भारतीय मानक Indian Standard

हबलेस अपकेन्द्री ढलवा (स्पन) लोहे के पाइप, फिटिंग्स तथा सहायक उपकरण — स्पिगट श्रेणी — विशिष्टि

IS 15905: 2024

(पहला पुनरीक्षण)

Hubless Centrifugally Cast (Spun)
Iron Pipes, Fittings and
Accessories — Spigot Series —
Specification

(First Revision)

ICS 77.140.75; 91.140.80

© BIS 2024

भारतीय मानक ब्यूरो BUREAU OF INDIAN STANDARDS मानक भवन, 9 बहादुर शाह ज़फर मार्ग, नई दिल्ली - 110002 MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG NEW DELHI - 110002

www.bis.gov.in www.standardsbis.in

FOREWORD

This Indian Standard (First Revision) was adopted by the Bureau of Indian Standards, after the draft finalized by the Pig Iron and Cast Iron Sectional Committee had been approved by the Metallurgical Engineering Divisional Council.

This standard was first published in 2011. This revision has been brought out to bring the standard in the latest style and format of the Indian Standards. In addition, following significant modifications have been made:

- a) The amendment issued has been incorporated;
- b) Reference clause has been updated;
- c) Scope of the standard has been modified;
- d) Range of nominal sizes, DN, of 250, 300 and 400 has been included;
- e) Clause 11 on coating has been modified;
- f) Marking clause has been updated; and
- g) Annex B on drawing and dimension for stainless steel shielding coupling has been modified.

Hubless centrifugally cast (spun) iron pipe, fittings and accessories are widely used in drainage piping system.

In the revision of this standard due consideration has been given to the manufacturing and trade practices followed in the country in this field and assistance has been derived from the following International Standards.

ISO 6594: 2006 Cast iron drainage pipes and fittings — Spigot series

ISO 185: 2020 Grey cast irons — Classifications

The composition of the Committee responsible for the formulation of this standard is given in Annex C.

For the purpose of deciding whether a particular requirement of this standard is complied with the final value, observed or calculated, expressing the result of a test or analysis, shall be rounded off in accordance with IS 2:2022 'Rules for rounding off numerical values (*second revision*)'. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.

Indian Standard

HUBLESS CENTRIFUGALLY CAST (SPUN) IRON PIPES, FITTINGS AND ACCESSORIES — SPIGOT SERIES — SPECIFICATION

(First Revision)

1 SCOPE

- 1.1 This standard covers the requirement for hubless centrifugally cast (spun) iron soil, waste, ventilation and rain water pipes together with the details of the fittings and accessories including joints (coupling). The pipe and fittings are intended for non-pressure application, normally as gravity drainage systems, inside and outside discharge of building to a sewer, septic tank or to the point of disposal.
- **1.2** The fittings and accessories covered in this standard are normally manufactured by sand casting method.
- **1.3** Cast iron pipes, fittings and accessories including joints (coupling) manufactured to this standard are of hubless (spigot type), without sockets and spigot beads.
- **1.4** The range of nominal sizes DN, of pipes and fittings followed in this standard is as follows:
- 50 mm, 75 mm, 100 mm, 150 mm, 200 mm, 250 mm, 300 mm and 400 mm.
- **1.5** The corresponding joints (couplings) are normally fabricated or casted.

2 REFERENCES

The standards listed in Annex A contain provisions, which through reference in this text, constitute provisions of this standard. At the time of publication, the editions indicated were valid. All standards are subject to revision and parties to agreements based on this standard are encouraged to investigate the possibility of applying the most recent edition of these standards.

3 SUPPLY OF MATERIAL

General requirements relating to supply of material shall be as laid down in IS 1387.

4 TERMINOLOGY

For the purpose of this standard, the following definitions apply:

- **4.1 Accessory** Any casting other than pipe or fitting used in a pipeline.
- **4.2 Cast Iron** Alloy of iron and carbon in which graphite can be present in different forms.

- **4.3 Clamp Assembly** That portion of the coupling excluding the gasket and shield.
- **4.4 Coupling** The complete assembly.
- **4.5 Drainage System for Buildings** System of pipes, fittings, accessories and joints used to collect and discharge soil, waste water and rainwater from a building; it comprises discharge pipes, stack ventilation and rain water pipes, installed in order to connect the discharge system of building to a sewer or a septic tank or to the point of disposal.
- **4.6 Fitting** Cast iron casting, other than a pipe, which allows a deviation, a change of direction or diameter, including flanged and access components.
- **4.7 Gasket** The EPDM or neoprene rubber portion of the coupling and for door portion in fittings.
- **4.8 Joint** Connection between the ends of pipes and/or fittings, including the coupling or clamping component, with sealing effected by EPDM or neoprene rubber gasket(s).
- **4.9 Length** Effective length of a pipe or fitting.
 - NOTE For hubless pipes and fittings, the effective length is equal to the overall length.
- **4.10** Nominal Size (*DN*) An alphanumeric designation of size for pipe, fitting and accessories, which is used for reference purposes. It comprises the letters *DN* followed by a dimensionless whole number which is indirectly related to the physical size, in millimeters, of the bore of the end connections.
- **4.11 Pipe** Casting of uniform bore, straight in axis normally having plain ends.
- **4.12 Sewer** System of pipes designed to collect soil and waste water from buildings and to convey them to the point of disposal or treatment.
- **4.13 Shield** An external corrugated metallic protective device designed to protect the sealing gasket.

5 MANUFACTURE

- **5.1** Cast iron used for the manufacture of pipes, fittings and accessories shall conform to FG 150 grade (min), as appropriate, specified in IS 210. Specific mass of cast iron shall be taken as 7.15 kg/dm³ for the purpose of calculation.
- **5.2** The pipes, fittings and accessories shall be stripped with all precautions necessary to avoid warping or shrinking defects. The pipes, fittings and accessories shall be sound, free from defects, other than any unavoidable surface imperfections which result from the method of manufacture and which do not affect the use of the casting shall not be rejected. By agreement between the purchaser and the manufacturer minor defects may be rectified.
- **5.3** Special features for ease, strengthening or supporting requirements may be provided on outer surface of fitting castings, excluding free length (l) area, provided it does not impair the functionality of fittings. Its design shall be at the discretion of the manufacturer.
- **5.4** The pipes and fittings shall be capable of being cut with the tools normally used for installation, preferably with cutting machine, which cuts the pipe perpendicularly with straight edges or as suggested in manufacturer's catalogue. The hardness of the external unmachined surface of the pipe and fittings should not exceed 230 HBW, when tested as per IS 1500 (Part 1).
- **5.5** In case the hardness is more than 230 HBW, fracture test shall be carried out and if fracture is grey (without showing any chilling effect) such pipes and fittings shall be accepted.

6 JOINTS

- **6.1** The pipes, fittings and accessories may be assembled using various types of joints. The joints are intrinsic components of the drainage systems, whose characteristics and tolerances are specified in the manufacturers catalogues.
- **6.2** Taking into account the different applications of cast iron pipework systems, various joint designs are permitted provided that they satisfy the requirement of this standard. The joints shall incorporate one or more EPDM or neoprene rubber gasket(s) to ensure leak tightness and prevent direct contact between the ends of pipes, fittings and accessories. Rubber gasket(s) must satisfy the requirements given in Table 29, Table 30 and Table 31 of Annex B.
- **6.3** Heavy duty coupling, as given in Annex B, shall be used in areas, where more thrust pressure is anticipated, preferably in basement and rainwater lines.

- **6.4** In order to achieve satisfactory assembly, each end shall present a free length corresponding at least to the values of Table 1.
- **6.5** Materials for clamping components shall usually be made from:
 - a) Ductile iron of grade SG 500/7 as per IS 1865 or (ductile iron clamping components shall be coated as given in 11; and
 - b) Austenitic stainless steels of 300 series, preferably of 304 or 316 grades.
 - NOTE Some drawings along with dimensions of coupling are suggested in Annex B for guidance only.
- **6.6** All parts of the joints shall be free from defects likely to compromise their suitability for use. If required, the manufacturer shall furnish the certificate stating that the product has been tested and inspected as per the requirements of the specification and the requirements have been met.

7 VISUAL INSPECTION AND HAMMER TEST

All pipe, fitting, and accessories are visually inspected internally and externally using an appropriate light source (for example, against light) and tested for soundness by striking with a light hand hammer which should emit a clear ringing sound.

8 CRUSH TESTS ON PIPES RING

Perform crush tests on three rings at least 60 mm long, with parallel ends, and cut square to the axis from uncoated pipes.

8.1 Crush the rings between parallel platens (without V-support) of a length greater than that of the ring.

8.2 Calculation

Crushing strength (
$$\sigma$$
) = $\frac{3F(d-e)}{\pi be^2}$

where

F = load applied, in N;

- d = mean outside diameter or pipe ring before testing, in mm;
- e = mean thickness measured at the rupture level, in mm; and
- b = mean length, in mm.

The measured strength shall be at least 300 N/mm² for an average of three sets.

9 HYDROSTATIC TEST

- **9.1** Each pipe and fitting shall be tested at factory for hydrostatic pressure of 0.07 MPa (N/mm²). These shall not show any sign of leakage, sweating or other defects of any kind.
- **9.2** The pressure shall be applied internally and shall be steadily maintained for a period of 15 s.
- **9.3** Test shall be carried out after the application of surface coating on pipes, fittings and accessories.

10 DIMENSIONS AND TOLERANCES

10.1 The dimension and tolerances are as given in **10.2** to **10.8**.

10.2 External Diameters and Tolerances

The external diameters of pipes and fittings and the tolerance applicable are given in Table 2.

10.3 Thickness and Tolerances

<u>Table 3</u> gives the minimum and nominal thickness of pipes and fittings. Maximum thickness is not specified.

10.4 Length and Tolerances

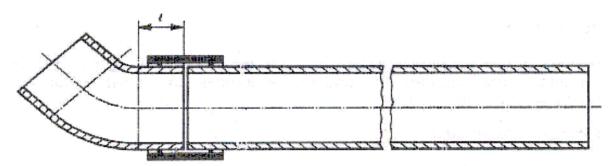
The normal manufacturing length of pipes shall be 3 000 mm. However, other lengths of pipes are permitted and can be supplied by the agreement of manufacturer and purchaser.

Tolerances on length of the pipes and fittings are given in 10.8.

10.5 Tolerances on Angles

Tolerance on the angles of the fittings are fixed at $\pm 2^{\circ}$ throughout.

10.6 Straightness of Pipe


Pipe shall be straight to the extent of that for 3 000 mm length and deviation at point shall not exceed 0.15 percent of their length for all sizes.

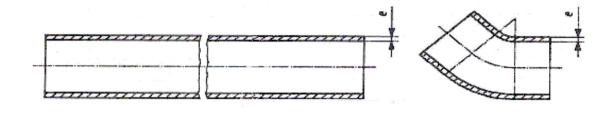
10.7 End Faces

The end faces of pipes and fittings shall be free from fault, which may impair their fitness to use and their faces shall be perpendicular with the axis of the symmetry of the products. The maximum deviation from the right angle shall be upto 2° for all sizes.

Table 1 Minimum Free Lengths

(*Clause* 6.4)

Sl No.	Nominal Size	Minimum Free Length
	DN	(<i>l</i>) (mm)
(1)	(2)	(3)
i)	50	25
ii)	75	30
iii)	100	35
iv)	150	45
v)	200	56
vi)	250	66
vii)	300	76
viii)	400	76


Table 2 External Diameters and Tolerances

(*Clause* <u>10.2</u>)

Sl No.	Nominal Size	External Diameter	Tolerance on External Diameter
	DN,	DE,	DE,
	mm	mm	mm
(1)	(2)	(3)	(4)
i)	50	58	+ 2
			- 1
ii)	75	83	+ 2
,			- 1
iii)	100	110	± 2
iv)	150	160	± 2
v)	200	210	± 2.5
vi)	250	274	± 2.5
vii)	300	326	± 2.5
viii)	400	429	+ 2
			- 3

Table 3 Nominal and Minimum Thicknesses of Pipes and Fittings

(*Clause* <u>10.3</u>)

Sl No.	DN		Thickne	ess (e)		
		Pi	pe Д	Fittings		
(1)	(2)	Nominal (3)	Minimum (4)	Nominal (5)	Minimum (6)	
i)	50	3.5	3.0	4.2	3.0	
ii)	75	3.5	3.0	4.2	3.0	
iii)	100	3.5	3.0	4.2	3.0	
iv)	150	4.0	3.5	5.3	3.5	
v)	200	5.0	4.0	6.0	4.0	
vi)	250	5.5	4.5	7.0	4.5	
vii)	300	6.0	5.0	8.0	5.0	
viii)	400	6.3	5.0	8.3	5.0	

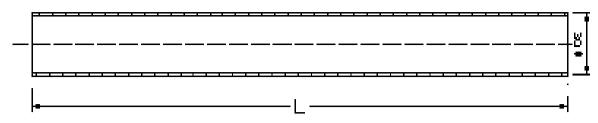


FIG. 1 PIPE LENGTH

10.8 Other Dimensions

10.8.1 *Pipe*

Tolerance on L of 3 000 mm is \pm 20 mm, for all diameters (see Fig. 1).

10.8.2 *Fittings*

10.8.2.1 45° Bend

Tolerance on a is ± 5 mm, (see <u>Table 4</u>).

10.8.2.2 88° Bend with or without access door

Tolerance on a is ± 5 mm, (see <u>Table 5</u>).

10.8.2.3 88° Long radius bend

Tolerance on a, r is ± 5 mm, (see Table 6).

10.8.2.4 88° Long tail bend

Tolerance on a, b, r is \pm 5 mm, (see Table 7).

10.8.2.5 Horn plain bend

Tolerance on a, b, c, d, r is \pm 5 mm, (see Table 8).

10.8.2.6 *Double bend*

Tolerance on a, b, c, r is \pm 5 mm, (see Table 9).

10.8.2.7 45° Single branch

Tolerance on L, a, b is \pm 5 mm, (see <u>Table 10</u>).

10.8.2.8 88° Single branch with or without access

Tolerance on L, a, b is ± 5 mm, (see Table 11).

10.8.2.9 88° Double branch

Tolerance on L, a, b is \pm 5 mm, (see <u>Table 12</u>).

10.8.2.10 45° *Double branch*

Tolerance on L, a, b is \pm 5 mm, (see <u>Table 13</u>).

10.8.2.11 *Diminishing pieces*

Tolerance on L is \pm 5 mm, (see Table 14).

10.8.2.12 Offset

Tolerance on L, a, b, r is \pm 5 mm, (see Table 15).

10.8.2.13 Equal and unequal parallel branch

Tolerance on L, a, b, c, d, r is \pm 5 mm, (see Table 16).

10.8.2.14 P trap

Tolerance on a, b, C, r, j, k, d is \pm 5 mm, (see Table 17).

10.8.2.15 *H ventilation pipe*

Tolerance on L, a, b, c, d, e, f, g is \pm 5 mm, (see Table 18).

10.8.2.16 *Y ventilation pipe*

Tolerance on L, a, b, c, d, r is \pm 5 mm, (see Table 19).

10.8.2.17 88° *T Y single branch*

Tolerance on L, a, b, c, d, r is \pm 5 mm, (see Table 20).

10.8.2.18 Vent cowel

Tolerance on L, a, b is \pm 5 mm, (see Table 21).

10.8.2.19 *Inspection pipe* (*clean-out pipe*)

Tolerance on L, c, d is ± 5 mm, (see Table 22).

10.8.2.20 *Unequal trap*

Tolerance on a, b, C, R1, R2, j, s, d is \pm 5 mm, (see Table 23).

10.8.2.21 88° Single branch with or without door (sweep type)

Tolerance on L, a, b, r is \pm 5 mm, (see Table 24).

10.8.2.22 88° Single branch socketed with access door (sweep type)

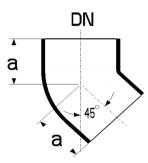
Tolerance on L, a, b, r, DI is \pm 5 mm and P is \pm 10 mm, (see Table 25).

10.8.2.23 *Multi inlet pipe*

Tolerance on L, a, b, c, r is \pm 5 mm, (see Table 26)

10.8.2.24 *Floor trap (deep seal)*

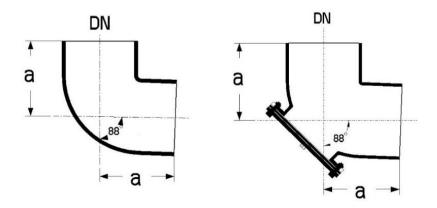
Tolerance on L, a, b, c, d, DI is \pm 5 mm, S is \pm 2 mm, P is \pm 10 mm, (see Table 27).


10.8.2.25 Access door

Tolerance one, a, b, c, d, f is ± 5 mm, (see Table 28).

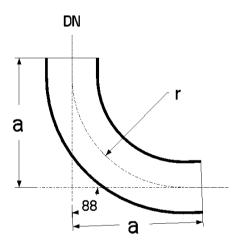
NOTE — Intolerance dimension given in the standard are for guidance only.

Table 4 45° Bend


(Clause <u>10.8.2.1</u>)

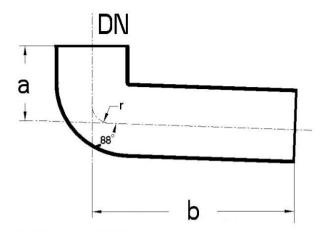
Sl No.	Nominal Size	а
	DN	(mm)
(1)	(2)	(3)
i)	50	50
ii)	75	60
iii)	100	70
iv)	150	90
v)	200	110
vi)	250	130
vii)	300	155
viii)	400	247

Table 5 88° Bend with or without Access Door


(Clause 10.8.2.2)

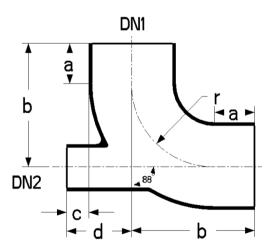
Sl No.	Nominal Size DN	Without Access Door a (mm)	With Access Door a (mm)
(1)	(2)	(3)	(4)
i)	50	75	75
ii)	75	95	95
iii)	100	110	110
iv)	150	145	145
v)	200	180	180
vi)	250	220	_
vii)	300	260	_
NOTE — For	details of access door, see Table 2	<u>28</u> .	

Table 6 88° Long Radius Bend


(Clause <u>10.8.2.3</u>)

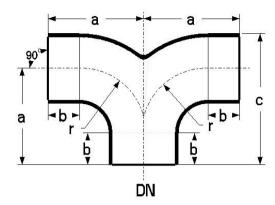
Sl No.	Nominal Size	а	r
	DN	(mm)	(mm)
(1)	(2)	(3)	(4)
i)	50	241	203
ii)	75	254	216
iii)	100	267	229
iv)	150	305	254

Table 7 88° Long Tail Bend


(Clause <u>10.8.2.4</u>)

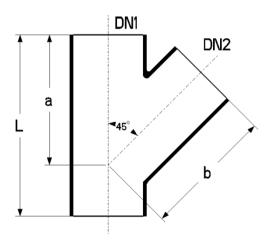
Sl No.	Nominal Size	а	b	r
	DN	(mm)	(mm)	(mm)
(1)	(2)	(3)	(4)	(5)
i)	50	75	300	29
ii)	75	95	300	41.5
iii)	100	110	300	55
iv)	150	145	300	80
v)	200	180	300	106

Table 8 Horn Plain Bend


(Clause <u>10.8.2.5</u>)

Sl No.	Nominal Size		а	r	b	c	d		
				(mm) (mm)		(mm)	(mm)	(mm)	(mm)
	DN1	DN2							
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
i)	75	50	45	89	134	40	81.5		
ii)	100	50	50	102	152	40	95		

Table 9 Double Bend


(Clause <u>10.8.2.6</u>)

Sl No.	Nominal Size	а	b	c	r
	DN	(mm)	(mm)	(mm)	(mm)
(1)	(2)	(3)	(4)	(5)	(6)
i)	75	134	45	175.5	89
ii)	100	152	50	207	102

Table 10 45° Single Branch

(Clause <u>10.8.2.7</u>)

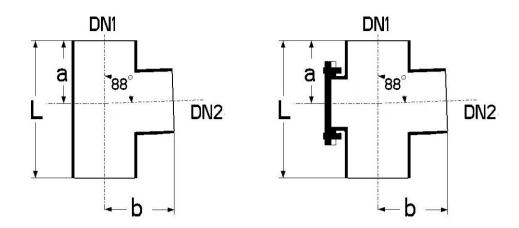
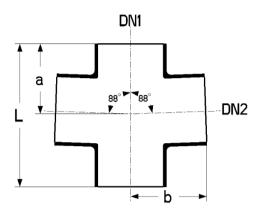

Sl No.	Nomin	Nominal Size L		а	b
	DN1 (mm)	DN2 (mm)	(mm)	(mm)	(mm)
(1)	(2)	(3)	(4)	(5)	(6)
i)	50	50	160	115	115
ii)	75	50	180	135	135
iii)	75	75	215	155	155
iv)	100	50	185	150	150
v)	100	75	220	170	170

Table 10 (Cancluded)

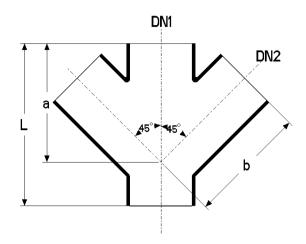
Sl No.	Nomin	nal Size	L	а	b
	DN1 (mm)	DN2 (mm)	(mm)	(mm)	(mm)
(1)	(2)	(3)	(4)	(5)	(6)
vi)	100	100	260	190	190
vii)	150	75	225	215	215
viii)	150	100	280	225	225
ix)	150	150	355	265	265
x)	200	100	300	260	260
xi)	200	150	375	300	300
xii)	200	200	455	340	340
xiii)	250	100	320	305	305
xiv)	250	150	405	350	350
xv)	250	200	470	380	380
xvi)	250	250	560	430	430
xvii)	300	100	350	345	345
xviii)	300	150	415	380	380
xix)	300	200	485	415	440
xx)	300	250	580	465	465
xxi)	300	300	660	505	505
xxii)	400	300	660	555	565

Table 11 88° Single Branch with or without Access Door


(Clause <u>10.8.2.8</u>)

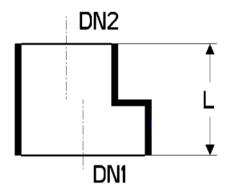
Sl No.	Nominal Size		With	Without Access Door			With Access Door		
									
	DN1	DN2	$^{\prime}L$	а	b^{\prime}	L	а	b	
	(-)	(2)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
i)	50	50	145	65	75	152	72	75	
ii)	75	50	170	70	80	172	72	80	
iii)	75	75	180	85	95	182	87	95	
iv)	100	50	170	76	105	170	76	105	
v)	100	75	190	88	110	190	88	110	
vi)	100	100	220	105	115	227	112	115	
vii)	150	100	245	115	145	245	115	145	
viii)	150	150	300	145	155	300	145	155	
ix)	200	75	250	120	170	250	120	170	
x)	200	100	270	125	175	270	125	175	
xi)	200	150	325	150	185	325	150	185	
xii)	200	200	365	180	180	365	180	180	
xiii)	250	250	455	225	225	_	_	_	
xiv)	300	300	530	265	265	_	_	_	

Table 12 88° Double Branch


(Clause <u>10.8.2.9</u>)

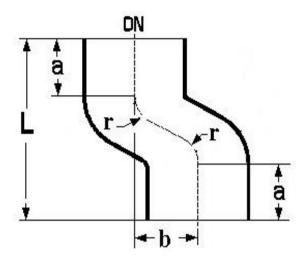
_	Sl No.	Nomi	nal Size	L	a	b	
		DN1	DN2	(mm)	(mm)	(mm)	
	(1)	(2)	(3)	(4)	(5)	(6)	
_	i)	50	50	145	65	75	
	ii)	75	50	170	70	80	
	iii)	75	75	180	85	95	
	iv)	100	50	170	76	105	
	v)	100	75	190	88	110	
	vi)	100	100	220	105	115	
	vii)	150	100	245	115	145	
	viii)	150	150	300	145	155	
	ix)	200	75	250	120	170	
	x)	200	100	270	125	175	
	(xi)	200	150	325	150	185	
	xii)	200	200	365	180	195	

Table 13 45° Double Branch


(Clause <u>10.8.2.10</u>)

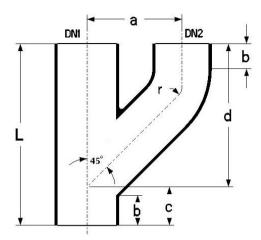
Sl No.	Nomi	nal Size	L	а	b
	DN1	DN2	(mm)	(mm)	(mm)
(1)	(2)	(3)	(4)	(5)	(6)
i)	50	50	160	115	115
ii)	75	50	180	135	135
iii)	75	75	215	155	155
iv)	100	50	185	150	150
v)	100	75	220	170	170
vi)	100	100	260	190	190
vii)	150	75	240	205	205
viii)	150	100	280	225	225
ix)	150	150	355	265	265
x)	200	75	250	240	240
xi)	200	100	335	290	290
xii)	200	150	375	300	300
xiii)	200	200	455	340	340

Table 14 Diminishing Pieces (Reducer)


(Clause <u>10.8.2.11</u>)

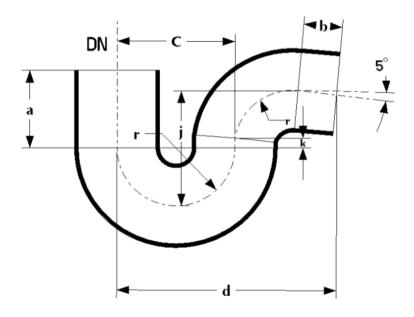
Sl No.	Nomin	nal Size	L
(1)	DN1 (2)	DN2 (3)	(mm) (4)
i)	75	50	80
ii)	100	50	80
iii)	100	75	90
iv)	150	75	100
v)	150	100	105
vi)	200	100	115
vii)	200	150	125
viii)	250	75	125
ix)	250	100	125
x)	250	150	135
xi)	250	200	145
xii)	300	75	140
xiii)	300	100	140
xiv)	300	150	150
xv)	300	200	160
xvi)	300	250	170
xvii)	400	300	200

Table 15 Offset


(Clause <u>10.8.2.12</u>)

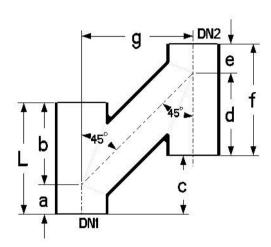
Sl No.	Offset	Nominal Size	\boldsymbol{L}	а	b	r
		DN	(mm)	(mm)	(mm)	(mm)
(1)	(2)	(3)	(4)	(5)	(6)	(7)
i)	65 mm	50	165	50	65	14.5
		75	185	60	65	20.75
		100	205	70	65	27.5
		150	245	90	65	40
ii)	130 mm	50	230	50	130	14.5
		75	250	60	130	20.75
		100	270	70	130	27.5
		150	310	90	130	40
		200	350	110	130	53
iii)	200 mm	50	300	50	200	14.5
		75	320	60	200	20.75
		100	340	70	200	27.5
		150	380	90	200	40

Table 16 Equal and Unequal Parallel Branch


(Clause <u>10.8.2.13</u>)

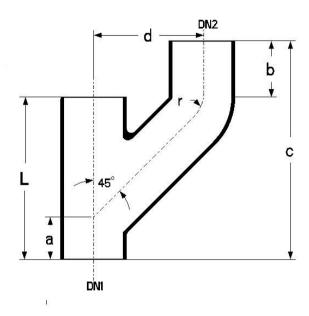
Sl No.	Nominal Size 人		Nominal Size L a				d	r
	DN1	DN2	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
i)	75	50	325	178	45	64	261	29
ii)	75	75	325	178	45	64	261	41.5
iii)	100	50	311	178	45	50	261	29
iv)	100	75	311	178	50	50	261	41.5
v)	100	100	339	178	50	72	267	55

Table 17 P Trap


(Clause <u>10.8.2.14</u>)

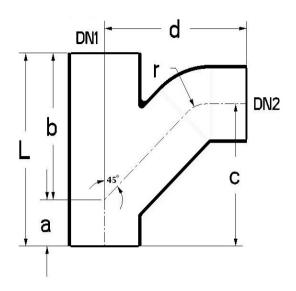
Sl No.	Nominal Size	а	b	С	r	j	k	d
	DN	(mm)						
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
i)	50	51	40	102	51	102	-	193
ii)	75	83	45	127	64	140	13	236
iii)	100	102	50	152	76	165	13	278
iv)	150	152	60	203	102	216	13	365

Table 18 H Ventilation Pipe


(Clause <u>10.8.2.15</u>)

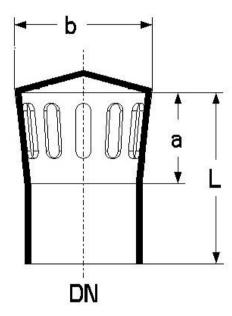
Sl No.	Nomin	al Size	L	а	b	c	d	e	f	g
	DN1	DN2	(mm)							
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
i)	75	75	190	55	135	63	138	52	190	150
ii)	100	75	225	60	165	45	165	60	225	150
iii)	100	100	230	61	169	121	170	60	230	230
iv)	150	100	280	50	230	81	210	70	280	241

Table 19 Y Ventilation Pipe


(Clause <u>10.8.2.16</u>)

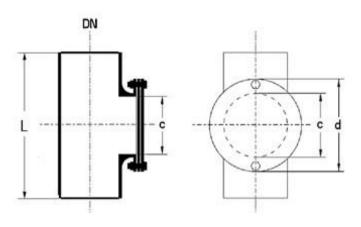
Sl No.	No	minal Size	L	а	b	c	d	r
	DN1	DN2	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
i)	75	75	200	55	53	260	150	41.5
ii)	100	75	220	50	50	270	150	41.5
iii)	100	100	245	60	85	330	200	55
iv)	150	100	286	50	100	390	241	55

Table 20 88° T Y Single Branch


(*Clause* <u>10.8.2.17</u>)

Sl No.	Nominal Size		L	а	b	c	d	r
	DN1	DN2	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
i)	50	50	150	45	105	119	126	29
ii)	75	50	165	45	120	125	138	29
iii)	75	75	195	50	145	157	164	41.5
iv)	100	50	165	35	130	122	154	29
v)	100	75	195	45	150	165	180	41.5
vi)	100	100	270	65	205	199	210	55
vii)	150	75	235	42	193	176	208	41.5
viii)	150	100	257	42	215	187	210	55
ix)	150	150	320	75	245	268	270	80
x)	200	75	255	35	220	190	237	41.5
xi)	200	100	290	45	245	219	252	55
xii)	200	150	340	65	275	277	300	80
xiii)	200	200	410	98	312	340	349	106
xiv)	250	150	395	55	340	315	348	80
xv)	250	200	465	90	375	360	381	106
xvi)	250	250	560	135	425	423	435	132.5

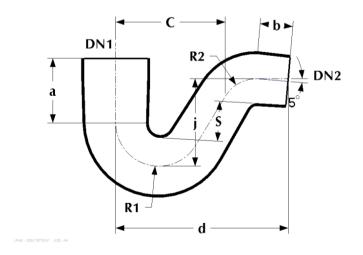
Table 21 Vent Cowel


(Clause <u>10.8.2.18</u>)

Sl No.	Nominal Size DN	L (mm)	a (mm)	b (mm)
(1)	(2)	(3)	(4)	(5)
i)	50	130	70	78
ii)	75	140	80	91
iii)	100	160	85	118
iv)	150	185	100	168
v)	200	215	125	220

Table 22 Inspection Pipe (Clean Out Pipe)

(Clause <u>10.8.2.19</u>)

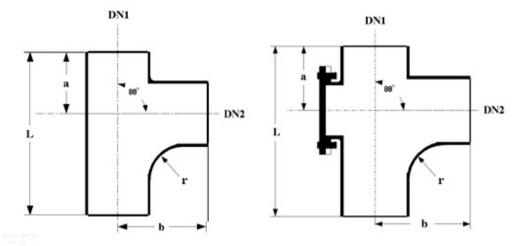


Sl No.	Nominal Size DN	L (mm)	c (mm)	d (mm)
(1)	(2)	(3)	(4)	(5)
i)	50	175	53	105
ii)	75	205	75	125
iii)	100	250	104	159
iv)	150	330	155	215
v)	200	400	205	262
vi)	250	420	205	262
vii)	300	450	205	262
viii)	400	475	205	262

NOTE — Screws shall be of galvanized steel and rubber gasket (EPDM or Neoprene) of 3 mm (min.) thickness shall be provided for packing along with access door. The design of rubber gasket shall be at the sole discretion of the manufacturer.

Table 23 Unequal Trap

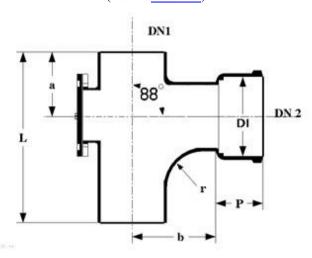
(Clause 10.8.2.20)



IS 15905 : 2024

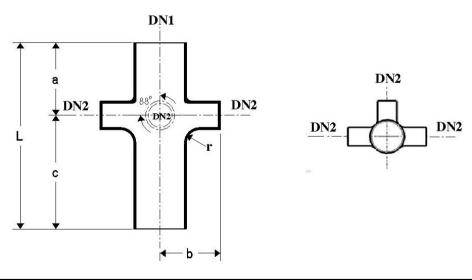
Sl No.	Nomin	nal Size	а	b	C	<i>R</i> 1	R2	j	S	d
	<u>DN</u>	<u>DN1</u>	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
i)	100	75	102	55	175	68	55	140	50	280

Table 24 88° Single Branch With or Without Access Door (Sweep Type)


(Clause <u>10.8.2.21</u>)

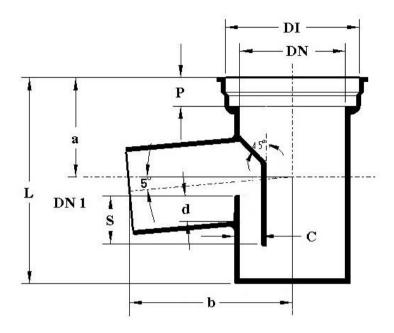
Sl No.	Nomin	al Size		Witho	ut Door			With	Door	
	DN1	DN2	L (mm)	a (mm)	b (mm)	r (mm)	L (mm)	a (mm)	b (mm)	r (mm)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
i)	75	75	224	98	122	40	224	98	122	40
ii)	100	75	244	100	138	40	244	100	138	40
iii)	100	100	270	102	152	55	270	102	152	55
iv)	150	100	300	117	202	45	300	117	202	45
v)	150	150	400	140	260	75	400	140	260	75
vi)	200	150	428	157	283	75	_	_	_	_
vii)	200	200	478	182	293	85	_	_	_	_

Table 25 88° Single Branch Socketed with Access Door (Sweep Type)


(Clause <u>10.8.2.22</u>)

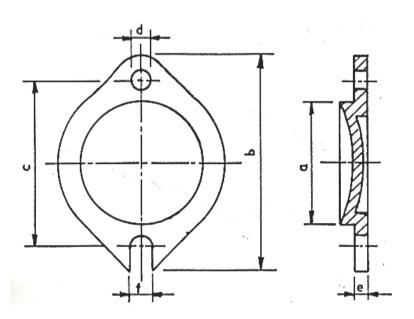
Sl No.	Nomin	al Size	L	а	b	P	DI	r
	DN1	DN2	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
i)	75	75	224	98	122	65	99	40
ii)	100	75	244	100	138	65	99	40
iii)	100	100	270	102	152	70	126	55

Table 26 Multi Inlet Pipe


(Clause <u>10.8.2.23</u>)

Sl No.	Nom	inal Size	L	а	b	c	r
(1)	DN1 (2)	DN2 (3)	(mm) (4)	(mm) (5)	(mm) (6)	(mm) (7)	(mm) (8)
i)	100	50	384	157	142	227	40

Table 27 Floor Trap (Deep Seal)


(Clause <u>10.8.2.24</u>)

Sl No.	Nomin	nal Size	L	а	b	c	d	P	DI	S
	\overline{DN}	DN1	(mm)							
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
i)	75	50	170	85	142	20	15	35	99	50
ii)	100	50	170	90	144	25	20	35	126	50
iii)	100	75	195	94	155	25	20	35	126	50
iv)	100	100	215	110	165	25	30	35	126	50

Table 28 Access Door

(Clause <u>10.8.2.25</u> and Note of <u>Table 5</u>, <u>24</u> and <u>25</u>)

Sl No.	Nominal Size			Dimensio	ns		
	DN	(mm)	a (mm)	b (mm)	c (mm)	d (mm)	f (mm)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
i)	50	6	35	73	55	8	8
ii)	75	6	55	93	75	8	8
iii)	100	6	75	133	105	12	12
iv)	150	6	95	153	125	12	12
v)	200	8	119	173	150	12	12

NOTE — Screws shall be of galvanized steel and rubber gasket (EPDM or Neoprene) of 3 mm (min.) thickness shall be provided for packing along with access door. The design of rubber gasket shall be at the sole discretion of manufacturer.

11 COATING

11.1 General

- **11.1.1** Coating shall not be applied to any pipe, fitting and accessories, unless its surface is clean, dry and free from rust or foreign matter. All tests or measurements shall be made on finished products, after drying and/or polymerization.
- 11.1.2 Unless otherwise agreed to between the purchaser and the manufacturer, all pipes, fittings and accessories shall be uniformly coated externally and internally with epoxy paint coating. The method of coating can be by dipping or brushing or spraying or roller. The mean thickness of coating shall not be less than 70 μ m and the local minimum thickness shall not be less than 50 μ m.
- 11.1.3 The coating material shall set rapidly with good adherence and shall not scale off. In all cases the coating material shall be smooth, tenacious and hard enough not to flow when exposed to a temperature of 65 °C, but not so brittle at a temperature of 0 °C as to chip off when scribbled lightly with a penknife.
- **11.1.4** In the case of pipes, fittings and accessories, which are imperfectly coated or where coating does not set or conform to the qualities specified in **11.1.1** to **11.1.3** the coating shall be removed and the pipes, fittings, and accessories recoated.

11.2 Resistance to Salt Spray

11.2.1 The salt spray test shall be carried out for a period of at least 350 h in accordance with ISO 9227. After the test period, the samples shall be rinsed with demineralized water to remove salt residues.

- **11.2.2** The coating shall then be examined immediately for blistering and rusting, the degrees of which shall not exceeds the following levels:
 - a) Degree of blistering : Dimension 3, Class 3 according to ISO 4628-2; and
 - b) Degree of rusting: Ri 2 according to ISO 4628-3.

12 MARKING

- **12.1** Each pipe, fitting and accessories shall have cast or stamped or indelibly painted on it the following:
 - a) Manufacturer's name, initials or identification mark:
 - b) Nominal diameter
 - c) Last two digits of the year of manufacture;
 - d) Any other mark required by the purchaser.

12.2 BIS Certification Marking

The pipes, fittings and accessories may be marked with the Standard Mark.

12.2.1 The product(s) conforming to the requirements of this standard may be certified as per the conformity assessment schemes under the provisions of the *Bureau of Indian Standards Act*, 2016 and the Rules and Regulations framed thereunder, and the products may be marked with the Standard Mark.

ANNEX A

(Clause 2)

LIST OF REFERRED STANDARDS

IS No./Other Standards	Title	IS No./Other Standards	Title
IS 210 : 2009	Grey iron castings — Specification (fifth		Specification for materials (second revision)
IS 1387 : 1993	revision) General requirements for the supply of metallurgical materials (second revision)	IS 5519 : 1979	Deviations for untoleranced dimensions and mass of grey iron castings (first revision)
IS 1500 (Part 1): 2019/ISO 6506-3: 2014	Metallic materials — Brinell hardness test: Part 1 Test method (fifth revision)	ISO 4628-2 : 2016	Paints and varnishes — Evaluation of degradation of coatings — Designation of quantity and size of
IS 1570 (Part 5): 1985	Schedules for wrought steels: Part 5 Stainless and heat-resisting steels (second revision)		defects, and of intensity of uniform changes in appearance — Part 2: Assessment of degree of blistering
IS 1865 : 1991	Iron castings with spheroidal or nodular graphite — Specification (third revision)	ISO 4628-3 : 2016	Paints and varnishes — Evaluation of degradation of coatings — Designation of quantity and size of
IS 3400 (Part 6): 2018/ISO 1817: 2015	Methods of test for vulcanized rubbers: Part 6 Determination of the effect of liquids (fourth revision)		defects, and of intensity of uniform changes in appearance — Part 3: Assessment of degree of rusting
IS 5382 : 2018/ ISO 4633 : 2015	Rubber seals — Joint rings for water supply, drainage and sewerage pipelines —	ISO 9227 : 2022	Corrosion test in artificial atmospheres — Salt spray test

To access Indian Standards click on the link below:

https://www.services.bis.gov.in/php/BIS 2.0/bisconnect/knowyourstandards/Indian standards/isdetails/

ANNEX B

(Foreword and Clause 6)

DRAWING AND DIMENSIONS FOR STAINLESS STEEL SHIELDED COUPLING

- **B-1** Profile of EPDM or neoprene rubber gasket as given in Table 29 and Table 30.
- **B-1.1** Physical requirements of gasket as given in Table 31.
- **B-2** Design of stainless steel shield and clamp as given in Table 32.

B-3 TYPICAL HUBLESS COUPLING JOINT-INSTALLATION (see Fig. 2)

B-3.1 Place the gasket on one end of pipe or fitting and the stainless steel clamp and shield assembly on the other end of pipe or fitting.

- **B-3.2** Firmly seat the pipe or fitting ends against the integrally moulded center stop inside the EPDM or neoprene rubber gasket.
- **B-3.3** Slide the stainless steel shield and clamp assembly over the EPDM or neoprene rubber gasket and tighten the clamps. For larger diameters couplings which have four clamps, the inner clamps should be tightened first and then the outer clamps.
- **B-3.4** In all the cases, when tightening clamps, they should be tightened alternately to ensure that the coupling shield is drawn up uniformly.

NOTE — Other types of joints can also be used at the discretion of the customer. The details given in $\underline{\text{Annex B}}$ is for guidance only.

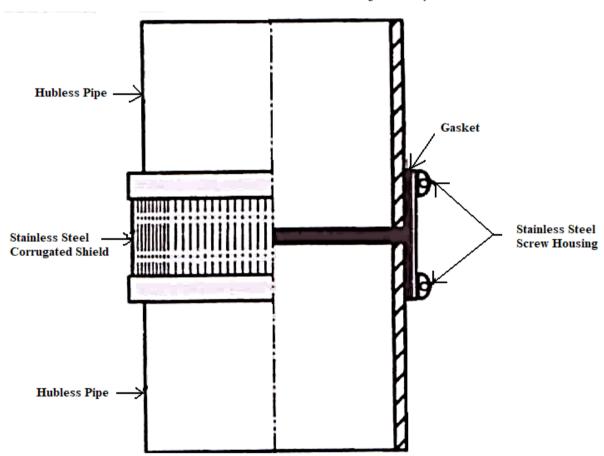
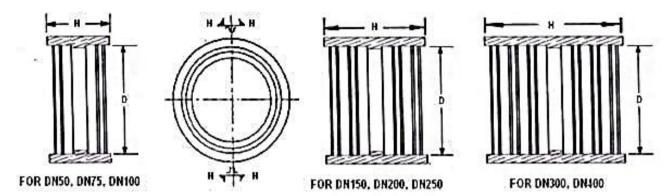
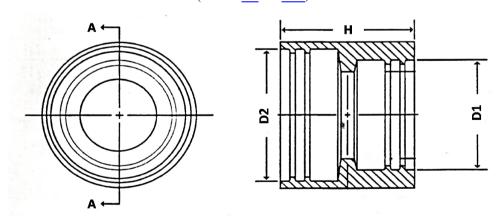



FIG. 2 TYPICAL HUBLESS COUPLING JOINT-INSTALLATION

Table 29 EPDM or Neoprene Rubber Gasket

(Clause $\underline{6.2}$ and $\underline{B-1}$)



Sl No.	Nominal Size DN	Outer Diametre (D) (mm)	Standard Gasket Height (H) (mm)	Heavy Duty Gasket Height (H) (mm)
(1)	(2)	(3)	(4)	(5)
i)	50	59.8	54	76
ii)	75	84.8	54	76
iii)	100	111	54	76
iv)	150	162	76	101
v)	200	211	101	101
vi)	250	272	101	101
vii)	300	324	141	141
viii)	400	426	141	141

Tolerance on D and H is ± 2 mm.

Table 30 EPDM or Neoprene Rubber Gasket for Reducing Coupling

(Clause $\underline{6.2}$ and $\underline{B-1}$)

Sl No.	Nomi	nal Size	<i>D</i> 1	D2	H
	DN1	DN2	(mm)	(mm)	(mm)
(1)	(2)	(3)	(4)	(5)	(6)
<u>i)</u>	40	50	49.20	59.80	54
ii)	50	75	59.80	85.8	54

Tolerance on D1, D2 and H is ± 2 mm.

Table 31 Physical Requirements of EPDM or Neoprene Rubber Gasket

(*Clauses* <u>6.2</u> *and* <u>B-1.1</u>)

Sl No.	Test	Physical Tests Min or Max Requirements
(1)	(0)	-
(1)	(2) Tensile Strength	(3) 10 MPa (<i>Min</i>)
i)	renshe shenghi	10 MPa (Mm)
ii)	Elongation	250 percent (min)
iii)	Durometer (Shore A)	70 ± 5 at 25 ± 5 °C
iv)	Accelerated Aging	15 percent max tensile and 20 percent max elongation deterioration, 10 points max; increase in hardness, all determinations after oven aging for 96 h at 70 $^{\rm o}{\rm C}$
v)	Compression Set	25 percent max after 22 h at 70 °C
vi)	Oil Immersion	80 percent max volume change after immersion in Oil No. 3 (IRM 903) as per IS 3400 (Part 6) for 70 h at 100 $^{\rm o}{\rm C}$
vii)	Ozone Cracking	No visible cracking at 2 times magnification of the gasket after 100 h. Exposure in 1.0 ppm ozone concentration at 38 °C. Testing and inspection to be on gasket which is loop mounted to give approximately 20 percent elongation of outer surface
viii)	Tear Resistance	Die C; 28.6 N/mm of thickness
ix)	Water Absorption	20 percent max by weight after 7 days at 70 °C
x)	Ozone Resistance	No cracks NOTE — Ozone resistance on 70 hardness hubless pipe gaskets shall be tested at 1/10,00,000 (1 PPM).

Table 32 Shield and Clamp Assembly

(Clause B-2)

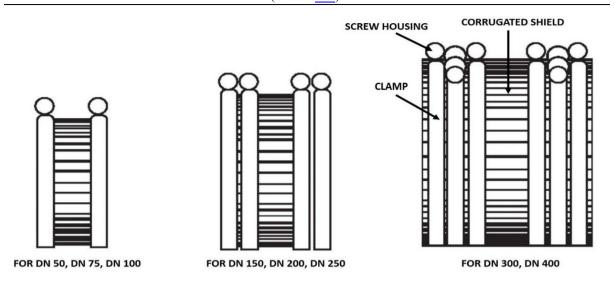
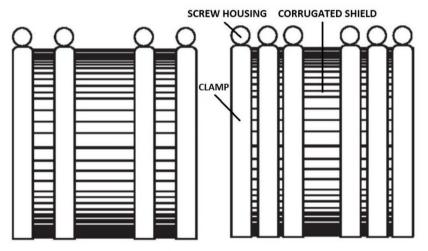



FIG. 3 SHIELD AND CLAMP ASSEMBLY (STANDARD)

FOR DN 50, DN 75, DN 100

FOR DN 150, DN 200, DN 250, DN 300, DN 400

FIG. 4 SHIELD AND CLAMP ASSEMBLY (HEAVY DUTY)

Sl No.	Nominal Size DN	Standard Shield Height (H)	Heavy Duty Shield Height (H)
		(mm)	(mm)
(1)	(2)	(3)	(4)
(i)	50	54	76
(ii)	75	54	76
(iii)	100	54	76
(iv)	150	76	101
(v)	200	101	101
(vi)	250	101	101
(vii)	300	141	141
(viii)	400	141	141

Tolerance on H is ± 2 mm.

IS 15905: 2024

ANNEX C

(Foreword)

COMMITTEE COMPOSITION

Pig Iron and Cast Iron Sectional Committee, MTD 06

Organization	Representative(s)
--------------	-------------------

Metal and Steel Factory, Kolkata SHRI A. K. HAZRA (Chairperson)

Central Public Works Department, New Delhi SHRI SEETARAMA RAO MANTRALA

SHRI CHANDRA SHEKHAR AZAD (Alternate)

CSIR - National Metallurgical Laboratory, DR SATADAL GHORAI

Jamshedpur

Electrosteel Castings Limited, Kolkata SHRI ATINDRA NARAYAN DEY

SHRI SUDIPTO LAHIRI (Alternate)

Electrotherm Private Limited, Gujarat SHRI TEJAS PATEL

Indian Ordnance Factory, Grey Iron Foundry, Jabalpur SHRI A. K. LALA

SHRI RAM ACHAL (Alternate)

Jai Balaji Group, Kolkata SHRI BIVASH CHAKRABORTY

SHRI PRAVEEN BHALMEY Jayaswal Neco Industires Limited, Nagpur

SHRI K. K. SINGH (Alternate)

Jindal Saw Limited, New Delhi SHRI MANEESH KUMAR

SHRI ULHAS NAIK (Alternate)

Kejriwal Casting Limited, Kolkata SHRI SANDEEP KEJRIWAL

SHRI RAJEEV KEJRIWAL (Alternate)

Kiswok Industries Private Limited, Kolkata SHRI RAJ KEJRIWAL

Kolkata Metropolitan and Development Authority,

Kolkata

SHRI A. N. BASAK

Lokesh Industries Limited, Andhra Pradesh SHRI B. LOKESH PATRUDU

SHRI R. L. DUBEY (Alternate)

Military Engineer Services, New Delhi SHRI RAM VERMA

Ministry of Commerce and Industry, Department of SHRI K. K. SINHA

Commerce, New Delhi

SHRI M. Z. KHAN (Alternate)

Orient Trading Company, Kolkata SHRI ARABINDA CHATTERJEE

SHRI PRADEEP PUNIA

Public Health Engineering Department, Government

of Haryana, Panchkula

SHRI DINESH KUMAR SAINI (Alternate)

Research Designs and Standards Organization, SHRI L. K. SRIVASTAVA

Lucknow

Rural Water Supply and Sanitation Department,

Government of Andhra Pradesh, Vijayawada

SHRI YEDLA GOVINDA RAO

SHRI A. SRINIVASA RAO (Alternate)

IS 15905: 2024

Organization

Representative(s)

Steel Authority of India Limited, New Delhi

SHRI R. P. BHALOTIA

Steel Authority of India Limited, Research and

Development Centre for Iron & Steel, Ranchi

SHRI ARITRA MALLICK

Tata Consulting Engineers Limited, Navi Mumbai

SHRI G. S. RAVISHANKAR
SHRI BRATINDRA NARAYAN DEY (Alternate)

Tata Metaliks Limited, Kolkata Shri Santanu Banerjee

SHRI ARASHDEEP CHAWLA (Alternate)

Tru-Form Engineers, Nagpur Shri Mahesh G. Nichwani

SHRI ANUP K. SHIWANKAR (Alternate)

BIS Directorate General Shri Sanjiv Maini, Scientist 'F'/Senior Director

AND HEAD (METALLURGICAL ENGINEERING) [REPRESENTING DIRECTOR GENERAL $(Ex ext{-}officio)$]

Member Secretary
Shri Sachin Choudhary
Scientist 'C'/Deputy Director
(Metallurgical Engineering), BIS

This Pade has been Intentionally left blank

Bureau of Indian Standards

BIS is a statutory institution established under the *Bureau of Indian Standards Act*, 2016 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Head (Publication & Sales), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the website-www.bis.gov.in or www.standardsbis.in.

This Indian Standard has been developed from Doc No.: MTD 06 (11232).

Amendments Issued Since Publication

Amend No.	Date of Issue	Text Affected	

BUREAU OF INDIAN STANDARDS

Headquarters:

Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002

Telephones: 2323 0131, 2323 3375, 2323 9402 Website: www.bis.gov.in

Regional Offices:	Telephones
Central : 601/A, Konnectus Tower -1, 6 th Floor, DMRC Building, Bhavbhuti Marg, New Delhi 110002	2323 7617
Eastern : 8 th Floor, Plot No 7/7 & 7/8, CP Block, Sector V, Salt Lake, Kolkata, West Bengal 700091	2367 0012 2320 9474
Northern: Plot No. 4-A, Sector 27-B, Madhya Marg, Chandigarh 160019	{ 265 9930
Southern: C.I.T. Campus, IV Cross Road, Taramani, Chennai 600113	2254 1442 2254 1216
Western: 5 th Floor/MTNL CETTM, Technology Street, Hiranandani Gardens, Powai Mumbai 400076	25700030 25702715

Branches: AHMEDABAD, BENGALURU, BHOPAL, BHUBANESHWAR, CHANDIGARH, CHENNAI, COIMBATORE, DEHRADUN, DELHI, FARIDABAD, GHAZIABAD, GUWAHATI, HARYANA (CHANDIGARH), HUBLI, HYDERABAD, JAIPUR, JAMMU, JAMSHEDPUR, KOCHI, KOLKATA, LUCKNOW, MADURAI, MUMBAI, NAGPUR, NOIDA, PARWANOO, PATNA, PUNE, RAIPUR, RAJKOT, SURAT, VIJAYAWADA.