BUREAU OF INDIAN STANDARDS

MINUTES

23 rd Meeting of Water Conductor Systems Sectional Committee, WRD 14					
Day and	Time	Venue :			
Monday,	From	Hybrid			
03 rd June	10:30	Venue at Committee Room (R-625), 6 th Floor, Sewa			
2024	A.M.	Bhawan			
Chairperson: SHRI VIJAI SARAN,			Member Secretary: SHRI NAVDEEP		
CHIEF ENGINEER, DESIGN			YADAV, ASSISTANT DIRECTOR, WRD,		
(NW&S), CWC			BIS		

PARTICIPANTS:

S.no	Name	Email
1.	Shri Narendra Singh Shekhawat, Director, HCD (N&W), CWC	Present physically
2.	Shri Maghesh Kr. Singh, Deputy Director, HCD (NW&S), CWC	Present physically
3.	Shri K. Vysakh, Deputy Director, HCD E&NE, CWC	Present physically
4.	Shri Rajeev Kumar Tank, Deputy Director, HCD (N&W), CWC	Present physically
5.	Shri Sajal Mittal, Deputy Director, HCD (NW&S), CWC	Present physically
6.	Shri Vikash Yadav, Asstt. Director, HCD (NW&S), CWC	Present physically
7.	Shri Bibeka Kalita, NEEPCO	bibeka_kalita@yahoo.co.in
8.	Shri D. P. Dangwal, GSI	devi.dangwal@gsi.gov.in
9.	Shri Sankhadip Chowdhury, NHPC Ltd.	rbhatnagar@nhpc.nic.in
10.	Dr K K Pandey , IIT BHU	kkp.civ@iitbhu.ac.in
11.	Dr Nayan Sharma, In Personal Capacity	nayanfwt@gmail.com

12.	Dr. Ajay Kumar, GSI	ajay.kumar1@gsi.gov.in
13.	Dr. D P Shukla ,IIT Mandi	dericks@iitmandi.ac.in
14.	Dr. Pramod Soni, IIT BHU	pramod.civ@iitbhu.ac.in
15.	Dr. V. Surya Anantpantula, PES Engineers Pvt. Ltd	docavsurya@peseng.net
16.	Er. R. K. Kaundal, HPPCL	gmdesigns6672@gmail.com
17.	Prof Gopal Das Singhal, In Personal Capacity	gopal.singhal@snu.edu.in
18.	Shri Hari Dev, CSMRS	haridev@nic.in
19.	Prof Janga Reddy Manne, IIT Bombay	mjreddy@civil.iitb.ac.in
20.	Shri M. Z Qamar, CWPRS	ziaul_qamar@rediffmail.com
21.	Dr. Manish Pandey, IIT Kharagpur	mpandey@nitw.ac.in
22.	Smt Manjusha Mishra, NHPC	mnigam@nhpc.nic.in
23.	Shri Manoj Verma, CWPRS	manoj_rajyog@rediffmail.com
24.	Shri Mukesh Kumar, CEA	kumar.mukesh788@nic.in
25.	Prof Pradip K Tewari ,IIT Jodhpur	head_che@iitj.ac.in
26.	Shri Rajeev Dir WR BBMB	goyal_rkg2003@yahoo.com
27.	Shri Reetesh Tiwari, Dy. Director, CEA	reeteshtiwari.cea@nic.in
28.	Shri Shyam Singal, CEA	shyam.singal@cea.nic.in
29.	Smt Sushma Vyas, CWPRS, Pune	vyassush13@gmail.com
30.	Prof. Subashisa Dutta, IIT Guwahati	subashisa@iitg.ac.in

Item 0 WELCOME AND INTRODUCTORY REMARKS

Chairman extended his warm welcome to all the members present in the 23rd meeting of WRD 14 Sectional Committee. Chairman requested all the members for their active contribution and regular participation in the meeting so that effective deliberation can be done in the Committee.

Item 1 CONFIRMATION OF THE MINUTES OF THE LAST MEETING

The Committee NOTED that no comments were received on the circulated minutes. The Committee therefore CONFIRMED the minutes of the previous meeting as circulated.

Item 2 COMPOSITION OF THE COMMITTEE

2.1 The Committee NOTED the present Composition of the Committee as given in Annex 1 of the agenda. The Committee decided the organizations that had not attended the last three meetings and are not present in this meeting may be pursued one last time for active participation, otherwise, steps may be taken by BIS to find suitable replacement.

2.2 The Committee NOTED item 2.2 of the agenda regarding new nominations received from the following IITs and decided to co-opt them in the Committee as per the details given below:

S. No.	Organization	Member Nominated
1)	IIT Guwahati	Prof Subashisa Dutta, Professor (HAG) Prof. (Dr.) Mihir Kumar Purkait, Professor Chair of ministry of Jal Shakti (DDWS) (<i>Alternate</i>)
2)	IIT (BHU), Varanasi	Dr. K. K. Pandey, Associate Professor Dr. Pramod Soni, Associate Professor (<i>Alternate</i>)
3)	IIT Kharagpur	Dr. Manish Pandey, Associate Professor
4)	IIT Bombay	Prof. Manne Janga Reddy, Professor Prof. T. I Eldho, Professor <i>(Alternate)</i>

Further, the Committee noted that fresh nominations received from HCC Ltd are same members who have not attended the last three meetings and are also not present in this meeting. The Committee directed Member Secretary to pursue telephonically and obtain different nominations from the organization.

2.3 The nomination received from DMR Hydro Engineering (non-member private organization) was not sought by the Committee. It was decided that this nomination may be considered when other private organisations are being considered for inclusion in the Committee as per the norms of BIS.

Item 3 TITLE, SCOPE AND PROGRAMME OF WORK OF WRD 14

3.1 The Committee NOTED the Present Scope and Programme of work.

Item 4 DRAFT STANDARD FOR FINALIZATION

4.1 Doc. No. WRD 14(18185) Code of Practice for Design of Tunnels Conveying Water Part 4 Structural Design of Concrete Lining in Rock [First Revision of IS 4880 (Part 4): 1971]

{Earlier Document no. WRD 14 (11673)}

The Committee noted and deliberated on input received from CSMRS and the view of the working group on the input. The Committee deliberated and agreed with the view of the working group as given below.

Page No	Location	REMARKS	Addition/ Modification Suggested	Reply received from CSMRS	The decision of the Working group in the meeting held on 04 March 2024	Decision of the Committee in the meeting
19	Ø=the angle of repose of the soil	The description of Ø may be checked as in figure 5 the rock load around the cavity may be due to rock.	The word rock may be added. \emptyset = the angle of repose of the soil / rock	The 'the angle of repose of the soil' may please be replaced with 'friction angle of rock'	May be replaced with 'friction angle of rock mass'.	The Committee agreed with the view of the WG.

The Committee noted and deliberated on the reconciliation of formulae in Annex D of the draft document. The Committee reviewed and updated the composition of the working group (WRD14/WG-1) as given below.

- 1. Shri Sankhadip Chowdhary, National Hydroelectric Power Corporation, (Convenor WRD 14/WG-1)
- 2. Representative from Geological Survey of India
- 3. Shri Hari Dev Central Soil & Materials Research Station
- 4. Representative from Central Institute of Mining & Fuel Research.
- 5. Dr. K. K. Pandey, IIT BHU.

The Committee requested the nominated experts for their active participation in the reconciliation of the formulas. The Committee also directed the Member Secretary to seek willingness from nominated experts from IITs and other experts with structural engineering background and include them in the working group WG-1. The Committee further decided to drop the document and recirculate the document

afresh with new document number, as finalized by the working group WG-1 among the Committee members for inputs, which shall be discussed in the next meeting.

Item 5 DRAFT STANDARDS FOR APPROVAL FOR WIDE CIRCULATION

5.1 Doc. No. WRD 14 (19357), IS 9761: 1995 Hydropower intakes – Criteria for Hydraulic Design [Second Revision of IS 9761]

{Earlier Document no. WRD 14(15243) C}

The Committee noted item 5.1 of the agenda. The Committee deliberated on the status of the draft document, which is under discussion in the Working Group (WG-2). Deputy Director, HCD E&NE, CWC, informed the Committee that two working group meetings have been convened on 18 March 2024 and 27 May 2024 respectively, and the initial draft has been prepared and circulated among the working group for giving further comments by 15 June 2024. A working group meeting is also planned after inputs are received from the working group experts. The Committee requested the working group members to expedite the finalisation of document and decided to drop the earlier document and adopt the document as finalized by the working group. The Committee directed the Member Secretary to circulate the finalized document as received from the working group as a P-draft document for seeking views/comments from the Committee members. The Committee decided to take up the views/comments of Committee members on P-draft in the next meeting.

The Composition of WRD14/WG-2:

- 1. Director. HCD (E&NE), CWC (Convenor)
- 2. Representative from Central Water & Power Research Station
- 3. Representative from IIT Roorkee
- 4. Prof. Nayan Sharma, In Personal Capacity
- 5. Representative from National Hydroelectric Power Corporation
- 6. Representative from THDC India Limited
- 7. Representative from SJVN Limited

ITEM 6 COMMENTS ON PUBLISHED STANDARDS

6.1 Criteria for Hydraulic Design of Surge Tanks: Part 1 Simple, Restricted Orifice and Differential Surge Tanks (Second Revision of IS 7396 (Part 1))

6.2 Criteria for Hydraulic Design of Surge Tanks: Part 2 Tail Race Surge Tanks (Second Revision of IS 7396 (Part 2))

The Committee NOTED items 6.1 & 6.2 of the agenda. The Committee deliberated on the comments received from NHPC and unresolved comment of SJVNL. Regarding comments on load acceptance criteria, CEA clarified that the report being referred by NHPC was not accepted by CEA. The Committee directed Member Secretary to write a letter to CEA for their detailed input. The Committee also requested CEA and NHPC to provide the details of other organisations who may provide relevant inputs in this regard and may be included in the Committee. Further, the Committee decided to form a working group in consultation with the Chairperson after receiving details of such organisations.

ITEM 7 DOCUMENTS UNDER REVISION

7.1 Criteria for Structural Design of Penstocks Part 2 Buried / Embedded Penstocks in Rock [First revision of IS 11639 (Part 2): 1995]

The Committee NOTED item 7.1 of the agenda. The Committee deliberated on the status of the draft document that is long pending from the SNC Lavalin. The Committee decided to constitute working group (WRD 14/WG-3) for preparation of the draft document with the following composition:

- 1. Director. HCD (E&NE), CWC (Convenor)
- 2. Representative from National Hydro Power Corporation
- 3. Representative from THDC India Limited
- 4. Representative from SJVN Limited

The Committee directed the Member Secretary to contact SNC Lavalin and obtain the draft document available so that the working group can take it forward. The Committee also authorized the Convenor of the working group (WRD 14/WG-3) to include any additional experts from IITs as deemed suitable.

Further, comments received from HPPCL are placed in Annex 1 for seeking views of CEA in the working group (WRD 14/WG-3).

SI. No.	IS Number	IS Title	Panel Members to whom the standard allotted
1.	IS 4880 (Part 1) : 1987	Code of practice for design of tunnels conveying water Part 1 general design First Revision	SJVNL - Shri Rakesh Sehgal, Shri Revati Raman CWPRS - Shri Y N Srivastava, Shri M. K. Verma, Mrs. Sushma Vyas NHPC - Ms. Shashi Prasad, Sh. Arunesh Bihari Dwivedi CWC - Ms. K Rekha Rani
2.	IS 5878 (Part 1) : 1971	Code of practice for construction of tunnels conveying water Part 1 precision survey and setting out	SJVNL - Shri Rakesh Sehgal, Shri Revati Raman THDC - Shri Anirudh Bishnoi, Shri Atul Jain CWC - Ms. K Rekha Rani
3.	IS 7916 : 1992	Open power channels - Code of practice First Revision	Prof. Nayan Sharma (in personal capacity) CWPRS - Shri Y N Srivastava, Shri M. K. Verma, Mrs. Sushma Vyas IIT Roorkee - Prof Zulfequar Ahmad

ITEM 8 STANDARDS TAKEN FOR REVISION

			THDC - Shri Anirudh Bishnoi, Shri
			Atul Jain
			CWC - Shri Narendra Singh
			Shekhawat
			SJVNL - SIII Rakesi Sengal, SIII Revati Raman
			CWPRS - Shri Y N Srivastava Shri
	IS	Recommendations for	M. K. Verma, Mrs. Sushma Vvas
4.	11388 :	design of trash racks	NHPC - Ms. Shashi Prasad, Sh.
	2012	Povision	Arunesh Bihari Dwivedi
		REVISION	THDC - Shri Anirudh Bishnoi, Shri
			Atul Jain
			CWC - Ms. K Rekha Rani
			SJVNL - Shri Rakesh Sehgal, Shri
	10	Structural docian of	Revail Raman HDDCL Er P.K. Koundol
	15 11639 (Part 3) : 1996	penstock - Criteria Part 3 specials for	Fr. Saniay Kumar Rana
5.			THDC - Shri Anirudh Bishnoi Shri
		penstocks	Atul Jain
			CWC - Shri Narendra Singh
			Shekhawat
	_		SJVNL - Shri Rakesh Sehgal, Shri
	IS 12633 : 1989	First filling and	Revati Raman
6.		emptying of pressure	THDC - Shri Anirudh Bishnoi, Shri
		tunnels - Guidelines	Atul Jain CWC Ma K Pakha Pani
			CWPRS - Shri Y N Srivastava Shri
			M K Verma Mrs Sushma Vvas
_	IS	Design of sediment	NHPC - Ms. Shashi Prasad, Sh.
1.	13495 :	excluders -	Arunesh Bihari Dwivedi
	1992	Guidelines	CWC - Shri Narendra Singh
			Shekhawat
			CWPRS - Shri Y N Srivastava, Shri
	IS	Hydraulic design of	M. K. Verma, Mrs. Sushma Vyas
8.	15310 :	pump sumps and	III ROORKEE - Prot Zuitequar Anmad
	2003	intakes - Guidelines	NARC - IVIS. SHASHI MASAO, SA. Arupash Ribari Dwiyadi
			CWC - Ms K Rekha Rani

The Committee NOTED item 8 of the agenda. The Committee deliberated on the decisions of the panels on the standards IS 4880 Part 1, IS 13495, and IS 15310. The decisions taken in the meeting regarding these standards are attached to the minutes of the meeting as Annexure 2,3 & 4 respectively. The Committee also noted that inputs have been provided by Dr. Nayan Sharma on IS 7916 and requested the panel group to review the inputs and submit their views for deliberation in the next meeting. The Committee also decided to take up the review of the remaining four standards and further requested the panel groups to submit their inputs for deliberation in the next meeting.

ITEM 9 NEW SUBJECTS FOR CONSIDERATION

9.1 Guidelines for Design of Branching in Penstocks for Hydro Electric Projects

{Earlier Doc. No. WRD14 (496)}

The Committee NOTED item 9.1 of the agenda. The Committee deliberated on the status of the draft document that was pending from the SNC Lavalin. The Committee directed the Member Secretary to request the SNC Lavalin for submission of their work done on the subject within 10 days to BIS so that the working group (WRD 14/WG-3) can take their work forward. As no representative from SNC Lavalin was present, the Committee directed the Member Secretary to write a letter to SNC Lavalin stressing their regular & active participation in the Committee's work and also pursue telephonically for submission of work done on the subject.

ITEM 10 ANY OTHER BUSINESS

10.1 The Committee decided to hold the next meeting in the month of October 2024.

ANNEX 1

(Item 7.1)

Comments received from HPPCL:

SI. No.	Name of the Organiz ation	Clause	Type of Comme nt General /Techni cal/Edit orial	Comments (Justification For Change)	Proposed Change
1.	HPPCL	Clause 4.2.4 11639 part (2):1995	Technic	Para (c) states as, "Emergency condition includes partial gate closure in critical time of penstock (2L/a seconds) at maximum rate, and the cushioning stroke being inoperative in one unit". The above mentioned condition seems in order for considering of water hammer for single unit arrangement, however for arrangement having more than one units (in case of manifold) criteria for considering water hammer is not defined. However, 12967 Part (1) :1990 states under clause 6.1.2 (b) reaction turbine (iii) The water hammer shall be computed for maximum reservoir head condition for final part gate closure to zero gate position on one unit at the maximum governor rate of 2L/a seconds. Moreover, when closure of one unit is considered no emergency condition of operation arises as the velocity	CEA is requested to provide their views.

2.			Technic al	of flow decreases considerably. Further, in IS : 4880 part (4):1971 (re-affirmed in 1995) the number of units is not mentioned. What percentage for partial gate opening shall be considered for computing water hammer under emergency condition.	CEA is requested to provide their views.
3.	HPPCL	Clause 4.2.4 11639 part (2): 1995	Technic al	The para reads "Emergency condition includes partial gate closure in critical time of penstock (2L/a seconds) at maximum rate, and the cushioning stroke being inoperative in one unit". The above-mentioned condition seems to be in order for computing water hammer for single penstock feeding single unit. However, for arrangement having main penstock feeding more than one unit (in case of manifold/header) criterion for computing water hammer value is not documented/ well defined. Moreover, it has been linked with partial gate closure in critical time of penstock in IS 11639 part 2. The same however is linked with final part gate closure to zero gate closure in IS 12967 Part 1 under clause 6.1.2 (b). The moot question is how to compute partial gate closure in critical time of penstock. Furthermore, what inferences the designer must draw from the final part gate closure to zero gate closure in critical time	CEA is requested to provide their views.

				of penstock and how to compute it. There is no mention of number of units to be considered for computing water hammer value in critical time of penstock is IS 4880- Part (4): 1971. All these codes need to be integrated in order to avoid any controversy.	
				As computation of water hammer value in critical time of penstock is linked with velocity of flow destroyed, in this critical time especially in penstocks which have this critical time of less than 1.0 sec.	
4.	HPPCL	-do-	-do-	In case of Francis turbine, the condition of instantaneous closure of guide vanes due to malfunctioning of governor can never be realized. Any malfunctioning of control systems would, instead of making these close instantaneously, would however, render the guide vanes in open position which shall mean that there is no any abnormal rise in water hammer value as envisaged during emergency condition.	CEA is requested to provide their views.

ANNEX 2

(Item 8)

COMMENTS RECEIVED ON IS 4880 Part 1 CODE OF PRACTICE FOR DESIGN OF TUNNELS CONVEYING WATER PART 1 GENERAL DESIGN FIRST REVISION

SI. No.	Organizat ion	Clause/ Subclau se Paragra ph Figure/ Table	Type of Commen t General/ Technical / Editorial	Comments (Justification For Change)	Proposed Change	Decision of the Panel on 06 Sept 2023	Decision of Committee in the 23 rd meeting
1.	NHPC Ltd.	Clause 2.2.1	Technical	Proposed change is as per the provisions in IS 17833:2002 (Geological exploration for Tunnels- Guidelines)	Preliminary investigations for aligning the tunnel should be carried out on available 1:50000 /1:25000 scale Survey of India Topo Sheets. Once the general feasibility of the tunnel is	Panel members deliberated and agreed to incorporate the proposed change.	Agreed with the panel for the change.

							-
					established, detailed strip topographic maps along the tunnel alignment should be prepared to a scale 1: 10 000/1: 5000 with 5 m to 2m contour interval.		
2.	-do-	Clause 2.3	-do-	In this clause, it is mentioned that geological investigation should be carried out with sophisticated instruments and some are listed in Clause 4.1. But, clause 4.1 defines instruments used during construction which is not coherent/compatible. Therefore, this clause may be rephrased with reference to IS 17833:2022. (Geological exploration for Tunnels- Guidelines)	Geological investigations should be carried out with modern investigation methods in accordance with the provisions contained in IS 17883, if the area has been aerially photographed, such data should be studied.	Panel members deliberated and agreed to incorporate the proposed change.	The Committee deliberated and decided to include the following: 'investigation methods in accordance with the provisions contained in IS 17883'
3.	-do-	Clause 2.3.2 (c)	-do-	Mentioned clause may be rephrased with reference to IS 17833:2022. (Geological exploration for Tunnels-	Geophysical investigations — This type of investigation is helpful in establishing the rock-soil boundary, in	Panel members deliberated and agreed to incorporate the	The Committee deliberated and decided to include as

				Guidelines)	cenneating fault and shear zones, other geological structures and similar phenomenon. These investigations should precede exploratory drilling and drifting activities. This investigation is also used in evaluating rock mass quality by determining in-situ modulus of elasticity	proposed change.	'Geophysical investigations should generally precede exploratory drilling and drifting activities.'
4.	-do-	Clause 3.1	-do-	Since the provided laboratory tests determine Physico-mechanical properties; therefore, mechanical properties may be added along with physical properties.	The core samples collected from the bore holes shall be classified and specimen from each group shall be tested to determine the following physical and mechanical properties	Panel members deliberated and agreed to incorporate the proposed change.	The Committee deliberated and decided to modify the statement as follows: 'The core samples collected from the boreholes shall be classified and specimen from each group shall be tested

							to determine the following properties'
5.	-do-	Clause 3.1 (f)	-do-	Shear strength parameters is measured by Direct Shear test and Triaxial shear test. Triaxial test is the most versatile test and used in all types of drainage conditions, whereas Direct shear test is quick, inexpensive and simple. Therefore Direct/Triaxial may be added to measure shear strength parameters.	Shear Strength (Direct/Triaxial)	Panel members deliberated and agreed to incorporate the proposed change.	The Committee did not agree with the change.
6.	-do-	Clause 3.1 (k)	-do-	Clause 3.1 refers physical and mechanical properties, therefore "test" may be removed.	Brittleness index	Panel members deliberated and agreed to incorporate the proposed change.	Agreed with the panel for the change.
7.	-do-	Clause 3.1 (m)	-do-	Typographical error	Siever's 'J' value	Panel members deliberated and agreed to incorporate the proposed change.	Agreed with the panel for the change.

8.	-do-	Clause 3.1 (n)	-do-	Clause 3.1 refers physical and mechanical properties, therefore "test" may be removed.	Abrasivity Index	Panel members deliberated and agreed to incorporate the proposed change.	Agreed with the panel for the change.
9.	-do-	Clause 3.1 (o)	-do-	This test may be added. [as per IS 17833:2002 (Geological exploration for Tunnels- Guidelines)]	Slake Durability	Panel members deliberated and agreed to incorporate the proposed change.	Agreed with the decision of the panel as Slake Durability Index .
10.	-do-	Clause 3.1	General		Sequencing of laboratory test may be rectified.		Requested BIS to modify in accordance with drafting rules.
11.	-do-	Clause 3.2.1 (a)	Technical	Typographical error	In-situ rock characteristics like shear strength parameters (C and φ), compressive strength and deformation modulus preferably by Goodman Jack;	Panel members deliberated and agreed to incorporate the proposed change.	Agreed with the panel for the change.
12.	-do-	Clause 4.1 (a)	-do-	Closure is recorded periodically in the tunnel wall and roof, therefore " Walls and roof" may be added in the given	Closure Observations — Tunnel closure (walls and roof) should be observed at random interval throughout	Panel members deliberated and agreed to incorporate the following change	The Committee deliberated and decided to modify the statement as

				statement of IS code.	the length of the tunnel.		follows:
				[Proposed change is as per the provisions in IS 17833:2002 (Geological exploration for Tunnels- Guidelines)]		Closure Observations — Tunnel closure (walls and side's roof) should be observed at	Closure /Convergence Observations — Tunnel closure (walls and roof) should be observed at
13.	-do-	Clause 4.1 (f)	-do-	Convergence observation may be added for monitoring tunnel convergence.	<i>Convergence Observations</i> - Optical targets should be used for monitoring of tunnel convergence.	Panel members deliberated and agreed to incorporate the following change. Convergence Observations- Optical targets should be preferred for monitoring of tunnel convergence.	Not agreed as already incorporated in S. No. 12.

WRD 14/A-2.23

(Item 8)

COMMENTS RECEIVED ON IS 13495 DESIGN OF SEDIMENT EXCLUDERS - GUIDELINES

SI. No.	Organization	Clause/ Subclause Paragraph Figure/Table	Type of Comment General/ Technical/ Editorial	Comments (Justification For Change)	Proposed Change	The decision of the Panel in 3rd meeting on 6 th Sept 2023	The decision of the Panel in 4 th meeting on 30 th Oct 2023	Decision in the 23 rd meeting
1.	NHPC Ltd.	Clause 2	Technical	Updated IS code may be mentioned.	IS 1191 :2016 (Reaffirmed 2021)	Not agreed in view of drafting rules in IS 12 being followed in BIS.		Agreed with the panel.
2.	-do-	Clause 5.1	-do-	Typographical error	All possible river approach conditions are to be examined carefully while deciding the layout of	Panel members deliberated and agreed to incorporate the proposed change.		Agreed with the panel for the change.

					excluder tunnels.			
3.	-do-	Clause 5.1	-do-	Definition sketch may be added to understand the design approach. Ref: Design of Silt Excluder of New Khanki Barrage: A case study of Lower Chenab Canal, Pakistan- Hira Hameed, Ghulam Nabi Sci. Int (Lahore),27(6),6023- 6031,2015	<section-header></section-header>	Panel members deliberated and decided to incorporate the proposed figure after removing section A-A from the figure as shown below :	Panel members deliberated and decided to incorporate the figure as decided in the last meeting with the title of the figure as Fig. 1 Typical layout of sediment excluder in a project	The committee deliberated and agreed for title of the figure as 'Typical layout of sediment excluder'. The Committee decided to retain the section A-A, as included in initial proposal.
4.	-do-	Clause 5.5.2	-do-	Typographical error	The velocity at the exit end of the tunnel may be worked out from the working head and throttling effected to attain velocity higher	Panel members deliberated and agreed to incorporate the proposed change.		Agreed with the panel for the change.

					than 3.0 to 3.5 m/s at the exit in alluvial reach and 4 to 5 m/s in shingles and cobbles reach.			
5.	-do-	Annex-A	-do-	Figure of Shield's Curve for critical tractive stress for determination of size of coarsest material may be added. Ref : 1. Mechanics of sediment transportation and alluvial stream problems- RJ Garde and KG Ranga Raju 2. Flume study of the effect of relative depth on the incipient motion of coarse	"Fig 2: Shield's Curve for critical tractive stress (Condition for Incipient Motion)" may be added.	Panel members deliberated and requested some time for reviewing the figure. Will be dicussed in next meeting.	The panel members deliberated and requested Prof. Z Ahmed to provide both diagrams as decided for inclusion in the draft along with the suitable modification in the clauses of the annexure.	More discussions are further required in working group on input received from Prof. Z. Ahmed. Panel meetings to be held soon and submit its recommendations accordingly. The Committee requested Dr. Nayan Sharma to submit his inputs regarding Reynolds stress approach to the panel.

_					
			uniform sediments-		
			Andrey B. Shvidchenko and		
			Gareth Pender		
			Published on WATER		
			RESOURCES RESEARCH, VOL.		
			36, NO. 2, PAGES 619-628,		
			FEBRUARY 2000		
			3. Critical Shields values in		
			coarse-bedded steep		
			Streams-		
			Kristin Bunte, Steven R. Abt,		
			Kurt W. Swingle, Dan A.		
			Cenderelli,		
			and Johannes M. Schneider		
			WATER RESOURCES		
			RESEARCH, VOL. 49, 7427–		
			7447,		
			doi:10.1002/2012WR012672,		
			2013		

6.	CWPRS	Annex-A A-1 4	Technical	Typographical error	Assume some value of t _{ex} (t _{ex} = tunnel depth),	Panel members deliberated and agreed to incorporate the proposed change.	Agreed with the panel for the change.
7.	-do-	Annex-A A-1 16. Friction losses	-do-	Турographical error	$= \frac{h_{\rm f}}{V_2^2 L n^2} r_{\rm ex}^{4/3}$	Panel members deliberated and agreed to incorporate the proposed change.	Agreed with the panel for the change.
8.	-do-	Annex-A A-1 2. Compute bed shear stress	-do-	Турographical error	τ = YDs or Yrs	Panel members deliberated and agreed to incorporate the proposed change.	Agreed with the panel for the change.
9.	-do-	Annex-A A-1 2.	-do-	Missing information	D = mean depth at flow (D = r for wide channels)	Panel members deliberated and agreed to incorporate the proposed	Agreed with the panel for the change.

		Where D = mean depth at flow,				change.	
10.	-do-	Annex-A A-1 3. d _g by shields or white criterion	-do-	Missing information	Shields or white is confusing. Shields method and Ackers and White theory are two different methods. (Ackers and White theory Report SR 237 April 1990 attached for reference) White should be removed.	Already covered in comment no. 5.	The Committee deliberated and requested Panel to submit their final view in conjunction with Item 5, which can be deliberated in the next meeting.
11.	-do-	Annex-A A-1 4.	-do-	Typographical error	$\frac{V_{\rm c}}{\sqrt{\frac{\Delta \Upsilon_s}{\rho} d_s}} = 1.6 \left(\frac{r_{ex}}{d_s}\right)^{1/8}$	Panel members deliberated and agreed to incorporate the proposed change.	Agreed with the panel for the change.

12.	-do-	Annex-A A-1 6. Select excluder velocity $V_{ex} >$ $V_c = V_L$.	-do-	Missing information	V _L to be described	Panel members deliberated and did not agree to incorporate the proposed change as V _L has already been introduced in the code.	Agreed with panel recommendation. Change may not be incorporated.
13.	-do-	Annex-A A-1 9. for river width <i>b</i> ,	-do-	Missing information	for river width <i>b</i> <i>is confusing as in</i> <i>notation b=</i> width of tunnel	Panel members deliberated and agreed to incorporate the proposed change	Replace river width 'b' with river width 'b _{re} '
14.	-do-	Annex-A A-1 10. sediment concentration	-do-	Missing information	C _{ex} to be included in Notations	Panel members deliberated and agreed to incorporate the proposed change	C _T is already defined as average concentration of sediment in percentage by weight. Same may be corrected in

		C _{ex}					Annex-A point 13.
							C in point 10 may also be changed to C _T .
15.	-do-	Annex-A A-1 11. sediment concentration <i>C_{ex}</i>	-do-	Missing information	C _{ex} to be included in Notations	Panel members deliberated and agreed to incorporate the proposed change	Observation same as point 14 above.
16.	-do-	Annex-A A-1 12.	-do-	Typographical error	r_{ex} d_s C_T (<i>w</i> = fall velocity of bed material of size (<i>d</i> _s) for specific weight of sand particle = 2.65.)	Panel members deliberated and agreed to incorporate the proposed change with modification in the specific weight as written below: 'Specific weight of sand	Agreed with the panel for the change.

						particle will be taken as per actual data (in absence of actual data, take 2.65).'	
17.	-do-	Annex-A A-1 13. $S_1 = 0.89d_s$	-do-	Typographical error	Value of $S_1 =$ 0.98 d_s mentioned in notations (0.89 is correct value). and, b _{ex} t _{ex}	Panel members deliberated and agreed to incorporate the proposed change	The committee deliberated and Agreed as $S_1 =$ $0.89d_s$
18.	-do-	Notations;V = fall velocity of bed material of size d _s	-do-	Typographical error	V to be replaced with <i>w</i>	Panel members deliberated and agreed to incorporate the proposed change	Agreed with the panel for the change.

			Panel	Observation same
	19 -do-		members	as point 3 above.
		Schematic diagram of sediment excluder to be appended to understand the	deliberated	
10		layout.	and agreed to	
1900-		incorporate		
			the proposed	
			change	
			Panel	No observation
			members	brought out.
		In addition to above, there is a lot of grammatical mistakes in the main body of	deliberated	
20.	-do-	the code	and agreed to	
		the code	incorporate	
			the proposed	
			change	

ANNEX 4

(ITEM 8)

COMMENTS RECEIVED ON IS 15310- HYDRAULIC DESIGN OF PUMP SUMPS AND INTAKES — GUIDELINES

SI. No	Comm ittee/ Organ izatio n/ Indivi dual	Clause / Subcla use Paragr aph Figure/ Table	Type of Com ment Gene ral/ Tech nical/ Edito rial	Comme nts (Justific ation For Change)	Proposed Change	Decision made in the 4 th panel meeting held on 30.10.2023	Decision in the 23 rd meeting
1.	NHPC Ltd.	Forew ord	Gene ral	Typogra phical error	Swirls and air entraining vortices affect pump performance damage, increased suction losses, and reduction in efficiency available net positive suction head (NPSH) of the pumps.	Panel members deliberated and agreed to incorporate the proposed change.	Change sought is already incorporated.
2.	-do-	Fig 2	-do-	Typogra phical	VORTEX CLASSIFICATION	Panel members deliberated and agreed	Change sought is already incorporated.

				error		to incorporate the	
						proposed change.	
3.	-do-	Clause 2.11	-do-	Typogra phical error	Net positive suction head (NPSH) is the total inlet head plus the head corresponding to the atmospheric pressure, minus head corresponding to the vapor pressure	Panel members deliberated and agreed to incorporate the proposed change.	Change sought is already incorporated.
4.	-do-	Fig 5	Techn ical	Typogra phical error	$NPSH = H + \frac{P_O}{P_g} - \frac{P_V}{P_g} - h_t$	Panel members deliberated and agreed to incorporate the proposed change.	Agreed with the panel for the change.
5.	-do-	Clause 4.1	-do-	Typogra phical error	The following aspects shall be considered for a good sump design.	Panel members deliberated and agreed to incorporate the proposed change.	Corresponding clause is 4.0. Change sought is already incorporated.

Roork	A prope	erly conducted physical model study is a	in the <mark>next Committee</mark>	very exhaustive and
ee	reliable	method to identify unacceptable flow	meeting	need to be streamlined
	pattern	s at the pump suction for given sump or		for addition in the draft.
	suction	piping design and to derive acceptable		The requirement of
	intake s	ump or piping designs. Considering the cost		model study is already
	for a ph	vsical model study, an evaluation is needed		brought out in Cl. 5.0.
	to deter	mine if one is required. A physical hydraulic		Committee stressed
	models	tudy shall be conducted for nump intakes		that content in BIS code
	with on	a ar more of the following features:		should be brief and not
	with on	e or more of the following features:		as detailed as in manual
	• A su	iction intake arrangement with elevation		/ guideline.
	rela	tive to water level that does not provide the		Therefore the
	min	imum submergence requirement of this		Committee requested
	stan	idard, irrespective of pump manufacturer's		CWPRS to review the
	stat	ed submergence values.		changes and submit
	• The	intake design is not a standard intake		their inputs to the
	desi	gn presented in this standard or the		panel group for
	geo	metry (such as bay width, bell clearances,		discussion and
	side	wall angles, bottom slopes, distance from		finalisation.
	obst	tructions, the bell diameter, submergence,		
	or p	iping changes, etc.) deviates from this		
	stari	idala.		
	• me	ke design considered in terms of physical		
	feat	ures and flow rates		
	Non	-uniform or non-symmetric approach flow		
	totl	he pump sump exists (e.g., intake from a		
	sign	ificant cross-flow, use of dual flow or drum		
	scre	ens; use of elbows, bends, or multiple		
	scre	ens just upstream of a trench-type wetwell;		

		 or a short-radius pipe bend near the pump suction, etc.). Proper pump operation of a critical service or application as defined by the customer (such as a safety-related system). Pump repair, remediation of a poor design, and the impacts of inadequate performance or pump failure all together would cost more than 10 times the cost of a physical model study. Circular stations with four or more pumps. For trench type wet wells (clear or solidsbearing liquids) the pumps have flows greater than 1260 L/s per pump or the total station flow with all pumps running would be greater than 3155 L/s. Circular pump sumps (clear or solidsbearing liquids) with flows exceeding 315 L/s per pump require a physical model study. 	
		 The pumps of an open bottom barrel or riser arrangement with flows greater than 315 L/s per pump. The pump of a closed bottom can intake has flows greater than 440 L/s 	
		 The pumps have flows greater than 2520 L/s per pump or the total station flow with all pumps running would be greater than 6310 L/s. 5.2 Physical model study objectives 	
		Adverse hydraulic conditions that can affect pump	
		performance include free and subsurface vortices,	
		swirl approaching the pump impeller, flow	

		separation at the pump bell, and a nonuniform axial	
		velocity distribution at the suction.	
		Free surface vortices are detrimental when their	
		core is strong enough to cause a (localized) low	
		pressure at the impeller and because a vortex core	
		implies a rotating rather than a radial flow pattern.	
		Subsurface vortices also have low core pressures	
		and originate closer to the impeller. Strong vortex	
		cores may induce fluctuating forces on the impeller	
		and cavitation. Subsurface vortices with a dry-pit	
		suction inlet are not of concern if the vortex core	
		and the associated swirling flow dissipate well	
		before reaching the pump suction flange.	
		Pre-swirl in the flow entering the pump exists if a	
		tangential component of velocity is present in	
		addition to the axial component. Swirl alters the	
		inlet velocity vector at the impeller vanes, resulting	
		in undesired changes in pump performance	
		characteristics, including potential vibration.	
		A reasonably uniform axial velocity distribution in	
		the suction flow (approaching the impeller) is	
		assumed in the pump design, and nonuniformity of	
		the axial velocity may cause uneven loading of the	
		impeller and hearings	
		A properly conducted physical model study can be	

		used to derive remedial measures, if necessary, to	
		alleviate these undesirable flow conditions due to	
		the approach upstream from the pump impeller.	
		The typical hydraulic model study is not intended to	
		investigate flow patterns induced by the pump itself	
		or the flow patterns within the pump. The objective	
		of a model study is to ensure that the final sump or	
		piping design generates favorable flow conditions	
		at the inlet to the pump.	
		5.3 Physical model similitude and scale	
		selection	
		Physical models involving a free surface are	
		operated using Froude similarity because the flow	
		process is controlled by gravity and inertial forces.	
		The Froude number, representing the ratio of	
		inertial to gravitational forces, can be defined for	
		pump intakes as:	
		$F = \frac{u}{(gL)^{0.5}}$	
		Where:	
		u = average axial velocity (such as in the suction bell)	
		g = gravitational acceleration	

		L = a	characteristic length (usually bell diameter or	
		subm	iergence)	
		In phy	ysically modeling a pump intake to study the	
		poter	ntial formation of vortices, it is important to	
		select	t a reasonably large geometric scale to	
		minin	nize viscous and surface tension scale effects,	
		and t	o reproduce the flow pattern in the vicinity of	
		the in	ntake. Also, the model shall be large enough to	
		allow	visual observations of flow patterns, accurate	
		meas	urements of swirl and velocity distribution,	
		and s	ufficient dimensional control. Realizing that	
		largei	r models, though more accurate and reliable,	
		are m	nore expensive, a balancing of these factors is	
		used	in selecting a model scale.	
		To en	sure minimum scale effects, the model	
		geom	netric scale shall be chosen so that the model	
		bell e	ntrance Reynolds number and Weber number	
		at the	e pump rated flow are above 6×10^4 and 240,	
		respe	ectively, for the test conditions based on	
		Froud	de similitude.	
		For p	racticality in observing flow patterns and	
		obtai	ning accurate measurements, the model scale	
		shall	yield a bay width of at least 300 mm, a	
		minin	num liquid depth of at least 150 mm, and a	
		pump	o Throat or suction diameter of at least 80 mm	

in the model.	in	the	model.
---------------	----	-----	--------

5.4 Physical model study scope

Selection of the model boundary is extremely important for proper simulation of flow patterns at the pump. As the approach flow nonuniformities contribute significantly to the circulation causing pre-swirl and vortices, a sufficient area of the approach geometry or length of piping has to be modeled, including any channel or piping transitions, bends, bottom slope changes, control gates, expansions, and any significant cross-flow past the intake.

All pertinent sump structures or piping features affecting the flow, such as screens and blockage due to their structural features, trash racks, dividing walls, columns, curtain walls, flow distributors, and piping transitions must be modeled. In modeling screens, the screen head loss in the model shall be the prototype screen head loss times the model scale ratio.

The inside geometry of the bell (and hub, if modeled) up to the bell throat (section of maximum velocity) shall be scaled. Any vanes in the bell shall not be modeled. For free surface intakes, the model shall be deep enough to cover the range of scaled

submergence.

5.5 Swirl Measurement

Swirl in the suction pipe: The intensity of flow rotation shall be measured using a swirl meter, see Figure 1. The swirl meter shall consist of a straightvaned propeller with four vanes mounted on a shaft with low-friction bearings. The tip-to-tip vane diameter is 75% of the pipe diameter and the vane length (in the flow direction) is equal to 0.6 pipe diameters. The location of the swirl meter should be about four suction pipe diameters downstream from the bell or pump suction flange to allow for convenient installation of velocity traverse instrumentation. The revolutions per unit time of the swirl meter are used to calculate a swirl angle, θ , which is indicative of the intensity of flow rotation.

Swirl measurement angle

$$\theta = \arctan\left(\frac{\pi dn}{u}\right)$$

Where:

u = average axial velocity at the swirl meter

d = diameter of the pipe at the swirl meter

			the pump must be less severe than vortices with	
			coherent (dye) cores (free surface vortices of	
			Type 3 and subsurface vortices of Type 2 in	
			Figure 2). Dye core vortices may be acceptable	
			only if they occur for less than 10% of the time	
			or only for infrequent pump operating	
			conditions.	
		•	Swirl angles, both the short-term (30-second	
			model) maximum and the long-term (10-minute	
			model) average indicated by the swirl meter	
			rotation, must be less than 5 degrees. Maximum	
			short-term (30-second model) swirl angles up to	
			7 degrees may be acceptable only if they occur	
			no more than 10% of the time or for infrequent	
			nump operating conditions. The swirl meter	
			rotation should be reasonably stoady with no	
			abrunt changes in direction when retating near	
			the maximum allowable rate (angle)	
			the maximum anowable rate (angle).	
		•	lime-averaged velocities at points in the throat	
			of the bell or at the pump suction in a piping	
			system shall be within 10% of the cross-	
			sectional area average velocity. Time-varying	
			fluctuations at a point shall produce a standard	
			deviation of less than 10% of the time averaged	
			signal.	
		•	For the special case of pumps with double	
			suction impellers, the distribution of flow at the	
			pump suction flange shall provide equal flows to	
			each side of the pump within 3% of the total	
			pump flow.	

WRD 14/A-2.23