BUREAU OF INDIAN STANDARDS

AGENDA

Panel for Steel, CED 46:P9

: Sixth Meeting

In Joint Session with Panel for Revision of IS 800, CED 07:2:P1

Friday, 21 June 2024

: 1030 h

In Hybrid Mode from:

Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036

Online Using:

1) Meeting link: https://bismanak.webex.com/bismanak/j.php?MTID=m21952087e536bf9c18a78ff35b56f4e3

- 2) Meeting number: 2514 522 5565
- 3) Password: Nbc@2025

Convener:Dr V. Kalyanaraman
Dr S. Arul JayachadranNBC Officer:Shri Abhishek PalHead (NBC Cell):Shri Arunkumar S.CED 07 Member<br/Secretary:</th>Shri Dheeraj Damachya

Item 0 OPENING REMARKS

Item 1 CONFIRMATION OF MINUTES OF THE LAST MEETING

1.1 The Minutes of the fifth meeting of the Panel held on 03 April 2024 in New Delhi, were circulated vide BIS DG letter No. CED 46:P9/A-2.5 dated 06 May 2024. No comments have been received.

The Panel may **CONFIRM** the Minutes.

Item 2 COMPOSITION

2.1 The present composition of the Panel is given at Annex 1 (P-4).

The Panel may **CONSIDER**.

2.2 The Panel may also **NOTE** regarding the Structural Reforms in Standardization established by BIS to bring greater efficiency in standards formulation and revision work in BIS addressing speed, skill and scale. The same relates to aspect like:

- a) technical committees of BIS having members with widely acknowledged domain area expertise and experience on the subjects
- b) optimum size of the technical committee
- c) review of membership with focus on continuity of participation including contribution by every member
- d) holding periodic meetings (physical/virtual/hybrid)
- e) decide on timelines to enable stage-wise development of the documents (draft standards)
- f) resource centre to enable share the information and documents associated with the standardization work

2.3 Further, BIS has established in place systems such as action research projects, R&D for standards development and provision for having short-term Consultants. Also, focus should be made w.r.t developments on the subject happening world-wide including in technical events, literature, research publications, standard bodies, etc. Wherever possible research based inputs be generated including by associating with the various eminent institutions with whom BIS has entered into MoU with.

The Panel may NOTE.

Item 3 PROJECT OF REVISION OF NBC

3.1 The contents of the existing Part 6 'Structural Design' /Sec 6 'Steel' as in NBC 2016 are given in **Annex 2 (P-8)**.

The Panel may **NOTE**

3.2 The comments received in Sectional Committee, 'Structural Engineering and Structural Sections, CED 07' for IS 800:2007 are given at **Annex 3 (P-11)**.

The Panel may **CONSIDER**.

3.3 The points of discussion on the proposed revision of IS 800:2007 and the chapter Part 6/ Sec 6 ' Steel' of NBC 2016 are given at **Annex 4 (P-17)**.

Item 4 COMMENTS RECEIVED ON / INPUTS RELATED TO PART 6/SEC 6 'STEEL' OF SP 7 : 2016

4.1 The comments by Interarch Building Products Pvt Ltd, Noida on the Working Draft of this Chapter Part 6/Sec 6 'Steel' of SP 7 : 2016 is given at **Annex 5 (P-20)**.

The Panel may **CONSIDER**.

4.2 The comments by Kirby Building Systems India Limited, New Delhi on the Working Draft of this Chapter Part 6/Sec 6 'Steel' of SP 7 : 2016 is given at **Annex 6 (P-24)**.

The Panel may **CONSIDER**.

Item 6 DATE & PLACE OF THE NEXT MEETING

Item 7 ANY OTHER BUSINESS

(Item 2.1)

COMPOSITION OF THE PANEL FOR STEEL, CED 46:P9

SI			Participation in the		
No.	NAME OF THE ORGANISATION	REPRESENTED BY	3rd		ngs 5 th
1)	In personal capacity, Chennai	Dr V. Kalyanaraman (Convener)	P	P	P
2)	Association of Consulting Civil Engineers (India), Bangalore	Shri Manoj Kawalkar Shri Rajkumar Kacharla (Alternate)	А	Р	Р
3)	Central Public Works Department, New Delhi	Shri Nagendra Prasad Shri Amrendra Kumar Jalan (Alternate)	Р	А	Р
4)	Creative Consultants & Engineers Pvt Ltd, Ghaziabad	Shri Aman Deep	Р	Ρ	Ρ
5)	CSIR – Central Building Research Institute, Roorkee	Dr. Ajay Chourasia Dr. R. Siva Chidambaram (Alternate I) Dr. Chanchal Sonkar (Alternate II)		A	Р
6)	CSIR-Structural Engineering Research Centre, Chennai	Dr G. S. Palani Dr Napa Prasad Rao (Alternate I) Dr M Sarvanan (Alternate II)	Р	A	Ρ
7)	Engineers India Limited, New Delhi	Smt. Papia Mandal Shri Chandra Shekhar Sharma (Alternate) Shri Saptadip Sarkar (Alternate II)		Ρ	Ρ
8)	Indian Association of Structural Engineers, New Delhi	Dr. Harshavardhan Subbarao Dr Abhay Gupta (Alternate)	Р	Р	Ρ
9)	Indian Institute of Technology Madras, Chennai	Dr S. Arul Jayachandran	А	Р	Ρ
10)	Institute for Steel Development and Growth, Kolkata	Shri Pydi Lakshmana Rao Shri Arijit Guha (Alternate) Shri M. M. Ghosh		Ρ	Ρ
11)	Interarch Building Products Pvt Ltd, Noida	Shri Gautam Suri Shri Sunil Pulikkal (Alternate)	А	Ρ	Ρ
12)	Jindal Steel and Power Limited, New Delhi	Shri Sanjay Nandanwar Shri Biju Mahima (Alternate)	А	Ρ	Ρ
13)	Larsen and Toubro Ltd, Chennai	Shri T. Venkatesh Rao	А	Р	А
14)	Kirby Building Systems India Limited, New Delhi	Dr. Padmaja Gokaraju	-	-	С
15)	M. N. Dastur & Co Limited, Kolkata	Shri Satyaki Sen Shri Tapan Kumar Bhaumik (Alternate)	А	А	А
16)	MECON Limited, Ranchi	Shri A. Krishna Rao Shri C. Krishnam Raju (Alternate)	Р	А	А
17)	Military Engineer Services, Engineer-in- Chief's Branch, Army HQ, New Delhi	Shri S C Gupta Brig Ravi Reddy (Alternate)	Р	Ρ	Ρ
18)	PEB Manufacturers' Association, Navi Mumbai	Shri Manish Garg	А	Ρ	А
19)	Research, Designs and Standards Organization (Ministry of Railways), Lucknow	Shri Rajesh Kumar Srivastava Shri Srijan Tripathi (Alternate)	A	A	Р
20)	Tata Consulting Engineers Limited, Mumbai	Shri Pratip Bhattacharya	А	А	А

SI	NAME OF THE ORGANISATION	REPRESENTED BY		Participation in the last meetings		
NO.			3 rd	4 th	5 th	
21)	Tata Steel Ltd, Jamshedpur	Shri Hariharaputhiran H.	А	А	Р	
22)	The Institution of Engineers (India), Kolkata	Dr S Senthil Selvan Dr P R Kannan Rajkumar (Alternate)	А	Р	Ρ	

(Item 3.1)

CONTENTS OF PART 6 SECTION 6 'STEEL' OF NBC

CONTENTS

FOREWORD

SECTION 6(a) GENERAL

1 SCOPE

2 TERMINOLOGY
3 SYMBOLS
4 UNITS
5 STANDARD DIMENSIONS, FORM AND WEIGHT
6 PLANS AND DRAWINGS
7 CONVECTION FOR MEMBER AXES

SECTION 6(b) MATERIALS

8 GENERAL

SECTION 6(c) GENERAL DESIGN REQUIREMENTS

9 GENERAL DESIGN REQUIREMENTS

SECTION 6(d) METHODS OF STRUCTURAL ANALYSIS

10 METHODS OF STRUCTURAL ANALYSIS

SECTION 6(e) LIMIT STATE DESIGN

11 LIMIT STATE DESIGN

SECTION 6(f) DESIGN OF TENSION MEMBERS

12 DESIGN OF TENSION MEMBERS

SECTION 6(g) DESIGN OF COMPRESSION MEMBERS

13 DESIGN OF COMPRESSION MEMBERS

SECTION 6(h) DESIGN OF MEMBERS SUBJECTED TO BENDING

14 DESIGN OF MEMBERS SUBJECTED TO BENDING

SECTION 6(j) MEMBERS SUBJECTED TO COMBINED FORCES

15 MEMBERS SUBJECTED TO COMBINED FORCES

SECTION 6(k) CONNECTIONS

16 CONNECTIONS

SECTION 6(m) WORKING STRESS DESIGN

17 WORKING STRESS DESIGN

SECTION 6(n) DESIGN AND DETAILING FOR EARTHQUAKE LOADS

18 DESIGN AND DETAILING FOR EARTHQUAKE LOADS

SECTION 6(p) FATIGUE

19 FATIGUE

SECTION 6(q) DESIGN ASSISTED BY TESTING

20 DESIGN ASSISTED BY TESTING

SECTION 6(r) DURABILITY

21 DURABILITY

SECTION 6(s) FIRE RESISTANCE

22 FIRE RESISTANCE

SECTION 6(t) FABRICATION AND ERECTION

23 FABRICATION AND ERECTION

ANNEX A ANALYSIS AND DESIGN METHODS ANNEX B DESIGN AGAINST FLOOR VIBRATION ANNEX C DETERMINATION OF EFFECTIVE LENGTH OF COLUMNS ANNEX D ELASTIC LATERAL TORSIONAL BUCKLING

ANNEX E CONNECTIONS

ANNEX F GENERAL RECOMMENDATIONS FOR STEEL WORK TENDERS AND CONTRACTS

ANNEX G

LIST OF STANDARDS

(Item **3.2**)

COMMENTS RECEIVED ON IS 800:2007

A-4.1 The following comments were received during the 16th meeting of CED 7:

SI. No.	IS Code	Commentor	Comments/Modified wordings	Justification
1	IS 800: 2007 (Code for general construction in steel)	Bureau of Indian Standards (BIS)	Inclusion of Fire resistant steel – specification (IS 15103:2002) in the code for general construction for Steel.	Fire resistant steel is crucial for the safety of steel intensive buildings. Currently fire resistance is achieved through expensive intumescent paint. Inclusion in IS 800 will increase awareness and encourage more usage amongst designers and builders. Fire resistant steel is available in the Indian market.
2	IS 800: 2007 (Code for general construction in steel)	Bureau of Indian Standards (BIS)	Inclusion of Structural weather resistant steel - specification (IS 11587:1986) in the code for general construction for Steel.	Structural weather resistant steel is essential for rust and corrosion resistance. Inclusion in IS 800 will increase its awareness and encourage usage amongst designers and builders, especially in coastal areas Structural weather resistant steel is available in the Indian market.
3	IS 800: 2007 (Code for general construction in steel)	Bureau of Indian Standards (BIS)	Inclusion of Structural Steel for buildings and structures with improved seismic resistance - specification (IS 15962:2012) in the code for general construction for Steel.	Structural steel with improved seismic resistance will be required for earthquake resistant buildings, especially in seismic zone 4 and 5. Inclusion in IS 800 will raise awareness and encourage usage amongst builders and designers. Structural steel with improved seismic resistance is available in the Indian market.
4	IS:800: 2007 (Code for general construction in steel)	Bureau of Indian Standards (BIS)	Methods for determining effective length of columns of tapered sections (continuously varying non prismatic sections) need to be added. Prismatic	This would allow us to calculate the load bearing capacity of non-prismatic sections and enable their use in steel intensive construction, potentially

			sections have constant cross section areas as opposed to non-prismatic sections which have carrying cross section areas as depicted in the figure 1.	reducing cost. 1) Effective length (<i>lleeeeee</i>) for a buckled steel structural is the distance between points of flexure (buckling). It is required to calculate axial compression and slenderness ratio to determine the load bearing capacity of the sections. Non prismatic sections have varying cross sections and thus have continuous variation in the radius of gyration. The current formulae are for calculation of slenderness ratio (used to determine design loads) only for prismatic (constant cross
5	IS:800: 2007 (Code for general construction in steel)	Bureau of Indian Standards (BIS)	Methods for determining Elastic Critical moment (M _{cr}) for Lateral Torsional buckling (lateral displacement as well as twisting – depicted in Figure 3) for non- symmetric sections about minor axis (eg. Channels, depicted in Figure 2) need to be modified in Annexure-E, page 128 of IS:800 Currently formulae exist for symmetric sections only	The modified formula would allow determination of Elastic Critical moment for identifying maximum load bearing capacity to prevent lateral torsional bucking for non-symmetric sections. This would enable us to use these sections in steel intensive construction and prevent miscalculations resulting in reduced structural integrity.

				This steel section is symmetric about z axis (major) and non- symmetric about y axis (minor) Figure 2 Lateral Torsional bucking –displacement along with twisting
6	IS:800: 2007 (Code for general construction in steel)	Bureau of Indian Standards (BIS)	Methods for determining Elastic Critical moment (M _{cr}) for Lateral Torsional buckling (lateral displacement as well as twisting, depicted in Figure 5) for non- prismatic sections (varying cross section area, depicted in Figure 4) need to be modified in Annexure-E, page 128 of IS:800 Currently formulae exist for prismatic sections only	Calculating Elastic critical moment (M _{cr}) allows us to determine maximum load bearing capacity to prevent lateral torsional bucking (Displacement along with twisting). At present, non- prismatic sections are designed as per formula given for prismatic doubly symmetric sections (constant cross section area). This can lead to design errors leading to lateral torsional buckling – displacement as well as twisting resulting in reduced structure durability. The proposed change will rectify the problem. Prismatic Figure 4 Lateral Torsional bucking – displacement along with twisting Figure 5

7	10,000,0007	Bureau of	Changes to be done	1 Convises chility aritaria
'	13.000.2007		changes to be done	
	(Code for	Indian	table-6, page 31 of 15	(maximum permissible
	general	Standards	800 2007-	deflection, vibration etc,
	construction in	(BIS)	1. Serviceability criteria	limits for human occupation)
	steel)		(maximum permissible	are currently not separately
			deflection, vibration etc,	defined for
			limits for human	different building heights.
			occupation) for lateral	This creates difficulties in
			deflection (bending due to	designing steel intensive
			loads) in the code given in	buildings and needs to be
			table 6 of IS:800 shall be	rectified to construct safe
			categorized for building	steel intensive buildings
			heights- low height building	2 The current deflection
			(0-10M) medium height	criteria for longer spam
			building (10-30M) and high	booms groater than 9 m can
			rise building (30-100M)	potentially result in floor
			2 Electrical	vibrational This people to be
			2. FIOOI Dearns vertical	vibrations. This needs to be
			deflections (depicted in	rectified to construct safe
			Figure 6) for longer span	steel intensive buildings.
			beam greater than 9 meter	3. Lateral deflection check at
			should be made more	rail levels are currently not
			stringent to avoid floor	provided for both the cases.
			vibrations.	This creates difficulties in
				designing steel intensive
				buildings.
			δ	The current standards for
			····	displacement are too stringent
			Figure 6	and cause delays during steel
			<u>I Igaro o</u>	intensive construction.
			l ateral deflection check at	
			rail levels should be provided	
			for two cases – all loads only	
			surge loads (borizontal	
			transverse load denicted in	
			Figure 7)	
			i igure /)	
			Figuro 7	
			<u>Figure 7</u>	
			1. The 10 man relative	
			4. The 10 mm relative	
			displacement between rails	
			for crane and wind load	
			need to be reviewed, for	
			crane moving at higher	
			than 20M level. Relative	
			displacement should be	
			categorized for capacity	
			and types of cranes.	
8	IS: 4000: 1998	Bureau of	Reference to IS 800- 1984	This will prevent errors with
	(Code for High	Indian	needs to be changed to	respect to outdated formulae
	Strength Bolt	Standards	latest revision IS 800-2007	and design criteria in IS 800-
	use in steel	(BIS)		1984 and will encourage use
	structure)			of high strength steel bolts in
				steel intensive construction.

A-4.2 for the above-mentioned comments, the committee gave its recommendations as follows:

- a) SI No. 1, 2, and 3; the committee agreed and decided to consider the inclusion in next revision of IS 800.
- b) SI No. 4, 5, and 6; the committee discussed that in case of non-prismatic sections and non-symmetrical sections, specialist literatures or an appropriate computer programme may be used for calculation of effective length, elastic critical movement for lateral torsional buckling, etc. However, the committee requested the newly formed panel responsible for revision of IS 800 to consider all the comments.
- c) SI No. 7; the committee requested the newly formed panel responsible for revision of IS 800 to consider all the comments.

A-4.3 Following comments were received during the 19th meeting of CED 7,

a) Comments Received on IS 800 5.2.1 The comment on IS 800 received from Shri Gautam Mitra, SAIL and similar comment from Shri P. L. Rao, INSDAG as follows:

There is need and demand for fire protection steel in steel-construction industry in the country. At present, fire protection of such structure is being done through, fire protection coating, or fire resistant packing, etc. As we understand, many countries have made fire resistant steel as kind of mandatory for high rise residential buildings and commercial complexes. BIS has developed specifications for Fire resistant steel. i.e. IS 15103 : 2002. At present, IS 800 : 2007 standard specifies IS 2062 grade steel in the material section. In absence of any specific mention in IS 800:2007 in the material section, Indian designers/consultants are either reluctant or find it difficult to use/specify fire resistant steel material as per IS15103:2002. SAIL has developed fire resistant steel as per BIS 15103:2002 standard. Usage of this grade of steel will be beneficial from fire safety point of view. Fire resistant steel, as per IS15103 : 2002, needs to be inserted in IS 800 : 2007 in the material section along with IS 2062 grade steel so as to encourage designers/consultants to use/specify fire resistant steel wherever or whenever there is such a requirement in any project.. May please note that IS 800 : 2007 has a chapter (16) on Fire Resistance.

SI.	Clause/Para/Table/Figure	Commented Comments/	Justification of the
No.	No.	Modified Wordings	Proposed Clause
1	SECTION 2 MATERIALS	SECTION 2 MATERIALS	Weather resistance
	2.2.2 All the structural steel	2.2.2 All the structural	steels confirming to IS
	used in general construction,	steel used in general	11587 and Fire
	coming under the purview of	construction, coming	resistance steels
	this standard shall before	under the purview of this	confirming to IS 15103
	fabrication conform to IS	standard shall before	are now produced from
	2062	fabrication conform to IS	major steel producers.
		2062 (Hot Rolled Medium	In order to facilitate the
		and High Tensile	use of these special
		Structural Steel), IS:	steels the clause 2.2.2

b) The similar comment on IS 800 received from Shri P. L. Rao, INSDAG as follows:

A-4.4 For the comments received during the 19th meeting of CED 7, the Committee noted the comments from Shri Gautam Mitra, SAIL-CET Ranchi and Shri P. L. Rao, INSDAG. The Committee agreed with the comments received on the above subject regarding addition of IS 11587 and IS 15103 in the material section of IS 800. The Committee, then, decided to forward this to the panel for revision of IS 800, CED07:2/P1 under the convenership of Dr S. Arul Jayachandran for further consideration and authorized the Subcommittee, CED 7:2/P1, for issuing the amendments to IS 800, based on the requirements.

(Item **3.3**)

The points for discussion on the proposed revision in IS:800 (2007) and the NBC 2016 are as follows:

- 1) IS:800 To be decongested.
- 2) Clause 1.4. Symbols. (Pages 5 to 11): IS:456 (Concrete is a more complex material) has only 1-1/2 Pages.
- 3) Relook at the obsolete clauses, e.g. Riveting WSR Annexe G Fabrication and Erection.
- 4) Chapter 12 Simplify the provisions or provide very basic information in IS:800 and the detailed design to appear in IS:1893 new part.
- 5) Load Combination there are many permutations/ combinations. There is a proposal to aggregate all the provisions concerning the loads in IS:800 to be moved to IS:875 as a new part.

	(Chinade 1013)	
SI No. (1)	Lateral Load Resisting System (2)	R (3)
i)	Braced frame systems: a) Ordinary concentrically braced frame (OCBF) b) Special concentrically braced frame (SCBF) c) Ordinary eccentrically braced frame (OEBF) d) Special eccentrically braced frame (SEBF)	4.0 4.5 4.5 5.0
ii) iii)	Moment frame system: a) Ordinary moment resisting frame (OMRF) b) Special moment resisting frame (SMRF) Non-ductile frames	4.0 5.0 1.5

Table 23 Response Reduction Factor, R, for Building System

(Clause 18.3)

The braced and moment resisting frames can be designed as non-ductile frames, if their overall height to overall width ratio does not exceed 1.0, such as in industrial buildings. Such frames need not meet the ductility requirements of other types of frames as specified in **18.4** to **18.11** and **18.13**.

- 6) Ultra lightly loaded structures like warehouses, which have abandoned IS:800, and the majority of PEB Vendors and large operators use M.B.M.A. Address their specific concerns on
 - a) Temp Stresses
 - b) Fire Protection
 - c) Chapter 12 and slenderness ratio.

- 7) High-rise all steel buildings which have less than 5% of today's market. We need to address the specific points.
 - a) Chapter 12
 - b) Fire Protection
 - c) Necessity for second-order analysis
 - d) Connections
 - e) Effective length.
- 8) All the Amendments will be integrated into the First revision of IS:800 (2007).
- 9) All changes we incorporated in Section 6-6 of NBC will be updated in the First revision.
- 10) NBC corrections are majorly on (i) slender webs (ii) complete of Fatigue Chapter and (iii) non-ductile frames.
- 11) Update Clause 3.7.2 about slender elements in tune with Section 6 of NBC.
 - d) Class 4 (Slender) Cross-sections in which the elements buckle locally even before reaching yield stress. The width to thickness ratio of plate elements shall be greater than that specified under Class 3 (Semi-compact), in Table 2. In such cases, the effective sections for design shall be calculated either by following the provisions of good practice [6-6(34)] to account for the post-localbuckling strength or by conservatively deducting width of the compression plate element in excess of the semi-compact section limit (see Fig. 2B and Fig. 2C).

The design of slender web elements in flexural members may be done as given in **14.2.1.1** for flexure and **14.4.2.2** for shear.

- 12) Table 1, The material's properties will be reviewed and updated. There is a lot of push for the use of high-strength steel in steel construction worldwide.
- 13) Table 2 section classification. A mention of combined axial and bending classification using r1 and r2. Usually, the combined classification is helpful if a slender member may be upgraded to Semi-Compact. However, it is usually not useful in the plastic and compact sections.
- 14) The clause on expansion joints should be relooked. Many PEB industries people have an issue with this.
- 15) Classification of sway frames 4.1.2, 4.3.6 on notional horizontal loads and 4.6.2.2 Regular sway frames will be made contiguous.
- 16) For the second-order analysis, the frame stability parameter used is from Prof Baker, as in 4.5.4. There is new literature from Prof. Leroy on changing these limits based on the inelastic frame behaviour. This needs a discussion for incorporation.
- 17) Table 4 on Partial safety factors
- 18) A relook at Table 6 on deflection Bringing in more clarity. This is necessitated by the fact that this code is referred to in IS:11384, The limited state code of practice for composite construction using steel and concrete.
- 19) The tension member design is adequate, but Clause 6.3.4, in other sections, needs an in-depth study.
- 20) The alpha method in tension members may be removed.
- 21) Can we use the direct analysis method given in AISC 360? This requires performing a second-order elastic analysis with some correction to axial and flexural rigidities to arrive at the inelastic loads of stability of the frame. The second-order analysis software must be calibrated with benchmark problems. I have contributed to the benchmark problem as a member of Technical Committee 3 on the stability of frames.
- 22) The advantage is that we can use simple unity checks rather than complicated expressions in Chapter 9 if we follow the Direct Analysis method. Also, the effective length of the column factor k is assumed to be 1, irrespective of the end condition of the column.
- 23) Clause 7.5.1.2 for the compression member design of angles loaded through the gusset will be merged as per NBC.
- 24) Clause 8.2.2 on LTB capacity prediction is very conservative. Hence, Annex E needs to be included in the main code, at least for the I sections. The moment gradient factor brings in the economy. We can present the C1, C2, C3 methods for I beams.

- 25) There is a need to introduce a preliminary estimation of Fcrb using the expression published in older codes, which needs only geometric parameters, not torsional constants.
- 26) Complete relook of the end panels of plate girders designed using the tension field method.
- 27) 8.9 and 8.10, the purlins and sheeting rails, the secondary system, contribute 40% of the PEBs. We can bring in more clauses regarding the moment that can be considered regarding the overlap.
- 28) There is literature available for the design of gusset plates. Can we bring in Section 10 on connections? This has been incorporated in IRC 24.
- 29) Chapter 11 will be deleted.
- 30) Relook at Chapter 12. We will get it corrected. New research has been reported in FEMA. We also can consider that. Possibly rewritten by a subgroup.
- 31) Chapter 13 on fatigue will be merged with Section 6 of NBC (2016).
- 32) Checking the chapter on design assisted by testing, which is by far the least used chapter. However, we need to make design prequalification pointing towards this chapter.
- 33) In Chapter 15 on durability, there are new developments in corrosion protection. We will enable that also.
- 34) We will have a relook at Chapter 16 on fire. One of the reasons people hesitate to use steel is the cost of fire protection. We will categorize and elaborate on this for wider use.
- 35) The fabrication erection chapter must also be checked to update any new developments.
- 36) Annex B Analysis and Design Methods We have covered the basics of the analysis chapter. Some of the frame stability clauses are repeated, except for partial shear buckling.
- 37) Design against floor vibration; we may elaborate. There are enabling clauses in the literature.
- 38) With the 808 codes being published, we can delete Annex H plastic properties.
- 39) Upgradation of angle members to Class B.
- 40) Introduction of a 5th column curve a0 to bring in an economy in parallel flange sections. This is already in vogue in EC3.

- 41) Provisions regarding robustness and progressive collapse need to be looked into in the latest revision.
- 42) NBC will have a separate section of steel concrete composite sections, probably 6.6.(a) Steel, 6,6(b) Steel-concrete composite structures.

(Item 4.1)

COMMENTS BY INTERARCH BUILDING PRODUCTS PVT LTD, NOIDA

SI. No.	<u>Clause No. with Para No.</u> or Table No . or Figure No. commented <i>(as applicable)</i>	Type of comment – Technical OR Editorial	Abbreviation of the commentator	Comments/Modified Wordings	Justification for the Proposed Change
1)	 Table-6 of IS-800-2007, Relative Displacement between rails supporting crane : 10mm (Page 31) Table-6 of NBC-2016 Part-6, Section-6, Relative Displacement between rails supporting crane : 10mm (Page 38)\ <u>Attachments:</u> Page – 31 from IS-800-2007 Page – 38 from NBC 2016 	Technical	Interarch	We suggest removing the relative displacement requirement of 10mm between the crane rails from the code	 Relative displacement requirement of 10mm or such requirement is not mentioned in any international codes as attached Annexure-1 (extracted pages from AISE Technical paper # 13, Canadian code S16-01, Design Guide for Crane supporting structures by Canadian Institute of Steel Structures) From our experience, it is impractical to achieve the 10mm relative displacement for most of the crane buildings. Accordingly, this clause is deviated in agreement with owners and consultants of

					the project in almost all cases.
2)	Section – 12 of IS-800-2007 DESIGN & DETAILING FOR EARTHQUAKE LOADS (page 87) <u>Attachments:</u> None	Technical	Interarch	For low-rise buildings, considering the less severity, non-ductile design & detailing could be permitted.	The Indian steel designers is finding it very difficult to follow the Section-12 requirements of IS- 800-2007 and these provisions are highly uneconomical for steel structures hence most of the projects are being designed without the considerations of Section-12. As this clause adds to considerable increase in weights, almost every major consultant accepts the deviation of not considering Section 12 provisions. This in turn also proves the practical difficulty and wide acceptance accordingly.
3)	IS 800 -2007 Table 23 1893 (Part 1) NBC-2016	Teshniad	late south	The Response Reduction Factor is 4 for OMF as per IS	Usage of lower value of R = 1.5 makes the design considerably heavy. We request code
	NBC-1026 - Clause 18.3 Part-6, Section-6, DESIGN & DETAILING	I ecnnical	Interarch	800 -2007 Table 23 1893 (Part 1) -2016 is 4 (Page 87)	committee to re-look into above clauses and define response reduction factor as 4 for low rise

FOR EARTHQUAKE LOADS (page		The Response	buildings with an exemption for
85) for Response Reduction Factor		Reduction Factor is 3	Section 12 – IS 800 2007
, .		for OMF as per IS	
Attachments:		1893 (Part 1) -2016	
Page 87 -IS 800 2007		Table is 9 (Page	
Page 20 IS 1893 2016		20)	
Page 85 - NBC 2016		The response	
5		reduction factor is	
		4.0 for OMF as per	
		NBC-2016.	
		However, there is	
		also a mention about	
		non-ductile frames	
		for low rise buildings	
		of height to width	
		ratio which does not	
		exceed 1.0	
		All the 3 cases are	
		hard to correlate and	
		very confusing.	
		Hence we suggest to	
		have the R to be	
		uniformly defined as	
		4.0 across all the	
		codes.	

4)	Incorporation of NBC in IS-800-2007			IS-800-2007 should	IS-800-2007 is considered as
	or guide line from BIS to inform that			be corrected with	steel design code even though
	NBC-2016 onwards supersedes IS-			latest clauses in NBC	the same clauses has repeated in
	800-2007				NBC.
	Attachments:				Many additional provisions for the
	None				design which is present in NBC
					which is not updated in IS-800-
					2007
					Unless the IS-800-2007 is not
					updated in accordance with latest
					NBC, there will be confusion
					among steel designers hence
					DIC shall take appropriate
					BIS shall take appropriate
					inline with latest NPC whenever
					NPC is revised
5)	IS 800 2007 Table 4	Tachnical	Interereb	Appropriate Dertial	
5)	There is no clarity on the Partial	recinical	merarch	Safety Eactor for	
	Safaty Easter for Tomporature Load			Tomporature Load	
				in Table 1	

(Item 4.2)

COMMENTS BY KIRBY BUILDING SYSTEMS INDIA LIMITED

SI. No.	<u>Clause No. with</u> Para No. or Table No. or Figure No. commented <i>(as applicable)</i>	Type of comment – Technical OR Editorial	Abbreviation of the commentator	Comments/Modified Wordings	Justification for the Proposed Change
1	IS 800-2007, Cl. 3.4: Temperature effects & Combinations with WL & EQL.	Technical	Kirby	Request clarity on temperature loads and load combinations	Combination of TL with WL & EQL governs design and if not taken correctly, structure weight increases. Temperature load to consider in serviceability check.
2	Section 3 of IS 800-2007 Section 6 (c) of NBC 2016 Table 3: Tension members, such as bracings, pre- tensioned to avoid sag, need not satisfy the maximum slenderness ratio limits.	Technical	Kirby	Suggestion: Include in Chapter 12 of IS 800- 2007.	Slenderness ratio limited to 120 for Pipe/Angle Bracings as per Chapter 12. Which are heavy and uneconomical. Introducing tension rod/cable bracings with turn buckle arrangements optimize the weights.
3	Section 3, CI 3.4 of IS 800- 2007 Section 6 (c) of NBC 2016 Expansion Joints	Technical	Kirby	Suggestion: Mention of Expansion joints without additional frames with limitations on length and width of buildings is required.	At expansion joints of warehouses, additional frames give heavier weights. More details are required for clarity and optimization.
4	Cl 3.7.2 & 3.7.4 of IS 800- 2007 Section 6 (c) of NBC 2016 Compound elements in built up sections	Technical	Kirby	Suggestion: Include Tapered built-up sections	Tapered built-up sections commonly used in PEB frame, rafters and columns. Inclusion of the same in design is required for structure optimization.

SI. No.	<u>Clause No. with</u> Para No. or Table No. or Figure No. commented <i>(as applicable)</i>	Type of comment – Technical OR Editorial	Abbreviation of the commentator	Comments/Modified Wordings	Justification for the Proposed Change
5	Table 2 of IS 800-2007 Section Classification Section 6 (c) of NBC 2016	Technical	Kirby	Suggestion: Include slender sections for built-up sections To suit PEB manufacturing.	Slender web sections are the concept of PEB for optimization.
	Section 8 of IS 800: 2007 Cluse 8.6, Page No. 63 Section 6, Clause 14.61 of NBC 2016	Technical	Kirby	d/tw <=200e	Slender web sections allowed to consider in PEB. Fy 350 MPa, d/tw = 169 which is beyond semi- compact for which d/tw =107
6	IS 800-2007	Technical	Kirby	Request clarity on damping ratio of steel	Damping ratio 0.02 or 0.05 for steel.
7	Section 11 of IS 800-2007 Section 6, Section 6(m)of NBC 2016	Technical	Kirby	Suggestion: Removing Section WSD from both codes.	As LSD method is adopted by all, including WSD may lead to confusion in adopting load combinations.
8	Guidelines for Low Rise Metal Buildings in Annexure	General (for national interest)	Kirby	Request to introduce guidelines for Low rise Metal Buildings (Pre- Engineered Buildings) in Annexure with mention of limitations in width, length, and height.	As the consumption of steel is increased for PEB buildings, newly evolved PEB manufacturers taking advantage of the gaps of codal provisions, deviating the code requirements, and mixing up BIS and international codes to reduce the weights, which is very harmful for stability of steel buildings in sever seismic zones. These guidelines abide to use BIS codes, keeping all manufactures on same

SI. No.	<u>Clause No. with</u> Para No. or Table No. or Figure No. commented <i>(as applicable)</i>	Type of comment – Technical OR Editorial	Abbreviation of the commentator	Comments/Modified Wordings	Justification for the Proposed Change
					platform providing healthy competition resulting to safe/stable and sustainable buildings and better economic growth.
9	ANNEX F Connections, Fig 31 Column Splice (Typical)	GENERAL	Kirby	Request to introduce Horizontal Column splice connection.	Column splice Horizontal connection is simple and faster in production and construction.
10	Section 12 of IS 800-2007, Clause 12.2.3 a) & b)	Technical	Kirby	Request to introduce guidelines for Connections design	Load combinations in Clause 12.2.3 a) & b) to be considered for Connection designs alone. a) 1.2 Dead Load (DL) +0.5 Live Load (LL) +/- 2.5 (EL) and 0.90 Dead Load (DL) +/- 2.5 Earthquake Load (EL).