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NATIONAL FOREWORD
This Indian Standard which is identical with ISO/IEC TR 24028 : 2020 ‘Information technology  
Artificial intelligence — Overview of trustworthiness in artificial intelligence’ issued by International 
Organization for Standardization (ISO) and International Electro technical Commission (IEC) jointly  
was adopted by the Bureau of Indian Standards on recommendation of the Artificial Intelligence 
Sectional Committee, and approval of the Electronics and Information Technology Division Council.
The text of ISO/IEC Standard has been approved as suitable for publication as an Indian Standard 
without deviations. Certain terminologies and conventions are, however, not identical to those used  
in Indian Standards. Attention is particularly drawn to the following:

	 a)	 Wherever the words ‘International Standard’ appear referring to this standard, they should be 
read as ‘Indian Standard’.

	 b)	 Comma (,) has been used as a decimal marker, while in Indian Standards, the current practice 
is to use a point (.) as the decimal marker.
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Introduction

The goal of this document is to analyse the factors that can impact the trustworthiness of systems 
providing or using AI, called hereafter artificial intelligence (AI) systems. The document briefly 
surveys the existing approaches that can support or improve trustworthiness in technical systems 
and discusses their potential application to AI systems. The document discusses possible approaches 
to mitigating AI system vulnerabilities that relate to trustworthiness. The document also discusses 
approaches to improving the trustworthiness of AI systems.
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Information technology — Artificial intelligence — 
Overview of trustworthiness in artificial intelligence

1 Scope

This document surveys topics related to trustworthiness in AI systems, including the following:

— approaches to establish trust in AI systems through transparency, explainability, controllability, etc.;

— engineering pitfalls and typical associated threats and risks to AI systems, along with possible 
mitigation techniques and methods; and

— approaches to assess and achieve availability, resiliency, reliability, accuracy, safety, security and 
privacy of AI systems.

The specification of levels of trustworthiness for AI systems is out of the scope of this document.

2 Normative references

There are no normative references in this document.

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at https:// www .iso .org/ obp

— IEC Electropedia: available at http:// www .electropedia .org/ 

3.1
accountability
property that ensures that the actions of an entity (3.16) may be traced uniquely to that entity

[SOURCE: ISO/IEC 2382:2015, 2126250, modified — The Notes to entry have been removed.]

3.2
actor
entity (3.16) that communicates and interacts

[SOURCE: ISO/IEC TR 22417:2017, 3.1]

3.3
algorithm
set of rules for transforming the logical representation of data (3.11)

[SOURCE: ISO/IEC 11557:1992, 4.3]

3.4
artificial intelligence
AI
capability of an engineered system (3.38) to acquire, process and apply knowledge and skills

Note 1 to entry: Knowledge are facts, information (3.20) and skills acquired through experience or education.

TECHNICAL REPORT ISO/IEC TR 24028:2020(E)
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3.5
asset
anything that has value (3.46) to a stakeholder (3.37)

Note 1 to entry: There are many types of assets, including:

a) information (3.20);

b) software, such as a computer program;

c) physical, such as computer;

d) services;

e) people and their qualifications, skills and experience; and

f) intangibles, such as reputation and image.

[SOURCE: ISO/IEC 21827:2008, 3.4, modified — In the definition, “the organization” has been changed 
to “a stakeholder”. Note 1 to entry has been removed.]

3.6
attribute
property or characteristic of an object that can be distinguished quantitatively or qualitatively by 
human or automated means

[SOURCE: ISO/IEC/IEEE 15939:2017, 3.2]

3.7
autonomy
autonomous
characteristic of a system (3.38) governed by its own rules as the result of self-learning

Note 1 to entry: Such systems are not subject to external control (3.10) or oversight.

3.8
bias
favouritism towards some things, people or groups over others

3.9
consistency
degree of uniformity, standardization and freedom from contradiction among the documents or parts 
of a system (3.38) or component

[SOURCE: ISO/IEC 21827:2008, 3.14]

3.10
control
purposeful action on or in a process (3.29) to meet specified objectives

[SOURCE: IEC 61800-7-1:2015, 3.2.6]

3.11
data
re-interpretable representation of information (3.20) in a formalized manner suitable for 
communication, interpretation or processing

Note 1 to entry: Data (3.11) can be processed by human or automatic means.

[SOURCE: ISO/IEC 2382:2015, 2121272, modified — Notes 2 and 3 to entry have been removed.]
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3.12
data subject
individual about whom personal data (3.27) are recorded

[SOURCE: ISO 5127:2017, 3.13.4.01, modified — Note 1 to entry has been removed.]

3.13
decision tree
supervised-learning model for which inference can be represented by traversing one or more tree-like 
structures

3.14
effectiveness
extent to which planned activities are realized and planned results achieved

[SOURCE: ISO 9000:2015, 3.7.11, modified — Note 1 to entry has been removed.]

3.15
efficiency
relationship between the results achieved and the resources used

[SOURCE: ISO 9000:2015, 3.7.10]

3.16
entity
any concrete or abstract thing of interest

[SOURCE: ISO/IEC 10746-2:2009, 6.1]

3.17
harm
injury or damage to the health of people or damage to property or the environment

[SOURCE: ISO/IEC Guide 51:2014, 3.1]

3.18
hazard
potential source of harm (3.17)

[SOURCE: ISO/IEC Guide 51:2014, 3.2]

3.19
human factors
environmental, organizational and job factors, in conjunction with cognitive human characteristics, 
which influence the behaviour of persons or organizations

3.20
information
meaningful data (3.11)

[SOURCE: ISO 9000:2015, 3.8.2]

3.21
integrity
property of protecting the accuracy and completeness of assets (3.5)

[SOURCE: ISO/IEC 27000:2018, 3.36, modified — In the definition, "protecting the" has been added 
before "accuracy" and "of assets" has been added after "completeness".]
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3.22
intended use
use in accordance with information (3.20) provided with a product or system (3.38) or, in the absence of 
such information, by generally understood patterns (3.26) of usage.

[SOURCE: ISO/IEC Guide 51:2014, 3.6]

3.23
machine learning
ML
process (3.29) by which a functional unit improves its performance by acquiring new knowledge or 
skills or by reorganizing existing knowledge or skills

[SOURCE: ISO/IEC 2382:2015, 2123789]

3.24
machine learning model
mathematical construct that generates an inference or prediction, based on input data (3.11)

3.25
neural network
computational model utilizing distributed, parallel local processing and consisting of a network of 
simple processing elements called artificial neurons, which can exhibit complex global behaviour

[SOURCE: ISO 18115-1:2013, 8.1]

3.26
pattern
set of features and their relationships used to recognize an entity (3.16) within a given context

[SOURCE: ISO/IEC 2382:2015, 2123798]

3.27
personal data
data (3.11) relating to an identified or identifiable individual

[SOURCE: ISO 5127:2017, 3.1.10.14, modified — The admitted terms and Notes 1 and 2 to entry have 
been removed.]

3.28
privacy
freedom from intrusion into the private life or affairs of an individual when that intrusion results from 
undue or illegal gathering and use of data (3.11) about that individual

[SOURCE: ISO/IEC 2382:2015, 2126263, modified — Notes 1 and 2 to entry have been removed.]

3.29
process
set of interrelated or interacting activities that use inputs to deliver an intended result

[SOURCE: ISO 9000:2015, 3.4.1, modified — The notes to entry have been omitted.]

3.30
reliability
property of consistent intended behaviour and results

[SOURCE: ISO/IEC 27000:2018, 3.55]
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3.31
risk
effect of uncertainty on objectives

Note 1 to entry: An effect is a deviation from the expected. It can be positive, negative or both and can address, 
create or result in opportunities and threats (3.39).

Note 2 to entry: Objectives can have different aspects and categories and can be applied at different levels.

Note 3 to entry: Risk is usually expressed in terms of risk sources, potential events, their consequences and their 
likelihood.

[SOURCE: ISO 31000:2018, 3.1]

3.32
robot
programmed actuated mechanism with a degree of autonomy (3.7), moving within its environment, to 
perform intended tasks

Note 1 to entry: A robot includes the control (3.10) system and interface of the control system (3.38).

Note 2 to entry: The classification of robot into industrial robot or service robot is done according to its intended 
application.

[SOURCE: ISO 18646-2:2019, 3.1]

3.33
robotics
science and practice of designing, manufacturing and applying robots (3.32)

[SOURCE: ISO 8373:2012, 2.16]

3.34
safety
freedom from risk (3.31) which is not tolerable

[SOURCE: ISO/IEC Guide 51:2014, 3.14]

3.35
security
degree to which a product or system (3.38) protects information (3.20) and data (3.11) so that persons 
or other products or systems have the degree of data access appropriate to their types and levels of 
authorization

[SOURCE: ISO/IEC 25010:2011, 4.2.6]

3.36
sensitive data
data (3.11) with potentially harmful effects in the event of disclosure or misuse

[SOURCE: ISO 5127:2017, 3.1.10.16]

3.37
stakeholder
any individual, group or organization that can affect, be affected by or perceive itself to be affected by 
a decision or activity

[SOURCE: ISO/IEC 38500:2015, 2.24]
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3.38
system
combination of interacting elements organized to achieve one or more stated purposes

Note 1 to entry: A system is sometimes considered as a product or as the services it provides.

[SOURCE: ISO/IEC/IEEE 15288:2015, 3.38]

3.39
threat
potential cause of an unwanted incident, which may result in harm (3.17) to systems (3.38), organizations 
or individuals

3.40
training
process (3.29) to establish or to improve the parameters of a machine learning model (3.24) based on a 
machine learning algorithm (3.3) by using training data (3.11)

3.41
trust
degree to which a user (3.43) or other stakeholder (3.37) has confidence that a product or system (3.38) 
will behave as intended

[SOURCE: ISO/IEC 25010:2011, 4.1.3.2]

3.42
trustworthiness
ability to meet stakeholders' (3.37) expectations in a verifiable way

Note 1 to entry: Depending on the context or sector and also on the specific product or service, data (3.11) and 
technology used, different characteristics apply and need verification (3.47) to ensure stakeholders expectations 
are met.

Note 2 to entry: Characteristics of trustworthiness include, for instance, reliability (3.30), availability, resilience, 
security (3.35), privacy (3.28), safety (3.34), accountability (3.1), transparency, integrity (3.21), authenticity, 
quality, usability.

Note 3 to entry: Trustworthiness is an attribute (3.6) that can be applied to services, products, technology, data 
and information (3.20) as well as, in the context of governance, to organizations.

3.43
user
individual or group that interacts with a system (3.38) or benefits from a system during its utilization

[SOURCE: ISO/IEC/IEEE 15288:2015, 4.1.52, modified — Note 1 to entry has been removed.]

3.44
validation
confirmation, through the provision of objective evidence, that the requirements for a specific intended 
use (3.22) or application have been fulfilled

Note 1 to entry: The right system (3.38) was built.

[SOURCE: ISO/IEC TR 29110-1:2016, 3.73, modified — Only the last sentence of Note 1 to entry has been 
retained and Note 2 to entry has been removed.]

3.45
value
<data> unit of data (3.11)

[SOURCE: ISO/IEC/IEEE 15939:2017, 3.41]
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3.46
value
<social> belief(s) an organization adheres to and the standards that it seeks to observe

[SOURCE: ISO 10303-11:2004, 3.3.22]

3.47
verification
confirmation, through the provision of objective evidence, that specified requirements have been 
fulfilled

Note 1 to entry: The system (3.38) was built right.

[SOURCE: ISO/IEC TR 29110-1:2016, 3.74, modified — Only the last sentence of Note 1 to entry has been 
retained.]

3.48
vulnerability
weakness of an asset (3.5) or control (3.10) that can be exploited by one or more threats (3.38)

[SOURCE: ISO/IEC 27000:2018, 3.77]

3.49
workload
mix of tasks typically run on a given computer system (3.38)

[SOURCE: ISO/IEC/IEEE 24765:2017, 3.4618, modified — Note 1 to entry has been removed.]

4 Overview

This document provides an overview of topics relevant to building trustworthiness of AI systems. 
One of the goals of this document is to assist the standards community with identifying specific 
standardization gaps in the area of AI.

In Clause 5, the document briefly surveys existing approaches being used for building trustworthiness 
in technical systems and discusses their potential applicability to AI systems. In Clause 6, the document 
identifies the stakeholders. In Clause 7, it discusses their considerations related to the responsibility, 
accountability, governance and safety of AI systems. In Clause 8, the document surveys the 
vulnerabilities of AI systems that can reduce their trustworthiness. In Clause 9, the document identifies 
possible measures that improve trustworthiness of an AI system by mitigating vulnerabilities across 
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As with security, trustworthiness has been understood and treated as a non-functional requirement 
specifying emergent properties of a system — i.e. a set of characteristics with their attributes — within 
the context of quality of use. This is indicated in ISO/IEC 25010[20].

Additionally, like with security, trustworthiness can be improved through an organizational process 
with specific measurable outcomes and key performance indicators (KPIs).

In summary, trustworthiness has been understood and treated as both an ongoing organizational 
process as well as a (non-functional) requirement.

According to UNEP[26], the “precautionary principle” means that where there are threats of serious or 
irreversible harm, lack of full scientific certainty shall not be used as a reason for postponing effective 
measures to prevent harm. In safety engineering, a process for capturing and then sizing, stakeholder 
“value” requirements includes the understanding of the system’s context of use, the risks of harm and, 
when applicable, an application of the “precautionary principle” as a risk mitigation technique against 
potential unintended consequences, such as harm to rights and freedom of natural persons, life of any 
kind, the environment, a species or a community.

AI systems are often existing systems enhanced with AI capabilities. In this case, all the approaches 
and considerations regarding trustworthiness that applied to the old version of the system, continue 
to apply to enhanced system. These include approaches to quality (both metrics and measurement 
methodologies), safety and risk of harm and risk management frameworks (such as those existing 
for security and privacy). Subclauses 5.2 to 5.5 present different frameworks for contextualizing the 
trustworthiness of AI systems.

5.2 Recognition of layers of trust

An AI system can be conceptualized as operating in an ecosystem of functional layers. Trust is 
established and maintained at each layer in order for the AI system to be trusted in its environment. 
For example, the ITU-T report on Trust Provisioning[27] introduces three layers of trust: physical 
trust, cyber trust and social trust, taking into account the physical infrastructure for data collection 
(e.g. sensors and actuators), IT infrastructure for data storage and processing (e.g. cloud) and end-
applications (e.g. ML algorithms, expert systems and applications for end-users).

Regarding the layer of physical trust, the concept is often synonymous to the combination of reliability 
and safety because the metrics are based on a physical measurement or test. For instance, the technical 
control of a car makes the car and its inner mechanisms trustworthy. In this context, the level of trust 
can be determined through the level of fulfilment of a checklist. In addition, some processes such as 
sensor calibration can guarantee the correctness of measurements and, therefore, the data produced.

At the cyber trust layer, concerns often shift to IT infrastructure security requirements, such as access 
control and other measures to maintain AI system integrity and to keep its data safe.

Trust at the end-applications layer of an AI system requires, among other things, software that is 
reliable and safe. In the context of critical systems, the production of software is framed by a set of 
processes to verify and validate the “product”[28]. The same is true for AI systems and more. With the 
stochastic nature of AI systems based on machine learning, trustworthiness also implies fairness of the 
system’s behaviour, corresponding to the absence of inappropriate bias.

Moreover, social trust is based on a person’s way of life, belief, character, etc. Without a clear 
understanding of the internal functioning, its operating principles are not transparent to the non-
technical segment of population. In this case, the establishment of trust might not be dependent on 
objective verification of the AI system’s performance, but rather based on a subjective pedagogical 
explanation of the AI system’s observed behaviour.

5.3 Application of software and data quality standards

Software has an important effect on the trustworthiness of a typical AI system. As a result, identifying 
and describing the quality attributes of its software can help to improve trustworthiness of the whole 
system[29]. These attributes can contribute to both cyber and social trust. For example, from a societal 
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perspective, trustworthiness can be described in terms of ability, integrity and benevolence[30]. Below 
are examples of how these terms are being interpreted today in the context of AI systems.

— Ability is the capability the AI system to do a specific task (e.g. discover the tumour within a medical 
image or identify a person using face recognition over a video monitoring system). The attributes 
related to ability include robustness, safety, reliability, etc.

— Integrity is an AI system’s respect of sound moral and ethical principles or the assurance that 
information will not be manipulated in a malicious way by the AI system. Thus, the attributes of 
integrity include completeness, accuracy, certainty, consistency, etc.

— Benevolence is the extent to which the AI system is believed to do good or in other terms, to what 
extent the “Do No Harm” principle is respected.

The ISO/IEC SQuaRE series deals with software quality through models and measurement 
(ISO/IEC 2501x on models and ISO/IEC 2502x on measurement) resulting in a list of characteristics for 
software quality and characteristics for data quality.

SQuaRE series distinguish between the following models:

— quality of a software product resulting in a list of 8 characteristics; 

— quality in use of a software product, data and IT services resulting in a list of 5 characteristics, 
giving way to differentiate cyber trust and social trust, specifying also possible risks to mitigate; 

— data quality, resulting in a list of 15 characteristics; and

— IT service quality, resulting in a list of 8 characteristics.

For example, in terms of ISO/IEC 25010[20], emerging social requirements falls within the category of 
“freedom from risk”. According to [20], freedom from risk is the “degree to which a product or system 
mitigates the potential risk to economic status, human life, health or the environment”.

ISO/IEC 25010 is a part of the SQuaRE series of International Standards and describes a model, 
consisting of characteristics and sub-characteristics, for software product quality and software quality 
in use. ISO/IEC 25012[19] is part of the same series and in turn defines a general data quality model for 
data processed in a structured format within a computer system. ISO/IEC 25012 focuses on the quality 
of the data as part of a computer system and defines quality characteristics for target data used by 
humans and systems.

The SQuaRE series have been developed for traditional software systems that store their data in a 
structured manner and process it using explicit logic. ISO/IEC 25012 describes its data quality model 
by using 15 different characteristics such as accuracy, completeness, accessibility, traceability and 
portability.

It can be more challenging to measure both system and data quality characteristics in AI systems. The 
data quality model in ISO/IEC 25012 does not sufficiently address all of the characteristics of the data-
driven nature of AI systems. For example, deep learning is an approach to creating rich hierarchical 
representations through the training of neural networks with many hidden layers on large amounts 
of data[31]. In addition, a data quality model for AI systems needs to take into consideration other 
characteristics not currently described in ISO/IEC 25012 such as bias in the data used to develop the 
AI system.

To more adequately cover AI systems and the data they depend on, it is possible that there is a need 
for extending or modifying existing standards to go beyond the characteristics and requirements of 
traditional systems and software development described in ISO/IEC 25010 and the data quality model 
described in ISO/IEC 25012.
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5.4 Application of risk management

Risk management is a preventative process that helps to ensure that “by design” a specific AI product 
or AI service is trustworthy throughout its lifecycle. The general process of risk management is defined 
in ISO 31000:2018[14] and involves identifying stakeholders and their vulnerable assets and values, 
assessing associated risks with their consequence or impact and making conscious risk treatment 
decisions based on the organization’s objectives and its risk tolerance. Risk according to ISO 31000[14] 
is defined as “effect of uncertainty on objectives”, where an effect is a deviation from the expected and 
it is measured or assessed in terms of the likelihood of the unexpected event and the level of impact 
it can have on the stakeholders. Risk management is especially suited to new technologies where 
the unknown is greater than the known. It is also best suited to deal with situations carrying risk 
inherently, such as dealing with human errors and malicious attacks. Moreover, risk management 
helps dealing with uncertainty in the areas where no recognized measurements of quality have been 
established yet. These characteristics are common to AI systems making them particularly suitable for 
risk management.

Key concepts from ISO 31000 are presented here to show how they can be applied to AI systems. 
These include identifying stakeholders, an organization’s objectives, control objectives, controls and 
associated measures. In the case of AI systems, the range of stakeholders can be especially broad and 
includes not only the organization itself, its partners and customers, but also the human society at 
large and the environment. Whether a developer, distributor or user of AI systems, an organization’s 
objectives at the top-level would include reputation, security and privacy, fairness and safety. Achieving 
trustworthiness relies on maintaining all these organizational objectives, which are translated 
into more tangible control objectives (or risk sources). Control objectives typically correspond to 
vulnerabilities, pitfalls or anticipated threats.1) For AI systems, these would include (but not be limited 
to) challenges to accountability, new security threats, new privacy threats, improper specification, 
deficient implementation, incorrect use and different sources of bias. For each of the identified control 
objectives, a set of possible controls (or mitigations) can be identified. For AI systems, these would 
include (but not be limited to):

— approaches to transparency;

— new security controls;

— new privacy controls;

— considerations related to robustness and resilience;

— considerations related to the choice and the configuration of ML algorithms;

— considerations related to data; and

— considerations related to system controllability.

The risk management process further takes each control and points it to a set of corresponding 
guidelines (or measures) to choose from the organization’s policy and the circumstances. Once this risk 
management process framework is established, its proper implementation and correct deployment is 
subject to continuous testing, review and improvement using different assessment and measurement 
approaches including (but not be limited to) algorithmic performance metrics and field trials.

5.5 Hardware-assisted approaches

Typical machine learning systems (both training and use) are deployed on common and untrusted off-
the-shelf platforms, which can influence the correct execution of the system. For example, machine 
learning applications are frequently deployed in a multi-tenant cloud. Hardware mechanisms reduce an 
attack surface by providing trusted execution environments (TEEs), which protect confidentiality and 
integrity of both the data and computation and for both training and use.

1)  Note that the mapping between the organization’s objectives and the control objectives may not be one-to-
one. For complex systems (such as AI systems), achieving each of the organization’s objectives typically requires 
achieving many of the identified control objectives.
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TEEs are used to protect selected code and data from disclosure or modification by providing 
hardware enforced isolation of programs or protected areas of execution that increase security even 
on compromised platforms. Using trusted execution environments, developers can protect machine 
learning model throughout its lifecycle (e.g. its training and use) by effectively treating the model as 
protected data or intellectual property as needed. TEEs enforce confidentiality and integrity of memory 
used by ML workload (typically using memory encryption engines) even in the presence of privileged 
malware at the system software layers.

6 Stakeholders

6.1 General concepts

This document adopts a broad definition of stakeholders from ISO/IEC 38500[17] which, in addition to 
recognizing individuals and organizations:

— acknowledges a group of people as a type of stakeholder which is important when understanding the 
collective viewpoints shared by a population of individuals that does not constitute an organization, 
i.e. in that the group does not benefit from a shared administration to represent that population; and

— encompasses stakeholder types that can be affected by the system, which is relevant but can extend 
beyond those who have needs or expectations for the systems, which implies some foreknowledge 
of the system.

This broader definition is important when considering the identification of stakeholders, some of whom 
can be unaware of the existence, goals or capabilities of the system.

The definition of the term “asset” in ISO/IEC 27000:2018[1] is insufficient when considered in relation 
to stakeholders as discussed above. Instead, by using the term asset, this document refers to “anything 
that has value to a stakeholder". This extends the assumption of Reference [1] that only organizations 
would possess assets of value, whereas this can also be the case for individuals and groups of people.

Values, in the context of this document, are not limited to organizations (as per Reference [23]), but 
include the beliefs any stakeholder “adheres to and the standards that it seeks to observe”.

Given the possibility of operating AI systems in pliable and dynamic fashion, approaches to the 
trustworthiness of AI need to focus on both gaining and maintaining trust. This can be achieved by 
using definitions that provide a clear context for specific characteristics of trustworthy AI, such 
that a change to the context can trigger a critical re-evaluation of the stated characteristic[32]. In 
this sense, it is insufficient to simply refer to the "trustworthy AI", but to specify who trusts whom 
in what aspects of AI development and use. Such stakeholder contextualization can therefore apply to 
consideration of trustworthy AI characteristics such as transparency (see 9.2), explainability (see 9.3) 
and controllability (see 9.4). Contextualization requires the careful identification of stakeholders and a 
clear understanding of their involvement at different points in the AI system lifecycle and value chains.

Different stakeholders can hold differing views of the relative importance of different proposed 
characteristics for a trustworthy AI. The standardization of terms and a conceptual framework 
for trustworthy AI would therefore enable clear, unambiguous communication between different 
stakeholders, so that these differences in view can be understood and resolutions to these differences 
sought. Such stakeholder communication would address:

— how different stakeholder can be affected by AI technology deployed in a product or service;

— how any assets that are valued by different stakeholder are used or affected by the use of AI in a 
product or service;

— how the use of AI in a product or service relates to values held by different stakeholders.
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6.2 Types

There is not yet a clear consensus on a typology of stakeholders related to the use of AI in products or 
services. In business, stakeholder theory[33] highlights the benefit of an approach to decision-making 
that looks beyond the fiduciary obligation of management to generate profits for shareholders and 
considers benefits to other types of stakeholders in an organization, including: employees, customers, 
management, suppliers, creditors, government and regulators, society in general and the natural 
environment (as a proxy representing future generations).

In the context of AI, we can consider such stakeholder types in relation to the following distinct roles in 
the AI value chain (noting that a single stakeholder can undertake several such roles):

— data source: an organization or an individual providing data that is used to train an AI system;

— AI system developer: an organization or an individual that designs, develops and trains an AI system;

— AI producer: an organization or an individual that designs, develops, tests and deploys a product or 
a service that uses at least one AI system;

— AI user: an organization or an individual that consumes a product or a service that uses at least one 
AI system;

— AI tools and middleware developer: an organization or an individual that design and develop AI 
tools and pretrained AI building blocks;

— test and evaluation agency: an organization or an individual that offer independent testing and 
possibly a certification;

— the broader society in which the AI system is deployed (as even an accurate AI system can lead to a 
confirmation of existing inequalities);

— associations representing the viewpoints of individuals;

— governance organizations that monitor and study the usage of AI including national governments 
and international organizations, such as the International Monetary Fund (IMF).

6.3 Assets

It is possible to characterize stakeholders by the assets they value that play a role in or are affected by 
the use of AI in a product or service.

Tangible assets specific to AI can include:

— data used to train an AI system;

— a trained AI system;

— a product or service that uses one or more AI system;

— data used to test the AI-related behaviour of a product or service;

— data fed to a product or service operation, based on which AI-based decisions are made;

— computing resources and software used to train, test and operate AI systems;

— human resources with the skills to:

— train, test and operate AI systems;

— develop software used in or for those tasks; and/or 

— generate, annotate or select data needed for AI training.
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Less tangible assets include:

— the reputation of and trust placed in, a stakeholder involved developing, testing or operating an AI 
system or the service or product that uses it;

— time, e.g. the time saved by the user of a product or service employing AI or time wasted in reacting 
to an inappropriate recommendation from an AI system;

— skills, which can become less valued due to automation enabled by an AI system;

— autonomy, which can be enhanced by more efficient provision of task related information by an AI 
system or which can be eroded, e.g. by persuasive content, such as advertising or political messages, 
targeted to an individual or a group of individuals, using AI profiling.

6.4 Values

Stakeholders can hold different views on the appropriate characteristics for a trustworthy AI system 
based on the different values they adhere to or seek to observe. Some proposals for trustworthy AI 
are grounded in a specific set of values established in a particular policy, such as the European 
Commission’s High Level Expert Group working paper on Trustworthy AI[34], which proposes principles 
grounded in the European Charter of Fundamental Rights. Different views of trustworthy AI can also 
result from different moral worldviews or systems of values. The relevance and impact of different 
worldviews, such as Western Ethics, Buddhism, Ubuntu, Shinto, on AI is still relatively unexplored[35]. 
More generally, with respect to value-sensitive design[36], a clear understanding of these differences in 
values is essential in communicating trustworthy AI characteristics at a global level.

7 Recognition of high-level concerns

7.1 Responsibility, accountability and governance

The development and application of AI systems represent an application of IT in a multi-stakeholder 
environment. To build and maintain trust in such an environment, it is important to define 
responsibilities and the accountability between stakeholders. As AI systems can exist in both complex 
international commercial value chains and across trans-national societal frameworks, it is important 
that all stakeholders share an understanding of the responsibilities they undertake towards other 
stakeholders and how they will be held accountable for those responsibilities. One of the main reasons 
for agreeing on such a framework is to be able to define decision-making points across the lifecycle of 
AI system.

Within an organization, the responsibilities for decisions and accountability for the outcomes of such 
decisions are typically captured in a governance framework. ISO/IEC 38500[17] guides high-level 
decision-makers in an organization in understanding and fulfilling their legal, regulatory and ethical 
obligations in the use of IT. It defines the tasks of evaluating, directing and monitoring aspects of IT in 
implementing principles of responsibility, strategy, acquisition, performance, conformance and human 
behaviour. ISO/IEC 38505[37] applies this model of IT governance to the governance of data. It does 
not specifically address the vulnerabilities of AI but does address some related issues relevant to data-
driven AI, such as machine learning. There can be opportunities to further align the IT governance 
model from ISO/IEC 38500 with the need for trustworthy AI systems, especially in relation to their 
interaction with other societal decision-making frameworks and to their use in autonomous systems. 
The term “autonomous system” is used in this document to refer to any kind of systems that operates 
relatively independently and is not limited to cars or “machinery”.

For example, a doctor can use AI to improve his/her diagnosis. The doctor can be accountable for the 
diagnosis because he/she is a qualified subject matter expert and, therefore, takes responsibility for 
factoring the output to an AI system in diagnostic decisions. On the other hand, an end-user applying 
for a job is not a subject matter expert and can have more difficulty in understanding why his/her 
application has been rejected. In this latter case, the chain of responsibility needs to be well identified.
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To achieve trustworthiness of AI-driven autonomous systems, it is necessary to address responsibilities 
and accountability in event that an autonomous system fails[38][40]. This allows holding relevant 
stakeholders legally accountable if an autonomous system causes harm. The European Group on Ethics 
in Science and New Technologies[41] highlighted in their 2018 statement that an AI-driven system cannot 
be autonomous in the legal sense and a clear framework of responsibility and legal liability needs to be 
established to enable recourse for any harm caused by the operation of any autonomous system.

7.2 Safety

Safety is a critical aspect of trustworthiness. Therefore, consideration of safety aspects has high 
priority. Usually the higher the perceived risks of a system to cause harm is, the higher the demands on 
trustworthiness are.

AI systems, as any other systems, are expected not to cause any unintentional harm. This includes 
not only tangible harm (for example, to the health of living beings, to property and to the physical 
environment), but also intangible harm (for example, to social and cultural environments).

ISO/IEC Guide 51[10] states that “All products and systems include hazards and, therefore, some level 
of residual risk. However, the risk associated with those hazards should be reduced to a tolerable level. 
Safety is achieved by reducing risk to a tolerable level which is defined in this Guide as tolerable risk.” 
AI systems, which provided a certain level of autonomy, are often seen as more safety critical. However, 
the hazards and risks are application-dependent and not necessarily directly related to the level of 
autonomy (e.g. autonomous road vehicle vs. autonomous household vacuum cleaner).

The complete lifecycle of an AI system, from its design to its disposal, becomes subject to consideration 
for safety aspects. The AI system application, its intended use and reasonably foreseeable misuse, 
as well as the environment in which it is used, and the technologies that are used, become subject to 
careful consideration. ISO/IEC Guide 51[10] defines “reasonably foreseeable misuse” as the use of a 
product or system in a way not intended by the supplier, but which can result from readily predictable 
human behaviour. It is possible for AI systems to introduce new risk due to AI specific vulnerabilities. 
This would lead to new measures to reduce the risk to a tolerable level due to AI specific behaviour such 
as non-transparent or non-deterministic decision processes. For a specific system, not only the AI part, 
but all used technologies and their interaction are subject to careful consideration. ISO/IEC Guide 51[10] 
provides general guidance on achieving tolerable risks.

8 Vulnerabilities, threats and challenges

8.1 General

This clause describes potential vulnerabilities of AI systems and the threats associated with them. 
Vulnerabilities is defined by ISO/IEC 27000[1] as weakness of an asset or control that can be exploited by 
one or more threats. Threats is defined by ISO/IEC 27000[1] as potential cause of an unwanted incident, 
which may result in harm to a system or organization.

Different stakeholders use different terms to describe the concept of “vulnerability”. These include risk 
sources, pitfalls, sources of failures, root causes and challenges.

Many vulnerabilities are related to the use of machine learning in AI systems. These include dependency 
on data, opaqueness of ML models and unpredictability. Specifically, the use of data can lead to new 
security threats and biased results.

Challenges related to the lack of “best practices” for design, development and deployment of AI systems 
can introduce additional or exacerbate existing vulnerabilities and threats.

Certain threats arise from the insufficient understanding of the technological capabilities of AI systems 
and their unfitting use by different stakeholders.

Subclauses 8.2 to 8.10 describe the potential AI systems’ vulnerabilities, threats and other challenges in 
more detail.
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8.2 AI specific security threats

8.2.1 General

The development of AI has held both advantages and disadvantages for digital security. On one hand, AI 
technologies can be used to profile attackers and their malicious activities and then to devise security 
solutions for fighting them. On the other hand, advanced technology developed using AI and machine 
learning can be misused for malicious purposes. For instance, AI can be used to guess passwords and 
compromise digital accounts.

In addition to common IT security threats applicable to most systems (e.g. software bugs, hardware 
backdoors, data security breaches), certain AI systems, such as machine learning systems, can be 
vulnerable to specialized or targeted security threats. Such threats include the following[43]:

— data poisoning that results in a malfunctioning AI system;

— adversarial attacks that abuse a benign AI system; and

— model stealing.

8.2.2 Data poisoning

In data poisoning attacks, attackers deliberately influence the training data to manipulate the results 
of a predictive model. Data poisoning attacks aim at letting the server train a bad model, which cannot 
detect the malicious attacks. This type of attack is especially valid in case the model is exposed to the 
Internet in an online mode, i.e. the model is continuously updated by learning from new data. Proper 
filtering of the training data can help to detect and filter out anomalous data and thus minimize the 
possible damage.

8.2.3 Adversarial attacks

One particular security threat associated with AI systems is the adversarial attack on the machine 
learning systems. An adversarial attack consists of providing slightly perturbed input data to a valid 
model, e.g. a slightly modified traffic sign to an autonomous vehicle system, in an attempt to trick it into 
misclassifying this input data.

The recent impressive advances in the field of ML, especially in the area of deep learning, have led 
to an increased interest in companies to apply ML algorithms in safety-critical and security-critical 
application contexts. Examples include the integration of semantic segmentation based on convolutional 
neural networks (CNN) into autonomous cars or into neural networks for medical diagnosis. Obviously, 
these new application contexts have extremely high demands on quality and quality assurance. Most of 
the time, it is not enough to prove high accuracy on well-crafted training, test and validation data sets. 
Besides handling the common cases of the given data distribution, it is necessary that the trained ML 
module is able to deal with rare corner cases or even with maliciously crafted input points[44].

The publications of Szegedy et al.[45] and Goodfellow et al.[46] have shown that computer vision ML 
algorithms, in particular deep neural networks, can be susceptible to attacks based on adversarial 
examples (or adversarial perturbations).

These adversarial perturbations are created by an adversary with the help of an adversarial attack 
and often imply erroneous behaviour of the considered ML module when added to an ordinary input 
point. Furthermore, these adversarial perturbations are often hard to detect or even imperceptible 
to the human eye. The imperceptibility is not only challenging for the desired deployment in safety- 
and security-critical industries, but also hints at a crucial difference between the sensory information 
processing in humans and in artificial neural networks[47]. Since the discovery of this vulnerability, 
a lot of different adversarial attacks and defences (defence strategies) have been published[48][49]. It 
has become an arms race between attackers and defenders. Newly published defences against a set 
of existing attacks are often rendered useless within a few weeks due to the creation of stronger 
attacks[50]. While such attacks are difficult to generalize, and they rely on close knowledge of the 

 

© ISO/IEC 2020 – All rights reserved 15



16

IS/ISO/IEC TR 24028 : 2020
﻿

 

ISO/IEC TR 24028:2020(E)

typically obscured internal network topology of production systems, they nonetheless warrant serious 
consideration from trustworthiness perspective.

8.2.4 Model stealing

Affecting both security and privacy, model stealing attacks are used to “steal” models by replicating 
their internal functioning. This is done by sending to the targeted model a high number of prediction 
queries and using the response received (the prediction) to train another model.

8.2.5 Hardware-focused threats to confidentiality and integrity

Machine learning applications are frequently subject to similar attacks as other sensitive applications. 
Typical software and hardware attacks on machine learning applications are digital attacks affecting 
confidentiality of the data and integrity of data and computation. There are other forms of attacks 
leading to denial of service (loss of availability) or causing leakage of information or leading to invalid 
computation.

Ensuring confidentiality and integrity of data and code, via traditional mechanism such as memory 
integrity and trusted platform modules (included in TEEs) is necessary but not sufficient to ensure 
confidentiality and integrity of the code and data of the machine learning engines – enforcing that the 
execution of the ML programs follows the programmed-intended logic is equally critical. For example, a 
control-flow attack on a ML application can defeat/circumvent ML model inference or can cause invalid 
training. A second category that is critical to enforce runtime integrity are mechanisms to prevent 
memory safety bugs. Logic flaws in programs can be leveraged for buffer overflows, use-after-free, out-
of-bounds exploits which can lead to faulty operation of ML applications.

Threats to complex device models, including hardware accelerators, that can be used by machine 
learning applications need to be considered. In many cases, these accelerators or devices can be para-
virtualized or emulated and in some cases cloud-based applications can benefit from using devices 
directly assigned to them. However, verification (via attestation) of such devices would help to ensure 
that the device is capable of upholding the privacy and security requirements of the ML applications. 
Hardware input/output (IO) memory management capabilities can be used to securely bind devices 
to workloads including DMA into protected memory. Future attack vectors that need attention include 
device spoofing, runtime memory remapping attacks and man-in-the-middle attacks.

8.3 AI specific privacy threats

8.3.1 General

The evolution of AI algorithms and the usage of big data have provided sophisticated solutions in many 
areas. Many AI techniques (e.g. deep learning) highly depend on big data since their accuracy relies, in 
part, on the amount of data they use. The misuse or disclosure of some data, particularly personal and 
sensitive data (e.g. health records) can have harmful effects on data subjects. Thus, privacy protection 
has become a major concern in big data analysis and AI. The challenge starts from the early stage of 
the data lifecycle (i.e. collecting and sharing data among different entities) to the last stage of data 
analysis and applying AI algorithms (e.g. risk of re-identification after analysing data from multiple 
data sources).

These privacy threats can result in negative affects to self-determination, dignity, freedom and 
fundamental rights of individuals.

8.3.2 Data acquisition

During data acquisition, the privacy threat is mainly about the amount of data to collect for the given 
purpose. One of the privacy principles, introduced in ISO/IEC 29100[51] is the data minimization 
principle. Given the dependency of machine learning models on the availability of large amounts of rich 
quality data, preferably from a variety of data sources, it is challenging to limit the data acquisition.
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In addition, the other privacy threat comes from the risk of the storage corruption. If an attacker 
compromises the storage, the privacy of the data subjects can be breached.

8.3.3 Data pre-processing and modelling

There exist potential privacy threats while processing the data:

— the inference of sensitive data from non-sensitive data by using machine learning and AI techniques;

— personal data is available from multiple sources. Although the data is de-identified, it is possible 
that AI re-identifies data using the inferences based on the data from the other sources.

8.3.4 Model query

Model stealing by querying the model for inappropriate reasons is described in 8.2.4. Such security 
attacks are designed to expose confidential information represented by a ML model. This type of attack 
can be used to expose sensitive information about individuals turning it into a privacy attack.

Such attacks can happen throughout the whole model’s lifecycle, including its development, deployment 
and operation. The attacks can be performed by both actors that are authorized to query the model and 
others that need to breach security to access to the model first.

Another threat is related to the inappropriate use of the model that was not accepted by individuals, such 
as profiling, sorting or classifying them, that can affect their social life (e.g. social services, credit cards).

8.4 Bias

Bias is defined as favouritism towards some things, people or groups over others. Bias typically 
arises from sources including human cognitive bias, societal bias and statistical bias (e.g. selection 
bias, sampling bias, coverage bias) or simply technical errors. Bias manifests in different stages of 
the development of an AI system and can take the form of data bias affecting the labels, the training 
data sets, missing features/labels, data processing issues or as architectural issues affecting models 
or combinations of models. Bias can also manifest as automation bias, that is, the over-reliance on 
the recommendations of AI systems. The effects of bias in the data can affect the model and lead to 
undesirable outcome that can reach from a decreased accuracy up to a complete misclassification for 
classification tasks. Removing these biases is not always possible and can produce wrong results. Bias 
caused by the training data set is often based on an incorrect application or disregard of statistical 
methods and rules.

Evaluation of bias requires that metrics are defined and measured for system performance in the 
context of specific groups of objects. Numerous metrics are available that are specific to this goal. 
However, it is essential to use a great care in selecting the metric to be used, as complex trade-offs 
can result in unintended outcomes. Examples are available where efforts to compensate for bias for a 
specific group (of objects) have led to an increase in bias in the context of another group.

Many examples of causes of bias are available, with related manifestations in AI systems and associated 
mitigation measures. The detailed description of this complex topic is subject to a detailed technical 
report that is under development.

8.5 Unpredictability

Predictability plays an important role in the acceptability of AI systems. The notion of predictability 
corresponds to the human capacity to infer the next actions of an AI system in a given environment. 
Trust in technology is often based on predictability: a system is trusted if it is possible to infer what 
the system does in a particular situation, even if one cannot explain why it is doing it. Conversely, trust 
would be reduced if a system operates unpredictably in familiar scenarios.

In an operating environment where the AI system interacts with humans and where human safety 
depends on that interaction, system predictability is necessary, not just desirable. The use of AI in 
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autonomous vehicles is an obvious use case, as the widespread adoption of AI-based autonomous 
vehicles is likely predicated on the ability of such vehicles to behave in a predictable fashion. Similarly, 
for the acceptability of collaborative robots in direct interaction with humans, human operators need 
to be able to predict robot behaviour to ensure operators’ safety[55].

In the case of human-driving cars, our cognitive mechanisms make fast and almost unconscious 
judgments about the likely actions of people and objects around us on the basis of experience, 
repetition and exposure to similar scenarios. Even slight changes in external behaviours can result in 
a level of unpredictability at odds with our experience. For instance, a self-driving car can collide with 
a non-autonomous car because of the inability of a human driver to discern the future actions of the 
autonomous car and vice versa.

Machine learning algorithms present specific challenges with regards to predictability compared to 
more traditional programming techniques. ML algorithms learn by analysing large amounts of data and 
discovering new patterns and solutions. The composition of training data and variations in underlying 
models in which patterns are realized, establishes parameters for the range of inputs that AI systems 
are capable of processing correctly. Scenarios that confuse the ML model can result in unpredictable 
behaviour, absent fail-safes or other override mechanisms. Further, in the case of continual learning 
or lifelong learning, the “logic” on which ML systems make decisions can evolve over time, introducing 
additional algorithmic unpredictability.

8.6 Opaqueness

Artificial Intelligence systems can exhibit many forms of opaqueness. Firstly, the AI model itself can 
be technically opaque, in that the decision procedures it uses are not easily interpretable by humans 
due to their nature. Secondly, if the data and data sources are not transparent, the behaviour of the 
whole system becomes opaque to an outside observer. Thirdly, an AI system is always implemented 
in a context of organizational practices, such as data collection, management, operationalization of AI 
results and system development. If these practices are undisclosed, even an interpretable AI model 
becomes an opaque system to users and other external stakeholders.

For a discussion of mitigation measures, see 9.2.

8.7 Challenges related to the specification of AI systems

Most failures of a product originate the specification phase. Because this phase defines the complete 
product, including its capabilities and environment and its output serves as input to the implementation 
phase, failures made in this phase have a large impact and are difficult or impossible to correct in later 
phases of the product lifecycle.

Errors in this phase occur especially when the environment of the product has not been analysed 
completely or in enough detail. A complete analysis includes all environmental influences that can have 
an effect on the intended functionality of the product, but also the observance of safety and security 
threats as well as an investigation of the legal, regulatory and ethical framework of the product. In 
addition, it is important to consider performance and usability aspects for the intended use, taking into 
account any changes to the deployment environment as well as different user groups.

For the analysis of potential hazards and risks from AI systems based on methods of machine learning, 
it is essential to consider a failure of the system caused by bias in the training data or by erroneous 
training of the algorithm. In addition, risks can be avoided by observing the special features of the 
methods used later and formulating the task accordingly.

Attribution of risk and legal responsibility within legal systems is a complex task. There is a possibility 
that by using AI, the attribution process becomes more difficult or it creates changes in how we 
appreciate risk/responsibility.

Since AI systems are used in to solve complex tasks in heterogeneous environments, the creation of a 
complete and correct specification is essential. Specifying the aims and the level of explainability (for 
more detail, see 9.3) would be an important component of any AI system specification.
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Once the specification has been defined, it needs to be communicated to the individual actors involved 
in the project. Inconclusive definitions of the specification are therefore one more source of failures as 
this increases the risk of misinterpretations and the falsification of the specification through multiple 
informal transmissions. In general, the mental concepts that are written down in the specification are 
interpreted by the person who has to create a system on the basis of this specification. This creates a 
first mismatch between the ideal specification and the final design. Further mismatches are created 
when using machine learning as the final algorithm is created by concepts that are derived by a training 
process out of data.

The sum of these uncertainties makes it necessary that the specification contains verifiable and 
validatable requirements against which the resulting product would be tested.

8.8 Challenges related to the implementation of AI systems

8.8.1 Data acquisition and preparation

In the data acquisition phase, the data sources necessary to solve the problem are identified. Depending 
on the complexity of the problem to solve, it can be a challenge to find a representative set of data. In 
case data is coming from multiple sources, normalization or weighting issues can arise. Importantly, 
defects in handling of the data sources (which are an input to the model) cannot be detected during 
model evaluation, as it is often conducted in isolation rather than in an integrated environment.

At this point, the data set or sets used to train the models are checked and documented for how well 
they represent the data that the model will be run on.

After finding the necessary data, a set of tasks, often called data preparation tasks, are performed in 
order to clean the data and put it into the right format to be exploited by the model. An important aspect 
in this phase is to verify the quality of the data (e.g. missing data, duplications, inconsistent data or data 
in the wrong format).

8.8.2 Modelling

8.8.2.1 General

In the modelling phase, selected algorithms are trained in order to generate the candidate models. A 
model is the representation of a machine learning algorithm when trained with data. Indeed, it is a best 
practice to build several models and then select the one that performs best for the particular business 
problem under analysis. In order to generate an accurate model, a common technique is to split the 
available data into three groups: training data, validation data and test data. The training dataset, as 
the term suggests, is the portion of data that is used to train the model and ensure it is fit. The validation 
dataset is used in a following step to validate the predicting capacity of a trained model and to tune the 
model. Finally, the test dataset is used during the testing phase in order to provide a final evaluation of 
the trained, fit and tuned model.

With today’s technology, building a machine-learning AI system involves the phases described in 8.8.2.2 
to 8.8.2.5 often iteratively.

8.8.2.2 Feature engineering

In machine learning, a feature is an input variable that is used by the model to make predictions. Feature 
engineering is the process of transforming raw data into features that best represent the underlying 
problem to the predictive models, resulting in improved model accuracy on unseen data[56]. Features 
are created via a sequence of data transformation steps (e.g. rescaling, discretization, normalization, 
data mapping, aggregations and ratios) usually involving some programming. Given that the features 
can be the result of several data transformation steps, the link with the original raw data can be difficult 
to reconstruct unless the process has been carefully documented.

 

© ISO/IEC 2020 – All rights reserved 19



20

IS/ISO/IEC TR 24028 : 2020
﻿

 

ISO/IEC TR 24028:2020(E)

Feature engineering heavily impacts the performance of the model, in a positive or in a negative way. 
For example, a single feature that contributes in a predominant way to the prediction of the model can 
affect the robustness of the model, since the final prediction strongly depends on the value of only that 
variable instead of being linked proportionally to all features. This can lead to inaccurate results.

8.8.2.3 Model training

Target leakage (also called data leakage) occurs when the training dataset contains some information 
related to the variable being predicted (target variable), that would not be the case in production. This 
can happen, for example, when the training data includes information that is not available at the time 
of the prediction (since the corresponding variable/feature is updated only after the target value is 
predicted). This can also occur when the target variable is inferred from the input data, through a proxy 
variable which cannot be included as a feature. Models with target leakage tend to be very accurate 
during evaluation but perform poorly in production.

The algorithm selected needs to be trained using the training data in order to build the model. The 
challenge related to this phase is building a model that provides a good representation of the training 
data with respect to the problem being solved or a model that is fit. In the training process, there is a risk 
of creating an overfit or underfit model. An overfit model is a model that has learned too many details 
and is so tightly fit to the underlying data set (including its noise or inherent error in the dataset), that 
it performs poorly at making predictions when new data comes in. This problem often happens when 
too many features have been selected as input for the model. On the other hand, underfitting occurs 
when the model has not captured the underlying patterns in the data and is therefore too generic 
for good predictions. This occurs more frequently when the model does not have enough relevant 
features. Therefore, in order to avoid becoming too specific (with too many features) or too vague (with 
not enough features), it is important to select the right features with the right amount of predictive 
information. Fitting the model is a challenge that arises during the training phase. However, the quality 
of predictions is measured during the validation and back-testing phases.

Other approaches to model selection and development include transfer learning, which aims to leverage 
knowledge of one task to learn a new task and federated learning, which aims to learn new models in a 
distributed and collaborative manner.

8.8.2.4 Model tuning and hyper-parameter optimization

During the training phase, the models are calibrated/tuned by adjusting their hyperparameters. 
Examples of hyperparameters are the depth of the tree in the decision tree algorithm, the number of 
trees in a random forest algorithm, the number of clusters k in the k-means algorithm, the number of 
layers in the neural network, etc. Selection of incorrect hyperparameters can be a source of failures of 
prediction models.

The quality of a model not only depends on its structure, the training algorithm and the data, a crucial 
factor is also the choice of the model's hyper-parameters. In some applications, the optimization 
of hyper-parameters has advanced the state of the art more than the learning algorithms. Hyper-
parameter optimization usually forms an outer loop of the learning process.

8.8.2.5 Model validation & evaluation

After having tuned the models, these are evaluated against the validation datasets, in order to check 
their performance on data that is different from the dataset used for training. The simple model 
validation technique uses only one validation dataset. However, in order to build more robust models, 
a K-fold cross validation technique can be used. This technique consists of dividing the data into k 
subsets, each one of which is used as the validation set while the other k-1 subsets are combined to form 
the training set. The results of the k validation tests are compared to identify the highest performance 
and robust model (in terms of sensitivity to the noise in the training data). The selection of the model 
is based on its performance compared to other models. Examples of statistical metrics that are used 
to evaluate the model performance are the ROC AUC (area under curve), the confusion matrix (which 
compares the predicted values with the actual values from the test dataset) or the F-1 score (which is 
calculated based on the confusion matrix and represents the ideal cut-off between precision and recall).
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In a separate back-testing phase, the model that has been selected after the modelling phase is once 
again tested with new data (the testing dataset) for final consistency. Some final settings to tune the 
model (like the cut-off threshold in classification problems, which defines the probability to fall in one 
class or the other and therefore the trade-off between false positives and false negatives) are defined 
together with the business users since they depend on the specific business application.

Production deployment typically takes place after the back-testing phase.

8.8.3 Model updates

After a model has been deployed into production, it can require an update based on the newly acquired 
data. It is important to continuously monitor the performance/accuracy of the model in order to 
promptly identify when the model needs re-training/updating. The model updates generally aim to 
make the model more robust and/or generalize the model to different tasks or to improve its accuracy 
against new data sets.

One straightforward method to update the model is to simply use both the initial and new data to 
retrain the model. There can be challenges with this approach, such as collecting all data in a central 
location, as well as high computation to retrain a new model based on a larger and growing volume of 
data. One approach to these challenges is incremental learning, in which existing models are extended 
based on new data. In general, data-efficient and computationally efficient algorithms to update and 
extend models based on new data is an active area of research.

The main risk to be aware of when updating a model is the impact on performance. The updated 
model would be validated and back-tested to ensure that there is no degradation relative to earlier 
performance on the initial task and that the performance on any new tasks is suitable for the specific 
business application. Moreover, it is important to ensure the full traceability and auditability of the 
different versions of the models deployed in production.

8.8.4 Software defects

Methods of artificial intelligence are based on the implementation of algorithms in software. Because of 
this, the development process shares the same pitfalls with every other software development process. 
Software defects can occur such as erroneous memory accesses and memory handling, erroneous 
inputs and outputs and erroneous data and control flows. As AI algorithms often require substantial 
computational resources, they are often implemented on multi- core systems. In these cases, 
concurrency bugs, such as race conditions, deadlocks and measuring effects (“Heisenbugs”), would also 
be considered.

8.9 Challenges related to the use of AI systems

8.9.1 Human-computer interaction (HCI) factors

There are many pitfalls that are based on human relating factors. According to Reference [57], it is 
possible to group these factors into four main categories:

1) use, when automation enables humans to achieve their goals;

2) misuse, when over-reliance on automation perpetrates an unforeseen negative outcome. For 
example, misuse would be the individual being too reliant on automation and not paying attention 
to the road;

3) disuse, when under-reliance on automation perpetrates a negative outcome. For example, disuse 
would be the individual overriding the correctly behaving automation system and causing an 
accident;

4) abuse, when an automated system is set up without adequately respecting the end user’s interests. 
For example, abuse would be design that does not allow the individual to easily override the 
automated system.
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8.9.2 Misapplication of AI systems that demonstrate realistic human behaviour

AI systems can be designed to impersonate or emulate human characteristics and behaviours, such 
as handwriting[58], voice[59] and spoken or textual conversations[60][61]. If misapplied by bad actors, 
these technologies can be used to deceive individuals. There are cases where chatbots or email-bots[62] 
emulated humans to create the illusion of real human membership in a dating service.

8.10 System hardware faults

Hardware for AI systems needs to have robust fault tolerance. Faults in the hardware can be the source 
of violation of the correct execution of any algorithm implementation by corrupting both its control and 
data flow. In the case of AI, faults in hardware interfere with the correctness of algorithmic execution 
of both inference and training.

Evidence of hardware faults varies and can include errors such as data corruption, data loss or temporal 
data flow issues. Such errors can be attributed to a single issue or a combination of different types of 
failures and need to be further investigated in the context of AI.

Specifically, hardware faults can be permanent (permanent issue of a component or module in a system), 
transient (temporary malfunctions which disappear) or intermittent (ongoing intermittent issues) in 
nature. Hardware faults can also be benign or malicious resulting from random or systematic causes.

Faults that causes a unit to stop functioning can be benign classic hardware faults due to defective 
components. Far more insidious are faults that cause a unit to produce reasonable looking but incorrect, 
outputs or that cause a component to “act maliciously.” These faults are soft errors – unwanted 
temporary state changes of memory cells or logic components that are usually caused by high-energy 
radiation from sources such as alpha particles from package decay, neutrons and external EMI effects 
like electromagnetic noise and electromagnetic beams, but can also be caused by internal cross talk 
between conductor paths or component parts or malicious injection of perturbations such as clock 
glitches.

Faulty drivers can introduce another dimension to hardware faults in computing based on erroneous 
software.

The sources and impact of such errors depends on both the AI applications and its deployment on the 
specific class of systems. AI applications are deployed on systems that range from end devices, mainly 
used for inference, to cloud-class compute and storage resources, used for both inference and training. 
In the lifecycle of an AI application, a trained model undergoes a number of transformations that 
specializes the AI applications to the specific system platform, e.g. a resource constrained end device.

Different fault models would account for the possible sources of error and subsequently for effective 
fault tolerant strategies. For example, real-time distributed systems tend to incorporate off-the-shelf 
hardware parts (e.g. general-purpose CPU, GPU and FPGAs), software (e.g. general purpose operating 
systems) and protocols (e.g. TPC/IP stack based protocols) to run AI applications. Sources of errors 
include data corruption, unintended repetition of messages, an incorrect sequence of messages, 
data loss, unacceptable delays, insertion of messages. In systems supporting asynchronous thread 
scheduling in hardware, such as GPUs, errors affecting the thread scheduler can have large effects, e.g. 
related to failing to meet system workload deadlines. Furthermore, the diagnosis of the memory can be 
difficult due to the specific system architecture aspects.

Other sources of errors that can influence the system operation are related to the AI applications 
lifecycle. For example, additional sources of errors occur during model transformation – when a trained 
model is mapped to an end device, e.g. a resource constrained embedded system, for example due to the 
need of specializing data or pruning the model.
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9 Mitigation measures

9.1 General

Mitigation measures are the possible controls and guidelines that can mitigate known AI vulnerabilities 
described in Clause 8. Note that a certain control or a guideline can contribute to mitigation of several 
vulnerabilities.

A system behaving in a non-reliable way would not be considered as trustworthy. In some cases, the 
system can be functioning correctly, but producing corrupted output because of newly introduced 
incorrect input data. In this context, there would be control points to determine whether the trust is 
maintained or not. Such control points can be done regularly throughout AI system lifecycle or at the 
moments when the AI system is used for decision-making.

9.2 Transparency

Transparency provides visibility to the features, components and procedures of an AI system. Ideally, 
a transparent AI system would exhibit repeatable behaviour. Transparency involves making data, 
features, models, algorithms, training methods and quality assurance processes available for external 
inspection. Transparency enables stakeholders to assess the development and operation of an AI 
system against the values they wish to see upheld by AI processing. These values can be based on goals 
of fairness or privacy or can be derived from a particular stakeholder’s ethical worldviews, such as 
virtue ethics or other global value system.

Integrating transparency into all levels of the AI processes helps ameliorate the problems caused by 
issues of opaqueness described in 8.6. A transparent AI system informs the stakeholders where, why 
and what data are collected, especially personal data, provided such metadata was captured at the time 
of data collection. It can also inform stakeholders when decision-making is automated and explain the 
processing through which decisions are made. When processing personal data that result in decisions 
with a legal effect on the stakeholder, privacy regulations can require a transparent AI system to accept 
requests for human intervention in decision-making and thereby account for stakeholder views on that 
process. There are several levels and features of transparency which are defined for the development of 
different AI systems, e.g. in the field of open data.

The use of rating symbols, icons or marks for AI systems can help improve transparency for specific 
stakeholder groups. For example, the World Economic Forum and UNICEF joint initiative Generation 
AI[63] suggests rating symbols for AI system used in children toys that is accessible to parents/carers. 
Explainability of the system is important in achieving such transparency.

Transparency of AI systems relates to making the data, features, algorithms, training methods and 
quality assurance processes available to external inspection by a stakeholder. In addition, the level of 
background knowledge of the stakeholder needs to be factored into the planning of how inspections 
are facilitated. It can, but not necessarily would, include an explanation of: 

— how the AI mechanism under inspection works in general, e.g. how decision tree induction works; 

— what model class and parametrizations are used; 

— what particular variables or features are used by the model; or 

— how a set of candidate variables or features were selected.

For a trained expert in machine learning, a short summarising explanation would suffice, specifying the 
model choice and variable selection procedure. For a layperson, an introductory course in AI and data-
driven model inference would be essential for example, as well as an explanation how decision tree 
models work, in addition to the impact of parametrization and the selection of features and variables.

The key question of transparency is how it works and whether the algorithms that have been used 
are suitable for purpose. Transparency makes the data, features, algorithms and training methods 
available to external inspection. Transparency measures would aim to complement privacy and 
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business interests to enhance the overall trustworthiness of AI[64]. In case of opaque models, technical 
methods can exist to produce some degree of transparency or explainability for such a model[65].

There might be no strict correspondence between the transparency and the explainability of an 
AI system and the degree of trust a stakeholder would place in that system. However, transparency 
and explainability provide important evidence and information, which helps stakeholders to form a 
judgement on their trust in an AI system.

9.3 Explainability

9.3.1 General

Although the explainability alone is not sufficient to guarantee the transparency of an AI system, it 
is an important component of a transparent AI system. Explanations of processes relevant to the 
development, implementation and use of an AI system, such as data gathering practices, self-auditing 
processes, value commitments and stakeholder engagement also play a role. Explainability of AI systems 
can be regarded as a sub-form of corporate transparency within corporate social responsibility.

It is possible to categorize the explanations of AI systems according to the aims of the explanation, 
including the context, the needs of stakeholders and types of understanding sought and by the mode of 
explanation.

9.3.2 Aims of explanation

An explanation is always an attempt to communicate understanding. The effectiveness of an explanation 
can be improved by tailoring its form to the context in which it is given, including the intended audience 
and the level of understanding it aims to convey[66].

An attempt to explain can offer multiple different, but equally valid modes of explanation, depending on 
whether stakeholders seek:

— a causal understanding of how a result is arrived at;

— an epistemic understanding of the knowledge on which the result is based; or

— a justificatory understanding of the grounds in which the result is offered as being valid.

The subject of explanation can include the AI system itself and the result produced by the system.

Explainable AI systems would aim to provide an understanding of the processes contributing to the 
truth, accuracy and reasonableness of its results beyond the inductive observation that the systems 
seem to work. The understanding of explanations by stakeholder can be assisted by adherence to 
appropriate guidelines and standards.

Explanations related to AI systems can also provide justification for the validity, appropriateness and 
legitimacy of its results and the decisions and actions taken on those grounds. Such explanations would 
aim to make an AI system more scrutable and contestable, especially for the stakeholders impacted by 
resulting decision and actions.

Explanations are not absolute but would be defined relative to a target model and the recipient of the 
explanation. Explanations are understood to be contrastive. Information would be presented to a 
human in such a way as to improve the fidelity of that human’s mental model of a system to the system 
itself[66][71].

9.3.3 Ex-ante vs ex-post explanation

Ex-ante explains the general properties and features of a system, before use of said system. The AI 
system is explained ex-ante in a way that provides relevant information to stakeholders other than the 
developers, on the properties and features of a system, before use of said system.
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Ex-post explanation of the properties and features that play a role in the making of a decision. Symbols 
enhance explainability and thus trustworthiness of AI.

Ex-ante and ex-post explanations serve different functions. Ex-ante explanation strives to establish 
trust that the system is well designed and serves its purpose. It aims to establish trust with the users 
and motivate the use of the AI system in the first place. Ex-post explanation, on the other hand, allows 
for the explanation of specific algorithmic results and the circumstances they were made in. That is, 
while ex-ante explanation is important for establishing trust in the AI system, it is impossible to achieve 
system’s transparency without access to ex-post explanation as well.

Ideally, an AI system will provide consistency between its ex-ante and ex-post explanations. The 
properties and features claimed by the ex-ante explanation are evidenced by execution of specific 
system algorithms exposed through the ex-post explanation.

Subclause 9.3.4 concentrates on ex-post explainability.

9.3.4 Approaches to explainability

It is possible to categorize approaches to explainability based on the stage, scope and granularity of the 
generated explanations. Explanations can be generated during different stages of developing an AI model:

1) pre-modelling;

2) modelling; and

3) post-modelling.

Pre-modelling serves in the understanding of the data before building the model. A group of methods 
aims at understanding a given dataset to inform subsequent development of AI models (e.g. facets, 
embedding projector, dataset standardization, mathematical understanding of a dataset)[72]-[76].

Modelling stage serves in developing AI models that can explain their decisions or that are inherently 
interpretable[77]-[79].

Post-modelling stage serves to generate explanations about the decisions of a non-interpretable AI 
model[80]-[88].

The process of explaining an AI model can be described:

— locally, by explaining the model decision-making process for a given input/output pair; or

— globally, by explaining the inner logic of the model about a general concept or class of samples.

In addition, explanations can be generated at different levels of detail. Given a deep neural network, 
one level of explanation can discuss the role of each layer in the predicted output. A more detailed 
understanding can be obtained by inspecting the role of each neuron in a given layer[89]-[95].

9.3.5 Modes of ex-post explanation

9.3.5.1 General

Modes of explanation cab be classified as causal, epistemic and justificatory.

These three modes of explanation can be distinct, as an organization can produce a causal explanation, 
without having produced an epistemic or justificatory explanation. For example, the high saliency of a 
gender feature in the result of a credit decision algorithm gives a partial causal explanation of how the 
algorithm produced the decision, but it does not answer the questions of what functional role gender 
plays in one’s credit-viability or by what standards it is valid to justify a credit-decision on that basis.
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A full explanation of an AI system can therefore consist of all the following features:

— the chain of causal attributions which track how the algorithm produces a decision;

— the functional roles of the measured features in the modelled phenomenon;

— the ethical and other principles and standards by which an algorithmic output is justified.

The selection of such explanatory features depends on who the explanation is for, what the aims of the 
explanation are and what level of trust is pursued for the application.

9.3.5.2 Causal explanation: How something functions

For the goal of understanding how an AI system arrives at its results, an explanation consists of a chain 
of causal attributions explaining the mechanisms by which the input features are processed to produce 
the given result.

The result of tracking the causal chains in a machine learning process are dependent on the level of 
abstraction chosen. That is, qualitative properties (e.g. shape of object), computational metaphors (e.g. 
vector value) and physical matters-of-fact (e.g. charge state in a processor register) can all play a role in 
the causal history of an AI process and a causal explanation of how a result is produced can proceed at 
any of these levels[96].

Which level of abstraction is useful, depends on one’s explanatory goal. With an interpretable AI 
system, even the highest level of abstraction of the specific decision factors the system uses and the 
weight they bear on the final result can be reconciled with humanly meaningful qualitative properties. 
Furthermore, a causal explanation can support counterfactual interventions[97]. That is, it can yield the 
understanding of how the produced result would change, were the input features modified.

9.3.5.3 Epistemic explanation: How we know it functions

For the goal of epistemic justification, that is, explanation of why an algorithmically produced result is 
true, a successful explanation tracks the functional or logical relationships in the modelled phenomenon. 
That is, it is not a description pertaining to the system itself, but a description pertaining to the features 
of the world which the system is about.

9.3.5.4 Justificatory explanation: On what grounds it functions

For an automated decision from an AI system, an explanation can provide a justification for the validity 
of the result. This involves going beyond causal and functional explanation to the societal context to 
communicate the principles, facts and standards on which the produced decision is grounded. Such an 
explanation communicates why the resulting decision is fair, valid and justified in light of the current 
state of affairs.

While this kind of justificatory explanation can refer to the AI systems’ properties, like the algorithms, 
data used and decision features, it is incomplete without reference to institutional and social facts about 
the implementation of the system. This includes regulations, standards and organizational processes 
pertinent to the use case.

A successful justificatory explanation functions as an argument in support of the systematically 
produced result. Thus, a successful explanation is open to scrutiny and contestation and likewise, the 
result of the system is re-assessable in light of possible counter-arguments seeking reversal or redress.

9.3.6 Levels of explainability

The appropriate level of explainability of an AI system can be selected for the context of the use-case 
in which the system is applied. As such, clearly defined requirements for different levels of explanation 
can assist in the selection of the type of AI for an application based on its level explanatory power. As 
an example, non-interpretable systems that do not produce a meaningful causal explanation of their 
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9.3.6 Levels of explainability

The appropriate level of explainability of an AI system can be selected for the context of the use-case 
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functioning, are not suitable to be used in products or services which expect a high level of explainability. 
The level of applicable explainability is something that is evaluated on a case-by-case basis.

In selecting the necessary level of explainability for an AI system, application considerations can include 
the following:

— the AI system uses sensitive personal data of individuals as its input;

— AI system results are used in a way that has significant impact on the welfare of individuals;

— the consequences of failures in AI-driven decision-making are significant;

— the application can result in the autonomy of the user or of third parties being restricted;

— the system has a non-trivial effect on bystanders and the wider society in which it is deployed, e.g. 
only showing certain job advertisements to men leads to increased gender inequality.

Levels of explanation can vary based on the specific needs of different stakeholder groups, the data 
aspects on which the AI system results are based, the need to obtain human intervention over decisions 
based on AI results, and the need for stakeholders to express their own views on, and challenge, such 
decisions.

9.3.7 Evaluation of the explanations

It is important also to consider the measurement of the quality of explanations. This includes 
considering the following aspects:

— continuity, for which the associated explanation for the predictions of nearby points would be nearly 
equivalent;

— consistency, where if we change the model such that the contribution of a certain feature on the 
predicted output is increased, the importance-score of that feature, estimated by the explainability 
method, would not be decreased;

— selectivity, where for importance-based explanations, it is desirable that the contribution score be 
distributed among the features that have the strongest impact on the generated prediction. That is, 
the removal of a feature (or a set of features) with highest relevance score, would result in a sharp 
change in the model output. This ensures that the correct features are distinguished as relevant in 
the generated explanation.

It is also important to consider the trade-off between the accuracy and understandability of an 
explanation[98]-[105].

9.4 Controllability

9.4.1 General

It is possible to achieve controllability by providing reliable mechanisms for an operator to take over 
control from the AI system. To achieve controllability, the questions to address first include who is 
offered what control over whose AI systems where multiple stakeholders are involved, e.g. the service 
provider or product vendors, the provider of the constituent AI, the user or an actor with regulatory 
authority.

We describe below the need to integrate the control points in the AI system lifecycle, as a step towards 
reliable decision-making.
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9.4.2 Human-in-the-loop control points

Regarding the role of humans within the lifecycle of AI systems, two roles are particularly relevant as 
human-in-the-loop control points:

— decision makers having agency and autonomy in the final decision-making process to factor into 
account the outcomes of AI systems where they are used to augment human decision-making;

— domain experts given the opportunity to provide feedback to not only re-assess the level of trust 
of the system but also to improve the operation of the system. In this context, results checked/
contextualized by domain experts is important for AI systems because domain experts can be able 
to spot spurious correlations or rationalise why a system works in a certain way with data that is 
not available to the AI system.

9.5 Strategies for reducing bias

Many strategies exist to address bias:

— consideration of legal and other requirements relating to bias can be explicitly identified when 
defining system requirements, including setting appropriate thresholds;

— analysis of the provenance and completeness data sources can reveal risks and the processes used 
to collect or annotate data can be reviewed;

— technical techniques can be used as part of model training processes, to detected and mitigate bias;

— specific testing and evaluation techniques can be used to detect bias;

— trials or regular operational reviews can be used to detect bias related issues in the actual 
context of use.

Each of these approaches has advantages and disadvantages. Investigating the risk related to the biases 
and documenting the mitigation techniques helps to build trustworthiness on AI.

9.6 Privacy

Syntactic methods (such as k-anonymity) or semantic methods (such as differential privacy) are used to 
de-identify personal data[52]. Even when the data is de-identified, when personal data is available from 
multiple sources, it is possible for AI to re-identify the data using the inferences based on the data from 
the other sources. For example, research[53],[54] shows that k-anonymity can be insufficient.

Regardless of the initial de-identification approach, it is possible to manage the residual risk of re-
identification with data-usage agreements between the parties receiving the data.

9.7 Reliability, resilience and robustness

Publication[30] points to a system “ability” as one of the crucial components for achieving 
trustworthiness. Ability can be described as a system characteristic to perform a specific task and can 
be assessed in terms of several attributes including reliability, resilience and robustness.

Reliability is the ability of a system or an entity within that system to perform its required functions 
under stated conditions for a specific period of time[106]. In other words, a reliable AI system produces 
the same outputs for the same inputs consistently.

With AI systems, as with other software systems types, hardware faults can affect the correct execution 
of the algorithm. Fault tolerance is the system's ability to continue to operate when disruption, faults 
and failures occur within the system, potentially with degraded capabilities. The aspect of the overall 
system that depends on a system or equipment operating correctly in response to its inputs is generally 
known as functional safety[107].

 

28 © ISO/IEC 2020 – All rights reserved



29

IS/ISO/IEC TR 24028 : 2020
﻿

 

ISO/IEC TR 24028:2020(E)

9.4.2 Human-in-the-loop control points

Regarding the role of humans within the lifecycle of AI systems, two roles are particularly relevant as 
human-in-the-loop control points:

— decision makers having agency and autonomy in the final decision-making process to factor into 
account the outcomes of AI systems where they are used to augment human decision-making;

— domain experts given the opportunity to provide feedback to not only re-assess the level of trust 
of the system but also to improve the operation of the system. In this context, results checked/
contextualized by domain experts is important for AI systems because domain experts can be able 
to spot spurious correlations or rationalise why a system works in a certain way with data that is 
not available to the AI system.

9.5 Strategies for reducing bias

Many strategies exist to address bias:

— consideration of legal and other requirements relating to bias can be explicitly identified when 
defining system requirements, including setting appropriate thresholds;

— analysis of the provenance and completeness data sources can reveal risks and the processes used 
to collect or annotate data can be reviewed;

— technical techniques can be used as part of model training processes, to detected and mitigate bias;

— specific testing and evaluation techniques can be used to detect bias;

— trials or regular operational reviews can be used to detect bias related issues in the actual 
context of use.
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under stated conditions for a specific period of time[106]. In other words, a reliable AI system produces 
the same outputs for the same inputs consistently.

With AI systems, as with other software systems types, hardware faults can affect the correct execution 
of the algorithm. Fault tolerance is the system's ability to continue to operate when disruption, faults 
and failures occur within the system, potentially with degraded capabilities. The aspect of the overall 
system that depends on a system or equipment operating correctly in response to its inputs is generally 
known as functional safety[107].
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Resilience is the ability of the system to recover operational condition quickly following an incident. 
Resilience relates to reliability, but the expected service levels and expectations are different. 
With resilience expectations possibly lower as defined by stakeholders, as well as offering recovery 
(see Reference [42], subclause 11.5).

For AI systems, robustness is often used to describe the ultimate ability of a system to maintain its 
level of performance under any circumstances including external interference or harsh environmental 
conditions. Robustness encompasses resilience, reliability and potentially more attributes, as related to 
proper operation of a system as intended by its developers. Obviously, the proper operation of a system 
is directly related or leads to the safety of its stakeholders in a given environment/context. For example, 
a robust ML-based AI system would have the ability to generalize on unknown inputs, e.g. an absence 
of overfitting. To achieve that, it is essential to train the model or models using large training datasets 
including noisy training data.

9.8 Mitigating system hardware faults

Robust and fault tolerant systems are achieved by different methods that are related to the architecture 
and detailed design of the hardware but also the whole development process. Therefore, every phase of 
a product’s life cycle, especially the design and specification phase, is in scope. 

One of these methods is to exploit redundancy to mask or otherwise work around failures, thus 
maintaining the desired level of functionality. Hardware faults can be dealt with by using hardware 
(e.g. n-plication at a course or fine-grain), information (e.g. check bits) or time (e.g. re-computation 
at different, usually random times) redundancy, whereas software faults are protected against by 
software redundancy (e.g. software diversity or other forms of moving target mitigation). 

The former type of faults is mitigated by incorporating extra hardware into the design to either detect 
or override the effect of a failed component. Hardware redundancy can be static or dynamic. It can thus 
range from a simple duplication to complicated structures that switch in spare units when active ones 
become faulty. 

To avoid the malicious effects of common cause failures, such as influences from environmental 
conditions or weaknesses of particular sensor technologies, more measures (e.g. the use of diversity) 
is necessary. In addition, various diagnostic measures can help to detect errors at runtime and to take 
countermeasures or to transfer the system to a safe state. 

A comprehensive description of methods and processes for implementing fail-safe hardware and a 
description of certifiable functional safety levels can be found in IEC 61508[107].

9.9 Functional safety

To ensure functional safety of a system, specific functionality can be introduced that performs safety 
related aspects. Such functionality can be an integral part of the control functionality of a system or a 
dedicated system that interfaces with the systems under consideration. For AI systems, safety-related 
functionality can, for example, monitor the decisions taken by the AI in order to ensure that they are 
in a tolerable range or bring the system into a defined state in case they detect problematic behaviour.

IEC 61508[107] sets out a generic approach for all safety lifecycle activities for systems comprised of 
electrical and/or electronic and/or programmable electronic elements that are used to perform safety 
functions. It is the base for product and application sector international standards, dealing with such 
safety-related systems. ISO 26262[108], IEC 62279[109] and IEC 61511[110] are examples for sector-specific 
adaptation for the automotive, railway and process industry. IEC 61508[107] is applicable to all electrical 
and/or electronic and/or programmable electronic (E/E/PE) safety-related systems irrespective of 
the application. It is mainly concerned with the such systems whose failure can have an impact on the 
safety of persons and/or the environment. However, it is recognized that the consequences of failure 
can also have serious economic implications and, in such cases, this document can be used to specify 
any E/E/PE system used for the protection of equipment or product.
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9.10 Testing and evaluation

9.10.1 General

Different approaches to testing and evaluation of AI systems exist. While their applicability and 
effectiveness can differ case by case, a combination of multiple approaches would typically be needed 
to achieve acceptable levels of trustworthiness.

9.10.2 Software validation and verification methods

9.10.2.1 General

To achieve trustworthiness, traditional (non-AI) software systems rely on the following two axes:

— an architecture that allows redundancy or monitoring of critical functions; and

— the validation and verification of the code, which consists of demonstrating through an engineering 
approach that the executable code meets a need and is fully tested. The demonstration currently 
relies on the fact that the behaviour of the system is known and deterministic.

According to Reference [111], validation is “confirmation, through the provision of objective evidence, 
that the requirements for a specific intended use or application have been fulfilled. Note 1: the right 
system was built.” Verification is the “confirmation, through the provision of objective evidence, that 
specified requirements have been fulfilled. Note 1: the system was built right”[24].

Software systems are also subjected to formal software validation, verification and testing methods, 
such as defined in Reference [111] The primary goals of software tests are stated in Reference [111]:

“Provide information about the quality of the test item and any residual risk in relation to how 
much the test item has been tested; to find defects in the test item prior to its release for use; and to 
mitigate the risks to the stakeholders of poor product quality.”

By design, AI systems are often less deterministic than traditional software systems and rarely 
exhaustively explainable. The software of an AI system comprises both AI and non-AI components.

While all components of an AI system need to follow accepted software and hardware practices 
(including unit and functional tests) to operate correctly, its AI components would use a modified 
version of these practices as discussed below.

In the case of AI systems, it is necessary for functional tests to be able to handle uncertainty when 
applicable. It is a challenge to specify and test the requirements of non-deterministic software 
components using existing standards and practices. This is known as an “oracle problem” and can be 
described as difficulties in establishing whether an individual test has met its success criteria. The 
prevalence of this issue in AI systems suggests that new standardization efforts can be initiated to 
encourage new verification and validation techniques.

9.10.2.2 Formal methods

It is possible to use formal methods to test and evaluate artificial neural networks for the purpose of 
software validation and verification. To do so, several metrics can be used, such as:

— uncertainty, which correlates to variation of response of the network in order to check if its 
generalization does not introduce unstable behaviour;

— maximum stable space, which correlates to the ability of the AI system to prove that the classification 
done will be stable around the training set.
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In the case of AI systems, it is necessary for functional tests to be able to handle uncertainty when 
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9.10.2.3 Empirical testing

Various techniques exist for empirical testing of non-deterministic solutions for the purpose of software 
validation and verification, including:

— metamorphic testing – a technique that establishes relationships between inputs and outputs of 
the system and relies on running multiple iterations of testing and comparing the results. This is 
typically used on systems which do have an oracle problem[112];

— expert panels – where AI systems are built to replace the judgement of experts, panels are 
established to review the test results. This approach introduces additional challenges, e.g. when 
experts disagree[113];

— benchmarking – a technique that measures the performance of a system on carefully designed 
data sets that are publicly available and/or used for testing different systems competitively[114]. In 
pattern recognition and similar applications of AI methods, benchmarking has been an established 
practice for establishing trust in a certain method[115].

9.10.2.4 Intelligence comparison

When no automated evaluation method is available, comparison of the applied intellectual abilities of 
an AI system and human can provide confidence in AI system quality by confirming the functionality of 
the AI system. This approach relies on a comparison of certain indicators with a given criteria threshold. 
Various methodologies can then be applied (for example the concordance coefficient, Pearson’s test) 
over various environments (for example “sandbox” or physical containment).

9.10.2.5 Testing in simulated environment

In some cases, when the task to be performed by an AI system is characterized by physical action on the 
environment (e.g. for AI embedded in a robot), performance evaluation and compliance analysis with 
risk-related requirements needs to be performed in a real or representative environment. To determine 
the operating perimeter of the embedded AI, which is needed to promote the acceptability of such 
intelligent mechatronic systems, it is possible to carry out tests in controlled environments. Physical 
tests in climatic chambers, vibration, shock and constant acceleration tests can also be performed to 
evaluate the performance of systems under extreme conditions and to accurately determine operating 
boundary conditions. For the evaluation of AI systems in open and changing environments, having an 
almost infinite number of configurations that are possible to encounter, the development of virtual test 
environments allowing validation by simulation can also be useful.

9.10.2.6 Field trials

Due to the difference between testing environments and actual operating conditions, field trials are 
often a very effective way to improve the quality of the deployed system by testing its performance, 
efficiency or durability.

Some prominent examples and areas are:

— facial recognition trials[116];

— tests of decision support systems for agricultural applications[117];

— practice for testing driverless cars[118],[119];

— tests of speech and voice recognition systems[120],[121];

— health robotics[122];

— measuring the cognitive workload of chatbots (vocal assistants, etc.)[123]; and

— testing intelligent tutoring systems[124].
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Field trials for AI systems vary greatly with respect to methodology, number of users or use cases 
involved, status of the responsible organization/persons and documentation of the results. Whether field 
trials can be applied as a measure to improve the quality of AI systems depends on the risks associated 
with the application of such systems. In many applications, A/B testing is used as a technique to deliver 
different versions of systems to different users, in order to compare the performance of the system.

Beyond strict rationality of the AI software built, acceptability to humans needs to be taken into account 
and field trials can help to achieve that. In addition, the failure of an AI system on a functional test can 
be unnecessary or can be impossible to resolve. AI systems showing variable results can be regarded as 
useful for their intended purpose and the ability of the system to achieve the planned and desired result 
of an AI system cannot always be measurable by conventional approaches to software testing.

Another fundamental difference between many AI systems and conventional systems is that the latter 
are designed to be developed, produced and quality controlled to strictly meet certain specifications. 
Traditional software is designed to be reproducible in its behaviour, whereas AI systems instead seek 
generalizability. This leads to challenges in empirical testing and field trials can be more effective at 
assessing quality.

How to deal with the uncertainty of a product's results and the risks of its deployment are subjects 
of many regulations in the medical domain. Medical AI systems can be required to comply with 
ISO 14155[125]. They can have to undergo "clinical investigations", a procedure that resembles "clinical 
trials"[126],[127]. This is true for other domains as well, such as nuclear systems and flight control 
systems.

9.10.2.7 Comparison to human intelligence

In cases when an AI system is designed to automate human activity associated with data processing 
and decision-making, one of the ways to validate an AI system is by comparison to human intelligence 
capabilities. Such an approach can allow different stakeholders, primary AI systems’ users, outside 
parties and regulators in the AI implementation area (including regulatory authorities) to trust AI 
systems with carrying out some application tasks associated with data processing and decision-making 
that previously were carried out primarily by humans.

Examples of when comparison to human capabilities would be helpful are activities that are traditionally 
licensed, such as operating a motor vehicle or healthcare. Allowing autonomous vehicles to drive on city 
streets or an autonomous system to make any treatment, would happen only if there is an evidence that 
the AI system conducting these activities performs not worse than a human. Such an approach allows 
for the following:

— AI systems’ users and stakeholders can expect that the AI system’s quality, while performing an 
information processing task, are not worse than the quality of the solution of the same problem 
performed by a human-operator;

— third parties can expect that the operation of an AI system will not cause damage to people and 
material goods.

It would be able to conclude that an AI system is not worse than human capabilities, while performing 
some application tasks associated with data processing and process safety, if AI statistical metrics are 
not worse than a defined threshold value.

To obtain such threshold values and confidence in process safety of AI systems, it is important to use 
representative data samples that reflect the nature of the applied information processing task, to which 
the AI system or natural human intellect are applied.

9.10.3 Robustness considerations

A definition of robustness is “the ability of a system to maintain its level of performance under any 
condition”. In order to understand what robustness is in a more general sense, it is important to note 
that what AI systems are commonly used for is, for example, to infer knowledge (symbolic approach) or 
to generalize from data (sub-symbolic approach).
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be unnecessary or can be impossible to resolve. AI systems showing variable results can be regarded as 
useful for their intended purpose and the ability of the system to achieve the planned and desired result 
of an AI system cannot always be measurable by conventional approaches to software testing.

Another fundamental difference between many AI systems and conventional systems is that the latter 
are designed to be developed, produced and quality controlled to strictly meet certain specifications. 
Traditional software is designed to be reproducible in its behaviour, whereas AI systems instead seek 
generalizability. This leads to challenges in empirical testing and field trials can be more effective at 
assessing quality.

How to deal with the uncertainty of a product's results and the risks of its deployment are subjects 
of many regulations in the medical domain. Medical AI systems can be required to comply with 
ISO 14155[125]. They can have to undergo "clinical investigations", a procedure that resembles "clinical 
trials"[126],[127]. This is true for other domains as well, such as nuclear systems and flight control 
systems.

9.10.2.7 Comparison to human intelligence

In cases when an AI system is designed to automate human activity associated with data processing 
and decision-making, one of the ways to validate an AI system is by comparison to human intelligence 
capabilities. Such an approach can allow different stakeholders, primary AI systems’ users, outside 
parties and regulators in the AI implementation area (including regulatory authorities) to trust AI 
systems with carrying out some application tasks associated with data processing and decision-making 
that previously were carried out primarily by humans.

Examples of when comparison to human capabilities would be helpful are activities that are traditionally 
licensed, such as operating a motor vehicle or healthcare. Allowing autonomous vehicles to drive on city 
streets or an autonomous system to make any treatment, would happen only if there is an evidence that 
the AI system conducting these activities performs not worse than a human. Such an approach allows 
for the following:

— AI systems’ users and stakeholders can expect that the AI system’s quality, while performing an 
information processing task, are not worse than the quality of the solution of the same problem 
performed by a human-operator;

— third parties can expect that the operation of an AI system will not cause damage to people and 
material goods.

It would be able to conclude that an AI system is not worse than human capabilities, while performing 
some application tasks associated with data processing and process safety, if AI statistical metrics are 
not worse than a defined threshold value.

To obtain such threshold values and confidence in process safety of AI systems, it is important to use 
representative data samples that reflect the nature of the applied information processing task, to which 
the AI system or natural human intellect are applied.

9.10.3 Robustness considerations

A definition of robustness is “the ability of a system to maintain its level of performance under any 
condition”. In order to understand what robustness is in a more general sense, it is important to note 
that what AI systems are commonly used for is, for example, to infer knowledge (symbolic approach) or 
to generalize from data (sub-symbolic approach).
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The main principle is that an AI system is expected to be able to work on data that is not known in 
advance and under contexts that can vary considerably. An AI system is expected to deal with working 
conditions that can vary a lot and its robustness corresponds to its ability to continue to operate 
according to its design. Depending on the type of AI system, different metrics are needed to assess the 
robustness of the system.

When an AI system is used to perform interpolation, its robustness is viewed as its “ability to have 
acceptable metrics of amplitude of response on any valid input”. This means that it is expected that the 
AI system does not exhibit erratic behaviour in its interpolation.

When an AI system is used to perform classification, its robustness is viewed as its “ability to assign 
consistent classification on both known inputs and inputs within a certain range”. This means that it 
is expected that the AI system is able to properly conduct classification on both known and unknown 
inputs as long as they (the unknowns) are not too different from the known inputs.

When an AI system is used to perform a solving task, its robustness is viewed as its “ability to have a 
still effective solution after an acceptable change of the initial problem”. This means that it is expected 
that the AI system is able to produce acceptable solutions to different problems as long as they are not 
too different from the original problem.

When an AI system is used to perform scoring, its robustness is viewed as the “ability to assign 
consistent confidence measures of ranking on both known inputs and inputs within an acceptable 
range”. This means that, in the case of unknown inputs and outputs, it is expected that the AI system 
assigns a score that is not radically different from a score being assigned to known inputs and unknown 
inputs as long as they are not too different from the known inputs.

9.10.4 Privacy-related considerations

In addressing privacy threats in AI, privacy metrics help to evaluate levels of privacy and amount of 
protection provided by the system. Defining and applying privacy metrics aims at addressing this 
challenge. There are various privacy-preserving machine learning or privacy-enhancing techniques in 
AI to protect sensitive data in different domains. The purpose of defining privacy metrics is to quantify 
the data privacy level that results in improving the privacy model within a specific AI model[128],[129]. 
Technically, a privacy metric considers different properties of data and yields a value that represents 
the privacy level in the system. The advantage of privacy metrics is the ability to compare different 
privacy-preserving techniques, evaluate different methods within a specific domain and to minimize 
the privacy exposure. Privacy metrics are useful when sensitive data is threatened by an adversary. 
Privacy metrics differ considering the data source, aspects of privacy they evaluate and threats by an 
adversary.

9.10.5 System predictability considerations

Some of the test and validation approaches described above are essential for assessing the predictability 
of an AI system. Predictability can be measured through subjective explicit feedback from questionnaire-
based experiments where participants are asked to infer the goals and predict the future actions of a 
robot, for example[130]. Other metrics can be used, such as the reaction time for a user to determine the 
intention of an AI system and react accordingly, assuming that shorter reaction times indicate higher 
predictability. The gaze behaviour also gives an indirect indication of the robot predictability, assuming 
that the more often and the longer the robot is watched by a participant, the less it is predictable[131]. 
Testing the AI system on a large number of combinations of environmental conditions would allow for 
a more complete characterization of its behaviour. Based on this characterization, users know what to 
expect from the AI system, which facilitates predictability.
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9.11 Use and applicability

9.11.1 Compliance

The need for compliance is, in part, attributed to the various standards and regulations that are already 
in operation in various industries. AI systems need to take into account existing regulations and 
compliance standards and not be judged in isolation of the use case.

9.11.2 Managing expectations

Expectation management is necessary to avoid breakdown of trust because the system was not able to 
perform to unrealistic expectations. This requires clarity about the realistic capability of the AI system, 
including the range of inputs for which a reliable output is expected and the certainty of outputs 
(especially for systems that rely on statistical inference).

9.11.3 Product labelling

Product and system labelling (including the links to up-to-date information) can be essential for the 
safety of both the users and the AI system providers:

— that the end user is interacting with an AI agent and declaring the intent/purpose of AI system;

— risks and limitations of the model;

— re-training frequency as necessary;

— date when last performance assessment was done;

— source and date of training data[132].

9.11.4 Cognitive science research

Based on the discussion in this subclause, application specific guidance and considerations are essential 
to achieve the right level of trustworthiness and the correct use of the systems. Nevertheless, there are 
several recognized patterns of interaction between the quality of a system and its potential for misuse 
or disuse. For instance, heavily reliable systems are known to inspire over-reliance leading to misuse 
(such as in aviation), whereas unreliable systems (such as EHR) are known to inspire mistrust and 
hence disuse[133]. The same pattern holds for other metrics such as robustness, resilience and accuracy 
- better systems inspire trust, which can cause systemic failure in situations the automated system is 
not built to handle.

As a result, keeping human factors in view, it is best to take a nuanced view of optimizing these metrics 
in human-facing AI systems. This view would draw on human-computer interaction (HCI) and cognitive 
science research to yield useful results and potentially scientifically justified standards.

10 Conclusions

The realization of the potential benefits of AI systems can be impeded by a lack of trust from customers, 
users and society in general in the reliability, effectiveness, fairness and even the intent of AI 
applications. Business, governmental, societal and ethical concerns can, if not addressed systematically, 
erode trust in AI. Such concerns can be driven by vulnerabilities exhibited by ML-based AI systems, e.g. 
bias, unpredictability and opaqueness. Since many ML applications are driven by big data, data privacy 
and other data management issues, e.g. data provenance and quality, can become major concerns in 
building and using AI systems. To improve the trustworthiness of AI, the ML and data vulnerabilities 
need to be explicitly considered and addressed in policies, processes and on a per-use-case basis.

The potential effect of AI vulnerabilities on stakeholders needs to be examined to decide whether the 
use of AI would be appropriate in a specific case. An organization developing or using AI can apply a risk-
based approach to identify possible impacts to the organization, to its partners, to the intended users 
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and to society and to mitigate the risks appropriately. It is important that all stakeholders understand 
the nature of the potential risks and the mitigation measures implemented.

Quantifiable measurements of quality and repeatable models of process that can contribute to building 
and maintaining trust in AI systems are yet to be established. It is essential to apply the existing and 
emerging methodologies to improve the robustness of AI systems to the level specified.

In conclusion, this document demonstrates that trustworthiness of AI systems and technologies 
relies on both addressing stakeholder concerns regarding AI and its use of data in a transparent and 
accessible way, and building AI systems that are technically robust, controllable and verifiable over 
their entire lifecycle.
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Annex A 
(informative) 

 
Related work on societal issues

In addressing the trustworthiness of AI in relation to societal issues, a large body of multidisciplinary 
work exists already, including technology ethics; research and innovation ethics (often referred to as 
responsible research and innovation); accountable algorithms; and data ethics and data protection 
within data governance. The intent and scope of these other works is, in many cases, on a higher level 
than providing standards to enable developers, employees, customers, users and society in general to 
efficiently and accurately determine the level of trust they would place in any given service or product 
that uses AI.

Examples of the existing work include the following.

— IEEE have produced a comprehensive analysis of issues around ethically aligned design of 
autonomous and intelligent systems[134]. This aims to develop professional ethics. So, while it offers 
relevant input in areas of accountability, transparency, verifiability, predictability, alignment with 
societal norms and value and design methodologies.

— There is a strong body of practice and evolving harmonization work in responsible research and 
innovation (RRI) which spans all scientific endeavours but which is targeted in the first instance on 
those supported public funding[135]. While these offer well-grounded approaches that can inform 
techniques needed to develop trust in AI, it also covers issues specific to scientific publishing, 
training and gender balance amongst researchers, open research data and animal testing, that are 
out of scope. Experience related to applying RRI in privately funded development would also be a 
priority[136],[137].

— The goal of ISO/IEC AWI 38507[138] is to assist in providing the context of use for governance of AI 
types of decisions.
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