
igpku dkM~igpku dkM~igpku dkM~igpku dkM~igpku dkM~ZZ ZZ Zl l l l l — ,dhÑr ,dhÑr ,dhÑr ,dhÑr ,dhÑr
ifjiFk dkM~ifjiFk dkM~ifjiFk dkM~ifjiFk dkM~ifjiFk dkM~ZZ ZZ Zlllll

Hkkx 12 laioZQ lfgr dkMZ — ;w,lch fo|qr baVji+sQl
vkSj lapkyu izfØ;k,a

Identification Cards — Integrated
Circuit Cards

Part 12 Cards with Contacts — USB Electrical Interface
and Operating Procedures

ICS 35.240.15

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

Hkkjrh; ekudHkkjrh; ekudHkkjrh; ekudHkkjrh; ekudHkkjrh; ekud
Indian Standard

© BIS 2014

Price Group 14February 2014

Hkkjrh; ekud C;wjks
B U R E A U O F I N D I A N S T A N D A R D S

ekud Hkou] 9 cgknqj'kkg T+kiQj ekxZ] ubZ fnYyh&110002
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG

NEW DELHI-110002
www.bis.org.in www.standardsbis.in

Computer Hardware, Peripherals and Identification Cards Sectional Committee, LITD 16

NATIONAL FOREWORD

This Indian Standard (Part 12) which is identical with ISO/IEC 7816-12 : 2005 ‘Identification cards —
Integrated circuit cards — Part 12: Cards with contacts — USB electrical interface and operating
procedures’ issued by the International Organization for Standardization (ISO) and International
Electrotechnical Commission (IEC) jointly was adopted by the Bureau of Indian Standards on the
recommendations of the Computer Hardware, Peripherals and Identification Cards Sectional Committee
and approval of the Electronics and Information Technology Division Council.

This standard is one of the parts of series of standards on ‘Identification cards — Integrated circuit
cards’. The other parts in this series are:

Part 1 Cards with contacts — Physical characteristics
Part 2 Cards with contacts — Dimensions and location of the contacts
Part 3 Electrical interface and transmission protocols
Part 4 Organization security and commands for interchange
Part 5 Registration of application providers
Part 6 Interindustry data elements for interchange
Part 7 Interindustry commands for structured card query language (SCQL)
Part 8 Commands for security operations
Part 9 Commands for management
Part 10 Electronic signals and answer to reset for synchronous cards
Part 11 Personal verification through biometric methods
Part 13 Commands for application management in multi-application environment

The text of ISO/IEC Standard has been approved as suitable for publication as an Indian Standard
without deviations. Certain conventions are, however, not identical to those used in Indian Standards.
Attention is particularly drawn to the following:

a) Wherever the words ‘International Standard’ appear referring to this standard, they should be
read as ‘Indian Standard’.

b) Comma (,) has been used as a decimal marker while in Indian Standards, the current practice
is to use a point (.) as the decimal marker.

In this adopted standard, reference appears to certain International Standards for which Indian Standards
also exist. The corresponding Indian Standards which are to be substituted in their respective places
are listed below along with their degree of equivalence for the editions indicated:

International Standard Corresponding Indian Standard Degree of Equivalence
ISO/IEC 7816-2 : 1999 Identification
cards — Integrated circuit cards —
Part 2: Cards with contacts —
Dimensions and location of the
contacts

IS 14202 (Part 2) : 2014 Identification
cards — Integrated circuit cards: Part
2 Cards with contacts — Dimensions
and location of contacts (second
revision)

Identical with
ISO/IEC 7816-2 : 2007

ISO/IEC 7816-3 : 2006 Identification
cards — Integrated circuit cards —
Part 3: Cards with contacts —
Electrical interface and transmission
protocols

IS 14202 (Part 3) : 2013 Identification
cards — Integrated circuit cards: Part
3 Cards with contacts — Electrical
interface and transmission protocols

Identical

Introduction
ISO/IEC 7816 is a series of documents specifying integrated circuit cards and the use of such cards for
interchange. These cards are identification cards intended for information exchange negotiated between the
outside world and the integrated circuit in the card. As a result of an information exchange, the card delivers
information (computation result, stored data), and / or modifies its content (data storage, event memorization).

 Five parts are specific to cards with galvanic contacts and three of them specify electrical interfaces.

• ISO/IEC 7816-1 specifies physical characteristics for cards with contacts.

• ISO/IEC 7816-2 specifies dimensions and location of the contacts.

• ISO/IEC 7816-3 specifies electrical interface and transmission protocols for asynchronous cards.

• ISO/IEC 7816-10 specifies electrical interface and answer to reset for synchronous cards.

• ISO/IEC 7816-12 specifies electrical interface and operating procedures for USB cards.

 All the other parts are independent from the physical interface technology. They apply to cards accessed
by contacts and / or by radio frequency.

• ISO/IEC 7816-4 specifies organization, security and commands for interchange.

• ISO/IEC 7816-5 specifies registration of application providers.

• ISO/IEC 7816-6 specifies interindustry data elements for interchange.

• ISO/IEC 7816-7 specifies commands for structured card query language.

• ISO/IEC 7816-8 specifies commands for security operations.

• ISO/IEC 7816-9 specifies commands for card management.

• ISO/IEC 7816-11 specifies personal verification through biometric methods.

• ISO/IEC 7816-15 specifies cryptographic information application.

The International Organization for Standardization (ISO) and International Electrotechnical Commission (IEC)
draw attention to the fact that it is claimed that compliance with this document may involve the use of the
following patents:

WO 00/16255, Data transmission method and card therefor, 23 March 2000

Declared for ISO/IEC 7816-2

WO 01/69881, A method of communication between a smart card and a host station, 20 September 2001

WO 01/57684 A1, Conveying protocol units for portable electronic objects via a protocol for microcomputer
peripherals, 9 August 2001

0001399 / France, Transport d'unités de protocole d'objet électronique portable par protocole pour
péripheriques de micro-ordinateur

09/775668 / USA, Conveying protocol units for portable electronic objects via a protocol for microcomputer
peripherals

i

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

1904043 / Europe, Transport d'unités de protocole d'objet électronique portable par protocole pour
péripheriques de micro-ordinateur

1804474 / China, Conveying protocol units for portable electronic objects via a protocol for microcomputer
peripherals

PCT / FR01 / 00326, Transport d'unités de protocole d'objet électronique portable par protocole pour
péripheriques de micro-ordinateur

US 6148354, Architecture for a universal serial bus-based PC flash disk

US 6763399, USB key apparatus for interacting with a USB host via a USB port

ISO and IEC take no position concerning the evidence, validity and scope of these patent rights.

The holders of these patent rights have assured the ISO and IEC that they are willing to negotiate licences
under reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this
respect, the statements of the holders of these patent rights are registered with the ISO and IEC. Information
may be obtained from:

Contact Patent number

Schlumberger Systèmes, France WO 00/16255

WO 01/69881

GEMPLUS, France WO 01/57684 A1

0001399 / France / Granted

09/775668 / USA / Pending

1904043 / Europe / Pending

1804474 / China / Pending

PCT / FR01 / 00326 / Pending

M-Systems, Israel US 6148354

Aladdin Knowledge Systems, USA US 6763399

Infineon Technologies has not identified any patents but confirms that it is prepared to license its patents, both
granted and pending, which may be deemed necessary to manufacture, use, and sell implementations of
ISO/IEC 7816-12 on reasonable and non-discretionary terms and conditions.

The following companies may hold patents relating to this part of ISO/IEC 7816 but have not provided details
of the patents or agreed to provide licenses:

Orga Kartensysteme GmbH, Germany AU 752627

Renesas, Japan US 20050052924
 US 20040070952

ST Microelectronics US 6769622
 WO 02/317161

Attention is drawn to the possibility that some elements of the document may be the subject of patent rights
other than those identified above. ISO and IEC shall not be held responsible for identifying any or all such
patent rights.

ii

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

1

1 Scope

This part of ISO/IEC 7816 specifies the operating conditions of an integrated circuit card that provides a USB
interface. Figure 1 shows the assignment of the contact fields for a USB interface and – to illustrate
interoperability – the assignment as used in ISO/IEC 7816-3.

Figure 1 — Assignment of contacts for a USB integrated circuit card

Indian Standard
IDENTIFICATION CARDS — INTEGRATED CIRCUIT

CARDS
PART 12 CARDS WITH CONTACTS — USB ELECTRICAL INTERFACE AND

OPERATING PROCEDURES

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

2

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/IEC 7816-2:1999/Amd.1:2004, Identification cards — Integrated circuit cards — Part 2: Cards with
contacts — Dimensions and location of the contacts — Amendment 1: Assignment of contacts C4 and C8

ISO/IEC 7816-3, Identification cards — Integrated circuit cards — Part 3: Cards with contacts — Electrical
interface and transmission protocols

Universal Serial Bus Specification Revision 2.0, April 27, 2000
USB Implementers Forum
Available at <http://www.usb.org/developers/docs>

Universal Serial Bus, Device Class Specification for
USB Chip/Smart Card Interface Devices , Revision 1.00, March 20, 2001
USB Implementers Forum, Device Working Group: Smart Card
Available at <http://www.usb.org/developers/devclass_docs>

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1 Device

3.1.1
interface device
terminal communication device or machine to which the card is electrically connected during operation
[ISO/IEC 7816-3]

3.1.2
USB connection device
device providing an electrical connection path between a USB-ICC and a USB host or hub

3.2 Terms and definitions used in other specifications

For the purposes of this document, the terms and definitions given in the USB specification and the CCID
specification (see Clause 4) apply.

NOTE The relevant terms used in this document are listed in informative Annexes C and D.

4 Abbreviations and notation

For the purposes of this document, the following abbreviations apply.

Protocol T=0, Protocol T=1 [ISO/IEC 7816-3]
D+, D- [Universal Serial Bus Specification Revision 2.0]

USB specification
Referencing to Universal Serial Bus Specification Revision 2.0 (see clause 2).

CCID
Chip Card Interface Device. Designates an interface device controlled via USB.

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

Introduction
ISO/IEC 7816 is a series of documents specifying integrated circuit cards and the use of such cards for
interchange. These cards are identification cards intended for information exchange negotiated between the
outside world and the integrated circuit in the card. As a result of an information exchange, the card delivers
information (computation result, stored data), and / or modifies its content (data storage, event memorization).

 Five parts are specific to cards with galvanic contacts and three of them specify electrical interfaces.

• ISO/IEC 7816-1 specifies physical characteristics for cards with contacts.

• ISO/IEC 7816-2 specifies dimensions and location of the contacts.

• ISO/IEC 7816-3 specifies electrical interface and transmission protocols for asynchronous cards.

• ISO/IEC 7816-10 specifies electrical interface and answer to reset for synchronous cards.

• ISO/IEC 7816-12 specifies electrical interface and operating procedures for USB cards.

 All the other parts are independent from the physical interface technology. They apply to cards accessed
by contacts and / or by radio frequency.

• ISO/IEC 7816-4 specifies organization, security and commands for interchange.

• ISO/IEC 7816-5 specifies registration of application providers.

• ISO/IEC 7816-6 specifies interindustry data elements for interchange.

• ISO/IEC 7816-7 specifies commands for structured card query language.

• ISO/IEC 7816-8 specifies commands for security operations.

• ISO/IEC 7816-9 specifies commands for card management.

• ISO/IEC 7816-11 specifies personal verification through biometric methods.

• ISO/IEC 7816-15 specifies cryptographic information application.

The International Organization for Standardization (ISO) and International Electrotechnical Commission (IEC)
draw attention to the fact that it is claimed that compliance with this document may involve the use of the
following patents:

WO 00/16255, Data transmission method and card therefor, 23 March 2000

Declared for ISO/IEC 7816-2

WO 01/69881, A method of communication between a smart card and a host station, 20 September 2001

WO 01/57684 A1, Conveying protocol units for portable electronic objects via a protocol for microcomputer
peripherals, 9 August 2001

0001399 / France, Transport d'unités de protocole d'objet électronique portable par protocole pour
péripheriques de micro-ordinateur

09/775668 / USA, Conveying protocol units for portable electronic objects via a protocol for microcomputer
peripherals

i

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

4

7 USB Descriptors

7.1 Standard Descriptors

The standard descriptors described in the USB specification constitute a way for the host software to identify a
new USB device attached, and to load one or more appropriate drivers for this new USB device. The standard
descriptors are read by the host software during the enumeration process. In addition, the descriptors can also
be retrieved by the host software using standard USB requests.

NOTE This document uses for hexadecimal values the notation xxh as used in the USB specification. This is different
from the notation 'xx' which is used in other parts of this standard series. The notation xxh is used here to
avoid possible confusion when reading this document and the related USB documents.

 In the following tables of standard descriptors the character asteriks (*) in the column Value indicates that this
value(s) is defined by ISO/IEC, taken from the set of possible values given in the USB specification. All other
values are standard USB entries.

 The transmission direction from the host to the USB-ICC is designated as OUT. The transmission direction
from the USB-ICC to the host is designated as IN.

7.1.1 The Standard Device Descriptor

Table 1 — Standard device descriptor for a USB-ICC

Offset Field Size Value Description
0 bLength 1 12h Size of this descriptor in bytes.
1 bDescriptorType 1 01h DEVICE Descriptor Type.
2 bcdUSB 2 0200h USB Specification Release Number.
4 bDeviceClass 1 00h* Indicates that the device class is specified in the

interface descriptor of the device.
5 bDeviceSubClass 1 00h Reset to zero as bDeviceClass is reset to zero.
6 bDeviceProtocol 1 00h* The device does not use class-specific protocols on

the device basis. Instead, it uses class-specific
protocols on the interface level.

7 bMaxPacketSize0 1 Maximum packet size for endpoint zero. The size may
be 8,16,32,64.
For low speed functions the value shall be 8.

8 idVendor 2 Vendor ID, (assigned by the USB-IF).
10 idProduct 2 Product ID, (assigned by the manufacturer).

Definition of the value of this field is out of the scope of this
document.

12 bcdDevice 2 Device release number in binary coded decimal.
Definition of the value of this field is out of the scope of this
document.

14 iManufacturer 1 Index of string descriptor describing manufacturer.
Definition of the content of this string is out of the scope of
this document.

15 iProduct 1 Index of string descriptor describing the product.
Definition of the content of this string is out of the scope of
this document.

16 iSerialNumber 1 Index of string descriptor describing the devices serial
number.

17 bNumConfigurations 1 Number of possible configurations.

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

5

7.1.2 The Standard Configuration Descriptor

Table 2 — Standard configuration descriptor for a USB-ICC

Offset Field Size Value Description

0 bLength 1 09h Size of this descriptor in bytes.

1 bDescriptorType 1 02h CONFIGURATION Descriptor Type.

2 wTotalLength 2 Total length of data returned for this configuration.
includes the combined length of all descriptors
(configuration, interface, endpoint, and class-specific)
returned by this configuration.

4 bNumInterfaces 1 The number of interfaces supported by this
configuration.

5 bConfigurationValue 1 Value to use as an argument to the SetConfiguration()
request to select this configuration.

This value shall be non-zero.

6 iConfiguration 1 Index of string descriptor describing this configuration.

Definition of the content of this string is out of the scope of
this document.

7 bmAttributes 1 Configuration characteristics for the USB-ICC:

Bit 4…0: Reserved (reset to zero)
Bit 5 Remote Wakeup
Bit 6. Self-powered
Bit 7 Reserved (set to one)

For a bus-powered USB-ICC that does not support
remote wake-up, bmAttributes shall have the value
80h

8 MaxPower 1 Maximum power consumption of the USB-ICC from
the bus when the device is fully operational.

Expressed in 2mA units.

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

6

7.1.3 The Standard Interface Descriptor

Table 3 — Standard interface descriptor for a USB-ICC

Offset Field Size Value Description

0 bLength 1 09h Size of this descriptor in bytes.

1 bDescriptorType 1 04h INTERFACE Descriptor Type.

2 bInterfaceNumber 1 Number of the interface. Zero-based value identifying
the index in the array of concurrent interfaces
supported by this configuration.

3 bAlternateSetting 1 00h* Value used to select alternate setting for the interface
identified in the prior field.

Alternate settings are not supported.

4 bNumEndpoints 1 00h*

01h*

02h*

03h*

Number of endpoints for a USB-ICC used by this
interface (excluding endpoint zero).

00h does not use further endpoints

01h uses interrupt-IN
02h uses bulk-IN and bulk-OUT
03h uses bulk-IN, bulk-OUT and interrupt-IN

NOTE 01h indicates that the control endpoints are
used for data transmission and interrupt-IN for notification
of card specific events sent from the USB-ICC to the host.

5 bInterfaceClass 1 0Bh

FFh

Class code for the Smart Card device class (0Bh) or
the interface class is vendor specific (FFh).

NOTE A product not using a class specific driver can
be ISO 7816-12 compliant. In this case, the driver will be
chosen using the information given by the vendor, the
manufacturer and the product ID (see Table 1).

6 bInterfaceSubClass 1 00h Subclass code.

7 bInterfaceProtocol 1 00h

01h

02h

Protocol code.

The Smart Card device class offers the following
interface protocols for a USB-ICC:

- 00h USB-ICC messages using bulk (optional
 interrupt)

- 01h USB-ICC specific requests using control
 transfer Version A (no interrupt)

- 02h USB-ICC specific requests using control
 transfer Version B (optional interrupt)

The given value indicates the transfer mode which is used
for the communication between host and USB-ICC

8 iInterface 1 Index of string descriptor describing this interface.

Definition of the content of this string is out of the scope of
this document.

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

7

7.1.4 The Standard Endpoint Descriptors

A USB-ICC may either communicate with the host using the default control pipe only or it may communicate
over message pipes using bulk-IN and bulk-OUT. Optionally, a USB-ICC may provide an interrupt-IN endpoint
which allows the USB-ICC to indicate specific events to the host. A USB-ICC may have one of the following
configurations:

Table 4 — Configuration of endpoints for a USB-ICC

Using control transfers Endpoints for data
transmission Version A Version B

Using bulk transfers

Default control pipe yes yes yes

Bulk-IN no no yes

Bulk-OUT no no yes

Interrupt-IN no optional optional

The following tables describe the endpoint descriptors:

Table 5 — Endpoint descriptor bulk-OUT

Offset Field Size Value Description

0 bLength 1 07h Size of this descriptor in bytes.

1 bDescriptorType 1 05h ENDPOINT descriptor type.

2 bEndpointAddress 1 01-0Fh The address of this endpoint on the USB-ICC. This
address is an endpoint number between 1 and 15.

Bit 3…0 Endpoint number
Bit 6…4 Reserved, must be 0
Bit 7 0 = OUT

3 bmAttributes 1 02h This is a bulk endpoint.

4 wMaxPacketSize 2 00xxh Maximum data transfer size. May be 8, 16, 32, 64.

6 bInterval 1 00h Does not apply to bulk endpoints.

Table 6 — Endpoint descriptor bulk-IN

Offset Field Size Value Description

0 bLength 1 07h Size of this descriptor in bytes.

1 bDescriptorType 1 05h ENDPOINT descriptor type.

2 bEndpointAddress 1 81-8Fh The address of this endpoint on the USB-ICC. This
address is an endpoint number between 1 and 15.

Bit 3…0 Endpoint number
Bit 6…4 Reserved, must be 0
Bit 7 1 = IN

3 bmAttributes 1 02h This is a bulk endpoint.

4 wMaxPacketSize 2 00xxh Maximum data transfer size. May be 8, 16, 32, 64.

6 bInterval 1 00h Does not apply to bulk endpoints.

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

8

Table 7 — Endpoint descriptor interrupt-IN

Offset Field Size Value Description

0 bLength 1 07h Size of this descriptor in bytes.

1 bDescriptorType 1 05h ENDPOINT descriptor type.

2 bEndpointAddress 1 81-8Fh The address of this endpoint on the USB-ICC. This
address is an endpoint number between 1 and 15.

It shall be different from the bulk-IN endpoint address.

Bit 3…0 Endpoint number
Bit 6…4 Reserved, must be 0
Bit 7 1 = IN

3 bmAttributes 1 03h This is an interrupt endpoint.

4 wMaxPacketSize 2 00xyh Packet size for USB-ICC. The minimum value shall be
02h.

6 bInterval 1 xyh Interval for polling endpoint data transfers. Expressed in
milliseconds. The value shall be in the range from 1 to 255.
In order to save bandwidth, the recommended value is
255.

7.2 The Class Specific Descriptor

The Smart Card device class uses the class specific descriptor as described in the CCID specification (see
Annex D (informative)). In the context of a chip card interface device, a USB-ICC represents a configuration of
a single slot interface device with a permanently inserted card. The possible values for the class specific
descriptor reflect this device configuration. Fields containing bReserved or dwReserved signify parameters
that are not relevant for a USB-ICC. Although not relevant, it is mandatory that a USB-ICC uses exactly these
values for bReserved and dwReserved in order to maintain compatibility with the CCID specification.

Table 8 — Class specific descriptor for a USB-ICC

Offset Field Size Value Description

0 bLength 1 36h Size of this descriptor, in bytes.

1 bDescriptorType 1 21h CCID Functional Descriptor type.

2 bcdCCID 2 CCID Specification Release Number in binary
coded decimal. The current version 1.0 is 0100h.
CCID Specification Release Number 1.0 will be
updated by the USB-DWG Smart Card.

4 bMaxSlotIndex 1 00h Index of the highest available slot. A USB-ICC is
regarded as single slot.

5 bReserved 1 01h This value shall be 01h.

6 dwProtocols 4 0000
0001h
0000
0002h

Indicates the supported protocol types:
00000001h = Protocol T=0
00000002h = Protocol T=1
NOTE The USB-ICC supports APDU level
exchanges for T=1 or character level exchanges for
T=0. Other combinations of dwProtocols and
dwFeatures are not supported by the USB-ICC. This
applies for bulk transfer mode and for control transfer
mode.

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

9

Offset Field Size Value Description

10 dwReserved 4 0000
0DFCh

This value shall be 0000 0DFCh.

14 dwReserved 4 0000
0DFCh

This value shall be 0000 0DFCh.

18 bReserved 1 00h This value shall be 00h.

19 dwReserved 4 0000
2580h

This value shall be 0000 2580h.

23 dwReserved 4 0000
2580h

This value shall be 0000 2580h.

27 bReserved 1 00h This value shall be 00h.

28 dwMaxIFSD 4 Indicates the maximum IFSD supported by the
USB-ICC for protocol T=1. For T=0 any value
may be given.

For T=1: 000000FEh
For T=0: any value

32 dwReserved 4 0000
0000h

This value shall be 0000 0000h

36 dwMechanical 4 0000
0000h

Indicates that a USB-ICC has no special
characteristics.

40 dwFeatures 4 0000
0840h

0002
0840h

0004
0840h

The value of the lower word (=0840) indicates
that the host will only send requests that are valid
for the USB-ICC.

The value of the upper word is the level of data
exchange with the USB-ICC:

0000h Character level exchanges
0002h Short APDU level exchanges
0004h Short and extended APDU level
 exchanges

NOTE see also dwProtocols

44 dwMaxCCIDMessageLength 4 For bulk transfers, the value shall be between:

 261 + 10 and 65544 +10.

NOTE The value 10 is the size of the header

For control transfers, the vlue shall be between:

 261 and 65544.

48 bReserved 1 FFh This value shall be FFh.

49 bReserved 1 FFh This value shall be FFh.

50 wRFU 2 0000h All other values are reserved for future use

52 bRFU 1 00h All other values are reserved for future use.

53 bMaxCCIDBusySlots 1 01h The USB-ICC is regarded as a single slot.

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

10

8 Data transfer between host and USB-ICC

The exchange of data between host and USB-ICC may be done using bulk transfers or control transfers. For
control transfer, two implementations are possible. They are named Version A and Version B. Bulk transfer
mode is compliant to the CCID specification, e.g. it uses a subset of the messages/requests as defined in this
specification.

The notation for the state diagrams is given in the (informative) Annex A.

8.1 Bulk transfers

To transmit commands, responses and corresponding data between host and USB-ICC, the following
messages shall apply:

Table 9 — Bulk-IN and bulk-OUT messages

Bulk-OUT message name Bulk-IN response message name Description

PC_to_RDR_IccPowerOn RDR_to_PC_DataBlock Exits the initial state of a USB-ICC and
returns the ATR in the response
message.

PC_to_RDR_IccPowerOff RDR_to_PC_SlotStatus Sets the USB-ICC to initial conditions.

PC_to_RDR_XfrBlock RDR_to_PC_DataBlock Messages to transmit data between
host and USB-ICC.

8.1.1 Bulk messages

All messages transmitted over bulk endpoints start with a 10 byte header, optionally followed by data.

The purpose of the header is to exchange control and status information between host and USB-ICC. In
addition, sequence numbering assigns command messages with their corresponding response messages.
The USB-ICC returns its status and error information in the fields bStatus and bError.

8.1.1.1 PC_to_RDR_IccPowerOn and RDR_to_PC_DataBlock

Table 10 — PC_to_RDR_IccPowerOn message

Offset Field Size Value Description

0 bMessageType 1 62h Indicates PC_to_RDR_IccPowerOn.

1 dwLength 4 00000000h There are no extra bytes of this message.

5 bSlot 1 00h Slot number for the USB-ICC.

6 bSeq 1 00h – FFh Sequence number for the command.

7 bReserved 1 01h This value shall be 01h.

8 abRFU 2 0000h All other values are reserved for future use.

The response to this message is the RDR_to_PC_DataBlock message.

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

11

Table 11 — RDR_to_PC_DataBlock message containing the ATR

Offset Field Size Value Description

0 bMessageType 1 80h Indicates RDR_to_PC_DataBlock.

1 dwLength 4 Size of bytes for the ATR.

5 bSlot 1 00h Slot number for a USB-ICC.

6 bSeq 1 Same value as
corresponding
bulk-OUT
message

Sequence number for the corresponding command
message.

7 bStatus 1 USB-ICC status information.

8 bError 1 Error code in case of failure.

9 bChainParameter 1 00h Indicates that this message contains the complete
ATR.

10 abData ATR.

8.1.1.2 PC_to_RDR_IccPowerOff and RDR_to_PC_SlotStatus

Table 12 — PC_to_RDR_IccPowerOff message

Offset Field Size Value Description

0 bMessageType 1 63h Indicates PC_to_RDR_IccPowerOff.

1 dwLength 4 00000000h There are no extra bytes of this message.

5 bSlot 1 00h Slot number for a USB-ICC.

6 bSeq 1 00h – FFh Sequence number for command.

7 abRFU 3 000000h All other values are reserved for future use.

The response to this message is the RDR_to_PC_SlotStatus message.

Table 13 — RDR_to_PC_SlotStatus message

Offset Field Size Value Description

0 bMessageType 1 81h Indicates RDR_to_PC_SlotStatus.

1 dwLength 4 00000000h There are no extra bytes of this message.

5 bSlot 1 00h Slot number for a USB-ICC.

6 bSeq 1 Same value as
corresponding
bulk-OUT
message

Sequence number for the corresponding
command message.

7 bStatus 1 USB-ICC status information.

8 bError 1 Error code in case of failure.

9 bReserved 1 00h This value shall be 00h

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

12

8.1.1.3 PC_to_RDR_XfrBlock and RDR_to_PC_DataBlock

The PC_to_RDR_XfrBlock command is used to transmit command APDUs.

Table 14 — PC_to_RDR_XfrBlock message

Offset Field Size Value Description

0 bMessageType 1 6Fh Indicates PC_to_RDR_XfrBlock message.

1 dwLength 4 Size of abData field of this message.

5 bSlot 1 00h Slot number for a USB-ICC.

6 bSeq 1 00h – FFh Sequence number for command.

7 bReserved 1 00h Shall be set to 00h

8 wLevelParameter 2 Depends on the exchange level reported by the
class specific descriptor in the dwFeatures field:

- Character level:
 size of expected data to be returned by the
 bulk-IN endpoint,
- Short APDU level: 00h
- Extended APDU level:
 Indicates if APDU begins or ends in this
 command:

0000h: the command APDU begins and
 ends with this command,
0001h: the command APDU begins with
 this command, and continues in
 next PC_to_RDR_XfrBlock,
0002h: this abData field continues a
 command APDU and ends the
 command APDU,
0003h: the abData field continues a
 command APDU and another
 block is to follow,
0010h: empty abData field, continuation
 of response APDU is expected
 in the next RDR_to_PC_DataBlock

10 abData Data block sent from host to the USB-ICC.

The response to this message is the RDR_to_PC_DataBlock message.

Table 15 — RDR_to_PC_DataBlock message containing a data block

Offset Field Size Value Description

0 bMessageType 1 80h Indicates RDR_to_PC_DataBlock.

1 dwLength 4 Size of bytes for the received data block.

5 bSlot 1 00h Slot number for a USB-ICC.

6 bSeq 1 Same value as
bulk-OUT
message

Sequence number for the corresponding
command message.

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

13

Offset Field Size Value Description

7 bStatus 1 USB-ICC status information.

8 bError 1 Error code in case of failure.

9 bChainParameter 1 Depends on the exchange level reported by the
class specific descriptor in the dwFeatures field:

- Character level: 00h

- Short APDU: 00h

- Extended APDU level:
 Indicates if the response is complete, to be
 continued or if the command APDU can
 continue:

 00h: the response APDU begins and
 ends in this command,
 01h: the response APDU begins with
 this command and is to continue,
 02h: this abData field continues the
 response APDU and ends the
 response APDU,
 03h: this abData field continues the
 response APDU and another block
 is to follow,
 10h: empty abData field, continuation of
 the command APDU is expected in
 the next PC_to_RDR_XfrBlock
 command.

10 abData Data sent from USB-ICC to the host.

8.1.2 ATR and transmission of data

When a USB device is attached to the bus and thereafter has obtained a state where the host may use the
functions provided by the device, the device is designated as "Configured". The messages to be transmitted in
order to set the USB-ICC to initial state, to obtain the ATR and to transmit data are given in the state diagram
Figure 2. The transmission uses APDU level exchanges. Figure 2 comprises the transmission of short APDUs
and extended APDUs.

For the correct transmission of data, the following general rules shall apply:

 If the USB-ICC receives a PC_to_RDR_PowerOn when it is not in the state "Initial", the USB-ICC shall
respond with a STALL. The USB-ICC shall remain in its current state.

 If the USB-ICC requests a time extention (see Table 16), the value of bSeq (see clause 8.1.1) shall
remain unchanged.

 If the USB-ICC returns RDR_to_PC_DataBlock indicating the errors ICC_MUTE or HW_ERROR, the host
should preferably submit a PC_to_RDR_IccPowerOff message.

IMPORTANT — The state of the current execution shall not be affected by the state of the USB
interface engine. For example, a bus enumeration shall not cause any transitions.

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

14

PC_to_RDR_XfrBlock
wLevelParameter: 0000h
abData: command APDU

RDR_to_PC_DataBlock
bChainParameter: 00h
abData: response APDU

PC_to_RDR_XfrBlock
wLevelParameter: 0001h
abData: part of command APDU

RDR_to_PC_DataBlock
bChainParameter: 10h
abData: empty

PC_to_RDR_XfrBlock
wLevelParameter: 0003h
abData: part of command APDU

RDR_to_PC_DataBlock
bChainParameter: 10h
abData: empty

PC_to_RDR_XfrBlock
wLevelParameter: 0002h
abData: last part of command APDU

RDR_to_PC_DataBlock
bChainParameter: 01h
abData: part of response APDU

PC_to_RDR_XfrBlock
wLevelParameter = 0010h
abData: empty

RDR_to_PC_DataBlock
bChainParameter: 03h
abData: part of response APDU

RDR_to_PC_DataBlock
bChainParameter: 02h
abData: last part of response APDU

Last part of
response
APDU?

Chained
response
APDU?

no

yes

Waiting for
command

APDU

Command
APDU

partially
received

Response
APDU

partially sent

no

yes

dwFeatures: 0002 0840h (short APDU) and
0004 0840h (extended APDU)

dwProtocol: 0000 0002h (T=1)

Initial

PC_to_RDR_IccPowerOn
abData: empty

RDR_to_PC_DataBlock
bChainParameter: 00h
abData: ATR

USB-ICC is
activated

USB-ICC is
present

USB-ICC is
virtually not present

USB-ICC is
configured

Busy1

End of Process

Busy[i]

Waiting Time
exeeded

RDR_to_PC_DataBlock
bmIccStatus: 0
bmCommandStatus: 2
bSeq: remains unchanged
abData: empty

Busy2

End of Process

Busy4

End of Process

Busy3

End of Process

Any State

Busy5

End of Process

RDR_to_PC_SlotStatus
bmIccStatus : 2
bmCommandStatus: 0
abData:: empty

Overrun detected

RDR_to_PC_DataBlock
bmIccStatus: 0
bmCommandStatus: 1
bError: XFR_OVERRUN
abData: empty

Waiting for
command

APDU

PC_to_RDR_IccPowerOff
abData: empty

Initial

Figure 2 — State diagram of the USB-ICC using bulk transfer
APDU level transfer for short APDU and extended APDU

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

15

8.1.3 Status and error conditions

The bulk-IN messages RDR_to_PC_SlotStatus and RDR_to_PC_DataBlock contain status information about
the USB-ICC and if the processed commands completed successfully. In case of a failure, an error code will
be returned.

The bStatus field consists of two bitmap fields that contain information about the USB-ICC status
(bmICCStatus) and the processed command (bmCommandStatus). The following two tables give the values
for the status and the error codes.

Table 16 — Bitmap for bStatus field

Offset Field Size Value Description

0 bmIccStatus 1

(2 bits)

0, 1, 2 0 = The USB-ICC is present and activated.
1 = The USB-ICC is present but not activated
2 = The USB-ICC is virtually not present
3 = RFU

(2 bits) (4 bits) RFU

(6 bits) bmCommandStatus (2 bits) 0, 1, 2 0 = Processed without error.
1 = Failed, error condition given by bError.
2 = Time extention is requested
3 = RFU

1 bError 1 Error codes

Table 17 — Error codes for bError

Error name Error code Possible causes

ICC_MUTE -2 (FEh) The applications of the USB-ICC did not respond or the ATR could
not be sent by the USB-ICC.

XFR_OVERRUN -4 (FCh) The USB-ICC detected a buffer overflow when receiving a data
block.

HW_ERROR -5 (FBh) The USB-ICC detected an hardware error.

 -64 to –127
(C0h – 81h)

User defined

 -3 (FDh)
-8 to –14
(F8h –F2h)
-16 (F0h)
-17 (EFh)
-32 (E0h)

These values shall not be used by the USB-ICC

 all others
(80h and those
filling the gaps)

Reserved for future use

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

16

For the usage of error codes, the following rules shall apply:

 if the value of bmCommandStatus equals 0 or RFU, the value of bError shall be 0.

 if the value of bmCommandStatus equals 1, the value of bError shall be:

 error code = error conditions as described in Table 17.

 offset = if the USB-ICC can not parse one field in the (10 byte) header or is not supporting one
 of these fields, then bError contains the offset of the first bad value as a positive
 number (e.g. if the host sets bSlot to 01h, the USB-ICC will return bError = 05h). A
 USB-ICC receiving a command that is not supported, shall set the offset value to
 zero.

8.2 Control transfers

This transfer mode can be employed for USB-ICCs that offer low speed functions. The default control pipe is
used to exchange data between host and USB-ICC.

This paragraph defines the class specific requests for control transfer. These requests provide the same
services to the application layer as for bulk transfers.

There are two implementations for control transfers, named hereafter as Version A and Version B.

8.2.1 Version A

8.2.1.1 Specific requests

The following table defines valid values of bRequest:

Table 18 — Class specific requests, Version A

bRequest Value Direction
data stage

Description

ICC_POWER_ON 62h IN Exits the initial state of a USB-ICC. Returns the ATR in
the data stage.

ICC_POWER_OFF 63h OUT Sets the USB-ICC to initial conditions.

XFR_BLOCK 65h OUT Data transfer from the host to the USB-ICC

DATA_BLOCK 6Fh IN Data transfer from the USB-ICC to the host

GET_ICC_STATUS A0h IN Returns the status of the command execution.

8.2.1.2 Setup Stage

The setup stage contains the class specific request and corresponding parameters. The following tables give
the values and the parameters for each of the class specific requests and describe the data that is transferred
between host and USB-ICC.

For the parameters, the following general rules shall apply:

 The value of bInterface is the same value as bInterfaceNumber given in Table 3.

 Reserved parameter values for class specific requests used in the fields wValue and wIndex are
designated as bRFU and wRFU. The value of bRFU shall be set to 00h and the value of wRFU shall be
set to 0000h.

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

17

 If the USB-ICC receives an invalid request or if a valid request contains an invalid parameter value
(wValue, wIndex,wLength), the USB-ICC shall respond with a STALL.

 On an input request, the USB-ICC shall not return more data than is indicated by wLength value. It may
return less. On an output request, wLength shall always indicate the exact amount of data to be sent by
the host. The USB-ICC shall return a STALL if the host should not send the amount of data than is
specified in wLength.

 For ICC_POWER_OFF and GET_ICC_STATUS, the host shall send the values for wLength as specified
in the corresponding tables. If not, the USB-ICC shall respond with STALL

Table 19 — ICC_POWER_ON request, Version A

bmRequestType bRequest wValue wIndex wLength Data

10100001B ICC_POWER_ON wRFU bRFU
bInterface

Length of ATR ATR

The wIndex field specifies bRFU in the high byte and bInterface in the low byte.

Table 20 — ICC_POWER_OFF request, Version A

bmRequestType bRequest wValue wIndex wLength Data

00100001B ICC_POWER_OFF wRFU bRFU
bInterface

0000h Empty

The wIndex field specifies bRFU in the high byte and bInterface in the low byte.

Table 21 — XFR_BLOCK request, Version A

bmRequestType bRequest wValue wIndex wLength Data

00100001B XFR_BLOCK bLevelParameter
bRFU

bRFU
bInterface

Length of data Command APDU.

The wIndex field specifies bRFU in the high byte and bInterface in the low byte. The wValue field specifies
bLevelParameter in the high byte and bRFU in the low byte.

Table 22 — DATA_BLOCK request, Version A

bmRequestType bRequest wValue wIndex wLength Data

10100001B DATA_BLOCK wRFU bRFU
bInterface

Length of data Response APDU

The wIndex field specifies bRFU in the high byte and bInterface in the low byte.

Table 23 — GET_ICC_STATUS request

bmRequestType bRequest wValue wIndex wLength Data

10100001B GET_ICC_STATUS wRFU bRFU
bInterface

0001h Polls the status of the USB-
ICC

The wIndex field specifies bRFU in the high byte and bInterface in the low byte.

NOTE A product not using a class specific driver can be 7816-12 compliant. In this case, the coding of bit 5,6
of bmRequestType changes from 01B to 10B; for example bmRequestType for GET_ICC_STATUS will be
11000001B

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

18

8.2.1.3 ATR and data transmission

When a USB device is attached to the bus and thereafter has obtained a state where the host may use the
functions provided by the device, the device is designated as "Configured". The messages to be transmitted in
order to set the USB-ICC to initial state, to obtain the ATR and to transmit data are given in the following state
diagrams (Figure 3,4,5).

For the correct transmission of data, the following general rules shall apply:

 If the USB-ICC receives a request that is not assigned to the current state as defined in the state diagram,
the USB-ICC shall return a STALL and remain in its current state.

 If the StatusByte indicates that the card is not responsive (see Table 24), the host should preferably
submit ICC_POWER_OFF.

IMPORTANT — The state of the current execution shall not be affected by the state of the USB
interface engine. For example, a bus enumeration shall not cause any transitions.

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

19

Inital

Is C-APDU
data field

expected ?

Is a R-APDU
data field

available ?

yes

no

yes

ICC_POWER_ON

ATR

XFR_BLOCK
 bLevelParameter = 00h
 Data = 5 first bytes of
 C-APDU

DATA_BLOCK

R-APDU data field

DATA_BLOCK

SW1-SW2

Busy1
StatusByte =

4xh

Ready to send
ATR

StatusByte = 10h

Wait for
C-APDU

StatusByte =
00h

Busy2
StatusByte =

4xh

Wait for data
field

StatusByte =
10h

Data field
available

StatusByte =
10h

Busy3
StatusByte =

4xh

SW1-SW2
available

StatusByte =
20h

XFR_BLOCK
 bLevelParameter = 00h
 Data = C-APDU
 data field

dwFeatures = 0000 0840h
dwProtocols = 0000 0001h (T=0)

no

xyh

GET_ICC_STATUS

Any state
StatusByte =

xyh

End of proccess

End of proccess

End of proccess

Internal Reset

ICC_POWER_OFF

Abbreviations:
C-APDU... Command APDU
R-APDU... Response APDU

Figure 3 — State diagram of the USB-ICC for control transfer (Version A) using character level transfer

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

20

Does the
R-APDU

contain a data
field ?

yes

no

ICC_POWER_ON

ATR

XFR_BLOCK
 bLevelParameter = 00h
 Data = APDU command

DATA_BLOCK

R-APDU

DATA_BLOCK

SW1-SW2

Ready to send
ATR

StatusByte = 10h

Wait for
C-APDU

StatusByte =
00h

Busy2
StatusByte =

4xh

R-APDU
available

StatusByte =
10h

SW1-SW2
available

StatusByte =
20h

dwFeatures = 0002 0840h
dwProtocols = 0000 0002h (T=1)

Busy1
StatusByte =

4xh

End of proccess

End of proccess

Inital

xyh

GET_ICC_STATUS

Any state
StatusByte =

xyh

ICC_POWER_OFF

Internal Reset

Abbreviations:
C-APDU... Command APDU
R-APDU... Response APDU

Figure 4 — State diagram of the USB-ICC for control transfer (Version A) using short APDUs

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

21

Does the
R-APDU

contain a data
field ?

yes

no

ICC_POWER_ON

ATR

XFR_BLOCK
 bLevelParameter = 00h
 Data = C-APDU

DATA_BLOCK

First part of R-APDU

DATA_BLOCK

SW1-SW2

Ready to send
ATR

StatusByte = 10h

Wait for
C-APDU

StatusByte =
00h

Busy3
StatusByte =

4xh

First part
of R-APDU
available

StatusByte =
11h

SW1-SW2
available

StatusByte =
20h

XFR_BLOCK
 bLevelParameter = 01h
 Data = First part of
 C- APDU

Receive
first part of

C-APDU
StatusByte =

11h

XFR_BLOCK
 bLevelParameter = 02h
 Data = Last part of
 C-APDU

XFR_BLOCK
 bLevelParameter = 03h
 Data = Next part of
 C-APDU

Receive
next part of

C-APDU
StatusByte =

13h

Busy2
StatusByte =

4xh

Busy4
StatusByte =

4xh

Is the R-APDU
chained ?

Busy5
StatusByte =

4xh

Next part
of R-APDU
available

StatusByte =
13h

Last part
of R-APDU
available

StatusByte =
12h

Last part
of R-APDU
available ?

DATA_BLOCK

Last part of R-APDU

DATA_BLOCK

Next part of R-APDU

R-APDU
available

StatusByte =
10h

no

yes

no yes

dwFeatures = 0004 0840h
dwProtocols = 0000 0002h

Busy1
StatusByte =

4Xh

End of proccess

End of proccess End of proccess

End of proccess

End of proccess

Inital

xyh

GET_ICC_STATUS

Any state
StatusByte =

xyh

ICC_POWER_OFF

Internal Reset

Abbreviations:
C-APDU... Command APDU
R-APDU... Response APDU

Figure 5 — State diagram of the USB-ICC for control transfer (Version A) using extended APDUs

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

22

The request GET_ICC_STATUS polls the status of execution of a command APDU. Upon this request, the
USB-ICC returns the StatusByte to indicate the status of execution. It may have the following values:

Table 24 — Description of the StatusByte

StatusByte Description

4xh busy where x shall be cyclically incremented.

When receiving a busy indication, the host shall subsequently submit GET_ICC_STATUS
until the USB-ICC indicates another value. The time interval is driver dependent. In order to
save bandwidth, the time interval should not be less than 10ms.

NOTE When the host detects that the four least significant bits did not change after a certain
period, the host might time-out the device. The period, which is considered as time-out, is driver
dependent and should not be less than 1 second.

20h ready to send status words only

Indicates that the data stage of the subsequent DATA_BLOCK will convey SW1-SW2 only.

1yh if dwProtocols=00000001h and dwFeatures=00000840h

10h: ready to send data
 or
10h: ready to receive data

The status words are not returned when the value is 10.
When GET_ICC_STATUS returns StatusByte=20h, a subsequent DATA_BLOCK request
shall be submitted to obtain the status words.

if dwProtocols=00000002h and dwFeatures=000z0840h (with z=2 or z=4) the StatusByte
has two different functions.

When bLevelParameter is 01h or 03h in the previous XFR_BLOCK request (chained
command APDU), the StatusByte is used to acknowledge the chaining of the command
(respectively 11h or 13h) and to regulate the data flow (StatusByte = 4xh).

When bLevelParameter in the previous XFR_BLOCK request is 00h or 02h (end of command
APDU), the StatusByte is used to indicate the chaining of the response APDU and to regulate
the data flow (StatusByte = 4xh):

 10h the APDU response begins and ends with the next DATA_BLOCK request
 11h the APDU response begins with the next DATA_BLOCK request and is to
 continue
 12h the APDU response continues and ends with the next DATA_BLOCK request
 13h the APDU response continues with the next DATA_BLOCK request and
 another block is to follow
 20h the APDU response contains only the status word and ends with the next
 DATA_BLOCK request.

80h mute the card is not responsive

00h The USB-ICC is ready to receive a command APDU

8.2.1.4 APDU level message exchange

In case that the length of the response APDU exceeds the value of wLength in the status stage of the
DATA_BLOCK request, the response APDU has to be transmitted in subsequent blocks. In this case, the
USB-ICC shall use the same mechanism as for an extended response APDU.

8.2.1.5 Error conditions

Error conditions are returned in the StatusByte. If the card is not responsive, the value 80h will be returned.

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

23

8.2.1.6 Interrupt Transfers

Version A does not use interrupt transfers.

8.2.2 Version B

Control requests under Version B are similar to the exchange of information when using message pipes in
bulk mode. This is achieved by the fact that each OUT-requests are to be followed by IN-requests. This pair
wise use of requests reflects the structure of OUT-messages and IN-messages for bulk mode.

8.2.2.1 Specific requests

The following table defines valid values of bRequest:

Table 25 — Class specific requests, Version B

bRequest Value Direction
data stage

Description

ICC_POWER_ON 62h OUT Exits the initial state of a USB-ICC. The ATR is returned
in the data stage of the subsequent DATA_BLOCK
request.

ICC_POWER_OFF 63h OUT Sets the USB-ICC to initial conditions.
XFR_BLOCK 65h OUT Data transferred from the host to the USB-ICC
DATA_BLOCK 6Fh IN Data transferred from the USB-ICC to the host. Also

returns information created by the preceding request.
SLOT_STATUS 81h IN The data stage of this command contains bStatus, bError

and bReserved.
The value for bReserved shall be 00h.

8.2.2.2 Setup Stage

The setup stage contains the class specific request and corresponding parameters. The following clauses give
the values and the parameters for each of the class specific requests and describe the data that is transferred
between host and USB-ICC.

The parameters of the class specific request shall be set as follows:

 The value of bInterface is the same value as bInterfaceNumber given in Table 3.

 Reserved parameter values for class specific requests used in the fields wValue and wIndex are
designated as bRFU, wRFU and bReserved. The value of bRFU shall be set to 00h and the value of
wRFU shall be set to 0000h. The value for bReserved is given in the tables.

 If the USB-ICC receives an invalid request or if a valid request contains an invalid parameter value
(wValue, wIndex,wLength), the USB-ICC shall respond with a STALL.

 On an input request, the USB-ICC shall not return more data than is indicated by wLength value. It may
return less.

 On an output request, wLength shall always indicate the exact amount of data to be sent from the host to
the USB-ICC. When the USB-ICC receives more data as indicated in the setup stage, it shall respond
with STALL. The host may abort any transfer by sending an IN-token prematurely. In this case the USB-
ICC shall confirm the IN-token with ACK. If the number of received data is not equal to wLength, the USB-
ICC shall discard these data.

 For ICC_POWER_ON, ICC_POWER_OFF and SLOT_STATUS, the host shall send the values for
wLength as specified in the corresponding tables. If not, the USB-ICC shall respond with STALL

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

24

Table 26 — ICC_POWER_ON request, Version B

bmRequestType bRequest wValue wIndex wLength Data

00100001B ICC_POWER_ON bRFU
bReserved=01h

bRFU
bInterface

0000h Empty

The wIndex field specifies bRFU in the high byte and bInterface in the low byte. The wValue field specifies
bRFU in the high byte and bReserved in the low byte.

Table 27 — ICC_POWER_OFF request, Version B

bmRequestType bRequest wValue wIndex wLength Data

00100001B ICC_POWER_OFF wRFU bRFU
bInterface

0000h Empty

The wIndex field specifies bRFU in the high byte and bInterface in the low byte.

Table 28 — XFR_BLOCK request, Version B

bmRequestType bRequest wValue wIndex wLength Data

00100001B XFR_BLOCK bLevelParameterb
Reserved=00h

bRFU
bInterface

Length data Command APDU

The wIndex field specifies bRFU in the high byte and bInterface in the low byte. The wValue field specifies
bLevelParameter in the high byte and bReserved in the low byte.

The use of bLevelParameter is explained in Table 14.

Table 29 — DATA_BLOCK request, Version B

bmRequestType bRequest wValue wIndex wLength Data

10100001B DATA_BLOCK wRFU bRFU
bInterface

Length of data + 1

The value of wLength
shall be greater than
or equal to 4. This
allows the USB-ICC
to return at minimum
the complete status
information (see also
Table 31).

Response APDU or
information created by
ICC_POWER_ON.
NOTE The DATA_BLOCK
request always returns in its data
stage first one byte
(bResponseType, see Table 31)
followed by the data being
processed.

The wIndex field specifies bRFU in the high byte and bInterface in the low byte.

Table 30 — SLOT_STATUS request

bmRequestType bRequest wValue wIndex wLength Data

10100001B SLOT_STATUS wRFU bRFU
bInterface

0003h Contains status/error information:
bStatus, bError, bReserved

The value for bReserved shall be
00h

The wIndex field specifies bRFU in the high byte and bInterface in the low byte.

NOTE A product not using a class specific driver can be 7816-12 compliant. In this case, the coding of bit 5,6 of
bmRequestType changes from 01B to 10B; for example bmRequestType for SLOT_STATUS will be 11000001B

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

25

8.2.2.3 ATR and data transmission

When a USB device is attached to the bus and thereafter has obtained a state where the host may use the
functions provided by the device, the device is designated as "Configured". The messages to be transmitted in
order to set the USB-ICC to initial state, to obtain the ATR and to transmit data are given in the state diagram
Figure 6. The transmission uses APDU level exchanges. Figure 6 comprises the transmission of short APDUs
and extended APDUs.

For the correct transmission of data, the following general rules shall apply to the state diagram:

 If the USB-ICC receives a request that is not assigned to the current state as defined in the state diagram,
the USB-ICC shall return a STALL and remain in its current state.

 If the interface device sends DATA_BLOCK and the USB-ICC returns in the data stage the errors
ICC_MUTE or HW_ERROR, the host should preferably submit ICC_POWER_OFF.

IMPORTANT — The state of the current execution shall not be affected by the state of the USB
interface engine. For example, a bus enumeration shall not cause any transitions.

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

26

XFR_BLOCK
bLevelParameter: 00h
Data: command APDU

Data stage:
bResponseType: 00h
abData: response APDU

XFR_BLOCK
bLevelParameter: 01h
abData: part of command APDU

Data stage:
bResponseType: 10h
abData: empty

XFR_BLOCK
bLevelParameter: 03h
abData: part of command APDU

Data stage:
bResponseType: 10h
abData: empty

XFR_BLOCK
bLevelParameter: 02h
abData: last part of command APDU

Data stage:
bResponseType: 01h
abData: part of response APDU

XFR_BLOCK
bLevelParameter = 10h
abData: empty

Data stage:
bResponseType: 03h
abData: part of response APDU

Data stage:
bResponseType: 02h
abData: last part of response APDU

Last part of
response
APDU?

Chained
response
APDU?

no

Waiting for
command

APDU

ready to
receive next
command
APDU part

response
APDU

partially sent

no

dwFeatures: 0002 0840h (short APDU) and
0004 0840h (extended APDU)

dwProtocol: 0000 0002h (T=1)

DATA_BLOCK

DATA_BLOCK

DATA_BLOCK

Initial

ICC_POWER_ON
abData: empty

DATA_BLOCK
bResponseType: 00h
abData: ATR

USB-ICC is
activated

USB-ICC is
present

USB-ICC is
virtually not present

USB-ICC is
configured

yes

yes

DATA_BLOCK

Busy1

DATA_BLOCK

Busy[i]

Data stage:
bResponseType: 80h
abData: dwDelayTime

DATA_BLOCK

Any State

ICC_POWER_OFF
abData: empty

Data stage:
bResponseType: 40h
abData::
 bStatus, bError, bReserved

Waiting for
SLOT_STATUS

SLOT_STATUS

1

End of Process

Ready

[i]

Busy2

2

Busy3

3

Busy4

4

Busy5

5

Data stage:
bResponseType: 40h
abData:
 bStatus, bError,
 bReserved

SLOT_STATUS Overrun detected

Waiting for
DATA_BLOCK

Waiting for
command

APDU

Data stage:
bResponseType: 40h
abData::
 bmIccStatus: 0
 bmCommandStatus: 1
 bError: XFR_OVERRUN
 bReserved

DATA_BLOCK

Initial

Figure 6 — State diagram of the USB-ICC for control transfer (Version B)

NOTE When the host has sent ICC_POWER_OFF, the USB-ICC enters the state "virtually not present". The use
of interrupt-IN messages for this case is described in clause 9.3

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

27

The USB-ICC returns on the DATA_BLOCK request the following values in the data stage:

Table 31 — Data stage of DATA_BLOCK

Offset Field Description

0 bResponseType Indicates the type of information abData field contain:

 00h: the abData field contains the information created by the preceding
 request.

 40h: Status information
 the abData field contains bStatus, bError and bReserved=00h.

 80h: Polling
 the abData field contains the delay time (wDelayTime) until the host
 waits to send out the next request. The value is given in units
 of 10ms (e.g. 0078h = 1,2s). If wDelayTime equals 0000h, the
 host shall set the polling interval at its own discretion. For all other
 values, the host shall use the given value at best effort.

For extended response APDUs:

 00h: the response APDU begins and ends in this command,
 01h: the response APDU begins with this command and is to continue,
 02h: this abData field continues the response APDU and ends the
 response APDU,
 03h: this abData field continues the response APDU and another block is
 to follow.
 10h: empty abData field, continuation of the command APDU is expected
 in the next XFR_BLOCK.
 See also the state diagram in Figure 6.

1 abData Data sent from the USB-ICC to the host

The information that is transmitted in abData field of DATA_BLOCK, depends on the preceding request.

8.2.2.4 Coding of bLevelParameter for XFR_BLOCK

The value of bLevelParameter designates the position (first block, middle, last) of the subsequently
transmitted blocks of a command APDU. The following values are assigned:

00h the command APDU begins and ends with this command
01h the command APDU begins with this command and is to continue
02h the command APDU continues and ends the command APDU
03h the command APDU continues and another block is to follow
10h the data stage is empty, continuation of response APDU is expected in the next DATA_BOCK
 request
See also the state diagram in Figure 6.

8.2.2.5 APDU level message exchange

In case that the length of the response APDU exceeds the value of wLength in the setup stage of the
DATA_BLOCK request, the response APDU has to be transmitted in subsequent blocks. For this block wise
transmission, the USB-ICC shall use the same mechanism as for extended response APDUs.

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

28

8.2.2.6 Status and error conditions reported by USB requests

Version B returns status and error conditions in the data stage of DATA_BLOCK. This condition is indicated
by bResponseType=40h. In addition, the USB-ICC will respond with a STALL handshake when it receives an
invalid request or if a valid request contains an invalid parameter value (wValue, wIndex, wLength).

If bResponseType=40h, abData field contains status and error information.

The bStatus field consists of two bitmap fields that contain information about the USB-ICC status
(bmICCStatus) and the processed command (bmCommandStatus). The following two tables give the values
for the status and the error codes.

Table 32 — Bitmap for bStatus field

Offset Field Size Value Description

0 bmIccStatus 1

(2 bits)

0, 1, 2 0 = The USB-ICC is present and activated.
1 = The USB-ICC is present but not activated
2 = The USB-ICC is virtually not present
3 = RFU

(2 bits) (4 bits) RFU

(6 bits) bmCommandStatus (2 bits) 0, 1 0 = Processed without error.
1 = Failed, error condition given by bError.
2 = RFU
3 = RFU

1 bError 1 Error codes

Table 33 — Error codes for bError

Error name Error code Possible causes

ICC_MUTE -2 (FEh) The applications of the USB-ICC did not respond or the ATR could
not be sent by the USB-ICC.

XFR_OVERRUN -4 (FCh) The USB-ICC detected a buffer overflow when receiving a data
block.

HW_ERROR -5 (FBh) The USB-ICC detected an hardware error.

 -64 to -127
(C0h – 81h)

User defined

 -3 (FDh)
-8 to –14
(F8h –F2h)
-16 (F0h)
-17 (EFh)
-32 (E0h)

These values shall not be used by the USB-ICC

 all others
(80h and those
filling the gaps)

Reserved for future use

If the value of bmCommandStatus equals 0 or RFU, the value of bError shall be 0.

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

29

8.3 Interrupt transfers

Bulk transfer mode and control transfer mode (Version B) optionally provide an interrupt-IN endpoint. This
endpoint is used to notify the host of events that may occur asynchronously to the command/response
exchange between host and USB-ICC.

The USB-ICC may notify to the host its virtual insertion/removal.

8.3.1 Virtual insertion/removal event

The term "virtual" is used to express that the USB-ICC may be envisaged as removed from the interface
device although it is still powered.

Table 34 — Interrupt-IN message

Offset Field Size Value Description

0 bMessageType 1 50h Indicates NotifySlotChange.

1 bmSlotIccState 1 000000xyB The USB-ICC indicates the status (removed or inserted)
in two least significant bits. The least significant bit
reports:
 0b= TheUSB-ICC is virtually not present,
 1b= The USB-ICC is present.

The other bit reports whether the virtual presence of
the USB-ICC has changed since the last
NotifySlotChange message was sent:
 0b= no change
 1b= change

All other bits shall be set to zero.

For correct operation of the interrupt request, the following conditions shall apply:

 When the USB-ICC exits from the state "Initial" by PC_to_RDR_IccPowerOn (ICC_POWER_ON), the
USB-ICC shall send a NotifySlotChange message with bmSlotIccState=00000011B.

 The USB-ICC may enter “virtually not present” at any point in time. The host will receive the
NotifySlotChange message with bmSlotIccState=00000010B. The USB-ICC shall not send the
NotifySlotChange message after it has received a PC_to_RDR_IccPowerOff (ICC_POWER_OFF).

NOTE The first condition allows the host to detect an unresponsive card. The second condition ensures that the
interrupt message "virtually not present" is an asynchronous event caused by the USB-ICC. It is not the result of an OUT
message or request received from the host.

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

30

Annex A
(informative)

Notation for the state diagrams

Initial

Waiting for
command

APDU

RDR_to_PC_DataBlock
 bChainParameter: 00h
 abData: response APDU

PC_to_RDR_XfrBlock
 wLevelParameter: 0000h
 abData: command APDU

Initial state in the state diagram

State in the state diagram

Waiting time
exceeded?

no

yes

Decision branch

The USB-ICC receives data.

For bulk transfers:
 The message type and relevant parameters/values are given.
For control transfers:
 The control request and relevant parameters/values are given

The USB-ICC sends data.

For bulk transfers:
The message type and relevant parameters/values are given. The
USB-ICC always initiates the transmission of this message.

For control transfers:
The control request and relevant parameters/values are given. The
host always initiates the transmission of this data by sending the
DATA_BLOCK or SLOT_STATUS. Therefore, these two requests are
always represented by two arrowed boxes: a box with an IN-arrow
(request) and a box with an OUT-arrow (data).

End of proccess The USB-ICC receives data. from an (USB-ICC) internal
process

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

31

Annex B
(informative)

Scenarios for USB transfers

The sequences described in here are not exhaustive of all possible cases. They are meant as examples of
possible sequences the USB-ICC must be able to handle. The examples do neither handle error cases
(STALL on USB transactions), nor conditions that are handled on the ISO protocol level (for example T=0,
case 2, short APDU, Ne not accepted).

Bulk transfer:
APDU level message exchange, case 3 command, short APDU

PC_to_RDR_XfrBlock (1) message
dwLength = Lc + 00000005h
bSlot = 00h, bSeq = 00h, bReserved = 00h,
wLevelParameter = 0000h
abData = CLA, INS, P1, P2, Lc, Data(Lc)

 (2) message RDR_to_PC_DataBlock
 dwLength = 00000002h
 bSlot = 00h, bSeq = 00h
 bStatus = 00h, bError = 00h
 bChainParameter = 00h
 abData = SW1, SW2

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

32

Bulk transfer:
APDU level message exchange, case 3 command, extended APDU

PC_to_RDR_XfrBlock (1) message
dwLength = BufferLength
bSlot = 00h, bSeq = 00h, bReserved = 00h,
wLevelParameter = 0001h
abData = CLA, INS, P1, P2, Lc,
 Data(BufferLength – 7)

 (2) message RDR_to_PC_DataBlock
 dwLength = 00000000h
 bSlot = 00h, bSeq = 00h
 bStatus = 00h, bError = 00h
 bChainParameter = 10h
 abData = empty

PC_to_RDR_XfrBlock (3) message
dwLength = BufferLength
bSlot = 00h, bSeq = 01h, bReserved = 00h,
wLevelParameter = 0003h
abData = Data(BufferLength)

 (4) message RDR_to_PC_DataBlock
 dwLength = 00000000h
 bSlot = 00h, bSeq = 01h
 bStatus = 00h, bError = 00h
 bChainParameter = 10h
 abData = empty

PC_to_RDR_XfrBlock (5) message
dwLength = remaining part of data
bSlot = 00h, bSeq = 00h, bReserved = 00h,
wLevelParameter = 0002h
abData = Data(<buffer length)

 (5) message RDR_to_PC_DataBlock
 dwLength = 00000002h
 bSlot = 00h, bSeq = 02h
 bStatus = 00h, bError = 00h
 bChainParameter = 00h
 abData = SW1, SW2

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

33

Control transfer, Version A:
Case 1 command

dwFeatures = 0000 0840h
dwProtocols= 0000 0001h

XFR_BLOCK (1) request
wValue: bLevelParameter = 00h; bRFU = 00h
wIndex: bRFU = 00h; bInterface = 00h
wLength = 0005h
abData = CLA, INS, P1, P2, P3=00h (1) data

GET_ICC_STATUS (2) request
wValue: wRFU = 0000h
wIndex: bRFU = 00h; bInterface = 00h,
wLength = 0001h (2) data StatusByte: 4xh
 StatusByte: 20h

if (StatusByte=20h) Break
if (StatusByte=4xh) (2) Repeat

ready to send status words only

DATA_BLOCK (3) request
wValue: wRFU = 0000h
wIndex: bRFU = 00h; bInterface = 00h
wLength = 0002h (3) data SW1, SW2

 End

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

34

Control transfer, Version A:
Case 2 command, short APDU

dwFeatures = 0000 0840h
dwProtocols= 0000 0001h

XFR_BLOCK (1) request
wValue:bLevelParameter = 00h, bRFU = 00h
wIndex: bRFU = 00h, bInterface = 00h
wLength = 0005h
abData = CLA, INS, P1, P2, Le (1) data

GET_ICC_STATUS (2) request
wValue: wRFU = 0000h
wIndex: bRFU = 00h, bInterface = 00h
wLength = 0001h (2) data StatusByte: 4xh
 StatusByte: 10h

if (StatusByte=10h) Break
if (StatusByte=4xh) (2) Repeat

ready to send data

DATA_BLOCK (3) request
wValue: wRFU = 0000h
wIndex: bRFU = 00h, bInterface = 00h
wLength = Le (3) data Data(Le)

GET_ICC_STATUS (4) request
wValue: wRFU = 0000h
wIndex: bRFU = 00h, bInterface = 00h
wLength = 0001h (4) data StatusByte: 4xh
 StatusByte: 20h

if (StatusByte=20h) Break
if (StatusByte=4xh) (4) Repeat

ready to send status words only

DATA_BLOCK (5) request
wValue: wRFU = 0000h
wIndex: bRFU = 00h, bInterface = 00h
wLength = 0002h (5) data SW1, SW2

 End

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

35

Control transfer, Version A:
Case 3 command, short APDU

dwFeatures = 0000 0840h
dwProtocols= 0000 0001h

XFR_BLOCK (1) request
wValue: bLevelParameter = 00h, bRFU = 00h
wIndex: bRFU = 00h, bInterface = 00h
wLength = 0005h
abData = CLA, INS, P1, P2, Lc (1) data

GET_ICC_STATUS (2) request
wValue: wRFU = 0000h
wIndex: bRFU = 00h, bInterface = 00h
wLength = 0001h (2) data StatusByte: 4xh
 StatusByte: 10h

if (StatusByte=10h) Break
if (StatusByte=4xh) (2) Repeat

ready to receive data

XFR_BLOCK (3) request
wValue: bLevelParameter = 00h, bRFU = 00h
wIndex: bRFU = 00h, bInterface = 00h
wLength = Lc
abData = Data(Lc) (3) data

GET_ICC_STATUS (4) request
wValue: wRFU = 0000h
wIndex: bRFU = 00h, bInterface = 00h
wLength = 0001h (4) data StatusByte: 4xh
 StatusByte: 20h

if (StatusByte=20h) Break
if (StatusByte=4xh) (4) Repeat

ready to send status words only

DATA_BLOCK (5) request
wValue: wRFU = 0000h
wIndex: bRFU = 00h, bInterface = 00h
wLength = 0002h (5) data SW1, SW2

 End

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

36

Control transfer, Version A:
APDU level message exchange, case 1 command

dwFeatures = 0002 0840h
dwProtocols= 0000 0002h

XFR_BLOCK (1) request
wValue: bLevelParameter = 00h, bRFU = 00h
wIndex: bRFU = 00h, bInterface = 00h
wLength = 0004h
abData = CLA, INS, P1, P2 (1) data

GET_ICC_STATUS (2) request
wValue: wRFU = 0000h
wIndex: bRFU = 00h, bInterface = 00h
wLength = 0001h (2) data StatusByte: 4xh
 StatusByte: 20h

if (StatusByte=20h) Break
if (StatusByte=4xh) (2) Repeat

DATA_BLOCK (3) request
wValue: wRFU = 0000h
wIndex: bRFU = 00h, bInterface = 00h
wLength = 0002h (3) data SW1, SW2

 End

Control transfer, Version A:
APDU level message exchange, case 2 command, short APDU

dwFeatures = 0002 0840h
dwProtocols= 0000 0002h

XFR_BLOCK (1) request
wValue: bLevelParameter = 00h, bRFU = 00h
wIndex: bRFU = 00h, bInterface = 00h
wLength = 0005h
abData = CLA, INS, P1, P2, Le (1) data

GET_ICC_STATUS (2) request
wValue: wRFU = 0000h
wIndex: bRFU = 00h, bInterface = 00h
wLength = 0001h (2) data StatusByte: 4xh
 StatusByte: 10h

if (StatusByte=10h) Break
if (StatusByte=4xh) (2) Repeat

DATA_BLOCK (3) request
wValue: wRFU = 0000h
wIndex: bRFU = 00h, bInterface = 00h
wLength = Le+02h (3) data Data(Le), SW1, SW2

 End

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

37

Control transfer, Version A:
APDU level message exchange, case 3 command, short APDU

dwFeatures = 0002 0840h
dwProtocols= 0000 0002h

XFR_BLOCK (1) request
wValue: bLevelParameter = 00h, bRFU = 00h
wIndex: bRFU = 00h, bInterface = 00h
wLength = Lc + 0005h
abData = CLA, INS, P1, P2, Lc, Data(Lc) (1) data

GET_ICC_STATUS (2) request
wValue: wRFU = 0000h
wIndex: bRFU = 00h, bInterface = 00h
wLength = 0001h (2) data StatusByte: 4xh
 StatusByte: 20h

if (StatusByte=20h) Break
if (StatusByte=4xh) (2) Repeat

DATA_BLOCK (3) request
wValue: wRFU = 0000h
wIndex: bRFU = 00h, bInterface = 00h
wLength = 0002h (3) data SW1, SW2

 End

Control transfer, Version A:
APDU level message exchange, case 4 command, short APDU

dwFeatures = 0002 0840h
dwProtocols= 0000 0002h

XFR_BLOCK (1) request
wValue: bLevelParameter = 00h, bRFU = 00h
wIndex: bRFU = 00h, bInterface = 00h
wLength = Lc + 0006h
abData = CLA, INS, P1, P2, Lc, Data(Lc), Le (1) data

GET_ICC_STATUS (2) request
wValue: wRFU = 0000h
wIndex: bRFU = 00h, bInterface = 00h
wLength = 0001h (2) data StatusByte: 4xh
 StatusByte: 10h

if (StatusByte=10h) Break
if (StatusByte=4xh) (2) Repeat

DATA_BLOCK (3) request
wValue: wRFU = 0000h
wIndex: bRFU = 00h, bInterface = 00h
wLength = Le + 02h (3) data Data(Le), SW1, SW2

 End

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

38

Control transfer, Version A:
APDU level message exchange, case 2 command, extended APDU

dwFeatures = 0004 0840h
dwProtocols= 0000 0002h

XFR_BLOCK (1) request
wValue: bLevelParameter = 00h, bRFU = 00h
wIndex: bRFU = 00h, bInterface = 00h
wLength = 0007h
abData = CLA, INS, P1, P2, P3=00h, Le (1) data

GET_ICC_STATUS (2) request
wValue: wRFU = 0000h
wIndex: bRFU = 00h, bInterface = 00h
wLength = 0001h (2) data StatusByte: 4xh
 StatusByte: 10h
 StatusByte: 11h

if (StatusByte=10h OR StatusByte=11h) Break
if (StatusByte=4xh) (2) Repeat

if (10h) Execute the next request

DATA_BLOCK (3) request
wValue: wRFU = 0000h
wIndex: bRFU = 00h, bInterface = 00h
wLength = BufferLength
 (3) data Data(<=BufferLength-2),
 SW1, SW2

 End

if (11h) Loop the next two requests

DATA_BLOCK (n) request
wValue: wRFU = 0000h
wIndex: bRFU = 00h, bInterface = 00h
wLength = BufferLength
 (n) data Data(BufferLength)

GET_ICC_STATUS (n+1) request
wValue: wRFU = 0000h
wIndex: bRFU = 00h, bInterface = 00h
wLength = 0001h (n+1) data StatusByte: 4xh
 StatusByte: 12h
 StatusByte: 13h

if (StatusByte=12h) Break
if (StatusByte=4xh) (n+1) Repeat
if (StatusByte=13h) (n) Repeat

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

39

DATA_BLOCK (m) request
wValue: wRFU = 0000h
wIndex: bRFU = 00h, bInterface = 00h
wLength = BufferLength
 (m) data Data(<=BufferLength-2),
 SW1, SW2

 End

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

40

Control transfer, Version A:
APDU level message exchange, case 3 command, extended APDU

dwFeatures = 0004 0840h
dwProtocols= 0000 0002h

XFR_BLOCK (1) request
wValue: bLevelParameter = 00h/01h, bRFU = 00h
wIndex: bRFU = 00h, bInterface = 00h
wLength = BufferLength
abData = CLA, INS, P1, P2, P3=00h, Lc, (1) data
 Data(BufferLength-7)

GET_ICC_STATUS (2) request
wValue: wRFU = 0000h
wIndex: bRFU = 00h, bInterface = 00h
wLength = 0001h (2) data StatusByte: 4xh
 StatusByte: 20h
 StatusByte: 11h

if (StatusByte=20h OR StatusByte=11h) Break
if (StatusByte=4xh) (2) Repeat

if (StatusByte=10h): execute the next request

DATA_BLOCK (3) request
wValue: wRFU = 0000h
wIndex: bRFU = 00h, bInterface = 00h
wLength = 0002h (3) data SW1, SW2

 End

if (StatusByte=11h) Loop the next two requests

XFR_BLOCK (n) request
wValue: bLevelParameter = 03h/02h, bRFU = 00h
wIndex: bRFU = 00h, bInterface = 00h
wLength = BufferLength
abData = Data(BufferLength) (n) data

GET_ICC_STATUS (n+1) request
wValue: wRFU = 0000h
wIndex: bRFU = 00h, bInterface = 00h
wLength = 0001h data StatusByte: 4xh
 StatusByte: 20h
 StatusByte: 13h

if (StatusByte=20h) Break
if (StatusByte=13h) Repeat(n)
if (StatusByte=4xh) (n+1) Repeat

DATA_BLOCK (m) request
wValue: wRFU = 0000h
wIndex: bRFU = 00h, bInterface = 00h
wLength = 0002h (m) data SW1, SW2

 End

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

41

Version B: Control transfer:
APDU level message exchange, case 1 command, short APDU

dwFeatures = 0002 0840h
dwProtocols= 0000 0002h

XFR_BLOCK (1) request
wValue: bLevelParameter = 00h, bReserved = 00h
wIndex: bRFU = 00h, bInterface = 00h
wLength = 0004h
abData = CLA, INS, P1, P2 (1) data

DATA_BLOCK (2) request
wValue: wRFU = 0000h
wIndex: bRFU = 00h, bInterface = 00h
wLength = 0003h (2) data 80h, wDelayTime
 or
 (2) data 00h, SW1, SW2

if (bResponseType=00h) Break
if (bResponseType=80h) (2) Repeat

 End

Control transfer, Version B:
APDU level message exchange, case 2 command, short APDU

dwFeatures = 0002 0840h
dwProtocols= 0000 0002h

XFR_BLOCK (1) request
wValue: bLevelParameter = 00h, bReserved = 00h
wIndex: bRFU = 00h, bInterface = 00h
wLength = 0005h
abData = CLA, INS, P1, P2, Le (1) data

DATA_BLOCK (2) request
wValue: wRFU = 0000h
wIndex: bRFU = 00h, bInterface = 00h
wLength = Le + 0003h (2) data 80h, wDelayTime
 or
 (2) data 00h, Data(Le), SW1, SW2

if (bResponseType=00h) Break
if (bResponseType=80h) (2) Repeat

 End

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

42

Control transfer, Version B:
APDU level message exchange, case 3 command, short APDU

dwFeatures = 0002 0840h
dwProtocols= 0000 0002h

XFR_BLOCK (1) request
wValue: bLevelParameter = 00h, bReserved = 00h
wIndex: bRFU = 00h, bInterface = 00h
wLength = Lc + 0005h
abData = CLA, INS, P1, P2, Lc, Data(Lc) (1) data

DATA_BLOCK (2) request
wValue: wRFU = 0000h
wIndex: bRFU = 00h, bInterface = 00h
wLength = 0003h (2) data 80h, wDelayTime
 or
 (2) data 00h, SW1, SW2

if (bResponseType=00h) Break
if (bResponseType=80h) (2) Repeat

 End

Control transfer,Version B:
APDU level message exchange, case 4 command, short APDU

dwFeatures = 0002 0840h
dwProtocols= 0000 0002h

XFR_BLOCK (1) request
wValue: bLevelParameter = 00h, bReserved = 00h
wIndex: bRFU = 00h, bInterface = 00h
wLength = Lc + 0006h
abData = CLA, INS, P1, P2, Lc, Data(Lc), Le (1) data

DATA_BLOCK (2) request
wValue: wRFU = 0000h
wIndex: bRFU = 00h, bInterface = 00h
wLength = Le + 0003h (2) data 80h, wDelayTime
 or
 (2) data 00h, Data(Le), SW1, SW2

if (bResponseType=00h) Break
if (bResponseType=80h) (2) Repeat

 End

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

43

Control transfer, Version B:
APDU level message exchange, case 2 command, extended APDU

dwFeatures = 0004 0840h
dwProtocols= 0000 0002h

XFR_BLOCK (1) request
wValue: bLevelParameter = 00h, bReserved = 00h
wIndex: bRFU = 00h, bInterface = 00h
wLength = 0007h
abData = CLA, INS, P1, P2, P3=00h, Le (1) data

 Loop the next request

DATA_BLOCK (2) request
wValue: wRFU = 0000h
wIndex: bRFU = 00h, bInterface = 00h
wLength = BufferLength (2) data 80h, wDelayTime
 or
 (2) data 00h, Data(Le), SW1, SW2
 or
 (2) data 01h, Data(BufferLength)
 or
 (2) data 03h, Data(BufferLength),
 or
 (2) data 02h, Data(<=BufferLength-2),
 SW1, SW2

if (bResponseType=00h OR bResponseType=02) (2) End

if (bResponseType=01h OR bResponseType=03)

XFR_BLOCK (3) request
wValue: bLevelParameter = 10h, bReserved = 00h
wIndex: bRFU = 00h, bInterface = 00h
wLength = 0000h
abData = empty (3)
 (2) Repeat

if (bResponseType=80h) (2) Repeat

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

44

Control transfer, Version B:
APDU level message exchange, case 3 command, extended APDU

dwFeatures = 0004 0840h
dwProtocols= 0000 0002h

XFR_BLOCK (1) request
wValue: bLevelParameter = 00h/01h, bReserved = 00h
wIndex: bRFU = 00h, bInterface = 00h
wLength = BufferLength
abData = CLA, INS, P1, P2, P3=00h, Lc, (1) data
 Data(BufferLength-7)

if (bLevelParameter=00h)

DATA_BLOCK (2) request
wValue: wRFU = 0000h
wIndex: bRFU = 00h, bInterface = 00h
wLength = 0003h

 (2) data 80h, wDelayTime
 (2) Repeat

 (2) data 00h, SW1, SW2
 End

if (bLevelParameter=01h)

DATA_BLOCK (3) request
wValue: wRFU = 0000h
wIndex: bRFU = 00h, bInterface = 00h
wLength = 0003h (3) data 80h, wDelayTime
 (3) Repeat
 or
 (3) data 10h

 Loop the next two requests

XFR_BLOCK (n) request
wValue: bLevelParameter = 03h/02h, bReserved = 00h
wIndex: bRFU = 00h, bInterface = 00h
wLength = BufferLength
abData = Data(BufferLength) (n) data

DATA_BLOCK (n+1) request
wValue: wRFU = 0000h
wIndex: bRFU = 00h, bInterface = 00h
wLength = 0003h (n+1) data 80h, wDelayTime
 (n+1) Repeat

if (bLevelParameter=02h) (n+1) data 00h, SW1, SW2
 (n+1) End

if (bLevelParameter=03h) (n+1) data 10h
 (n+1) Repeat

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

45

Annex C
(informative)

Terms and definitions in the USB specification

The terms and definitions listed below are extracted from chapter 2, Terms and Abbreviations of the USB
specification:

Transfer
One or more bus transactions to move information between a software client and its function.

TransferType
Determines the characteristics of the data flow between a software client and its function. Four standard types
are defined: control, interrupt, bulk and isochronous.

Bulk Transfer
One of the four USB transfer types. Bulk transfers are non-periodic, large bursty communication typically used
for a transfer that can use any available bandwidth and can also be delayed until bandwidth is available. See
also transfer type.

Control Transfer
One of the four USB transfer types. Control transfers support configuration/command/status type
communication between client and function. See also transfer type.

Default pipe
The message pipe created by the USB System Software to pass control control and status information
between the host and a USB device's control endpoint zero.

Device Endpoint
A uniquely addressable portion of a USB device that is the source or sink of information in a communication
flow between the host and device. See also endpoint address.

Endpoint Address
The combination of an endpoint number and an endpoint direction of a USB device. Each endpoint address
supports data transfer in one direction.

Host
The host computer system where the USB Host Controller is installed. This includes the host hardware
platform (CPU, bus, etc.) and the operating system in use.

Word
A data element that is two bytes (16bits) in size.

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

46

Annex D
(informative)

Class specific descriptor Smart Card device class

The table below describes the class specific descriptor as given in the CCID specification, chapter 3.5

Table 3-5 CCID Class Descriptor

Offset Field Size Value Description

0 bLength 1 36h Size of this descriptor, in bytes.

1 bDescriptorType 1 ?? CCID Functional Descriptor type.

2 bcdCCID 2 0100h CCID Specification Release Number in Binary-
Coded decimal (i.e., 2.10 is 0210h).

4 bMaxSlotIndex 1 The index of the highest available slot on this
device. All slots are consecutive starting at 00h.

i.e. 0Fh = 16 slots on this device numbered 00h to 0Fh.

5 bVoltageSupport 1 This value indicates what voltages the CCID can
supply to its slots.

The value is a bitwise OR operation performed on
the following values:

- 01h 5.0V
- 02h 3.0V
- 04h 1.8V

Other bits are RFU.

6 dwProtocols 4 RRRR

PPPP

RRRR –Upper Word- is RFU = 0000h

PPPP –Lower Word- Encodes the supported
protocol types. A ‘1’ in a given bit position
indicates support for the associated ISO protocol.

0001h = Protocol T=0
0002h = Protocol T=1

All other bits are reserved and must be set to
zero. The field is intended to correspond to the
PCSC specification definitions. See PCSC Part3.
Table 3-1 Tag 0x0120

Example: 00000003h indicates support for T=0 and
T=1.

10 dwDefaultClock 4 Default ICC clock frequency in kHz encoded as a
little endian integer value.

Example: 3.58 MHz is encoded as the integer value
3580. (00000DFCh)

This is used in ETU and WWT calculations. It is
the clock frequency used when reading the ATR
data.

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

47

Offset Field Size Value Description

14 dwMaximumClock 4 Maximum supported ICC clock frequency in kHz
encoded as little endian integer value.

Example: 14.32 MHz is encoded as the integer value
14320. (000037F0h)

18 bNumClockSupported 1 The number of clock frequencies that are
supported by the CCID. If the CCID does not
allow the manual setting of the clock frequency,
then this value should be 00h. Otherwise, if the
CCID is manual and this value is 00h, the
supported clock frequency is assumed to be the
default clock frequency defined by
dwDefaultClock

19 dwDataRate 4 Default ICC I/O data rate in bps encoded as little
endian integer

Example: 9600 bps is encoded as the integer value
9600. (00002580h)

23 dwMaxDataRate 4 Maximum supported ICC I/O data rate in bps

Example: 115.2Kbps is encoded as the integer value
115200. (0001C200h)

27 bNumDataRatesSupported 1 The number of data rates that are supported by
the CCID. If the CCID does not allow the manual
setting of the data rate, then this value should be
00h. Otherwise, if the reader is manual and this
value is 00h, the supported data rate is assumed
to be the default data rate defined by ISO.

28 dwMaxIFSD 4 • Indicates the maximum IFSD supported by
CCID for protocol T=1.

32 dwSynchProtocols 4 RRRR

PPPP

=

000000
00h

• RRRR-Upper Word- is RFU = 0000h

• PPPP-Lower Word- encodes the supported
protocol types. A ‘1’ in a given bit position
indicates support for the associated protocol.

0001h indicates support for the 2-wire protocol 1)

0002h indicates support for the 3-wire protocol 1)

0004h indicates support for the I2C protocol 1)

All other values are outside of this specification, and
must be handled by vendor-supplied drivers

1) This release of the specification does not support devices with the 2-wire, 3-wire, and I2C protocol so PPPP = 0000h.
This field is intended to be forward compatible with the PCSC specification.

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

48

Offset Field Size Value Description

36 dwMechanical 4 0000
0008h

See Note Below. The value is a bitwise OR operation
performed on the following values:

• 00000000h No special characteristics

• 00000001h Card accept mechanism 2)

• 00000002h Card ejection mechanism 2)

• 00000004h Card capture mechanism 2)

• 00000008h Card lock/unlock mechanism

• 00000010h Permanently inserted ICC

40 dwFeatures 4 This value indicates what intelligent features the CCID
has.

The value is a bitwise OR operation performed on the
following values :

• 00000000h No special characteristics

• 00000002h Automatic parameter configuration based
on ATR data

• 00000004h Automatic activation of ICC on inserting

• 00000008h Automatic ICC voltage selection

• 00000010h Automatic ICC clock frequency change
according to parameters

• 00000020h Automatic baud rate change according to
frequency and FI, DI parameters

• 00000040h Automatic parameters negotiation made
by the CCID (use of warm resets, cold resets or PPS
according to a manufacturer proprietary algorithm to
select the communication parameters with the ICC)

• 00000080h Automatic PPS made by the CCID
according to the current parameters

• 00000100h CCID can set ICC in clock stop mode

• 00000200h NAD value other than 00 accepted (T=1
protocol in use)

• 00000400h Automatic IFSD exchange as first
exchange (T=1 protocol in use)

Only one of the following values may be present :

• 00010000h TPDU level exchanges with CCID

• 00020000h Short APDU level exchange with CCID

• 00040000h Short and Extended APDU level
exchange with CCID

Only one of the values 00000040h and 00000080h
may be present.

When value 00000040h is present the host shall not try
to change the FI, DI, and protocol currently selected.

When an APDU level for exchanges is selected, one of
the values 00000040h or 00000080h must be present,
as well as the value 00000002h.

2) These mechanisms of the dwMechanical parameter have been included for completeness; however, these functions
of motorized CCIDs are not covered by this release of the specification. A future release may attempt to standardize the
interface to these mechanical functions.

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

50

Bibliography

[1] ISO 1177:1985, Information processing — Character structure for start/stop and synchronous
character oriented transmission

[2] ISO/IEC 10536 (all parts), Identification cards — Contactless integrated circuit cards — Close coupled
cards

[3] ISO/IEC 14443 (all parts), Identification cards — Contactless integrated circuit cards — Proximity
cards

[4] ISO/IEC 15693 (all parts), Identification cards — Contactless integrated circuit cards — Vicinity cards

IS 14202 (Part 12) : 2014
ISO/IEC 7816-12 : 2005

Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote
harmonious development of the activities of standardization, marking and quality certification of goods
and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form
without the prior permission in writing of BIS. This does not preclude the free use, in the course of
implementing the standard, of necessary details, such as symbols and sizes, type or grade designations.
Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also
reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that
no changes are needed; if the review indicates that changes are needed, it is taken up for revision.
Users of Indian Standards should ascertain that they are in possession of the latest amendments or
edition by referring to the latest issue of ‘BIS Catalogue’ and ‘Standards : Monthly Additions’.

This Indian Standard has been developed from Doc No.: LITD 16 (3112).

Amendments Issued Since Publication

Amend No. Date of Issue Text Affected

BUREAU OF INDIAN STANDARDS
Headquarters:

Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002
Telephones : 2323 0131, 2323 3375, 2323 9402 Website: www.bis.org.in

Regional Offices: Telephones

Central : Manak Bhavan, 9 Bahadur Shah Zafar Marg 2323 7617
NEW DELHI 110002 2323 3841

Eastern : 1/14 C.I.T. Scheme VII M, V. I. P. Road, Kankurgachi 2337 8499, 2337 8561
KOLKATA 700054 2337 8626, 2337 9120

Northern : SCO 335-336, Sector 34-A, CHANDIGARH 160022 260 3843
260 9285

Southern : C.I.T. Campus, IV Cross Road, CHENNAI 600113 2254 1216, 2254 1442
2254 2519, 2254 2315

Western : Manakalaya, E9 MIDC, Marol, Andheri (East) 2832 9295, 2832 7858
MUMBAI 400093 2832 7891, 2832 7892

Branches: AHMEDABAD. BANGALORE. BHOPAL. BHUBANESHWAR. COIMBATORE. DEHRADUN.
FARIDABAD. GHAZIABAD. GUWAHATI. HYDERABAD. JAIPUR. KANPUR. KOCHI.
LUCKNOW. NAGPUR. PARWANOO. PATNA. PUNE. RAJKOT. VISAKHAPATNAM.

{

{
{

{
{

Published by BIS, New Delhi

