILING
2309; 2308 # RIGHT CEILING
230A; 230B # LEFT FLOOR
230B; 230A # RIGHT FLOOR
2329; 232A # LEFT-POINTING ANGLE BRACKET
232A; 2329 # RIGHT-POINTING ANGLE BRACKET
2768; 2769 # MEDIUM LEFT PARENTHESIS ORNAMENT
2769; 2768 # MEDIUM RIGHT PARENTHESIS ORNAMENT
276A; 276B # MEDIUM FLATTENED LEFT PARENTHESIS ORNAMENT
276B; 276A # MEDIUM FLATTENED RIGHT PARENTHESIS ORNAMENT
276C; 276D # MEDIUM LEFT-POINTING ANGLE BRACKET ORNAMENT
276D; 276C # MEDIUM RIGHT-POINTING ANGLE BRACKET ORNAMENT
276E; 276F # HEAVY LEFT-POINTING ANGLE QUOTATION MARK ORNAMENT
276F; 276E # HEAVY RIGHT-POINTING ANGLE QUOTATION MARK ORNAMENT
2770; 2771 # HEAVY LEFT-POINTING ANGLE BRACKET ORNAMENT
2771; 2770 # HEAVY RIGHT-POINTING ANGLE BRACKET ORNAMENT
2772; 2773 # LIGHT LEFT TORTOISE SHELL BRACKET
2773; 2772 # LIGHT RIGHT TORTOISE SHELL BRACKET
2774; 2775 # MEDIUM LEFT CURLY BRACKET ORNAMENT
2775; 2774 # MEDIUM RIGHT CURLY BRACKET ORNAMENT
27C3; 27C4 # OPEN SUBSET
27C4; 27C3 # OPEN SUPERSET
27C5; 27C6 # LEFT S-SHAPED BAG DELIMITER
27C6; 27C5 # RIGHT S-SHAPED BAG DELIMITER
27C8; 27C9 # REVERSE SOLIDUS PRECEDING SUBSET
27C9; 27C8 # SUPERSET PRECEDING SOLIDUS
27D5; 27D6 # LEFT OUTER JOIN
27D6; 27D5 # RIGHT OUTER JOIN

599

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 599
	

27DD; 27DE # LONG RIGHT TACK
27DE; 27DD # LONG LEFT TACK
27E2; 27E3 # WHITE CONCAVE-SIDED DIAMOND WITH LEFTWARDS TICK
27E3; 27E2 # WHITE CONCAVE-SIDED DIAMOND WITH RIGHTWARDS TICK
27E4; 27E5 # WHITE SQUARE WITH LEFTWARDS TICK
27E5; 27E4 # WHITE SQUARE WITH RIGHTWARDS TICK
27E6; 27E7 # MATHEMATICAL LEFT WHITE SQUARE BRACKET
27E7; 27E6 # MATHEMATICAL RIGHT WHITE SQUARE BRACKET
27E8; 27E9 # MATHEMATICAL LEFT ANGLE BRACKET
27E9; 27E8 # MATHEMATICAL RIGHT ANGLE BRACKET
27EA; 27EB # MATHEMATICAL LEFT DOUBLE ANGLE BRACKET
27EB; 27EA # MATHEMATICAL RIGHT DOUBLE ANGLE BRACKET
27EC; 27ED # MATHEMATICAL LEFT WHITE TORTOISE SHELL BRACKET
27ED; 27EC # MATHEMATICAL RIGHT WHITE TORTOISE SHELL BRACKET
27EE; 27EF # MATHEMATICAL LEFT FLATTENED PARENTHESIS
27EF; 27EE # MATHEMATICAL RIGHT FLATTENED PARENTHESIS
2983; 2984 # LEFT WHITE CURLY BRACKET
2984; 2983 # RIGHT WHITE CURLY BRACKET
2985; 2986 # LEFT WHITE PARENTHESIS
2986; 2985 # RIGHT WHITE PARENTHESIS
2987; 2988 # Z NOTATION LEFT IMAGE BRACKET
2988; 2987 # Z NOTATION RIGHT IMAGE BRACKET
2989; 298A # Z NOTATION LEFT BINDING BRACKET
298A; 2989 # Z NOTATION RIGHT BINDING BRACKET
298B; 298C # LEFT SQUARE BRACKET WITH UNDERBAR
298C; 298B # RIGHT SQUARE BRACKET WITH UNDERBAR
298D; 2990 # LEFT SQUARE BRACKET WITH TICK IN TOP CORNER
298E; 298F # RIGHT SQUARE BRACKET WITH TICK IN BOTTOM CORNER
298F; 298E # LEFT SQUARE BRACKET WITH TICK IN BOTTOM CORNER
2990; 298D # RIGHT SQUARE BRACKET WITH TICK IN TOP CORNER
2991; 2992 # LEFT ANGLE BRACKET WITH DOT
2992; 2991 # RIGHT ANGLE BRACKET WITH DOT
2993; 2994 # LEFT ARC LESS-THAN BRACKET
2994; 2993 # RIGHT ARC GREATER-THAN BRACKET
2995; 2996 # DOUBLE LEFT ARC GREATER-THAN BRACKET
2996; 2995 # DOUBLE RIGHT ARC LESS-THAN BRACKET
2997; 2998 # LEFT BLACK TORTOISE SHELL BRACKET
2998; 2997 # RIGHT BLACK TORTOISE SHELL BRACKET
29B8; 2298 # CIRCLED REVERSE SOLIDUS
29C0; 29C1 # CIRCLED LESS-THAN
29C1; 29C0 # CIRCLED GREATER-THAN
29C4; 29C5 # SQUARED RISING DIAGONAL SLASH
29C5; 29C4 # SQUARED FALLING DIAGONAL SLASH
29CF; 29D0 # LEFT TRIANGLE BESIDE VERTICAL BAR
29D0; 29CF # VERTICAL BAR BESIDE RIGHT TRIANGLE
29D1; 29D2 # BOWTIE WITH LEFT HALF BLACK
29D2; 29D1 # BOWTIE WITH RIGHT HALF BLACK
29D4; 29D5 # TIMES WITH LEFT HALF BLACK
29D5; 29D4 # TIMES WITH RIGHT HALF BLACK
29D8; 29D9 # LEFT WIGGLY FENCE
29D9; 29D8 # RIGHT WIGGLY FENCE
29DA; 29DB # LEFT DOUBLE WIGGLY FENCE
29DB; 29DA # RIGHT DOUBLE WIGGLY FENCE
29F5; 2215 # REVERSE SOLIDUS OPERATOR
29F8; 29F9 # BIG SOLIDUS
29F9; 29F8 # BIG REVERSE SOLIDUS
29FC; 29FD # LEFT-POINTING CURVED ANGLE BRACKET
29FD; 29FC # RIGHT-POINTING CURVED ANGLE BRACKET
2A2B; 2A2C # MINUS SIGN WITH FALLING DOTS
2A2C; 2A2B # MINUS SIGN WITH RISING DOTS
2A2D; 2A2E # PLUS SIGN IN LEFT HALF CIRCLE
2A2E; 2A2D # PLUS SIGN IN RIGHT HALF CIRCLE

600

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

600 ©	ISO/IEC	2019	–	All	rights	reserved
	

2A34; 2A35 # MULTIPLICATION SIGN IN LEFT HALF CIRCLE
2A35; 2A34 # MULTIPLICATION SIGN IN RIGHT HALF CIRCLE
2A3C; 2A3D # INTERIOR PRODUCT
2A3D; 2A3C # RIGHTHAND INTERIOR PRODUCT
2A64; 2A65 # Z NOTATION DOMAIN ANTIRESTRICTION
2A65; 2A64 # Z NOTATION RANGE ANTIRESTRICTION
2A79; 2A7A # LESS-THAN WITH CIRCLE INSIDE
2A7A; 2A79 # GREATER-THAN WITH CIRCLE INSIDE
2A7D; 2A7E # LESS-THAN OR SLANTED EQUAL TO
2A7E; 2A7D # GREATER-THAN OR SLANTED EQUAL TO
2A7F; 2A80 # LESS-THAN OR SLANTED EQUAL TO WITH DOT INSIDE
2A80; 2A7F # GREATER-THAN OR SLANTED EQUAL TO WITH DOT INSIDE
2A81; 2A82 # LESS-THAN OR SLANTED EQUAL TO WITH DOT ABOVE
2A82; 2A81 # GREATER-THAN OR SLANTED EQUAL TO WITH DOT ABOVE
2A83; 2A84 # LESS-THAN OR SLANTED EQUAL TO WITH DOT ABOVE RIGHT
2A84; 2A83 # GREATER-THAN OR SLANTED EQUAL TO WITH DOT ABOVE LEFT
2A8B; 2A8C # LESS-THAN ABOVE DOUBLE-LINE EQUAL ABOVE GREATER-THAN
2A8C; 2A8B # GREATER-THAN ABOVE DOUBLE-LINE EQUAL ABOVE LESS-THAN
2A91; 2A92 # LESS-THAN ABOVE GREATER-THAN ABOVE DOUBLE-LINE EQUAL
2A92; 2A91 # GREATER-THAN ABOVE LESS-THAN ABOVE DOUBLE-LINE EQUAL
2A93; 2A94 # LESS-THAN ABOVE SLANTED EQUAL ABOVE GREATER-THAN ABOVE SLANTED EQUAL
2A94; 2A93 # GREATER-THAN ABOVE SLANTED EQUAL ABOVE LESS-THAN ABOVE SLANTED EQUAL
2A95; 2A96 # SLANTED EQUAL TO OR LESS-THAN
2A96; 2A95 # SLANTED EQUAL TO OR GREATER-THAN
2A97; 2A98 # SLANTED EQUAL TO OR LESS-THAN WITH DOT INSIDE
2A98; 2A97 # SLANTED EQUAL TO OR GREATER-THAN WITH DOT INSIDE
2A99; 2A9A # DOUBLE-LINE EQUAL TO OR LESS-THAN
2A9A; 2A99 # DOUBLE-LINE EQUAL TO OR GREATER-THAN
2A9B; 2A9C # DOUBLE-LINE SLANTED EQUAL TO OR LESS-THAN
2A9C; 2A9B # DOUBLE-LINE SLANTED EQUAL TO OR GREATER-THAN
2AA1; 2AA2 # DOUBLE NESTED LESS-THAN
2AA2; 2AA1 # DOUBLE NESTED GREATER-THAN
2AA6; 2AA7 # LESS-THAN CLOSED BY CURVE
2AA7; 2AA6 # GREATER-THAN CLOSED BY CURVE
2AA8; 2AA9 # LESS-THAN CLOSED BY CURVE ABOVE SLANTED EQUAL
2AA9; 2AA8 # GREATER-THAN CLOSED BY CURVE ABOVE SLANTED EQUAL
2AAA; 2AAB # SMALLER THAN
2AAB; 2AAA # LARGER THAN
2AAC; 2AAD # SMALLER THAN OR EQUAL TO
2AAD; 2AAC # LARGER THAN OR EQUAL TO
2AAF; 2AB0 # PRECEDES ABOVE SINGLE-LINE EQUALS SIGN
2AB0; 2AAF # SUCCEEDS ABOVE SINGLE-LINE EQUALS SIGN
2AB3; 2AB4 # PRECEDES ABOVE EQUALS SIGN
2AB4; 2AB3 # SUCCEEDS ABOVE EQUALS SIGN
2ABB; 2ABC # DOUBLE PRECEDES
2ABC; 2ABB # DOUBLE SUCCEEDS
2ABD; 2ABE # SUBSET WITH DOT
2ABE; 2ABD # SUPERSET WITH DOT
2ABF; 2AC0 # SUBSET WITH PLUS SIGN BELOW
2AC0; 2ABF # SUPERSET WITH PLUS SIGN BELOW
2AC1; 2AC2 # SUBSET WITH MULTIPLICATION SIGN BELOW
2AC2; 2AC1 # SUPERSET WITH MULTIPLICATION SIGN BELOW
2AC3; 2AC4 # SUBSET OF OR EQUAL TO WITH DOT ABOVE
2AC4; 2AC3 # SUPERSET OF OR EQUAL TO WITH DOT ABOVE
2AC5; 2AC6 # SUBSET OF ABOVE EQUALS SIGN
2AC6; 2AC5 # SUPERSET OF ABOVE EQUALS SIGN
2ACD; 2ACE # SQUARE LEFT OPEN BOX OPERATOR
2ACE; 2ACD # SQUARE RIGHT OPEN BOX OPERATOR
2ACF; 2AD0 # CLOSED SUBSET
2AD0; 2ACF # CLOSED SUPERSET
2AD1; 2AD2 # CLOSED SUBSET OR EQUAL TO
2AD2; 2AD1 # CLOSED SUPERSET OR EQUAL TO

601

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 601
	

2AD3; 2AD4 # SUBSET ABOVE SUPERSET
2AD4; 2AD3 # SUPERSET ABOVE SUBSET
2AD5; 2AD6 # SUBSET ABOVE SUBSET
2AD6; 2AD5 # SUPERSET ABOVE SUPERSET
2ADE; 22A6 # SHORT LEFT TACK
2AE3; 22A9 # DOUBLE VERTICAL BAR LEFT TURNSTILE
2AE4; 22A8 # VERTICAL BAR DOUBLE LEFT TURNSTILE
2AE5; 22AB # DOUBLE VERTICAL BAR DOUBLE LEFT TURNSTILE
2AEC; 2AED # DOUBLE STROKE NOT SIGN
2AED; 2AEC # REVERSED DOUBLE STROKE NOT SIGN
2AF7; 2AF8 # TRIPLE NESTED LESS-THAN
2AF8; 2AF7 # TRIPLE NESTED GREATER-THAN
2AF9; 2AFA # DOUBLE-LINE SLANTED LESS-THAN OR EQUAL TO
2AFA; 2AF9 # DOUBLE-LINE SLANTED GREATER-THAN OR EQUAL TO
2E02; 2E03 # LEFT SUBSTITUTION BRACKET
2E03; 2E02 # RIGHT SUBSTITUTION BRACKET
2E04; 2E05 # LEFT DOTTED SUBSTITUTION BRACKET
2E05; 2E04 # RIGHT DOTTED SUBSTITUTION BRACKET
2E09; 2E0A # LEFT TRANSPOSITION BRACKET
2E0A; 2E09 # RIGHT TRANSPOSITION BRACKET
2E0C; 2E0D # LEFT RAISED OMISSION BRACKET
2E0D; 2E0C # RIGHT RAISED OMISSION BRACKET
2E1C; 2E1D # LEFT LOW PARAPHRASE BRACKET
2E1D; 2E1C # RIGHT LOW PARAPHRASE BRACKET
2E20; 2E21 # LEFT VERTICAL BAR WITH QUILL
2E21; 2E20 # RIGHT VERTICAL BAR WITH QUILL
2E22; 2E23 # TOP LEFT HALF BRACKET
2E23; 2E22 # TOP RIGHT HALF BRACKET
2E24; 2E25 # BOTTOM LEFT HALF BRACKET
2E25; 2E24 # BOTTOM RIGHT HALF BRACKET
2E26; 2E27 # LEFT SIDEWAYS U BRACKET
2E27; 2E26 # RIGHT SIDEWAYS U BRACKET
2E28; 2E29 # LEFT DOUBLE PARENTHESIS
2E29; 2E28 # RIGHT DOUBLE PARENTHESIS
3008; 3009 # LEFT ANGLE BRACKET
3009; 3008 # RIGHT ANGLE BRACKET
300A; 300B # LEFT DOUBLE ANGLE BRACKET
300B; 300A # RIGHT DOUBLE ANGLE BRACKET
300C; 300D # [BEST FIT] LEFT CORNER BRACKET
300D; 300C # [BEST FIT] RIGHT CORNER BRACKET
300E; 300F # [BEST FIT] LEFT WHITE CORNER BRACKET
300F; 300E # [BEST FIT] RIGHT WHITE CORNER BRACKET
3010; 3011 # LEFT BLACK LENTICULAR BRACKET
3011; 3010 # RIGHT BLACK LENTICULAR BRACKET
3014; 3015 # LEFT TORTOISE SHELL BRACKET
3015; 3014 # RIGHT TORTOISE SHELL BRACKET
3016; 3017 # LEFT WHITE LENTICULAR BRACKET
3017; 3016 # RIGHT WHITE LENTICULAR BRACKET
3018; 3019 # LEFT WHITE TORTOISE SHELL BRACKET
3019; 3018 # RIGHT WHITE TORTOISE SHELL BRACKET
301A; 301B # LEFT WHITE SQUARE BRACKET
301B; 301A # RIGHT WHITE SQUARE BRACKET
FE59; FE5A # SMALL LEFT PARENTHESIS
FE5A; FE59 # SMALL RIGHT PARENTHESIS
FE5B; FE5C # SMALL LEFT CURLY BRACKET
FE5C; FE5B # SMALL RIGHT CURLY BRACKET
FE5D; FE5E # SMALL LEFT TORTOISE SHELL BRACKET
FE5E; FE5D # SMALL RIGHT TORTOISE SHELL BRACKET
FE64; FE65 # SMALL LESS-THAN SIGN
FE65; FE64 # SMALL GREATER-THAN SIGN
FF08; FF09 # FULLWIDTH LEFT PARENTHESIS
FF09; FF08 # FULLWIDTH RIGHT PARENTHESIS

602

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

602 ©	ISO/IEC	2019	–	All	rights	reserved
	

FF1C; FF1E # FULLWIDTH LESS-THAN SIGN
FF1E; FF1C # FULLWIDTH GREATER-THAN SIGN
FF3B; FF3D # FULLWIDTH LEFT SQUARE BRACKET
FF3D; FF3B # FULLWIDTH RIGHT SQUARE BRACKET
FF5B; FF5D # FULLWIDTH LEFT CURLY BRACKET
FF5D; FF5B # FULLWIDTH RIGHT CURLY BRACKET
FF5F; FF60 # FULLWIDTH LEFT WHITE PARENTHESIS
FF60; FF5F # FULLWIDTH RIGHT WHITE PARENTHESIS
FF62; FF63 # [BEST FIT] HALFWIDTH LEFT CORNER BRACKET
FF63; FF62 # [BEST FIT] HALFWIDTH RIGHT CORNER BRACKET

603

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 603
	

Annex D
(informative)

The CFF2 CharString Format

D.1 Overview

The CFF2 CharString format provides a method for compact encoding of glyph procedures in an outline font
program. CFF2 CharStrings are intended for use only with a 'CFF2' font table in an OFF font file.

The CFF2 CharString format is closely descended from the Type 2 CharString format [4]. The motivation for
developing the CFF2 CharString format was two-fold:

 Reduce the size of CFF fonts by removing all the data which is duplicated elsewhere in the OFF font,
or is not used in the context of OFF font files.

 Add support for OFF font variations. (See subclause 7.1 for a general overview of OFF font variations
and a complete list of the tables required to support a variable font.)

Accordingly, the CFF2 CharString format has added some new operators, and has removed many more
operators. However, the encoding of operators and operands is the same between Type 2 and CFF2
CharStrings; interpreters will need relatively little change to process both formats. See subclause E.5.3
(Changes from Type 2 CharStrings) for a complete list of the differences between Type 2 and CFF2
CharString formats.

This document only describes how CFF2 CharStrings are encoded, and does not attempt to explain the
reasons for choosing various options. CFF2 CharStrings are based on Type 1 font concepts, and this Annex
assumes familiarity with the Type 1 font format specification. For more information, please see “Adobe Type 1
Font Format”. Also, familiarity with the 'CFF2' table format is assumed; please see subclause 5.4.2 for details.

D.2 CFF2 CharStrings

The following sections describe the general concepts of encoding a CFF2 CharString.

D.2.1 Hints

The CFF2 CharString format supports six hint operators: hstem, vstem, hstemhm, vstemhm, hintmask, and
cntrmask. The hint information must be declared at the beginning of a CharString (see subclause E.3.1
"CFF2 CharString organization") using the hstem, vstem, hstemhm, and vstemhm operators, each of which
may each take arguments for multiple stem hintsThis subclause.

CFF2 hint operators aid the rasterizer in recognizing and controlling stems and counter areas within a glyph. A
stem generally consists of two positions (edges) and the associated width. Edge stem hints help to control
character features where there is only a single edge (see subclause E.4.3 "Hint operators".). The CFF2
CharString format includes edge hints, which are equivalent to the Type 1 concept of ghost hints (see the
section on ghost hints, in the Adobe Type 1 Font Format). They are used to locate an edge rather than a stem
that has two edges. A stem width value of -20 is reserved for a top or right edge, and a value of -21 for a
bottom or left edge. The operation of hints with other negative width values is undefined.

hintmask

The hintmask operator has the same function as that described in “Changing Hints within a Character”,
section 8.1 of the Adobe Type 1 Font Format. It provides a means for activating or deactivating stem hints so
that only a set of non-overlapping hints are active at one time. The hintmask operator is followed by one or
more data bytes that specify the stem hints which are to be active for the subsequent path construction. The

604

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

604 ©	ISO/IEC	2019	–	All	rights	reserved
	

number of data bytes must be exactly the number needed to represent the number of stems in the original
stem list (those stems specified by the hstem, vstem, hstemhm, and vstemhm commands), using one bit in
the data bytes for each stem in the original stem list. Bits with a value of one indicate stems that are active,
and a value of zero indicates stems that are inactive.

cntrmask

The cntrmask (countermask) hint causes arbitrary but nonoverlapping collections of counter spaces in a
character to be controlled in a manner similar to how stem widths are controlled by the stem hint commands.
(For more information, see Adobe Technical Note #5015, “The Type 1 Font Format Supplement” [30].) The
cntrmask operator is followed by one or more data bytes that specify the index number of the stem hints on
both sides of a counter space. The number of data bytes must be exactly the number needed to represent the
number of stems in the original stem list (those stems specified by the hstem, vstem, hstemhm, or vstemhm
commands), using one bit in the data bytes for each stem in the original stem list.

Figure E1 – Counter control example

For the example shown in Figure E1, the stem list for the glyph would be:

 H1 H2 H3 H4 H5 H6 H7 H8 V1 V2 V3 V4 V5

and the following cntrmask commands would be used to control the counter spaces between those stems:

 cntrmask 0xB5 0xE8 (H1 H3 H4 H6 H8 V1 V2 V3 V5)

 cntrmask 0x4A 0x00(H2 H5 H7)

The bits set in the data bytes indicate that the corresponding stem hints delimit the desired set of counters.
Hints specified in the first command have a higher priority than those in the second command. Notice that the
V4 stem does not delimit an appropriate counter space, and hence is not referenced in this example.

605

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 605
	

Note that hints are just that, hints, or recommendations. They are additional guidelines to an intelligent
rasterizer.

If the font’s LanguageGroup is not equal to 1 (a LanguageGroup value of 1 indicates complex Asian
language glyphs), the cntrmask operator, with three stems, can be used in place of the hstem3 and vstem3
hints in the Type 1 format, as long as the related conditions specified in the Type 1 specification are met. For
more information on Counter Control hints, see Adobe Technical Note #5015, “Type 1 Font Format
Supplement”.

D.2.2 The Flex mechanism

The flex mechanism is provided to improve the rendering of shallow curves, representing them as line
segments at small sizes rather than as small humps or dents in the character shape. It is essentially a path
construction mechanism: the arguments describe the construction of two curves, with an additional argument
that is used as a hint for when the curves should be rendered as a straight line at smaller sizes and
resolutions.

Figure E2 – Flex hint example

The CFF2 flex mechanism is general; there are no restrictions on what type or orientation of curve may be
expressed with a flex operator. The flex operator is used for the general case; special cases can use the flex1,
hflex, or hflex1 operators for a more efficient encoding. Figure E2 shows an example of the flex mechanism
used for a horizontal curve, and Figure E3 shows an example of flex curves at non-standard angles.

Figure E3 – Flex depth calculations

606

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

606 ©	ISO/IEC	2019	–	All	rights	reserved
	

The flex operators can be used for any curved character feature, in any orientation or depth that meets the
following requirements:

 The character feature must be capable of being represented as exactly two curves, drawn by two
rrcurveto operators.

 The curves must meet at a common point called the joining point.

 The length of the combined curve must exceed its depth.

D.2.3 Subroutines

A CFF2 font program can use subroutines to reduce the storage requirements by combining the program
statements that describe common elements of the characters in the font.

A subroutine is typically a sequence of CharString bytes representing a sub-program that occurs in more than
one place in a font’s CharString data. Local subroutines may be called from within the same Font DICT and
global subroutines may be shared across Font DICTs.

Subroutines may contain sections of CharStrings, and are encoded the same as CFF2 CharStrings. They are
called with the callsubr (for a local subroutine) or callgsubr (for a global subroutine) operator, using a biased
index into the local or global Subrs array as the argument.

CharString subroutines may call other subroutines, to the depth allowed by the implementation limits (see
subclause E.5.2 "CFF2 CharString implementation limits" for details). A subroutine returns when the
interpreter reaches the end of its byte-string.

D.3 CharString encoding

A CFF2 CharString program is a sequence of unsigned 8-bit bytes that encode numbers and operators. The
byte value specifies a operator, a number, or subsequent bytes that are to be interpreted in a specific manner.

The bytes are decoded into numbers and operators. The CFF2 CharString interpreter is required to count the
number of arguments on the argument stack. It can thus detect additional sets of arguments for a single
operator. The stack depth implementation limit is specified in subclause E.5.2 "CFF2 CharString
implementation limits".

A number, decoded from a CharString, is pushed onto the CFF2 argument stack. An operator expects its
arguments in order from this argument stack with all arguments generally taken from the bottom of the stack
(first argument bottom-most); however, some operators, particularly the subroutine operators, normally work
from the top of the stack. If an operator returns results, they are pushed onto the CFF2 argument stack (last
result topmost).

In the following discussion, all numeric constants are decimal numbers, except where indicated.

D.3.1 CFF2 CharString organization

The sequence and form of a CFF2 CharString program may be represented as:
{hs* vs* cm* hm* mt subpath}? {mt subpath}*

Where:
hs = hstem or hstemhm command
vs = vstem or vstemhm command
cm = cntrmask operator
hm = hintmask operator
mt = moveto (i.e. any of the moveto) operators
subpath = refers to the construction of a subpath (one complete closed contour), which may include

hintmask operators where appropriate.

607

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 607
	

and the following symbols indicate specific usage:
* zero or more occurrences are allowed
? zero or one occurrences are allowed
+ one or more occurrences are allowed
{ } indicates grouping

Stated in words, the constraints on the sequence of operators in a CharString are as follows:

CFF2 CharStrings must be structured with operators, or classes of operators, sequenced in the following
specific order:

1. Hints: zero or more of each of the following hint operators, in exactly the following order: hstem,
hstemhm, vstem, vstemhm, cntrmask, hintmask. Each entry is optional, and each may be
expressed by one or more occurrences of the operator. The hint operators cntrmask and/or hintmask
must not occur if the CharString has no stem hints.

2. Path Construction: Zero or more path construction operators are used to draw the path of the
character; the second and all subsequent subpaths must also begin with one of the moveto operators.
The hintmask operator may be used as needed.

Any operand for the hint and path construction operators may be replaced by the blend operator and its
operands. If a vsindex operator is used, it must be used only once, and prior to any blend operator. Blend
operators may not be nested. Hint mask bytes and subroutine indices may not be blended

NOTE CharStrings may contain subr and gsubr calls as desired at any point between complete tokens. This
means that a subr (gsubr) call must not occur between the bytes of a multibyte commandsnumber or
operator, nor between the bytes of a multibyte command (for example, hintmask and cntrmask).

D.3.2 CharString number encoding

A CharString byte containing the values from 32 through 254 inclusive indicates an integer. These values are
decoded in three ranges (also see table below):

 A CharString byte containing a value, v, between 32 and 246 inclusive, specifies the integer v - 139.
Thus, the integer values from −107 through 107 inclusive may be encoded in a single byte.

 A CharString byte containing a value, v, between 247 and 250 inclusive, indicates an integer involving
the next byte, w, according to the formula:

(v - 247) * 256 + w + 108

The integer values between 108 and 1131 inclusive can be encoded in 2 bytes in this manner.

 A CharString byte containing a value, v, between 251 and 254 inclusive, indicates an integer involving
the next byte, w, according to the formula:

- [(v - 251) * 256] - w - 108

The integer values between −1131 and −108 inclusive can be encoded in 2 bytes in this manner.

If the CharString byte contains the value 255, the next four bytes contain a Fixed value(a signed fixed-point
number with 16 fractional bits).

NOTE The CFF2 interpretation of a number encoded in five-bytes (those with an initial byte value of 255) differs from
how it is interpreted in the Type 1 format.

In addition to the numeric representations listed above, numbers between -32768 and +32767 can be
represented using the operator (28) followed by an int16. This allows a more compact representation of large
numbers which occur occasionally in fonts, but perhaps more importantly, this will allow more compact
encoding of numbers which may be used as arguments to callsubr and callgsubr.

608

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

608 ©	ISO/IEC	2019	–	All	rights	reserved
	

CFF2 CharString Encoding Values

CharString
Byte Value

Interpretation Number Range
Represented

Bytes
Required

0 to 11 operators operators 0 to 11 1

12 escape: next byte interpreted as
additional operators

additional 0 to 255 range
for operator codes

2

13 to 18 operators operators 13 to 18 1

19, 20 operators (hintmask and cntrmask) operators 19, 20 2 or more

21 to 27 operators operators 21 to 27 1

28 next 2 bytes are an int16 -32768 to +32767 3

29 to 31 Operators operators 29 to 31 1

32 to 246 result = v-139 -107 to +107 1

247 to 250 with next byte, w, result = (v - 247) *
256 + w + 108

+108 to +1131 2

251 to 254 with next byte, w, result = -[(v - 251) *
256] - w -108

-108 to -1131 2

255 next 4 bytes are a Fixed value 16-bit signed integer with
16 bits of fraction

5

D.3.3 CharString operator encoding

CharString operators are encoded in one or two bytes. Not all possible operator encoding values are defined
(see subclause E.5.1 "CFF2 CharString command codes" for a list of operator encoding values). When an
unrecognized operator is encountered, it is ignored and the stack is cleared.

If an operator byte contains the value 12, then the value in the next byte specifies an operator. This escape
mechanism allows many extra operators to be encoded.

D.4 CharString operators

CFF2 CharString operators are divided into four groups, classified by function:
1. path construction;
2. hints;
3. subroutine;
4. variation data support.

The following definitions use a format similar to that used in the PostScript Language Reference Manual.
Parentheses following the operator name either include the operator value that represents this operator in a
CharString byte, or the two values (beginning with 12) that represent a two-byte operator.

Many operators take their arguments from the bottom-most entries in the CFF2 argument stack; this behavior
is indicated by the stack bottom symbol ‘|-’ appearing to the left of the first argument. Operators that clear the
argument stack are indicated by the stack bottom symbol ‘|-’ in the result position of the operator definition.

609

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 609
	

Because of this stack-clearing behavior, in general, arguments are not accumulated on the CFF2 argument
stack for later removal by a sequence of operators, arguments generally may be supplied only for the next
operator. Notable exceptions occur with subroutine calls and with the blend operator. All stack operations
must observe the stack limit (see subclause E.5.2 "CFF2 CharString implementation limits" for details).

D.4.1 Path construction operators

In a CFF2 CharString, a path is constructed by sequential application of one or more path construction
operators. The current point is initially the (0, 0) point of the character coordinate system. The operators listed
in this subclause cause the current point to change, either by a moveto operation, or by appending one or
more curve or line segments to the current point. Upon completion of the operation, the current point is
updated to the position to which the move was made, or to the last point on the segment or segments.

Many of the operators can take multiple sets of arguments, which indicate a series of path construction
operations. The number of operations is limited only by the limit on the stack size (see subclause E.5.2 "CFF2
CharString implementation limits").

All Bézier curve path segments are drawn using six arguments, dxa, dya, dxb, dyb, dxc, dyc; where dxa and
dya are relative to the current point, and all subsequent arguments are relative to the previous point. A
number of the curve operators take advantage of the situation where some tangent points are horizontal or
vertical (and hence the value is zero), thus reducing the number of arguments needed.

The flex operators are considered path construction commands because they specify the drawing of two
curves. There is also an additional argument that serves as a hint as to when to render the curves as a
straight line at small sizes and low resolutions.

The following are three types of moveto operators. For the initial moveto operator in a CharString, the
arguments are relative to the (0, 0) point in the character’s coordinate system; subsequent moveto operators’
arguments are relative to the current point.

Every character path and subpath must begin with one of the moveto operators. If the current path is open
when a moveto operator is encountered, the path is closed by performing a lineto operation to the previous
moveto coordinates before performing the moveto operation. The inserted lineto operation does not change
the current point.

rmoveto |- dx1 dy1 rmoveto (21) |-

Moves the current point to a position at the relative coordinates (dx1, dy1).

hmoveto |- dx1 hmoveto (22) |-

Moves the current point dx1 units in the horizontal direction.

vmoveto |- dy1 vmoveto (4) |-

Moves the current point dy1 units in the vertical direction.

rlineto |- {dxa dya}+ rlineto (5) |-

Appends a line from the current point to a position at the relative coordinates
dxa, dya. Additional rlineto operations are performed for all subsequent
argument pairs. The number of lines is determined from the number of
arguments on the stack.

hlineto |- dx1 {dya dxb}* hlineto (6) |-

|- {dxa dyb}+ hlineto (6) |-

Appends a horizontal line of length dx1 to the current point. With an odd number
of arguments, subsequent argument pairs are interpreted as alternating values
of dy and dx, for which additional lineto operators draw alternating vertical and
horizontal lines. With an even number of arguments, the arguments are

610

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

610 ©	ISO/IEC	2019	–	All	rights	reserved
	

interpreted as alternating horizontal and vertical lines. The number of lines is
determined from the number of arguments on the stack.

vlineto |- dy1 {dxa dyb}* vlineto (7) |-

|- {dya dxb}+ vlineto (7) |-

Appends a vertical line of length dy1 to the current point. With an odd number of
arguments, subsequent argument pairs are interpreted as alternating values of
dx and dy, for which additional lineto operators draw alternating horizontal and
vertical lines. With an even number of arguments, the arguments are interpreted
as alternating vertical and horizontal lines. The number of lines is determined
from the number of arguments on the stack.

rrcurveto |- {dxa dya dxb dyb dxc dyc}+ rrcurveto (8) |-

Appends a Bézier curve, defined by dxa...dyc, to the current point. For each
subsequent set of six arguments, an additional curve is appended to the current
point. The number of curve segments is determined from the number of
arguments on the number stack and is limited only by the size of the number
stack.

hhcurveto |- dy1? {dxa dxb dyb dxc}+ hhcurveto (27) |-

Appends one or more Bézier curves, as described by the dxa...dxc set of
arguments, to the current point. For each curve, if there are 4 arguments, the
curve starts and ends horizontal. The first curve need not start horizontal (the
odd argument case). Note the argument order for the odd argument case.

hvcurveto |- dx1 dx2 dy2 dy3 {dya dxb dyb dxc dxd dxe dye dyf}* dxf? hvcurveto (31) |-

|- {dxa dxb dyb dyc dyd dxe dye dxf}+ dyf? hvcurveto (31) |-

Appends one or more Bézier curves to the current point. The tangent for the first
Bézier must be horizontal, and the second must be vertical (except as noted
below).

If there is a multiple of four arguments, the curve starts horizontal and ends
vertical. Note that the curves alternate between start horizontal, end vertical, and
start vertical, and end horizontal. The last curve (the odd argument case) need
not end horizontal/vertical.

rcurveline |- {dxa dya dxb dyb dxc dyc}+ dxd dyd rcurveline (24) |-

Is equivalent to one rrcurveto for each set of six arguments dxa...dyc, followed
by exactly one rlineto using the dxd, dyd arguments. The number of curves is
determined from the count on the argument stack.

rlinecurve |- {dxa dya}+ dxb dyb dxc dyc dxd dyd rlinecurve (25) |-

Is equivalent to one rlineto for each pair of arguments beyond the six arguments
dxb...dyd needed for the one rrcurveto command. The number of lines is
determined from the count of items on the argument stack.

vhcurveto |- dy1 dx2 dy2 dx3 {dxa dxb dyb dyc dyd dxe dye dxf}* dyf? vhcurveto (30) |-

|- {dya dxb dyb dxc dxd dxe dye dyf}+ dxf? vhcurveto (30) |-

Appends one or more Bézier curves to the current point, where the first tangent
is vertical and the second tangent is horizontal. This command is the
complement of hvcurveto; see the description of hvcurveto for more
information.

611

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 611
	

vvcurveto |- dx1? {dya dxb dyb dyc}+ vvcurveto (26) |-

Appends one or more curves to the current point. If the argument count is a
multiple of four, the curve starts and ends vertical. If the argument count is odd,
the first curve does not begin with a vertical tangent.

flex |- dx1 dy1 dx2 dy2 dx3 dy3 dx4 dy4 dx5 dy5 dx6 dy6 fd flex (12 35) |-

Causes two Bézier curves, as described by the arguments (as shown in Figure
E2), to be rendered as a straight line when the flex depth is less than fd /100
device pixels, and as curved lines when the flex depth is greater than or equal to
fd/100 device pixels. The flex depth for a horizontal curve, as shown in Figure
E2, is the distance from the join point to the line connecting the start and end
points on the curve. If the curve is not exactly horizontal or vertical, it must be
determined whether the curve is more horizontal or vertical by the method
described in the flex1 description, below, and as illustrated in Figure E3.

NOTE In cases where some of the points have the same x or y coordinate as other points
in the curves, arguments may be omitted by using one of the following forms of
the flex operator: hflex, hflex1, or flex1.

hflex |- dx1 dx2 dy2 dx3 dx4 dx5 dx6 hflex (12 34) |-

Causes the two curves described by the arguments dx1...dx6 to be rendered as
a straight line when the flex depth is less than 0.5 (that is, fd is 50) device pixels,
and as curved lines when the flex depth is greater than or equal to 0.5 device
pixels.

hflex is used when the following are all true:

a) The starting and ending points, first and last control points have the same y
value.
b) The joining point and the neighbor control points have the same y value.
c) The flex depth is 50.

hflex1 |- dx1 dy1 dx2 dy2 dx3 dx4 dx5 dy5 dx6 hflex1 (12 36) |-

Causes the two curves described by the arguments to be rendered as a straight
line when the flex depth is less than 0.5 device pixels, and as curved lines when
the flex depth is greater than or equal to 0.5 device pixels.

hflex1 is used if the conditions for hflex are not met but all of the following are
true:

a) The starting and ending points have the same y value.
b) The joining point and the neighbor control points have the same y value.
c) The flex depth is 50.

flex1 |- dx1 dy1 dx2 dy2 dx3 dy3 dx4 dy4 dx5 dy5 d6 flex1 (12 37) |-

Causes the two curves described by the arguments to be rendered as a straight
line when the flex depth is less than 0.5 device pixels, and as curved lines when
the flex depth is greater than or equal to 0.5 device pixels.

The d6 argument will be either a dx or dy value, depending on the curve (see
Figure E3). To determine the correct value, compute the distance from the
starting point (x, y), the first point of the first curve, to the last flex control point
(dx5, dy5) by summing all the arguments except d6; call this (dx, dy). If abs(dx)
> abs(dy), then the last point’s x-value is given by d6, and its y-value is equal to
y. Otherwise, the last point’s x-value is equal to x and its y-value is given by d6.

flex1 is used if the conditions for hflex and hflex1 are not met but all of the

612

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

612 ©	ISO/IEC	2019	–	All	rights	reserved
	

following are true:

a) The starting and ending points have the same x or y value.
b) The flex depth is 50.

D.4.2 Finishing a CharString outline

CFF2 CharStrings differ from Type 2 CharStrings in that there is no operator for finishing a CharString outline
definition.The end of the CharString byte string implies the end of the last subpath, and serves the same
purpose as the Type 2 endchar operator. If the last operator in a CharString is a call(g)subr, then the
CharString ends when that subroutine ends.

 The smallest legal CharString is simply an empty byte string.

D.4.3 Hint operators

All hints must be declared at the beginning of the CharString program, after the width (see subclause E.3.1
"CFF2 CharString organization" for details).

hstem |- y dy {dya dyb}* hstem (1) |-

Specifies one or more horizontal stem hints (see the following section for more
information about horizontal stem hints). This allows multiple pairs of numbers,
limited by the stack depth, to be used as arguments to a single hstem operator.

It is required that the stems are encoded in ascending order (defined by increasing
bottom edge). The encoded values are all relative; in the first pair, y is relative to 0,
and dy specifies the distance from y. The first value of each subsequent pair is
relative to the last edge defined by the previous pair.

A width of -20 specifies the top edge of an edge hint, and -21 specifies the bottom
edge of an edge hint. All other negative widths have undefined meaning.

Figure E4 shows an example of the encoding of a character stem that uses top and bottom edge hints. The
edge stem hint serves to control the position of the edge of the stem in situations where controlling the stem
width is not the primary purpose.

613

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 613
	

Figure E4 – Encoding of edge hints

The encoding for the edge stem hints shown in Figure E4 would be:

121 –21 400 –20 hstem

vstem |- x dx {dxa dxb}* vstem (3) |-

Specifies one or more vertical stem hints between the x coordinates x and x+dx,
where x is relative to the origin of the coordinate axes.

It is required that the stems are encoded in ascending order (defined by increasing
left edge). The encoded values are all relative; in the first pair, x is relative to 0, and
dx specifies the distance from x. The first value of each subsequent pair is relative
to the last edge defined by the previous pair.

A width of -20 specifies the right edge of an edge hint, and -21 specifies the left
edge of an edge hint. All other negative widths have undefined meaning.

It is important to note that hstem hints must not overlap other hstem hints, and similarly, vstem hints must
not overlap other vstem hints. If overlapping hints are needed, then the overlapping hints must be defined by
using the hstemhm or vstemhm operator rather than the hstem or vstem operator. In addition, the hints
must be selectively applied by using the hintmask operator to select the active hint so that no overlapping

614

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

614 ©	ISO/IEC	2019	–	All	rights	reserved
	

horizontal or vertical hints are active at the same time. See below for details on the hintmask operator and
the example in Figure E6.

Figure E5 below shows an example of overlapping hints on a sample feature of a character outline.

Figure E5 – Encoding of overlapping hints

The encoding for the example shown in Figure E5 would be:

280 100 –70 40 hstemhm
Again, note that the hintmask operator, not shown here, must also be used in conjunction with these hints.

hstemhm |- y dy {dya dyb}* hstemhm (18) |-

Has the same meaning as hstem (1), except that it must be used in place of hstem
if the CharString contains one or more hintmask operators.

vstemhm |- x dx {dxa dxb}* vstemhm (23) |-

Has the same meaning as vstem (3), except that it must be used in place of vstem
if the CharString contains one or more hintmask operators.

hintmask |- hintmask (19) mask |-

Specifies which hints are active and which are not active. If any hints overlap,
hintmask must be used to establish a non-overlapping subset of hints. hintmask
may occur any number of times in a CharString. Path operators occurring after a
hintmask are influenced by the new hint set, but the current point is not moved. If
stem hint zones overlap and are not properly managed by use of the hintmask
operator, the results are undefined.

615

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 615
	

The mask data bytes are defined as follows:

 The number of data bytes is exactly the number needed, one bit per hint, to
reference the number of stem hints declared at the beginning of the
CharString program.

 Each bit of the mask, starting with the most-significant bit of the first byte,
represents the corresponding hint zone in the order in which the hints were
declared at the beginning of the CharString.

 For each bit in the mask, a value of ‘1’ specifies that the corresponding hint
shall be active. A bit value of ‘0’ specifies that the hint shall be inactive.

Unused bits in the mask, if any, must be zero.

If hstem and vstem hints are both declared at the beginning of a CharString, and
this sequence is followed directly by the hintmask or cntrmask operators, then the
vstem hint operator (or, if applicable, the vstemhm operator) need not be included.
For example, Figure E6 shows part of a character with hstem and vstem hints.

Figure E6 – Hint encoding example

Figure E6 shows two overlapping hstem hints: hstem1, from 280 to 380; and hstem2, from 310 to 350.
Because these overlap, use of the hintmask operator will be required to select one or the other as active. It
also shows one vstem hint: vstem1, from 400 to 450. Suppose that only these three hints are defined, and
that the outline is being constructed in counterclockwise direction, beginning with the horizontal line segment
ending at (400, 310). In this case, the first hint group that should be active is hstem2 plus vstem1. For this
scenario, the hints would be specified as follows:

616

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

616 ©	ISO/IEC	2019	–	All	rights	reserved
	

280 100 –70 40 hstemhm 400 50 hintmask 0x60
Note that the hstemhm is used to indicate that hint substitution (using hintmask) will be used. The hints are
defined in the order hstem1, hstem2, then vstem1. The hintmask operand, 0x60 (01100000), indicates which
hints are active at the beginning of the path construction: the second and third hints in order — hstem2 and
vstem1.

cntrmask |- cntrmask (20) mask |-

Specifies the counter spaces to be controlled, and their relative priority. The mask
bits in the bytes, following the operator, reference the stem hint declarations; the
most significant bit of the first byte refers to the first stem hint declared, through to
the last hint declaration. The counters to be controlled are those that are delimited
by the referenced stem hints. Bits set to 1 in the first cntrmask command have top
priority; subsequent cntrmask commands specify lower priority counters
(see Figure E1 and the accompanying example).

D.4.4 Subroutine operators

The numbering of subroutines is encoded more compactly by using the negative half of the number space,
which effectively doubles the number of compactly encodable subroutine numbers. The bias applied depends
on the number of subrs (gsubrs). If the number of subrs (gsubrs) is less than 1240, the bias is 107. Otherwise
if it is less than 33900, it is 1131; otherwise it is 32768. This bias is added to the encoded subr (gsubr) number
to find the appropriate entry in the subr (gsubr) array.

callsubr subr# callsubr (10)

Calls a CharString subroutine with index subr# (actually the subr number plus the
subroutine bias number, as described in subclause E.2.3) in the Subrs array. Each
element of the Subrs array is a CharString encoded like any other CharString. The
subroutine call removes only the subr# and operator from the stack, so arguments
pushed on the stack are available to any operators in the subroutine. Similarly,
values pushed from inside the subroutine are available after the subroutine returns
to the caller. Calling an undefined subr (gsubr) has undefined results.

These subroutines are generally used to encode sequences of path operators that
are repeated throughout the font program, for example, serif outline sequences.
Subroutine calls may be nested to the depth specified in the implementation limits
in subclause E.5.2.

callgsubr globalsubr# callgsubr (29)

Operates in the same manner as callsubr except that it calls a global subroutine.

D.4.5 Variation data operators

In order to support variation data in CFF2 CharStrings, two new operators are added in CFF2 CharStrings:
vsindex and blend.

A variable font holds data representing the equivalent of several distinct design variations, and uses
algorithms for interpolation — or blending — between these designs to derive a continuous range of design
instances. This allows an entire family of fonts to be represented by a single variable font. For example, a
variable font may contain data equivalent to Light and Heavy designs from a family, which can then be
interpolated to derive instances for any weight in a continuous range between Light and Heavy.

See subclause 7.1 for general background on OFF font variations, details on the tables used to support a
variable font, terminology, and a specification of the interpolation algorithm used to blend values to derive
specific design instances.

617

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 617
	

Outline data for a variable font in the CFF2 format are built much like a non-variable CFF2 table would be built,
with exactly the same structure and operators as would be used for the default design representation.
However, wherever a value occurs in the default design, the single value for the one design is supplemented
with a set of delta values, followed by the blend operator. (For efficiency, a single blend operator may follow a
series of such delta sets, rather than after each individual set.) Unlike other CharString operators, blend does
not clear the stack when it is processed. The result of the blend operator remains on the stack to be
processed by the following operator.

Within a variable font, different glyphs can use different sets of regions and associated delta values for the
blending operation. When processing a given glyph, the interpreter must determine which set to use. These
sets are stored in the CFF2 table in an ItemVariationStore structure. The ItemVariationStore contains one or
more ItemVariationData subtables, each of which contains a list of Variation Regions. The first
ItemVariationData subtable (index 0) is used by default, when no other subtable has been specified. When an
ItemVariationData subtable other than the default is needed for a set of delta values, the vsindex operator is
used. When this operator is used in a Private DICT to set a non-default itemVariationData index, this then
becomes the default Item Variation Data index for not only the Private DICT, but also for all CharStrings that
reference that Private DICT. When the vsindex operator is used in a CharString, it supersedes any vsindex
from the private DICT. All private DICTs and CharStrings in a CFF2 table share the same ItemVariationStore.

Syntax for Font Variations support operators.

vsindex |- ivs vsindex (15) |-

Selects the ItemVariationData subtable to be used for blending in this CharString;
the ivs argument is the ItemVariationData index. When used, vsindex must
precede the first blend operator, and may occur only once in the CharString. If the
vsindex operator is not present in the CharString, then the ItemVariationData index
is inherited from the Private DICT vsindex value. If the vsindex operator is not
present in a Private DICT, then the default value is 0.

blend num(0)…num(n-1), delta(0,0)…delta(k-1,0), delta(0,1)…delta(k-1,1) … delta(0,n-
1)…delta(k-1,n-1) n blend (16) val(0)…val(n-1)

For k regions, produces n interpolated result value(s) from n*(k + 1) operands.

The blend operator is used in conjunction with other operators to produce
interpolated input values for the other operator that are applicable for the currently-
selected variation instance. The variation-instance design vector is specified in the
interpreter, external to the font program, and the interpreter applies the design
vector when processing the blend operator to calculate the appropriate interpolated
values.

Blending is supported only for design space coordinate values, such as the
operands for the hint and path construction operators. The last operand on the
stack, n, specifies the number of operands that will be left on the stack for the next
operator. (For example, if the blend operator is used in conjunction with the hflex
operator, which requires 6 operands, then n would be set to 6.) This operand also
informs the handler for the blend operator that the operator is preceded by n+1
sets of operands.

The first set of operands, num(0)…num(n-1), contains the n operands for the
following CharsString operator that are applicable to the default variation instance.

There are n additional sets of operands, delta(0,i)…delta(k-1,i), one corresponding
to each of the values in the first set of operands. Each set contains the variation
adjustment deltas for the given operand, with each delta being associated with a
different region of the design-variation space. (See the “Variation Space, Default
Instances and Adjustment Deltas” and “Variation Data” sections in subclause 7.1 for
more information regarding regions and associated adjustment deltas.) Each of
these additional operand sets has k operands, where k represents the number of
regions for which variation adjustment deltas are defined. This value is determined
by the ItemVariationData subtable that is currently active for the CharString (see

618

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

618 ©	ISO/IEC	2019	–	All	rights	reserved
	

vsindex).

Thus, the first set contains n operands, and the following sets contain n*k operands,
giving a total of n*(k+1) operands that precede the final n operand.

The blend handler will compare the currently-selected variation-instance design
vector with the coordinates for each region to compute an interpolation scalar factor
for each given region. This is then applied to the adjustment deltas for the region to
compute a net adjustment delta to be applied to the default value. For more details
on the interpolation algorithm, see subclause 7.1.7 in the OFF Font variations
overview.

As an example of the blend operator, consider use of blend to interpolate inputs to an rmoveto operator. The
rmoveto operator takes two operands, x and y, and so the n argument for the blend operator will be set to 2.

Suppose, also, that the font has weight and width variation axes, and that the default variation instance of the
font is Regular. In addition, suppose that this CharString uses deltas for three regions, the extreme points of
which correspond to Light and Bold (extremes for the weight axis), and also Condensed (extreme for the width
axis, opposite of Regular which has normal width). Thus, the value of k is 3.

Now suppose that the x and y arguments for the removeto operator that would be needed for the Regular,
Light, Bold and Condensed variation instances are as follows:

Regular: 100 200 rmoveto
Light: 100 150 rmoveto
Bold: 100 300 rmoveto
Condensed: 50 100 rmoveto

For the blend operator, the first set of arguments will be the rmoveto arguments required for the default
instance:

100 200
The following sets of blend arguments are the set of deltas for the three regions, with one set of deltas for
each of the rmoveto arguments. As an example of a delta, the x argument for Regular — the default instance
— is 100, and the x argument required for Condensed is 50, and so the x-argument delta for the 3rd region
(index 2) is -50. Thus, the set of deltas for the first rmoveto operand for all three regions are:

0 0 -50
And the set of deltas for the second rmoveto operand for all three regions are:

-50 100 -100
Combining this together, the CharString sequence for the blend and rmoveto operator combination will be as
follows; parentheses are added to demarcate each of the blend operand sets:

(100 200) (0 0 -50) (-50 100 -100) 2 blend rmoveto
When the blend operator is processed for a particular variation instance, the handler will calculate scalar
coefficients for each region and then apply each scalar to the deltas for the corresponding region. For instance,
if the selected instance is midway between Regular and Light on the weight axis and normal width on the
width axis, then the scalar for region 0 will be 0.5, while the scalars for regions 1 and 2 will each be 0.0. The
blend operator will interpolate the rmoveto arguments as follows:

x = 100 + (0 * 0.5) + (0 * 0.0) + (-50 * 0.0) = 100 y = 200 + (-50 * 0.5) +
(100 * 0.0) + (-100 * 0.0) = 175

These blend results are pushed onto the stack. Thus, the rmoveto operation that will be performed is:

100 175 rmoveto

619

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 619
	

D.5 Supplemental information

D.5.1 CFF2 CharString command codes

One-byte CFF2 Operators

Dec Hex Operator Note

0 00 <reserved>

1 01 hstem

2 02 <reserved>

3 03 vstem

4 04 vmoveto

5 05 rlineto

6 06 hlineto

7 07 vlineto

8 08 rrcurveto

9 09 <reserved>

10 0a callsubr

11 0b <reserved>

12 0c escape First byte of a 2-byte operator.

13 0d <reserved>

14 0e <reserved>

15 0f vsindex

16 10 blend

17 11 <reserved>

18 12 hstemhm

19 13 hintmask

20 14 cntrmask

21 15 rmoveto

22 16 hmoveto

23 17 vstemhm

24 18 rcurveline

25 19 rlinecurve

26 1a vvcurveto

620

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

620 ©	ISO/IEC	2019	–	All	rights	reserved
	

27 1b hhcurveto

28 1c <numbers> First byte of a 3-byte sequence specifying an unsigned integer
value (next two bytes are a uint16).

29 1d callgsubr

30 1e vhcurveto

31 1f hvcurveto

32 to 246 20 to f6 <numbers>

247 to
254

f7 to fe <numbers> First byte of a 2-byte sequence specifying a number.

255 ff <number> First byte of a 5-byte sequence specifying a Fixed value.

Two-byte CFF2 Operators

Dec Hex Operator

12 0 to 12 33 0c 00 to 0c 21 <reserved>

12 34 0c 22 hflex

12 35 0c 23 flex

12 36 0c 24 hflex1

12 37 0c 25 flex1

12 38 to 12 255 0c 26 to 0c ff <reserved>

D.5.2 CFF2 CharString implementation limits

The following are the implementation limits of the CFF2 CharString interpreter:

Description Limit

Argument stack 513

Number of stem hints (H/V total) 96

Subr nesting, stack limit 10

CharString length 65535

maximum (g)subrs count 65536

621

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 621
	

D.5.3 Changes from Type 2 CharStrings

 CFF2 CharStrings do not contain a value for width.

 The CharString operator set is extended in CFF2 to include the blend and vsindex operators. These
work as described in subclause E.4.5 (Variation data operators). The CFF2 CharString operator code
for blend is 16, and for vsindex is 15.

 The Type 2 operators endchar and return are removed.

 The Type 2 logic, storage, and math operators are removed.

 For CFF2 fonts, the fill rule for CharStrings must always be the nonzero winding number rule, rather
than the even-odd rule. Overlap subpaths are permitted.

 The stack depth is increased from 48 to 513.

622

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

622 ©	ISO/IEC	2019	–	All	rights	reserved
	

Annex E
(informative)

CFF2 DICT Encoding

One-byte CFF2 DICT Operators

Dec Hex Operator Note

0 to 5 00 to
05

<reserved>

6 06 BlueValues

7 07 OtherBlues

8 08 FamilyBlues

9 09 FamilyOtherBlues

10 0a StdHW

11 0b StdVW

12 0c escape First byte of a 2-byte operator.

13 to 16 0d to
10

<reserved>

17 11 CharStrings

18 12 Private

19 13 Subrs

20 to 21 14 to
15

<reserved>

22 16 vsindex

23 17 blend

24 18 vstore

25 to 27 19 to
1b

<reserved>

28 1c <numbers> First byte of a 3-byte sequence specifying a signed integer
value (following two bytes are an int16).

29 1d <numbers> First byte of a 5-byte sequence specifying a signed integer
value (following four bytes are an int32).

30 1e BCD

31 1f <reserved>

32 to 246 20 to f6 <numbers>

247 to 254 f7 to fe <numbers> First byte of a 2-byte sequence specifying a number.

255 ff <reserved>

623

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 623
	

NOTE Operator code 25 (0x19) was previously assigned as a maxstack operator. This was never required in CFF2
fonts and is no longer supported.

Two-byte CFF2 DICT Operators

Dec Hex Operator

12 0 to 12 6 0c 00 to 0c 06 <reserved>

12 7 0c 07 FontMatrix

12 8 0c 08 <reserved>

12 9 0c 09 BlueScale

12 10 0c 0a BlueShift

12 11 0c 0b BlueFuzz

12 12 0c 0c StemSnapH

12 13 0c 0d StemSnapV

12 14 to 12 16 0c 0e to 0c 10 <reserved>

12 17 0c 11 LanguageGroup

12 18 0c 12 ExpansionFactor

12 19 to 12 35 0c 13 to 0c 23 <reserved>

12 36 0c 24 FDArray

12 37 0c 25 FDSelect

12 38 to 12 255 0c 26 to 0c ff <reserved>

624

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

624 ©	ISO/IEC	2019	–	All	rights	reserved
	

Annex F
(informative)

Registration of Media Type: application/font-sfnt

The content of this Annex (presented below in its entirety) represents a text of new media type registration for
a 'font-sfnt" subtype of the "application" tree. Since the new top-level media type "font" tree is now available as
introduced by the RFC 8081 (https://tools.ietf.org/html/rfc8081), we recommend using the "font/sfnt" subtype
as a generic font media type.

The use of "application/font-sfnt" media type is now DEPRECATED and the text of its registration below
provided only for historic references.

This appendix registers a new MIME media type, in conformance with http://www.ietf.org/rfc/rfc4288.txt.

Type name:
application

Subtype name:
font-sfnt

Required parameters:
None

Optional parameters:
1) Name: Outlines

Value: TTF, CFF
2) Name: Layout

Value: OTF, AAT, SIL

Encoding considerations:
binary

Security considerations:
Fonts are collections of different tables containing data structures that represent different types of information,
including glyph outlines in various data formats, hinting instructions, metrics and layout information for multiple
languages and writing systems, rules for glyph substitution and positioning, etc. Depending on the data format
used to represent the glyph data the font may contain either TrueType or PostScript outlines and their
respective hint instructions. There are many existing, already standardized font table tags and formats that
allow an unspecified number of entries containing predefined data fields for storage of variable length binary
data.

Many existing (TrueType, OpenType and OFF, SIL Graphite, WOFF and many other) font formats are based
on the table-based SFNT (scalable font) format which is extremely flexible, highly extensible and offers an
opportunity to introduce additional table structures when needed, in a way that would not affect existing font
rendering engines and text layout implementations. However, this very extensibility may present specific
security concerns – the flexibility and ease of adding new data structures makes it easy for any arbitrary data

625

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 625
	

to be hidden inside a font file. There is a significant risk that the flexibility of font data structures may be
exploited to hide malicious binary content disguised as a font data component.

Fonts may contain 'hints' – programmatic instructions that are executed by the font engine for the alignment of
graphical elements of glyph outlines with the target display pixel grid. Depending on the font technology
utilized in the creation of a font these hints may represent active code interpreted and executed by the font
rasterizer. Even though hints operate within the confines of the glyph outline conversion system and have no
access outside the font rendering engine, hint instructions can be, however, quite complex, and a maliciously
designed complex font could cause undue resource consumption (e.g. memory or CPU cycles) on a machine
interpreting it. Indeed, fonts are sufficiently complex, and most (if not all) interpreters cannot be completely
protected from malicious fonts without undue performance penalties.

Widespread use of fonts as necessary component of visual content presentation warrants that a careful
attention should be given to security considerations whenever a font is either embedded into an electronic
document or transmitted alongside media content.

Interoperability considerations:
As it was noted in the first paragraph of the "Security considerations" section, the same font format wrapper
can be used to encode fonts with different types of glyph data represented as either TrueType or PostScript
(CFF) outlines. Existing font rendering engines may not be able to process some of the particular outline
formats, and downloading a font resource that contains unsupported glyph data format would result in inability
of application to render and display text. Therefore, it would be extremely useful to clearly identify the format
of the glyph outline data within a font using an optional parameter, and allow applications to make decisions
about downloading a particular font resource sooner. Similar, another optional parameter is suggested to
identify the type of text shaping and layout mechanism that is supported by a font. Please note that as new
outline formats and text shaping mechanisms may be defined in the future, the set of allowed values for two
optional parameters defined by this application may be extended.

Published specification:
As of the date of this submission, the main published specification is ISO/IEC 14496-22:2009 "Open Font
Format". This media type registration is extracted from the ISO/IEC 14496-22/AMD2 of Open Font Format
(OFF) specification being developed by ISO/IEC SC29/WG11.

Applications that use this media type:
Any and all applications that are able to create, edit or display textual media content.

Additional information:

Magic number(s):
The TrueType fonts and OFF / OpenType fonts containing TrueType outlines should use 0x00010000
as the 'sfnt' version number.

The OFF / OpenType fonts containing CFF data should use the tag 'OTTO' as 'sfnt' version number.

File extension(s):
Font file extensions used for OFF / OpenType fonts: .ttf, .otf

Typically, .ttf extension is only used for fonts containing TrueType outlines, while .otf extension can be
used for any OpenType/OFF font, either with TrueType or CFF outlilnes.

Macintosh file type code(s):
(no code specified)

626

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

626 ©	ISO/IEC	2019	–	All	rights	reserved
	

Intended usage:
COMMON

Restrictions on usage:
None

Author:
The ISO/IEC 14496-22 "Open Font Format" specification is a product of the ISO/IEC JTC1 SC29/WG11.

Change controller:
The ISO/IEC has change control over the above-mentioned standard.

627

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

©	ISO/IEC	2019	–	All	rights	reserved	 627
	

Bibliography
[1] List of Locale ID (LCID) Values as Assigned by Microsoft -

 http://www.microsoft.com/globaldev/reference/lcid-all.mspx

[2] Apple’s TrueType Manual, chapter 6: The ‘post’ table -
 https://developer.apple.com/fonts/TTRefMan/RM06/Chap6post.html

[3] Adobe Glyph List specification - http://sourceforge.net/adobe/aglfn/wiki/AGL%20Specification/

[4] Type 2 Charstring format, <http://partners.adobe.com/public/developer/en/font/5177.Type2.pdf>

[5] The Compact Font Format specification,
<http://partners.adobe.com/public/developer/en/font/5176.CFF.pdf>

[6] Vendor registry - http://www.microsoft.com/typography/links/vendorlist.aspx

[7] Apple's TrueType Reference Manual - http://developer.apple.com/fonts/TTRefMan/

[8] TrueType Font Files, Technical Specification
V1.66 http://www.microsoft.com/typography/SpecificationsOverview.mspx

[9] OpenType Layout Font Specification http://www.microsoft.com/typography/otspec/TTOCHAP1.htm

[10] Script-specific Development: http://www.microsoft.com/typography/SpecificationsOverview.mspx

[11] Feature Tags: http://www.microsoft.com/typography/developers/OpenType/featuretags.aspx

[12] PKCS#7 signatures: ftp://ftp.rsa.com/pub/pkcs/ascii/pkcs-7.asc

[13] Counter-signatures: ftp://ftp.rsa.com/pub/pkcs/ascii/pkcs-9.asc

[14] PANOSE Specification: http://www.panose.com/

[15] Portable Network Graphics (PNG) specification: http://www.w3.org/TR/PNG/

[16] Conformance requirements for SVG
viewers: http://www.w3.org/TR/SVG11/conform.html#ConformingSVGViewers

[17] SVG Integration: http://www.w3.org/TR/svg-integration/

[18] CSS Custom Properties for Cascading Variables Module Level 1
specification: http://www.w3.org/TR/css-variables-1/

[19] Scalable Vector Graphics (SVG) 2 specification: http://www.w3.org/TR/SVG2

[20] Unicode Character Database file for joining-script
properties http://www.unicode.org/Public/UCD/latest/ucd/ArabicShaping.txt

[21] Requirements for Japanese Text Layout (JLREQ): https://www.w3.org/TR/jlreq/

[22] Unicode Character Database (Unicode Annex #44) http://www.unicode.org/reports/tr44/tr44-18.html

[23] Unicode Technical Report #50: Unicode Vertical Text Layout. http://www.unicode.org/reports/tr50/

[24] The WOFF2 specification: http://www.w3.org/TR/WOFF2/

[25] IETF BCP 47 specification, “Tags for Identifying Languages”. http://tools.ietf.org/html/bcp47

628

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019(E)

628 ©	ISO/IEC	2019	–	All	rights	reserved
	

[26] IANA Language Subtag Registry.
http://www.iana.org/assignments/language-subtag-registry/language-subtag-registry

[27] Adobe Technical Note #5902: “PostScript Name Generation for Variation Fonts”.
http://wwwimages.adobe.com/content/dam/Adobe/en/devnet/font/pdfs/5902.AdobePSNameGenerati
on.html

[28] CFF2 changes from CFF 1.0 https://www.microsoft.com/typography/otspec/cff2.htm#appendixD

[29] Example CFF2 Font:
https://www.microsoft.com/typography/otspec/cff2.htm#appendixA

[30] Adobe Technical Note #5015: "Type 1 Font Format Supplement".
http://wwwimages.adobe.com/content/dam/Adobe/en/devnet/font/pdfs/5015.Type1_Supp.pdf

Information technology — Coding of audio-visual
objects —

Part 22:
Open Font Format

AMENDMENT 1: Color font technology and other updates

4.5.2

Replace the description of the “Offset” field in the “Table Directory” table with the following:

Offset from beginning of OFF font file.

5.3.4.1.1

Replace the first sentence of the first paragraph with the following:

This is the table information needed if numberOfContours is greater than or equal to zero, that is, a
glyph is not a composite.

Replace the final paragraph (immediately following the “Simple Glyph flags” table) with the following:

A non-zero-fill algorithm is needed to avoid dropouts when contours overlap. The OVERLAP_SIMPLE
flag is used by some rasterizer implementations to ensure that a non-zero-fill algorithm is used rather
than an even-odd-fill algorithm. Implementations that always use a non-zero-fill algorithm will ignore
this flag. Note that some implementations might check this flag specifically in non-variable fonts, but
always use a non-zero-fill algorithm for variable fonts. This flag can be used in order to provide broad
interoperability of fonts — particularly non-variable fonts — when glyphs have overlapping contours.

Note that variable fonts often make use of overlapping contours. This has implications for tools that
generate static-font data for a specific instance of a variable font, if broad interoperability of the derived
font is desired: if a glyph has overlapping contours in the given instance, then the tool should either
set this flag in the derived glyph data, or else should merge contours to remove overlap of separate
contours.

5.4.3.10

In the descriptions of both “FDSelect Format3” and “Range3 Record Format”, add the following NOTE
after the last paragraph:

NOTE Since a sentinel GID is used to delimit the last range in the array, its value, encoded as a uint16, cannot
exceed the value 65535. Therefore, the last GID encoded when using FDSelect Format3 cannot exceed 65534.

In the description of “FDSelect Format4”, in the first paragraph, replace the reference to 65536 [glyphs]
with 65535.

ISO/IEC 14496-22:2019/Amd.1:2020(E)

© ISO/IEC 2020 – All rights reserved 1

629

IS/ISO/IEC 14496-22 : 2019

Information technology — Coding of audio-visual
objects —

Part 22:
Open Font Format

AMENDMENT 1: Color font technology and other updates

4.5.2

Replace the description of the “Offset” field in the “Table Directory” table with the following:

Offset from beginning of OFF font file.

5.3.4.1.1

Replace the first sentence of the first paragraph with the following:

This is the table information needed if numberOfContours is greater than or equal to zero, that is, a
glyph is not a composite.

Replace the final paragraph (immediately following the “Simple Glyph flags” table) with the following:

A non-zero-fill algorithm is needed to avoid dropouts when contours overlap. The OVERLAP_SIMPLE
flag is used by some rasterizer implementations to ensure that a non-zero-fill algorithm is used rather
than an even-odd-fill algorithm. Implementations that always use a non-zero-fill algorithm will ignore
this flag. Note that some implementations might check this flag specifically in non-variable fonts, but
always use a non-zero-fill algorithm for variable fonts. This flag can be used in order to provide broad
interoperability of fonts — particularly non-variable fonts — when glyphs have overlapping contours.

Note that variable fonts often make use of overlapping contours. This has implications for tools that
generate static-font data for a specific instance of a variable font, if broad interoperability of the derived
font is desired: if a glyph has overlapping contours in the given instance, then the tool should either
set this flag in the derived glyph data, or else should merge contours to remove overlap of separate
contours.

5.4.3.10

In the descriptions of both “FDSelect Format3” and “Range3 Record Format”, add the following NOTE
after the last paragraph:

NOTE Since a sentinel GID is used to delimit the last range in the array, its value, encoded as a uint16, cannot
exceed the value 65535. Therefore, the last GID encoded when using FDSelect Format3 cannot exceed 65534.

In the description of “FDSelect Format4”, in the first paragraph, replace the reference to 65536 [glyphs]
with 65535.

ISO/IEC 14496-22:2019/Amd.1:2020(E)

© ISO/IEC 2020 – All rights reserved 1

630

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019/Amd.1:2020(E)

In the description of “Range4 Record Format” replace all references to 65536 [glyphs] with 65535.

5.4.3.11

In the 'blend' row of the table – replace "number of blends" with the "numberOfBlends".

5.5.1

Replace the entire content of subclause 5.5.1 with the following:

This table contains SVG descriptions for some or all of the glyphs in the font.

OFF provides various formats for color fonts, one of which is the SVG table. The SVG table provides the
benefits of supporting scalable color graphics using the Scalable Vector Graphics markup language, a
vector graphics file format that is widely used on the Web and that provides rich graphics capabilities,
such as gradients.

SVG was developed for use in environments that allow for a rich set of functionality, including leveraging
the full functionality of Cascading Style Sheets for styling, and programmatic manipulation of graphics
objects using the SVG Document Object Model. Adoption of SVG for use in OpenType does not entail
wholesale incorporation of all SVG capabilities. Text-rendering engines typically have more stringent
security, performance and architectural requirements than general-purpose SVG engines. For this
reason, when used within OFF fonts, the expressiveness of the language is limited and simplified to be
appropriate for environments in which font processing and text layout occurs.

The SVG table is optional, and may be used in OFF fonts with TrueType, CFF or CFF2 outlines. For every
SVG glyph description, there must be a corresponding TrueType, CFF or CFF2 glyph description in the font.

SVG Table Header

Type Name Description
uint16 version Table version (starting at 0). Set to 0.
Offset32 offsetToSVGDocumentList Offset the SVG Documents List, from the start of the SVG table.

Must be non-zero.
uint32 reserved Set to 0.

SVG Document List

The SVG document list provides a set of SVG documents, each of which defines one or more glyph
descriptions.

Type Name Description
uint16 numEntries Number of SVG Document Index Entries.

Must be non-zero.
SVGDocumentRecord documentRecords[numEntries] Array of SVG document records.

2 © ISO/IEC 2020 – All rights reserved

ISO/IEC 14496-22:2019/Amd.1:2020(E)

SVGDocumentRecord

Each SVG document record specifies a range of glyph IDs (from startGlyphID to endGlyphID, inclusive),
and the location of its associated SVG document in the SVG table.

Type Name Description
uint16 startGlyphID The first glyph ID for the range covered by this record.
uint16 endGlyphID The last glyph ID for the range covered by this record.
Offset32 svgDocOffset Offset from the beginning of the SVGDocumentList to an SVG document.

Must be non-zero.
uint32 svgDocLength Length of the SVG document data. Must be non-zero.

Records must be sorted in order of increasing startGlyphID. For any given record, the startGlyphID must
be less than or equal to the endGlyphID of that record, and also must be greater than the endGlyphID of
any previous record.

NOTE Two or more records can point to the same SVG document. In this way, a single SVG document can
provide glyph descriptions for discontinuous glyph ID ranges. See Example 1 in subclause 5.5.6

5.5.2

Insert a new subclause 5.5.2 and renumber the remaining subclauses within subclause 5.5:

5.5.2 SVG Documents

SVG specification

The SVG markup language used in the SVG table shall be as defined in the Scalable Vector Graphics
(SVG) 1.1 (2nd edition), W3C Recommendation. Any additional SVG features are not supported, unless
explicitly indicated otherwise.

Previous editions of this document allowed use of context-fill and other context-* property values,
which are defined in the draft SVG 2 specification. Use of these properties is deprecated: conforming
implementations may support these properties, but support is not required or recommended, and use
of these properties in fonts is strongly discouraged.

Document encoding and format

SVG documents within an OFF SVG table may either be plain text or gzip-encoded, and applications that
support the SVG table shall support both.

The gzip format is defined in RFC 1952 (Reference [31]). Within a gzip-encoded SVG document, the
deflate compression method (defined by RFC 1951) must be used. Thus, the first three bytes of the gzip-
encoded document header must be 0x1F, 0x8B, 0x08.

Whether compressed or plain-text transfer encoding is used, the SVGDocLength field of the SVG
document record specifies the length of the encoded data, not the decoded document.

The encoding of the (uncompressed) SVG document must be UTF-8.

While SVG 1.1 is defined as an XML application, some SVG implementations for the Web use an
“HTML dialect”. The “HTML dialect” differs from the XML-based definition in various ways, including
being case-insensitive (XML is case-sensitive), and not requiring an xmlns attribute on the SVG root
element. Applications that support the OFF SVG table shall support the XML-based definition for SVG
1.1. Applications may use SVG-parsing libraries that also support the “HTML dialect”. However, SVG
documents within the OFF fonts must always conform to the XML-based definition.

© ISO/IEC 2020 – All rights reserved 3

631

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019/Amd.1:2020(E)

In the description of “Range4 Record Format” replace all references to 65536 [glyphs] with 65535.

5.4.3.11

In the 'blend' row of the table – replace "number of blends" with the "numberOfBlends".

5.5.1

Replace the entire content of subclause 5.5.1 with the following:

This table contains SVG descriptions for some or all of the glyphs in the font.

OFF provides various formats for color fonts, one of which is the SVG table. The SVG table provides the
benefits of supporting scalable color graphics using the Scalable Vector Graphics markup language, a
vector graphics file format that is widely used on the Web and that provides rich graphics capabilities,
such as gradients.

SVG was developed for use in environments that allow for a rich set of functionality, including leveraging
the full functionality of Cascading Style Sheets for styling, and programmatic manipulation of graphics
objects using the SVG Document Object Model. Adoption of SVG for use in OpenType does not entail
wholesale incorporation of all SVG capabilities. Text-rendering engines typically have more stringent
security, performance and architectural requirements than general-purpose SVG engines. For this
reason, when used within OFF fonts, the expressiveness of the language is limited and simplified to be
appropriate for environments in which font processing and text layout occurs.

The SVG table is optional, and may be used in OFF fonts with TrueType, CFF or CFF2 outlines. For every
SVG glyph description, there must be a corresponding TrueType, CFF or CFF2 glyph description in the font.

SVG Table Header

Type Name Description
uint16 version Table version (starting at 0). Set to 0.
Offset32 offsetToSVGDocumentList Offset the SVG Documents List, from the start of the SVG table.

Must be non-zero.
uint32 reserved Set to 0.

SVG Document List

The SVG document list provides a set of SVG documents, each of which defines one or more glyph
descriptions.

Type Name Description
uint16 numEntries Number of SVG Document Index Entries.

Must be non-zero.
SVGDocumentRecord documentRecords[numEntries] Array of SVG document records.

2 © ISO/IEC 2020 – All rights reserved

ISO/IEC 14496-22:2019/Amd.1:2020(E)

SVGDocumentRecord

Each SVG document record specifies a range of glyph IDs (from startGlyphID to endGlyphID, inclusive),
and the location of its associated SVG document in the SVG table.

Type Name Description
uint16 startGlyphID The first glyph ID for the range covered by this record.
uint16 endGlyphID The last glyph ID for the range covered by this record.
Offset32 svgDocOffset Offset from the beginning of the SVGDocumentList to an SVG document.

Must be non-zero.
uint32 svgDocLength Length of the SVG document data. Must be non-zero.

Records must be sorted in order of increasing startGlyphID. For any given record, the startGlyphID must
be less than or equal to the endGlyphID of that record, and also must be greater than the endGlyphID of
any previous record.

NOTE Two or more records can point to the same SVG document. In this way, a single SVG document can
provide glyph descriptions for discontinuous glyph ID ranges. See Example 1 in subclause 5.5.6

5.5.2

Insert a new subclause 5.5.2 and renumber the remaining subclauses within subclause 5.5:

5.5.2 SVG Documents

SVG specification

The SVG markup language used in the SVG table shall be as defined in the Scalable Vector Graphics
(SVG) 1.1 (2nd edition), W3C Recommendation. Any additional SVG features are not supported, unless
explicitly indicated otherwise.

Previous editions of this document allowed use of context-fill and other context-* property values,
which are defined in the draft SVG 2 specification. Use of these properties is deprecated: conforming
implementations may support these properties, but support is not required or recommended, and use
of these properties in fonts is strongly discouraged.

Document encoding and format

SVG documents within an OFF SVG table may either be plain text or gzip-encoded, and applications that
support the SVG table shall support both.

The gzip format is defined in RFC 1952 (Reference [31]). Within a gzip-encoded SVG document, the
deflate compression method (defined by RFC 1951) must be used. Thus, the first three bytes of the gzip-
encoded document header must be 0x1F, 0x8B, 0x08.

Whether compressed or plain-text transfer encoding is used, the SVGDocLength field of the SVG
document record specifies the length of the encoded data, not the decoded document.

The encoding of the (uncompressed) SVG document must be UTF-8.

While SVG 1.1 is defined as an XML application, some SVG implementations for the Web use an
“HTML dialect”. The “HTML dialect” differs from the XML-based definition in various ways, including
being case-insensitive (XML is case-sensitive), and not requiring an xmlns attribute on the SVG root
element. Applications that support the OFF SVG table shall support the XML-based definition for SVG
1.1. Applications may use SVG-parsing libraries that also support the “HTML dialect”. However, SVG
documents within the OFF fonts must always conform to the XML-based definition.

© ISO/IEC 2020 – All rights reserved 3

632

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019/Amd.1:2020(E)

While SVG 1.1 requires conforming interpreters to support XML namespace constructs, applications
that support the OpenType SVG table are not required to have full support for XML namespaces. The
root element of each SVG document must declare SVG as the default namespace:

 <svg version=”1.1” xmlns=”http://www.w3.org/2000/svg”>

If the XLink href attribute is used, the root must also declare “xlink” as a namespace in the root element:

 <svg version=”1.1” xmlns=”http://www.w3.org/2000/svg”
 xmlns:xlink=”http://www.w3.org/1999/xlink”>

No other XLink attributes or other mechanisms may be used anywhere in the document. Also, no other
namespace declarations should be made in any element.

SVG capability requirements and restrictions

Most SVG 1.1 capabilities are supported in OFF and should be supported in all OFF applications that
support the SVG table. Some SVG 1.1 capabilities are not required and may be optionally supported
in applications. Certain other capabilities are not supported in OFF and must not be used in SVG
documents within OFF fonts.

The following capabilities are restricted from use in OFF and must not be used in conforming fonts. If
use of associated elements is encountered within a font, conforming applications must ignore and not
render those elements.

— <text>, , and associated elements

— <foreignObject> elements

— <switch> elements

— <script> elements

— <a> elements

— <view> elements

— XSL processing

— Use of relative units em, ex

— Use of SVG data within <image> elements

— Use of color profiles (the <icccolor> data type, the <color-profile> element, the color-profile property,
or the CSS @color-profile rule)

— Use of the contentStyleType attribute

— Use of CSS2 system color keywords

SVG documents may include <desc>, <metadata> or <title> elements, but these are ignored by
implementations.

Support for the following capabilities is not required in conforming implementations, though some
applications may support them. Font developers should evaluate support for these capabilities in
the target environments in which their fonts will be used before using them in fonts. To ensure
interoperability across the broadest range of environments, use of these capabilities should be avoided.

— Internal CSS stylesheets (expressed using the <style> element)

— CSS inline styles (expressed using the style attribute)

— CSS variables (custom properties) — but see further qualifications below

4 © ISO/IEC 2020 – All rights reserved

ISO/IEC 14496-22:2019/Amd.1:2020(E)

— CSS media queries, calc() or animations

— SVG animations

— SVG child elements

— <filter> elements and associated attributes, including enableBackground

— <pattern> elements

— <mask> elements

— <marker> elements

— <symbol> elements

— Use of XML entities

— Use of image data within <image> elements in formats other than JPEG or PNG

— Interactivity capabilities (event attributes, zoomAndPan attributes, the cursor property, or <cursor>
elements)

NOTE 1 In fonts intended for broad distribution, use of XML presentation attributes for styling is recommended
over CSS styling as that will have the widest support across implementations.

NOTE 2 Use of media queries to react to environment changes within a glyph description is not recommended,
even when fonts are used in applications that provide CSS media query support. Instead, a higher-level
presentation framework is expected to handle environment changes. The higher-level framework can interact
with options implemented within the font using OpenType mechanisms such as glyph substitution, or selection
of color palettes.

While supporting the use of CSS variables is optional, it is strongly recommended that all
implementations support the CSS var() function for color variables defined in the CPAL table. Fonts
should not define any variables within an SVG document; var() should only be used in attributes or
properties that accept a color value, and should only occur as the first item in the value. See subclause
5.5.3 for more information.

While support for patterns and masks is not required, all conforming implementations must support
gradients (<linearGradient> and <radialGradient> elements), clipping paths and opacity properties.

Conforming implementations must support all other capabilities of SVG 1.1 that are not listed above as
restricted or as optional and best avoided for broad interoperability.

5.5.3

Rename subclause 5.5.3 as “Color and color palettes” and replace the content of subclause 5.5.3 with
the following:

In SVG 1.1, color values can be specified in various ways. For some of these, special considerations apply
when used in the SVG table. Also, OFF provides a mechanism for alternate, user-selectable color palettes
that can be used within SVG glyph descriptions.

Colors

Implementations must support numerical RGB specifications; for example, "#ffbb00", or
"rgb(255,187,0)". Implementations must also support all of the recognized color keywords supported in
SVG 1.1. However, CSS2 system color keywords are not supported and must not be used.

Some implementations may use graphics engines that happen to support RGBA specifications using the
rgba() function. This is not supported in OFF, however, and rgba() specifications must not be used in
conforming fonts. Note that SVG 1.1 provides opacity properties that can achieve the same effects.

© ISO/IEC 2020 – All rights reserved 5

633

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019/Amd.1:2020(E)

While SVG 1.1 requires conforming interpreters to support XML namespace constructs, applications
that support the OpenType SVG table are not required to have full support for XML namespaces. The
root element of each SVG document must declare SVG as the default namespace:

 <svg version=”1.1” xmlns=”http://www.w3.org/2000/svg”>

If the XLink href attribute is used, the root must also declare “xlink” as a namespace in the root element:

 <svg version=”1.1” xmlns=”http://www.w3.org/2000/svg”
 xmlns:xlink=”http://www.w3.org/1999/xlink”>

No other XLink attributes or other mechanisms may be used anywhere in the document. Also, no other
namespace declarations should be made in any element.

SVG capability requirements and restrictions

Most SVG 1.1 capabilities are supported in OFF and should be supported in all OFF applications that
support the SVG table. Some SVG 1.1 capabilities are not required and may be optionally supported
in applications. Certain other capabilities are not supported in OFF and must not be used in SVG
documents within OFF fonts.

The following capabilities are restricted from use in OFF and must not be used in conforming fonts. If
use of associated elements is encountered within a font, conforming applications must ignore and not
render those elements.

— <text>, , and associated elements

— <foreignObject> elements

— <switch> elements

— <script> elements

— <a> elements

— <view> elements

— XSL processing

— Use of relative units em, ex

— Use of SVG data within <image> elements

— Use of color profiles (the <icccolor> data type, the <color-profile> element, the color-profile property,
or the CSS @color-profile rule)

— Use of the contentStyleType attribute

— Use of CSS2 system color keywords

SVG documents may include <desc>, <metadata> or <title> elements, but these are ignored by
implementations.

Support for the following capabilities is not required in conforming implementations, though some
applications may support them. Font developers should evaluate support for these capabilities in
the target environments in which their fonts will be used before using them in fonts. To ensure
interoperability across the broadest range of environments, use of these capabilities should be avoided.

— Internal CSS stylesheets (expressed using the <style> element)

— CSS inline styles (expressed using the style attribute)

— CSS variables (custom properties) — but see further qualifications below

4 © ISO/IEC 2020 – All rights reserved

ISO/IEC 14496-22:2019/Amd.1:2020(E)

— CSS media queries, calc() or animations

— SVG animations

— SVG child elements

— <filter> elements and associated attributes, including enableBackground

— <pattern> elements

— <mask> elements

— <marker> elements

— <symbol> elements

— Use of XML entities

— Use of image data within <image> elements in formats other than JPEG or PNG

— Interactivity capabilities (event attributes, zoomAndPan attributes, the cursor property, or <cursor>
elements)

NOTE 1 In fonts intended for broad distribution, use of XML presentation attributes for styling is recommended
over CSS styling as that will have the widest support across implementations.

NOTE 2 Use of media queries to react to environment changes within a glyph description is not recommended,
even when fonts are used in applications that provide CSS media query support. Instead, a higher-level
presentation framework is expected to handle environment changes. The higher-level framework can interact
with options implemented within the font using OpenType mechanisms such as glyph substitution, or selection
of color palettes.

While supporting the use of CSS variables is optional, it is strongly recommended that all
implementations support the CSS var() function for color variables defined in the CPAL table. Fonts
should not define any variables within an SVG document; var() should only be used in attributes or
properties that accept a color value, and should only occur as the first item in the value. See subclause
5.5.3 for more information.

While support for patterns and masks is not required, all conforming implementations must support
gradients (<linearGradient> and <radialGradient> elements), clipping paths and opacity properties.

Conforming implementations must support all other capabilities of SVG 1.1 that are not listed above as
restricted or as optional and best avoided for broad interoperability.

5.5.3

Rename subclause 5.5.3 as “Color and color palettes” and replace the content of subclause 5.5.3 with
the following:

In SVG 1.1, color values can be specified in various ways. For some of these, special considerations apply
when used in the SVG table. Also, OFF provides a mechanism for alternate, user-selectable color palettes
that can be used within SVG glyph descriptions.

Colors

Implementations must support numerical RGB specifications; for example, "#ffbb00", or
"rgb(255,187,0)". Implementations must also support all of the recognized color keywords supported in
SVG 1.1. However, CSS2 system color keywords are not supported and must not be used.

Some implementations may use graphics engines that happen to support RGBA specifications using the
rgba() function. This is not supported in OFF, however, and rgba() specifications must not be used in
conforming fonts. Note that SVG 1.1 provides opacity properties that can achieve the same effects.

© ISO/IEC 2020 – All rights reserved 5

634

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019/Amd.1:2020(E)

Implementations must also support the “currentColor” keyword. The initial value must be set by the
text-layout engine or application environment. This can be set in whatever way is considered most
appropriate for the application. In general, it is recommended that this be set to the text foreground
color applied to a given run of text.

NOTE Within an SVG document, the value of “currentColor” for any element is the current color property
value for that element. If a color property is set explicitly on an element, it will reset the “currentColor” value for
that element and its children. Doing so will override the value set by the host environment. In SVG documents
within the SVG table, there is no scenario in which it would be necessary to set a color property value since any
effects can be achieved in other ways. It is best practice to avoid setting a color property value.

Color palettes

Implementations can optionally support color palettes defined in the CPAL table in subclause 5.7.12.
The CPAL table allows the font designer to define one or more palettes, each containing a number
of colors. All palettes defined in the font have the same number of colors, which are referenced by
base-zero index. Within an SVG document in the SVG table, colors in a CPAL palette are referenced as
implementation-defined CSS variables (custom properties), using the var() function.

Support for the CPAL table and palettes in implementations is strongly recommended. Implementations
that support palettes must support the CSS var() function for purposes of referencing palette entries
as custom properties. Fonts should only use custom properites and the var() function to reference
CPAL palette entries. Fonts should not define any variables within an SVG document. The var() function
should only be used in attributes or properties that accept a color value, and should only occur as the
first item in the value.

NOTE Even if an implementation does not support CPAL palettes, it is strongly recommended that the var()
function be supported, and that the implementation is able to apply a fallback value specified as a second var()
argument if the first argument (the color variable) is not supported. This will allow fonts intended for wide
distribution to include use of the CPAL table but to be able to specify fallback colors in case CPAL palettes are not
supported in some applications.

The text-layout engine or application defines a custom property for each palette entry and assigns color
values to each one. Custom color properties should only be defined for fonts that include a CPAL table.
In general, the values of the custom properties should be set using palette entries from the CPAL table,
though applications can assign values derived by other means, such as user input. When assigning values
from CPAL palette entries, the first palette should normally be used by default. If the font has palettes
marked with the USABLE_WITH_LIGHT_BACKGROUND or USABLE_WITH_DARK_BACKGROUND flag,
however, one of these palettes can be used as the default instead.

However, the values are assigned, the number of custom properties defined must be numPaletteEntries,
as specified in the CPAL table header. The custom-property names must be of the form “--color<num>”,
where <num> is a non-zero-padded decimal number in the range [0, numPaletteEntries-1]. For example,
“--color0”, “--color1”, and so on.

The following illustrates how a color variable might be used in an SVG glyph description:

 <path fill="var(--color0, yellow)" d="..."/>

In implementations that do support color variables and palettes, the color value assigned to the variable
will be applied. If an implementation does not support color variables and palettes, however, the color
variable will be ignored, and the fallback color value, yellow, will be applied.

Palette entries in the CPAL table are specified as BGRA values. (CPAL alpha values are in the range 0 to
255, where 0 is fully transparent and 255 is fully opaque.) Note that SVG 1.1 supports RGB color values,
but not RGBA/BGRA color values. As noted above, use of rgba() color values within SVG documents in the
SVG table is not supported and must not be used in conforming fonts. Alpha values in CPAL entries are
supported, however. When a CPAL color entry is applied to a fill or stroke property of a shape element,
to the stop-color of a gradient stop element, or to the flood-color property of an feFlood filter element,
then the alpha value from that palette entry must be converted to a value in the range [0.0 – 1.0] and
multiplied into the corresponding fill-opacity, stroke-opacity, stop-opacity or flood-opacity property of

6 © ISO/IEC 2020 – All rights reserved

ISO/IEC 14496-22:2019/Amd.1:2020(E)

the same element. If an implementation supports feDiffuseLighting or feSpecularLighting filters and a
palette entry is applied to the lighting-color property, then the alpha value is ignored. When the alpha
value is applied in this way to an opacity property of an element, it is the original opacity property
value that is inherited by child elements, not the computed result of applying the alpha value to the
opacity property. The alpha value is inherited as a component of the color-related property (fill, stroke,
etc.), however.

5.5.4

Replace the content of subclause 5.5.4 with the following:

Each SVG document defines one or more glyph description. For each glyph ID in the glyph ID range of a
document record within the SVG Document list, the associated SVG document shall contain an element
with ID “glyph<glyphID>”, where <glyphID> is the glyph ID expressed as a non–zero-padded decimal
value. This element functions as the SVG glyph description for the given glyph ID.

For example, suppose a font with 100 glyphs (glyph IDs 0 – 99) has SVG glyph definitions only for its last
5 glyphs. Suppose also that the last SVG glyph definition has its own SVG document, but that the other
four glyphs are defined in a single SVG document (to take advantage of shared graphical elements, for
instance). There will be two document records, the first with glyph ID range [95, 98]; and the second,
with glyph ID range [99, 99]. The SVG document referenced by the first record will contain elements
with id “glyph95”, “glyph96”, “glyph97”, and “glyph98”. The SVG document referenced by the second
record will contain an element with id “glyph99”.

Glyph identifiers may appear deep within an SVG element hierarchy, but SVG itself does not define how
partial SVG documents are to be rendered. Thus, font engines shall render an element designated in
this way as the glyph description for a given glyph ID according to SVG’s <use> tag behaviour, as though
the given element and its content were specified in a <defs> tag and then referenced as the graphic content
of an SVG document. For example, consider the following SVG document, which defines two glyphs:

<svg version="1.1" xmlns="http://www.w3.org/2000/svg">
 <defs>...</defs>
 <g id="glyph13">...</g>
 <g id="glyph14">...</g>
</svg>

NOTE The <g> element in SVG is a container for grouping of elements, not a “glyph” element.

When a font engine renders glyph 14, the result shall be the same as rendering the following SVG
document:

<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/
xlink">
 <defs>
 <defs>...</defs>
 <g id="glyph14">...</g>
 </defs>
 <use xlink:href="#glyph14" />
</svg>

5.5.5

Rename subclause 5.5.5 as “Glyph semantics and text layout processing” and replace the content
with the following:

An SVG glyph description in the SVG table is an alternate to the corresponding glyph description with
the same glyph ID in the 'glyf', 'CFF ' or CFF2 table. The SVG glyph description must provide a depiction
of the same abstract glyph as the corresponding TrueType/CFF glyph description.

When SVG glyph descriptions are used, text layout is done in the same manner, using the 'cmap', 'hmtx',
GSUB and other tables. This results in an array of final glyph IDs arranged at particular x,y positions on

© ISO/IEC 2020 – All rights reserved 7

635

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019/Amd.1:2020(E)

Implementations must also support the “currentColor” keyword. The initial value must be set by the
text-layout engine or application environment. This can be set in whatever way is considered most
appropriate for the application. In general, it is recommended that this be set to the text foreground
color applied to a given run of text.

NOTE Within an SVG document, the value of “currentColor” for any element is the current color property
value for that element. If a color property is set explicitly on an element, it will reset the “currentColor” value for
that element and its children. Doing so will override the value set by the host environment. In SVG documents
within the SVG table, there is no scenario in which it would be necessary to set a color property value since any
effects can be achieved in other ways. It is best practice to avoid setting a color property value.

Color palettes

Implementations can optionally support color palettes defined in the CPAL table in subclause 5.7.12.
The CPAL table allows the font designer to define one or more palettes, each containing a number
of colors. All palettes defined in the font have the same number of colors, which are referenced by
base-zero index. Within an SVG document in the SVG table, colors in a CPAL palette are referenced as
implementation-defined CSS variables (custom properties), using the var() function.

Support for the CPAL table and palettes in implementations is strongly recommended. Implementations
that support palettes must support the CSS var() function for purposes of referencing palette entries
as custom properties. Fonts should only use custom properites and the var() function to reference
CPAL palette entries. Fonts should not define any variables within an SVG document. The var() function
should only be used in attributes or properties that accept a color value, and should only occur as the
first item in the value.

NOTE Even if an implementation does not support CPAL palettes, it is strongly recommended that the var()
function be supported, and that the implementation is able to apply a fallback value specified as a second var()
argument if the first argument (the color variable) is not supported. This will allow fonts intended for wide
distribution to include use of the CPAL table but to be able to specify fallback colors in case CPAL palettes are not
supported in some applications.

The text-layout engine or application defines a custom property for each palette entry and assigns color
values to each one. Custom color properties should only be defined for fonts that include a CPAL table.
In general, the values of the custom properties should be set using palette entries from the CPAL table,
though applications can assign values derived by other means, such as user input. When assigning values
from CPAL palette entries, the first palette should normally be used by default. If the font has palettes
marked with the USABLE_WITH_LIGHT_BACKGROUND or USABLE_WITH_DARK_BACKGROUND flag,
however, one of these palettes can be used as the default instead.

However, the values are assigned, the number of custom properties defined must be numPaletteEntries,
as specified in the CPAL table header. The custom-property names must be of the form “--color<num>”,
where <num> is a non-zero-padded decimal number in the range [0, numPaletteEntries-1]. For example,
“--color0”, “--color1”, and so on.

The following illustrates how a color variable might be used in an SVG glyph description:

 <path fill="var(--color0, yellow)" d="..."/>

In implementations that do support color variables and palettes, the color value assigned to the variable
will be applied. If an implementation does not support color variables and palettes, however, the color
variable will be ignored, and the fallback color value, yellow, will be applied.

Palette entries in the CPAL table are specified as BGRA values. (CPAL alpha values are in the range 0 to
255, where 0 is fully transparent and 255 is fully opaque.) Note that SVG 1.1 supports RGB color values,
but not RGBA/BGRA color values. As noted above, use of rgba() color values within SVG documents in the
SVG table is not supported and must not be used in conforming fonts. Alpha values in CPAL entries are
supported, however. When a CPAL color entry is applied to a fill or stroke property of a shape element,
to the stop-color of a gradient stop element, or to the flood-color property of an feFlood filter element,
then the alpha value from that palette entry must be converted to a value in the range [0.0 – 1.0] and
multiplied into the corresponding fill-opacity, stroke-opacity, stop-opacity or flood-opacity property of

6 © ISO/IEC 2020 – All rights reserved

ISO/IEC 14496-22:2019/Amd.1:2020(E)

the same element. If an implementation supports feDiffuseLighting or feSpecularLighting filters and a
palette entry is applied to the lighting-color property, then the alpha value is ignored. When the alpha
value is applied in this way to an opacity property of an element, it is the original opacity property
value that is inherited by child elements, not the computed result of applying the alpha value to the
opacity property. The alpha value is inherited as a component of the color-related property (fill, stroke,
etc.), however.

5.5.4

Replace the content of subclause 5.5.4 with the following:

Each SVG document defines one or more glyph description. For each glyph ID in the glyph ID range of a
document record within the SVG Document list, the associated SVG document shall contain an element
with ID “glyph<glyphID>”, where <glyphID> is the glyph ID expressed as a non–zero-padded decimal
value. This element functions as the SVG glyph description for the given glyph ID.

For example, suppose a font with 100 glyphs (glyph IDs 0 – 99) has SVG glyph definitions only for its last
5 glyphs. Suppose also that the last SVG glyph definition has its own SVG document, but that the other
four glyphs are defined in a single SVG document (to take advantage of shared graphical elements, for
instance). There will be two document records, the first with glyph ID range [95, 98]; and the second,
with glyph ID range [99, 99]. The SVG document referenced by the first record will contain elements
with id “glyph95”, “glyph96”, “glyph97”, and “glyph98”. The SVG document referenced by the second
record will contain an element with id “glyph99”.

Glyph identifiers may appear deep within an SVG element hierarchy, but SVG itself does not define how
partial SVG documents are to be rendered. Thus, font engines shall render an element designated in
this way as the glyph description for a given glyph ID according to SVG’s <use> tag behaviour, as though
the given element and its content were specified in a <defs> tag and then referenced as the graphic content
of an SVG document. For example, consider the following SVG document, which defines two glyphs:

<svg version="1.1" xmlns="http://www.w3.org/2000/svg">
 <defs>...</defs>
 <g id="glyph13">...</g>
 <g id="glyph14">...</g>
</svg>

NOTE The <g> element in SVG is a container for grouping of elements, not a “glyph” element.

When a font engine renders glyph 14, the result shall be the same as rendering the following SVG
document:

<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/
xlink">
 <defs>
 <defs>...</defs>
 <g id="glyph14">...</g>
 </defs>
 <use xlink:href="#glyph14" />
</svg>

5.5.5

Rename subclause 5.5.5 as “Glyph semantics and text layout processing” and replace the content
with the following:

An SVG glyph description in the SVG table is an alternate to the corresponding glyph description with
the same glyph ID in the 'glyf', 'CFF ' or CFF2 table. The SVG glyph description must provide a depiction
of the same abstract glyph as the corresponding TrueType/CFF glyph description.

When SVG glyph descriptions are used, text layout is done in the same manner, using the 'cmap', 'hmtx',
GSUB and other tables. This results in an array of final glyph IDs arranged at particular x,y positions on

© ISO/IEC 2020 – All rights reserved 7

636

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019/Amd.1:2020(E)

a surface (along with applicable scale/rotation matrices). After this layout processing is done, available
SVG descriptions are used in rendering, instead of the TrueType/CFF descriptions. For each glyph ID in
the final glyph array, if an SVG glyph description is available for that glyph ID, then it is rendered using
an SVG engine; otherwise, the TrueType or CFF glyph description is rendered. Glyph advance widths or
heights are the same for SVG glyphs as for TrueType/CFF glyphs, though there may be small differences
in glyph ink bounding boxes. Because advances are the same, switching between SVG and non-SVG
rendering should not require re-layout of lines unless the line layout depends on bounding boxes.

Coordinate systems and glyph metrics

The default SVG coordinate system is vertically mirrored in comparison to the TrueType/CFF
design grid: the positive y-axis points downward, rather than usual convention for OpenType of the
positive y-axis pointing upward. In other respects, the default coordinate system of an SVG document
corresponds to the TrueType/CFF design grid: the default units for the SVG document are equivalent to
font design units; the SVG origin (0,0) is aligned with the origin in the TrueType/CFF design grid; and
y = 0 is the default horizontal baseline used for text layout.

The size of the initial viewport for the SVG document is the em square: height and width both equal to
head.unitsPerEm. If a viewBox attribute is specified on the <svg> element with width or height values
different from the unitsPerEm value, this will have the effect of a scale transformation on the SVG user
coordinate system. Similarly, if height or width attributes are specified on the <svg> element, this will
also have the effect of a scale transformation on the coordinate system.

Although the initial viewport size is the em square, the viewport must not be clipped. The <svg>
element is assumed to have a clip property value of auto, and an overflow property value of visible. A
font should not specify clip or overflow properties on the <svg> element. If clip or overflow properties
are specified on the <svg> element with any other values, they must be ignored.

NOTE Because SVG uses a y-down coordinate system, then by default, glyphs will often be drawn in the
+x –y quadrant of the SVG coordinate system. (See Example 2.) In many other environments, however, graphic
elements need to be in the +x +y quadrant to be visible. Font development tools are expected to provide an
appropriate transfer between a design environment and the representation within the font’s SVG table. In
Example 3, a viewBox attribute is used to shift the viewport up. In Example 4, a translate transform is used on
container elements to shift the graphic elements that comprise the glyph descriptions.

Glyph advance widths are specified in the 'hmtx' table; advance heights are specified in the 'vmtx' table.
Note that glyph advances are static and cannot be animated.

As with CFF glyphs, no explicit glyph bounding boxes are recorded. Note that left side bearing values in
the 'hmtx' table, top side bearings in the 'vmtx' table, and bit 1 in the flags field of the 'head' table are not
used for SVG glyph descriptions. The “ink” bounding box of the rendered SVG glyph should be used if a
bounding box is desired; this box may be different for animated versus static renderings of the glyph.

Glyph advances and positions can be adjusted by data in the GPOS or 'kern' tables. Note that data in
the GPOS and kern table use the y-up coordinate system, as with TrueType or CFF glyph descriptions.
When applied to SVG glyph descriptions, applications must handle the translation between the y-up
coordinate system and the y-down coordinates used for the SVG glyph descriptions.

5.5.6

Rename subclause 5.5.6 as “Animations” and replace the content with the following:

Some implementations may support use of animations—either SVG animation or CSS animation. Note
that support for animation is optional and is not recommended in fonts intended for wide distribution.

Applications that support animations may, in some cases, require a static rendering for glyphs that
include animations. This may be needed, for example, when printing. Note that a static rendering is
obtained by ignoring and not running any animations in the SVG document, not by allowing animations
to run and capturing the initial frame at time = 0.

8 © ISO/IEC 2020 – All rights reserved

ISO/IEC 14496-22:2019/Amd.1:2020(E)

Note that glyph advance widths and advance heights are defined in the 'hmtx' and 'vmtx' tables and
cannot be animated. A glyph’s bounding box may change during animation but should remain within
the glyph advance width/height and the font’s default line metrics to avoid collision with other text
elements.

5.5.7

Rename the subclause 5.5.7 as “Examples” and replace the first two paragraphs with the following:

The SVG code in these examples is presented exactly as could be used in the SVG documents of an OFF
font with SVG glyph descriptions. The code is not optimized for brevity.

Add the following text as Example 1:

Example 1: SVG table header and document list

This example shows an SVG table header and document list.

In the SVG Document List, multiple SVG Document Records can point to the same SVG document. In this
way, a single SVG document can provide glyph descriptions for a discontinuous range of glyph IDs. This
example shows multiple records in the Document List pointing to the same SVG document.

Example 1:

Hex Data Source Comments
SVGHeader

0000 Version Table version = 0
0000000A offsetToSVGDocumentlist Offset to document list
00000000 Reserved Offset to AttachList table

SVGDocumentList
0005 numEntries Five documentRecord entries, index 0 to 4
 documentRecords[0] Document record for glyph ID range [1,1]
0001 startGlyphID
0001 endGlyphID
0000003E svgDocOffset Offset to SVG document for glyph1
0000019F svgDocLength Length of SVG document for glyph1
 documentRecords[1] Document record for glyph ID range [2,2]
0002 startGlyphID
0002 endGlyphID
000001DD svgDocOffset Offset to SVG document for glyph2. The same SVG doc-

ument is also used for glyph13 and glyph14.
000002FF svgDocLength Length of SVG document for glyph2 – length of the entire

SVG document, covering glyphs 2, 13 and 14.
 documentRecords[2] Document record for glyph ID range [3,12]
0003 startGlyphID
000C endGlyphID
000004DC svgDocOffset Offset to SVG document for glyphs 3 to 12
000006F4 svgDocLength Length of SVG document for glyphs 3 to 12
 documentRecords[3] Document record for glyph ID range [13,14]

© ISO/IEC 2020 – All rights reserved 9

637

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019/Amd.1:2020(E)

a surface (along with applicable scale/rotation matrices). After this layout processing is done, available
SVG descriptions are used in rendering, instead of the TrueType/CFF descriptions. For each glyph ID in
the final glyph array, if an SVG glyph description is available for that glyph ID, then it is rendered using
an SVG engine; otherwise, the TrueType or CFF glyph description is rendered. Glyph advance widths or
heights are the same for SVG glyphs as for TrueType/CFF glyphs, though there may be small differences
in glyph ink bounding boxes. Because advances are the same, switching between SVG and non-SVG
rendering should not require re-layout of lines unless the line layout depends on bounding boxes.

Coordinate systems and glyph metrics

The default SVG coordinate system is vertically mirrored in comparison to the TrueType/CFF
design grid: the positive y-axis points downward, rather than usual convention for OpenType of the
positive y-axis pointing upward. In other respects, the default coordinate system of an SVG document
corresponds to the TrueType/CFF design grid: the default units for the SVG document are equivalent to
font design units; the SVG origin (0,0) is aligned with the origin in the TrueType/CFF design grid; and
y = 0 is the default horizontal baseline used for text layout.

The size of the initial viewport for the SVG document is the em square: height and width both equal to
head.unitsPerEm. If a viewBox attribute is specified on the <svg> element with width or height values
different from the unitsPerEm value, this will have the effect of a scale transformation on the SVG user
coordinate system. Similarly, if height or width attributes are specified on the <svg> element, this will
also have the effect of a scale transformation on the coordinate system.

Although the initial viewport size is the em square, the viewport must not be clipped. The <svg>
element is assumed to have a clip property value of auto, and an overflow property value of visible. A
font should not specify clip or overflow properties on the <svg> element. If clip or overflow properties
are specified on the <svg> element with any other values, they must be ignored.

NOTE Because SVG uses a y-down coordinate system, then by default, glyphs will often be drawn in the
+x –y quadrant of the SVG coordinate system. (See Example 2.) In many other environments, however, graphic
elements need to be in the +x +y quadrant to be visible. Font development tools are expected to provide an
appropriate transfer between a design environment and the representation within the font’s SVG table. In
Example 3, a viewBox attribute is used to shift the viewport up. In Example 4, a translate transform is used on
container elements to shift the graphic elements that comprise the glyph descriptions.

Glyph advance widths are specified in the 'hmtx' table; advance heights are specified in the 'vmtx' table.
Note that glyph advances are static and cannot be animated.

As with CFF glyphs, no explicit glyph bounding boxes are recorded. Note that left side bearing values in
the 'hmtx' table, top side bearings in the 'vmtx' table, and bit 1 in the flags field of the 'head' table are not
used for SVG glyph descriptions. The “ink” bounding box of the rendered SVG glyph should be used if a
bounding box is desired; this box may be different for animated versus static renderings of the glyph.

Glyph advances and positions can be adjusted by data in the GPOS or 'kern' tables. Note that data in
the GPOS and kern table use the y-up coordinate system, as with TrueType or CFF glyph descriptions.
When applied to SVG glyph descriptions, applications must handle the translation between the y-up
coordinate system and the y-down coordinates used for the SVG glyph descriptions.

5.5.6

Rename subclause 5.5.6 as “Animations” and replace the content with the following:

Some implementations may support use of animations—either SVG animation or CSS animation. Note
that support for animation is optional and is not recommended in fonts intended for wide distribution.

Applications that support animations may, in some cases, require a static rendering for glyphs that
include animations. This may be needed, for example, when printing. Note that a static rendering is
obtained by ignoring and not running any animations in the SVG document, not by allowing animations
to run and capturing the initial frame at time = 0.

8 © ISO/IEC 2020 – All rights reserved

ISO/IEC 14496-22:2019/Amd.1:2020(E)

Note that glyph advance widths and advance heights are defined in the 'hmtx' and 'vmtx' tables and
cannot be animated. A glyph’s bounding box may change during animation but should remain within
the glyph advance width/height and the font’s default line metrics to avoid collision with other text
elements.

5.5.7

Rename the subclause 5.5.7 as “Examples” and replace the first two paragraphs with the following:

The SVG code in these examples is presented exactly as could be used in the SVG documents of an OFF
font with SVG glyph descriptions. The code is not optimized for brevity.

Add the following text as Example 1:

Example 1: SVG table header and document list

This example shows an SVG table header and document list.

In the SVG Document List, multiple SVG Document Records can point to the same SVG document. In this
way, a single SVG document can provide glyph descriptions for a discontinuous range of glyph IDs. This
example shows multiple records in the Document List pointing to the same SVG document.

Example 1:

Hex Data Source Comments
SVGHeader

0000 Version Table version = 0
0000000A offsetToSVGDocumentlist Offset to document list
00000000 Reserved Offset to AttachList table

SVGDocumentList
0005 numEntries Five documentRecord entries, index 0 to 4
 documentRecords[0] Document record for glyph ID range [1,1]
0001 startGlyphID
0001 endGlyphID
0000003E svgDocOffset Offset to SVG document for glyph1
0000019F svgDocLength Length of SVG document for glyph1
 documentRecords[1] Document record for glyph ID range [2,2]
0002 startGlyphID
0002 endGlyphID
000001DD svgDocOffset Offset to SVG document for glyph2. The same SVG doc-

ument is also used for glyph13 and glyph14.
000002FF svgDocLength Length of SVG document for glyph2 – length of the entire

SVG document, covering glyphs 2, 13 and 14.
 documentRecords[2] Document record for glyph ID range [3,12]
0003 startGlyphID
000C endGlyphID
000004DC svgDocOffset Offset to SVG document for glyphs 3 to 12
000006F4 svgDocLength Length of SVG document for glyphs 3 to 12
 documentRecords[3] Document record for glyph ID range [13,14]

© ISO/IEC 2020 – All rights reserved 9

638

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019/Amd.1:2020(E)

000D startGlyphID
000E endGlyphID
000001DD svgDocOffset Offset to SVG document for glyphs 2, 13 and 14. Offset

is the same as for documentRecords[1].
000002FF svgDocLength Length of SVG document for glyphs 2, 13 and 14. Length

is the same as for documentRecords[1].
 documentRecords[4] Document record for glyph ID range [15,19]
000F startGlyphID
0013 endGlyphID
00000BD0 svgDocOffset Offset to SVG document for glyphs 15 to 19
00000376 svgDocLength Length of SVG document for glyphs 15 to 19

Example 4 illustrates an SVG document with glyph descriptions for the discontinuous ranges [2, 2],
[13, 14].

Rename “Example: Glyph specified directly in expected position" as “Example 2: Glyph specified
directly in expected position" and rearrange the content of the example to move the textual
description to the beginning, followed by the code example and the illustration.

Replace the textual description of “Example 2: Glyph specified directly in expected position" with
the following:

In this example, the letter “i” is drawn directly in the +x –y quadrant of the SVG coordinate system,
upright, with its baseline on the x axis. Note that the y attribute of the <rect> elements specifies the top
edge, with the height of the rectangle below that.

Rename “Example: Glyph shifted up with viewBox" as “Example 3: Glyph shifted up with viewBox"
and rearrange the content of the example to move the textual description to the beginning, followed by
the code example.

Replace the textual description of “Example 3: Glyph shifted up with viewBox" with the following:

When designing in an SVG illustration application, it may be most natural to draw objects in the +x
+y quadrant of the SVG coordinate system. In this example, the glyph description of the letter “i” is
specified with upright orientation in the +x +y quadrant as though the baseline were at y = 1000 in the
SVG coordinate system. A viewBox in the <svg> element is then used to shift the viewport down by
1000 units so that the actual baseline aligns with the design’s baseline.

NOTE When using a viewBox attribute on the <svg> element, it is important to specify unitsPerEm for
width and height values to avoid a scaling effect. See “Coordinate Systems and Glyph Metrics” above for more
information.

Replace the last sentence of “Example 3: Glyph shifted up with viewBox" with the following:

The visual result is the same as that shown for Example 2.

10 © ISO/IEC 2020 – All rights reserved

ISO/IEC 14496-22:2019/Amd.1:2020(E)

Rename the “Example: Common elements shared across glyphs in same SVG doc" to “Example 4:
Common elements shared across glyphs in same SVG doc" and rearrange the content of the example
to move textual description to the beginning, followed by the code example and the illustration.

Replace the textual description of “Example 4: Common elements shared across glyphs in same
SVG doc" with the following:

In this example, the base of the letter 'i' is specified as a component within the <defs> element so that it
can be re-used across three glyphs. This shared component is referenced using the identifier “i-base”.
In glyph2, the component is used alone to comprise the dotless 'i'. In glyph13, a dot is added on top. In
glyph14, an acute accent is adds a dot on top. Glyph ID 14 adds an acute accent on top.

This example also illustrates the use of a translate transform to shift elements drawn in the +x +y
quadrant of the SVG coordinate system so that they appear in the +x –y quadrant, above the baseline.

Replace the last paragraph of “Example 4: Common elements shared across glyphs in same SVG
doc" with the following:

The following image shows the visual results for glyph IDs 2, 13, and 14, from left to right.

Rename “Example: Specifying current text color in glyphs" as “Example 5: Specifying current
Color in glyphs" and rearrange the content of the example to move the textual description to the
beginning, followed by the code example and the illustration.

Replace the textual description of “Example 5: Specifying current Color in glyphs" with the following:

This example uses the same glyph description for “i” as in Example 2 with one modification: the
“darkblue” color value for the dot of the “i” is replaced with the “currentColor” keyword. The application
sets the color value for currentColor, typically with the text foreground color.

In the code block of “Example 5: Specifying current Color in glyphs", replace “context-fill” in the last
<rect> element with “currentColor”.

Replace the last paragraph of “Example 5: Specifying current Color in glyphs" with the following:

The following image illustrate visual results with currentColor set to two different color values by the
application: black (left), and red (right).

Rename “Example: Specifying color palette variables in glyphs" as “Example 6: Specifying color
palette variables in glyphs" and rearrange the content of the example to move textual description to
the beginning, followed by the code example and the illustration.

Replace the textual description of “Example 6: Specifying color palette variables in glyphs" with the
following:

This example uses the same glyph description for “i” as in Example 2, but with a modification: the stop
colors of the linear gradient are specified using color variables --color0 and --color1.

© ISO/IEC 2020 – All rights reserved 11

639

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019/Amd.1:2020(E)

000D startGlyphID
000E endGlyphID
000001DD svgDocOffset Offset to SVG document for glyphs 2, 13 and 14. Offset

is the same as for documentRecords[1].
000002FF svgDocLength Length of SVG document for glyphs 2, 13 and 14. Length

is the same as for documentRecords[1].
 documentRecords[4] Document record for glyph ID range [15,19]
000F startGlyphID
0013 endGlyphID
00000BD0 svgDocOffset Offset to SVG document for glyphs 15 to 19
00000376 svgDocLength Length of SVG document for glyphs 15 to 19

Example 4 illustrates an SVG document with glyph descriptions for the discontinuous ranges [2, 2],
[13, 14].

Rename “Example: Glyph specified directly in expected position" as “Example 2: Glyph specified
directly in expected position" and rearrange the content of the example to move the textual
description to the beginning, followed by the code example and the illustration.

Replace the textual description of “Example 2: Glyph specified directly in expected position" with
the following:

In this example, the letter “i” is drawn directly in the +x –y quadrant of the SVG coordinate system,
upright, with its baseline on the x axis. Note that the y attribute of the <rect> elements specifies the top
edge, with the height of the rectangle below that.

Rename “Example: Glyph shifted up with viewBox" as “Example 3: Glyph shifted up with viewBox"
and rearrange the content of the example to move the textual description to the beginning, followed by
the code example.

Replace the textual description of “Example 3: Glyph shifted up with viewBox" with the following:

When designing in an SVG illustration application, it may be most natural to draw objects in the +x
+y quadrant of the SVG coordinate system. In this example, the glyph description of the letter “i” is
specified with upright orientation in the +x +y quadrant as though the baseline were at y = 1000 in the
SVG coordinate system. A viewBox in the <svg> element is then used to shift the viewport down by
1000 units so that the actual baseline aligns with the design’s baseline.

NOTE When using a viewBox attribute on the <svg> element, it is important to specify unitsPerEm for
width and height values to avoid a scaling effect. See “Coordinate Systems and Glyph Metrics” above for more
information.

Replace the last sentence of “Example 3: Glyph shifted up with viewBox" with the following:

The visual result is the same as that shown for Example 2.

10 © ISO/IEC 2020 – All rights reserved

ISO/IEC 14496-22:2019/Amd.1:2020(E)

Rename the “Example: Common elements shared across glyphs in same SVG doc" to “Example 4:
Common elements shared across glyphs in same SVG doc" and rearrange the content of the example
to move textual description to the beginning, followed by the code example and the illustration.

Replace the textual description of “Example 4: Common elements shared across glyphs in same
SVG doc" with the following:

In this example, the base of the letter 'i' is specified as a component within the <defs> element so that it
can be re-used across three glyphs. This shared component is referenced using the identifier “i-base”.
In glyph2, the component is used alone to comprise the dotless 'i'. In glyph13, a dot is added on top. In
glyph14, an acute accent is adds a dot on top. Glyph ID 14 adds an acute accent on top.

This example also illustrates the use of a translate transform to shift elements drawn in the +x +y
quadrant of the SVG coordinate system so that they appear in the +x –y quadrant, above the baseline.

Replace the last paragraph of “Example 4: Common elements shared across glyphs in same SVG
doc" with the following:

The following image shows the visual results for glyph IDs 2, 13, and 14, from left to right.

Rename “Example: Specifying current text color in glyphs" as “Example 5: Specifying current
Color in glyphs" and rearrange the content of the example to move the textual description to the
beginning, followed by the code example and the illustration.

Replace the textual description of “Example 5: Specifying current Color in glyphs" with the following:

This example uses the same glyph description for “i” as in Example 2 with one modification: the
“darkblue” color value for the dot of the “i” is replaced with the “currentColor” keyword. The application
sets the color value for currentColor, typically with the text foreground color.

In the code block of “Example 5: Specifying current Color in glyphs", replace “context-fill” in the last
<rect> element with “currentColor”.

Replace the last paragraph of “Example 5: Specifying current Color in glyphs" with the following:

The following image illustrate visual results with currentColor set to two different color values by the
application: black (left), and red (right).

Rename “Example: Specifying color palette variables in glyphs" as “Example 6: Specifying color
palette variables in glyphs" and rearrange the content of the example to move textual description to
the beginning, followed by the code example and the illustration.

Replace the textual description of “Example 6: Specifying color palette variables in glyphs" with the
following:

This example uses the same glyph description for “i” as in Example 2, but with a modification: the stop
colors of the linear gradient are specified using color variables --color0 and --color1.

© ISO/IEC 2020 – All rights reserved 11

640

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019/Amd.1:2020(E)

The font in this example includes a CPAL table. The value for the color variables is set by the application,
typically using CPAL entries. The CPAL table assumed in this example has two palettes, each with two
entries, with BGRA color values as follows:

— palette 0: {8B0000FF, B3AA00FF}

— palette 1: {800080FF, D670DAFF}

(SVG equivalents for colors in palette 0 would be {darkblue, #00aab3}. SVG equivalents for colors in
palette 1 would be {purple, orchid}.)

In each of the var() invocations used to reference the color variables, a second parameter for a fallback
color value has been specified. The values match the values used in palette 0. These fallback values will
be used if the application does not support the CPAL table.

After the code block of “Example 6: Specifying color palette variables in glyphs", add the following
text paragraph:

The following images show the visual results in three situations, from left to right:

After the illustration of “Example 6: Specifying color palette variables in glyphs", add the
following text:

The first case, on left, shows the result when the value of the color variables have been set using palette
0 from the CPAL table. The second case, in the middle, shows the result when values have been set using
palette 1.

The third case, on the right, shows a result in which the application has set the values of the color
variables using a custom palette with user-specified colors:

— --color0: red

— --color1: orange

Note that, in all three cases, the dot of the “i” is still dark blue, since this is hard coded in the glyph
description and not controlled by a color variable.

If the application has not set values for --color0 and --color1 (because it does not support the CPAL
table, for example), then the fallback values provided in the var() functions (darkblue and #00aab3,
respectively) are used. Note that these are in fact the same colors as in the first (default) CPAL color
palette, which means the glyph will render as in the first case shown above.

Rename “Example: Embedding a PNG in an SVG glyph" as “Example 7: Embedding a PNG in an SVG
glyph" and rearrange the content of the example to move textual description to the beginning, followed
by the code example and the illustration.

Replace the textual description of “Example 7: Embedding a PNG in an SVG glyph" with the following:

In this example, PNG data is embedded within an <image> element.

A typical use case for embedding PNG data is detailed artwork in a lettering font.

12 © ISO/IEC 2020 – All rights reserved

ISO/IEC 14496-22:2019/Amd.1:2020(E)

After the code block of “Example 7: Embedding a PNG in an SVG glyph", add the following text
paragraph:

The following image shows the visual result:

5.7.9

In “vhea – Vertical header table” in the version 1.1 vertical header table, in the table entry defining
“vertTypoAscender”, replace the text of the Description field with the following:

The vertical typographic ascender for this font. It is the distance in FUnits from the ideographic em-box
center baseline for the vertical axis to the right edge of the ideographic em-box.

It is usually set to (head.unitsPerEm)/2. For example, a font with an em of 1000 FUnits will set this field
to 500. See subclause 6.4.4 for a description of the ideographic em-box.

In “vhea – Vertical header table”, in the version 1.1 vertical header table, in the table entry defining
“vertTypoDescender”, replace the text of the Description field with the following:

The vertical typographic descender for this font. It is the distance in FUnits from the ideographic em-
box center baseline for the vertical axis to the left edge of the ideographic em-box.

It is usually set to (head.unitsPerEm)/2. For example, a font with an em of 1000 FUnits will set this field
to −500.

6.2.3

In the last section entitled “SVG and CPAL”, replace the text of the second paragraph with the following:

Foreground color is expressed by the “currentColor” keyword in the SVG glyph descriptions.

6.2.3

In “Table Organization”, in third paragraph, replace the last sentence to read:

OFF Layout has eight types of GSUB lookups (described in the GSUB subclause) and nine types of GPOS
lookups (described in the GPOS subclause).

6.2.6

In “Coverage table”, in the description of Coverage Table, replace the last paragraph to read:

A Coverage table defines a unique index value (Coverage Index) for each covered glyph. The Coverage
Indexes are sequential, from 0 to the number of covered glyphs minus 1. This unique value specifies the
position of the covered glyph in the Coverage table. The client uses the Coverage Index to look up values
in the subtable for each glyph.

In “Coverage table”, in the description of Coverage Format 2 replace the second paragraph to read:

The Coverage Indexes for the first range begin with zero (0) and increase sequentially to (endGlyphId −
startGlyphId). For each successive range, the starting Coverage Index is one greater than the ending
Coverage Index of the the preceding range. Thus, startCoverageIndex for each non-initial range must

© ISO/IEC 2020 – All rights reserved 13

641

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019/Amd.1:2020(E)

The font in this example includes a CPAL table. The value for the color variables is set by the application,
typically using CPAL entries. The CPAL table assumed in this example has two palettes, each with two
entries, with BGRA color values as follows:

— palette 0: {8B0000FF, B3AA00FF}

— palette 1: {800080FF, D670DAFF}

(SVG equivalents for colors in palette 0 would be {darkblue, #00aab3}. SVG equivalents for colors in
palette 1 would be {purple, orchid}.)

In each of the var() invocations used to reference the color variables, a second parameter for a fallback
color value has been specified. The values match the values used in palette 0. These fallback values will
be used if the application does not support the CPAL table.

After the code block of “Example 6: Specifying color palette variables in glyphs", add the following
text paragraph:

The following images show the visual results in three situations, from left to right:

After the illustration of “Example 6: Specifying color palette variables in glyphs", add the
following text:

The first case, on left, shows the result when the value of the color variables have been set using palette
0 from the CPAL table. The second case, in the middle, shows the result when values have been set using
palette 1.

The third case, on the right, shows a result in which the application has set the values of the color
variables using a custom palette with user-specified colors:

— --color0: red

— --color1: orange

Note that, in all three cases, the dot of the “i” is still dark blue, since this is hard coded in the glyph
description and not controlled by a color variable.

If the application has not set values for --color0 and --color1 (because it does not support the CPAL
table, for example), then the fallback values provided in the var() functions (darkblue and #00aab3,
respectively) are used. Note that these are in fact the same colors as in the first (default) CPAL color
palette, which means the glyph will render as in the first case shown above.

Rename “Example: Embedding a PNG in an SVG glyph" as “Example 7: Embedding a PNG in an SVG
glyph" and rearrange the content of the example to move textual description to the beginning, followed
by the code example and the illustration.

Replace the textual description of “Example 7: Embedding a PNG in an SVG glyph" with the following:

In this example, PNG data is embedded within an <image> element.

A typical use case for embedding PNG data is detailed artwork in a lettering font.

12 © ISO/IEC 2020 – All rights reserved

ISO/IEC 14496-22:2019/Amd.1:2020(E)

After the code block of “Example 7: Embedding a PNG in an SVG glyph", add the following text
paragraph:

The following image shows the visual result:

5.7.9

In “vhea – Vertical header table” in the version 1.1 vertical header table, in the table entry defining
“vertTypoAscender”, replace the text of the Description field with the following:

The vertical typographic ascender for this font. It is the distance in FUnits from the ideographic em-box
center baseline for the vertical axis to the right edge of the ideographic em-box.

It is usually set to (head.unitsPerEm)/2. For example, a font with an em of 1000 FUnits will set this field
to 500. See subclause 6.4.4 for a description of the ideographic em-box.

In “vhea – Vertical header table”, in the version 1.1 vertical header table, in the table entry defining
“vertTypoDescender”, replace the text of the Description field with the following:

The vertical typographic descender for this font. It is the distance in FUnits from the ideographic em-
box center baseline for the vertical axis to the left edge of the ideographic em-box.

It is usually set to (head.unitsPerEm)/2. For example, a font with an em of 1000 FUnits will set this field
to −500.

6.2.3

In the last section entitled “SVG and CPAL”, replace the text of the second paragraph with the following:

Foreground color is expressed by the “currentColor” keyword in the SVG glyph descriptions.

6.2.3

In “Table Organization”, in third paragraph, replace the last sentence to read:

OFF Layout has eight types of GSUB lookups (described in the GSUB subclause) and nine types of GPOS
lookups (described in the GPOS subclause).

6.2.6

In “Coverage table”, in the description of Coverage Table, replace the last paragraph to read:

A Coverage table defines a unique index value (Coverage Index) for each covered glyph. The Coverage
Indexes are sequential, from 0 to the number of covered glyphs minus 1. This unique value specifies the
position of the covered glyph in the Coverage table. The client uses the Coverage Index to look up values
in the subtable for each glyph.

In “Coverage table”, in the description of Coverage Format 2 replace the second paragraph to read:

The Coverage Indexes for the first range begin with zero (0) and increase sequentially to (endGlyphId −
startGlyphId). For each successive range, the starting Coverage Index is one greater than the ending
Coverage Index of the the preceding range. Thus, startCoverageIndex for each non-initial range must

© ISO/IEC 2020 – All rights reserved 13

642

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019/Amd.1:2020(E)

equal the length of the preceding range (endGlyphID − startGlyphID + 1) added to the startGlyphIndex
of the preceding range. This allows for a quick calculation of the Coverage Index for any glyph in any
range using the formula: Coverage Index (glyphID) = startCoverageIndex + glyphID − startGlyphID.

6.3.3.2

In “GPOS lookup type descriptions” in the first paragraph of Lookup Type 1 description, replace the
first sentence of the paragraph with the following:

A single adjustment positioning subtable (SinglePos) is used to adjust the placement or advance of a
single glyph, such as a subscript or superscript.

In “GPOS lookup type descriptions” in the first paragraph of Lookup Type 2 description, replace the
first sentence of the paragraph with the following:

A pair adjustment positioning subtable (PairPos) is used to adjust the placement or advance of two
glyphs in relation to one another – for instance, to specify kerning data for pairs of glyphs.

In “GPOS lookup type descriptions” in the first paragraph of Lookup Type 3 description, add the
following paragraphs immediately after the first paragraph, and preceding the CursivePosFormat1
subtable description:

Positioning adjustments from anchor alignment may be either horizontal or vertical. Note that the
positioning effects in the text-layout direction (horizontal, for horizontal layout) work differently for
than for the cross-stream direction (vertical, in horizontal layout):

— For adjustments in the line-layout direction, the layout engine adjusts the advance of the first glyph
(in logical order). This effectively moves the second glyph relative to the first so that the anchors are
aligned in that direction.

— For the cross-stream direction, placement of one glyph is adjusted to make the anchors align. Which
glyph is adjusted is determined by the rightToLeft flag in the parent lookup table: if the rightToLeft
flag is clear, the second glyph is adjusted to align anchors with the first glyph; if the rightToLeft flag
is set, the first glyph is adjusted to align anchors with the second glyph.

Note that, if the rightToLeft lookup flag is set, then the last glyph in the connected sequence keeps its
initial position in the cross-stream direction relative to the baseline, and the cross-stream positions of
the preceding, connected glyphs are adjusted.

In “GPOS lookup type descriptions” in the Lookup Type 4 description, replace the last sentence of the
second paragraph with the following:

When a mark is combined with a given base, the mark placement is adjusted so that the mark anchor is
aligned with the base anchor for the applicable mark class. Placement of the base glyph and advances of
both glyphs are not affected.

In “GPOS lookup type descriptions” in the Lookup Type 5 description, add the following paragraphs
immediately after the fourth paragraph, and preceding the MarkLigPosFormat1 subtable description:

As with mark-to-base attachment, when a mark is combined with a given ligature base, the mark
placement is adjusted so that the mark anchor is aligned with the applicable base anchor. Placement of
the base glyph and advances of both glyphs are not affected.

14 © ISO/IEC 2020 – All rights reserved

ISO/IEC 14496-22:2019/Amd.1:2020(E)

In “GPOS lookup type descriptions” in the Lookup Type 6 description, replace the fourth paragraph
with the following:

The mark2 glyph that combines with a mark1 glyph is the glyph preceding the mark1 glyph in glyph
string order (skipping glyphs according to LookupFlags). The subtable applies precisely when that
mark2 glyph is covered by mark2Coverage. To combine the mark glyphs, the placement of the mark1
glyph is adjusted such that the relevant attachment points coincide. Advance widths are not affected.
The input context for MarkToBase, MarkToLigature and MarkToMark positioning tables is the mark
that is being positioned. If a sequence contains several marks, a lookup may act on it several times, to
position them.

6.3.3.3

In “Shared tables: Value record, Anchor table and MarkArray table”, in the ValueRecord table
description – replace the descriptions of the DeviceOffset fields (xPlaDeviceOffset, yPlaDeviceOffset,
xAdvDeviceOffset, yAdvDeviceOffset) with the following:

xPlaDeviceOffset :

Offset to Device table (non-variable font) / VariationIndex table (variable font) for horizontal placement,
from beginning of the immediate parent table (SinglePos or pairPosFormat2 lookup subtable, PairSet
table within a PairPosFormat1 lookup subtable) – may be NULL.

yPlaDeviceOffset :

Offset to Device table (non-variable font) / VariationIndex table (variable font) for vertical placement,
from beginning of the immediate parent table (SinglePos or pairPosFormat2 lookup subtable, PairSet
table within a PairPosFormat1 lookup subtable) – may be NULL.

xAdvDeviceOffset :

Offset to Device table (non-variable font) / VariationIndex table (variable font) for horizontal advance,
from beginning of the immediate parent table (SinglePos or pairPosFormat2 lookup subtable, PairSet
table within a PairPosFormat1 lookup subtable) – may be NULL.

yAdvDeviceOffset :

Offset to Device table (non-variable font) / VariationIndex table (variable font) for vertical advance,
from beginning of the immediate parent table (SinglePos or pairPosFormat2 lookup subtable, PairSet
table within a PairPosFormat1 lookup subtable) – may be NULL.

6.3.3.4

In “GPOS subtable examples” in Example 5, replace the Comment field of the "class1Records[0]" with
the following:

First Class1Record, for contexts beginning with class 0

6.3.4.1

In “GSUB – Table overview” in the fifth paragraph, in the bulleted list entry describing “Contextual
substitution”, replace the first sentence with the following:

Contextual substitution is a powerful extension of the above lookup types, describing glyph substitutions
in context – that is, a substitution of one or more glyphs within a certain pattern of glyphs.

© ISO/IEC 2020 – All rights reserved 15

643

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019/Amd.1:2020(E)

equal the length of the preceding range (endGlyphID − startGlyphID + 1) added to the startGlyphIndex
of the preceding range. This allows for a quick calculation of the Coverage Index for any glyph in any
range using the formula: Coverage Index (glyphID) = startCoverageIndex + glyphID − startGlyphID.

6.3.3.2

In “GPOS lookup type descriptions” in the first paragraph of Lookup Type 1 description, replace the
first sentence of the paragraph with the following:

A single adjustment positioning subtable (SinglePos) is used to adjust the placement or advance of a
single glyph, such as a subscript or superscript.

In “GPOS lookup type descriptions” in the first paragraph of Lookup Type 2 description, replace the
first sentence of the paragraph with the following:

A pair adjustment positioning subtable (PairPos) is used to adjust the placement or advance of two
glyphs in relation to one another – for instance, to specify kerning data for pairs of glyphs.

In “GPOS lookup type descriptions” in the first paragraph of Lookup Type 3 description, add the
following paragraphs immediately after the first paragraph, and preceding the CursivePosFormat1
subtable description:

Positioning adjustments from anchor alignment may be either horizontal or vertical. Note that the
positioning effects in the text-layout direction (horizontal, for horizontal layout) work differently for
than for the cross-stream direction (vertical, in horizontal layout):

— For adjustments in the line-layout direction, the layout engine adjusts the advance of the first glyph
(in logical order). This effectively moves the second glyph relative to the first so that the anchors are
aligned in that direction.

— For the cross-stream direction, placement of one glyph is adjusted to make the anchors align. Which
glyph is adjusted is determined by the rightToLeft flag in the parent lookup table: if the rightToLeft
flag is clear, the second glyph is adjusted to align anchors with the first glyph; if the rightToLeft flag
is set, the first glyph is adjusted to align anchors with the second glyph.

Note that, if the rightToLeft lookup flag is set, then the last glyph in the connected sequence keeps its
initial position in the cross-stream direction relative to the baseline, and the cross-stream positions of
the preceding, connected glyphs are adjusted.

In “GPOS lookup type descriptions” in the Lookup Type 4 description, replace the last sentence of the
second paragraph with the following:

When a mark is combined with a given base, the mark placement is adjusted so that the mark anchor is
aligned with the base anchor for the applicable mark class. Placement of the base glyph and advances of
both glyphs are not affected.

In “GPOS lookup type descriptions” in the Lookup Type 5 description, add the following paragraphs
immediately after the fourth paragraph, and preceding the MarkLigPosFormat1 subtable description:

As with mark-to-base attachment, when a mark is combined with a given ligature base, the mark
placement is adjusted so that the mark anchor is aligned with the applicable base anchor. Placement of
the base glyph and advances of both glyphs are not affected.

14 © ISO/IEC 2020 – All rights reserved

ISO/IEC 14496-22:2019/Amd.1:2020(E)

In “GPOS lookup type descriptions” in the Lookup Type 6 description, replace the fourth paragraph
with the following:

The mark2 glyph that combines with a mark1 glyph is the glyph preceding the mark1 glyph in glyph
string order (skipping glyphs according to LookupFlags). The subtable applies precisely when that
mark2 glyph is covered by mark2Coverage. To combine the mark glyphs, the placement of the mark1
glyph is adjusted such that the relevant attachment points coincide. Advance widths are not affected.
The input context for MarkToBase, MarkToLigature and MarkToMark positioning tables is the mark
that is being positioned. If a sequence contains several marks, a lookup may act on it several times, to
position them.

6.3.3.3

In “Shared tables: Value record, Anchor table and MarkArray table”, in the ValueRecord table
description – replace the descriptions of the DeviceOffset fields (xPlaDeviceOffset, yPlaDeviceOffset,
xAdvDeviceOffset, yAdvDeviceOffset) with the following:

xPlaDeviceOffset :

Offset to Device table (non-variable font) / VariationIndex table (variable font) for horizontal placement,
from beginning of the immediate parent table (SinglePos or pairPosFormat2 lookup subtable, PairSet
table within a PairPosFormat1 lookup subtable) – may be NULL.

yPlaDeviceOffset :

Offset to Device table (non-variable font) / VariationIndex table (variable font) for vertical placement,
from beginning of the immediate parent table (SinglePos or pairPosFormat2 lookup subtable, PairSet
table within a PairPosFormat1 lookup subtable) – may be NULL.

xAdvDeviceOffset :

Offset to Device table (non-variable font) / VariationIndex table (variable font) for horizontal advance,
from beginning of the immediate parent table (SinglePos or pairPosFormat2 lookup subtable, PairSet
table within a PairPosFormat1 lookup subtable) – may be NULL.

yAdvDeviceOffset :

Offset to Device table (non-variable font) / VariationIndex table (variable font) for vertical advance,
from beginning of the immediate parent table (SinglePos or pairPosFormat2 lookup subtable, PairSet
table within a PairPosFormat1 lookup subtable) – may be NULL.

6.3.3.4

In “GPOS subtable examples” in Example 5, replace the Comment field of the "class1Records[0]" with
the following:

First Class1Record, for contexts beginning with class 0

6.3.4.1

In “GSUB – Table overview” in the fifth paragraph, in the bulleted list entry describing “Contextual
substitution”, replace the first sentence with the following:

Contextual substitution is a powerful extension of the above lookup types, describing glyph substitutions
in context – that is, a substitution of one or more glyphs within a certain pattern of glyphs.

© ISO/IEC 2020 – All rights reserved 15

644

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019/Amd.1:2020(E)

6.3.4.3

In “GSUB – Lookup type descriptions” in the Lookup Type 5 description, replace the first paragraph
with the following:

A Contextual Substitution (ContextSubst) subtable defines a powerful type of glyph substitution
lookup: it describes glyph substitutions in context that replace one or more glyphs within a certain
pattern of glyphs.

6.4.2

In “Language tags” in the description of Language tags, replace the text of the sixth paragraph with the
following:

All tags are four-character strings composed of a limited set of ASCII characters; for details regarding
the Tag data type see §4.3 “Data types”. By convention, registered language system tags use three or
four capital letters (0x41 – 0x5A).

In “Language tags” in the table describing Language System tags, make the following table content
changes:

— In the row describing the Language System “Bikol” – replace the corresponding ISO 639 ID with “bik,
bhk, bcl, bto, cts, bln, fbl, lbl, rbl, ubl”.

— In the row describing the Language System “Beti” – replace the corresponding ISO 639 ID with “btb,
beb, bum, bxp, eto, ewo, mct”.

— In the row describing the Language System “Creoles” – replace the corresponding ISO 639 ID with “crp,
cpe, cpf, cpp”.

— In the row describing the Language System “Dhuwal” – replace the corresponding ISO 639 ID with “duj,
dwu, dwy”.

— In the row describing the Language System “Forest Nenets” – replace the corresponding ISO 639 ID
with “enf, yrk”.

— In the row describing the Language System “Halam” – replace the Language System name of “Halam”
with “Halam (Falam Chin)” and replace the corresponding ISO 639 ID with “flm, cfm, rnl”.

— In the row describing the Language System “Armenian” – replace the corresponding ISO 639 ID with
“hye, hyw”.

— In the row describing the Language System “Ijo languages” – replace the corresponding ISO 639 ID with
“ ijc, ijo”.

— In the table describing Language System tags – add the new row for Language system “Bumthngkha”
with the Language System tag ‘KJZ’ and the corresponding ISO 639 ID “kjz”.

— In the row describing the Language System “Nisi” – replace the corresponding ISO 639 ID with “dap,
njz, tgj”.

— In the row describing the Language System “Provencal” – replace the Language System name of
“Provencal” with “Provençal / Old Provençal”.

— In the row describing the Language System “Silte Gurage” – replace the corresponding ISO 639 ID with
“xst, stv, wle”.

— In the row describing the Language System “Tundra Nenets” – replace the corresponding ISO 639 ID
with “enh, yrk”.

16 © ISO/IEC 2020 – All rights reserved

ISO/IEC 14496-22:2019/Amd.1:2020(E)

— In the table describing Language System tags – add the new row for Language system “Tshangla” with
the Language System tag ‘TSJ’ and the corresponding ISO 639 ID “tsj”.

— In the table describing Language System tags – add the new row for Language system “Khengkha” with
the Language System tag ‘XKF’ and the corresponding ISO 639 ID “xkf”.

— In the row describing the Language System “Standard Morrocan Tamazigh” – replace the Language
System name of “Standard Morrocan Tamazigh” with “Standard Moroccan Tamazight”.

— In the table describing Language System tags – add the new row for Language system “Chinese, Macao
SAR” with the Language System tag 'ZHTM' and the corresponding ISO 639 ID “zho”.

6.4.3

In “Feature tags” in the description of Feature tags, replace the text of the second, third and fourth
paragraphs with the following:

Each OFF Layout feature has a feature tag that identifies its typographic function and effects. By
examining a feature's tag, a text-processing client can determine what a feature does and decide whether
to implement it. All tags are four-character strings composed of a limited set of ASCII characters; for
details regarding the Tag data type see subclause 4.3. By convention, registered feature tags use four
lowercase letters. For instance, the ‘mark’ feature manages the placement of diacritical marks, and the
‘swsh’ feature renders swash glyphs.

The tag space of tags consisting of four uppercase letters (A-Z) with no punctuation, spaces, or numbers,
is reserved as a vendor space. Font vendors may use such tags to identify private features. For example,
the feature tag PKRN might designate a private feature that may be used to kern punctuation marks.

A feature definition may not provide all the information required to properly implement glyph
substitution or positioning actions. In many cases, a text-processing client may need to supply
additional data. For example, the function of the ‘init’ feature is to provide initial glyph forms. Nothing
in the feature's lookup tables indicates when or where to apply this feature during text processing.
To correctly use the ‘init’ feature in Arabic text, in which initial glyph forms appear at the beginning
of connected letter groups determined by character-joining properties, text-processing clients must
be able to identify the glyphs to which the feature should be applied, based on character context and
joining properties. In all cases, the text-processing client is responsible for applying, combining, and
arbitrating among features and rendering the result.

6.4.3.1

In “Feature tag list” in the "Registered features" table, add the following entries for two new 'chws'
and 'vchw' tags:

'chws' Contextual Half-width Spacing

'vchw' Vertical Contextual Half-width Spacing

6.4.3.2

In “Feature descriptions and implementations”, add the new Tag: 'chws' with the following description:

Friendly name: Contextual Half-width Spacing

Registered by: Adobe/W3C

© ISO/IEC 2020 – All rights reserved 17

645

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019/Amd.1:2020(E)

6.3.4.3

In “GSUB – Lookup type descriptions” in the Lookup Type 5 description, replace the first paragraph
with the following:

A Contextual Substitution (ContextSubst) subtable defines a powerful type of glyph substitution
lookup: it describes glyph substitutions in context that replace one or more glyphs within a certain
pattern of glyphs.

6.4.2

In “Language tags” in the description of Language tags, replace the text of the sixth paragraph with the
following:

All tags are four-character strings composed of a limited set of ASCII characters; for details regarding
the Tag data type see §4.3 “Data types”. By convention, registered language system tags use three or
four capital letters (0x41 – 0x5A).

In “Language tags” in the table describing Language System tags, make the following table content
changes:

— In the row describing the Language System “Bikol” – replace the corresponding ISO 639 ID with “bik,
bhk, bcl, bto, cts, bln, fbl, lbl, rbl, ubl”.

— In the row describing the Language System “Beti” – replace the corresponding ISO 639 ID with “btb,
beb, bum, bxp, eto, ewo, mct”.

— In the row describing the Language System “Creoles” – replace the corresponding ISO 639 ID with “crp,
cpe, cpf, cpp”.

— In the row describing the Language System “Dhuwal” – replace the corresponding ISO 639 ID with “duj,
dwu, dwy”.

— In the row describing the Language System “Forest Nenets” – replace the corresponding ISO 639 ID
with “enf, yrk”.

— In the row describing the Language System “Halam” – replace the Language System name of “Halam”
with “Halam (Falam Chin)” and replace the corresponding ISO 639 ID with “flm, cfm, rnl”.

— In the row describing the Language System “Armenian” – replace the corresponding ISO 639 ID with
“hye, hyw”.

— In the row describing the Language System “Ijo languages” – replace the corresponding ISO 639 ID with
“ ijc, ijo”.

— In the table describing Language System tags – add the new row for Language system “Bumthngkha”
with the Language System tag ‘KJZ’ and the corresponding ISO 639 ID “kjz”.

— In the row describing the Language System “Nisi” – replace the corresponding ISO 639 ID with “dap,
njz, tgj”.

— In the row describing the Language System “Provencal” – replace the Language System name of
“Provencal” with “Provençal / Old Provençal”.

— In the row describing the Language System “Silte Gurage” – replace the corresponding ISO 639 ID with
“xst, stv, wle”.

— In the row describing the Language System “Tundra Nenets” – replace the corresponding ISO 639 ID
with “enh, yrk”.

16 © ISO/IEC 2020 – All rights reserved

ISO/IEC 14496-22:2019/Amd.1:2020(E)

— In the table describing Language System tags – add the new row for Language system “Tshangla” with
the Language System tag ‘TSJ’ and the corresponding ISO 639 ID “tsj”.

— In the table describing Language System tags – add the new row for Language system “Khengkha” with
the Language System tag ‘XKF’ and the corresponding ISO 639 ID “xkf”.

— In the row describing the Language System “Standard Morrocan Tamazigh” – replace the Language
System name of “Standard Morrocan Tamazigh” with “Standard Moroccan Tamazight”.

— In the table describing Language System tags – add the new row for Language system “Chinese, Macao
SAR” with the Language System tag 'ZHTM' and the corresponding ISO 639 ID “zho”.

6.4.3

In “Feature tags” in the description of Feature tags, replace the text of the second, third and fourth
paragraphs with the following:

Each OFF Layout feature has a feature tag that identifies its typographic function and effects. By
examining a feature's tag, a text-processing client can determine what a feature does and decide whether
to implement it. All tags are four-character strings composed of a limited set of ASCII characters; for
details regarding the Tag data type see subclause 4.3. By convention, registered feature tags use four
lowercase letters. For instance, the ‘mark’ feature manages the placement of diacritical marks, and the
‘swsh’ feature renders swash glyphs.

The tag space of tags consisting of four uppercase letters (A-Z) with no punctuation, spaces, or numbers,
is reserved as a vendor space. Font vendors may use such tags to identify private features. For example,
the feature tag PKRN might designate a private feature that may be used to kern punctuation marks.

A feature definition may not provide all the information required to properly implement glyph
substitution or positioning actions. In many cases, a text-processing client may need to supply
additional data. For example, the function of the ‘init’ feature is to provide initial glyph forms. Nothing
in the feature's lookup tables indicates when or where to apply this feature during text processing.
To correctly use the ‘init’ feature in Arabic text, in which initial glyph forms appear at the beginning
of connected letter groups determined by character-joining properties, text-processing clients must
be able to identify the glyphs to which the feature should be applied, based on character context and
joining properties. In all cases, the text-processing client is responsible for applying, combining, and
arbitrating among features and rendering the result.

6.4.3.1

In “Feature tag list” in the "Registered features" table, add the following entries for two new 'chws'
and 'vchw' tags:

'chws' Contextual Half-width Spacing

'vchw' Vertical Contextual Half-width Spacing

6.4.3.2

In “Feature descriptions and implementations”, add the new Tag: 'chws' with the following description:

Friendly name: Contextual Half-width Spacing

Registered by: Adobe/W3C

© ISO/IEC 2020 – All rights reserved 17

646

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019/Amd.1:2020(E)

Function: Contextually respaces glyphs designed to be set on full-em widths, fitting them onto individual
half-width horizontal widths, to approximate more sophisticated text layout, such as what is described
in Requirements for Japanese Text Layout (JLREQ [21]) or similar CJK text-layout specifications that
expect half-width forms of characters whose default glyphs are full-width. This differs from 'halt' in
that the respacing is contextual. This feature may be invoked to get better fit for punctuation or symbol
glyphs without disrupting the monospaced alignment, such as for UIs or terminal apps.

Example: When FULLWIDTH RIGHT PARENTHESIS (U+FF09; ")") is followed by IDEOGRAPHIC COMMA
(U+3001; "、"), the latter is respaced to remove half-em of width between them.

Recommended implementation: The font stores a set of adjustments for pairs of glyphs (GPOS lookup type
2 or 8). These may be stored as one or more tables matching left and right classes, &/or as individual
pairs. Additional adjustments may be provided for larger sets of glyphs (e.g. triplets, quadruplets, etc.)
to overwrite the results of pair kerns in particular combinations.

Application interface: The application passes a sequence of GIDs to the 'chws' table, and gets back
adjusted positions (XPlacement, XAdvance, YPlacement, and YAdvance) for those GIDs. When using the
type 2 lookup on a run of glyphs, it’s critical to remember to not consume the last glyph, but to keep it
available as the first glyph in a subsequent run (this is a departure from normal lookup behaviour).

UI suggestion: This feature would be off by default.

Script/language sensitivity: Used mostly in CJKV fonts.

Feature interaction: This feature is mutually exclusive with all other glyph-width features (e.g., 'fwid',
'halt', 'hwid', 'palt', 'pwid', 'qwid', 'twid'), which should be turned off when this feature is applied. It
deactivates the 'kern' feature. See also 'vchw'.

In “Feature descriptions and implementations” in the description of Function and Example fields for
Tag: 'med2', replace the corresponding portions of the descriptive text with the following:

Function: Replaces Alaph glyphs in the middle of Syriac words when the preceding base character can
be joined to.

Example: When an Alaph is preceded by a Heth, the Alaph would be replaced by an appropriate form.
This feature is used only for the Syriac script alaph character.

In “Feature descriptions and implementations”, add the new Tag: 'vchw' with the following
description:

Friendly name: Vertical Contextual Half-width Spacing

Registered by: Adobe/W3C

Function: Contextually respaces glyphs designed to be set on full-em heights, fitting them onto individual
half-width vertical heights, to approximate more sophisticated text layout, such as what is described
in Requirements for Japanese Text Layout (JLREQ [21]) or similar CJK text-layout specifications that
expect half-width forms of characters whose default glyphs are full-width. This differs from 'vhal' in
that the respacing is contextual. This feature may be invoked to get better fit for punctuation or symbol
glyphs without disrupting the monospaced alignment.

Example: When PRESENTATION FORM FOR VERTICAL RIGHT PARENTHESIS (U+FE36; "︶", vertical
form of FULLWIDTH RIGHT PARENTHESIS U+FF09; ")") is followed by PRESENTATION FORM FOR
VERTICAL IDEOGRAPHIC COMMA (U+FE11; "︑", vertical form of IDEOGRAPHIC COMMA U+3001; "、"),
the latter is respaced to remove half-em of height between them.

Recommended implementation: The font stores a set of adjustments for pairs of glyphs (GPOS lookup type
2 or 8). These may be stored as one or more tables matching left and right classes, &/or as individual

18 © ISO/IEC 2020 – All rights reserved

ISO/IEC 14496-22:2019/Amd.1:2020(E)

pairs. Additional adjustments may be provided for larger sets of glyphs (e.g. triplets, quadruplets, etc.)
to overwrite the results of pair kerns in particular combinations.

Application interface: The application passes a sequence of GIDs to the 'vchw' table, and gets back
adjusted positions (XPlacement, XAdvance, YPlacement, and YAdvance) for those GIDs. When using the
type 2 lookup on a run of glyphs, it’s critical to remember to not consume the last glyph, but to keep it
available as the first glyph in a subsequent run (this is a departure from normal lookup behavior).

UI suggestion: This feature would be off by default.

Script/language sensitivity: Used mostly in CJKV fonts.

Feature interaction: This feature is mutually exclusive with all other glyph-height features (e.g., 'valt',
'vhal', 'vpal'), which should be turned off when this feature is applied. It deactivates the 'vkrn' feature.
See also 'chws'.

In “Feature descriptions and implementations” in the description of Tag: 'vert', replace the
corresponding portions of the descriptive text with the following:

Friendly name: Vertical Alternates

Registered by: Adobe/Microsoft

UI suggestion: This feature should be active by default in vertical writing mode.

Script/language sensitivity: Applies only to scripts with vertical writing capability.

Feature interaction: The 'vert' and 'vrtr' features are intended to be used in conjunction: 'vert' for glyphs
to be presented upright in vertical writing, and 'vrtr' for glyphs intended to be presented sideways.
Since they must never be activated simultaneously for a given glyph, there should be no interaction
between the two features. These features are intended for layout engines that graphically rotate glyphs
for sideways runs in vertical writing mode, such as those conforming to Unicode Standard Annex #50:
Unicode Vertical Text Layout [23].

Note that layout engines that instead depend on the font to supply pre-rotated glyphs for all sideways
glyphs should use the 'vrt2' feature in lieu of 'vert' and 'vrtr'. Because 'vrt2' supplies pre-rotated glyphs,
the 'vert' feature should never be used with 'vrt2' but may be used in addition to any other feature.

In “Feature descriptions and implementations” in the description of "Feature interaction" field for
Tag: 'vrtr', replace the descriptive text with the following:

Feature interaction: The 'vrtr' and 'vert' features are intended to be used in conjunction: 'vrtr' for glyphs
intended to be presented sideways in vertical writing, and 'vert' for glyphs to be presented upright.
Since they must never be activated simultaneously for a given glyph, there should be no interaction
between the two features. These features are intended for layout engines that graphically rotate glyphs
for sideways runs in vertical writing mode, such as those conforming to Unicode Standard Annex #50:
Unicode Vertical Text Layout [23].

Note that layout engines that instead depend on the font to supply pre-rotated glyphs for all sideways
glyphs should use the 'vrt2' feature in lieu of 'vrtr' and vert. Because 'vrt2' supplies pre-rotated glyphs,
the 'vrtr' feature should never be used with 'vrt2', but it may be used in addition to any other feature.

© ISO/IEC 2020 – All rights reserved 19

647

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019/Amd.1:2020(E)

Function: Contextually respaces glyphs designed to be set on full-em widths, fitting them onto individual
half-width horizontal widths, to approximate more sophisticated text layout, such as what is described
in Requirements for Japanese Text Layout (JLREQ [21]) or similar CJK text-layout specifications that
expect half-width forms of characters whose default glyphs are full-width. This differs from 'halt' in
that the respacing is contextual. This feature may be invoked to get better fit for punctuation or symbol
glyphs without disrupting the monospaced alignment, such as for UIs or terminal apps.

Example: When FULLWIDTH RIGHT PARENTHESIS (U+FF09; ")") is followed by IDEOGRAPHIC COMMA
(U+3001; "、"), the latter is respaced to remove half-em of width between them.

Recommended implementation: The font stores a set of adjustments for pairs of glyphs (GPOS lookup type
2 or 8). These may be stored as one or more tables matching left and right classes, &/or as individual
pairs. Additional adjustments may be provided for larger sets of glyphs (e.g. triplets, quadruplets, etc.)
to overwrite the results of pair kerns in particular combinations.

Application interface: The application passes a sequence of GIDs to the 'chws' table, and gets back
adjusted positions (XPlacement, XAdvance, YPlacement, and YAdvance) for those GIDs. When using the
type 2 lookup on a run of glyphs, it’s critical to remember to not consume the last glyph, but to keep it
available as the first glyph in a subsequent run (this is a departure from normal lookup behaviour).

UI suggestion: This feature would be off by default.

Script/language sensitivity: Used mostly in CJKV fonts.

Feature interaction: This feature is mutually exclusive with all other glyph-width features (e.g., 'fwid',
'halt', 'hwid', 'palt', 'pwid', 'qwid', 'twid'), which should be turned off when this feature is applied. It
deactivates the 'kern' feature. See also 'vchw'.

In “Feature descriptions and implementations” in the description of Function and Example fields for
Tag: 'med2', replace the corresponding portions of the descriptive text with the following:

Function: Replaces Alaph glyphs in the middle of Syriac words when the preceding base character can
be joined to.

Example: When an Alaph is preceded by a Heth, the Alaph would be replaced by an appropriate form.
This feature is used only for the Syriac script alaph character.

In “Feature descriptions and implementations”, add the new Tag: 'vchw' with the following
description:

Friendly name: Vertical Contextual Half-width Spacing

Registered by: Adobe/W3C

Function: Contextually respaces glyphs designed to be set on full-em heights, fitting them onto individual
half-width vertical heights, to approximate more sophisticated text layout, such as what is described
in Requirements for Japanese Text Layout (JLREQ [21]) or similar CJK text-layout specifications that
expect half-width forms of characters whose default glyphs are full-width. This differs from 'vhal' in
that the respacing is contextual. This feature may be invoked to get better fit for punctuation or symbol
glyphs without disrupting the monospaced alignment.

Example: When PRESENTATION FORM FOR VERTICAL RIGHT PARENTHESIS (U+FE36; "︶", vertical
form of FULLWIDTH RIGHT PARENTHESIS U+FF09; ")") is followed by PRESENTATION FORM FOR
VERTICAL IDEOGRAPHIC COMMA (U+FE11; "︑", vertical form of IDEOGRAPHIC COMMA U+3001; "、"),
the latter is respaced to remove half-em of height between them.

Recommended implementation: The font stores a set of adjustments for pairs of glyphs (GPOS lookup type
2 or 8). These may be stored as one or more tables matching left and right classes, &/or as individual

18 © ISO/IEC 2020 – All rights reserved

ISO/IEC 14496-22:2019/Amd.1:2020(E)

pairs. Additional adjustments may be provided for larger sets of glyphs (e.g. triplets, quadruplets, etc.)
to overwrite the results of pair kerns in particular combinations.

Application interface: The application passes a sequence of GIDs to the 'vchw' table, and gets back
adjusted positions (XPlacement, XAdvance, YPlacement, and YAdvance) for those GIDs. When using the
type 2 lookup on a run of glyphs, it’s critical to remember to not consume the last glyph, but to keep it
available as the first glyph in a subsequent run (this is a departure from normal lookup behavior).

UI suggestion: This feature would be off by default.

Script/language sensitivity: Used mostly in CJKV fonts.

Feature interaction: This feature is mutually exclusive with all other glyph-height features (e.g., 'valt',
'vhal', 'vpal'), which should be turned off when this feature is applied. It deactivates the 'vkrn' feature.
See also 'chws'.

In “Feature descriptions and implementations” in the description of Tag: 'vert', replace the
corresponding portions of the descriptive text with the following:

Friendly name: Vertical Alternates

Registered by: Adobe/Microsoft

UI suggestion: This feature should be active by default in vertical writing mode.

Script/language sensitivity: Applies only to scripts with vertical writing capability.

Feature interaction: The 'vert' and 'vrtr' features are intended to be used in conjunction: 'vert' for glyphs
to be presented upright in vertical writing, and 'vrtr' for glyphs intended to be presented sideways.
Since they must never be activated simultaneously for a given glyph, there should be no interaction
between the two features. These features are intended for layout engines that graphically rotate glyphs
for sideways runs in vertical writing mode, such as those conforming to Unicode Standard Annex #50:
Unicode Vertical Text Layout [23].

Note that layout engines that instead depend on the font to supply pre-rotated glyphs for all sideways
glyphs should use the 'vrt2' feature in lieu of 'vert' and 'vrtr'. Because 'vrt2' supplies pre-rotated glyphs,
the 'vert' feature should never be used with 'vrt2' but may be used in addition to any other feature.

In “Feature descriptions and implementations” in the description of "Feature interaction" field for
Tag: 'vrtr', replace the descriptive text with the following:

Feature interaction: The 'vrtr' and 'vert' features are intended to be used in conjunction: 'vrtr' for glyphs
intended to be presented sideways in vertical writing, and 'vert' for glyphs to be presented upright.
Since they must never be activated simultaneously for a given glyph, there should be no interaction
between the two features. These features are intended for layout engines that graphically rotate glyphs
for sideways runs in vertical writing mode, such as those conforming to Unicode Standard Annex #50:
Unicode Vertical Text Layout [23].

Note that layout engines that instead depend on the font to supply pre-rotated glyphs for all sideways
glyphs should use the 'vrt2' feature in lieu of 'vrtr' and vert. Because 'vrt2' supplies pre-rotated glyphs,
the 'vrtr' feature should never be used with 'vrt2', but it may be used in addition to any other feature.

© ISO/IEC 2020 – All rights reserved 19

648

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019/Amd.1:2020(E)

Clause 8

In “Recommendations for OFF fonts”, remove subclause 8.2 "sfnt version". The same content is
presented in subclause 4.5.

8.7

In “Base table”, replace the first paragraph with the following:

The 'BASE' table allows for different scripts in the font to specify different values for the same baseline
tag. This situation could arise, for example, when a developer makes a multi-script font by combining
glyphs from multiple fonts that use different baseline systems.

8.8

In “cmap' table”, update the content to remove outdated references to UCS-4 and replace the content of
entire subclause with the following:

When building a font for Windows, a 'cmap' subtable for platform ID 3 should be included. When
building a Unicode font, encoding ID 1 should be used for this subtable. (This subtable must use format
4.) When building a symbol font for Windows, encoding ID 0 should be used for this subtable.

When building a font to support Unicode supplementary characters (U+10000 to U+10FFFF)), include
a 'cmap' subtable for platform ID 3, encoding ID 10. (This subtable must use format 12.) To provide
compatibility with older software, a subtable for platform 3, encoding ID 1 should also be included.
Depending on application support and the content of text being displayed, either the 3/1/4 or 3/10/12
subtable may be used. Therefore, glyph mappings for characters in the range U+0000 to U+FFFF must
be identical between the 3/1/4 or 3/10/12 subtables. Also note that the characters mapped in the
3/10/12 subtable must be a superset of the characters mapped in the 3/1/4 subtable.

Remember that encoding records must be stored in sorted order by platform ID, then by encoding ID.

8.21

In “OS/2' table”, replace the first paragraph with the following text:

All data required.

PANOSE values

PANOSE values improve the user's experience for font selection in some applications or font management
utilities.

If the font is a symbol font, the first byte of the PANOSE value must be set to “Latin Pictorial” (value = 5).

In “OS/2' table” in the text describing the values of sTypoAscender, sTypoDescender and
sTypoLineGap, replace the text with the following:

The sTypoAscender, sTypoDescender and sTypoLineGap fields are used to specify the recommended
default line spacing for single-spaced horizontal text. The baseline-to-baseline distance is calculated as
follows:

OS/2.sTypoAscender − OS/2.sTypoDescender + OS/2.sTypoLineGap

20 © ISO/IEC 2020 – All rights reserved

ISO/IEC 14496-22:2019/Amd.1:2020(E)

sTypoAscender should be used to determine an optimal default offset from the top of a text frame to the
first baseline. Similarly, sTypoDescender should be used to determine an offset from the last baseline to
the bottom of the text frame.

It is often appropriate to set the sTypoAscender and sTypoDescender values such that the distance
(sTypoAscender − sTypoDescender) is equal to one em. This is not a requirement, however, and may not
be suitable in some situations. For example, if a font is designed for a script that (in horizontal layout)
requires greater vertical extent relative to Latin script but also needs to support Latin script, and needs
to have the visual size of Latin glyphs be similar to other fonts when set at the same text size, then the
(sTypoAscender − sTypoDescender) distance for that font would likely need to be greater than one em.

The sTypoLineGap value will often be set such that the default baseline-to-baseline distance is
approximately 120 % of the em. For example, in the Minion Pro font family, fonts are designed
on a 1000 units-per-em grid, the (sTypoAscender − sTypoDescender) distance is one em, and the
sTypoLineGap value is set to 200.

In CJK (Chinese, Japanese, and Korean) fonts, it is permissible for the sTypoDescender and sTypoAscender
fields to specify metrics different from the HorizAxis.ideo and HorizAxis.idtp baselines in the 'BASE'
table. However, some applications may not read the 'BASE' table at all but simply use the sTypoDescender
and sTypoAscender fields to describe the bottom and top edges of the ideographic em-box. If developers
want their fonts to work correctly with such applications, they should ensure that any ideographic
em-box values in the 'BASE' table describe the same bottom and top edges as the sTypoDescender
and sTypoAscender fields. See subclause 9.8 "OFF CJK Font Guidelines" and "Ideographic Em-Box"
respectively for more details.

In “OS/2' table” – insert new text in the end of the subclause as follows:

usLowerOpticalPointSize and usUpperOpticalPointSize

Use of the usLowerOpticalPointSize and usUpperOpticalPointSize fields has been superseded by the
‘STAT’ table. See subclause 9.9 for more information.

Bibliography

Replace the descriptive text of Reference [23] with the following:

[23] Unicode Standard Annex #50: Unicode Vertical Text Layout. http:// www .unicode .org/ reports/ tr50/

Add a new entry 31 as follows:

[31] RFC 1952, “GZIP file format specification version 4.3” http:// www .ietf .org/ rfc/ rfc1952 .txt

© ISO/IEC 2020 – All rights reserved 21

649

IS/ISO/IEC 14496-22 : 2019

ISO/IEC 14496-22:2019/Amd.1:2020(E)

Clause 8

In “Recommendations for OFF fonts”, remove subclause 8.2 "sfnt version". The same content is
presented in subclause 4.5.

8.7

In “Base table”, replace the first paragraph with the following:

The 'BASE' table allows for different scripts in the font to specify different values for the same baseline
tag. This situation could arise, for example, when a developer makes a multi-script font by combining
glyphs from multiple fonts that use different baseline systems.

8.8

In “cmap' table”, update the content to remove outdated references to UCS-4 and replace the content of
entire subclause with the following:

When building a font for Windows, a 'cmap' subtable for platform ID 3 should be included. When
building a Unicode font, encoding ID 1 should be used for this subtable. (This subtable must use format
4.) When building a symbol font for Windows, encoding ID 0 should be used for this subtable.

When building a font to support Unicode supplementary characters (U+10000 to U+10FFFF)), include
a 'cmap' subtable for platform ID 3, encoding ID 10. (This subtable must use format 12.) To provide
compatibility with older software, a subtable for platform 3, encoding ID 1 should also be included.
Depending on application support and the content of text being displayed, either the 3/1/4 or 3/10/12
subtable may be used. Therefore, glyph mappings for characters in the range U+0000 to U+FFFF must
be identical between the 3/1/4 or 3/10/12 subtables. Also note that the characters mapped in the
3/10/12 subtable must be a superset of the characters mapped in the 3/1/4 subtable.

Remember that encoding records must be stored in sorted order by platform ID, then by encoding ID.

8.21

In “OS/2' table”, replace the first paragraph with the following text:

All data required.

PANOSE values

PANOSE values improve the user's experience for font selection in some applications or font management
utilities.

If the font is a symbol font, the first byte of the PANOSE value must be set to “Latin Pictorial” (value = 5).

In “OS/2' table” in the text describing the values of sTypoAscender, sTypoDescender and
sTypoLineGap, replace the text with the following:

The sTypoAscender, sTypoDescender and sTypoLineGap fields are used to specify the recommended
default line spacing for single-spaced horizontal text. The baseline-to-baseline distance is calculated as
follows:

OS/2.sTypoAscender − OS/2.sTypoDescender + OS/2.sTypoLineGap

20 © ISO/IEC 2020 – All rights reserved

ISO/IEC 14496-22:2019/Amd.1:2020(E)

sTypoAscender should be used to determine an optimal default offset from the top of a text frame to the
first baseline. Similarly, sTypoDescender should be used to determine an offset from the last baseline to
the bottom of the text frame.

It is often appropriate to set the sTypoAscender and sTypoDescender values such that the distance
(sTypoAscender − sTypoDescender) is equal to one em. This is not a requirement, however, and may not
be suitable in some situations. For example, if a font is designed for a script that (in horizontal layout)
requires greater vertical extent relative to Latin script but also needs to support Latin script, and needs
to have the visual size of Latin glyphs be similar to other fonts when set at the same text size, then the
(sTypoAscender − sTypoDescender) distance for that font would likely need to be greater than one em.

The sTypoLineGap value will often be set such that the default baseline-to-baseline distance is
approximately 120 % of the em. For example, in the Minion Pro font family, fonts are designed
on a 1000 units-per-em grid, the (sTypoAscender − sTypoDescender) distance is one em, and the
sTypoLineGap value is set to 200.

In CJK (Chinese, Japanese, and Korean) fonts, it is permissible for the sTypoDescender and sTypoAscender
fields to specify metrics different from the HorizAxis.ideo and HorizAxis.idtp baselines in the 'BASE'
table. However, some applications may not read the 'BASE' table at all but simply use the sTypoDescender
and sTypoAscender fields to describe the bottom and top edges of the ideographic em-box. If developers
want their fonts to work correctly with such applications, they should ensure that any ideographic
em-box values in the 'BASE' table describe the same bottom and top edges as the sTypoDescender
and sTypoAscender fields. See subclause 9.8 "OFF CJK Font Guidelines" and "Ideographic Em-Box"
respectively for more details.

In “OS/2' table” – insert new text in the end of the subclause as follows:

usLowerOpticalPointSize and usUpperOpticalPointSize

Use of the usLowerOpticalPointSize and usUpperOpticalPointSize fields has been superseded by the
‘STAT’ table. See subclause 9.9 for more information.

Bibliography

Replace the descriptive text of Reference [23] with the following:

[23] Unicode Standard Annex #50: Unicode Vertical Text Layout. http:// www .unicode .org/ reports/ tr50/

Add a new entry 31 as follows:

[31] RFC 1952, “GZIP file format specification version 4.3” http:// www .ietf .org/ rfc/ rfc1952 .txt

© ISO/IEC 2020 – All rights reserved 21

This page has been intentionally left blank

 Part 29 Web video coding

	 	 Part	30		 Timed	text	and	other	visual	overlays	in	ISO	base	media	file	format

 Part 33 Internet video coding

This standard was originally published in 2017 and was identical with ISO/IEC 14496-22 : 2015.
First revision of this standard has been undertaken to align it with the latest version
of ISO/IEC 14496-22 : 2019.

The text of ISO/IEC Standard has been approved as suitable for publication as an Indian Standard
without deviations. Certain terminologies and conventions are, however, not identical to those used in
Indian Standards. Attention is particularly drawn to the following:

 a) Wherever the words ‘International Standard’ appear referring to this standard, they should be
read as ‘Indian Standard’.

 b) Comma (,) has been used as a decimal marker, while in Indian Standards, the current practice
is to use a point (.) as the decimal marker.

In this adopted standard, reference appears to the following International Standard for which
Indian Standard also exists. The corresponding Indian Standard, which is to be substituted in its
place, is listed below along with its degree of equivalence for the edition indicated:

International Standard Corresponding Indian Standard Degree of
Equivalence

ISO/IEC 14496-18 Information
technology — Coding of audio-visual
objects — Part 18: Font compression
and streaming

IS/ISO/IEC 14496-18 : 2004 Information
technology — Coding of audio-visual
objects: Part 18 Font compression and
streaming

Identical with
ISO/IEC

14496-18 : 2004

The technical committee has reviewed the provisions of following International Standards referred
in this adopted standard and has decided that they are acceptable for use in conjunction with this
standard:

International Standard Title
IEC 61966-2-1/Amd 1 : 2003 Multimedia systems and equipment — Colour measurement and

management — Part 2-1: Colour management — Default RGB
colour space — sRGB

ISO/IEC 10646 Information technology — Universal Coded Character Set (UCS)
ISO/IEC 15948 Information technology — Computer graphics and image

processing — Portable Network
Graphics:	Functional	specification	4

TrueType Instruction Set, http://www.microsoft.com/typography/otspec/ttinst.htm
Unicode 11.0, http://www.unicode.org/versions/Unicode11.0.0/
Scalable Vector Graphics (SVG) 1.1 (2nd edition), W3C Recommendation, 16 August 2011 http://
www.w3.org/TR/SVG11/
IETF	BCP	47	specification,	“Tags	for	Identifying	Languages”.	http://tools.ietf.org/html/bcp47

Amendment 1 to the International Standard published in year 2020 is given at the end of this
publication.

(Continued from second cover)

Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 2016 to promote
harmonious	development	of	the	activities	of	standardization,	marking	and	quality	certification	of	goods	
and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any
form without the prior permission in writing of BIS. This does not preclude the free use, in the course of
implementing the standard, of necessary details, such as symbols and sizes, type or grade designations.
Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also
reviewed	periodically;	a	standard	along	with	amendments	is	reaffirmed	when	such	review	indicates	that	
no changes are needed; if the review indicates that changes are needed, it is taken up for revision.
Users of Indian Standards should ascertain that they are in possession of the latest amendments or
edition by referring to the latest issue of ‘BIS Catalogue’ and ‘Standards: Monthly Additions’.

This Indian Standard has been developed from Doc No.: LITD 23 (15475).

Amendments Issued Since Publication

Amend No. Date of Issue Text Affected

BUREAU OF INDIAN STANDARDS

Headquarters:

Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002
Telephones: 2323 0131, 2323 3375, 2323 9402 Website: www.bis.gov.in

Regional Offices: Telephones

Central : Manak Bhavan, 9 Bahadur Shah Zafar Marg
NEW DELHI 110002 { 2323 7617

2323 3841

Eastern : 1/14 C.I.T. Scheme VII M, V.I.P. Road, Kankurgachi
KOLKATA 700054 { 2337 8499, 2337 8561

2337 8626, 2337 9120

Northern : Plot No. 4-A, Sector 27-B, Madhya Marg
CHANDIGARH 160019 { 265 0206

265 0290

Southern : C.I.T. Campus, IV Cross Road, CHENNAI 600113 { 2254 1216, 2254 1442
2254 2519, 2254 2315

Western : Manakalaya, E9 MIDC, Marol, Andheri (East)
MUMBAI 400093 { 2832 9295, 2832 7858

2832 7891, 2832 7892

Branches : AHMEDABAD. BENGALURU. BHOPAL. BHUBANESHWAR. COIMBATORE.
DEHRADUN. DURGAPUR. FARIDABAD. GHAZIABAD. GUWAHATI.
HYDERABAD. JAIPUR. JAMMU. JAMSHEDPUR. KOCHI. LUCKNOW.
NAGPUR. PARWANOO. PATNA. PUNE. RAIPUR. RAJKOT. VISAKHAPATNAM.

Published by BIS, New Delhi

http://www.bis.gov.in

