
;kn`fPNd uewus ysuk ,oa ;kn`fPN`r
izfØ;k,sa

(igyk iqujh{k.k)

Random Sampling and
Randomization Procedures

(First Revision)

ICS 03.120.30

IS 4905 : 2015
ISO 24153 : 2009

Hkkjrh; ekud
Indian Standard

Price Group 11April 2015

© BIS 2015

Hkkjrh; ekud C;wjks
B U R E A U O F I N D I A N S T A N D A R D S

ekud Hkou] 9 cgknqj'kkg T+kiQj ekxZ] ubZ fnYyh-110002
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG

NEW DELHI-110002
www.bis.org.in www.standardsbis.in

HP
2020

Statistical Methods for Quality and Reliability Sectional Committee, MSD 03

NATIONAL FOREWORD

This Indian Standard which is identical with ISO 24153 : 2009 ‘Random sampling and randomization
procedures’ issued by the International Organization for Standardization was adopted by the Bureau of
Indian Standards on the recommendation of the Statistical Methods for Quality and Reliability Sectional
Committee and approval of the Management and Systems Division Council.

Sampling is of fundamental importance for estimating the quality of a lot or to ascertain its conformity to
the requirements of a specification. The economy, reliability and practicability of the sampling procedure
have made them almost indispensible in most of the industrial and trade applications. However, the
reliability of the conclusions drawn on the basis of the sample depends on its representativeness and
the method of its selection. Random sampling and randomization procedures are, therefore, the
cornerstone to the validity of many statistical methods used in experimentation, whether for industrial
quality control and improvement purposes or for designed experiments in the medical, biological,
agricultural, or other scientific fields.

This standard was originally published as IS 4905 : 1968 ‘Methods for random sampling’. This standard
has now been revised to harmonize with ISO 24153 : 2009 by adoption under dual numbering system.

It is hoped that the sampling methods as laid down in this standard, when implemented, would ensure
a truely random and representative sample leading to sound and satisfactory estimation of lot quality.
This revision, in addition, includes for information computer programming code for random numbers
generation algorithm.

Although the principles of this standard are universally applicable where random sampling is required
and the sampling units can be clearly defined, preferably on the basis of discrete items, there are many
situations in which the material of interest does not lend itself to being quantified on a discrete-item
basis, as in the case of a bulk material. In such situations, this standard does not provide appropriate
guidance.

The text of the ISO Standard has been approved as suitable for publication as an Indian Standard
without deviations. Certain conventions are however not identical to those used in Indian Standards.
Attention is particularly drawn to the following:

a) Wherever the words ‘International Standard’ appear referring to this standard, they should be
read as ‘Indian Standard’.

b) Comma (,) has been used as a decimal marker while in Indian Standards, the current practice
is to use a point (.) as the decimal marker.

In this adopted standard, reference appears to certain International Standards for which Indian Standards
also exist. The corresponding Indian Standards, which are to be substituted in their places, are listed
below along with their degree of equivalence for the editions indicated:

International Standard Corresponding Indian Standard Degree of
Equivalence

ISO 3534-1 : 2006 Statistics —
Vocabulary and symbols — Part 1:
General statistical terms and terms
used in probability

IS 7920 (Part 1) : 2012 Statistical —
Vocabulary and symbols: Part 1
General statistical terms and terms
used in probability (third revision)

Modified

ISO 3534-2 : 2006 Statistics —
Vocabulary and symbols — Part 2:
Applied statistics

IS 7920 (Part 2) : 2012 Statistical —
Vocabulary and symbols : Part 2
Applied statistics (third revision)

Identical

(Continued on third cover)

1

1 Scope

This International Standard defines procedures for random sampling and randomization. Several methods are
provided, including approaches based on mechanical devices, tables of random numbers, and portable
computer algorithms.

This International Standard is applicable whenever a regulation, contract, or other standard requires random
sampling or randomization to be used. The methods are applicable to such situations as

a) acceptance sampling of discrete units presented for inspection in lots,

b) sampling for survey purposes,

c) auditing of quality management system results, and

d) selecting experimental units, allocating treatments to them, and determining evaluation order in the
conduct of designed experiments.

Information is also included to facilitate auditing or other external review of random sampling or randomization
results where this is required by quality management personnel or regulatory bodies.

This International Standard does not provide guidance as to the appropriate random sampling or
randomization procedures to be used for any particular experimental situation or give guidance with respect to
possible sampling strategy selection or sample size determination. Other ISO standards (such as those listed
in the Introduction) or authoritative references should be consulted for guidance in such areas.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO 3534-1, Statistics — Vocabulary and symbols — Part 1: General statistical terms and terms used in
probability

ISO 3534-2, Statistics — Vocabulary and symbols — Part 2: Applied statistics

ISO 3534-3, Statistics — Vocabulary and symbols — Part 3: Design of experiments

ISO 80000-2, Quantities and units — Part 2: Mathematical signs and symbols to be used in the natural
sciences and technology

3 Terms, definitions, and symbols

For the purposes of this document, the terms and definitions given in ISO 3534-1, ISO 3534-2, ISO 3534-3,
and the following apply.

Indian Standard

RANDOM SAMPLING AND RANDOMIZATION
PROCEDURES
(First Revision)

IS 4905 : 2015
ISO 24153 : 2009

2

3.1 Terms and definitions

3.1.1
cluster
part of a population (3.1.6) divided into mutually exclusive groups of sampling units (3.1.13) related in a
certain manner

[ISO 3534-2:2006, definition 1.2.28]

3.1.2
cluster sampling
sampling (3.1.12) in which a random sample (3.1.8) of clusters (3.1.1) is selected and all the sampling
units (3.1.13) which constitute the clusters are included in the sample (3.1.11)

[ISO 3534-2:2006, definition 1.3.9]

3.1.3
derangement
complete permutation
permutation of elements where no element remains in its original position in the set (e.g. {3, 1, 2} is a
derangement of {1, 2, 3})

3.1.4
lot
definite part of a population (3.1.6) constituted under essentially the same conditions as the population with
respect to the sampling (3.1.12) purpose

NOTE The sampling purpose can, for example, be to determine lot acceptability, or to estimate the mean value of a
particular characteristic.

[ISO 3534-2:2006, definition 1.2.4]

3.1.5
multistage sampling
sampling (3.1.12) in which the sample (3.1.11) is selected by stages, the sampling units (3.1.13) at each
stage being sampled from the larger sampling units chosen at the previous stage

NOTE Multistage sampling is different from multiple sampling. Multiple sampling is sampling by several criteria at the
same time.

[ISO 3534-2:2006, definition 1.3.10]

3.1.6
population
〈reference〉 totality of items under consideration

[ISO 3534-2:2006, definition 1.2.1]

3.1.7
pseudo-independent random sampling
sampling (3.1.12) where a sample (3.1.11) of n sampling units (3.1.13) is taken from a population (3.1.6)
in accordance with a table of random numbers or a computer algorithm designed such that each of the
possible combinations of n sampling units has a particular probability of being taken (see also 4.4)

3.1.8
random sample
sample (3.1.11) selected by random sampling (3.1.9)

[ISO 3534-2:2006, definition 1.2.25]

IS 4905 : 2015
ISO 24153 : 2009

3

3.1.9
random sampling
sampling (3.1.12) where a sample (3.1.11) of n sampling units (3.1.13) is taken from a population (3.1.6)
in such a way that each of the possible combinations of n sampling units has a particular probability of being
taken

[ISO 3534-2:2006, definition 1.3.5]

3.1.10
randomization
process by which a set of items are set into a random order

NOTE If, from a population (3.1.6) consisting of the natural numbers 1 to n, numbers are drawn at random (i.e. in
such a way that all numbers have the same chance of being drawn), one by one, successively, without replacement, until
the population is exhausted, the numbers are said to be drawn "in random order".

If these n numbers have been associated in advance with n distinct units or n distinct treatments that are then re-arranged
in the order in which the numbers are drawn, the order of the units or treatments is said to be randomized.

3.1.11
sample
subset of a population (3.1.6) made up of one or more sampling units (3.1.13)

[ISO 3534-2:2006, definition 1.2.17]

3.1.12
sampling
act of drawing or constituting a sample (3.1.11)

[ISO 3534-2:2006, definition 1.3.1]

3.1.13
sampling unit
unit
one of the individual parts into which a population (3.1.6) is divided

NOTE 1 A sampling unit can contain one or more items, for example, a box of matches, but one test result will be
obtained for it.

NOTE 2 A sampling unit can consist of discrete items or a defined amount of bulk material.

[ISO 3534-2:2006, definition 1.2.14]

3.1.14
sampling with replacement
sampling (3.1.12) in which each sampling unit (3.1.13) taken and observed is returned to the population
(3.1.6) before the next sampling unit is taken

[ISO 3534-2:2006, definition 1.3.15]

3.1.15
sampling without replacement
sampling (3.1.12) in which each sampling unit (3.1.13) is taken from the population (3.1.6) once only
without being returned to the population

[ISO 3534-2:2006, definition 1.3.16]

IS 4905 : 2015
ISO 24153 : 2009

4

3.1.16
seed
numerical value or set of values used to initialize a pseudo-independent random sampling (3.1.7) algorithm
or to establish a starting point in a table of random numbers

3.1.17
simple random sample
sample (3.1.11) selected by simple random sampling (3.1.18)

[ISO 3534-2:2006, definition 1.2.24]

3.1.18
simple random sampling
sampling (3.1.12) where a sample (3.1.11) of n sampling units (3.1.13) is taken from a population (3.1.6)
in such a way that all possible combinations of n sampling units have the same probability of being taken

[ISO 3534-2:2006, definition 1.3.4]

3.1.19
stratified sampling
sampling (3.1.12) such that portions of the sample (3.1.11) are drawn from the different strata (3.1.21) and
each stratum is sampled with at least one sampling unit (3.1.13)

[ISO 3534-2:2006, definition 1.3.6]

3.1.20
stratified simple random sampling
simple random sampling (3.1.18) from each stratum (3.1.21)

[ISO 3534-2:2006, definition 1.3.7]

3.1.21
stratum
mutually exclusive and exhaustive sub-population considered to be more homogeneous with respect to the
characteristics investigated than the total population (3.1.6)

[ISO 3534-2:2006, definition 1.2.29]

3.2 Symbols

For the purposes of this document, the mathematical signs and symbols given in ISO 80000-2 and the
following apply.

di the ith (least significant) digit, or face value of a coin or die

N lot size

n sample size

ni the size of the ith sample

U uniformly-distributed random real variable on the open range (0, 1)

xi the ith value of the variable x

j! factorial j

⎡z⎤ ceiling function of z (returns the smallest integer greater than or equal to real value z)

⎣z⎦ floor function of z (returns the integer portion of real value z)

IS 4905 : 2015
ISO 24153 : 2009

5

4 General

4.1 Random sampling is a prerequisite to the correct application of most sampling plans in industrial use.
Similarly, randomization, which uses the principles of random sampling, is indispensable in the conduct of
designed experiments, as it increases the internal validity of an experiment, allowing statistical methods to be
used in the interpretation of an experiment's results. The goal of random sampling is to provide a means of
applying the results of probability theory to practical problems, while avoiding any form of bias. This goal is not
attainable using certain other types of sampling. For example, sampling based on such concepts as personal
intuition or judgment, haphazardness, or quota-achievement are inherently biased and consequently can lead
to serious errors in the decision-making process, with no provision to assess risks. Equi-probable random
sampling seeks to eliminate such bias by ensuring that each unit in a lot has the same probability of being
selected (sampling with replacement) or, alternatively, that every possible sample of a given size from the lot
has the same probability of being selected (sampling without replacement).

4.2 Under equi-probable random sampling with replacement, the probability that a specific unit in a lot of N
units is selected at any given draw is always 1/N. There are Nn possible ordered random samples of n units
from N units and, for completeness, there are (N + n − 1)! / [n! (N − 1)!] possible different unordered random
samples of n units from N units (see the note below).

Under simple random sampling without replacement, the probability that a unit in a lot is selected at a given
draw is 1/N for the first draw, 1/(N − 1) for the second draw, 1/(N − 2) for the third draw, and so on. If n units
are randomly selected from a lot of N units without replacement, then each combination of n units has the
same probability of selection as every other combination of N units taken n at a time. The number of possible
different unordered random samples of n units from a lot of N units is N! / [n! (N − n)!], which is the number of
combinations of N units taken n at a time. It is equally noteworthy that the number of possible ordered random
samples of n units taken without replacement from a lot of N units is N! / (N − n)!, which is equivalent to the
number of possible permutations of N units taken n at a time. It should be noted that random sampling without
replacement is the most common sampling strategy used in acceptance sampling applications.

NOTE Under sampling with replacement based on a sample of, say, 3 units from 5 units, the lists {1, 1, 2}, {1, 2, 1},
and {2, 1, 1} are different when order is considered (and technically referred to as multisets or bags), but the same when
order is not considered.

4.3 The goal of random sampling can only be achieved by adhering to rigorous procedures that have been
carefully designed to achieve the intent of the definition. Several methods are presented in this International
Standard to implement this goal. The mechanical device methods, in particular, assume that the coins and
dice are unbiased, having been designed such that each side has the same probability of occurring during a
toss or throw, and that the manner of tossing or throwing is being performed so as not to introduce bias.
Furthermore, due to numerous deficiencies in the intrinsic implementations of random sampling methods in
calculators and computer operating systems, programming languages, and software (see References [9], [10],
[12], and [13] for further information), this International Standard has adopted a portable, proven method for
generating random samples by computer. In addition, it should be noted that all of the methods below require
that each distinct unit in a lot has been associated in advance with a distinct number from 1 to N, so that the
sampling units identified as a result of the random sampling method can be unambiguously obtained from the
lot.

4.4 Finally, to reduce awkwardness in presentation, the adjective "pseudo-independent" will often be
dropped when referring to such a random sampling procedure or method (see Reference [8]). Furthermore,
the adjective “random” will be used frequently in the sense that the noun it modifies (often a number or
permutation) is the output of a process that randomly generates such a number or permutation. In addition,
when examples are provided, the sample sizes involved are artificially kept small with the goal of simply
illustrating the concepts involved.

IS 4905 : 2015
ISO 24153 : 2009

6

5 Random sampling — Mechanical device methods

5.1 Urn method

5.1.1 Place N distinctly-numbered but otherwise physically-identical objects (e.g. tickets, chips, or balls) into
an urn to unambiguously represent each of the N units in the lot and thoroughly mix the objects.

5.1.2 For sampling without replacement, blindly select objects from the urn, one by one without returning
them to the urn and optionally re-mixing the objects between successive draws, until the desired number n of
sampling units is obtained.

NOTE This method is commonly used by lottery agencies.

5.1.3 For sampling with replacement, blindly select objects from the urn, one by one, returning each object
to the urn after each draw and thoroughly re-mixing the objects between successive draws, until the desired
number n of sampling units is obtained. Using this method, the same unit may occur more than once in the
sample.

5.2 Coin or die method

5.2.1 Determine the number m of coins or dice (or coin tosses or die throws) required, where N is the lot
size and k is the number of sides of the device being used, according to the following equation:

log loge em N k= ⎡ ⎤

5.2.2 Where multiple coins or dice are used, clearly associate each coin or die with a specific position in the
interpretation sequence of digits di. Where a single coin or die is used, assign the result of the first toss or
throw to the most significant digit dm, the second toss or throw to the next most significant digit dm − 1, and so
on.

5.2.3 Toss the coins or throw the dice and record the m ordered results di. Translate the results to decimal
integers through the following equation:

1
1 (1)

m
m i

i
i

y d k −

=
= + −∑

5.2.4 Repeat step 5.2.3, discarding all values that exceed N and, in the case of sampling without
replacement, all values that have already been selected, until the desired number n of sampling units is
obtained.

EXAMPLE 1 An inspector wishes to obtain a random sample of 4 units from a lot of 20 units and has a single coin
available. From step 5.2.1, it is determined that m = 5 coin tosses are required to obtain each random number. It is
decided in advance that a head will have a face value of 1 and a tail a face value of 2. The first sequence of tosses yields
the multiset {1, 2, 1, 2, 2}, which through step 5.2.3 equates to 1 + (0)24 + (1)23 + (0)22 + (1)21 + (1)20 = 12. The following
three sequences of tosses yield the multisets {1, 2, 2, 2, 1}, {1, 1, 2, 2, 1}, and {2, 2, 1, 2, 2}, which equate to 15, 7, and 28,
respectively. Since the value 28 exceeds the lot size, it needs to be discarded and additional sequences of tosses need to
be performed until one more valid number is obtained to complete the random sample.

EXAMPLE 2 A random sample of 4 units from a lot of 50 units is required and the inspector has access to several six-
sided dice of different colours. From step 5.2.1, it is determined that m = 3 dice are required to obtain each random
number. The inspector chooses a blue, a green, and a red die and ranks them from most significant to least significant in
that same order. However, it is evident upon examining the equation of 5.2.3 that numbers within the valid range from 1 to
50 will only result when the first die face is either 1 or 2. Consequently, some efficiency can be obtained by mapping the
higher face values of the blue die to either 1 or 2 without distorting the outcome probabilities. The inspector decides in
advance for odd face values on the blue die to be treated as 1 and even face values to be treated as 2. The first roll yields
the multiset {3, 3, 4}, which through step 5.2.3 equates to 1 + (2)62 + (2)61 + (3)60 = 88, which is too large but when
transformed to {1, 3, 4} equates to 16. Three more rolls yield {6, 1, 3}, (which transforms to {2, 1, 3}), {5, 6, 6}, (which
transforms to {1, 6, 6}), and {2, 5, 5}, which equate to 39, 36, and 65, respectively. Since the value 65 exceeds the lot size,
it needs to be discarded and additional throws need to be made until one more valid number is obtained to complete the
random sample.

IS 4905 : 2015
ISO 24153 : 2009

7

EXAMPLE 3 The same scenario as in Example 2 exists but this time the inspector observes that three dice will
produce numbers ranging from 1 to 63 = 216, yet the lot size is only 50. The inspector decides in advance to map all
outcomes from 1 to 200 to the range from 1 to 50 and discard any outcome greater than 200 to avoid distorting the
outcome probabilities. The same four rolls from the previous example are evaluated under this mapping scheme. The
multisets {3, 3, 4}, {6, 1, 3}, {5, 6, 6}, and {2, 5, 5} equate to 88, 183, 180, and 65. Multiples of 50 are subtracted from
these numbers until each of them is within the range from 1 to 50 (if 0 is obtained, interpret it as N), resulting in the sample
values of 38, 33, 30, and 15, respectively. A sample size of 4 units has been obtained so no further throws are necessary.
Note that, mathematically, this mapping process is equivalent to applying the equation v2 = 1 + (v1 − 1) modulo N, where
v1 is the initial value and v2 is the value mapped into the desired range.

6 Pseudo-independent random sampling — Table method

6.1 Random number tables

Two tables of random numbers are provided in Annex A. The tables each consist of 3 600 random digits from
0 to 9, arranged in 60 rows by 60 columns. Their usage is briefly described below and in more detail in
Annex A.

NOTE The digits in the table are directly analogous to the face values of a 10-sided die repeatedly thrown and
recorded. The number of digits m required for a sampling application corresponds to the number of dice throws.

6.2 Basic method

6.2.1 Determine the number of digits m necessary to represent the lot size N. Where the lot size is an
integral power of 10, ignore the initial digit in the lot size and interpret that remaining zeroes as equal to the lot
size value (e.g. if N = 1 000, interpret the value 000 as 1 000).

6.2.2 Randomly select a starting point (i.e. row and column value) in the table using a method described in
A.2.2.

6.2.3 Read the resulting digit in conjunction with the m − 1 digits to the right as a single number and record
the value. Where the digits to the right would exceed the 60th column, treat columns 1, 2, and so on as
columns 61, 62, and so on, respectively.

6.2.4 Increase the row value by one, repeat step 6.2.3, and record the value. Where this row value would
exceed the 60th row, treat row 1 as the 61st row and increase the column values each by m digits.

6.2.5 Repeat step 6.2.4, discarding all values that exceed N and, in the case of sampling without
replacement, all values that have already been selected, until the desired number of sampling units n is
obtained.

EXAMPLE An auditor wishes to select a random sample of 5 units from a lot of 200 units. A random starting point is
determined by coin tosses to be row 57 and column 59 and it is decided to use Table A.1. Since N is small in comparison
to the maximum value capable of being represented by 3 digits (i.e. 1 000), the auditor decides to map the results of the
range from 1 to 1 000 onto the range from 1 to 200. The following five numbers result: 848, 670, 902, 034, and 518. The
translated sample values become 48, 70, 102, 34, and 118.

7 Pseudo-independent random sampling — Computer method

7.1 Overview

7.1.1 This International Standard adopts a specific system of algorithms developed in References [1], [7],
and [13]. The algorithms have been designed to possess the mathematical and statistical properties required
for random sampling as well as to be portable with respect to implementation in different programming
languages on different computer platforms and to facilitate verification and auditing of the selected sample
values, which might be required for regulatory purposes. An example implementation of the key program
segments is provided in Annex B using the C programming language.

IS 4905 : 2015
ISO 24153 : 2009

8

7.1.2 The system of algorithms involves two major sub-systems:

a) an optional initialization algorithm that automatically generates a quasi-random seed integer based on
elapsed time from a reference date; and

b) a random number generator.

7.1.3 For verification or auditing purposes, the optional initialization algorithm mentioned in 7.1.2 a) and
described in 7.2 would be by-passed with a manually-entered seed value. This value needs to be within the
integer range from 1 and 2 147 483 398 inclusive. A copy of this input value is saved for records purposes
when required. However, in general usage for quality control and designed experiment applications, there
should be infrequent need to by-pass the option of automatic random seed generation, which should be the
default option in practice.

NOTE The presentations of the steps of the algorithms in this clause have been kept in a more mathematical format
to aid in programming. Programming code with clause references has been included in Annex B to supplement
implementation of this clause.

7.2 Initialization algorithm

7.2.1 The initialization algorithm consists of:

a) an elapsed time computation algorithm, referenced to a fixed past date and time; and

b) a random number generation algorithm based on the uniform distribution, called a random number of
times based on the output of item a) above, to obtain a random seed based on the time-based input.

7.2.2 The following algorithm determines the number of seconds that has elapsed since 2000-01-01
00:00:00 to the current date and time.

a) Capture the computer system's date and time to a string variable, save a copy of the variable for records
purposes, and then parse the string into its time components (i.e. year, month, day, hour, minute, and
second).

b) Compute the number of fully elapsed days de since the reference time point, using the current date's full
four-digit year y, month m1, and day d numerical values processed as follows:

if m1 < 3, then let m1 = m1 + 12 and let y = y − 1

de = d + ⎣(153 m1 − 457) / 5⎦ + 365 y + ⎣y / 4⎦ − ⎣y / 100⎦ + ⎣y / 400⎦ − 730 426

NOTE The equation for de may be slightly simplified for calendar years up to and including 2099 by replacing the
terms following ⎣y / 4⎦ by “− 730 441”.

c) Compute the total number of seconds se elapsed since the reference date using the quantity obtained in
step b) and the time of day (in 24-hour “hh:mm:ss” format) captured in the string variable in step a) in
accordance with the following equation:

se = 86 400 de + 3 600 h + 60 m2 + s

where h, m2 and s are the hours, minutes and seconds, respectively.

NOTE 1 Some programming languages have built-in functions to perform the calculation of se directly. Such intrinsic
functions should be validated before use, to ensure the effects of leap years and daylight saving time are properly handled.

NOTE 2 In 32-bit implementations of this algorithm, the value of se will increase over time to the point of causing
computational overflow. Care should be taken in programming to ensure its output value is always mapped on the range
from 1 to 2 147 483 398 inclusive.

IS 4905 : 2015
ISO 24153 : 2009

9

d) The value resulting from step c) is the initializing seed for the random seed generator and is used to
obtain the final seed. A copy of this value is saved to a separate variable for records purposes when
required.

e) The number of times j that the subsequent random number generator is to be called is a random integer
between 1 and 100 inclusive, based on the two least significant digits of the value obtained in step c)
increased by 1, which may be expressed as follows:

j = se − 100 ⎣se / 100⎦ + 1

7.2.3 The random number generator for the automatic seed generation (initialization function) algorithm
takes the form of the linear congruential recurrence relation:

a) xi + 1 = 40 692 xi mod 2 147 483 399,

which can be implemented on computers capable of handling 32-bit integers via the following steps:

b) k = ⎣xi / 52 774⎦;

c) xi + 1 = 40 692 (xi − 52 774 k) − 3 791 k;

d) If xi + 1 < 0, then let xi + 1 = xi + 1 + 2 147 483 399.

7.2.4 Generate the seed to the random sampling algorithm by assigning the result from 7.2.2 c) to xi and
then calling the formula in 7.2.3 j times per step 7.2.2 e), replacing xi with xi + 1 each time until the required
number of calls are made.

7.2.5 The final value of xi + 1 resulting from step 7.2.4 is a random integer between 1 and 2 147 483 398
inclusive and serves as the initial seed to the random sampling algorithm described in 7.3 [in particular, the
value yi in step 7.3.6 b)]. A copy of this value is saved to a separate variable for records purposes when
required.

7.3 Random number generation algorithm

7.3.1 The random number generation algorithm consists of

a) a shuffling array that is populated by a uniform-distribution random number generation algorithm, and

b) a combination, uniform-distribution random number generation algorithm.

7.3.2 Create a 32-element array A to serve as a means of shuffling the output of the random sampling
algorithm.

7.3.3 The following random number generator is used to populate the shuffling array:

a) xi + 1 = 40 014 xi mod 2 147 483 563,

which can be implemented on 32-bit computers via the following steps:

b) k = ⎣xi / 53 668⎦;

c) xi + 1 = 40 014 (xi − 53 668 k) − 12 211 k;

d) If xi + 1 < 0, then let xi + 1 = xi + 1 + 2 147 483 563.

IS 4905 : 2015
ISO 24153 : 2009

10

7.3.4 Initialize the array A by assigning the result from 7.1.3 or 7.2.5 to xi and then calling the generator
given in 7.3.3 a) 40 times, replacing xi with xi + 1 on each call, discarding the first 8 values, and then assigning
each of the remaining 32 output values of xi + 1 to the array in reverse order (i.e. from element 32 down to
element 1).

7.3.5 Set element 1 of array A (i.e. A[1]) as the initializing value k to the combination random number
generation algorithm.

7.3.6 The combination random number generator for random sample generation takes the form of the
following combination of linear congruential recurrence relations and array index determination steps:

a) xi + 1 = 40 014 xi mod 2 147 483 563;

b) yi + 1 = 40 692 yi mod 2 147 483 399;

c) J = ⎣32 k / 2 147 483 563⎦ + 1;

d) k = A[J] − yi + 1;

e) A[J] = xi + 1;

f) If k < 1, then let k = k + 2 147 483 562.

NOTE The two random number generators above are those described in 7.2.3 and 7.3.3 (refer to those subclauses if
32-bit equivalent implementations are required).

7.3.7 The algorithm in 7.3.6 is initialized by setting xi to the final value of xi + 1 from 7.3.4 and setting yi to
the value referenced in 7.2.5. The values xi + 1 and yi + 1 serve as the subsequent values of xi and yi for all
subsequent calls to the algorithm. A random index J to the shuffling array A is calculated using the value of k
(from 7.3.5 initially), and the difference between A[J] and yi + 1 is assigned to k, while A[J] is updated with xi + 1.
Finally, the value of k is altered if necessary to produce a positive value.

7.3.8 The output of the random sampling algorithm is the value k, which is a random number between 1 and
2 147 483 562 inclusive, scaled as a standard uniformly-distributed real variable U over the range from 0 to 1,
exclusive of the endpoint values of this range, as follows: U = k / 2 147 483 563.

7.3.9 The output from 7.3.8 may be scaled as a uniformly-distributed integer variable L over the range from
1 to N, inclusive, as follows: L = ⎣N U⎦ + 1.

7.3.10 To generate a random sample, steps 7.3.6 to 7.3.9 are repeated until the desired number of random
values is obtained.

7.4 Audit records

When records are required to be maintained for audit purposes by a responsible authority or regulatory body,
record the lot size and the sample size.

In addition, with respect to the algorithms, record the manually entered seed per 7.1.3, or if the random seed
generator is used, record the

a) computer system's date and time used to compute this initial seed,

b) initial seed's value per 7.2.2 d), and

c) final seed's value per 7.2.5.

IS 4905 : 2015
ISO 24153 : 2009

11

8 Applications to common sampling situations

8.1 General

8.1.1 This clause provides algorithms for several random sampling strategies to suit various practical
situations.

8.1.2 Throughout this clause, U is defined as a random real variable, uniformly-distributed in the range from
0 to 1, exclusive of the endpoint values of the range, such as provided by the algorithm in 7.3. If another
source is used for U and the output is known to include 1 but not 0 as the endpoint values of the range, set U
equal to 1 − U. If the alternate source of U includes 0 and 1 as endpoint values of its range, the value 1 needs
to be trapped and discarded.

8.2 Random integer in a range

A random integer K in the range from M to N inclusive may be generated according to the following algorithm.

a) Generate a random real value U.

b) Set K equal to M + ⎣U (N − M + 1)⎦.

8.3 Random permutation

For an array A with N distinct elements, a random permutation of N units taken n at a time may be generated
according to the following shuffling algorithm.

a) Assign the N distinct element index values in original order to A[1:N].

b) Set J equal to 1.

c) Generate a random integer K in the range from J to N inclusive.

d) Swap A[J] and A[K].

e) Increment J by 1.

f) If J is less than or equal to n, go to step c).

g) Obtain the random permutation from the first n values of array A.

8.4 Random derangement

For an array A with N distinct elements, a random derangement of N units may be generated according to the
following algorithm.

a) Assign the N distinct element index values in original order to A[1:N] and make a copy in array B[1:N].

b) Using array B, generate a random permutation of N units taken N (i.e. all) at a time, using the method
given in 8.3.

c) Compare the elements from 1 to N of arrays A and B for equality.

d) If any element of array B is equal to its counterpart in array A, cease the comparison and go to step b).

e) Obtain the random derangement from array B.

NOTE This algorithm can be made more efficient in steps b) and c) by comparing element A[J] with element B[J] as
soon as B[J] has been determined, rather than waiting for the full permutation of array B.

IS 4905 : 2015
ISO 24153 : 2009

12

8.5 Random sampling with replacement

A single random sample of n units from a lot of N units may be generated with replacement according to the
following algorithm.

a) Generate a random integer K in the range from 1 to N inclusive.

b) Repeat step a) until n values of K are obtained.

NOTE This method may be applied repeatedly to obtain any number of samples, of any size. If the resulting values of
a single sample are not sorted, that sample may be used for sequential sampling inspection.

8.6 Random sampling without replacement

A single random sample of n distinct units from a lot of N units may be generated without replacement by
either of the following methods.

a) Method 1

1) Generate a random integer K in the range from 1 to N inclusive.

2) Verify that the value of K has not been previously generated; if it is distinct, store the value, otherwise
discard it.

3) Repeat steps 1) and 2) until n different values of K are obtained.

b) Method 2

1) Generate a random permutation of N units taken n at a time in accordance with 8.3.

2) Use the first n values in the output array A as the random sample.

NOTE Either of these methods may be used to obtain any number of samples of any size (for such purposes as
double or multiple sampling) by using the total nt of the individual sample sizes ni as the input value of n to the algorithm,
leaving the values in original output order, then taking the first n1 resulting values as the first sample, the next n2 resulting
values as the second sample, and so forth. Furthermore, if the resulting values of a single sample are not sorted, that
sample may be used for sequential sampling inspection by inspecting each unit in the order selected.

8.7 Random sampling for continuous sampling plans (CSP)

A CSP-1 continuous sampling plan is designed for application to the quality control of a production line and
alternates between qualifying periods of 100 % inspection requiring i consecutively-accepted units before
being followed by periods of sampling inspection at probability f, with reversion to 100 % inspection upon
finding an unacceptable unit. During periods of sampling inspection, units from the production line may be
selected for inspection in accordance with either of the following methods.

a) Method 1

1) For each unit of production, generate a random real value U.

2) If U is less than or equal to f, choose the unit for sample inspection.

3) Repeat steps 1) and 2) until an unacceptable unit is obtained.

b) Method 2

1) For each production segment of n units, where n equals 1/f, generate a random integer K over the
range from 1 to n inclusive.

IS 4905 : 2015
ISO 24153 : 2009

13

2) Choose the unit corresponding to K as a sampling unit for inspection.

3) Repeat steps 1) and 2) until an unacceptable unit is obtained.

NOTE For CSP-1 plans, the value f is specified as the reciprocal of an integer.

8.8 Stratified random sampling

For a lot composed of two or more strata of size Ni, select a single random sample of size ni from each
stratum i using the methods given in 8.3 or 8.6 when sampling without replacement is required, or the method
given in 8.5 when sampling with replacement is required.

8.9 Single random sampling from an initially unknown lot size

A single random sample of n different units from a lot of initially unknown size, but at least equal to size n, may
be obtained according to the following method (adapted from Reference [11]).

a) Assign the first n units from the lot to the sample array A[1:n].

b) If another unit exists in the lot listing, set N equal to the count of the next unit; otherwise, go to step f).

c) Generate a random integer K in the range from 1 to N inclusive.

d) If K is less than or equal to n, set A[K] equal to N.

e) Go to step b),

f) Obtain the random sample from array A and the lot size from the value N.

NOTE This method may also be used if the lot size is known.

8.10 Ordered single random sampling without replacement

A single random sample of n distinct units from a lot of N units may be generated directly in ascending order
with either of the following methods.

a) Method 1 (adapted from Reference [2])

1) Initialize the following variables:

i) create array A[1:n];

ii) set L equal to N, K equal to N − n, and J equal to 0.

2) Increment J by 1.

3) If J is greater than n, go to step 8).

4) Generate a random real value U and set P equal to 1.

5) Set P equal to P K / N.

6) If P is less than or equal to U:

i) set A[J] equal to N − L + 1 then decrement L by 1;

ii) go to step 2).

IS 4905 : 2015
ISO 24153 : 2009

14

7) If P is greater than U:

i) decrement L by 1 and K by 1;

ii) go to step 5).

8) Obtain the random sample in ascending order from array A.

b) Method 2 (adapted from Reference [3])

1) Let C(a, b) be a function yielding the number of combinations of a units taken b at a time (also known
as the binomial coefficient and equal to a! / [(a − b)! b!]).

2) Generate a random integer L in the range from 1 to C(N, n) inclusive.

3) Create array A[1:n].

4) Set K equal to 0, J equal to 1, and m equal to n − 1.

5) Set A[J] equal to 0.

6) If J is not equal to 1, set A[J] equal to A[J − 1].

7) Set A[J] equal to A[J] + 1.

8) Set R equal to C(N − A[J], n − J).

9) Increment K by R.

10) If K is less than L, go to step 7).

11) Decrement K by R.

12) Increment J by 1.

13) If J is less than or equal to N, go to step 5).

14) Set A[n] equal to A[m] + L − K.

15) Obtain the random sample in ascending order from array A.

NOTE Due to limitations in computer representation of large integers as well as limitations in the resolution of random
number generators, care needs to be taken to ensure that Method 2 is computationally feasible and not unduly biased by
the random number generator being used.

EXAMPLE A random sample of 5 units in sorted order is required from a lot of 25 units. There are 25! / (20! 5!) =
53 130 possible combinations of 5 units from 25 units, which is computationally feasible using modern computers. In
addition, the random number generator described in Clause 7 is selected for this sampling purpose; its maximum output
value of 2 147 483 562 is slightly over 40 419 times greater than the range required so the resulting bias in the method is
insignificant for practical purposes. A single random integer from 1 to 53 130 inclusive is generated as 7 319. The resulting
sample set is obtained as {1, 7, 13, 18, 19}.

8.11 Cluster sampling

For a population or lot composed of clusters of related units, itemize the clusters in a list and select a random
sample from this list using the methods given in 8.3 or 8.6 when sampling without replacement is required, or
the method given in 8.5 when sampling with replacement is required. The resulting sample consists of the
total number of units in the selected clusters.

IS 4905 : 2015
ISO 24153 : 2009

15

8.12 Random sampling with probability proportional to size

For a population composed of units of different integral sizes, a random sample of units selected proportional
to size may be obtained by using either of the following methods.

a) Method 1

1) On the list of N units with varying sizes, record the cumulative sizes Si of the units beside each
successive unit.

2) Generate a random integer K in the range from 1 to SN inclusive, where SN is the cumulative size of
the total population.

3) From the list, select the unit associated with the largest cumulative size not exceeding K as a sample
member.

4) Repeat steps 2) and 3) until the desired number n of sampling units (with or without replacement) is
obtained.

b) Method 2

1) From the list of N units with varying sizes, determine the maximum unit size M.

2) Generate a pair of random integers (K, L), with K in the range from 1 to N inclusive and L in the range
from 1 to M inclusive.

3) If the size of unit K does not exceed M, choose unit K as a member of the sample.

4) Repeat steps 2) and 3) until the desired number n of sampling units (with or without replacement) is
obtained.

EXAMPLE A marketing company wishes to conduct a survey of households with a selection proportional to
household size (i.e. number of occupants). A list with 10 households ranked in order of size is obtained and the sizes are:
{2, 2, 3, 3, 3, 4, 4, 5, 6, 7}. The cumulative sizes for this list are: {2, 4, 7, 10, 13, 17, 21, 26, 32, 39}. A random sample of 4
households without replacement is required. Random integers between 1 and 39 inclusive are generated, yielding {7, 33,
2, 11}. The corresponding sampling units are the households with listed ranks: {3, 10, 1, 5}.

8.13 Multi-stage sampling

For a population or lot that is structured in a logical hierarchy of successively smaller groupings of units, select
a random sample from the largest groupings, then subsample smaller groupings from each previously
selected grouping, continuing with this procedure until the individual unit level in the hierarchy is reached. At
each stage, use the random sampling methods given in 8.3 or 8.6 when sampling without replacement is
required, or the method given in 8.5 when sampling with replacement is required. The number of units in the
sample is the product of the number of samples taken at each stage.

EXAMPLE A lot is composed of 20 pallets with 20 boxes per pallet. Each box contains 10 units. The purchaser
wishes to examine the product using a multi-stage sampling strategy. A random sample of 4 pallets is selected. From each
selected pallet, a random sample of 4 boxes is then selected. Finally, from each selected box, a random sample of 3 units
is selected. This procedure yields a sample of 48 units from the 4 000 units in the lot.

8.14 Randomization in designed experiments

In designed experiment applications, randomization is used to perform such activities as allocating
experimental treatments to units or subjects and establishing the order of evaluating the units, including the
evaluation orders for replicated designs. Either of the following randomization methods may be used.

IS 4905 : 2015
ISO 24153 : 2009

16

a) Method 1

1) Assign a distinct integer from 1 to N to each element of the list of the N treatments or units, as the
case may be.

2) Generate a random permutation of the N integers taken N (i.e. all) at a time.

3) Conduct the experimental activity according to the sequence resulting from step 2).

b) Method 2

1) Generate N random real variables Ui, and assign each value in the order generated to each
successive element of the list of treatments or units, as the case may be.

2) Sort the list of treatments or units in ascending order according to their respective values of U.

3) Conduct the experimental activity according to the sequence resulting from step 2).

EXAMPLE 1 A medical researcher wants to test the effect of a new drug in comparison to the normally used treatment
for a particular medical condition. Twelve subjects volunteer and are assigned the numbers from 1 to 12 as they join up for
participation in the clinical trial. The researcher plans to allocate treatment A (new drug) to 6 subjects and treatment B
(current drug) to the other 6 subjects. As a further step to reduce bias, the experimenter decides to first randomize the
order of the 12 treatments before allocating them to the randomized list of 12 subjects. The index numbers of the
treatments and subjects are each separately randomized using method 1. The resulting randomized list of the treatments
is {B, B, A, B, A, A, B, A, A, B, B, A} and the randomized list of subjects is {3, 7, 12, 5, 1, 9, 11, 4, 10, 2, 8, 6}. The
treatments may now be directly allocated to the subjects based on the order in the lists, yielding {B3, B7, A12, B5, A1, A9,
B11, A4, A10, B2, B8, A6}. Consequently, treatment A is allocated to subjects {1, 4, 6, 9, 10, 12} and treatment B is
allocated to subjects {2, 3, 5, 7, 8, 11}.

EXAMPLE 2 An experimenter wishes to conduct a replicated experiment, testing each of 5 units in random order at
three different times. The set {1, 2, 3, 4, 5} is randomly permuted by method 1, yielding the following three ordered lists:
{2, 1, 5, 4, 3}, {1, 5, 2, 3, 4}, and {4, 3, 5, 2, 1}. The three lists are assigned in order to test times 1, 2, and 3, respectively,
and the experimenter tests the units according to the order specified in the list associated with each test time.

8.15 Random Latin square

A Latin square of order n is an n × n array containing symbols from some alphabet of size n, arranged so that
each symbol appears exactly once in each row and exactly once in each column. It is useful in the planning of
some types of designed experiments. A random Latin square of order n may be generated by the following
method (from Reference [4]).

a) Create arrays A[1:n, 1:n] and C[1:n].

b) Set R equal to 1.

c) Assign integers 1 to n to array C[1:n].

d) Set J equal to N.

e) Set C equal to 1.

f) Set I equal to 0.

g) Generate a random integer X in the range from 1 to J inclusive.

h) Set H equal to 1.

i) If I is greater than 50, go to step c).

j) If A[H, C] is equal to C[X], increment I by 1 and go to step g).

IS 4905 : 2015
ISO 24153 : 2009

17

k) Increment H by 1.

l) If H is less than or equal to R − 1, go to step i).

m) Set A[R, C] equal to C[X] and decrement J by 1.

n) If X is greater than J, go to step r).

o) Set K equal to X.

p) Set C[K] equal to C[K + 1].

q) Increment K by 1; if K is less than or equal to J, go to step p).

r) Increment C by 1; if C is less than or equal to n, go to step f).

s) Increment R by 1; if R is less than or equal to n, go to step c).

t) Obtain the random Latin square from array A.

NOTE An algorithm for generating uniformly distributed random Latin squares may be found in Reference [5]. In
addition, it should be noted that there is a connection between a random Latin square and the generation of random
derangements of a permutation as each row and column of a Latin square is a derangement of all of the previous rows
and columns.

IS 4905 : 2015
ISO 24153 : 2009

18

Annex A
(normative)

Random number tables

A.1 Description

This annex provides two tables of random numbers that are applicable when access to a computerized
implementation of the random number generation algorithms of this standard is not available. Each table
consists of 3 600 random digits from 0 to 9, which each occur with equal frequency. The tables are each
arranged in a 60-row by 60-column format to facilitate the use of the time of day to establish as a starting point.
The tables were generated using the algorithms described in Clause 7.

A.2 Use

A.2.1 Number of digits and interpretation

A.2.1.1 Determine the number of digits m necessary to represent the lot size N. The number of digits is
equal to the number of digits in the lot size except where the lot size is an integral power of 10; in this case,
ignore the initial digit in the lot size and interpret the remaining zeroes as the number of digits required, as well
as being equal to the lot size value (e.g. if N = 100, interpret the value 00 as 100).

A.2.1.2 When the lot size is less than or equal to one-half of 10m, tabular entries may be interpreted
based on a mapping of the observed value to the range from 1 to N, provided that bias is not introduced in the
process. This may be accomplished by discarding all values that exceed kN, where k = ⎣10m / N⎦, before
mapping the value according to the equation v2 = 1 + (v1 − 1) modulo N, where v1 is the initial value and v2 is
the value mapped into the desired range.

A.2.2 Starting point(s)

A.2.2.1 Before numbers can be obtained from the tables, a strategy for choosing a starting point needs to
be decided upon. The tables were designed to readily permit the time of day from a clock or watch capable of
displaying time to a resolution of a second to be used for this purpose. The following is a possible method.

a) Record the current time in “hh:mm:ss” format.

b) Use the value of the seconds to determine the row value, interpreting 00 as 60.

c) Use the value of the minutes to determine the column value, interpreting 00 as 60.

d) Use the value of the hours to determine whether Table A.1 or Table A.2 is to be used, based on whether
the value is odd or even.

EXAMPLE An experimenter wishes to choose a starting point in the tables for selecting a random sample from a lot
of 100 units. The current time is recorded as 10:35:13. The entry coordinates to the tables are therefore row 13 and
column 35 of Table A.2 (since 10 is even). The digit at that location is 6 but since two digits are needed to select a sample
from 100 units, the value from column 36 would be included as well to identify the first sampling unit as 66.

A.2.2.2 Any other method that provides a random source of uniformly distributed integers over the range
from 1 to 60 inclusive such as the coin or die method in 5.2 or the computer algorithm in Clause 7 (which may
be used to generate a long list of random entry coordinates to be used on successive occasions) may also be
used. In addition, at the conclusion of selecting a sample from the table on a particular occasion, the
coordinates of the immediately following entry may be recorded and then used as the starting point for the
next occasion of sampling.

IS 4905 : 2015
ISO 24153 : 2009

19

EXAMPLE Continuing with the example of A.2.2.1, assume that a random sample with replacement of 10 units is
required and that the direction to be used to select these numbers is downwards. The resulting sample is {66, 13, 10, 45,
32, 22, 41, 49, 22, 99}. The coordinates of the immediately following value are row 23 and column 35. These values can
be recorded and used as an entry point the next time a sample is required.

A.2.2.3 The entry coordinates may also be determined by establishing an initial digit based on the row
and column values from A.2.2.1 or A.2.2.2, and additional digits based on the current row and additional
column values based on numbers randomly generated without replacement over the range from 1 to 60
inclusive for the remaining m − 1 digits required. The resulting multi-digit number would be formed in the order
in which the column entries were generated.

EXAMPLE A random sample from a lot of 1 000 is required. The initial row and column are determined as 5 and 11,
respectively, in Table A.1. Two more digits are required and these have been externally generated as 1 and 30, yielding
the following coordinates for the first, second, and third digits, respectively: (5, 11), (5, 1), and (5, 30). The direction taken
in the table is decided to be downwards. The first number is therefore 511, followed by 943, 419, 413, 899, 209, etc.

A.2.3 Dealing with table boundaries

A.2.3.1 When reading a number composed of m digits and the digits to the right of the first digit would
exceed the 60th column, treat columns 1, 2, and so on as columns 61, 62, and so on, respectively. This rule
may be applied within the existing table or by treating the other table of random numbers as an extension of
the first table.

A.2.3.2 The usual rule is to obtain subsequent random numbers by increasing the row value by one and
reading the m digits of the number based on the predetermined column values and their order. Where this row
value would exceed the 60th row, treat row 1 as row 61 and increase the column values by m in the case of
consecutively-used columns, or by one in the case where A.2.2.3 was used to establish the columns, and
continue obtaining numbers. This rule may be applied within the existing table or by treating the other table of
random numbers as an extension of the first table, providing that it is not already in use as per A.2.3.1.

A.2.4 Audit records

When records are required to be maintained for audit purposes by a responsible authority or regulatory body,
record the lot size and sample size.

In addition, with respect to the tables and their use, record the

a) initial row,

b) initial column(s) and their sequence order,

c) direction taken in the table,

d) initial table used and the manner in which it was extended by the other table, if applicable, and

e) mapping used.

IS 4905 : 2015
ISO 24153 : 2009

20

Table A.1 — Random numbers (for odd values)

Column j Row i
5 10 15 20 25 30 35 40 45 50 55 60

5

95183
08509
45448
02230
13275

14683
97009
66819
00022
96798

96585
47525
86936
46390
51425

84761
88791
95349
76658
67147

65044
93751
08657
91934
15216

65183
70490
75106
64676
71831

55567
17749
97487
42429
16229

28734
32927
85268
96812
25862

19802
65085
59208
30560
22090

56410
94970
43206
99913
91420

79127
55541
14898
72809
24352

02879
89466
29083
66736
03550

10

44439
17629
14328
96896
09725

33385
80967
77127
02466
80938

95151
42144
40397
86706
27971

92374
58190
78105
09507
01243

14683
24550
75031
66840
29232

00323
62189
99553
68509
28799

57667
94525
84296
38033
88456

78341
44967
01482
90785
99618

09004
15860
25738
75831
20071

80139
85739
32761
98886
79865

81182
93323
85035
00905
63584

87552
87043
68873
48343
69087

15

55021
06492
20604
20202
27160

37184
95014
54145
58870
01595

69480
54908
27781
67569
64831

56317
21591
35157
71756
07126

19944
13771
50127
76284
25821

56756
35967
61025
30909
81524

37514
78637
57344
87763
12585

86439
29918
36615
21951
76273

69831
47923
07766
67756
36256

15172
61404
83959
82597
41879

81398
63378
34546
15210
33287

69574
72394
67011
04291
84361

20

95089
74825
80338
16596
34134

78572
21529
94074
43179
42056

87167
24660
65731
42026
40153

65888
33314
39470
94264
00994

93358
64512
03807
28301
14179

23879
80550
72355
29514
44447

84496
51712
40407
60657
99399

16147
23057
86049
21732
86963

31130
53841
81583
21548
71862

96978
32470
06786
28693
01306

80361
36790
16673
15241
15489

85195
60455
06017
68944
00515

25

01118
67371
03485
33328
84302

98623
71659
55173
74045
10060

33695
30505
68477
25331
25334

49221
71239
12348
37635
84920

97197
56944
76971
39081
30270

21424
35898
64800
28786
09722

91691
02207
86498
20843
61706

09365
93274
42059
32565
52863

62483
40142
08942
24316
03417

98893
98319
32931
17888
95658

22106
41218
73896
47626
74490

45399
43739
27772
69199
00143

30

94775
51700
75920
32385
13424

52191
63604
13260
28423
00587

94552
96771
44283
46784
12231

99265
34444
27735
59222
44543

55079
30002
31134
17776
62984

64517
67975
97100
57726
58391

16803
93167
36706
56449
22054

13037
16746
24404
32109
16134

50984
97842
56970
11825
73790

14886
25589
44575
57995
59050

04385
12568
68832
91217
24893

67907
81785
42374
12802
62342

35

90896
60682
38746
51658
49174

00608
38700
34667
18422
12449

31377
34039
84499
05732
97583

53338
93512
70915
91001
85835

84813
38596
91391
98070
82313

76825
40004
25660
13591
96349

92192
71447
12328
44468
92721

24937
97193
35273
88460
64617

81481
52407
08135
66964
06030

01866
44146
04799
24038
22312

22641
77116
14489
93987
94263

21817
99965
19984
66335
80291

40

44215
33877
83411
27135
29475

21953
94654
43288
82404
31431

21844
10025
47832
52031
46863

44114
84935
40488
44648
70098

93162
94630
89085
97600
98659

51028
49660
69731
72166
72035

29551
23473
00790
70830
21538

66121
89644
60182
27701
12923

63959
67212
71358
01755
76963

97789
75851
22571
00523
78288

44259
83767
94204
01837
59083

90865
45647
64211
31304
18839

45

56886
55061
01646
41789
26066

38711
35916
62126
28167
80119

66126
15955
37253
90577
44259

16504
28228
24997
84499
94514

87900
36994
53016
25059
21211

74055
73167
96515
90583
44302

46028
17137
40536
09422
29023

84821
36572
39311
87357
28138

83323
48592
64151
55416
03693

35962
60721
93960
81135
50650

27522
97714
24053
41286
38450

87875
61215
87645
92320
61118

50

63559
35054
32826
07860
79276

20927
84077
26937
90064
72512

12881
02504
75563
91220
19525

25582
10800
14290
46786
27397

07872
75293
30078
45994
88975

28073
86466
70820
47375
77137

59006
92406
58639
70140
40032

55666
56289
64900
35592
06205

68690
79807
61699
05990
06997

59772
55271
34974
58470
53504

25162
73177
11738
82014
07760

87924
70568
64065
05265
62546

55

41093
27382
38984
51411
80310

04332
27938
47230
44221
18848

68677
91695
59448
93363
23722

27073
64013
97802
48654
30788

94104
46719
37987
42656
27435

58532
61629
22733
99464
03780

53616
33668
52199
08481
85737

32156
32391
12325
98128
05561

66153
35411
18625
66677
57203

00264
68209
01271
89441
07316

36374
33885
84870
66019
98597

15230
64050
10911
75095
73621

60

40082
86922
07932
20383
45471

39571
84354
69932
07288
31340

89790
81939
18796
50265
30187

65382
32180
87070
48321
23899

01447
32891
82202
63056
36361

15984
52704
05372
35861
96780

60854
84659
93506
80864
55823

72833
95442
60697
86357
37743

87320
86204
48535
51567
06957

95245
44040
89027
68151
77884

40678
51613
45719
11723
78061

89785
15984
51567
06990
36603

IS 4905 : 2015
ISO 24153 : 2009

21

Table A.2 — Random numbers (for even values)

Column j Row i
5 10 15 20 25 30 35 40 45 50 55 60

5

51326
96821
67104
93315
45823

91644
43647
67934
93110
44862

88971
41707
95662
01022
86472

00664
91062
85259
16079
77354

10776
20037
08546
74364
95916

90888
47660
77032
97582
36599

97107
34652
28958
34309
52350

00930
82087
26815
18699
89866

87438
29652
66683
24437
98532

23714
51614
50539
12839
69704

33246
11015
65189
48005
33735

72109
66187
22993
46478
13696

10

32573
74553
06794
75606
97535

58513
41700
48960
34848
55169

70797
25357
75160
74458
47044

53560
17428
18552
71100
81940

23115
66708
00424
01512
16507

38325
83630
25976
89662
12220

74380
42360
69852
01391
16375

99917
16842
35837
49140
65306

21721
40782
69810
18048
38691

00323
21345
64014
59282
75019

29402
88668
03045
77344
55186

27080
95845
53378
72419
47269

15

89809
88095
48854
97951
48953

48811
48475
75803
73015
47945

09494
07399
34089
36585
81153

06576
02165
45335
89007
10121

58258
98038
13056
12069
69935

73155
97247
44509
96858
60894

46712
48441
77886
17241
23151

11106
93066
65036
37189
00113

38382
20276
42619
44193
40597

70893
72169
95564
28270
71164

39503
49706
66315
81624
61331

42937
56553
49084
75256
10930

20

83334
31105
94245
19221
33503

44992
74546
19396
70541
45776

30210
74875
03648
58195
88514

99370
51747
28548
21383
10094

60425
41021
42987
57877
28589

87391
22338
78668
27812
47548

63244
49403
09292
06504
64714

54828
20173
23073
18289
96174

12155
75454
21116
18606
10026

64082
62122
07199
17680
87111

43773
37227
21398
09218
29333

66172
35790
18770
58984
77885

25

03602
43277
31966
19193
98935

99374
65791
42142
31952
48606

41918
12217
71410
87947
27475

43875
23767
28139
89521
73462

11258
09833
60147
65225
66692

83646
66504
68496
97987
11151

46042
82359
89021
14794
21709

26986
95754
01615
90695
32836

11003
40249
36565
69314
92997

94756
71472
85598
10359
33682

89972
61588
18048
27881
12722

00805
04428
32584
38183
38906

30

21880
81695
68883
59547
91709

10506
06183
60266
60741
73154

78478
08147
66180
56065
86898

85067
01241
05680
71467
20234

30375
16278
38799
07193
05773

82944
54886
40481
38784
47157

06660
36468
73524
08169
72305

40750
21315
73255
07389
20819

84252
49106
79950
64049
57301

20463
10291
42007
21355
89018

37184
16837
56334
86589
74851

27248
40481
54332
06583
50560

35

57195
03657
93373
35158
38056

97283
71909
88795
50868
14298

25156
82018
11353
45055
10431

59277
83110
44726
12180
53147

33608
21722
66989
29993
76843

73937
03455
24389
69555
32128

19341
30654
93445
69613
46844

17262
57890
53752
69358
23407

63955
18530
98703
96861
62423

41678
60458
55276
01667
01712

36229
57145
18391
47738
46033

54204
08764
53513
11964
64425

40

49152
80000
53597
09151
99734

05010
90734
22379
34061
68144

84942
70131
94302
64751
63963

25483
19986
15425
96631
73011

52825
34949
62185
50373
22832

17485
76990
27894
61603
98145

67614
48325
37281
84917
31523

12493
39323
38876
56084
60195

88626
66921
97902
57647
34172

39589
89134
34008
80898
40637

56044
21853
45051
55489
60940

21968
18973
05607
24602
51237

45

84547
18815
14169
90528
99055

89655
26665
38336
60501
42696

53120
25301
41192
73201
14376

95599
67754
56208
72999
24907

04602
88457
29069
30355
06082

07968
19913
87045
86428
61789

85748
96787
32135
39401
03963

74914
71084
25975
72077
64664

76227
14867
71643
48056
09132

07158
03077
74200
17853
87218

24432
89575
52556
24894
64755

22963
66834
30213
19838
46107

50

62530
74196
27293
94220
68430

10183
77214
56047
93209
23169

38149
89483
73998
32369
58879

70004
43933
19996
82003
97812

74983
80953
94427
82433
39399

02092
81268
09157
85790
71469

40704
46485
62999
47632
40835

01062
23647
88803
36285
04924

17000
98173
81272
68771
30336

61170
55947
22315
06006
59222

99026
96727
92708
37556
06350

24025
86378
07343
51601
45656

55

61949
57248
10777
06717
09519

23031
90383
53979
92287
67689

50698
23502
65288
42775
13829

85772
22642
39116
79274
30992

85990
80722
80635
90874
44921

36942
38164
49653
44006
67375

11098
12160
36903
27312
94754

06636
51707
33854
15909
95322

57547
22075
79873
25276
25501

73247
20624
67823
59863
78486

46229
91644
23256
75607
99059

52551
08780
31643
22277
62524

60

57335
14911
04837
14430
68896

48704
08271
08929
20139
64599

79426
21662
81607
15027
91227

49770
40886
33210
52208
55882

32989
53783
61894
16440
60220

22640
76430
17240
59911
70202

88230
41233
37617
57566
73354

66598
44057
56753
22227
34776

27685
28385
61251
60109
55530

29719
21751
49433
95260
20599

99930
51476
65644
21388
45720

26181
64387
63758
96686
75145

IS 4905 : 2015
ISO 24153 : 2009

22

Annex B
(informative)

Random number generation algorithm computer code

B.1 Overview

The following code is written in the C programming language (see Reference [6] for language details) and
provides an implementation of the algorithms described in Clause 7. References to the relevant parts of
Clause 7 are directly included as remarks within the programming code segments to aid in translating to other
programming languages.

B.2 Demonstration program

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>

/* Function prototypes */
int SeedGen(void);
double U(void);

/* Global variables */
long ij, Seed, Seed2, S2k;
char str[20];
const long m1=2147483563, m2=2147483399, mm1=2147483562,
 a1=40014, a2=40692, q1=53668, q2=52774, r1=12211, r2=3791;
const double ufac=4.6566130573917691e-10;

/* Demonstration program */
int main(void)
{
 long i, nn, n, Seed1, *A, *ptr;
 char yn[4];
 time_t tnow;

 system("CLS");
 printf("Demonstration program for ISO 24153-1: Random sampling procedures -\n");
 printf("Part 1: Quality control and designed experiment applications (Clause 7)\n");
 printf("\nRandom number and seed algorithms used in a single sampling application\n");

 printf("Lot size: ");
 scanf("%d", &nn);
 printf("Sample size: ");
 scanf("%d", &n);
 printf("\nManual seed (Y/N): ");
 scanf("%s", yn);
 if (yn[0] == 'Y' || yn[0] == 'y') { /* manual seed option */
 printf("\nEnter an integer between 1 and 2147483398 inclusive: ");
 scanf("%d", &Seed);
 Seed1 = Seed; /* 7.1.3 save copy of seed */
 S2k = 0;
 tnow = time(NULL);
 strftime(str, 20, "%Y-%m-%d %H:%M:%S", localtime(&tnow));
 }
 else {
 Seed = SeedGen(); /* call automatic seed function of 7.2 */

IS 4905 : 2015
ISO 24153 : 2009

23

 Seed1 = Seed; /* 7.2.5 save copy of seed */
 }
 Seed2 = Seed; /* RNG function seed parameters */
 ij = -1; /* RNG function initialization parameter */

 /* Create holding array for sample values */
 A = (long *) calloc(n, sizeof(long));
 if (A == NULL) {
 printf("Array allocation failed\n");
 exit(1);
 }

 /* Select a random sample (with replacement) */
 ptr = A;
 for (i = 0; i < n; i++)
 *(ptr++) = 1 + (long)floor(U() * nn); /* 7.3.9 scaled output over (1;nn) */

 /* 7.4 Program output with audit details */
 printf("\nLot size: %d\n", nn);
 printf("Sample size: %d\n", n);
 printf("Date and time: %s\n", str);
 printf("Elapsed seconds: %d\n", S2k);
 printf("Seed: %d\n", Seed1);
 printf("Selected sample:\n");
 for (i = 0; i < n; i++) printf("%8d", A[i]);
 printf("\n");
 system("PAUSE");
 return 0;
}

B.3 Automatic random seed generator function

When a manually-entered seed is required for verification or auditing purposes as mentioned in 7.1.3, this
function is not called.

int SeedGen(void)
{
/* B.1.3 Automatic random seed generator function */
/* 7.2.2 a) computer system date and time capture */
 long i, j, k;
 struct tm t, *ptr;
 time_t tnow, tref;

 /* Reference time: 2000-01-01 00:00:00 */
 t.tm_year = 2000 - 1900;
 t.tm_mon = 0; t.tm_mday = 1; t.tm_hour = 0;
 t.tm_min = 0; t.tm_sec = 0; t.tm_isdst = 0;

 tref = mktime(&t);
 tnow = time(NULL);
 ptr = localtime(&tnow);
 strftime(str, 20, "%Y-%m-%d %H:%M:%S", ptr);

/* 7.2.2 b) number of complete days since 2000-01-01 00:00:00 */
/* 7.2.2 c) number of seconds since 2000-01-01 00:00:00 */
 S2k = (long)difftime(tnow, tref);

/* quasi-random seed generator */
 Seed = S2k; /* 7.2.2 d) initial seed */
 j = S2k - (S2k / 100) * 100 + 1; /* 7.2.2 e) warm-up value */
 for (i = 1; i <= j; i++) { /* 7.2.4 */
 k = Seed / q2; /* 7.2.3 b) RNG #2 */
 Seed = a2 * (Seed - k * q2) - k * r2; /* 7.2.3 c) RNG #2 */
 if (Seed < 0) Seed += m2; /* 7.2.3 d) RNG #2 */

IS 4905 : 2015
ISO 24153 : 2009

24

 }
 return Seed; /* 7.2.5 output seed */
/* function additionally modifies global variables str[] and S2k */
}

B.4 Random number generation function

When the option for a manually-entered seed is chosen per 7.1.3, the parameter “Seed” (and therefore
“Seed2”) is set to equal to the manually-entered value before calling this function.

double U(void)
{
/* B.1.4 Random number generation function */
 int j, k, i1;
 static long k1, Shuffle[32];

 if (ij < 0) { /* 7.3.1 a) initialize shuffling array */
 for (j = 39; j >= 0; j--) { /* 7.3.4 fill shuffling array */
 k = Seed / q1; /* 7.3.3 b) RNG #1 */
 Seed = a1 * (Seed - k * q1) - k * r1; /* 7.3.3 c) RNG #1 */
 if (Seed < 0) Seed += m1; /* 7.3.3 d) RNG #1 */
 if (j <= 31) Shuffle[j] = Seed; /* 7.3.4 */
 } /* final Seed value; input to 7.3.6 a) */
 ij = 0; /* disable further initialization */
 k1 = Shuffle[0]; /* input to 7.3.6 c) */
 }
/* 7.3.6 combined random number generator (CRNG) */
 k = Seed / q1; /* 7.3.6 a) RNG #1; input from 7.3.4 */
 Seed = a1 * (Seed - k * q1) - k * r1; /* 7.3.6 a) RNG #1 */
 if (Seed < 0) Seed += m1; /* 7.3.6 a) RNG #1 */
 k = Seed2 / q2; /* 7.3.6 b) RNG #2; input from 7.2.5 */
 Seed2 = a2 * (Seed2 - k * q2) - k * r2; /* 7.3.6 b) RNG #1 */
 if (Seed2 < 0) Seed2 += m2; /* 7.3.6 b) RNG #1 */
 i1 = floor(32.0 * k1 / m1); /* 7.3.6 c) array index calculation */
 k1 = Shuffle[i1] - Seed2; /* 7.3.6 d) unscaled temporary output */
 Shuffle[i1] = Seed; /* 7.3.6 e) update shuffling array */
 if (k1 < 1) k1 += mm1; /* 7.3.6 f) unscaled integer output */
 return (k1*ufac); /* 7.3.8 scaled real output over (0;1) */
}

IS 4905 : 2015
ISO 24153 : 2009

25

Annex C
(informative)

Random sampling and randomization computer code

C.1 Introduction

This annex provides C language implementations (see Reference [6] for language details) of selected
algorithms described in Clause 8. The program code of this annex is written to illustrate the descriptions in
Clause 8 and is not necessarily optimal in its structure.

C.2 Demonstration program

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

/* Function prototypes */
void RandPermNM(long m, long n, long A[]);
void RandPermN(long n, long A[]);
void RandDerang(long n, long A[], long B[]);
void RSWOR(long n, long m, long A[]);
void SRSWORIULS(long n, long m, long B[], long A[]);
void OSRSWORA(long n, long m, long A[]);
void OSRSWORB(long n, long m, long l, long A[]);
void RLS(long n, long A[][]);
long RandIntMN(long m, long n);
long RandInt1N(long n);
long C(long m, long n);
double U(void);

/* Global variables */
long Seed;
const long ka = 16807, kq = 127773, kr = 2836, km = 2147483647;

/* Demonstration program */
int main(void)
{
 long i, j, m, n;
 system("CLS");
 printf("Clause 8 demonstration program\n\n");

 Seed = 543210; m = 1; n = 100;
 printf("8.2 Random integer between m and n\n");
 printf("m, n, i: %d %d %d\n", m, n, RandIntMN(m, n));
 system("PAUSE"); printf("\n");

 Seed = 543210; n = 100;
 printf("8.2 Random integer between 1 and n\n");
 printf("n, i: %d %d\n", n, RandInt1N(n));
 system("PAUSE"); printf("\n");

 Seed = 543210; m = 5; n = 10;
 long A[n];
 for (i = 0; i < n; i++) A[i] = i+1;
 printf("8.3 Random permutation of n items taken m at a time\n");
 RandPermNM(m, n, A);
 printf("m, n: %d %d\n", m, n);
 for (i = 0; i < m; i++) printf("%d ", A[i]);

IS 4905 : 2015
ISO 24153 : 2009

26

 printf("\n");
 system("PAUSE"); printf("\n");

 Seed = 543210; n = 10;
 long A1[n];
 for (i = 0; i < n; i++) A1[i] = i+1;
 printf("8.3 Random permutation of n items taken all at a time\n");
 RandPermN(n, A1);
 printf("n: %d\n", n);
 for (i = 0; i < n; i++) printf("%d ", A1[i]);
 printf("\n");
 system("PAUSE"); printf("\n");

 n = 10;
 long A2[n];
 printf("8.4 Random derangement\n");
 RandDerang(n, A1, A2);
 for (i = 0; i < n; i++) printf("%d ", A2[i]);
 printf("\n");
 system("PAUSE"); printf("\n");

 Seed = 543210; n = 5; m = 20;
 long A3[n];
 printf("8.6 Random sampling without replacement\n");
 RSWOR(n, m, A3);
 printf("m, n: %d %d\n", m, n);
 for (i = 0; i < n; i++) printf("%d ", A3[i]);
 printf("\n");
 system("PAUSE"); printf("\n");

 Seed = 543210; n = 5; m = 20;
 long A4[n], A5[m + 2];
 for (i = 0; i < m+2; i++) A5[i] = 0;
 for (i = 0; i < m; i++) A5[i] = i+1;
 printf("8.9 Single random sampling from an initially unknown lot size\n");
 SRSWORIULS(n, m, A5, A4);
 printf("m, n: %d %d\n", m, n);
 for (i = 0; i < n; i++) printf("%d ", A4[i]);
 printf("\n");
 system("PAUSE"); printf("\n");

 Seed = 543210; n = 5; m = 20;
 long A6[n];
 printf("8.10 Method A: ordered single random sampling without replacement\n");
 OSRSWORA(n, m, A6);
 printf("m, n: %d %d\n", m, n);
 for (i = 0; i < n; i++) printf("%d ", A6[i]);
 printf("\n");
 system("PAUSE"); printf("\n");

 Seed = 543210; n = 5; m = 20;
 long A7[n+1], b, d;
 b = C(m, n); d = RandInt1N(b);
 printf("8.10 Method B: ordered single random sampling without replacement\n");
 OSRSWORB(n, m, d, A7);
 printf("m, n, d, C(m,n): %d %d %d %d\n", m, n, d, b);
 for (i = 1; i <= n; i++) printf("%d ", A7[i]);
 printf("\n");
 system("PAUSE"); printf("\n");

 Seed = 543210; n = 8;
 long A8[n+1][n+1];
 printf("8.15 Random Latin square\n");
 RLS(n, A8);
 printf("Order: %d\n", n);
 for (i = 1; i <= n; i++) {
 for (j = 1; j <= n; j++) {
 printf("%3d ", A8[i][j]);

IS 4905 : 2015
ISO 24153 : 2009

27

 }
 printf("\n");
 }
 printf("\n");
 system("PAUSE");

 return 0;
}

C.3 Functions

/**/
long RandInt1N(n)
long n;
{
/* 8.2 Random integer in a range (1 to n inclusive) */
 return (1 + (long)floor(U() * n));
}

/**/
long RandIntMN(m, n)
long m, n;
{
/* 8.2 Random integer in a range (m to n inclusive; m < n) */
 return (m + (long)floor(U() * (n - m + 1)));
}

/**/
void RandPermN (n, A)
long n, A[];
{
/* 8.3 Random permutation of N items taken all at a time */
/* A[] is both the input and output array; output in A[] */
 long j, k, temp;
 for (j = 0; j < n-1; j++) {
 k = RandIntMN(j, n-1);
 temp = A[j]; A[j] = A[k]; A[k] = temp;
 }
 return;
}

/**/
void RandPermNM (m, n, A)
long m, n, A[];
{
/* 8.3 Random permutation of n items taken m at a time */
/* A[] is both the input and output array; output in A[0:m-1] */
 long j, k, temp;
 if (m == n) {m = n - 1;}
 for (j = 0; j < m; j++) {
 k = RandIntMN(j, n-1);
 temp = A[j]; A[j] = A[k]; A[k] = temp;
 }
 return;
}

/**/
void RandDerang (n, A1, A2)
long n, A1[], A2[];
{
/* 8.4 Random derangement */
/* A1[] is the input array; A2[] is the output array */
 long i, iFlag, n1;
 for (i = 0; i < n; i++)

IS 4905 : 2015
ISO 24153 : 2009

28

 A2[i] = A1[i]; /* make a copy */
 iFlag = 1; n1 = n;
 for (;;) {
 RandPermN(n1, A2);
 for (i = 0; i < n1; i++) {
 if (A2[i] == A1[i]) {iFlag = 0; break;}
 }
 if (iFlag == 0) iFlag = 1;
 else break;
 }
return;
}

/**/
void RSWOR (n, m, A)
long n, m, A[];
{
/* 8.6 Random sampling without replacement */
/* n = sample size; m = lot size */
/* A[] is the sample output array */
 long i, k;
 long B[m]; /* array to keep track of units chosen */
 for (i = 0; i < m; i++) B[i] = 0;
 i = -1;
 do {
 k = RandInt1N(m);
 if (B[k] == 0) {
 B[k] = 1; i = i + 1; A[i] = k;
 }
 } while (i < n);
 return;
}

/**/
void SRSWORIULS (n, m, B, A)
long n, m, B[], A[];
{
/* 8.9 Single random sampling from an initially unknown lot size */
/* n = sample size; m = lot size; (n < m) */
/* A[] is the sample output array */
/* B[] simulates a lot of unknown size (0 indicates lot concluded) */
 long k, v;
 m = 0; /* lot size counter */
 for (;;) {
 m = m + 1;
 v = B[m-1];
 if (v == 0) {m = m - 1; break;}
 if (m <= n) A[m-1] = v;
 else {
 k = RandInt1N(m);
 if (k <= n) A[k-1] = v;
 }
 }
 return;
}

/**/
void OSRSWORA (n, m, A)
long n, m, A[];
{
/* 8.10 a) Method A: ordered single random sampling without replacement */
/* n = sample size; m = lot size; (n < m) */
/* A[] is the sample output array */
 long j, k, k1;
 double p, x;
 k = m - n; k1 = m; j = 0;
OsrsworA1:
 j = j + 1;

IS 4905 : 2015
ISO 24153 : 2009

29

 if (j > n) goto OsrsworA3;
 x = U(); p = 1.0;
OsrsworA2:
 p = p * k / k1;
 if (p <= x) {
 A[j-1] = m - k1 + 1; k1 = k1 - 1;
 goto OsrsworA1;
 }
 else {
 k1 = k1 - 1; k = k - 1;
 goto OsrsworA2;
 }
OsrsworA3:
 return;
}

/**/
void OSRSWORB (n, m, lx, A)
long n, m, lx, A[];
{
/* 8.10 b) Method B: ordered single random sampling without replacement */
/* Finds the combination set of m things taken n at a time */
/* for a given lexicographical index. */
/* n = sample size; m = lot size; (n < m) */
/* lx = lexicographical index of combination sought [1 <= lx <= C(m,n)] */
/* A[] is the sample output array */
 long i, k, n1, r;
 k = 0; n1 = n - 1;
 for (i = 1; i < n; i++) {
 A[i] = 0;
 if (i != 1) A[i] = A[i-1];
OsrsworB1:
 A[i] = A[i] + 1;
 r = C(m - A[i], n - i);
 k = k + r;
 if (k < lx) goto OsrsworB1;
 k = k - r;
 }
 A[n] = A[n1] + lx - k;
 return;
}

/**/
void RLS (n, A)
long n, A[n+1][n+1];
{
/* 8.15 Random Latin square */
/* n = order; A[][] is the output random Latin square */
 long B[n+1], h, i, j, k, r, c, x;
 for (r = 1; r <= n; r++) {
Rls1:
 for (i = 1; i <= n; i++) B[i] = i;
 j = n;
 for (c = 1; c <= n; c++) {
 i = 0;
Rls2:
 x = floor(U() * j + 1);
 for (h = 1; h <= r-1; h++) {
 if (i > 50) goto Rls1; /* row no good */
 if (A[h][c] == B[x]) {
 i = i + 1; goto Rls2; /* column no good */
 }
 }
 A[r][c] = B[x]; j = j - 1;
 for (k = x; k <= j; k++) B[k] = B[k + 1];
 }
 }
 return;

IS 4905 : 2015
ISO 24153 : 2009

30

}

/**/
long C(m, n)
long m, n;
{
/* 8.10 b) Method B: auxiliary function */
/* Calculates the number of combinations of m things taken n at a time. */
 long i, k, x, n1;
 n1 = n; k = m - n1;
 if (n1 < k) {k = n1; n1 = m - k;}
 x = n1 + 1;
 if (k == 0) {x = 1;}
 if (k >= 2) {
 for (i = 2; i <= k; i++)
 x = (x * (n1 + i)) / i;
 }
 return x;
}

/**/
double U(void)
{
/* Source: bibliographic reference [12] */
/* RNG based on: x[i+1] = 16807 * x[i] mod 2147483647 */
/* Included for illustration purposes only */
 long k;
 k = Seed / kq;
 Seed = ka * (Seed - k * kq) - kr * k;
 if (Seed < 0) {Seed = Seed + km;}
 return (1.0 * Seed / km);
}

IS 4905 : 2015
ISO 24153 : 2009

31

Bibliography

[1] BAYS, C. and DURHAM, S.D. Improving a Poor Random Number Generator. ACM Transactions on
Mathematical Software, 2 (1), 1976, pp. 59-64

[2] BISSELL, A.F. Ordered random selection without replacement. Applied Statistics, 35, 1986, pp. 73-75

[3] BUCKLES, B.P. and LYBANON, M. Algorithm 515, Generation of a Vector from the Lexicographical Index.
ACM Transactions on Mathematical Software, 3 (2), 1977, pp. 180-182

[4] BYERS, J.A. Random selection algorithms for spatial and temporal sampling. Computers in Biology and
Medicine, 26, 1996, pp. 41-52

[5] JACOBSON, M.T. and MATTHEWS, P. Generating uniformly distributed random Latin squares. Journal of
Combinatorial Design, 4, 1996, pp. 405-437

[6] ISO/IEC 9899:1999, Programming languages — C

[7] L'ECUYER, P. An Efficient and Portable Combined Random Number Generator. Communications of the
ACM, 31 (6), 1988, pp. 742-749, 774

[8] MARSAGLIA, G. Random Number Generators. Journal of Modern Applied Statistical Methods, 2 (1),
2003, pp. 2-13

[9] MCCULLOUGH, B.D. Assessing the Reliability of Statistical Software: Part II. The American Statistician,
Vol. 53, No. 2 (May), 1999, pp. 149-159

[10] MCCULLOUGH, B.D. and WILSON, B. On the Accuracy of Statistical Procedures in Microsoft EXCEL 97.
Computational Statistics and Data Analysis, 31 (1), 1999, pp. 27-37

[11] MCLEOD, A.I. and BELLHOUSE, D.R. A convenient algorithm for drawing a simple random sample.
Applied Statistics, 32, 1983, pp. 182-184

[12] PARK, S.K. and MILLER, K.W. Random Number Generators: Good Ones are Hard to Find.
Communications of the ACM, 31 (10), 1988, pp. 1192-1201

[13] PRESS, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P. Numerical Recipes in Fortran 77:
The Art of Scientific Computing, Second Edition (Volume 1 of Fortran Numerical Recipes), Cambridge
University Press, Cambridge, UK, 1992, 2001

[14] SOM, R.K. A Manual of Sampling Techniques. Heinemann Educational Books Ltd., London, 1973

IS 4905 : 2015
ISO 24153 : 2009

(Continued from second cover)

International Standard Corresponding Indian Standard Degree of
Equivalence

ISO 3534-3 : 1999 Statistics —
Vocabulary and symbols — Part 3:
Design of experiments

IS 7920 (Part 3) : 1996 Statistical —
Vocabulary and symbols : Part 3
Design of experiments (second
revision)

do

ISO 80000-2 Quantities and units —
Part 2: Mathematical signs and
symbols to be used in the natural
sciences and technology

IS/ISO 80000-2:2009 Quantities
and units: Part 2 Mathematical
signs and symbols to be used in the
natural sciences and technology

With
ISO 8000-2 : 2009

In reporting the result of a test or analysis made in accordance with this standard, it shall be rounded off
in accordance with IS 2 : 1960 ‘Rules for rounding off numerical values (revised)’.

Annex A forms an integral part of this standard. Annexes B and C of this standard are for information
only.

Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote
harmonious development of the activities of standardization, marking and quality certification of goods
and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form
without the prior permission in writing of BIS. This does not preclude the free use, in the course of
implementing the standard, of necessary details, such as symbols and sizes, type or grade designations.
Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also
reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that
no changes are needed; if the review indicates that changes are needed, it is taken up for revision.
Users of Indian Standards should ascertain that they are in possession of the latest amendments or
edition by referring to the latest issue of ‘BIS Catalogue’ and ‘Standards : Monthly Additions’.

This Indian Standard has been developed from Doc No.: MSD 03 (0429).

Amendments Issued Since Publication

Amend No. Date of Issue Text Affected

BUREAU OF INDIAN STANDARDS
Headquarters:

Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002
Telephones : 2323 0131, 2323 3375, 2323 9402 Website: www.bis.org.in

Regional Offices: Telephones

Central : Manak Bhavan, 9 Bahadur Shah Zafar Marg 2323 7617
NEW DELHI 110002 2323 3841

Eastern : 1/14 C.I.T. Scheme VII M, V. I. P. Road, Kankurgachi 2337 8499, 2337 8561
KOLKATA 700054 2337 8626, 2337 9120

Northern : SCO 335-336, Sector 34-A, CHANDIGARH 160022 260 3843
260 9285

Southern : C.I.T. Campus, IV Cross Road, CHENNAI 600113 2254 1216, 2254 1442
2254 2519, 2254 2315

Western : Manakalaya, E9 MIDC, Marol, Andheri (East) 2832 9295, 2832 7858
MUMBAI 400093 2832 7891, 2832 7892

Branches: AHMEDABAD. BANGALORE. BHOPAL. BHUBANESHWAR. COIMBATORE. DEHRADUN.
FARIDABAD. GHAZIABAD. GUWAHATI. HYDERABAD. JAIPUR. KOCHI. LUCKNOW.
NAGPUR. PARWANOO. PATNA. PUNE. RAJKOT. VISAKHAPATNAM.

{

{
{

{
{

Published by BIS, New Delhi

	Scope
	Normative references
	Terms, definitions, and symbols
	Terms and definitions
	Symbols

	General
	Random sampling — Mechanical device methods
	Urn method
	Coin or die method

	Pseudo-independent random sampling — Table method
	Random number tables
	Basic method

	Pseudo-independent random sampling — Computer method
	Overview
	Initialization algorithm
	Random number generation algorithm
	Audit records

	Applications to common sampling situations
	General
	Random integer in a range
	Random permutation
	Random derangement
	Random sampling with replacement
	Random sampling without replacement
	Random sampling for continuous sampling plans (CSP)
	Stratified random sampling
	Single random sampling from an initially unknown lot size
	Ordered single random sampling without replacement
	Cluster sampling
	Random sampling with probability proportional to size
	Multi-stage sampling
	Randomization in designed experiments
	Random Latin square

