Annex 19

COMMENTS RECEIVED ON PUBLISHED STANDARDS

IS 269 Ordinary Portland Cement - Specification (Sixth Revision)

SI No.	Basic Details	Clause/Subclause No., Paragraph No./Figure No./Table No. & Attachment		Comments/Suggestions along with Justification for the Proposed Change	Proposed Change/Modified Wordings
	Name: Dilip Yadav	Clause 5.1.1 Table-1 <u>cmt_1607512597_Use_of</u> <u>Marble Slurry.pdf</u>	Technical	We wish to submit that Marble Slurry from Makrana / Kishangarh contains % CaCO3 and MgCO3 around 80% and 9 % respectively. Marble slurry waste, consisting in fine-grained residues resulting from operations of cutting and polishing of different types of limestone, and it can be re-used as raw materials suitable for applications in cement sectors as a replacement of limestone for clinker manufacturing as well as performance improver in OPC manufacturing. Marble slurry chemically, physically, mineralogically and morphologically demonstrate high content of calcium oxide and comparable with cement grade limestone (CaCO3), which shows that marble slurry can be re-used as a Limestone raw material with no treatments. Besides the economic benefits, transforming a waste into an important economic resource involves environmental advantages. Since it implies a reduction in the need for landfill storages and in the consequent associated detriments. Marble	Slurry as Performance Improver in OPC as

slurry can be an important economic resource capable of promoting the sustainability. We have send samples of Marble Slurry and OPC- 43 (with use of 5% Marble Slurry prepared in Lab Ball Mill) to NTH Jaipur & NCCBM Ballabgarh for testing (Reports are attached herewith). We wish to submit that BIS has already approved use of marble / dolomite as performance improver up to 8% in revised specification of White Portland Cement as per IS 8042 : 2015. In view of above, kindly accord your permission to utilize Marble Slurry as performance improver in limestone category for	
manufacturing of OPC as per specification IS 269: 2015.	

IS 3812 (Part 1) Pulverized fuel ash - Specification: Part 1 For use as pozzolana in cement, cement mortar and concrete (Third Revision)

SI No.	Basic Details	Clause/Subclause No., Paragraph No./Figure No./Table No. & Attachment	Type of Comment	Comments/Suggestions along with Justification for the Proposed Change	Proposed Change/Modified Wordings
	MUNINARAYANA R Organisation: Bureau of Indian Standards Email: muni.uas@gmail.com Mobile: 9099011248 Comment ID #:	5.1 Table 1 <u>cmt_1622479748_IS</u> <u>1727,4032,3312.pdf</u>	Technical	For testing, CaO, Al2O3 and MgO, IS 1727 is referred as per which Ammonium nitrate is required. Ammonium nitrate being a raw material of explosives, its open sale is banned and hence it not being supplied by the suppliers of chemicals and reagents.	be referred and rapid test methods such as AAS (IS 12813), XRF (IS 12803), Colorimetric methods(IS 12423) may

SI No.	Basic Details	Clause/Subclause No., Paragraph No./Figure No./Table No. & Attachment	Type of Comment		Proposed Change/Modified Wordings
	Ponnusamy Organisation: N/A Email: ponnusamy.palanisamy@zcltd.com	5	Technical	Every year the source of fly ash shortage is due to breakdown/ maintenance of coal-fired thermal power stations. As a result, fly ash supplies are lower than anticipated and the duration of the shortage is undetermined. Cement plants are severely affected by this and forced to reduce fly ash addition as low as 15 percent. PPC produced with lower fly ash increases production cost and also adversely affects Clinker factor,Natural resources depletion and Green product concepts. Proposed change will support to plant as well as environment. Cement plants may use their captive	If the declared fly ash constituent is 15 percent in PPC. Then, 5 percent Performance improvers as stated in IS 269:2015(Clause 5.1.1) shall be added in PPC.

IS 1489 (Part 1) Portland Pozzolana Cement - Specification: Part 1 fly Ash Based (Fourth Revision)

		limestone during fly ash shortage. Economically viable and reduces CO2 emissions.	

SI No	Basic Details	Clause/Subclause No., Paragraph No./Figure No./Table No. & Attachment		Comments/Suggestio ns along with Justification for the Proposed Change	Proposed Change/Modifie d Wordings
	Rajesh kumar Gangwal Organisation: N/A Email: RAJESHGANGWAL786@YMAIL.C OM	4.3.2 1 <u>cmt_1627127454_IMG_7441.</u> <u>pdf</u>	Technica	As per the Code, It is proposed that the Estimate of Bending Moments in Flat slab for Water retaining Structures shall not be done using the direct stress method prescribed in IS 456 and to be worked out based on the coefficients given in IS 3370 (Part-4). Since, In the Part-4, there is no table given for the coefficient for estimate the Bending moments in Flat slab. Only, Tables showing the coefficient for the circular slab have been shown. In fact, the Bending moment in the flat slab will be	that how to calculate/find the coefficient for Bending Moment in Flat

IS 3370 : Part 2 Code of Practice Concrete structures for the storage of liquids Part 2 Reinforced concrete structures

		distributed in column and middle strip.	

IS 4031 : Part 2 Methods of Physical Tests for Hydraulic Cement: Part 2 Determination of fineness by Blaine air
permeability method (Second Revision)

SI No.	Basic Details	Clause/Subclause No., Paragraph No./Figure No./Table No. & Attachment	Type of Comment	Comments/Suggestions along with Justification for the Proposed Change	Proposed Change/Modified Wordings
	UGUST DUBEY Organisation: Bureau of Indian Standards Email: augustdubey@bis.gov.in	4.8	Technical	Respected Sir, Cl. 4.8, IS 4031 PART 2, Ammend-2: 1001A shall be used as the reference cement for the determination of apparatus constant As per telephonic discussion held with NCCBM, 1001A has been revised as BND 5001A. NCCBM provides BND 5001A, 5002,5003 for the determination of apparatus constant of OPC, PPC, and PSC respectiverly. It is requested, please clarify whether BND 5001 should be used for all cements (opc,ppc & psc) K value calcuation or different CRMs are to be used.	above point is requested. If admissible, may

IS 4031 : Part 5 Methods of Physical Tests for Hydraulic Cement: Part 5 Determination of Initial and Final Setting Times (First Revision)

SI No.	Basic Details	Clause/Subclause No., Paragraph No./Figure No./Table No. & Attachment	Type of Comment	Comments/Suggestions along with Justification for the Proposed Change	Proposed Change/Modified Wordings
	THECHANO C OVUNG Organisation: Bureau of Indian Standards Email: thechano.ovung@bis.gov.in	CL. 5.3	Technical	In the Standard, in Cl. 5.3 for Determination of FST, it is mentioned that the" cement shall be considered as finally set when, upon applying the needle gently to the surface of test block, the needle makes an impression thereon". However, the drop height of the needle is not specified.	the needle of the Vicat appartus, the longer the setting time of cement. In this regards, the height at which the needle is to be released

IS 4031 : Part 6 Methods of Physical Tests for Hydraulic Cement: Part 6 Determination of Compressive Strength of Hydraulic Cement other than Masonry Cement (First Revision)

SI No.	Basic Details	Clause/Subclause No., Paragraph No./Figure No./Table No. & Attachment	Type of Comment	Comments/Suggestions along with Justification for the Proposed Change	Proposed Change/Modified Wordings
	AUGUST DUBEY Organisation: Bureau of Indian Standards Email: augustdubey@bis.gov.in	8	General	Sir, Cl. 7 infer to take 3 cubes for each period. This means for each period, 3 results will be obtained Cl. 8 explains about discarding of the test results and retesting. Neither CL. 7 nor cl. 8 explicitly explains reporting that if obtained results are acceptable (as per cl. 8), In which format result (Average or minimum of 3) should be reported? Clarification on reporting is highly requested	Reporting format may be mentioned explicitly.

SI No	Basic Details	Clause/Subclause No., Paragraph No./Figure No./Table No. & Attachment	Type of Comme nt	Comments/Suggestions along with Justification for the Proposed Change	Proposed Change/Modifi ed Wordings
	AMESHNAIDUPOLUPAR THI Organisation: Bureau of Indian Standards Email: rameshnaidu@bis.gov.in	7.5	Editorial	As per Amend No. 2 to IS 4032 : 1985 7.5 The method for determining chloride content in Portland slag cement shall be the same as described in 4.13. Clause 7.5 is referring to PORTLAND POZZOLANA CEMENT. This may please be corrcted.	for determining chloride content in Portland Pozzolana Cement shall be the same as described in
		4.8 2 <u>cmt_1676438177_Attachment</u> <u>Annex A- CRMs-Referencespdf</u>	Technica I	While estimating MgO by Method 2 (EDTA method) given in CI. 4.8.2 of IS 4032:1985 using of Thymol Phthalexone indicator for detection of end point, difficulties have been encountered in identifying the exact end point. It is seen that the change of colour at end point is not sharp which may lead to erroneous detection of end point as a result chances of error could be high for people not well conversant	method in clause 4.8.2 after method 2: Method 3 (EDTA Method using EBT after removal of CaO by gravimetric method <i>Cl.</i> 4.7. 1) for details please see Annexure- A of

IS 4032 Method of Chemical Analysis of Hydraulic Cement (First Revision)

[]		
	with the method or lacking	
	high level of expertise.	
	From methods specified in	
	Indian standards for	
	estimation of Magnesium in	
	Water and Waste water as	
	well as papers published in	
	International journals	
	(attachment enclosed) it	
	has been observed that use	
	of Eriochrome Black T	
	indicator is also suitable for	
	estimation of Magnesium,	
	including for Cement	
	samples.	
	Trials have been performed	
	on cement CRMs for PPC	
	(BND 5052A), PSC (BND	
	5053), OPC (1012M) having	
	traceability to NCCBM	
	(attachment enclosed). It	
	has been observed that the	
	use of EBT as indicator	
	gives and clear and sharp	
	end point which is easily	
	detectable. The results	
	when compared to the	
	declared value of CRMs	
	shows that they are equally	
	repeatable and	
	reproducible.	

References: 1. Asrar Adil El-gray and Farough Bakheit, Mohamed Ahmed (2016), Determination of Major Oxides Percentages in Portland Cement of Some Sudanese Cement Manufactories, Amer ican Journal of Applied Chemistry Vol 4, No 1, 2016, pp 14-17. (attachment enclosed) 2. Sufian Rasheed, Miamat Ullah and Amir Ullah (2020), Chemical analysis of some Pakistani Portland cement/clinker and their compliance with ASTM standards, <i>European</i> <i>Journal of Chemistry</i> vol 11, No 3, 2020,		
ASTM standards, <i>European</i> <i>Journal of Chemistry</i>		 Asrar Adil El-gray and Farough Bakheit, Mohamed Ahmed (2016), Determination of Major Oxides Percentages in Portland Cement of Some Sudanese Cement Manufactories, <i>Amer</i> <i>ican Journal of</i> <i>Applied Chemistry</i> <i>Vol 4, No 1, 2016, pp</i> <i>14-17.</i> (attachment enclosed) Sufian Rasheed, Miamat Ullah and Amir Ullah (2020), Chemical analysis of some Pakistani Portland cement/clinker and
		Chemical analysis of some Pakistani Portland cement/clinker and their compliance with ASTM standards, <i>European</i> <i>Journal of Chemistry</i>

		197 (attachment enclosed)	
4.2 <u>cmt 1676603559 LOI vs TGA.pdf</u>	Technica	analysis is based on split loss on ignition at 105 °C and 950 °C. The ignition process can be monitored in real time and results can be presented in a TGA curve, involves automated sample	clause 4.2 (Amendment 2) as an alternate method by Thermo Gravimetric Analyzer (TGA) for inclusion as

		 °C, TGA method can be applied for LOI in cement. Reference 2 Describes the comparative study of determination of organic matter and carbonate content in sediments by LOI & TGA methods. References: ASTM C114 CI.X2.2.2 Journal - Paleolimnol (2022) 67:191–197 	
Ankit Bhumla Organisation: Bureau of Indian Standards Email: ankitbhumla@bis.gov.in	Technica I	estimation of Chloride	existing text with "The method for determining chloride content in Portland Pozzolana Cement shall be the same as described in

-	1		1		
		4.8	Technica	0 0 ,	Add a new
		<u>cmt_1677144245_Comment_Ceme</u>	I	Method 2 (EDTA method)	method in
		<u>nt.pdf</u>		given in Cl. 4.8.2 of IS	clause 4.8.2
				4032:1985 using of Thymol	after method 2:
				Phthalexone indicator for	Method 3
				detection of end point,	(EDTA Method
				difficulties have been	using EBT after
				encountered in identifying	removal of CaO
				the exact end point. It is	
				seen that the change of	
				colour at end point is not	
				sharp which may lead to	,
				erroneous detection of end	
				point as a result chances of	
				error could be high for	
				people not well conversant	
				with the method or lacking	
				high level of expertise.	
				From methods specified in	
				Indian standards for	
				estimation of Magnesium in	
				Water and Waste water as	
				well as papers published in	
				International journals (see	
				references below) it has	
				been observed that use of	
				Eriochrome Black T	
				indicator is also suitable for	
				estimation of Magnesium,	
				including for Cement	
				samples.	
				Sumples.	

	Trials have been performed on cement CRMs for PPC (BND 5052A), PSC (BND 5053), OPC (1012M) having traceability to NCCBM (Annex-B). It has been observed that the use of EBT as indicator gives and clear and sharp end point which is easily detectable. The results when compared to the declared value of CRMs shows that they are equally repeatable and reproducible (Annex-C).
	References: 1. Asrar Adil El-gray and Farough Bakheit, Mohamed Ahmed (2016), Determination of Major Oxides Percentages in Portland Cement of Some Sudanese Cement Manufactories, Amer ican Journal of Applied Chemistry

Vipul Bohara	4.1.15	Technica	 Vol 4, No 1, 2016, pp 14-17. 2. Sufian Rasheed, Miamat Ullah and Amir Ullah (2020), Chemical analysis of some Pakistani Portland cement/clinker and their compliance with ASTM standards, <i>European</i> <i>Journal of Chemistry</i> <i>vol 11, No 3, 2020,</i> <i>pp 194-197</i> IS 3025(Part-46), Methods of sampling and test (Physical and Chemical) for water and wastewater, Part 46 Magnesium (This method is applicable when Iron and Aluminium has not separated from the test solution). 	Substitute the
Organisation: Bureau of Indian Standards Email: vipulb@bis.gov.in	1		Black T indicator required in the titration for standardization of EDTA should be 5 mg instead of	existing line "Add 50 mg of the solid thymol

		50 mg. Because the 50 mg	indicator" with
		quantity makes the colour of	the following
		the solution very dark which	new line in the
		makes it very difficult to	3 rd line of the
		observe the endpoint of the	paragraph:
		reaction during titration.	"Add 5
		Therefore, the only 5 mg of	mg Eriochrome
		Eriochrome Black-T	Black-T
		indicator should be	indicator"
		recommended. The 5 mg	
		quantity has been used and	
		found satisfactory in Central	
		laboratory of BIS.	
		Substitute the existing line	
		"Add 50 mg Eriochrome	
		Black-T indicator" with the	
		following new line in the 4th	
		line of the paragraph: "Add 5	
		mg Eriochrome Black-T	
		indicator"	
		Select	
		4.8.4	
		N/A 1 Technical	
		For titration, solid thymol	
		phthalexone indicator has	
		been referred in the	
		Standard. However, this	
		indicator is not commonly	

	available	in the Indian	
	Market.	Therefore, instead	
	of solid t	hymol phthalexone	
	indicator,	5 mg of	
	Eriochror	ne Black-T	
	indicator	may be referred.	

SI No	Basic Details	Clause/Subclause No., Paragraph No./Figure No./Table No. & Attachment	Type of Comme nt	Comments/Suggestio ns along with Justification for the Proposed Change	Proposed Change/Modifie d Wordings
		17.3 & 17.4 17.3 clause and para <u>cmt_1596707711_CAPO TEST.pdf</u>	Technica I	As per clause based on 17.3 and subsequently Core test for the hardened structure for specific concrete grade confirmation But it may not be possible some cases of structural elements at site for congested reinforcement . I would suggest for that cases a reliable semi- destructive CAPO test in place of CORE TEST.	
		17.3 & 17.4 17.3 clause and para <u>cmt_1596708608_CAPO TEST.pdf</u>	Technica I	clause 17.4 Core Test. This is destructive test for hardened structure. Some cases in practically may not be possible due to congested reinforcement of structural elements. I would suggest on other	-

IS 456 Plain and reinforced concrete - Code of practice (Fourth Revision)

			option a reliable semi- destruct CAPO test.	
Kunj Gupta Organisation: N/A Email: kunj.gupta@jindalstainless.c om	5.6 <u>cmt_1712940378_6619655a66c72.</u> <u>pdf</u>	General	HighStrenghtDeformedStainlessSteel Bars for concretereinforcment as per IS16651:2017As there are manyprojects in many govt.agenciesincludingNHAI, Indian Railways,Metros, StatePWDswhichareusingStainless Steel rebars inRCC structures.ThereThereisIScodeavailableforHighStrenghtDeformedstainless steel bars forconcretereinforcmentbut it is yet to beincluded in IS 456	Deformed stainless steel bars for concrete reinforcment as per IS
PATNAM KALYAN VENKATESH Organisation: N/A Email: kalyan.mtce122211@nfsu.ac .in	26.5.1.6 1	Technica I	He is Patnam kalyan venkatesh pursuing MTech civil engineering specialization in Forensic structural engineering at National Forensic Sciences University Gandhinagar	says that the characteristic strength of the stirrup reinforcement in N/mm^2 should

Gujrat campus. He has	115N/mm/2 But
been practicing the IS	now in real time
456:2000 for design of	there is no steel
reinforced concrete	vendor is
cement structures	manufacturing
design since 2016 from	the grade of
his diploma.	steel which is
	less than
	415N/mm^2. So,
	his concern is
He has noticed that the	that the relation
clause no: "26.5.1.6	will still stand
Minimum shear	good for the
reinforcement"	higher grade of
Minimum shear	steel as a
reinforcement in the	minimum grade.
form of stirrups is	He has gone
provided as per the	through the 5th
relation	amendment of
	the code done in
Asbsv≥0.4/0.87fy	2021 no
	changes have
where	been seen in this
	provision. He
As = total cross-	has attached the
sectional area of stirrup	brochures of
legs effective in shear,	main stream
	steel
Sv,' = stirrup spacing	manufactures in
along the length of the	market. Such as
member,	
	Jindal steel

	b = breadth of the beam or breadth of the web of flanged beam, and fy = characteristic strength of the stirrup reinforcement in N/mm^2	Steel Authority India Itd Vizag steel plant Itd
	which shall not be taken greater than 415 N/mm^2.	

IS 9103 Concrete Admixtures Specification (First Revision)

SI No.	Basic Details	Clause/Subclause No., Paragraph No./Figure No./Table No. & Attachment	Type of Comment	Comments/Suggestions along with Justification for the Proposed Change	Proposed Change/Modified Wordings
	AJAY MAURYA Organisation: Bureau of Indian Standards Email: er.ajaymaurya@gmail.com	7.2.3 of IS 9103 Table 1A, Row (iii) <u>cmt 1617172698 Comments</u> <u>9103-converted.pdf</u>	Technical	The cl. 7.2.3 refers to the testing for determination of Time of Initial and Final setting as per IS 8142.	

IS 516 (Part 5/Sec 1) Hardened Concrete - Methods of Test: Part 5 Non-destructive Testing of Concrete: Section 1 Ultrasonic Pulse Velocity Testing (First Revision)

Dear Sir,

I have observed the one typing or technical mistake into the subjected IS code.

My observations are as below....

Into the ANNEX D of the code, equation for the evaluation of the dynamic Young's modulus of elasticity (E) has been as follows....

Sir, In this equation, the unit of pulse velocity should be km/sec instead of m/sec. As I have checked various literatures, most of the literature showing the km.sec, some are showing m/sec but for calculation, they have used km/sec values for E calculations....I have calculated the E values for various readings and tabulated as below., I have calculated E value by using km/sec & m/sec. The E values by using m/sec seem non realistic. Kindly check.

D-1 The dynamic Young's modulus of elasticity (*E*) of the concrete may be determined from the pulse velocity and the dynamic Poisson's ratio (μ), using the following relationship:

$$E = \frac{\rho (1+\mu) (1-2 \mu) V^2}{(1-\mu)}$$

where

- E = dynamic Young's Modulus of elasticity, in MPa;
- ρ = density, in kg/m³; and
- = pulse velocity, in m/s.

UP Velocity	Density	Dynamic Poisson's ratio	Dynamic Young's Modulus of elasticity
km/sec	kg/m³	-	GPa
3.83	2400	0.20	31.68
4.51	2400	0.20	43.93
4.04	2400	0.20	35.25
3.98	2400	0.20	34.22

UP Velocity	Density	Dynamic Poisson's ratio	Dynamic Young's Modulus of elasticity
m/sec	kg/m³	-	GPa
3830	2400	0.20	31684824.00
4510	2400	0.20	43934616.00
4040	2400	0.20	35254656.00
3980	2400	0.20	34215264.00

These are my observations only. Let me know your opinions, Sir.

Thanks & Regards, H M Kikani Bhumi Research Center, Surat & Vapi 9825169540
