ANNEXURE 1 (Item 2.3)

COMPOSITION OF AUTOMOTIVE ELECRICAL EQUIPMENT AND INSTRUMENTSSECTIONAL COMMITTEE, TED 11

SCOPE – Standardization relating to electrical and optical equipment, instruments and their related components including electronics for automotive vehicles.

Co-ordination of work with ISO/TC 22 and its sub-committees SC 32 and SC 35.

Meeting No.	Date	Venue
29th Meeting	07 th July 2023	Webex
30 th Meeting	21 November 2023	Webex
31st Meeting	3 rd May 2024	Webex

Sl. No.	Name of the Organization	REPRESENTED BY Principal member (P)	Attendance			
		Alternate member (A) Young professional (YP)	29 th	30 th	31 st	Total
1)	Vehicle Research and Development Establishment,		Y	Y	Y	3/3
2)	Ahmednagar Ashok Leyland Limited, Chennai	Shri G.R.M. Rao (chairperson) Shri Faustino V (P) Shri Jaisingh Pandian S (A) Shri Arumugasamy M (YP)	N	Y	Y	2/3
3)	Association of State Road Transport Undertakings, New Delhi	Shri R R K Kishore (P) Shri M Trinath Babu (A)	N	Y	N	1/3
4)	Automotive Component Manufactures Association of India, New Delhi	Shri Seema Babal (A) Shri Sanjay Tank (P)	Y	Y	Y	3/3
5)	Automotive Research Association of India, Pune	Shri A. A. Deshpande (P) Shri B V Shamsundra (A)	Y	Y	Y	3/3
6)	Bajaj Auto Limited, Pune	Shri Arvind V. Kumbhar (A) Shri Milind J Pagare (P) Shri Abhay Kumar (YP)	Y	Y	Y	3/3
7)	Castmaster Mobitec India Private Limited, Faridabad	Shri Raju Aggarwal (A) Shri Rahul Jain (A)	N	Y	Y	2/3
8)	Central Institute of Road Transport, Pune	Shri Rajkumar Malajure (P) Shubhangi Dalvi (A) Shri Santosh Desai (YP)	N	Y	Y	2/3
9)	Denso International India Private Limited, Gurugram	Shri Alok Kumar (P) Ms. Alka Sharma (A)	Y	Ν	Y	2/3
10	Directorate General of Quality Assurance, New Delhi	Mr DS Kelkar (P) Lt Col NS Kulkarni (A)	Y	Y	Y	3/3
11	Hero Motocorp Limited, New Delhi	Shri Feroz Ali Khan (P) Shri Piyush Chowdhry (A) Shri Varun Kumar Sharma (YP)	Y	Y	Y	3/3
12	Honda Cars India Research and Development Limited, Noida	Mr S. MUTHU KUMAR (P) Shri Gagan Manral (A) Ms. Neha Gaba (YP)	Y	Y	Y	3/3
13		Shri Vipin Sharma (P) Shri Arpan shukla (A)		Y	Y	2/2
14		Shri Ananthakrishna S L (P) Shri Satyanarayana Gupta Bolisetty (A)	—	Y	Y	2/2

Sl. No.	Name of the Organization	REPRESENTED BY Principal member (P)		Atten	dance	
		Alternate member (A)	29 th	30 th	31 st	Total
		Young professional (YP)				
15			N	N	Y	1/3
	Automotive Technology,	Shri Sonu Kumar Sudrania (P)				
	Manesar	Shri Udit Kaul (A)				
16		Shri Sanjeev Chugh (P)	_	Y	Y	2/2
	India Yamaha Motor Private	Shri Mohit Kansal (A)				
	Limited, Noida	Shri Navneet Kaushik (YP)				
17		Shri Arshi Krishnachar (P)	Y	Y	Y	3/3
	Indian Society of Lighting	Dr Prakash Barjatia (A)				
	Engineers, New Delhi	Dr Vidya H A (YP)				
18	Indication Instruments	Shri Vishal Lalani (P)	_			-
	Limited, Faridabad	Shri Anuj Garg (A)				
<mark>19</mark>		Mr. K N Hemanth Kumar (P)	_		Y	1/1
	Association India, Mumbai	Mr. Shri Amol Kalsekar (A)				
20		Shri Anil Kumar (A)	Y	Y	N	2/3
	Jay Ushin Limited, Gurugram	Shri Ramesh Yadav (P)				
21		Shri Tushar Yadav (P)	—	Y	Y	2/2
	Lear India Engineering LLP,	Shri Kiran Deosarkar (A)				
	Pune	Shri Rohit Talekar (YP)				
22		Shri Randhir Kumar (A)	Y	Ν	Ν	1/3
	Gurugram	Shri Virendra Kumar Sachdav (P)				
23		Shri S Sakthivelan (A)	Ν	Y	Y	2/3
	Limited, Mumbai	Shri Kumar Meganathan (P)				
		Shri Pathak Pushpanajali (YP)				
24		Shri Rajeev Malhotra (P)	Y	Y	Y	3/3
	Malhotra Cables Private	Shri Rahul Singh (A)				
	Limited, New Delhi	Shri Mithalesh Kumar (YP)				
25		Shri Gururaj Ravi (P)	Y	Y	Y	3/3
	Gurugram	Shri Sumit Kumar (YP)				
26		Ms. Buvaneswari M (A)	\$7	N		1/2
26	Minibis Tech India, New		Y	Ν	Ν	1/3
27	Delhi	Shri Iqbal Singh Sabharwal (A)	N T	37), T	1/2
27			Ν	Y	N	1/3
	and Public Enterprises, New					
20	Delhi	Shri R K Jaiswal (P)	Y	Y	Y	2/2
28			Y	Ŷ	Ŷ	3/3
	Medium Enterprises, New Delhi	Shri M Baskar (A)				
20		Shri L Kandan (P)			N	0/1
29	e	Shri Subrat Kuman Dash (D)			IN	0/1
	Private Limited, Bengaluru	Shri Subrat Kumar Dash (P) Shri Shivayogi B.A (A)				
20	Renault India Private Limited,	Shri Rajendra Khile (P)		Y	Y	2/3
50	Mumbai	Shiri Kajehula Kinie (F) Shri Vijay Dinakaran (A)		I	I	2/3
	Mumbai	Shiri Jebin Jowhar (YP)				
31	Roots Industries India	Shri K. Saravan Sundaram (P)	Y	Y	Y	3/3
51	Limited, Coimbatore	Shiri R. Selvaraj (A)	1	1		5/5
32	Skoda Auto Volkswagen India	Shri Makarand Brahme (P)	Y	Y	Y	3/3
52	Private Limited	Shri Milind Jagatp (A)	1	1	1	5,5
	I II vate Emilieu	Saily Smarth (YP)				
33	Society of Indian Automobile	Kartike Karwal (A)	N	Y	Y	2/3
55	Manufacturers (SIAM), Delhi	Prashant Kumar Banerjee (P)	11		-	2,0
34	Suzuki Motorcycle India	Shri Avinash Khot (P)	N	Y	Y	2/3
57	Private Limited, Gurugram	Shri Ramkrishna Ahire (A)	11	1		2,0
35		SHRI GOWRISHANKAR PS (P)	Y	Y	Y	3/3
55	The motory Ennired, I une	Sankar (P)	1		-	5,5
36	Toyota Kirloskar Motor	Shri Raju. M (P)	_	_	Y	1/3
50					· ·	
	Private Limited, Bidadi	Shri Vijeth Gatty (A)				

Sl. No.	Name of the Organization	REPRESENTED BY Principal member (P)		Attendance		
		Alternate member (A) Young professional (YP)	29 th 30 th 31 st To		Total	
37	Tractor and Mechanization	Toung projessional (11)	Y	N	Y	2/3
	Association, New Delhi	Shri PRADEEP SHINDE (A) Shri Philip Koshy (P)				
38	Uno Minda, Gurugram	Ms. Rutuja Raverkar (P)	-	-	Y	1/1
39	Vehicle Research and		Y	Y	Y	3/3
	Development Establishment, Ahmednagar	Shri Manish Sahoo (P) Shri Narendra Malviya (A)				

(Sl No 3 of ITEM 3)

COMMENTS ON DOCUMENT TED 11 (20542)W

A-2.1 Comments from Rohit Talekar(Lear): Vide BIS portal dated 20.10.2024

Sl No	Clause	Type of Comment	Comments/Suggestions along with Justification for the Proposed Change	Proposed Change/Modified Wordings
1	4	Ed	There are types of Turn indicator operations for turning left:	The mechanism of self-cancelling direction indicator switch shall be so arranged that if the lever is
			1. First option is Turn Light -Left	shifted manually in particular position for turning the
			2. Second option is Turn Light -Left during lane change.	vehicle,
				to
			Will we specify that SELF-	
			CANCELLING DIRECTION	The mechanism of self-cancelling
			INDICATOR SWITCHES is only applicable to option 1?	direction indicator switch shall be so arranged that if the lever is shifted manually in particular
			You will not mode steering wheel by huge angle when you are using option 2 in high speed during highway operations. And lane change blinking depend on OEM to OEM	position for turning the vehicle excluding lane change operations,
4	7.2	Ed	Instead of using headlight switch, wite light side combi switch. The light side combination switch in most cars have mutiple operations like even fog lights. So using headlight switch might be incorrect.	he headlight switch may also be marked with the Standard Mark to The light side combination switch may also be marked with the Standard Mark

A-2.2 Comments from Tushar Yadav and Kiran Deosarkar (Lear) : Do not have expertise the area of this proposed standard. So, I cannot comment.

A-2.3 Comments from MSIL:

Not CMVR item, ACMA to further comment

<u>(Sl No 5 of ITEM 3)</u>

DRAFT TED 11 (22534)

BUREAU OF INDIAN STANDARDS

DRAFT FOR COMMENTS ONLY (Not to be reproduced without permission of BIS or used as an Indian Standard)

Draft Indian Standard

RECOMMENDATION FOR POLARITY OF EARTH CONNECTIONS AND MARKING OF ELECTRICAL EQUIPMENT FOR AUTOMOBILES

(First Revision of IS 7471)

ICS: 43.040.10

Not to be reproduced without permission	Last date for receipt of comments
of BIS or used as standard	is XX/XX/XXXX

Automotive Electrical Equipment and Instruments Sectional Committee, TED 11

FOREWORD (Formal Clause to be added later)

This Indian standard was first published in 1974. This first revision of the standard is being undertaken to update the standard and to incorporate latest technological advancement/ development that has taken place and to draft Indian Standard as per latest grafting guidelines.

This standard refers to electrical installations on automobiles having an earth return system.

All vehicle manufactures in this country, with one or two exceptions, have been used to positive battery earthing. Meanwhile, the rest of the world's automobile manufactures retained or changed to negative earth. Technical developments over this period, such as the introduction of semiconductor and electronic components in vehicle electrical equipment have eliminated any advantages that positive earthing may have had over negative earthing. This standard has been prepared in keeping with the trend of world-wide standardization.

The composition of the committee responsible for formulation of this standard is given in Annex A (Will be added later).

Draft Indian Standard

RECOMMENDATION FOR POLARITY OF EARTH CONNECTIONS AND MARKING OF ELECTRICAL EQUIPMENT FOR AUTOMOBILES

(First Revision)

1 SCOPE

This standard specifies the system of earthing and marking of electrical equipment for automobilehaving an earth return system.

2 EARTHING

2.1 Negative Earthing of Battery — Negative Earthing shall be the recommended practice for the automobiles having earth return system.

3 IDENTIFICATION OF COMPONENTS

3.1 When an automobile manufacture introduces a change from positive to negative earth, it will be necessary to identify electrical components affected, to avoid incorrect fitting in assembly andservice, and to clearly mark the automobile itself.

3.2 It is important that standard means of component identification are used and understood, particularly in service.

3.2.1 The marking of components for negative earth system shall be as given in Table 1.

3.2.2 The marking of components for positive earth system shall be as given in Table 2.

NOTES -

- 1) Table 2 provides polarity marking for electrical equipment using positive earth system only for replacement market.
- 2) Normally the same regulator may be applied for both systems. However, if any regulator is unsuitable for any particular system, it should be marked separately.

Table 1 Polarity Marking of Electrical Equipment for Automobiles using Negative Earth System (Clause 3.2.1)

Sl. No.	TYPE OF EQUIPEMENT	POLARITY MARKING	REMARKS
(1)	(2)	(3)	(4)
i)	dc generator	Main terminal identification	
		a) Red and/ or '+' for main (armature)	
		terminal	
		b) Black or '—' for earth terminal	
ii)	dc generator control unit	Not marked	Suitable for either polarity
iii)	dc generator control unit	Cover marked '—' earth	
	incorporating semiconductor		
	device		
iv)	Alternator	Main terminal identification:	
		a) Red and / or '+' for positive supply	
		b) Black and/ or '' for earth terminal	
v)	Alternator control unit	'+' and '—' marked on the cover	Correct connection to unit
			ensured by inhibited
			connector
vi)	*Ignition coil	'+' and '—' moulded on the cover	Terminal variation as
			required by automobile
	D	XY	manufacturers
vii)	Permanent magnet motor	Not marked	Correct connections to unit
			ensured by inhibited
			connectors which are
viii)	Eucl course	Marked '—' earth	marked appropriately
ix)	Fuel gauge Ammeters	Not marked	Connact of nacessary
/	Batteries	'+' and '—'	Connect as necessary
x)			
xi)	Clocks, electrical	Where appropriate '+' and '—'	
	speedometer, electrical		
	tachometer, radio		

* In the negative earth system internal connection of ignition coils should be such that when negative o the primary winding is connected to contact breaker of distribution, high tension terminal of ignition coil will be at negative potential. The only advantage of positive earthling for ignition voltage is longer spark plug life and it reduces the break-down voltage.

Table 2 Polarity Marking of Electrical Equipment for Automobiles using Positive Earth Return System (Clause 3.2.2)

Sl. No.	TYPE OF EQUIPEMENT	POLARITY MARKING	REMARKS
(1)	(2)	(3)	(4)
i)	dc generator	Main terminal identification	
		 a) Black and/ or '—' for main (armature) terminal b) Red or '+' for earth terminal 	
ii)	dc generator control unit	Not marked	Suitable for either polarity
iii)	dc generator control unit Incorporating semiconductor device	Cover marked '+' earth	
iv)	Alternator	Main terminal identification:	
		 a) Black and/or '—' for negative supply b) Red and /or '+' for earth terminal 	
v)	Alternator control unit	'+' and '—' marked on the cover	Correct connection to unit ensured by inhibited connector
vi)	Ignition coil	'+' and '—' moulded on the cover	Terminal variation as required by automobile manufacturers
vii)	Permanent magnet motor	Not marked	Correct connections to unit ensured by inhibited connectors which are marked appropriately
viii)	Fuel gauge	Marked '+' earth	
ix)	Ammeters	Not marked	Connect as necessary
x)	Batteries	'+' and '—'	
xi)	Clocks, electrical speedometer, electrical tachometer, radio	Where appropriate '+' and ''	

(Sl No 6 and 7 of Item 3)

AGENDA AND MINUTES OF PANEL 1 MEETING

A-4.1 Agenda-

_For IS-1884 (AUTOMOTIVE VEHICLES — ELECTRIC HORNS — SPECIFICATION) & IS-15796 (AUTOMOTIVE VEHICLES — HORN INSTALLATION — REQUIREMENTS)

Members Comments After the 1st Panel Meeting Dt: 17th Apr 2024

- M/s BAL: To align the Indian standard with ECE R28 (Annexure-01)
- M/s Skoda: "Electronic Horn" Definition addition (Annexure-02)
- M/s Roots Industries: (Annexure-03)
 - ▶ Introduction of new Class III (36V, 48V, 72V & 80V) horn for A&C category vehicles
 - Amalgamation of IS-14813 (Automative Vehicles-Air Horns-Specification) in IS-1884
 - > Testing requirements changes.
- M/s ARAI: Recertification based on the new classification & CoP tests need to be identified. (Annexure-04)
- M/s OLA: (Annexure-05)
 - ➢ Introduction of 48V horn
 - Changes in the testing requirements (operating voltage range test, sound pressure level test etc.) with respect to the 48V Horn requirements
- M/s Hero: Responded to the ARAI's Feedback on 48V horn component. (Annexure-06)
- M/s Ashok Leyland Limited proposal (Annexure 07)

Annexure-01

Proposal:

M/s BAL Proposed to have complete alignment of IS-1884 & IS-15796 with UN ECE R28 for technical requirements. **Justification**

This is similar to the alignment of Indian lighting standards in line with ECE regulations done in the past.

For sound pressure limit we propose the following text in IS-15796 (Clause no 6.1):

"Sound Pressure Level Test for Horns Mounted on Vehicles Maximum sound pressure level when determined in accordance with method of test given in 6.2, shall be at least:

(a) Equal to 83 dB (A) and not more than 112 dB (A) for the signals of vehicles of categories L $\frac{1.3 \text{ to } 1.5}{1.5}$ of a power less than or equal to 7 kW;

(b) Equal to 87 dB (A) and at most 112 dB (A) for the signals of vehicles of categories M, N and L L3 to L5 of a power greater than 7 kW."

M/s SKVWL Comments

Addition of definition for "Electronic Horn"

"Electronic" means a principle of operation by electric or electro-magnetic force with amplifier and speaker or resonator.

M/s ROOTS Comments

OMMENTS	JUSTIFICATION	
equest To add "Class-III" for Vehicle A & C category	& C category vehicles - These vehicles requires higher sound level requirements with respect to their operating field. For e.g If it is used i mining. it requires higher decibel to provide an audible warning, because high ambient noise.	
equest to include 36V, 48 V, 72 V & 80V DC AWDs in addition to 6, 12 and 24V DC	onsidering C Category vehicles & Electrical vehicles — Other rated voltages also to be added	
equest to add "c)105dB-125dB (A) for AWD of Class-III	& C category vehicles — These vehicle requires higher sound level requirements with respect to their operating field.	
 Existing IS 1884 — Reliability test conditions to be included 1. Endurance test— 100,000 cycles 2. Vibration test 3. Corrosion resistance test 4. Water Spray test 5. Dust test 6. Temperature cycle test 	 ECE R28 has only Endurance test requirement for 50,000 cycles. Existing IS 1884 addresses comprehensive product requirements and ensure better reliability considering usage scenario in India Few test requirements can be modified in-line with other standards. For e.g. Corrosion resistance test in IS 1884 mentioned different test pattern, for the same test IS 9844 details the test requirements inline with international standard ASTM BI 17, so IS 9844 can be linked for this Corrosion resistance test Acceptance criteria can be refined as "The difference in sound pressure level shall not exceed 5 dB that measured before the test. 	
e warning device shall be mounted rigidly, by means of the equipment recommend by the manufacturer, on a support whose mass is at least ten times that of the warning device under test and not less than 30 15 kg. In addition, arrangements shall be made to ensure that reflections on the sides of the	aintaining 30 kgs mass for horn mounting is too heavy. We can consider existing IS 1884 (ten times or 15 kgs) - clause 8.6.1 of IS 1884	

support and its own vibrations have no appreciable effect on the measuring results.	Pls refer clause no. 5.3.1 of TED 11 23335 P document
ecify " Room temperature" instead of " 20 ± 5 °C" considering Indian ambient conditions	ere is no specific Room temperature specifications. Hence, we request to mention as "Room temperature" instead of mentioning 20±5°C, because our ambient conditions are different
 2.6 : PIs specify as "The warning device shall be mounted rigidly, by means of the equipment recommend by the manufacturer; on a support whose mass is at least ten times that of the warning device under test and not less than 15 kg" instead of "The warning device shall be mounted rigidly, by means of the equipment recommend by e manufacturer, on a support whose mass is at least ten times that of the warning device under test and not less than 30 kg" 	tring & after testing, adjustments are permitted. After adjustment, the sound level may increase (higher than initial value), so considering this we requested to change this as " The difference in sound pressure level shall not exceed 5dB that measured before the endurance test". This statement addresses both increase and drop in sound pressure level, after the test.
S-1884 and IS 14813 (Automotive vehicles - Air horns — Specification) are to be amalgamated in IS-1884 as per the TED/11/23335 doc.	 Specific BIS standard (IS 14813) available for the Air horns. IS 1884 and IS 14813 (Automotive vehicles - Air horns – Specification) are amalgamated in TED/11/23335 doc. CMVR restricted the use of harsh and loud sound devices. And this IS 14813 regulates the part level requirements for this air horn with due concern of standard sound level ECE R28 also addresses the requirements for the Air horns There is no change in vehicle level requirements (IS 15796) – i.e. 87 dBA to 112 dBA at 7 meters distance.

COMMENTS	JUSTIFICATION
Considering horn classification and Sound Pressure Level requirements, for Type 2B and Type 3 horns recertification will be required.	
Actual usage of horn on vehicle is not known during application for Type approval. Requires more clarification	 OPTIONAL TESTS: 1. Corrosion Resistance Test (cl. no. 5.6) 2. Water Spray Proof Test (cl. No. 5.8) NOTE — This is an optional test and is to be required to be carried out only when the switch is intended to be exposed directly to open air conditions in actual usage.
CoP Tests as per AIS:037-	
• Tests required to be identified , amendment in AIS:037 is required accordingly	
• Quantity for CoP tests to be defined	
Word - "Horn Switch" to be replaced by "Audible Warning Device"	

ARAI Comments & Query on 48V Architecture

After going through the documents, please find the existing comparative study between IS, ECE & SANS. JASO is at par with ECE. As of today, there is no provision for rated voltage or test voltage beyond 6V/12V/24V or 6.5V/13V/26V respectively in any of the standards.

Also, as discussed with our Automotive Electronics Department-Vehicle team, most of the EV 2-wheelers operate at 48V, 60V or 72V and they then use a step-down convertor to run the auxiliary systems. In case we use 48V/60V/72V to run all the auxiliary components, for the operation of contactor (ignition) 12V supply is necessary as otherwise the vehicle will be in constant energized state.

We need to ask OLA and other EV 2 Manufacturer what is the provision rated voltage for auxiliary systems viz; horn, lighting, ignition etc. accordingly the proposal may be considered

S r. N o.	Parameters	IS 1884:1993 (Re-affirmed in 2019) (for horn as a component)	ECE R – 28 Aug 2001 (Latest Version 30.10.2020) (for horn as a component as well as horn installation requirements)	SANS 20028:1972 (for horn as a component as well as horn installation requirements)
1.	Classification	Type 1 : AC horns for mopeds, scooters and motor cycles based on magneto system Type 2A : dc horns for two and three wheelers Type 2B : dc horns for passenger cars and commercial vehicles	Class I : used in motorcycles of power less than or equal to 7 kW, Class II : used in M and N category vehicles and motor cycles of power greater than 7 kW	2 categories: AWD and ASD Class I : used in motorcycles of power less than or equal to 7 kW, Class II : used in M and N category vehicles and motor cycles of power greater than 7 kW

		Type 3 : dc horns of wind tone type for passenger cars and commercial vehicles		
2.	Test Site	An anechoic room or in an open space in which there is no obstacle within a radius of 12m and no acoustical focusing effects on nearby parallel walls Distance between the horn and Diaphragm of the Microphone = 2m Height of Microphone and Horn mounting = 1.2 m	An anechoic or semi- anechoic chamber or in open space. In open space compliance with the spherical divergence of 1 dB within a hemisphere of not less than 5m radius. Distance between the horn and Diaphragm of the Microphone = 2m Height of Microphone and Horn mounting = 1.15 to 1.25 m	An anechoic or semi- anechoic chamber or in open space. In open space compliance with the spherical divergence of 1 dB within a hemisphere of not less than 5m radius. Distance between the horn and Diaphragm of the Microphone $= 2\pm 0.01$ m Height of Microphone and Horn mounting = 1.15 to 1.25 m
3.	Sound Pressure level requirements	Type 1 : 85 to 105 dB Type 2A : 90 to 115 dB Type 2B : 100 to 125 dB Type 3 : 105 to 125 dB	Class I : 95 to 112 dB, Class II : 105 to 118 dB	Class I : 95 to 112 dB, Class II : 105 to 118 dB
4.	Sound Spectrum Requirements : SPL in frequency band 1800 to 3550 Hz shall be greater than that of each component of a frequency exceeding 3550 Hz and in any case equal to or greater than	Type 1 : 85 dB Type 2A : 90 dB Type 2B : 100 dB Type 3 : 105 dB	Class I : 95 dB, Class II : 105 dB	Class I : 95 dB, Class II : 105 dB
5.	Performance tests	 Current drawn test, High voltage test, Operating voltage test and Continuous operation test 	Not included in ECE	Not included in ECE
6.	Environmental tests	 Insulation resistance test Vibration Test, Corrosion Test, Dust Test, 	Not included in ECE	Not included in ECE

M/s OLA Electric Comments & Responses IS-1884

IC					
IS	Cl	Paragr	Type	Dranged shares	Instification
Standar	aus	aph/	of	Proposed change	Justification
d	e/	Figure	comm		
	Su	/	ent ¹		
	bcl	Table/			
	aus				
	e				
IS	NA	FORE	60	Add a clause (e) after exisinting clause (d)	Eaulasttan alanitri that nami
1884:19	INA		ge	e) 48V d.c. horns of high frequency type	For better clarity that now
		WAR		horns included.	the standard includes 48V
93		D		noms mended.	dc horn in the component
					standard.
IS	Cl.	-	ge	1.SCOPE	Added 48V horn in the
1884:19	No 1			This standard specifies the mechanical,	scope
93				electrical and acoustical requirements,	
				methods of tests for 6, 12 and 24 V and 48V	
				electric horns for use in motor vehicles	
				including those intended for two and three	
				wheelers.	
IS	Cl.	-	te	6. RATED VOLTAGE AND MAXIMUM	Incorporated Maximum
1884:19				CURRENT	rated current basis trial on
93				The values of current ratings for electric horns	5 samples.
				shall be as follows	
				Rated Voltage. Maximum rated current	
				Amperes	
				Type 1. Type 2 Type 3	
				. 2A 3B	
				48 V dc 0.5	
				24 V dc 3 6	
				12 V dc 2.5 4 10	
				6 V dc 2.5 4 10	
				6 V ac rms 3.5	
				22 V ac rms 3.5	
10	CI			8.5 OPERATING VOLTAGE RANGE	
IS	Cl.	-	te	TEST	Incorporated Maximum &
1884:19	No 0.7			8.5.1 The horn at ambient temperature shall	Minimum Operating basis
93	8.5			operate satisfactorily over the following	trial on 5 samples
				voltage. Pated Voltage Derformance limits of	
				Rated Voltage Performance limits of	
				of horn voltages	
				Maximum Minimum	
				\mathbf{V} \mathbf{V} \mathbf{V}	
				(1) (2) (3)	

·				
				48 54.0 42.0
				24 30.0 22.0
				12 14.5 10.0
				6 8.0 5.5
IS	Cl.	_	te,ed	8.6 SOUND PRESSURE LEVEL TEST Incorporated supply
1884:19	No		ic,cu	8.6.2 The supply voltage shall be 6.5±0.1, voltage level & maximum
93	8.6.2			13±0.1 or 26 resistance basis trial on 5
)5	0.0.2			10.1 V as 50 ± 0.1 V at the terminal of the
				samples to ensure the
				$f = \frac{1}{2} + $
				V or 48V The resistance of the connecting
				leads excluding any switch contact in
				circuit shall be not greater than 0.05, 0.10,
				and 0.20 and 0.40 ohm for rated voltage of
				6, 12, and 24 V and 48V
				respectively.
IS	Cl.		te,ed	8.8 ENDURANCE TEST Incorporated the voltage
1884:19	No			8.8.2 The voltage at the horn terminals shall at terminal of horn and
93	8.8.2			be maximum resistance of
				$6.5 \pm 0.2, 13\pm0.3 \text{ and } 26.0\pm0.5 \text{ V} \text{ and } 50\pm1$ system basis trial on 5
				V., for samples for endurance
				rated voltages 6, 12and 24 V and 48V testing
				respectively. For Type 1 ac horns operation
				the power shall be supplied by the
				generator of the vehicles for which the horn
				is intended or the test shall be carried out
				with a generator of similar design with
				speeds agreed mutually between the
				manufacturers and the purchasers.
				The resistance in the systems
				including the resistance at terminals and
				contacts shall be less than 0.05, 0.10 and
				0.20 and 0.40 ohms for rated valtages
				voltages of 6,12 and 24 V and 48V
				respectively.
IS	Cl.	-	te,ed	8.11 CONTINUOUS OPERATION TEST Terminal voltage for
1884:19	No			With a terminal voltage of 6.5 ± 0.1 V, $13 \pm$ continuous operation test
93	8.11			0.2 V for 26 incorporated.
				± 0.4 V or 50 ± 1 V as appropriate, the horn
				shall be continuously operated for a period
				of five minutes and
				then allowed to cool to ambient temperature.

IS-15796

IS Standar d	Claus e/ Subcla use	Para grap h/ Figu re/ Tabl e/	Type of comm ent1	Proposed change	Justification
IS 15796 :2008	Cl. No 6.2. 2	_	te,ed	6.2 METHOD OF TEST 6.2.2 The sound signalling device shall be operated at test voltages of 6.5V, 13V, or 26V or 49V with tolerance of \pm 0.5 V, measured at the terminals of the source and corresponding respectively to rated voltage of 6V,12V/, 24V, 48V.	Requirement for vehicle level horn installation for a 48V d.c. horn incorporated.

Ola Comment On ARAI Feedback: *We thank ARAI for the extensive study done in comparing the different standards , this indeed gives a lot of global perspective of what other standards are following as on date .*

Need of the Amending the standards : We would like to bring to the kind notice of the ARAI and panel members that these voltages (i.e. 6/12/24 V) are predominantly being used for ICE vehicles for many years . Basically for any auxiliary parts in a vehicle there is a need of stabilized voltage /current flow which gets fulfilled by an auxiliary battery as other sources of voltage (e.g Alternator) generally have fluctuating nature. With technological advancement in in automotive ecosystem and vehicles with dual propulsion systems (hybrids) and EV's, there is a need to evaluate all such standards.

Drawback of using converter in vehicles: In EV's using a convertor actually results in conversion efficiency loss almost of range of 8-10% from 48V to 12V, which can be optimized efficiently if this voltage architecture is directly utilized, also we know that (P) = V * I (voltage is function of current i.e. for a 12V system current rating is high therefore thickness of harness has to be more thereby having more copper (The size of copper in harness is reduced by 10-15% compared to the 12V horn system due less current consumption) and resulting is increased weight in vehicle as compared to 48V. In India due the road conditions the usage of horn is very high so to use such system in vehicle where usage the backend architecture needs to highly optimized and for that reason 48V system is most relevant **Application**, **Safety & Global benchmarking** In advance vehicles "traction batteries" contribute a dual purpose i.e. 1. propulsion application 2. Provide a more stable performance w.r.t voltage & current, this determines efficiency of the vehicle w.r.t to its performance & simultaneously provide a stable power requirements for auxiliary sub-systems (e.g. Horn , lighting etc..).

Today's EV operate indeed operate in 48/60/72 volts, however we have to understand that which is most safe DC voltage that gives stable power requirements within vehicle moreover anything above 60 Vdc is a "high voltage system" and that has very special safety requirements and hence it is very rare (negligible) that at such voltages will be used for auxiliary units. However when it comes to 48Vdc it is actually the safest low voltage DC system that can provide the most stable electrical input for the accessories to perform best to its efficiency. So ola is proposing a safest low DC voltage i.e. 48V also as an option in this standard. Already globally many OEM's are already moving or planning to move to this voltage architecture for various applications

• Tesla cyber truck is fully built on 48V architecture

• CLEPA (European association of automotive supplier) has already being advocating the usefulness of 48V components

Additionally there have been multiple papers that are available in public forums where various advantages of 48V architecture w.r.t wiring harness are available where use of such architecture helps in reduction in the weight of the vehicle thereby helping the vehicles to be more efficient (improves the range) which is a critical aspect for such advanced technology vehicles. For "Lighting" application in automotive the main criteria is current requirements that more critical for the product design and for that matter this gets recorded in component certification if drivers are in LED lamp then they run on 12 volt if there are higher voltages it can always be managed by E&E ECU's or by modifying those LED drivers.

For an "ignition system" there is always a feasibility of having a different voltage system other than 12 Volts, technically it is very much possible to strategize in a vehicle to energize and de-energize the 48V System based on Ignition input through ECU. And similar way other E/E components can be taken likewise 24V ignition systems are used Heavy vehicles.

M/s HMCL Comments: Under Clause no. 6, Please keep the Max. current value of TYPE 2A horn for 48V DC same as 12V horn i.e. 2.5 Amperes.

Justification: As the value proposed by OLA will be based on a specific use case and for other DB values it will get changed.

M/s. Ashok Leyland Limited Proposal

Reference to Sl. Nos. 6 & 7 of ITEM 3 of 31st TED 11 meeting agenda on Horn specification + installation requirements, kindly find below our views.

- 1. Currently TED/11/23335 document comprises of only IS 1884 specification & IS 15796 installation requirement is not part of the TED 11 draft
- 2. We propose to revise TED/11/23335 document amalgamating requirements of both IS 1884 & IS 15796, aligning with ECE R 28 requirements
- 3. Below listed IS 1884 unique component level test requirements are not part of ECE R 28 req., hence may be included in revised TED/11/23335 document considering component safety
 - a. Visual examination and dimensional check
 - b. High voltage test
 - c. Current draw test
 - d. Operating voltage range test
 - e. Sound pressure level test
 - f. Vibration test
 - g. Corrosion resistance test
 - h. Continuous operation test
 - i. Dust test
 - j. Damp heat (cycling) test
 - k. Water spray proof test
 - I. Water sealing test
 - m. Temperature stability test

A-4.2 Minutes of Panel 1 meeting

Information Classification Public

	MOM for TED	11- 2nd Panel Meeting (dt 22-08-2024) For IS-1884 & IS-15796	
Welcome Address	d. Material and a state of the	M. O	
	ced with a welcome address by the panel conve prehensive compilation of comments and feed		
Approach	Proposal	Member's views:	Panel Convenor Opinion:
Discussion on Harmonization of Standards	Comments from M/s BAL: 1)M/s BAL briefly explained their comments and justified the need for harmonizing both IS- 1884 and IS-15796 with ECE R-028, except for the number of cycle tests for endurance testing. 2)They highlighted the inclusion of the	M/s Yamaha Motor supported the harmonization but OEMs are btter to judge whether ECE R28 is good as per Indian use cases M/s HMCL opposed the harmonization, citing safety concerns and the omission of some test requirements. M/s MSIL proposed to consider the indian horn use cases, threrfore it is better to retain all the testing requirements in the IS standard. M/s Roots was in favour of proposal for harmonization However, testing requirements need to be considered depending on the Indian use cases. Comments from M/s ARAI: 1)M/s ARAI emphasized the different environmental and usage requirements for horns in India compared to ECE standards and suggested retaining the current Indian test requirements. 2)They noted that the use of AIR horns is banned as per CMVR, and further discussion with BIS TED 11 committee is needed to determine if they can be incorporated into the current standard.	1)The panel convenor proposed harmonizing the standards at the administrative level, where -Scope would be harmonized with ECE R28 (excluding AIR horns), however, to avoid the inconvenience of updating other standards and the CMVR book, and to maintain industry practice, the terminology will remain 'Horn' instead of 'AWD'. + Definations (excluding AIR horn) would be harmonize +Horn classification would be harmonized (Class I & Class II), +However, the current IS test and all it's testing requirements would be retained. 2)ARAI and most of the panel members agreed with the decision.
Incorporation of New "Class III" Horn		M/s UNO Minda supported this proposal. M/s ARAI had no immediate comments, will revert back with further studies.	The panel convenor suggested that further discussion on this topic is needed and will be addressed in the subsequent meeting.
Incorporation of "Electronic Horn"	M/s SKVWL proposed to addition of "Electronic horn" in the IS standard	-	Panel Convenor agreed with the proposal to incorporat "Electronic Horn" definition inline with the ECE R28.
Addition of 48V Rated Voltage Horn	M/s OLA proposed adding a 48V rated voltage horn to the standard, along with the requisite test requirements.	M/s Roots agreed with this proposal and suggested further additions of 36V, 72V, and 80V horns. M/s HMCL also agreed to the proposal with the minute difference in the test requirement for it. (2.5 A under clause no 6 of IS-1884) M/s ARAI proposed conducting further studies and gathering practical data for different voltage criteria horns and their	 The panel convenor requested M/s OLA and M/s Root to share test reports and relevent data on these high- voltage horn requirements with all stakeholders and other members aslo may contribute in it. After thoroughly reviewing all reports and relavent data from test agencies, the necessary approach may be decided.

Information Classification : Public

Sl. no.	Organization	Name	Email
(1)	Maruti Suzuki India Limited, Gurugram	Mr. Gururaj Ravi	gururaj.ravi@maruti.co.in
(2)	ACMA Automotive Research Association of	Mr. Sanjay Tank	sanjay.tank@acma.in
(3)	India, Pune	Dr. B V Shamsundara, ARAI	shamsundara.shl@araiindia.com
(4)	Automotive Research Association of India, Pune	Mr. J. M. Kirve	kirve.shl@araiindia.com
(5)	Automotive Research Association of India, Pune	Ms. Jyoti Kirve	kirve.shl@araiindia.com
(6)	Ashok Leyland Limited, Chennai	Mr. Faustino	faustino.v@ashokleyland.com
(7)	Bajaj Auto	Mr. Arvind Kumbhar	avkumbhar@bajajauto.co.in
(8)	Bajaj Auto	Mr. Abhay Kumar	akumar15@bajajauto.co.in
(9)	Bajaj Auto Ltd.	Mr. Parmeshwar Mane	pjmane@bajajauto.co.in
(10)	Central Institute of Road Transport, Pune	Ms. Sheeba Rani	koppula.sheebarani@cirtindia.com
(11)	Central Institute of Road Transport, Pune	Santosh /Ashwani	photometrylab@cirtindia.com
(12)	Central Institute of Road Transport, Pune	Mr. Santosh Y Desai	electricallab@cirtindia.com
(13)	Honda Motorcycle and Scooter India Private Limited, Gurgaon	Mr. ARPAN SHUKLA	arpan.shukla@honda2wheelersindia.com
(14)	Honda Cars India Research and Development Limited, Noida	Mr. Muthu Kumar	muthu_kumar@hondacarindia.com
(15)	Honda Cars India Research and Development Limited, Noida	Ms. Neha Honda	ngaba@hondacarindia.com
(16)	Hero Motocorp Limited, New Delhi	Ms. Apoorva Tripathi	apoorva.tripathi@heromotocorp.com
(17)	Hero Motocorp Limited, New Delhi	Mr. Varun Sharma	varun2.sharma@heromotocorp.com
(18)	Hero Motocorp Limited, New Delhi	Mr. Yash Yadav	yash.yadav@heromotocorp.com
(19)	Hyundai Motor India Engineering Private Limited, Hyderabad	Mr. Satya	satyanarayanagupta.b@hmie.co.in
(20)	India Yamaha Motor Private Limited, Noida	Mr. Navneet Kaushik	navneetk@yamaha-motor-india.com
(21)	Lumax Industries Limited, Gurugram	Manju Panwar	manju.panwar@lumaxmail.com
(22)	Mahindra and Mahindra Limited,	Ms. Pushpanjali Pathak	23138754@mahindra.com
(23)	Maruti Suzuki India Limited, Gurugram	Mr. Sonu Samantaray	sonu.samantaray@maruti.co.in
(24)	Maruti Suzuki India Limited, Gurugram	Mr. Sumit Kumar	sumitkumar@maruti.co.in
(25)	Maruti Suzuki India Limited, Gurugram	Mr. Arun Kumar	arun.k@maruti.co.in
(26)	Ola Electric Technologies Private Limited, Bengaluru	Mr. Shivayogi A	shivayogi.a@olaelectric.com
(27)	Ola Electric Technologies Private Limited, Bengaluru	Mr. Subrat dash	subrat.dash@olaelectric.com
(28)	Renault India Private Limited, Mumbai	Mr. Jebin Jowhar	jebin-jowhar.pullurshangattil@rntbci.com

2nd Meeting attendance of Panel 1 (TED 11) – 22nd August 2024

Information Classification : Public

Sl. no.	Organization	Name	Email
(29)	Renault India Private Limited, Mumbai	Mr. Sabarivasan K N	sabarivasan.nedunchezhian@rntbci.com
(30)		Mr. Manikandan	nmanicbe@rediffmail.com
(31)	Roots Industries India Limited, Coimbatore	Mr. Subodh Deshpande	subodh@rootsemail.com
(32)	Roots Industries India Limited, Coimbatore	Mr. sellamuthu	sella@roots.co.in
(33)	Roots Industries India Limited, Coimbatore	Mr. Selvaraj	rselvaraj@roots.co.in
(34)	Skoda Auto Volkswagen India Private Limited	Mr. Milind Jagtap	milind.jagtap@skoda-vw.co.in
(35)	Toyota Kirloskar Motor Private Limited, Bidadi	Mr. Kiran T N	lfs_kirantn@toyota-kirloskar.co.in
(36)	Tractor and Mechanization Association, New Delhi	Mr. Pradeep Shinde	shinde.pradeep@mahindra.com
(37)	Tata Motors Limited, Pune	Ms. Namrata Deb	namrata.deb@tatamotors.com
(38)	Uno Minda, Gurugram	Mr. Kuldeep Thakur	kthakur@unominda.com

(Sl No 8 of Item 3)

COMMENTS/INPUT RECEIVED ON DRAFT TED 11 (23075)

A-5.1 Comments received from Hero Motocorp vide mail dated 22.9.2023 and justification received from UNO minda vide mail dt 25.4.24

SI. No.	Clause/ Sub- clause/ para/ table/ fig. No. commented	Type of Comments (General/ Editorial/ Technical)		Proposed change	Justification From UNO Minda vide mail dt 25.4.2024
1.	9.9/Dry Heat Test	Technical	 Temperature relatedtests shall be defined based on application of components Committee may state why such change has been introduced with a clear justification to understand appropriately 	(Part 3/Sec 5). The test chamber temperature shall be $85 \pm 2^{\circ}$ C. The recovery period shall be 2 hours." Proposed Text: 9.9 Dry Heat Test The test shall be carried outin accordance with IS 9000 (Part 3/Sec 5). The test chamber temperature shall be $85 \pm 2^{\circ}$ C 55 $\pm 2^{\circ}$ C. The recovery period shall be 2 hours."	On proposal of chamber temperature of $85 \pm 2^{\circ}$ C: As the environment temperature goes upto 50 Deg C in some parts of india; vehicles, when parked in open parking are exposed to continuous high temperatures. It is observed that the inside cabin temperature in such cases can reach upto 75-80 Deg C. Therefore we had proposed the temperature criteria accordingly. Also many of the OEMs follow this norm
	9.11/Low Temperature Test	Technical	have notbeen changed globally as well and changing temperature specification on the lower side will not add much to the performance and durability of the component. 3. Committee may state why such change has been introduced with a clear justification to understand appropriately	Current text: " 9.11 Low Temperature Test The test shall be carried outin	Although -30Deg C is not fully relevant for Indian scenerios, Normally OEMs who supply to colder regions follow same specification.

(Sl No 9 of Item 3)

MOM | MEETING OF PANEL-2 OF TED 11DATED: 21ST FEBRUARY 2024

Opening Remarks: Member Secretary, TED 11 explained that during 30th meeting of TED 11, comments were received from M/S Hero MotoCorp Limited on TED 11 (23215) – 2nd revision of IS 4050 – Horn Switches for Automobiles – Method of testing. Committee chair opined that this subject shall be discussed in a separate panel and recommendations are to be submitted to the main committee before the next meeting of TED 11. Hence, Panel-2 was constituted under convenorship of M/S Hero MotoCorp Limited.

Discussion:

Shri Varun Sharma on behalf of panel convener Shri Feroz Khan (Hero MotoCorp Ltd.) convened the meeting. He thanked all the participants for joining the meeting and taking reference of the opening remarks made by the Member Secretary, TED11 further explained that TED 11 (23215) is based on existing IS 4050. While referring to amendment 2 of IS 4050, it was found that 2 & 3 Wheeled vehicles are not in the scope of this standard and since in the draft revision document TED 11 (23215), scope was considered for all automobiles, comments were submitted by HMCL. Following are the recommendations from this panel to the main committee:

- Panel-2 agreed that the revision document should consider provisions of amendment 2 of IS 4050 and hence scope of TED 11 (23215) shall be modified by excluding 2 & 3 Wheeled vehicles from the scope.
- A separate panel may also be created to seek inputs from 4W OEMs to finalize the document TED 11(23215).
- Further, comments received from M/S Uno Minda were also discussed and the panel advised M/S Uno Minda to come back with their inputs on certain clarifications required by the panel within 2 weeks.

Meeting ended with a vote of thanks from the panel convener and the Member Secretary, TED 11

i ui ticipunto			
Organization	Participants		
ACMA	Shri Sanjay Tank		
Heromotocorp	Ms Apoorva Tripathi		
Heromotocorp	Shri Eshan Gupta		
Heromotocorp	Shri Varun Sharma (Convenor)		
Heromotocorp	Shri Yash Yadav		
SIAM	Shri Lokesh Mittal		
UNO Minda	Shri Mohit Chaudhary		
BIS	August Dubey		

Participants

(Sl No 11 of Item 3)

DRAFT DOCUMENT TED 11 (16959)

ROAD VEHICLES — FUSE-LINKS PART 3 FUSE-LINKS WITH TABS (BLADE TYPE) TYPE C (MEDIUM), TYPE E (HIGH CURRENT), TYPE F (MINIATURE), TYPE N AND TYPE P (SUB-MINIATURE)

ICS 43.040.10

© BIS 2024

भारतीयमानकब्यरू ो BUREAU OF INDIAN STANDARDS मानकभवन, 9 बहाद**ुरश**ाहज़फरम**ार**्, नईददल्ली - 110002 MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG NEW DELHI - 110002 <u>www.bis.gov.inwww.standardsbis.in</u>

<u>April 2024</u>

Price Group

Automotive Electrical Equipment and Instruments Sectional Committee, TED 11

FOREWORD

This Indian Standard (Part 3) was adopted by Bureau of Indian Standards, after the draft finalized by the Automotive Electrical Equipment and Instruments Sectional Committee had been approved by the Transport Engineering Division Council.

In order to protect the automobile electrical equipment against excessive currents, fuse-links are inserted. Owing to number of circuits and accessories, it might become necessary to insertfuse-links into each circuit depending on the load requirements. This standard is intended to cover such fuse-links for automobiles.

This standard has been brought out in seven parts. Other parts in this series are: IS 2577

IPart 1: Definitions and general test requirements

Part 2: User Guidelines

Part 4: Fuse-links with female contacts (Type A) and bolt-in contacts (Type B) and theirtest fixtures

Part 5: Fuse-links with axial terminals (Strip fuse-links) Types SF 30 and SF 51 and testfixtures

Part 6: Single-bolt fuse-links

Part 7: Fuse-links with tabs (Type G) with rated voltage of 450 V

This Indian Standard is modified adoption of ISO 8820-3 Road vehicles — Fuse-links — Part3: Fuse-links with tabs (blade type), Type C (medium), Type E (high current) and Type F (miniature). Major modification/ changes between and Indian Standard and ISO standard are:

- a) Incorporation of Type N and Type P (sub-miniature) fuse-links.
- b) Modification in Table 4, Table 5, Table 6 and Table 7 to incorporate requirements of type N and type P (subminiature) fuse-links.
- c) Addition of Fig. 6 and Fig.7 (test dummy for type N and type P fuse-links) and renumbering of all the subsequent Figures.
- d) Incorporation of BIS Certification Marking Clause in the Indian Standard.
- e) Annex A has been made normative instead of informative.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

The composition of the committee responsible for formulation of this standard is given in Annex B.

For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated expressing the result of a test or analysis, shall be rounded off in accordance with IS 2: 2022 'Rules for rounding off numerical values (*second revision*)'. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.

Indian Standard

ROAD VEHICLES — FUSE-LINKS PART 3 FUSE-LINKS WITH TABS (BLADE TYPE) TYPE C (MEDIUM), TYPE E (HIGH CURRENT), TYPE F (MINIATURE), TYPE N AND TYPE P (SUB-MINIATURE)

1 SCOPE

This Indian Standard specifies requirements of dimensions, rated current, test procedures and performance requirements of fuse-links with tabs (blade-type), Type C (medium), Type E (high current), Type F (miniature), Type N and Type P (sub-miniature) for use in road vehicles.

This standard is applicable for fuse-links with a rated voltage of 32 V or 58 V, a current rating of less than or equal to 100 A and a breaking capacity of 1 000 A intended for use in road vehicles.

This standard is intended to be used in conjunction with IS 2577 (Part 1) and IS 2577 (Part 2).

2 REFERENCES

The following standards contain provisions which through reference in this text, constitute provision of this standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this standard are encouraged to investigate the possibility of applying the most recent editions of the standard indicated below:

IS No.	Title
2102 (Part 1):1993	General tolerances — Part 1: Tolerances for linear and angular dimensions without individual tolerance indications (<i>Third Revision</i>)
2577 (Part 1): 2018	Road vehicles — Fuse-links — Part 1: Definitions and general test requirements (<i>Third Revision</i>)
2577 (Part 2): 2018	Road vehicles — Fuse-links — Part 2: User's Guide (Third Revision)

3 TERMS AND DEFINITIONS

For the purposes of this document, the definitions given in IS 2577 (Part 1) shall apply.

4 MARKING, LABELLING, AND COLOUR CODING

The rated current and rated voltage shall be permanently marked to be externally visible on the fuse-link. In addition, the current rating shall be shown by colour coding as specified in Table 1.

The manufacturer's name, trademark, and/or symbol shall be marked on the fuse-link insulator.

Currernt rating A	Colour Type C, Type E, Type N, Type P,	Colour Type E
(1)	(2) black	(3)
2	grey	_
3	violet	
4	pink	
5	tan-light brown	_
7.5	brown	
10	red	
15	blue	
20	yellow	yellow
25	White ^{a)}	grey or white ^{a)}
30	green	green
35	dark green	dark green
40	orange	orange
50	—	red
60	—	blue
70	—	brown
80	—	White ^{a)} or grey
100	—	violet

Table 1 Fuse-Link Colour Coding (Clause 4)

^{a)} For transparent fuse bodies, 'white' means no colour is added to the plastic material. Same colour is not allowed for 25 A and 80 A Type E.

5 TESTS AND REQUIREMENTS

5.1 General

5.1.1 Test Criteria

In addition to carrying out the test procedures in accordance with IS 2577 (Part 1), the following criteria apply:

- a) Tests shall be performed following the test sequences given in Table 2.
- b) The test fixtures for electrical tests shall be designed in accordance with Fig. 1. The connection resistance

shall be less than or equal to 0.8 m Ω for Type C (medium) and Type F (miniature) fuse-links and less than or equal to 0.35 m Ω for Type E (high current) fuse-links to ensure the proper function of the test fixture.

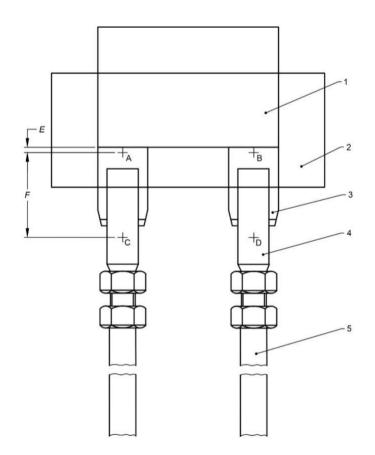
c) Fuse-links conforming to this Indian Standard shall provide for visible evidence of an open-fuse element.

5.1.2 Test Sequence

Sl. No.	Test Dimensions Marking, labelling, and colour coding		Clause 6		Sample Groups					
				х	Х	Х				_
			4	X	X	X	X	X	X	X
	Fuse-link voltage drop		5.2	х	Х	Х		—	—	—
	Strength of terminals		5.8	x	х	х	—	_	—	_
	Environmental conditions Transient current cycling Fuse-link voltage drop Current steps Breaking capacity		Climatic load					x		_
			Chemical load	5.4			—	—	Х	—
			Mechanical load							х
			5.3	_	_	_		_	_	x
			5.2	—	—	—	х	х	х	Х
			5.6	—	—	х	—	—	—	—
			5.7	х	—	—	—		—	—
	Operating	$I_{\rm R} {\rm or} 1.10 I_{\rm R}^{\rm a)}$			Х	—	Х	Х	x	X
	Time	$1.35 I_{\rm R}^{\rm a)}$	5.5	—	У		у	У	у	У
	resting test	$1.60 I_{\rm R}$ 2.00 $I_{\rm R}$	4		y y		y y	y y	y y	y y
	Strength of terminals		5.8	х	X	х	x	x	x	x

Table 2 Test Sequence (Clause 5.1.1.1)

^{a)} Not required for 100 A fuse-link.


NOTES —

- 1) Each sample group shall contain a minimum of 10 fuse-links for each rated current rating.
- 2) For the operating time rating tests marked "Y", the sample groups 2,4,5,6, and 7 shall be divided equally. These fuse-links are intended to be subjected to a single operating time-rating test only.
- 3) A dash (—) indicates that the test is not required.

5.2 Voltage Drop

5.2.1 Tests

The voltage drop, UAB, shall be measured at points A and B across the fuse-link tabs as shown in Fig. 1.

Key

1 fuse-link

2 test fixture

3 fuse blade

4 test clip (cantilevered contact system, receptacle to accept tabs as defined in Table 7)

5 cable (size according to Table 6)E

 $= (1.5 \pm 0.5) \text{ mm}$

F =(15.5 \pm 1) mm for miniature and medium fuse-links;

= (28.0 ± 1) mm for high current fuse-links

NOTE —Points A and B are the measuring points for the voltage drop. Points A, C and B, D are the measuring point for connection resistance. For sub-miniature fuse-link of type P (that is, fuse-link with 3 tabs), the figure shows Middle (common) tab and one side tab. All applicable tests shall be repeated for fuse between middle (common) tab and the other side tab.

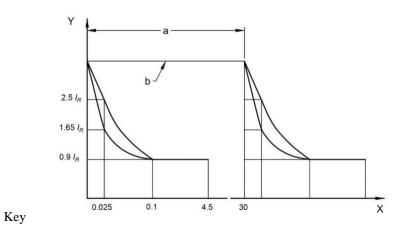
FIG. 1 TEST SCHEMATIC (TYPES C, E,F, N AND P)

5.2.2 Requirements

The voltage drop values shall not exceed the values as given in Table 3.

Table 3 Voltage Drop

(*Clause* 5.2.2)


Sl. No.	Fuse rating A	Voltage Drop Max, mV
(1)	(2)	(3)
i)	1	250
ii)	2	225
iii)	3	200
iv)	4	200
v)	5	175
vi)	7.5	150
vii)	10	140
viii)	15	125
ix)	20	125
x)	25	125
xi)	30	120
xii)	35	120
xiii)	40	120
xiv)	50	120
xv)	60	120
xvi)	70	110
xvii)	80	110
xviii)	100	110

5.3 Transient Current Cycling

5.3.1 Test

The test shall be carried out as given in 5.3 of IS 2577 (Part 1) and Fig. 2.

At an elapsed time of 0.025 s on-time, the current shall fall to a value between 1.65 I_R and 2.5 I_R . The steady-state current shall not fall below 0.9 I_R at no time during the first 4.5 s of each cycle.

X Axis: Time (s) YAxis: Current (A) a: One cycle b= (5.6...6) IR for IR >5 A = (4.6...5) IR for IR ≤ 5 A

FIG. 2 TRANSIENT CURRENT CYCLING

5.3.2 Requirements

The requirements shall conform to **5.3.3** of IS 2577 (Part 1).

5.4 Environmental Conditions

The environmental conditions shall conform to 5.4 of IS 2577 (Part 1).

5.5 Operating Time-Rating

5.5.1 Test

The operating time –rating shall be as per 5.5 of IS 2577 (Part 1). The test duration shall be 100 h for I_R .

5.5.2 Requirement

The requirements shall be as given in Table 4. After activation, the current through the fuse- link shall not exceed 0.5 mA at the rated voltage of the fuse-link.

Table 4 Operating Times (Clause 5.5.2)

Sl No.	Test Current	Operating times					
	А	Туре	Type E				
		Min	Max	Min	Max		
(1)	(2)	(3)	(4)	(5)	(6)		
<i>i</i>)	$I_{ m R}$	_	_	360 000	œ		
ii)	1.1 <i>I</i> _R	360 000	∞	—			
iii)	$1.35 I_{\rm R}^{(\rm a)}$	0.75	600	60	900		
iv)	1.6 <i>I</i> _R	0.25	50	10	200		
v)	2.0 <i>I</i> _R	0.15	5	2	60		
vi)	3.5 <i>I</i> _R	0.04	0.5	0.2	7.0		
vii)	6 <i>I</i> _R	0.02	0.1	0.04	1.0		

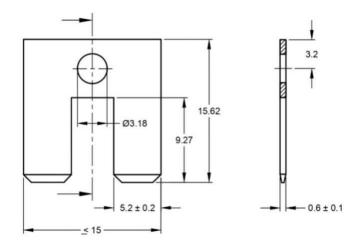
^{a)} Not required for 100 A high current fuse-links.

NOTE 1 —A dash (—) indicates that no value is specified

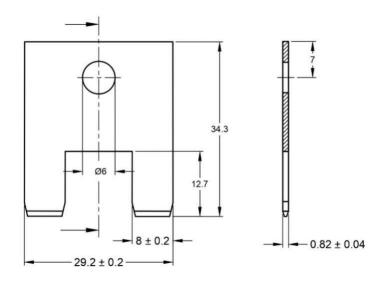
5.6 Current Steps

5.6.1 Test

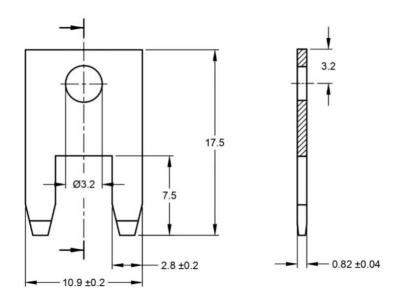
The requirements shall conform to 5.6 of IS 2577 (Part 1).

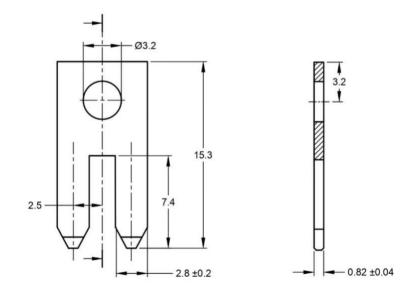

5.6.2 Requirement

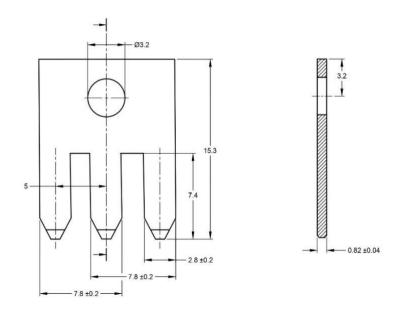
The requirements shall conform to **5.6.3** of IS 2577 (Part 1). After activation, the current through the fuse-link shall not exceed 0.5 mA at the rated voltage of the fuse-link.


5.7 Breaking Capacity

5.7.1 Test


The test shall be carried out as per **5.7.2** of IS 2577 (Part 1). Cable sizes as shown in Table 6 shall be tested at 1 000 A. An appropriate test dummy, as shown in Fig. 3 to Fig. 7, may be used. The common tolerances, where not specified in Fig., shall conform to class M as specified in IS 2102 (Part 1).

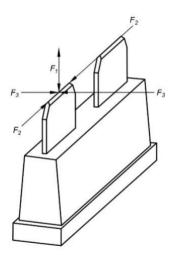

All dimensions in millimeters FIG. 3 TEST DUMMY FOR TYPE C FUSE- LINK


All dimensions in millimeters FIG. 4 TEST DUMMY FOR TYPE E FUSE-LINKS

All Dimensions in millimetres FIG. 5 TEST DUMMY FOR TYPE F FUSE-LINKS

All Dimensions in millimetres FIG. 6 TEST DUMMY FOR TYPE N FUSE-LINKS

All Dimensions in millimetres FIG. 7 TEST DUMMY FOR TYPE P FUSE-LINKS


5.7.2 Requirement

The requirements shall conform to **5.7.3** of IS 2577 (Part 1). After the test, the current through the fuse-link shall not exceed 0.5 mA at the rated voltage of the fuse- link.

5.8 Strength of Terminals

Table 5 Terminal Forces(Clause 5.8.1)

SI No.	Fuse-link size	Force F1 N	Force F2 N	Force F3 N
(1)	(2)	(3)	(4)	(5)
i)	Туре С	70 ± 1	15 ± 1	7,5 ± 1
ii)	Type E	90 ± 1	20 ± 1	10 ± 1
iii)	Type F, N and P	50 ± 1	10 ± 1	5 ± 1

NOTE – The arrow indicate the direction of applied forces $F_1 \dots F_3$

FIG. 8 APPLICATION OF FORCES

5.8.1 Test

A force $(F_1 \dots F_3)$ shall be applied to each of the tabs the fuse-link in accordance with Fig. 8. The force shall be held for 2 s. The test force shall not be applied abruptly.

5.8.2 Requirements

The deformation of the test sample shall not exceed 0.5 mm after the test, the insulator shall be intact and the terminals shall not be removed from the insulator.

5.9 Test Cable Sizes

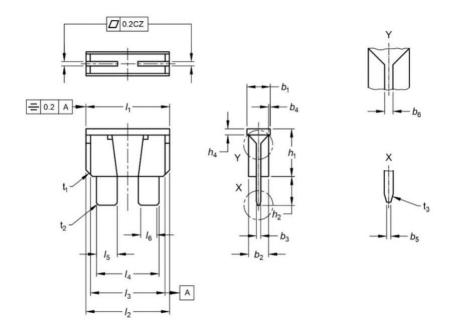
Test cable sizes shall be as given in Table 6. All tests for a particular fuse-link rating shall be performed using the same cable size. Test cable sizes are specified to allow comparative fuse- link tests to be carried out. The cable size specified herein does not necessarily indicate the size of cable to be used in the vehicle application

Sl No.	Rated	Con	area ^{a)}	Length	
	current, <i>I</i> _R	Type F, N, P	Type C	Type E	
	А	mm ²	mm ²	mm ²	mm
(1)	(2)	(3)	(4)	a.	(5)
i)	1	0.35	0.35	—	
ii)	2	0.35	0.35	_	
iii)	3	0.35	0.35	—	
iv)	4	0.35	0.35	_	
v)	5	0.5	0.5		
vi)	7.5	0.75	0.75	_	
vii)	10	1.0	1.0	—	500 ± 5
viii)	15	1.5	1.5		for all
ix)	20	2.5	2.5	_	cases
x)	25	2.5	2.5	_	

Table 6 Test Cable Sizes

(Clause 5.7.1, 5.9)

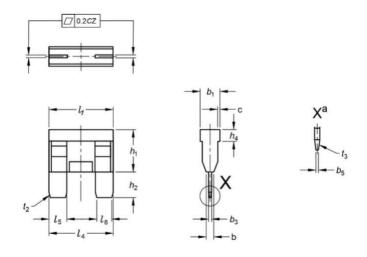
xi)	30	4.0	4.0	
xii)	35		6.0	
xiii)	40		6.0	
xiv)	50			6.0
xv)	60			6.0
xvi)	70	—	—	10.0
xvii)	80			10.0
xviii)	100	—		16.0


^{a)} Conductor material according IS/ ISO 6722-1.

5.10 Temperature Rise

The test shall be carried out as given in Annex A.

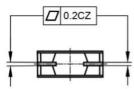
6 DIMENSIONS

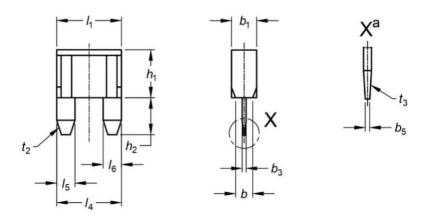

6.1 Fuse-links Types C, E, F, N and P

Key

t₁,t₂,t_{3:} Taper

All Dimensions in millimetres FIG. 9 FUSE-LINK TYPE C (MEDIUM)


t₂, t₃: Taper

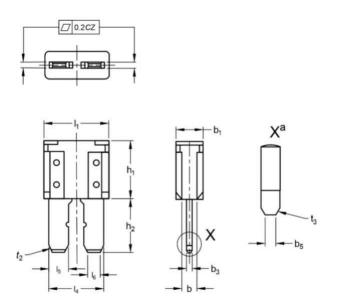

a: Detail of X.

b: Within the outline of fuse-link housing, the tabs shall be insulated.C: Access area for the extraction tool according to manufacturer's choice.

All dimensions in millimeters

FIG. 10 FUSE-LINK TYPE E (HIGH CURRENT)

Key

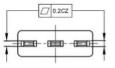

t₂, t₃: Taper

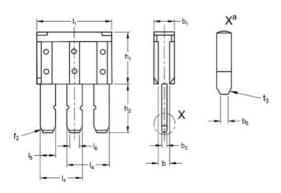
a: Detail of X

b: Within the outline of the fuse-link housing, the tabs shall be insulated.

All Dimensions in millimetres

FIG. 11 FUSE-LINK TYPE F


Key


t₂, t_{3:} Taper a: Detail of X.

b: Within the outline of the fuse-link housing, the tabs shall be insulated.

All dimensions in millimeters

Key

t₂, t₃: Taper

a: Detail of X.

b: Within the outline of the fuse-link housing, the tabs shall be insulated.

All dimensions in millimeters FIG. 13 FUSE-LINK TYPE P

Table 7 — Dimensions of Fuse-Links with Tabs, Type C, E, F, N and P

(*Clause* 6.1)

Sl No.	Dimension	Ty	pe C	Tyj	pe E	Tyj	pe F	Ty	pe N	Т	ype P
	Dimensions	Value	Tolerance	Value	Tolerance	Value	Tolerance	Value	Tolerance	Value	Tolerance
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
i)	11	19.1	± 0.3	29.5	± 0.5	11.2	± 0.8	9.1	Max	14.4	Max
ii)	l ₂	18.9	± 0.5	_		_				_	
iii)	- l ₃	16.6	+ 0.3	_		_				_	
iv)	13	10.0	- 0.8								
v)	1	14.5	± 0.3	29.0	+ 0.4	10.8	± .4	7.8	± 0.3	7.8	± 0.3
vi)	- 14	14.5			- 0.5						
vii)	15	5.2	± 0.2	8.0	± 0.2	2.8	± 0.2	2.8	± 0.2	2.8	± 0.2
viii)	l_6	4	± 0.5	6.8	± 0.5	1.3	± 0.5	1.8	± 0.5	1.8	± 0.5
ix)	b 1	5.5	Max	9.0	± 0.3	3.8	± 0.4	3.8	± 0.4	4.2	± 0.4
x)	b ₂	3.0	Min	-a	n.s.	-a	n.s.	-a	n.s.	-a	n.s.
xi)	h	0.65	± 0.05	0.82	+ 0.05	0.82	+ 0.05	0.82	+ 0.05	0.82	+ 0.05
xii)	b ₃	0.65			- 0.04		- 0.04		- 0.04		- 0.04
xiii)	b 4	0.6	± 0.3	-b		-b		-b		-b	—
xiv)	- b ₅	0.51	Max	0.6	0	0.6	Max	0.6	Max	0.6	Max
xv)	05	0.31			- 0.3						
xvi)	b ₆	1.0	± 0.2	_		_		—		_	—
xvii)	h ₁	15	Min	22.0	Max	9	Max	7.9	Max	10.6	Max
xviii)	h ₂	6.5	± 0.5	12.6	± 0.5	7.5	± 0.5	7.5	± 0.5	7.5	± 0.5
xiv)	h	2.5	+ 0.7	-b	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.
xv)	- h4	2.5	- 0.1								

NOTES -

1) n.s. indicates that the value or tolerance is not specified.

2) A dash (—) indicates that the value or tolerance is not applicable.

a : Within the outline of the fuse-link housing, the tabs shall be insulated.

b : Access area for the extraction tool according to manufacturer's choice.

6.2 Designation

The designation of a fuse-link Type C for a nominal current of 25 A shall be as follows: Fuse-link IS 2577 (Part 3) - C – 25

7 BIS CERTIFICATION MARKING

The fuse-links may also be marked with the Standard Mark.

7.1 The product(s) conforming to the requirements of this standard may be certified as per the conformity assessment schemes under the provisions of the *Bureau of Indian Standards* Act, 2016 and the Rules and Regulations framed thereunder, and the product(s) may be marked with the Standard Mark.

ANNEX A

(Clause 5.10)


TEMPERATURE RISE TEST

A-1 TEST

The test may be carried out using fuse-links, fuse holders, and connections as specified by the vehicle manufacturer. Test cable sizes shall be in accordance with Table 6. The test shall be performed in an oven with a test current of 0.7 IR at an ambient temperature of 60° C. The temperature shall be measured at the point the fuse-link terminals protrude from the base of the insulator using thermocouples as specified by the vehicle manufacturer (*see* Fig. 14).

A-2 REQUIREMENT

After thermal equilibrium has been achieved, the temperature of the connections shall not exceed 80°C.

Key

1: Test points 2: Test fixture

FIG. 14 TEMPERATURE RISE TEST SET UP

(Foreword)

COMMITTEE COMPOSITION

AUTOMOTIVE ELECTRICAL EQUIPMENT AND INSTRUMENTS SECTIONAL COMMITTEE, TED 11

Organization

Vehicle Research & Development Establishment,

Ashok Leyland Ltd, Chennai

Association of State Road Transport Undertakings, New Delhi

Automotive Research Association of India, Pune

Automotive Components Manufacturers Association, New Delhi

Bajaj Auto Ltd, Pune

Bosch Electrical Drives India Private Ltd, Chennai

Cast Master Mobitech India, Faridabad

Central Institute of Road Transport, Pune

Controller of Quality Assurance Vehicles,

Daimler India Commercial Vehicles, Chennai

Denso India, Gurgaon

Fiem Industries Ltd, Distt. Sonepat

Force Motors Ltd, Pune

Hero Moto Corp Ltd, Dharuhera

Honda Cars R & D India

Representative(s)

SHRI G.R.M. RAO (CHAIRMAN)Ahmednagar

SHRI GOPALAKRISHNAN S MS. SUCHISMITA C (Alternate)MS. SAI ANKITHA (YP)

SHRI R.R.K. KISHORE DR.M. TRINATH BABU (Alternate)

SHRI A.A. DESHPANDE SHRI B.V. SHAMSUNDARA (Alternate)

SHRI UDAY HARITE MS. SEEMA BABAL (Alternate)

SHRI R. NARSIMHAN SHRI A.V. KUMBHAR (Alternate)

SHRI ULLAL SUBRAHMANYA SHRI N. J. DEVAPRASAD (Alternate)

SHRI RAHUL JAIN SHRI RAJU AGARWAL (Alternate)

SHRI RAJ KUMAR MALAJURE MS. SHUBHANGI DALVI (Alternate) SHRI SANTOSH YASHWANT DEASI (YP)

CONTROLLER (CQA - OFV) JABALPUR Jabalpur (MP) SHRI SATYAPAL LAKHTAKIA (Alternate)

SHRI RAVI KUMAR SAMATHIRAM SHRI RAMA MANI KANDAN (Alternate)

SHRI NOEL ALEXANDER PETERS SHRI ALOK KUMAR (Alternate)MS. ALKA SHARMA (YP)

SHRI G.V. GEORGE SHRI ARSHAD JAMEEL (Alternate)

SHRI ANIRUDDHA KULKARNI SHRI R. M. KANITKAR (Alternate)

SHRI FEROZ ALI KHAN SHRI SUBRAT KUMAR DASH (Alternate)

SHRI ADISH AGGARWAL SHRI S MUTHU KUMAR (Alternate) Indian Society of Lighting Engineers (ISLE), Gurugram

International Centre for Automotive Technology (ICAT), Gurugram

Indication Instruments Ltd, Faridabad

Jay Ushin Ltd, Gurgaon

John Deere India Pvt Ltd, Pune

Lucas TVS Ltd, Chennai

Lumax Industries Ltd, Gurgaon

Mahindra & Mahindra Ltd, MRV Chennai

Malhotra Cables, Delhi

Maruti Suzuki India Ltd, Gurgaon

MINIBIS Tech India, New Delhi

Ministry of Heavy Industries & Public Enterprises, Ministry of Micro Smalls Medium Enterprises, New Delhi

National Highway Authority of India, New Delhi

National Test House, Mumbai

Roots Auto Products Pvt Ltd, Coimbatore

Skoda Volkswagen

Society of Indian Automobile Mfrs, New Delhi

Tata Motors Ltd, Pune

SHRI ARSHI KRISHNACHAR SHRI PRATESH BARJATIA (Alternate)DR. VIDYA H A (YP)

SHRI MADHUSHUDAN JOSHI SHRI MAHENDER PAL (Alternate) MS. VIJAYANTA AHUJA (YP)

SHRI VISHAL LALANI SHRI ANUJ GARG (Alternate)

SHRI RAMESH YADAV

SHRI ANIL KUMAR (Alternate)

SHRI ANAND RAJ SHRI PRASHANT PULLIWAR (Alternate)

SHRI S. KRISHNA KUMAR SHRI O. MURIGEPPA (Alternate)

SHRI VIRENDRA KUMAR SACHDEV SHRI RANDHI KUMAR (Alternate)

SHRI KUMAR MEGHANATHAN SHRI S SAKTHIVELAN (Alternate)

SHRI RAJEEV MALHOTRA SHRI VIKAS PRASAD (Alternate)

SHRI SANDEEP RAINA SHRI GURURAJ RAVI (*Alternate*)MS. M. BUANESHWARI (*YP*)

WG CDR I. S. SABHARWAL

SHRI R K JAISWALNew Delhi

SHRI ANUJ KANSEL SHRI S.V. SHARMA (Alternate)

SHRI R.C. PALEKAR SHRI SANJAY KUMAR AGGARWAL (Alternate)

SHRI D.G. BASUMATRY SHRI B.R. MANDAL (Alternate)

SHRI K. SARAVANA SUNDARAM SHRI R. SELVARAJ (Alternate)

SHRI MAKARAND R. BRAHME SHRI MILIND JAGTAP (*Alternate*)SHRI ADITI DESHPANDE (*YP*)

SHRI P.K. BANERJEE SHRI SAURABH ROHILLA (Alternate)

SHRI ASHISH WADHWA SHRI GOWRISHANKAR P S (Alternate) Toyota Kirloskar Motor Ltd, Bidadi

Tractor Manufacturers Association, New Delhi

UNO Minda Industries, Haryana

Vehicles Research & Dev. Estt. (VRDE), Ahmednagar

BIS Directorate General

SHRI RAJU M SHRI DINESH G M (*Alternate*)SHRI VIJETH R GATTY (*YP*)

SHRI PHILIP KOSHY SHRI MADHAV BHADE (Alternate)

SHRI V. J. RAO SHRI NIRMAL KUMAR MINDA (Alternate)

SHRI MANISH SAHOO SHRI NARENDRA MALVIYA (Alternate)

SHRI R R SINGH, SC 'F' & HEAD (TED) [Representing Director General (*Ex-officio*)]

MEMBER SECRETARY SHRI SHARAD KUMAR SCIENTIST 'D' / JOINT DIRECTOR (TRANSPORT ENGINEERING), BIS

<u>ANNEXURE 8</u> (Sl No 18,19 and 20 of Item 6.2)

INPUT RECEVIED FROM MSIL IS 15802, IS 15804, AND IS 7827 PART 3/ SEC 1

Subject	Recommendation
IS 15804: 2008 : Automotive vehicles -	Please refer attached the detailed review document prepared on the
Windscreen wiping and washing system for	subject.
M1 category of vehicles - Requirements	
IS 7827 (Part3/Sec1) : 1993 -AUTOMOTIVE	This standard is based on JIS D 5710 : 1982 and ISO 9259 : 1991. There is
VEHICLES ELECTRICAL Wind SCRBEN	NO further revision in these reference standards. Therefore, we
WIPERS	recommend IS 7827 (Part3/Sec1) : 1993 standard to be reaffirmed.
PART 3 WIPER ARMS AND BLADES	
Section 1 Wiper Arms - Specification	

Attachment 1:

REVIEW ANALYSIS OF INDIAN STANDARD (To be submitted to the Sectional Committee)

- **1. Sectional Committee No. & Title:** TED 11: Automotive Electrical Equipment and Instruments Sectional Committee.
- 2. IS No: IS 15804: 2008
- **3. Title in English:** AUTOMOTIVE VEHICLES WINDSCREEN WIPING AND WASHING SYSTEM FOR MI CATEGORY OF VEHICLES REQUIREMENTS
- 4. Title in Hindi: स्वचल वाहन एम1 श्रेणी के वाहनों की विंडस्क्रीन पोंछने और धुलाई की पद्धति-अपेक्षाएँ
- 5. ICS No.
- 6. Date of review: 11-Sep-2024
- 7. Review Analysis
- i) Amendment to be incorporated, if any:
- ii) Status of standard(s), if any from which assistance had been drawn in the formulation of this IS.

Standard (No. & Title)	Whether the standard has since been revised	Major changes	Action proposed	
IS 15804: 2008	is derived from AIS-	019/2001 Automotive ve	chicles - Windscreen	
wiping and was	hing system for M1	category of vehicles.		
AIS-019/2001 was formulated taking reference from EU directive 78/318/EE				
		been replaced by 10		
subsequently by 535/2021/EEC. However subject technical requirements for				
		C and 535/2021/EEC rei		
Since the EU directive is a renowned regulation which is already implemented				
and referred by many other countries, it is requested to consider alignment of IS				
		nents of latest EU directi		

iii) Status of standards referred in the IS

Referred standards (No. & Title)	IS No. of this standards since revised	Changes that are of affecting the standard under review	Action proposed
However, CMV also been reaffin	R refers to latest IS 14 med in 2020. ence can be updated to	icles — Types —Termi 4272 :2011 for terminol o IS 14272 :2011 Autor	ogies, which has

iv) Any other standards available related to the subject & scope of the standard being reviewed (International/regional/other national/association/consortia, etc or of new or revision of existing Indian Standard)

Standard (No. & Title)	Provisions that could be relevant while reviewing	Action proposed
(110. @ 11110)	the IS	
1008/2010/EEC : systems of certain	Type-approval requirements for w	indscreen wiper and washer
-	otive Vehicles - Wind Screen Wip	ing and Washing System for
M1 Category of v	rehicles	
ISO 9619 : 1992	Passenger cars — Windscreen wi	ping systems — Test method

v) Technical comments on the standard received, if any

Source	Clause of IS	Comment	Action proposed
Comments f	om M/s. MSIL		
1. IS-15804	:2008 was formulated f	from AIS-019:2001 (J	Derived from
78/318/E	EC). 78/318/EEC migr	ated to 535/2021/EEC	С.
2. MSIL ev	aluated the Harmonizat	ion prospectives of IS	S-15804:2008 with
535/2023	/EEC. Detailed Study i	s enclosed as Annex	1.
3. MSIL op	ines that IS-15804:2008	8 can be aligned with	535/2021/EEC,
However	, as India environmenta	al conditions are diffe	rent from EU, therefore
Tempera	ture (testing & ambient) requirements to be r	retained as per current IS-
15804:20	008.		

vi) Information available on technical developments that have taken place (on product/processes/practices/use or application/testing/input materials, etc)

Source Development	Relevant clause of the IS under review that is likely to be impacted (Clause & IS No.)	Action proposed
--------------------	---	-----------------

vii) Issues arising out of changes in any related IS or due to formulation of new Indian Standard

Related IS and its Title (revised or new)	Provision in the IS under review that would be impacted & the clause no. or addition of new clause/provision	Changes that may be necessary in the Standards under review	Action proposed
-		-	-

viii) Any consequential changes to be considered in other IS

Related IS to get impacted	Requirements to be impacted

Information Classification : Public

- **8.** Any other observation: CMVR (Central Motor Vehicle Rules) refers IS-15804:2008 as mandatory requirements for M1 category. Therefore, a separate notification is required with suitable lead-time is required for updated IS implementation.
- **9. Recommendations:** It is recommended that IS 15804:2008 may be revised to align with EU Regulation 535/2021/EEC except for Temperature (testing & ambient) requirements which can be retained as in current IS 15804:2008 factoring EU and Indian Environmental conditions are different.

As IS 15804:2008 is already notified in CMVR, Therefore BIS shall ensure concurrent running of both the versions of IS-15804 till the time revised standards is enforced via CMVR change.

Attachment 2: Shared via mail dated 13.9.2024

ANNEXURE 9(Item 6.4)

REVIEW OF INDIAN STANDARDS PUBLISHED PRIOR TO YEAR 2000

Sr No	IS NO	Title		
1.	<u>IS 1063 : 1997</u>	Automotive vehicles - Ml4 x 1 25 spark plugswith flat seating andtheir cylinder head housing - Specification Second Revision		
2.	<u>IS 1606 : 1979</u>	Specification for automobile lamps SecondRevision		
3.	<u>IS 1884 : 1993</u>	Automotive vehicles - Electric horns -Specification Third Revision		
4.	<u>IS 2081 : 1998</u>	Automotive vehicles - Taper terminal cable connectors for batteries -Specification Second Revision		
5.	<u>IS 2325 : 1981</u>	Specification for ignition coils for battery - Coilignition systems forautomobiles First Revision		
б.	<u>IS 4050 : 1976</u>	Methods of tests for horn switches forautomobiles First Revision		
7.	<u>IS 4060 : 1994</u>	Automotive vehicles - Flashers for directionindicators - SpecificationSecond Revision		
8.	<u>IS 4061 : 1967</u>	Specification for headlight switches forautomobiles		
9.	<u>IS 4063 : 1982</u>	Specification for fuse box for automobiles FirstRevision		
10.	<u>IS 4086 : 1983</u>	Specification for distributors for spark ignitionengines First Revision		
11.	<u>IS 4362 : 1979</u>	Specification for number plate lighting devices for automobiles FirstRevision		
12.	<u>IS 4373 : 1967</u>	Specification for hydraulically operated stoplight switches forautomobiles		
13.	<u>IS 4815 : 1982</u>	Specification for self - Cancelling directionindicator switches forautomobiles First Revision		
14.	<u>IS 5545 : 1977</u>	Specification for fog lights for automobiles FirstRevision		
15.	<u>IS 5546 : 1981</u>	Specification for distribution caps and rotor armsfor automobiles FirstRevision		
16.	<u>IS 7471 : 1974</u>	Recommendation for polarity of earth connections and marking of electrical equipment for automobiles		
17.	<u>IS 7827 (Part 1) : 1975</u>	Specification for electrical wind screen wipersPart 1 wiper system		
18.	<u>IS 7827 (Part 2) : 1975</u>	Specification for electrical wind screen wipersPart 2 wiper motors		
19.	IS 7827 (Part 3/Sec 1):	Automotive vehicles electrical wind screen wipers Part 3 wiper arms and blades section 1		
	<u>1993</u>	wiper arms - Specification		
20.	<u>IS 7827 (Part 3/Sec 2):</u> <u>1985</u>	Specification for electrical wind screen wiperPart 3 wiper arms andblades section 2 wiper blades		
21.	<u>IS 7953 : 1976</u>	Specification for horn rings for automobiles		
22.	<u>IS 7998 : 1986</u>	Specification for contact breakers for two wheelers three wheelers and stationary spark		
	1	ignition engines First Revision		

23.	<u>IS 8339 : 1993</u>	Automotive vehicles - Reflex reflectors -Specification First				
		Revision				
24.	IS 8395 (Part 1): 1977	Specification for cable terminations for automobile wiring Part 1 bladetype connectors Male				
		And Female				
25.	IS 8395 (Part 2) : 1977	Specification for cable terminations for automobile wiring Part 2 bulletand tube connectors				
26.	<u>IS 9264 (Part 1) : 1979</u>	Specification for interior lighting of motor vehicle Part 1 generalrequirements and				
		recommendations				
27.	<u>IS 9432 : 1980</u>	Specification for ignition switches forautomobiles				
28.	<u>IS 9433 : 1980</u>	Specification for piano key type switches for usein automobiles				
29.	<u>IS 9521 : 1980</u>	Specification for push - Button type switches for automotive vehicles				
30.	<u>IS 10250 : 1982</u>					
50.	10 10200 . 1902	Specification for severities for environmentaltests for automotiveelectrical equipment				
31.	<u>IS 11098 : 1992</u>	Automotive vehicles - Steering column mountedcombination switches -Specification First				
		Revision				
32.	<u>IS 13226 : 1991</u>	Automotive vehicles - Resistances in startermotorcircuits - Methodsof measurement				
33.	<u>IS 13313 : 1991</u>	Automotive vehicles - Electrical wiring - Colourcoding				
34.	<u>IS 13509 : 1992</u>	Automotive vehicles - Towing vehicles - Mounting of electrical connections on rear				
		crossmembers				
35.	<u>IS 13654 : 1993</u>	Automotive vehicles - Instrument systems - Electricalspeedometer				
		performancerequirements				
36.	<u>IS 13931 (Part 1) :1993</u>	Automotive vehicles - Stoplight switches Part 1specification				
37.	IS 13931 (Part 2):1993	Automotive vehicles - stoplight switches Part 2methods of test				
38.	<u>IS 14141 : 1994</u>	Automotive vehicles - Electrical windshieldwashing systems - Performance				
		requiremeNts				
39.	<u>IS 14221 : 1995</u>	Automotive vehicles retro - Reflective sheets andtapes - Specification				
40.	<u>IS 14380 : 1996</u>	Automotive vehicles - Ignition coils for magnetoignition systems -Specification				
41.	<u>IS 14381 : 1996</u>	Automotive vehicles - Electrical circuits -Recommended graphicalsymbols				

Annexure 10

<u>(Item 8.2)</u>

List of Working Groups/ panel

ISO/TC 22 — Road vehicles

Reference	Title	Remarks
ISO/ TC 22/ AG 2	Automated driving coordination group (ADCG)	
ISO/TC 22/JWG 2	Joint ISO/TC 22 - ISO/TC 204: Governance	
ISO/ TC 22/ SAG	Strategic advisory group	
ISO/ TC 22/ WG 17	Code VIN – Code WMI	
ISO/ TC 22/ WG 18	Exterior protection	

ISO/ TC 22/ SC 32 — Electrical and electronic components and general system aspects

Reference	Title	Remarks
ISO/TC 22/SC 32/JWG 15	Joint ISO/TC 22/SC 32 - IEC/SC 32B WG : Fuses and circuit breakers	
ISO/ TC 22/ SC 32/ WG 1	Ignition Equipment	
ISO/ TC 22/ SC 32/ WG 2	Environmental conditions	
ISO/ TC 22/ SC 32/ WG 3	Electromagnetic compatibility	
ISO/ TC 22/ SC 32/ WG 4	Automotive electrical cables	
ISO/ TC 22/ SC 32/ WG 5	Fuses and circuit breakers	
ISO/ TC 22/ SC 32/ WG 6	On-board electrical connections	
ISO/ TC 22/ SC 32/ WG 8	Functional safety	
ISO/ TC 22/ SC 32/ WG 9	Electrical connections between towing and towed vehicles	

ISO/ TC 22/ SC 32/ WG 10	Optical components - Test methods and requirements	
ISO/ TC 22/ SC 32/ WG 11	Cybersecurity	
ISO/ TC 22/ SC 32/ WG 12	Software update	
ISO/ TC 22/ SC 32/ WG 13	Safety for driving automation systems	
ISO/ TC 22/ SC 32/ WG 14	Safety and Artificial Intelligence	
ISO/TC 22/SC 32/JWG 15	Joint ISO/TC 22/SC 32 - IEC/SC 32B WG : Fuses and circuit breakers	
ISO/TC 22/SC 32/WG 16	Automotive perception sensors	
ISO/IEC JTC 1/SC 27/JWG 6	Joint ISO/IEC JTC1/SC 27 - ISO/TC 22/SC 32 WG: Cybersecurity requirements and evaluation activities for connected vehicle devices	Joint working groups under the responsibility of another committee

ISO/ TC 22/ SC 35 — Lighting and visibility

Reference	Title	Remarks
ISO/ TC 22/ SC 35/ WG 1	Lighting and light - Signalling	
ISO/ TC 22/ SC 35/ WG 2	Safety glazing	
ISO/ TC 22/ SC 35/ WG 3	Visibility	

ANNEXURE 11

(item 8.4.2)

PANEL 5 MEETING MINUTES

<KEY DISCUSSION>

Background, Scope and study approach for Panel 5 has discussed. Please refer attached presentation. Out of 29 standards, 12 have been identified under the TED 11 scope and have been assigned to panel members for review (3 standards per member).

The description for Category C has been revised based on the panel discussion.

<NEXT ACTION>

Members to provide their feedback on the standards identified within the TED 11 scope and those identified under other TED scopes.(Confirm Column G in Excel sheet) à Target : Before next panel meeting in 2 weeks.

For the standards assigned to each panel members, Members to study the scope and identify any existing standards (IS/AIS) on the same subject (Fill Column H in excel sheet, if any) à Target : Before next panel meeting in 2 weeks.

August Dubey (@ted11@bis.gov.in) to share relevant ISO standards listed in attached excel to initiate the study.

Once standards are shared by TED 11, Members to study the standard for categorize under specified categories (A,B,C) à Timeline for completion will be discussed and decided in next panel meeting.

@varun2.sharma@heromotocorp.com, 3 standards related to lighting have been allocated to HeroMoto Corp. Please confirm if this is OK and provide feedback, if any.

Presentation:

TED 11 Panel 5 – Review of ISO TC 22 SC 35 Standards

In 31st TED 11 meeting, committee deliberated and decided to constitute panel 5 to review ISO standards under ISO TC 22 SC 35 (Lighting and Visibility).

Panel was formed under convenorship of Renault, constituting experts from ARAI, MSIL, Hero MotoCorp.

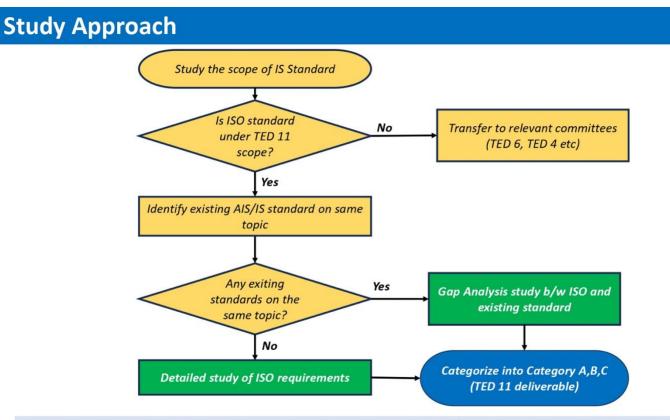
Panel 5 Deliverables

Reviewing the ISO standards under ISO TC 22 SC 35 and segregating them in following categories:

Category	Description
Category A	ISO Standards which can be directly adopted as Indian Standards without any change
Category B	ISO standards which can be modified technically as per our country's needs and then adopted as Indian Standards
Category C	ISO Standards which are not at all suitable for our country needs and may not be adopted at all.

1st panel meeting scheduled to initiate the study, discuss and decide study approach and timeline for completion of activities

Identify the standards under TED 11 scope


ISO TC 22 SC 35 – Lighting and Visibility

• Scope : Visibility and Conspicuity; Lighting and light-signalling and safety glazing materials.

TED Committees who are participating in ISO TC 22 SC 35 & Their Scope :

Sectional Committee		Scope		
TED 04	Automotive Braking Systems, Vehicle Testing, Steering and performance Evaluation	Standardization of automotive braking systems, steering systems and their components, testing of vehicles as a whole for performance evaluation and road worthiness		
TED 06	Automotive Body, Chassis and Accessories	Standardization of chassis assembly, aerodynamics and ergonomic aspects of vehicles and the body, body fittings, seats, vehicle accessories and garage equipment etc		
TED 11	Automotive Electrical Equipment and Instruments	Standardization relating to electrical and optical equipment, instruments and their related components including electronics for automotive vehicles		

As the 1st step, we need to identify the ISO standards which comes under TED 11 committee Scope

TED 11 Member secretary will share the ISO standards for detailed study on these documents.

Categorization – Proposal – For discussion

Category	Description
Category A ISO Standards which can be directly adopted as Indian Standards with	
Category B	ISO standards which can be modified technically as per our country's needs and then adopted as Indian Standards
Category C	ISO Standards which are not at all suitable for our country needs or standards already exists on same subject and may not be adopted at all.

Panel agreed this change in description for category C

Standard	Title	Subject	Responsibility	TED 11 Subject?
ISO 4148:2004	Road vehicles — Special warning lamps — Dimensions	Lighting	ARAI	Yes
ISO/TS 5385:2022	Road vehicles — Anti-fog coating for exterior lighting devices — Specification	Lighting	ARAI	Yes
ISO 10604:1993	Road vehicles — Measurement equipment for orientation of headlamp luminous beams	Lighting	ARAI	Yes
ISO 6797:1982	Road vehicles — Motor vehicles — Production conformity requirements for flasher units	Lighting	HMCL - TBD	Yes
ISO 7591:1982	Road vehicles — Retro-reflective registration plates for motor vehicles and trailers — Specification	Lighting	HMCL - TBD	Yes
ISO 4082:1981	Road vehicles — Motor vehicles — Flasher units	Lighting	HMCL - TBD	Yes
ISO 9259:1991 ISO 9259:1991/Amd 1:2001	Passenger cars — Windscreen wiper systems — Wiper arm-to-blade connections	Windscreen Wiping & Washing	MSIL	Yes
ISO 9619:1992 ISO 9619:1992/Amd 1:2002	Passenger cars — Windscreen wiping systems — Test method	Windscreen Wiping & Washing	MSIL	Yes
ISO 3469:1989 ISO 3469:1989/Amd 1:2006	Passenger cars — Windscreen washing systems — Test methods	Windscreen Wiping & Washing	MSIL	Yes
ISO 9258:1989	Passenger cars — Wiper systems — Wiper blade length	Windscreen Wiping & Washing	RENAULT	Yes
ISO 9704:1990	Passenger cars — Wiper systems — Shaft ends and arm-holes	Windscreen Wiping & Washing	RENAULT	Yes
ISO 6255:1997	Passenger cars — Rear-window washing and wiping systems — Test methods	Windscreen Wiping & Washing	RENAULT	Yes
ISO 3536:2016	Road vehicles — Safety glazing materials — Vocabulary	Safety Glazing		No (TED 6)
ISO 3537:2015	Road vehicles — Safety glazing materials — Mechanical tests	Safety Glazing		No (TED 6)
ISO 3538:1997	Road vehicles — Safety glazing materials — Test methods for optical properties	Safety Glazing		No (TED 6)
ISO 3917:2016	Road vehicles — Safety glazing materials — Test methods for resistance to radiation, high temperature, humidity, fire and simulated weathering	Safety Glazing		No (TED 6)
ISO 17449:2015	Road vehicles — Safety glazing materials — Test methods for properties of electrically heated glazing	Safety Glazing		No (TED 6)

ISO 5898:1997	Passenger cars — Rear-window defrosting system — Test method	Defrost & Demist	TBD
ISO 3468:2014	Passenger cars — Windscreen defrosting and demisting systems — Test method	Defrost & Demist	 TBD
ISO/TS 21957:2023	Road vehicles — Visibility — Specifications and test procedures for head-up displays (HUD)	Forward Vision	No (TED 6)
ISO 7397-2:1993	Passenger cars — Verification of driver's direct field of view — Part 2: Test method	Forward Vision	No (TED 6)
ISO 7397-1:1993	Passenger cars — Verification of driver's direct field of view — Part 1: Vehicle positioning for static measurement	Forward Vision	No (TED 6)
ISO 4513:2022	Road vehicles — Visibility — Method for establishment of eyellipses for driver's eye location	Forward Vision	No (TED 6)
ISO 16505:2019 ISO 16505:2019/Amd 1:2021	Road vehicles — Ergonomic and performance aspects of Camera Monitor Systems — Requirements and test procedures	Indirect Vision	No (TED 6)
ISO 5740:1982	Road vehicles — Rear view mirrors — Test method for determining reflectance	Indirect Vision	No (TED 6)
ISO 5685:2022	Road vehicles — Testing the abrasion resistance of automotive glazing with the windscreen wiper test	Safety Glazing	No (TED 6)
ISO 23013:2016	Road vehicles — Determination of resistance to forced entry of security glass constructions used in vehicle glazing — Test of glazing systems	Safety Glazing	No (TED 6)
ISO 15082:2016	Road vehicles — Tests for rigid plastic safety glazing materials	Safety Glazing	No (TED 6)
ISO 13837:2021	Road vehicles — Safety glazing materials — Method for the determination of solar transmittance	Safety Glazing	No (TED 6)

ANNEXURE 12

(item 8.7)

GUIDELINE RECEVIED FROM PNC DEPARTMENT) FOR ADOPTION OF ISO/IEC STANDARDS AND DESIGNATION OF EXPERTS FOR ISO/IEC PROJECTS (Reference: PNC09/20/2024-PNC-BIS)

Guidelines for strengthening the Standardisation Ecosystem in the country:

ADOPTION OF ISO/IEC STANDARDS

 $1.\ \mbox{Excessive}$ focus on adoption of ISO/IEC standards has two negative implications

- a) It hinders the creation of original work and the development of new indigenous standards.
- b) Fosters the tendency to take rather than make a standard

2. Therefore, unless a Wide Circulation Draft has already been issued and a revision or amendment is required due to changes in the ISO/IEC standard, no ISO/IEC standards or standards from other Standards Development Organizations shall be adopted without prior approval from the DG henceforth.

3. The proposal for taking up the adoption of a standard must elaborate the advantages and relevance of the adoption in the Indian context.

DESIGNATION OF EXPERTS FOR ISO/IEC PROJECTS

1. Focus will now be on participating in the making of ISO/IEC standards on the basis of the Level of Interest established in respect of a NWIP or draft standard.

2. The Member Secretary, in consultation with the Chair of the Sectional Committee and the Head of Department, and if necessary, with the entire Sectional Committee, shall determine and specify the Level of Interest for each NWIP or draft standard received from ISO/IEC in the IRD Portal.

3. The next step is to designate one or two members of the Sectional Committee to represent BIS for standards categorized as Level H (High) and M (Medium). These designated experts will act as face and voice of BIS for the project at the ISO/IEC level.

4. Experts assigned to H-level projects shall be entitled to attend TC/WG meetings with the approval of the Head of the Standardisation Department, and there shall not be the need to take the matter to the Screening Committee.

5. The designated expert shall be responsible for providing detailed feedback on drafts and documents from ISO/IEC, assisting the Sectional Committee in developing the rationale for proposing NWIPs, finalizing proposals for leadership positions and secretariats and briefing the Sectional Committee on discussions at the ISO/IEC level.

 ${\bf 6}.$ Representation of BIS at meetings for M-level projects shall be decided by the Screening Committee.

ANNEXURE 13

REVIEW ANALYSIS OF INDIAN STANDARD IS 1606 - SUBMITTED BY ACMA

- 1. Sectional Committee No. & Title: TED11, Automotive Electrical Equipment And Instruments Sectional Committee
- 2. IS No: IS 2077 : 2014
- 3. Title: Automotive Vehicles Electric Relays Specification
- 4. Date of review: 7th September 2024
- 5. Review Analysis
- i) Status of standard(s), if any from which assistance had been drawn in the formulation of this IS.

Standard	Whether the	Major changes	Action proposed
(No. & Title)	standard has		
	since been		
	revised		
1) IS4905 :	1)IS4905 : 2015,	IS4905:2015:- revised	The IS numbers
1968 Methods	reaffirmed 2020	to harmonize with	IS4905:1968 to be
for random	S6236 : 2020	ISO 24153 : 2009 by	replaced by
sampling	S10250 : 1982,	adoption under dual	IS4905:2015,
IS6236 : 1971	Amd 1 1984,	numbering system	IS6236:1971 to be
Specification	Amd 2 1996,	2) IS6236:2020:-	replaced by
for direct	reaffirmed in	revised	IS6236:2020 in
recording	2021	align with the latest	clause 2, page 1
electrical		version of IEC 258 :	
measuring		1968 + Amend 1	
instruments		(1976). 3) IS10250:	
IS10250 : 1982		nd 1, 1984: Details of	
Specification		Impact or Shock Test	
for severities		and Simulated	
for		Radiation Test added.	
environmental		nd 2 1996: IS9000	
tests for		(Part8) specified	
automotive		inplace of IS 2106	
ctrical		(part XVI) for	
equipment		Vibration test; IS9000	
		(part XI :1983)	
		specified for	
		corrosion resistance	
		test inplace of	
		Annexture B; IS9000	
		(Part 15/Sec9)	
		specified inplace of	
		IS 2106 (part X) for	
		Sealing Test	

ii) Status of standards referred in the IS

ferred standards o. & Title)	No. of this standards since revised	anges that are of affecting the standard under review	tion proposed
given in item i) above			

 Any other standards available related to the subject & scope of the standard being reviewed (International/regional/other national/association/consortia, etc. or of new or revision of existing Indian Standard)

indard o. & Title)	ovisions that could be relevant while reviewing the IS	Action proposed
1		

iv) Technical comments on the standard received, if any

urce	ause of IS	mment	tion proposed
be reviewed after the review report circulation to members			

v) Information available on technical developments that have taken place (on product/processes/practices/use or application/testing/input materials, etc)

urce	velopment	levant clause of the IS under review that is likely to be impacted ause & IS No.)	tion proposed
be reviewed after the review report circulation to members			

vi) Issues arising out of changes in any related IS or due to formulation of new Indian Standard

lated IS and its Title vised or new)	ovision in the IS under review that would be impacted & the clause no. or addition of new clause/provision	anges that may be necessary in the Standards under review	tion proposed
1			

vii) Any consequential changes to be considered in other IS

lated IS to get impacted	quirements to be impacted	
1		

1) Any other observation: Nil

2) Recommendations:

This IS, IS 2077 : Automotive vehicles - Electric relays - Specification (Third Revision) (reaffirmed in 2019) can be reaffirmed (with IS number updation in clause 2 of page 1 as listed in the table i) of item 5

Prepared by: Sanjay Tank – ACMA Date: 24.09.2024