IS 18691 : 2024 ISO 5367 : 2023

(Superseding IS/ISO 5367 : 2000)

एनेस्थेटिक और श्वसन उपकरण — ब्रीथिंग सेट और कनेक्टर्स

> Anaesthetic and Respiratory Equipment — Breathing Sets and Connectors

> > ICS 11.040.10

© BIS 2024 © ISO 2023

भारतीय मानक ब्यूरो BUREAU OF INDIAN STANDARDS मानक भवन, 9 बहादुर शाह ज़फर मार्ग, नई दिल्ली - 110002 MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG NEW DELHI - 110002 www.bis.gov.in www.standardsbis.in

Price Group 11

Anaesthetic, Resuscitation and Allied Equipment Sectional Committee, MHD 11

NATIONAL FOREWORD

This Indian Standard which is identical to ISO 5367 : 2023 'Anaesthetic and respiratory equipment — Breathing sets and connectors' issued by the International Organization for Standardization (ISO) was adopted by the Bureau of Indian Standards on the recommendation of the Anaesthetic, Resuscitation and Allied Equipment Sectional Committee and approval of the Medical Equipment and Hospital Planning Division Council.

This standard supersedes IS/ISO 5367 : 2000 'Breathing tubes intended for use with anaesthetic apparatus and ventilators' which superseded IS 11363 'Tubes, breathing for anaesthetic apparatus and ventilators' to align with ISO 5367 : 2000. The ISO standard has been revised in 2023. This standard is an identical adoption of ISO 5367 : 2023.

The text of ISO standard has been approved as suitable for publication as an Indian Standard with out deviations. Certain conventions are however not identical to those used in Indian Standards. Attention is particularly drawn to the following:

- a) Wherever the words 'International Standard' appear referring to this standard, they should be read as 'Indian Standard'; and
- b) Comma (,) has been used as a decimal marker while in Indian Standards, the current practice is to use a point (.) as the decimal marker.

In this adopted standard, reference appears to certain International Standards for which Indian Standards also exist. The corresponding Indian Standards which are to be substituted in their respective places are listed below along with their degree of equivalence for the editions indicated.

International Standard	Corresponding Indian Standard	Degree of Equivalence
ISO 4135 Anaesthetic and respiratory equipment — Vocabulary	IS 13200 : 2023/ISO 4135 : 2022 Anaesthetic and respiratory equipment — Vocabulary (<i>second revision</i>)	Identical
ISO 5356-1 Anaesthetic and respiratory equipment — Conical connectors — Part 1: Cones and sockets	IS/ISO 5356-1 : 2015 Anaesthetic and respiratory equipment — Conical connectors: Part 1 Cones and sockets (<i>first revision</i>)	Identical

The Committee has reviewed the provisions of the following International Standard referred in this draft standard proposed to be adopted and has decided that it is acceptable for use in conjunction with this standard:

International Standard

Title

ISO 18190 : 2016 Anaesthetic and respiratory equipment — General requirements for airways and related equipment

This standard also makes a reference to the BIS Certification Marking of the product, details of which are given in National Annex A.

For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test shall be rounded off in accordance with IS 2 : 2022 'Rules for rounding off numerical values (*second revision*)'

Contents

Page

Intro	oduction	iv
1	Scope	1
2	Normative references	
3	Terms and definitions	
4	General requirements 4.1 General 4.2 Recommended service life	2
5	Materials 5.1 General 5.2 Biological safety testing	2
6	Design requirements6.1General6.2Designated length6.3Breathing tube ends6.4Leakage6.5Resistance to flow6.6Compliance6.7Axial strength of breathing tubes	2 2 3 4 4 5
7	Requirements for <i>breathing sets</i> and <i>breathing tubes</i> supplied sterile	6
8	Packaging	6
9	Information supplied by the manufacturer9.1General9.2Marking on the packaging9.3Instructions for use	6 7
Anne	ex A (informative) Rationale	9
Anne	ex B (informative) Hazard identification for risk management	
	ex C (normative) Test for security of attachment of <i>plain end</i> to conical connector ex D (normative) Test for security of attachment of <i>assembled ends</i> and axial strength of <i>breathing tubes</i>	
Anne	ex E (normative) Test for leakage	
	ex F (normative) Measurement of resistance to flow	
	ex G (normative) Test for increase in flow resistance with bending	
	ex H (normative) Test for <i>compliance</i>	
Bibli	ography	27

Introduction

This document contains requirements for *breathing sets, breathing tubes* and connectors that are intended to function as accessories to anaesthetic and respiratory equipment. *Breathing sets* and *breathing tubes* are characterized by certain design requirements such as a means of connection and leakage limits. Disclosure requirements for conformance and flow resistance values allow the user to make an informed choice when connecting these accessories to a breathing system. These design requirements are intended to allow operation within the limits of performance of the *anaesthetic breathing systems* and *ventilator breathing systems* with which the accessories are intended to operate.

This document includes requirements for both single-use and reusable *breathing sets* and *breathing tubes*. Reusable *breathing sets* and *breathing tubes* are intended to conform to the requirements of this document for the recommended service life.

NOTE 1 Examples of various types of *breathing sets* with *patient end adaptors* are depicted in <u>Annex A</u>.

This document is not applicable to *breathing sets* and *breathing tubes* that are intended to be used only for special purposes.

EXAMPLE 1 Ventilators having special *compliance*, pressure or breathing frequency requirements.

EXAMPLE 2 Patient Interface adapters with special connectors for neonatal ventilation, that are not interfacing to a Tracheal tube.

Requirements for breathing system components such as exhalation valves, exhaust valves, *adjustable pressure-limiting (APL) valves*, heat and moisture exchangers (HMEs), breathing filters, and reservoir bags, are not covered by this document but can be found in ISO 80601-2-12, ISO 80601-2-13, ISO 9360-1, ISO 23328-2 and ISO 5362. Requirements for heated *breathing tubes* can be found in ISO 80601-2-74.

Certain tests are performed under constant pressure to simplify the test methodology. It is recognized that this does not reflect clinical use, where pressure is intermittent and peak pressures occur for short periods. The limits in the test methods take this into account. While such test methods do not address product variability, the limits required do take this into account.

Throughout this document, all pressures are denoted in SI units of hPa with corresponding cmH_2O equivalent values rounded to the nearest whole cmH_2O .

NOTE 2 Rounded cmH_2O values are given for information only to allow comparison to medical literature and related breathing system standards.

This document is written following the format of ISO 18190 which is the general standard for airways and related equipment. The requirements in this device-specific standard take precedence over any conflicting requirements in ISO 18190.

Indian Standard ANAESTHETIC AND RESPIRATORY EQUIPMENT — BREATHING SETS AND CONNECTORS

1 Scope

This document specifies minimum requirements for *breathing sets* and *breathing tubes* intended to be used with *anaesthetic breathing systems*, *ventilator breathing systems*, humidifiers or nebulizers. It applies to *breathing sets* and *breathing tubes* and *patient end adaptors* supplied already assembled and to those supplied as components and assembled in accordance with the manufacturer's instructions.

This document is applicable to *breathing sets* which include special components (e.g. water traps) between the *patient end* and *machine end*.

Provision is made for coaxial and related bifurcated, double-lumen, or multiple-lumen *breathing sets* and *breathing tubes* suitable for use with *patient end adaptors*.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 4135, Anaesthetic and respiratory equipment — Vocabulary

ISO 5356-1, Anaesthetic and respiratory equipment — Conical connectors — Part 1: Cones and sockets

ISO 18190:2016, Anaesthetic and respiratory equipment — General requirements for airways and related equipment

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 4135 and the following apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at <u>https://www.electropedia.org/</u>

3.1

patient end adaptor

tubular connector with multiple ports, one of which is a patient connection port

Note 1 to entry: Examples of *patient end adaptors* include a Y-piece, a *swivel adaptor* and other specialized adaptors for coaxial, multiple tubes, and bifurcated tubes. See also <u>Figures A.1</u> to <u>A.5</u>.

3.2

plain end

end of a *breathing tube* designed to fit directly over a cone conical connector conforming to ISO 5356-1

4 General requirements

4.1 General

ISO 18190:2016, Clause 4 shall apply.

NOTE An informative list of identified hazards is contained in <u>Annex B</u>.

4.2 Recommended service life

Re-usable *breathing sets* and *breathing tubes* shall conform to the requirements of this document throughout the recommended service life as required in 9.3.4.

Check conformance by inspection of the manufacturer's technical documentation.

5 Materials

5.1 General

ISO 18190:2016, Clause 5 shall apply.

5.2 Biological safety testing

Breathing sets shall also be evaluated and tested in conformance with ISO 18562-1.

Check conformance by inspection of the manufacturer's technical documentation.

6 Design requirements

6.1 General

ISO 18190:2016, Clause 6 shall apply.

6.2 Designated length

6.2.1 The length of *breathing tubes* shall be designated by their nominal overall length, expressed in metres, when measured in the resting condition (without extension), lying on a horizontal surface.

Breathing tubes intended to be extended when used shall be designated by both the unextended and extended lengths.

Check conformance by functional testing.

6.2.2 The designated length of *breathing tubes* provided securely attached to a *Y*-piece or patient end adaptor shall include the length of the patient end adaptor and any assembled ends.

Check conformance by functional testing.

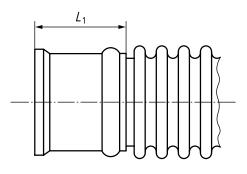
6.2.3 The actual length shall be within ± 10 % of the designated length.

Check conformance by functional testing.

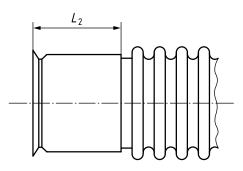
6.3 Breathing tube ends

6.3.1 Breathing tubes shall have plain ends or assembled ends

Check conformance by inspection.


NOTE There is rationale for this subclause in <u>A.3</u>.

6.3.2 Plain ends according to <u>Figure 1</u> shall have axial lengths as specified in <u>Table 1</u>.


Check conformance by functional testing.

6.3.3 Plain ends shall not become detached from their respective cones when subjected to the axial forces specified in <u>Table 1</u>.

Check conformance by the test given in <u>Annex C</u>.

a) Plain end with recess

b) Plain end without recess

Cone size	Axial lengths		- Axial force
(mm)	<i>L</i> ₁ (mm)	<i>L</i> ₂ (mm)	(N)
22	≥21	≥26,5	≥40
15	≥14	N/A	≥40
11,5	≥10,5	N/A	≥25
NOTE The cone sizes are those specified in ISO 5356-1.			

Table 1 —	Breathing	tube end	specifications
			opeentenetero

6.3.4 Adaptor

The end of the *adaptor* that is not intended for attachment to the *breathing tube* shall be a 22 mm or 15 mm or 11,5 mm socket conforming to ISO 5356-1.

Check conformance by inspection of the manufacturer's technical documentation.

6.3.5 Assembled end

Adaptors shall not detach from the *breathing tube* at a force of less than:

- a) 45 N for 15 mm and 22 mm adaptors; and
- b) 30 N for 11,5 mm adaptors.

Adaptors for use in breathing sets or breathing tubes for neonatal ventilation using an 11,5 mm ISO 5356-1 compliant socket conical connector shall not detach from the breathing tube at a force of less than 30 N.

NOTE For the purpose of this requirement, a *patient end adaptor* provided securely attached to a *breathing tube* is regarded as an *adaptor*.

Check conformance by the test given in <u>Annex D</u>.

6.3.6 Patient connection ports

Patient connection ports shall be one of the following:

a) a coaxial 22 mm cone/15 mm socket;

b) a 15 mm socket;

Check conformance by inspection of the manufacturer's technical documentation.

6.4 Leakage

6.4.1 Leakage from *breathing tubes* shall not exceed 10 ml/min at (60 ± 3) hPa [(60 ± 3) cmH₂0].

Check conformance by the test given in <u>Annex E</u>.

6.4.2 Leakage from complete *breathing sets* shall not exceed the leakage limit listed for the designated patient category in <u>Table 2</u>.

NOTE See also <u>Annex A</u> for rationale.

Check conformance by the test given in $\underline{Annex E}$.

Apply 6.4.1 or 6.4.2, as applicable

Patient category	Intended delivered volume	Leakage limit	At pressure
		ml/min	hPa
			(cmH ₂ 0)
Adult	≥ 300 ml	70	60 ± 3
Paediatric	50 ml < 300 ml	40	60 ± 3
Neonatal	≤ 50 ml	30	60 ± 3
NOTE See <u>Annex E</u> .			

Table 2 — Leakage limit by patient category

6.5 Resistance to flow

6.5.1 For *breathing tubes* supplied to be cut to length, the manufacturer shall determine and disclose [see 9.3.1 a)] the resistance to flow per metre length of tubing at the flow listed for the designated patient category in Table 3. The flow resistance shall not exceed the limit in Table 3.

NOTE See also <u>Annex A</u> for rationale for <u>Tables 3</u> and <u>4</u>.

Check conformance by the test given in <u>Annex F</u>.

Table 3 — Flow resistance limit per metre by patient category for breathing tubes supplied to be
cut to length

Patient category	Intended delivered volume	Flow resistance limit	At flow
		hPa/l/min/m	l/min
		(cmH ₂ O/l/min/m)	
Adult	≥ 300 ml	0,03	30
Paediatric	50 ml < 300 ml	0,06	15
Neonatal	≤ 50 ml	0,37	2,5
NOTE See <u>Annex F</u> .			

6.5.2 For *breathing tubes* supplied ready for use or for each limb of a *breathing set*, the manufacturer shall determine, mark, and disclose [see <u>9.2</u> c) and <u>9.3.1</u> b)] the resistance to flow at the flow listed for the designated patient category specified in <u>Table 4</u>.

If the resistance exceeds the limit listed in <u>Table 4</u> for the designated patient category, the risk shall be assessed in the risk management file and, marked and disclosed [see 9.2 c) and 9.3.1 b)].

Check conformance by the test given in $\underline{Annex F}$ and, if required, by inspection of the manufacturer's risk management file.

Table 4 — Flow resistance limit by patient category for <i>breathing sets</i> and <i>breathing tubes</i>
supplied ready for use

Patient category	Intended delivered volume	Flow resistance limit hPa/l/min (cmH ₂ O /l/min)	At flow l/min
Adult	≥ 300 ml	0,06	30
Paediatric	50 ml < 300 ml	0,12	15
Neonatal	≤ 50 ml	0,74	2,5
NOTE See <u>Annex F</u> .			

6.5.3 The increase in flow resistance when *breathing tubes* are suspended over a rigid cylinder shall not exceed 150 % of the value obtained when the tube is straight.

Check conformance by the test given in <u>Annex G</u>.

6.6 *Compliance*

6.6.1 For *breathing tubes* supplied to be cut to length, the manufacturer shall determine and disclose [see <u>9.3.1</u> d)] the *compliance* per metre of tubing at the pressure listed for the designated patient category in <u>Table 5</u>. The *compliance* per metre of the tubing shall not exceed the limit in <u>Table 5</u>.

Check conformance by the test given in <u>Annex H</u>.

Table 5 — Compliance limit per metre by patient category for breathing tubes supplied to be cutto length

Patient category	Intended delivered volume	Compliance limit	At pressure
		ml/hPa/m	hPa
		(ml/ cmH ₂ 0 /m)	(cmH ₂ 0)
Adult	≥ 300 ml	0,8	60 ± 3
Paediatric	50 ml < 300 ml	0,7	60 ± 3
Neonatal	≤ 50 ml	0,3	60 ± 3
NOTE See <u>Annex H</u> .			

6.6.2 For *breathing sets* or *breathing tubes* supplied ready for use, the manufacturer shall determine mark, and disclose [see <u>9.2</u> e) and <u>9.3.1</u> e)] the total *compliance* at the pressure listed for the designated patient category in <u>Table 5</u>.

NOTE See also <u>Annex A</u> for rationale.

If the *compliance* exceeds the limit listed in <u>Table 6</u> for the designated patient category, the risk shall be assessed in the risk management file and, if required, marked and disclosed [see <u>9.2</u> e) and <u>9.3.1</u> e)].

Check conformance by the test given in $\underline{Annex}\ \underline{H}$ and, by inspection of the manufacturer's risk management file.

Table 6 — *Compliance* limit by patient category for *breathing sets* and *breathing tubes* supplied ready for use

Patient category	Intended delivered volume	Compliance limit ml/hPa (ml/ cmH ₂ O)	At pressure hPa (cmH ₂ 0)
Adult	≥ 300 ml	5	60 ± 3
Paediatric	50 ml < 300 ml	4	60 ± 3
Neonatal	≤ 50 ml	1,5	60 ± 3
NOTE See <u>Annex H</u> .	•	·	·

NUTE See <u>Annex H</u>.

6.7 Axial strength of breathing tubes

Breathing tubes shall withstand an axial force of 45 N.

Check conformance by the test given in <u>Annex D</u>.

7 Requirements for *breathing sets* and *breathing tubes* supplied sterile

ISO 18190:2016, Clause 7 shall apply.

8 Packaging

ISO 18190:2016, Clause 8 shall apply.

9 Information supplied by the manufacturer

9.1 General

ISO 18190:2016, Clause 9 shall apply.

9.2 Marking on the packaging

NOTE See also <u>Annex A</u> for rationale.

In addition to the marking requirements specified in 9.1 the packaging shall be marked with the following:

- a) the designated length (see <u>6.2</u>);
- b) for *breathing tubes* supplied ready for use, or for each limb of a *breathing set*, the resistance to flow and the test flow in l/min for the designated patient category in accordance with <u>6.5.2</u> and, if applicable, the risk assessment disclosure if the flow resistance exceeds the limits listed in <u>Table 3</u>;

EXAMPLE 1 RI @ 30 l/min: 0,08 hPa/l/min (cmH₂O/l/min);

RE @ 30 l/min: 0,07 hPa/l/min (cmH₂O/l/min).

RI: Resistance of the inspiratory limb

RE: Resistance of the expiratory limb

- c) if other components (e.g. breathing filters, HMEs) are attached to *breathing sets* or *breathing tubes*, the total resistance to flow and the test flow in l/min for the designated patient category in accordance with <u>6.5.2</u> including these attached components;
- d) for *breathing tubes* or *breathing sets*, supplied ready for use, the total *compliance* and the test pressure in hPa for the designated patient category in accordance with <u>6.6.2</u> and, if applicable, the risk assessment disclosure if the *compliance* exceeds the limits listed in <u>Table 6</u>;

EXAMPLE 2 C @ 60 hPa: 7 ml/hPa (ml/cmH₂0).

C: Compliance

e) if appropriate, the maximum pressure the tubing and connectors can withstand at ambient conditions expressed in Pascals.

Check conformance by visual inspection.

9.3 Instructions for use

9.3.1 Resistance and *compliance* information shall be supplied:

- a) for *breathing tubes* supplied to be cut to length, the resistance to flow per metre length of tubing and the test flow in l/min for the designated patient category in accordance with <u>6.5.1</u>;
- b) for *breathing tubes* supplied ready for use or for each limb of a *breathing set*, the resistance to flow and the test flow in l/min for the designated patient category in accordance with <u>6.5.2</u> and, if applicable, the risk assessment disclosure if the flow resistance exceeds the limits listed in <u>Table 3</u>;
- c) if other components (e.g. breathing filters, HMEs) are attached to *breathing tubes* or *breathing sets*, the total resistance to flow and the test flow in l/min for the designated patient category, in accordance with <u>6.5.2</u> including these attached components;
- d) for *breathing tubes* supplied to be cut to length, the *compliance* per metre of tubing and test pressure for the designated patient category in accordance with <u>6.6.1</u>;
- e) for *breathing tubes* and *breathing sets,* supplied ready for use, the total *compliance* and the test pressure in hPa for the designated patient category in accordance with <u>6.6.2</u> and, if applicable, the risk assessment disclosure if the *compliance* exceeds the limits listed in <u>Table 5</u>;
- f) if other components (e.g. breathing filters, HMEs) are attached to *breathing tubes* or *breathing sets*, the total *compliance* and test pressure for the designated patient category, in accordance with <u>6.6.2</u> including these attached components;

9.3.2 The manufacturer shall, when requested, provide information on the recommended maximum working temperature of the *breathing set* or *breathing tube* when attached to a heated humidifier, if breathing set is intended to be used within active humidification;

9.3.3 The manufacturer shall provide the recommended maximum working pressure of *breathing sets* or *breathing tubes*;

9.3.4 Unless *breathing sets* or *breathing tubes* are intended and marked as being for single use, the manufacturer shall provide details of recommended methods of cleaning and disinfection or sterilization, and the maximum number or period of reuses, if processing in accordance with the provided instructions leads to a degree of degradation that will limit the useful life of the medical device. Where such degradation is established, the manufacturer shall provide an indication of the number of reprocessing cycles that can normally be tolerated, or some other indication of the end of the medical device's ability to safely fulfil its intended use;

9.3.5 For coaxial and double-lumen *breathing sets*, the manufacturer shall provide details of recommended user test methods to verify the integrity of the *breathing set* before use;

Specialized equipment that is required to perform this user test shall be supplied with *breathing sets* or available from the manufacturer.

NOTE Particular problems with coaxial tubing or double lumen *breathing sets* with internal components include leakage (to atmosphere and between inspiratory and expiratory tubes), separation, or blockage.

Check conformance by inspection of the instructions for use.

Annex A (informative)

Rationale

A.1 General

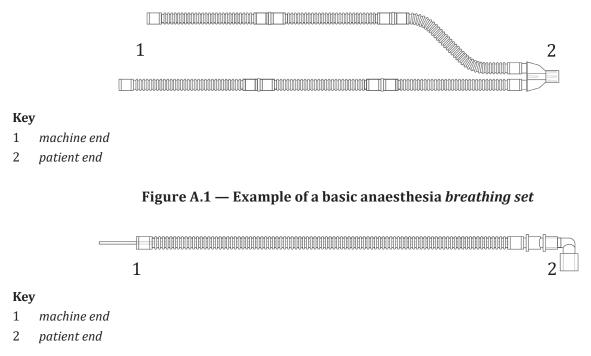
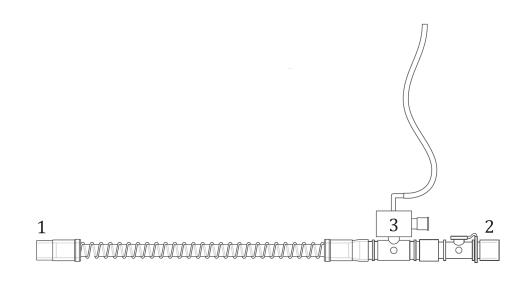
This annex provides a concise rationale for the important requirements of this document and is intended for use by those who are familiar with the subject of this document but who have not participated in its development. An understanding of the reasons for the main requirements is considered essential for its proper application. Furthermore, as clinical practices and technologies change, it is believed that rationales for the present requirements will facilitate any revisions of this document necessitated by those developments.

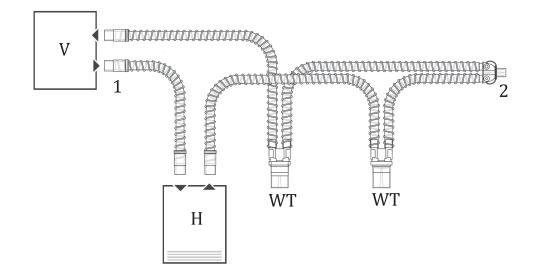
A.2 Rationale for <u>Clause 1</u> — Scope

Breathing sets are also commonly known as 'breathing circuits' by clinicians and manufacturers, yet this generic term was eventually deprecated.

Breathing sets are not complete 'circuits' as additional devices and accessories are required to perform the task of ventilation, i.e., an anaesthetic machine, ventilator, absorbers, exhaust/expiratory valves etc., all of which are specifically excluded from the scope of this document.

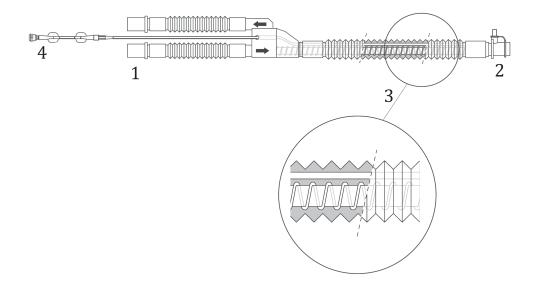
Examples of several different types of *breathing sets* with various types of *patient end adaptors* are depicted in <u>Figures A.1</u> to <u>A.5</u>. Other examples (not shown) may also apply.


Figure A.2 — Example of a basic coaxial anaesthesia breathing set

Кеу

- 1 machine end
- 2 patient end
- 3 exhalation valve (see ISO 80601-2-13)


Figure A.3 — Example of a basic single tube *breathing set* with exhalation valve

Кеу

- 1 machine end
- 2 patient end
- V ventilator (see ISO 80601-2-12)
- H humidifier (see ISO 80601-2-74)
- WT water trap

Figure A.4 — Example of a critical care ventilator *breathing set* with water traps and connections to a humidifier and ventilator

Key

- 1 machine end
- 2 patient end
- 3 multiple lumen coaxial tubing
- 4 gas sampling tubing

Figure A.5 — Example of a multiple-lumen coaxial *breathing set* with gas sampling tubing

A.3 Rationale for <u>subclause 6.3.1</u> – Breathing tube ends

The ends of breathing tubes are defined for machine ends and ends towards external interfaces (e.g. patient connection port) if these are intended to be disassembled. This requirement is not applicable if components are permanently attached to the hoses like e.g. water traps in the middle of the hose.

A.4 Rationale for <u>subclause 6.4.2</u> — Leakage from complete breathing sets

There appears to be no international agreement on the definitions for adult, paediatric, infant, or neonatal body weights, or tidal volumes. Instead, ISO 80601-2-12 and ISO 80601-2-13 agree that patient categories should be replaced with 'relevant delivered volume ranges.'

A.5 Rationale for <u>Table 2</u> — Leakage limit

Working closely with the developers of the breathing systems standards in an effort to determine reasonable leakage limits for *breathing tubes* and *breathing sets*, it was conservatively decided that *breathing tube* and *breathing set* leakage limits for each patient category in <u>Table 1</u> should be approximately 30 % of the total system leakage limits for the respective *VBS* and *anaesthetic breathing system* equipment, including accessories, when the breathing systems are tested at the same pressures.

A.6 Rationale for <u>Tables 3</u> and <u>4</u> — Flow resistance

A similar approach was taken with the developers of the breathing systems standards to harmonize the flow resistance test methods between the *breathing sets, breathing tubes,* and the various *VBSs* and *anaesthetic breathing systems*. It was conservatively decided that *breathing tube* and *breathing set* resistance limits for each patient category in <u>Table 3</u> should be approximately 30 % of the total system resistance limit for the respective breathing systems when all are tested at the same flow.

For *breathing tubes* supplied to be cut to length, the 30 % value for each limb of a typical *breathing set* was then expressed on a per metre basis for each patient category in <u>Table 2</u>.

A.7 Rationale for <u>subclause 6.5.2</u> Resistance to flow

Flow resistance of the total breathing system should not exceed that of the ventilator or anaesthesia workstation of 6 hPa (6 cmH_20) at the flow rate required to deliver the intended volume (ISO 80601-2-12, ISO 80601-2-13, or other relevant standard that describes total system flow resistance for the intended use of the *breathing set* or *breathing tube*).

The increase in pressure associated with the supplied *breathing set* alone should be limited to the lowest possible value and, ideally, not exceed 1,8 hPa (1,8 cmH₂O) at the flow rate required to deliver the intended volume, because other components added by the user may add flow resistance that will exceed the system limits.

The committee agreed that flow resistance should include that added by turbulent flow within the components. Expiratory flow resistance is the most critical value to control. Special characteristics of coaxial tubes may require separate disclosure of both inspiratory and expiratory flow resistance. This is important when the machine fails and when the patient is forced to inhale and exhale spontaneously through the components and valves. Normal upper airway flow resistance is approximately 3 hPa (3 cmH₂O) at the flow rate required to deliver the intended volume. Heat and moisture exchangers (HMEs), filters, and other components add significant flow resistance. Therefore, *breathing sets* should not increase this flow resistance, if possible.

The committee also agreed to add requirements to disclose flow resistance values for *breathing sets* and *breathing tubes* intended for neonatal and paediatric patient categories. While there was no agreement on the definitions for adult, paediatric, infant, or neonatal categories defined by body weight or tidal volume, the committee agreed to harmonize the patient categories with those described in ISO 80601-2-12 and ISO 80601-2-13 as 'relevant delivered volume ranges.' It was understood that the patient categories should be further classified, if necessary, to those relating to 'invasive' and 'non-invasive' ventilation requirements, because the performance of many non-invasive ventilation applications of *breathing sets* are less critical.

A.8 Rationale for <u>subclause 6.6.2</u> *Compliance*

The committee agreed that testing and marking the total *compliance* of the *breathing set* and *breathing tube* is clinically useful because the value may be additive to the *compliance* values for the other accessories and help provide the user with a clearer understanding the total *compliance* of the *VBS* or *anaesthetic breathing system*.

Compliance limits will vary greatly with patient category. Neonatal and paediatric *breathing sets* must have lower *compliance* values in order to function within the ventilator's *compliance* tolerance limits. Errors in the estimation of the total breathing system *compliance* will greatly affect the accuracy of delivered gas volumes.

A.9 Rationale for subclause 9.2 Marking on the packaging

a) designated length: the designated length includes the *patient end adaptor* and any *assembled ends*. For asymmetric systems the designated length is the shortest distance between device and *patient end adapter* (e.g. the expiratory limb of a heated hose system for active humidification with an additional non - heated hose and a water chamber in the inspiratory limb).

A.10 Rationale for <u>subclause 9.3.5</u> Coaxial *breathing set* user test methods

User testing of coaxial *breathing sets* for the integrity of the internal circuit prior to use on a patient may be required because the security of the inner tubing may not be visible to the user. Manufacturers

need to instruct the operator on how to ascertain the integrity of the internal lumen to reduce the risk of a faulty connection leading to rebreathing of carbon dioxide and other problems.

The following tests have been described for use with a coaxial Mapleson D circuit (e.g. Bain circuit),^[6] however, these tests are not applicable for use with circle systems and may be unreliable with Bain circuits:

- observation of a decrement in flow when the distal orifice of the internal circuit was occluded, and
- observation of an accelerated deflation of the reservoir bag by a venturi effect with a high flow through the inner tube.

Annex B

(informative)

Hazard identification for risk management

NOTE <u>Annex B</u> is not an exhaustive or inclusive list of all known hazards and serves only as a guide for developers and users of *breathing sets* and *breathing tubes*.

- a) Emission of harmful gases: attention is drawn to the absorption of inhalational anaesthetic agents and other substances by *breathing tubes*. These agents and substances may be subsequently liberated and may pose a hazard.
- b) Delamination, leading to increased flow resistance: for *breathing tubes* of a laminated construction, there is a risk of internal de-lamination and bubble formation when they are exposed to inhalational anaesthetic agents.
- c) Kinking.
- d) Disconnection.
- e) Obstruction.
- f) Detachment of connector.
- g) Hole in the inner tube of a coaxial tube or septum of a double-lumen tube.
- h) High flow resistance.
- i) Alteration of anaesthetic gases by dissolving substances from the hose material to the breathing gas [e.g. plasticizers, like phthalates, di(2-ethylhexyl) phthalate (DEHP)].
- j) Insufficient ventilation of the patient by using tubing with excessive compliance.
- k) Insufficient ventilation of the patient due to inability to correct for excessive *VBS compliance*, resulting from damaged, leaky or corrupted *breathing tubes*.
- l) Allergy, including allergy to natural rubber latex.

Annex C (normative)

Test for security of attachment of plain end to conical connector

C.1 Principle

The security of attachment of a plain-ended *breathing tube* to a conical connector that is intended to be detachable by an operator is tested by applying a tensile load along the linear axis of the end and noting whether the end becomes detached from the connector at a specified force.

C.2 Test piece

The test is carried out on a *breathing tube* with a *plain end*.

C.3 Apparatus

C.3.1 Means of applying a tensile load of not less than 40 N, at a rate of (50 ± 5) mm/min along the linear axis of the tube at least 150 mm from the end of the tube.

C.3.2 Means of measuring the applied tensile load, with an accuracy of ±2 N.

C.3.3 A 22 mm or 15 mm or 11,5 mm conical test connector, as appropriate for the size of *breathing tube* to be tested, made of metal with a recess in the case of a 22 mm connector, dimensioned as specified in ISO 5356-1 and having a surface roughness of 0,8 μ m (roughness number N6).

C.4 Procedure

C.4.1 Condition the *breathing tube* at (42 ± 3) °C and at not less than 80 % relative humidity for at least 1 h prior to testing. Conduct the test procedure at a temperature of (23 ± 3) °C within 5 min after the 1 h conditioning.

NOTE Conditioning at a high temperature is intended to replicate the temperature of the tubing and gas pathways after 1) exposure to the exothermic reactions within carbon dioxide absorbers, 2) the high temperatures of heated humidifiers or 3) the high ambient temperatures when placed in proximity to warming blankets.

C.4.2 Engage the *plain end* of the *breathing tube* over the test connector by wetting the end in distilled water and pushing it onto the test connector so that the entire axial length of the test connector is covered. Secure the test connector.

C.4.3 Apply a tensile load of not less than 40 N (25 N for 11,5 mm connectors) at a rate of (50 ± 5) mm/ min at a point not less than 150 mm from the end of the *breathing tube*, along the linear axis of the *breathing tube*.

C.5 Expression of results

Verify that the breathing tube does not become detached from the test connector at a force less than 40 N (25 N for 11,5 mm connectors).

Annex D

(normative)

Test for security of attachment of *assembled ends* and axial strength of *breathing tubes*

D.1 Principle

The security of attachment of *assembled ends* and the axial strength of a *breathing tube* are tested by applying a tensile load along the linear axis of the *breathing tube* and its *assembled end* and noting whether the *patient end adaptor* becomes detached from the *breathing tube* or the integrity of the tube is compromised in any way.

D.2 Test piece

The test is carried out on a *breathing tube* with an *assembled end*.

D.3 Apparatus

D.3.1 Means of securing the *assembled end* of the *breathing tube*, so that the *adaptor* is not distorted and can withstand a tensile load of > 45 N applied for 1 min along the linear axis of the test piece at least 150 mm from the end of the test piece.

D.3.2 Means of measuring the applied tensile load, with an accuracy of ±2 N.

D.3.3 Means of applying a tensile load of not less than 45 N at a rate of (50 ± 5) mm/min along the linear axis of the test piece.

D.4 Procedure

D.4.1 Condition the test piece at (42 ± 3) °C and at not less than 80 % relative humidity for at least 1 h prior to testing. Conduct the test procedure at a temperature of (23 ± 3) °C within 5 min after the 1 h conditioning.

NOTE Conditioning with high temperature is intended to replicate the temperature of the tubing and gas pathways after 1) exposure to the exothermic reactions within carbon dioxide absorbers, or 2) the high temperatures of heated humidifiers, or 3) the high ambient temperatures when placed in proximity to warming blankets.

D.4.2 Secure the *adaptor* so that the part incorporated into the *breathing tube* is not distorted.

D.4.3 Apply a tensile load of 45 N (30 N for 11,5 mm connectors) at a rate of (50 ± 5) mm/min at a point not less than 150 mm from the secured assembled end of the *breathing tube* along its linear axis.

D.4.4 Verify that the assembled end and the breathing tube meet the requirements for leakage according to $\underline{6.4}$ and compliance according to $\underline{6.6}$

D.5 Expression of results

Verify that the integrity of the *assembled end* and the *breathing tube* have not been compromised.

Annex E (normative)

Test for leakage

E.1 Principle

Leakage is tested by applying and maintaining an internal gas pressure by introducing air into a *breathing tube* or *breathing set* and recording the flow of air required to maintain that internal pressure. This will test leakage from the body of the *breathing tube*; in the case of a *breathing tube* or *breathing set* with *assembled ends*, from the tube, the adaptor and their connection; and in the case of *breathing tubes* with *plain ends*, from the connection of the *breathing tube* to an appropriately sized conical connector.

E.2 Test piece

The test is carried out on a *breathing tube* or *breathing set* as supplied in its ready for use condition. *Breathing tubes* supplied uncut are cut to a length suitable for testing.

E.3 Apparatus

E.3.1 Means of applying and maintaining an internal gas pressure of (60 ± 3) hPa [(60 ± 3) cmH₂0].

E.3.2 Means of conditioning the *breathing tube* and carrying out the test procedure at a temperature of (23 ± 3) °C.

E.3.3 Means of recording air flow rate up to 100 ml/min, accurate to within 5 % at 50 hPa (50 cmH₂0).

E.3.4 An appropriately sized cone conical test connector, as in <u>C.3.3</u>.

E.4 Procedure

E.4.1 Test conditions

Condition the test piece at a temperature of (23 \pm 3) °C for at least 1 h prior to testing. Maintain this temperature during testing.

E.4.2 Engaging the test piece to the test apparatus

E.4.2.1 Care should be taken when performing the test to exclude the possibility of leaking between the tubing and the apparatus.

E.4.2.2 For a *breathing tube* supplied to be cut to length, cut a suitable length of not less than 1 m as the test piece.

E.4.2.3 For a *breathing tube* intended to be extended when used, condition and test in the extended state.

E.4.2.4 Engage the test piece over the test connector as described in <u>C.4.2</u> and close off one end.

E.4.2.5 For complete *breathing sets* or *breathing tubes* supplied in pairs with *assembled ends* and *Y-piece* or *patient end adaptor*, and all provided components, engage the end of one opening of the *breathing tube* over the test connector as in <u>C.4.2</u>, occluding any openings.

E.4.3 Application of internal gas pressure

Apply an internal gas pressure of (60 ± 3) hPa $[(60 \pm 3) \text{ cmH}_2\text{O}]$ by introducing air into the *breathing tube* or *breathing set* and allowing the pressure to stabilize. Record the flow rate of air required to maintain that internal gas pressure.

E.5 Expression of results

E.5.1 Express the flow rate of air required to maintain the specified internal gas pressure in millilitres per minute.

E.5.2 Verify that the leakage is less than that specified in <u>6.4</u> as appropriate.

Annex F

(normative)

Measurement of resistance to flow

F.1 Principle

The resistance to flow is tested by measuring the pressure increase through the *breathing set* or *breathing tube*

F.2 Test piece

F.2.1 The test is carried out on a *breathing set, breathing tube* supplied ready for use, or a 1 m length of *breathing tube* supplied to be cut to length.

F.2.2 If other components (e.g. water traps, water chambers for humidifying systems) are attached to the *breathing set* an additional test is carried out including these attached components. See <u>9.2</u> c).

Components (e.g. HMEs, Filters) that have their own standard shall be tested according to the specific product standard.

F.3 Apparatus

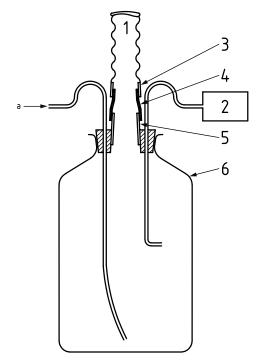
F.3.1 Flow-controlling device, capable of controlling the flow of air and having an accuracy of ±2,5 %.

F.3.2 Pressure-measuring device, having an accuracy of $\pm 0,10$ hPa ($\pm 0,10$ cmH₂0).

F.3.3 Buffer reservoir, comprising a sealed jar of 5 l capacity with a gas inlet placed near the bottom of the jar and a gas outlet placed at the top of the jar (see Figure F.1). The outlet shall be funnel-shaped with an inside diameter greater than that of the *breathing tube* under test. A connection to the pressure-measuring device (F.3.2) shall be placed in the jar halfway between the gas inlet and gas outlet. Any transition in inside diameter between the outlet and the connector, if provided, and the *breathing tube* should be smooth to minimize turbulent flow.

F.3.4 Compressed non-condensing air.

F.4 Procedure


F.4.1 Condition the test piece at a temperature of (23 ± 3) °C for at least 1 h prior to testing. Maintain this temperature during testing.

F.4.2 Set up the apparatus as shown in Figure F.1, but without the *breathing set* or *breathing tube* attached. Adjust the air flow rate to the flow stated in Table F.1 and maintain for 30 s. Record the reading (p_1) on the pressure-measuring device.

F.4.3 Fit the *breathing set* or *breathing tube*, including integral connectors if present, over the outlet of the buffer reservoir using an appropriate connector.

F.4.4 For *breathing tubes* intended to be extended when used, condition and test in the extended state.

F.4.5 For *breathing sets* and *breathing tubes* supplied in pairs securely attached to a *patient end adaptor*, occlude one opening of the tube at its *machine end*. Secure the free end of the tube being tested, so that it is held straight and not constricted.

Key

- 1 breathing tube
- 2 pressure-measuring device
- 3 adaptor with conical connector, if provided
- 4 conical connector
- 5 outlet
- 6 buffer reservoir
- ^a Air from flow-controlling device.

Figure F.1 — Typical apparatus for measuring resistance to air flow

F.4.6 Test the *breathing set* or *breathing tube* according to its intended use.

Table F.1 — Test Flow Rates

Patient category	Intended delivered volume	Test flow
	ml	l/min
Adult	≥ 300 ml	30
Paediatric	50 ml < 300 ml	15
Neonatal	≤ 50 ml	2,5

F.4.7 Adjust the air flow to that stated in Table F.1 and maintain it for 30 s. Record the reading (p_2) on the pressure-measuring device.

F.4.8 Calculate the increase in pressure due to the *breathing set* or *breathing tube* $(p_2 - p_1)$, expressed in hPa and cmH₂O.

F.4.9 For *breathing tubes* supplied in pairs securely attached to a *patient end adaptor*, repeat the procedure given in <u>F.4.6</u> to <u>F.4.8</u> using the other *breathing tube* with the previously tested *breathing tube* occluded at its *machine end*.

F.5 Expression of results

F.5.1 For *breathing sets* or *breathing tubes* supplied ready for use, express the increase in pressure ($p_2 - p_1$) in hPa and cmH₂O for the inspiratory and expiratory *breathing tubes*, if applicable.

F.5.2 For *breathing tubes* supplied to be cut to length, express the increase in pressure $(p_2 - p_1)$ in hPa and cmH₂O per metre length of tubing.

F.5.3 Verify that the resistance to flow is less than that specified in <u>6.5</u> as appropriate.

Annex G (normative)

Test for increase in flow resistance with bending

G.1 Principle

The resistance to air flow when the *breathing tube* is straight is determined as in <u>Annex F</u>. The increase in flow resistance of a *breathing tube* with bending is tested by suspending the *breathing tube* over a metal cylinder of small diameter and maintaining the *breathing tube* in contact with half the circumference of the cylinder for the duration of the testing. Suspended masses or alternative tensile forces applied to the ends of the *breathing tube* can ensure that contact is maintained. The air is introduced into the *breathing tube* at the flow rate that corresponds to the patient category and the increase in pressure is recorded.

G.2 Test piece

The test is carried out on the same test piece as used for the test in <u>Annex F</u>.

G.3 Apparatus

G.3.1 Metal cylinder, having a diameter of 2,5 cm (simulating a bed rail).

G.3.2 Pair of weights, of a mass just sufficient to maintain the *breathing tube* in continuous contact with half the circumference of the metal cylinder.

G.3.3 Flow-measuring device, pressure-measuring device and buffer reservoir, as specified in <u>F.3</u>.

G.3.4 Means of controlling air at the test flow for the patient category stated in <u>Table G.1</u>, to an accuracy of $\pm 2,5$ %.

G.3.5 Means of heating and controlling the temperature of the *breathing tube* to (42 ± 3) °C and not less than 80 % humidity.

Patient category	Intended delivered volume	Test flow
	ml	l/min
Adult	≥ 300 ml	30
Paediatric	50 ml < 300 ml	15
Neonatal	≤ 50 ml	2,5

Table G.1 — Test flow for flow resistance to bending

G.4 Procedure

G.4.1 Carry out the test procedure described in Annex F, Resistance to flow, and record the pressure as p_1 .

G.4.2 Condition the *breathing set* or *breathing tube* tested in <u>F.2.1</u> at (42 ± 3) °C and at not less than

80 % relative humidity for at least 1 h. Conduct the test procedure at a temperature of (23 ± 3) °C within 5 min after conditioning.

NOTE Conditioning at a high temperature is intended to replicate the temperature of the tubing and gas pathways after 1) exposure to the exothermic reactions within carbon dioxide absorbers, or 2) the high temperatures of heated humidifiers, or 3) the high ambient temperatures when placed in proximity to warming blankets.

G.4.3 *Breathing tubes* intended to be extended when used shall be tested in the extended state.

G.4.4 Immediately after conditioning, suspend the *breathing set* or *breathing tube* over the metal cylinder and attach weights or alternative materials from each end of the tube, of a mass just sufficient to maintain the tube in continuous contact over half of the circumference of the metal cylinder.

G.4.5 Within 5 min of conditioning the *breathing set* or *breathing tube*, introduce the air flow into the tube at the end at which the pressure-measuring device is connected. Record the pressure (p_2) at 5 min.

G.4.6 For multiple lumen *breathing sets, breathing tubes* and *breathing tubes* with a septum, perform multiple tests by suspending the tube with each lumen and each septum over the metal cylinder.

G.5 Expression of results

Express p_2 as a percentage of p_1 .

Annex H (normative)

Test for compliance

H.1 Principle

The *compliance* of the *breathing set* or *breathing tube* is determined, after sealing off any leaks as previously determined in <u>Annex E</u>, by inflating the tube to achieve a specified pressure and recording the volume of air required.

H.2 Test piece

H.2.1 For *breathing tubes* supplied uncut, the test is carried out on a cut section of *breathing tube* with a known length.

H.2.2 The test is carried out on the entire assembly after connecting all provided *breathing tubes*, connectors and ports.

H.2.3 If other components (e.g. breathing filters, HMEs) are attached to the *breathing set* or *breathing tube*, an additional test is carried out including these attached components. See <u>9.3.1</u> f).

H.3 Apparatus

H.3.1 Means of inflating the tube with air, to a gauge pressure of (60 ± 3) hPa [(60 ± 3) cmH₂0].

H.3.2 Means of recording the volume of air required.

H.3.3 Pressure-measuring device, as specified in <u>F.3.2</u>.

H.3.4 Means of ensuring free movement along the length of tube (e.g. a water bath in which to float the tube).

H.4 Procedure

H.4.1 Determine the presence of any leakage of the test piece in accordance with <u>Annex E</u>. Seal all leaks and retest until leakage is < 1 ml/min.

H.4.2 Condition the *breathing set*, or *breathing tube* tested in $\underline{G.4}$ at (42 ± 3) °C and at not less than

80 % relative humidity for at least 1 h. Conduct the test procedure at a temperature of (23 ± 3) °C within 5 min after conditioning.

NOTE Conditioning at a high temperature is intended to replicate the temperature of the tubing and gas pathways after:

- 1) exposure to the exothermic reactions within carbon dioxide absorbers;
- 2) the high temperatures of heated humidifiers; or

3) the high ambient temperatures when placed in proximity to warming blankets.

H.4.3 *Breathing tubes* intended to be extended when used shall be tested in the extended state.

H.4.4 Measure, at ambient pressure, the overall length of the test piece as in <u>6.2</u>, excluding the length of any connectors, *patient end adaptors* or Y-piece.

H.4.5 Block one end of the *breathing tube* and mount the tube in such a manner so as not to impede movement, for example by floating it on water. If the *breathing tube* is supplied with an integral *patient end adaptor* or Y-piece, block the *connection port*.

H.4.6 Connect the pressure-measuring device to the open end of the tube.

H.4.7 Inflate the test piece over a period of time not exceeding 5 s with sufficient air to achieve a stable gauge pressure of (60 ± 3) hPa [(60 ± 3) cmH₂O] and record the volume of air required.

H.5 Expression of results

H.5.1 For uncut *breathing tubes*, express the *compliance* of the gas pathway in ml/hPa (ml/cmH₂0) per metre length of tube.

H.5.2 For *breathing sets* and *breathing tubes* pre-assembled to ports and connectors, express the *compliance* of all gas pathways of the entire assembly of tubes, ports, and connectors as ml/hPa (ml/cmH_2O).

Bibliography

- [1] ISO 5362, Anaesthetic reservoir bags
- [2] ISO 9360-1, Anaesthetic and respiratory equipment Heat and moisture exchangers (HMEs) for humidifying respired gases in humans Part 1: HMEs for use with minimum tidal volumes of 250 ml
- [3] ISO 23328-2, Breathing system filters for anaesthetic and respiratory use Part 2: Non-filtration aspects
- [4] ISO 80601-2-74, Medical electrical equipment Part 2-74: Particular requirements for basic safety and essential performance of respiratory humidifying equipment
- [5] DORSCH J. A., DORSCH S.E., Understanding Anesthesia Equipment, 5th edition, Wolters Kluwer/ Lippincott Williams and Wilkins, 2008
- [6] SZYPULA K. A., IP J.K., BOGOD D., YENTIS S.M., Detection of inner tube defects in co-axial circle and Bain breathing systems: a comparison of occlusion and Pethick tests. Anaesthesia. 2008, 63 pp. 1092–1095

NATIONAL ANNEX A

(National Foreword)

A-1 BIS CERTIFICATION MARKING

The product(s) conforming to the requirements of this standard may be certified as per the conformity assessment schemes under the provisions of the *Bureau of Indian Standards Act*, 2016 and the Rules and Regulations framed thereunder, and the product(s) may be marked with the Standard Mark.

this Page has been intertionally left blank

Bureau of Indian Standards

BIS is a statutory institution established under the *Bureau of Indian Standards Act*, 2016 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

Headquarters:

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Head (Publication & Sales), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the website-www.bis.gov.in or www.standardsbis.in.

This Indian Standard has been developed from Doc No.: MHD 11 (22613).

Amendments Issued Since Publication

Amend No.	Date of Issue	Text Affected

BUREAU OF INDIAN STANDARDS

-		
Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002 <i>Telephones</i> : 2323 0131, 2323 3375, 2323 9402	Website: www.bis.gov.in	
Regional Offices:		Telephones
Central : 601/A, Konnectus Tower -1, 6 th Floor, DMRC Building, Bhavbhuti Marg, New Delhi 110002		<i>Telephones</i> { 2323 7617
Eastern : 8 th Floor, Plot No 7/7 & 7/8, CP Block, Sector V, Salt Lake, Kolkata, West Bengal 700091		<pre>{ 2367 0012 2320 9474 { 265 9930</pre>
Northern : Plot No. 4-A, Sector 27-B, Madhya Marg, Chandigarh 160019		265 9930
Southern : C.I.T. Campus, IV Cross Road, Taramani, Chennai 6001	13	{ 2254 1442 2254 1216
Western : Manakalya, 5 th Floor/MTNL CETTM, Technology Street Mumbai 400076	, Hiranandani Gardens, Powai	{ 25700030 25702715

Branches : AHMEDABAD, BENGALURU, BHOPAL, BHUBANESHWAR, CHANDIGARH, CHENNAI, COIMBATORE, DEHRADUN, DELHI, FARIDABAD, GHAZIABAD, GUWAHATI, HARYANA (CHANDIGARH), HUBLI, HYDERABAD, JAIPUR, JAMMU, JAMSHEDPUR, KOCHI, KOLKATA, LUCKNOW, MADURAI, MUMBAI, NAGPUR, NOIDA, PARWANOO, PATNA, PUNE, RAIPUR, RAJKOT, SURAT, VIJAYAWADA.