Doc No: LITD	17(1	19143)
--------------	------	--------

For I	BIS I	Use	only	
-------	-------	-----	------	--

1 2	
3	
4	
5	इंटरनेट ऑफ थिंग्स सुरक्षा और गोपनीयता
6	: आकलन और मूल्यांकन
7	
8	Internet of Things Security & Privacy
9	: Assessment and Evaluation
10	
11	
12	X >
13	
14	
15	
16 17	ICS 35.030
	ICS 33.030
18	
19	
20	
21	© BIS 2024
22	BUREAU OF INDIAN STANDARDS
23	MANAKBHAVAN, 9 BAHADURSHAHZAFAR MARG
24	NEW DELHI 110002
25	September 2024 Price Group
26 27	

28 29 Information System Security and Privacy Sectional Committee, LITD 17 (Formal Clauses to be added later on) 30 31 32 **FOREWORD** This Indian Standard may be adopted by the Bureau of Indian Standards, after the draft 33 finalized by Information System Security and Privacy Sectional Committee may be approved 34 by the Electronics and Information Technology Divisional Council. 35 36 This document is applicable and useful to various stakeholders, including: 37 38 - IoT device manufacturers, seeking to enhance the security and privacy features of their 39 40 products. - System integrators and solution architects, tasked with creating secure IoT ecosystems. 41 - IT and security professionals responsible for safeguarding IoT deployments. 42 - Regulators and compliance officers overseeing adherence to IoT security and privacy 43 standards. 44 45 46 47

49	Contents	
50	Introduction	4
51	1. Scope	5
52	2. References	5
53	3. Acronyms	5
54	4. Terms and Definitions	5
55	5. Risk Assessment and Threat Modelling	6
56	5.1 General	
57	1. Intended Outcomes:	6
58	2. Stakeholder Needs and Expectations:	6
59	3. Device Constraints:	6
60	5.2 Risks	7
61	5.3 Prioritizing Security and Privacy Risks	10
62	6. IoT Device Security & Privacy Verification Checkpoints	11
63		
64 65		
U.S		

Introduction

66 67 68

69 70

71

72 73 IoT has rapidly evolved, embedding itself in our daily lives and various industries, presenting a pressing need to safeguard the confidentiality, integrity, and privacy of data collected and transmitted by these devices. The proliferation of Internet of Things (IoT) devices has ushered in a new era of convenience and efficiency, yet this progress is accompanied by a growing concern for security and privacy. As more devices connect to the internet, they become potential targets for cyberattacks, data breaches, and privacy violations.

- This document aims to address these challenges by offering guidance on securing IoT devices and preserving user privacy, thereby ensuring the continued growth and trustworthiness of the IoT landscape.
- The assessment of Internet of Things is a way to identify the mistakes in application logic, configurations, implementation and deployment that jeopardize the security of IoT devices, networks, servers, web interfaces, mobile apps or data of IoT Ecosystem.
- The intent of this document is to provide the approach and methodology for assessment and evaluation of IoT Device and to list out a detailed compliance checklist.
- This document provides comprehensive guidance on establishing robust security and privacy measures for IoT (Internet of Things) devices.

84 85

This guidance specifically addresses the critical aspects of IoT device security and privacy. It aims to equip IoT device manufacturers, system integrators, and other stakeholders with the knowledge and tools required to:

87 88 89

90

86

- Design and produce IoT devices with robust security features that mitigate vulnerabilities and resist unauthorized access.
- Implement privacy-preserving mechanisms that ensure the responsible handling of sensitive
 user data.
- 93 Adhere to established IoT security and privacy standards and regulations.
- Foster a culture of continuous improvement to adapt to emerging threats and evolving
 technologies.

For BIS Use only

97

98

1. Scope

- 99 This document provides the approach, and methodology for the assessment and evaluation to
- verify the implementation of controls for Internet of Things (IoT) Devices. This document
- refers to the controls as specified in IS/ISO/IEC 27400 and IS/ISO/IEC 27402 for IoT Devices
- and provides some additional controls for IoT Devices.

103 2. References

- The standards given below contains provisions, which through reference in this text constitute
- provisions of this standard. At the time of publication, the editions indicated were valid. All
- 106 standards are subject to revision, and parties to agreement based on this standard are
- encouraged to investigate the possibility of applying the most recent editions of the standards
- 108 listed as follows:

109

110 IS/ISO/IEC 27400:2022 - Cybersecurity — IoT security and privacy — Guidelines

111112

- 2 IS/ISO/IEC 27402:2023 Cybersecurity IoT security and privacy Device baseline
- 113 requirements

114

- Open Web Application Security Project (OWASP) Application Security Verification Standard
- 116 (ASVS) Version 4.0.3

117 3. Acronyms

This clause provides a comprehensive list of acronyms used throughout the document.

119

- 120 ASLR Address Space Layout Randomization
- 121 ASVS Application Security Verification Standard
- 122 CPU Central Processing Unit
- 123 DEP Data Execution Prevention
- 124 IoT Internet of Things
- 125 JTAG Joint Test Action Group
- 126 OWASP Open Web Application Security Project
- 127 PII Personally Identifiable Information
- 128 PCBA Printed circuit board assembly
- 129 SoC System on Chip
- 130 SE Secure Element
- 131 SWD Serial Wire Debug
- Trusted Platform Module
- Trusted Execution Environment
- 134 UART Universal Asynchronous Receiver-Transmitter
- 135 USB Universal Serial Bus

136

137

4. Terms and Definitions

- For the purpose of this document, the terms and definitions given in IS/ISO/IEC 27000 and
- 139 IS/ISO/IEC 27400 apply.

5. Risk Assessment and Threat Modelling

5.1 General

143 In the context of IoT device security and privacy, it is necessary that IoT devices undergo a

- 144 comprehensive risk assessment process at the device level, which is an integral part of a broader
- system-level risk assessment. This assessment should encompass several key considerations,
- 146 like:

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

141

- 1. Intended Outcomes: The risk assessment process shall take into account the intended outcomes specific to the intended use case of the IoT device.
- 2. Stakeholder Needs and Expectations: The risk assessment process should also consider the needs and expectations of all relevant stakeholders, including those who are part of networks to which the IoT device connects. This assessment should address both physical and logical undesired effects.
- 3. Device Constraints: Recognizing that IoT devices often operate under constraints such as limited battery life, minimal memory, or constrained processing capabilities, these limitations should inform the risk treatment process.

The following guidelines and processes should be adhered to while conducting the risk assessment:

- a) **Product Differentiation:** Determine if separate risk assessment and treatment processes are warranted for different IoT devices.
- b) Risk Treatment Options: Select appropriate risk treatment options based on the outcomes of the risk assessment.
- c) Control Implementation: Identify all necessary controls required to implement the chosen risk treatment options.
- d) **Security and Privacy Features Identification:** Identify all security and privacy features associated with the IoT device that stem from the identified control.
- e) **Feature Verification:** Compare the identified features to ensure that none are omitted inadvertently.
- f) **Statement of Applicability:** Create a Statement of Applicability that includes the essential features and provides justifications for their inclusion or exclusion.
- g) Adherence to Other Standards: If other standards related to device requirements are applicable, ensure compliance with the requirements of those standards.
- h) **Risk Treatment Plan:** Develop a comprehensive risk treatment plan that outlines the steps and actions to mitigate identified risks.
- j) **Risk Owner Communication:** Communicate the risk treatment plan to the designated risk owner, along with any residual risks. Obtain the risk owner's approval of the plan and their acknowledgment of any remaining risks, where applicable.
- Furthermore, IoT devices shall implement the identified necessary features and controls outlined in the Statement of Applicability. This implementation should extend to all requisite features and controls.
- Documentation for the entire risk assessment process, security and privacy features, omitted
- 181 requirements, vulnerability disclosure processes, and security support policy shall remain
- available and accessible throughout the supported lifetime of IoT devices.

5.2 Risks

The security and privacy of IoT devices are susceptible to a variety of threats and vulnerabilities. A comprehensive understanding of these risks is essential for effective risk management. Table 1 outlines some of the risks associated with IoT device security and privacy:

188

183

184

185

186 187

Table 1: Risks

	Table 1: Risks
Sl.	Risk
No.	
R1	Failure to define, approve, and communicate an IoT security policy may result in
	inadequate measures to mitigate security threats, leaving devices vulnerable to
	exploitation.
R2	Undefined roles and responsibilities for IoT security may lead to ambiguity in
	accountability, potentially resulting in overlooked security measures and
	increased susceptibility to breaches.
R3	Incomplete identification of assets during IoT device development may overlook
	critical components, leading to inadequate protection of sensitive data and assets.
R4	Absence of mechanisms to apply insights from past security incidents may
	perpetuate vulnerabilities, increasing the likelihood and impact of future
	breaches.
R5	Unprotected application layer debugging interfaces pose a risk of unauthorized
	access and exploitation, compromising the integrity and confidentiality of the
	device.
R6	Failure to enable memory protection controls exposes the IoT device to memory-
	based attacks, jeopardizing the confidentiality and integrity of stored data.
R7	Active on-chip debugging interfaces pose a threat of unauthorized access and
	manipulation, potentially leading to exploitation and compromise of device
	functionality.
R8	Lack of implementation of trusted execution may allow unauthorized access to
	critical functions and data, compromising the confidentiality and integrity of the
	device.
R9	Insecure storage of sensitive data and cryptographic assets increases the risk of
	unauthorized access and compromise, potentially leading to data breaches and
	exploitation.
R10	Inadequate random number generation may lead to predictable cryptographic
	keys and compromise the confidentiality and integrity of communication
	channels.
R11	Exposure of sensitive traces on the printed circuit board increases the risk of
	physical tampering and unauthorized access, potentially compromising device
	security.
R12	Unencrypted inter-chip communication exposes sensitive data to interception and
	manipulation, increasing the risk of data breaches and unauthorized access.
R13	Lack of code signing and validation exposes the device to the risk of executing
	malicious or tampered firmware, compromising device integrity and
	functionality.
R14	Failure to overwrite sensitive data in memory increases the risk of data leakage
	and unauthorized access, potentially leading to exposure of sensitive information.
R15	Inadequate isolation between firmware apps may facilitate unauthorized access
	and compromise of sensitive data and device functionality.

R16	Failure to configure secure compiler flags exposes firmware to various
	exploitation techniques, compromising device security and integrity.
R17	Lack of code protection in microcontrollers increases the risk of unauthorized
	access and manipulation of firmware, compromising device functionality and
	security.
R18	Use of banned C functions poses a risk of vulnerabilities and exploitation,
	potentially compromising device security and integrity.
R19	Incomplete documentation of third-party components and vulnerabilities
	increases the risk of exploitation and compromise through known vulnerabilities.
R20	Failure to review code for hardcoded credentials exposes devices to unauthorized
	access and exploitation, compromising device security.
R21	Inactive Intellectual Property protection technologies may lead to unauthorized
1021	reproduction and exploitation of device functionality, compromising intellectual
	property rights.
R22	Lack of support for disabling debugging interfaces in microcontrollers increases
IX22	the risk of unauthorized access and manipulation, compromising device security.
R23	Inadequate protection from physical attacks increases the risk of reverse
1,723	
D24	engineering and exploitation, compromising device security and confidentiality.
R24	Insufficient integration of security measures may result in vulnerabilities that
D25	could lead to malfunction or compromise of the device, posing safety risks.
R25	Failure to protect data-in-transit exposes sensitive information to interception and
D.0.6	manipulation, compromising data confidentiality and integrity.
R26	Lack of validation of server connections exposes the device to the risk of
	connecting to malicious servers, compromising data confidentiality and integrity.
R27	Failure to mutually authenticate wireless communications increases the risk of
	unauthorized access and interception, compromising data confidentiality and
	integrity.
R28	Unencrypted wireless communications expose sensitive information to
	interception and manipulation, compromising data confidentiality and integrity.
R29	Failure to pin digital signatures to trusted servers exposes devices to the risk of
	connecting to malicious servers, compromising data confidentiality and integrity.
R30	Inadequate monitoring and logging of device states, events, and network traffic
	hinder detection and response to security incidents, increasing the risk of
	exploitation and compromise.
R31	Insecure storage of logs increases the risk of unauthorized access and
	manipulation, potentially compromising the integrity and confidentiality of
	logged information.
R32	Absence of tamper resistance and detection features increases the risk of physical
	tampering and unauthorized access, compromising device security.
R33	Delivery of IoT devices with insecure settings and configurations increases the
	risk of exploitation and compromise, jeopardizing device security.
R34	Unauthorized modification of IoT device configurations poses a risk of
	exploitation and compromise, compromising device security and functionality.
R35	Use of common values for critical security parameters increases the risk of
	exploitation and compromise, compromising device security and confidentiality.
R36	Absence of security controls against firmware reverse engineering increases the
10.50	risk of unauthorized access and manipulation, compromising device security and
	integrity.
	megney.

R37	Failure to implement authentication mechanisms increases the risk of
	unauthorized access to IoT systems and services, compromising data
	confidentiality and integrity.
R38	Inadequate protection of stored and transmitted data increases the risk of
	unauthorized access and manipulation, compromising data confidentiality and
	integrity.
R39	Vulnerability to OS Command Injection poses a risk of unauthorized access and
7.10	manipulation, compromising device security and integrity.
R40	The absence of defined update procedures heightens the risk of unauthorized
D 41	updates and exploitation.
R41	Unauthorized initiation of software updates for IoT devices can lead to
D 40	exploitation of vulnerabilities or implantation of malicious code.
R42	Vulnerability to time-of-check vs time-of-use attacks during updates increases
	the risk of installing malicious or tampered firmware, compromising device
R43	integrity.
K43	Failure to validate firmware upgrade files before installation poses a security risk by potentially allowing the installation of malicious or tampered firmware, while
	neglecting verification of the cryptographic chain of trust during updates
	exacerbates this risk, jeopardizing device integrity and potentially compromising
	user privacy.
R44	Ability to downgrade to old firmware versions increases the risk of exploiting
10.1	known vulnerabilities, compromising device security and functionality.
R45	Inadequate monitoring and reporting of vulnerabilities increases the risk of
	exploitation and compromise, jeopardizing IoT device as well as user security.
R46	Failure to wipe firmware and sensitive data upon tampering or receipt of invalid
	messages increases the risk of unauthorized access and manipulation,
	compromising device security.
R47	Lack of guidance on proper IoT device usage increases the risk of misuse and
	exploitation, compromising device security and functionality.
R48	Inadequate evaluation of supplier security measures increases the risk of
	acquiring insecure IoT device components, jeopardizing overall IoT device
	security.
R49	Insufficient or inaccurate design details can lead to undetected counterfeit
D.50	components or hidden malware, compromising device integrity.
R50	Failure to implement comprehensive threat mitigation can result in the integration
	of counterfeit or tainted components, exposing the device to security vulnerabilities.
R51	Inadequate or outdated malware detection tools increase the risk of undetected
K31	malicious code being integrated into the final product.
R52	Ignoring supply chain risks can lead to the introduction of compromised
K32	components, which can undermine the security and functionality of the IoT
	device.
R53	Unauthorized disclosure of IoT device security information increases the risk of
	exploitation and compromise, jeopardizing device security and confidentiality.
R54	Inadequate removal of data and licensed software prior to disposal or re-use
	increases the risk of unauthorized access and exposure of sensitive information,
	compromising data confidentiality and integrity.

D.5.5	
R55	Absence of a secure function to delete user data increases the risk of unauthorized
	access and exposure of sensitive information, compromising data confidentiality
	and integrity.
R56	Failure to incorporate privacy-enhancing features increases the risk of privacy
	violations and unauthorized access to personal data, compromising user privacy.
R57	Failure to ensure the strictest privacy settings by default increases the risk of
	privacy violations and unauthorized access to personal data, compromising user
	privacy.
R58	Lack of privacy notice detailing the data collection purpose increases the risk of
	unauthorized data collection and misuse, compromising user privacy.
R59	Failure to obtain consent before data collection increases the risk of unauthorized
	data collection and misuse, compromising user privacy.
R60	Failure to address end users' privacy concerns in device design increases the risk
	of privacy violations and unauthorized access to personal data, compromising
	user privacy.
R61	Lack of regular review of privacy controls increases the risk of privacy violations
	and unauthorized access to personal data, compromising user privacy.
R62	Failure to assign unique cryptographic keys and certificates increases the risk of
1102	unauthorized access and impersonation, compromising device privacy and
	security.
R63	Inadequate mapping of device identifiers to specific individuals increases the risk
	of privacy violations and unauthorized access to personal data, compromising
	user privacy.
R64	Failure to enforce authorized access increases the risk of unauthorized access and
	manipulation
R65	Unauthorized data collection risks compromising user privacy and autonomy.
R66	Insufficient authentication may lead to unauthorized privacy preference
100	manipulation.
R67	Lack of secondary verification could result in irreversible harm to IoT users.
R68	Absence of an accountability framework increases the likelihood of data
100	mishandling and privacy breaches, diminishing transparency and accountability
	in data processing practices.
R69	Insecure storage of PII of IoT device owner can result in data theft, identity fraud,
100	and legal consequences.
R70	Poorly managed PII protection increases the risk of unauthorized access and
10/0	disclosure.
R71	Failure to identify, document, and regularly update all relevant legal, statutory,
IX/I	regulatory, and contractual requirements related to IoT device security may result
	in non-compliance, legal penalties, and compromised device security may result
	in non-compliance, legal penalties, and compromised device security.

5.3 Prioritizing Security and Privacy Risks

After identifying potential risks, it's essential to prioritize them based on their impact and likelihood. This prioritization informs resource allocation and risk mitigation efforts.

Factors to consider in prioritizing risks:

1. Impact: Assess the potential consequences of a security or privacy breach. Consider the financial, operational, reputational, and legal ramifications.

For BIS Use only

2. Likelihood: Estimate the likelihood of each risk occurring. Consider historical data,industry trends, and specific contextual factors.

201202

203

205

206

3. Risk Tolerance: Define the organization's risk tolerance level. Some risks may be accepted if they fall within acceptable limits, while others require immediate mitigation.

204

4. Dependencies: Recognize interdependencies among risks. Addressing one risk may mitigate or exacerbate others.

207208

5. Regulatory Compliance: Prioritize risks that have implications for regulatory compliance, as non-compliance can result in legal penalties.

209210

By conducting a thorough risk assessment and prioritizing security and privacy risks, organizations can develop a targeted strategy for implementing security controls and privacy safeguards. This approach ensures that resources are allocated effectively to protect IoT devices against the most significant risks.

215

6. IoT Device Security & Privacy Verification Checkpoints

216

- 217 IoT device security is a critical component of ensuring the overall security and privacy of an
- 218 IoT system. Devices are the frontline defense against potential threats and vulnerabilities. This
- clause provides the IoT device security and privacy verification checkpoints mapped to the
- risks given in table of this document and to the controls as specified in IS/ISO/IEC 27400,
- 221 IS/ISO/IEC 27402 for IoT Devices, additional controls specified in this document and the risks
- identified in clause 5 of this document. These checkpoints are derived from IS/ISO/IEC 27400,
- 223 IS/ISO/IEC 27402 and OWASP ASVS 4.0.3 Appendix C.
- Security Checkpoints for IoT service developer and IoT service provider are given in Table 2.
- Security Checkpoints for IoT user are given in Table 3.
- Privacy checkpoints for IoT service developer and IoT service provider are given in Table 4.
- 227 Privacy checkpoints for IoT user are given in Table 5.

228229

230

Table 2: Security Checkpoints for IoT service developer and IoT service provider

	Control			Associated
Sl. No.	Title	Description	Verification Checkpoint	Risk
1	Policy for IoT security	Control-01: A policy for IoT security should be defined, approved by management, published, communicated to relevant personnel and relevant external parties and reviewed at planned intervals or if significant changes occur.	reviewed at planned intervals or if	R1
2	Organization of IoT security	Control-02: Roles and responsibilities for security of IoT should be defined and allocated.	±	R2
3	Asset management	,	V3.1 Confirm that the IoT device developer has identified all assets	R3

		functions and operations to be protected should be identified.	(Information, IoT devices and systems) to be protected across the entire development process of the IoT device.	
4	Equipment and assets located outside physical secured areas	Control-04: Specific security measures should be applied to IoT equipment and assets which are located or operated outside physical secured areas.	Not Applicable for IoT Device Assessment (Applicable for IoT Ecosystem)	-
5	Secure disposal or re-use of equipment	Control-05: All items of equipment containing storage media should be verified to ensure that any sensitive data and licensed software has been removed or securely overwritten prior to disposal or re-use.	Not Applicable for IoT Device Assessment (Applicable for IoT Ecosystem)	-
6	Learning from security incidents	Control-6: Knowledge gained from analysing and resolving IoT security incidents should be used to reduce the likelihood or impact of future incidents.	V6.1 Ensure that mechanisms are in place to apply knowledge gained from analyzing and resolving IoT device security incidents to reduce the likelihood or impact of future incidents.	R4
7	Secure IoT system engineering principles	Control-7: Principles for engineering secure IoT systems that address designing and implementation of security functions, defence in depth and	disabled or protected by a complex	R5
		hardening of systems and software should be applied to the development of IoT systems.	V7.2 Verify that memory protection controls such as ASLR and DEP are	R6
	- 3 7		V7.3 Verify that on-chip debugging interfaces such as JTAG or SWD are disabled or that available protection mechanism is enabled and configured appropriately.	R7
			V7.4 Verify that trusted execution is implemented and enabled, if available on the device SoC or CPU.	R8
			V7.5 Verify that sensitive data, private keys and certificates are stored securely in a Secure Element, TPM, TEE (Trusted Execution Environment), or protected using strong cryptography.	R9
			V7.6 Verify usage of cryptographically secure pseudorandom number generator on embedded device (e.g., using chip-	R10

			provided random number	
			*	
			generators). V7.7 Verify that sensitive traces are	R11
				KII
			not exposed to outer layers of the	
			printed circuit board.	D12
			V7.8 Verify that inter-chip	R12
			communication is encrypted (e.g.	
			Main board to daughter board	
			communication).	
			V7.9 Verify the device uses code	R13
			signing and validates code before	
			execution.	
			V7.10 Verify that sensitive	R14
			information maintained in memory	
			is overwritten with zeros as soon as	
			it is no longer required.	
			V7.11 Verify that the firmware apps	R15
			utilize kernel containers for isolation	
			between apps.	
			V7.12 Verify that secure compiler	R16
			flags such as -fPIE, -fstack-	
			protector-all, -Wl, -z, noexecstack, -	
			Wl, -z, noexecheap are configured	
		-0	for firmware builds.	
			V7.13 Verify that micro controllers	R17
			are configured with code protection.	
8	Secure	Control-08: Secure	V8.1 Verify that any use of banned C	R18
	development	development environment and	functions are replaced with the	
	environment and	procedures should be applied to	appropriate safe equivalent	
	procedures	the development of IoT	functions.	
		systems.	V8.2 Verify that each firmware	R19
		XV	maintains a software bill of materials	
			cataloguing third-party components,	
			versioning, and published	
			vulnerabilities.	
			V8.3 Verify all code including third-	R20
			party binaries, libraries, frameworks	
			are reviewed for hardcoded	
			credentials (backdoors).	
			V8.4 Verify that any available	R21
			Intellectual Property protection	
			technologies provided by the chip	
			manufacturer are enabled.	
			V8.5 Verify that only micro	R22
			controllers that support disabling	
			debugging interfaces (e.g. JTAG,	
			SWD) are used.	
			V8.6 Verify that only micro	R23
ı			1	
l			controllers that provide substantial	

			protection from de-capping and side channel attacks are used.	
9	Security of IoT systems in support of safety	Control-09: Security principles in support of safety should be applied to the development of IoT systems.	V9.1 Ensure the integration of security measures into IoT device development to maintain safety, including mechanisms to detect and halt erroneous or corrupted control data to prevent malfunctions.	R24
10	Security in	Control-10: An IoT system	V10.1 Verify that the firmware apps protect data-in-transit using transport layer security.	R25
	connecting varied IoT devices	should be designed and implemented to ensure and maintain security in connecting	V10.2 Verify that the firmware apps validate the digital signature of server connections.	R26
		varied IoT devices.	V10.3 Verify that wireless communications are mutually authenticated.	R27
			V10.4 Verify that wireless communications are sent over an encrypted channel.	R28
			V10.5 Verify that the firmware apps pin the digital signature to a trusted server(s).	R29
11	Verification of IoT devices and systems design	Control-11: Design and implementation of IoT devices and IoT systems should be verified.	Not Applicable for IoT Device Assessment (Applicable for IoT Ecosystem)	-
12	Monitoring and logging	Control-12: States, events and network traffic of IoT devices and systems should be monitored and logged.	V12.1 Ensure that states, events, and network traffic of IoT devices are monitored and logged.	R30
13	Protection of logs	Control-13: Logs for IoT devices and systems should be protected from leakage, destruction and unintended	devices are protected from leakage, destruction, and unintended	R31
	Ul, c	alteration.	V13.2 Verify the presence of tamper resistance and/or tamper detection features.	R32
14	Use of suitable networks for the IoT systems	Control-14: Applied network and communication technologies for IoT and systems should meet the needs of communication function, capacity and security, and of function and performance of IoT devices.		-
15	Secure settings and	Control-15: IoT devices and services should be delivered	V15.1 Verify that IoT devices are delivered with secure settings and configurations.	R33

	configurations in delivery of IoT devices and services	with secure settings and configurations.	V15.2 Ensure that only authorized entities can modify the configuration settings of the IoT device if they are modifiable.	R34
	Services		V15.3 Verify that IoT devices ensure that common values for critical security parameters, such as global private keys or standard passwords, are replaced by values that are unique per device or explicitly defined by an appropriate external entity before they are put into operation.	R35
			V15.4 Verify security controls are in place to hinder firmware reverse engineering (e.g., removal of verbose debugging symbols).	R36
16	User and device authentication	Control-16: Authentication function of users and IoT devices for accessing IoT systems and services should be	V16.1 Confirm the implementation and application of authentication mechanisms for IoT devices accessing IoT systems and services.	R37
		implemented and applied.	V16.2 Verify that IoT devices protect stored and transmitted data, including configuration settings, identifying data, user data, event logs, and sensitive security parameters against unauthorized access, modification, and disclosure, while also safeguarding software from unauthorized access and modification, utilizing cryptography for data confidentiality and integrity.	R38
			V16.3 Verify that the application and firmware components are not susceptible to OS Command Injection by invoking shell command wrappers, scripts, or that security controls prevent OS Command Injection.	R39
17	Provision of software and firmware updates	Control-17: Mechanism for updating software and firmware of IoT devices and systems should be designed, implemented and operated.	V17.1 Ensure that the update procedure is defined and includes validation of updates, configuration choices for automatic/manual updates, scheduling options, and notification settings.	R40
			V17.2 Ensure that software updates for IoT devices are securely initiated by authorized entities and that interruptions during updates minimize potential harm.	R41

			V17.3 Verify that the firmware update process is not vulnerable to time-of-check vs time-of-use attacks.	R42
			V17.4 Verify the device uses code signing and validates firmware upgrade files before installing. The update should verify the cryptographic chain of trust with the root of trust.	R43
			V17.5 Verify that the device cannot be downgraded to old versions (antirollback) of valid firmware.	R44
18	Sharing vulnerability information	Control-18: Vulnerabilities of IoT devices, systems and services should be monitored and informed to the IoT users and relevant parties along with associated risks.	V18.1 Ensure that vulnerabilities of IoT devices are actively monitored and reported to IoT users and relevant parties along with associated risks.	R45
19	Security measures adapted to the life cycle of IoT system and services	Control-19: Security measures of the IoT system and service should be adapted to and kept during the stages of the life cycle, including their development, operation, maintenance and destruction.	V19.1 Verify that the device wipes firmware and sensitive data upon detection of tampering or receipt of invalid message.	R46
20	Guidance for IoT users on the proper use of IoT devices and services	Control-20: The IoT users should be provided with guidance on the proper use of IoT devices with risks and undesirable effects of IoT system and service that can be derived from improper use of IoT devices.	V20.1 Verify that IoT users are provided with guidance on the proper use of IoT devices, including risks and potential undesirable effects.	R47
21	Determination of security roles for stakeholders	Control-21: Roles of IoT service developer, IoT service provider and other stakeholders in security of IoT system and service should be determined and agreed among relevant parties.	Not Applicable for IoT Device Assessment (Applicable for IoT Ecosystem)	-
22	Management of vulnerable devices	Control-22: Vulnerable IoT devices should be detected, recorded, and alerts provided to IoT users and administrators of these devices.	Not Applicable for IoT Device Assessment (Applicable for IoT Ecosystem)	-

23	Management of supplier	Control-23: Specifications and supporting obligations of	organization has a system in place to	R48
	relationships in	suppliers for information	evaluate supplier security measures	
	IoT security	security of IoT device and IoT	according to local laws and	
		service should be managed by		
		the acquiring organization	V23.2 Design and architecture	R49
		based on the contracts with		
		suppliers.	to be provided to aid in counterfeit	
			mitigation and malware detection.	7.50
			V23.3 Threat mitigation strategies	R50
			for tainted and counterfeit products	
			shall be implemented as part of	
			product development.	
			V23.4 One or more up-to-date	R51
			malware detection tools shall be	
			deployed as part of the code	
			acceptance and development	
			processes. Malware detection	
			techniques shall be used before final	
			packaging and delivery (e.g.,	
			scanning finished products and	
			components for malware using one	
			or more up-to-date malware	
			detection tools).	D.52
			V23.5 Supply chain risk	R52
			identification, assessment,	
			prioritization, and mitigation shall be conducted.	
24	Secure	Control-24: Information on the	V24.1 Ensure that documentation	R53
	disclosure of	IoT device relevant to security	detailing IoT device security	KJJ
	Information	of IoT services should be	information is present and restrict	
	regarding	documented and disclosed only	disclosure solely to pertinent parties.	
	security of IoT	to the parties that require them.	discressive solely to permient parties.	
	devices	in the parties that require them.		
221				

Table 3: Security Checkpoints for IoT user

232		Table 3: Security Checkp	oints for IoT user	
Sl.		Control	Verification Checkpoint	Associated
No.	Title	Description		Risk
1	Contacts and support service	only choose IoT devices and	Not Applicable for IoT Device Assessment (Applicable for IoT Ecosystem)	-
2	Initial settings of IoT device and service	Control-26: Initial settings of IoT device and service should be applied correctly.	1 1	-

3	Deactivation of unused devices	Control-27: IoT devices should be deactivated and credentials revoked when they are no longer in use.	1.1	-
4	Secure disposal or re-use of IoT device	Control-28: Data and licensed software stored in IoT device should be removed or securely overwritten prior to disposal or re-use.	removed or securely overwritten	R54
		_	V28.2 Verify the IoT device has a secure function allowing only authorized entities to delete relevant user data stored on the device in any memory type.	R55

Table 4: Privacy checkpoints for IoT service developer and IoT service provider

S.no		Controls		Associate
	Title	Description	Verification Checkpoint	d Risk
1	Prevention of privacy invasive events	Control-29: Privacy enhancing capabilities should be built in the IoT devices and IoT services.	V29.1 Audit the IoT device to confirm the incorporation of privacy-enhancing features.	R56
2	IoT privacy by default	Control-30: Stakeholders in an IoT system should ensure that without any IoT user interaction or intervention, the strictest privacy settings apply by default.	V30.1 Ensure that stakeholders of IoT device ensure the strictest privacy settings by default without requiring IoT user interaction or intervention.	R57
3	Provision of privacy notice	Control-31-1: The IoT user should be provided with a privacy notice which states personal data collected by the IoT device and IoT service and purpose of its use. Control-31-2: Consent of the	V31.1.1 Confirm that IoT users are provided with a privacy notice detailing the collection of personal data by IoT devices and the purpose of its use. V31.2.1 Verify that the consent to	R58
		IoT user to the privacy notice should be obtained before collecting the personal data or changing the purpose of use.	privacy notice is obtained from IoT users before data collection by IoT device or changes in use.	
4	Verification of IoT functionality	Control-32: Independent verification of IoT device, data components and IoT service components should be supplied to provide visibility and assurance to all stakeholders that the IoT	Not Applicable for IoT Device Assessment (Applicable for IoT Ecosystem)	-

		device or service is operating		
5	Consideration of IoT users	as per stated objectives. Control-33: End users' privacy requirements and concerns should be addressed in designing the IoT device	V33.1 Validate that end users' privacy requirements and concerns are addressed in the design of IoT devices.	R60
6	Management of IoT privacy controls	and service. Control-34: The effectiveness of privacy controls in the IoT device and service should be reviewed, and new privacy risks be identified on a continuous basis considering the evolving privacy needs of	V34.1 Obtain a declaration from the IoT device developer confirming regular review of privacy controls' effectiveness and continuous identification of new privacy risks.	R61
7	Unique device identity	end users and regulatory requirements. Control-35-1: IoT system developers (especially device developers) should use a method that uniquely identifies each IoT device to	V35.1.1 Ensure that unique	R62
		improve privacy for identifying IoT device suspected to be relevant to a cyber incident. Control-35-2: IoT service	V35.2.1 Ensure a documented	R63
	C.S	providers should use, if required, a method to allow a unique mapping between a given IoT device and an IoT user to improve privacy for identifying the mapping between IoT device and IoT user(s).	process exists to map device identifiers to specific individuals or user profiles for IoT devices. This mapping should be securely maintained and accessible solely by authorized IoT users.	
8	Fail-safe authentication	Control-36: The system should ensure that implemented authentication cannot be bypassed, tampered, or falsified in any reasonable method.	V36.1 Verify IoT devices enforce authorized access to interfaces with proper authentication and resist any attempts to bypass, tamper with, or falsify implemented authentication measures.	R64
9	Minimization of indirect data collection	Control-37: Collection of data from indirect sources should be minimized or not collected at all.	V37.1 Verify that IoT devices minimize the collection of indirect data (data collected without user participation) to only what is necessary for operation, unless explicit user consent is obtained.	R65
10	Communication of privacy preferences	Control-38: User preferences of privacy controls should be only added, modified, or deleted when the authorized	V38.1 Validate that user preferences for privacy controls can only be added, modified, or deleted when the	R66

		user is authenticated to the system.	authorized user is authenticated to the IoT device.	
11	Verification of automated decision	Control-39: Automated decision provided by IoT services should be verified.	V39.1 Ensure that there is a	R67
12	Accountability for stakeholders	Control-40: Accountability for various stakeholders should be established.		R68
13	Unlinkability of PII	Control-41: The IoT system should ensure that the PII of the user owning a device cannot be identified.	owner is saved securely with proper	R69
14	Sharing information on PII protection measures of IoT devices	Control-42: PII protection measures related to privacy risk in IoT devices should be appropriately managed and only disclosed to the parties that require them.	measures related to privacy risk in IoT devices are appropriately managed and only disclosed to the	R70

Table 5: Privacy checkpoints for IoT user

S.no		Controls		Associate
	Title	Description	Verification Checkpoint	d Risk
1	User consent	Control-43: Consent for use	Not Applicable for IoT Device	-
		of personal data for the IoT	Assessment	
		device and service should be	(Applicable for IoT Ecosystem)	
		provided only after		
		considering the necessity and		
		its probable impact if there is		
		a data breach. Consent should		
		be withdrawn if the IoT output		
		is no longer needed or if there		
		is a concern with the IoT		
		device or service.		
2	Purposeful use for		Not Applicable for IoT Device	-
	connecting with	IoT device and service with		
	other devices and	other devices or services	\ 11	
	services	should be allowed only if		
		there is a valid need.		
3	Certification/valid	_		-
	ation of PII	validation of privacy		
	protection	protection features with	(Applicable for IoT Ecosystem)	
		respect to the IoT device and		
		service should be sought.		
4	Legal, statutory,	Control-46: Legal, statutory,		R71
	regulatory and	regulatory and contractual		
		requirements relevant to IoT	requirements relevant to IoT device	

contrac	ctual D	evice secur	ity and	the	security, along with the
require	ements or	rganization's	approach	to	organization's approach to meet
	m	eet these requ	irements s	shall	these requirements, are identified,
	be	e identified, d	ocumented	and	documented, and regularly updated.
	ke	ept up to date			

238239

240

241

Implementation of controls shall be evaluated through verification of check points listed in above tables. Evaluation methodology for verification of check points is given in Annex-A.

Description of assurance levels for compliance process and to categorize levels of security and

privacy of IoT Devices is given in Annex-B.

245

246

247

248

243 Annex A

Evaluation Methodology

This annexure provides comprehensive evaluation methodologies for assessing security and privacy checkpoints in IoT devices. These methodologies are designed to ensure a thorough examination and mitigation of potential risks associated with IoT devices. Evaluation methodology for each check point is given in Table 6.

CI NI-		J. I	Evaluation Methodology
Sl. No.	Security & Privacy		Evaluation Methodology
	Checkpoint		
1.	V1.1 Ensure that a	(a)	Examine the IoT security policy document,
	policy for IoT security is		management approval records, and communication
	defined, approved by		logs.
	management, published,	b)	Conduct interviews with key personnel to confirm their
	communicated to		awareness and understanding of the policy.
	relevant personnel and		
	relevant external parties		X 5
	and reviewed at planned		
	intervals or if significant		
	changes occur.		0/,
2.	V2.1 Confirm that roles	a)	Review documents outlining the defined roles and
	and responsibilities for		responsibilities.
	IoT security are defined	b)	Interview personnel to confirm their understanding of
	and allocated, with		their roles and responsibilities.
	accountability clearly	c)	
	established.	-)	as audit reports or performance reviews.
3.	V3.1 Confirm that the	a)	Verify that IoT device developer asset inventory
0.	IoT device developer has	,	includes all hardware, software, firmware, data,
	identified all assets		network components, and third-party dependencies.
	across the entire	b)	
	development process of		phases: requirements gathering, design, development,
	the IoT device.		testing, deployment, and maintenance.
	the for device.	c)	
			identification (e.g., automated discovery tools, manual
			audits, threat modelling).
4.	V6.1 Ensure that	a)	Review the Incident Response Plan for procedures on
	mechanisms are in place	<i>u)</i>	documenting, analyzing, and resolving security
	to apply knowledge		incidents.
	gained from analysing	b)	Review a sample of incident response cases to check
	and resolving IoT device	0)	that corrective actions were implemented.
	security incidents to	c)	
	reduce the likelihood or		-
		4)	repository where lessons learned are stored.
	*	d)	•
<i>F</i>	incidents.	- 1	included in training sessions.
5.	V7.1 Verify that	a)	,
	application layer		interfaces such as USB, UART, and other serial variants
	debugging interfaces		through the Datasheet of the SoC being used in the
	such USB, UART, and		device under test
	other serial variants are		

	disabled or protected by	b)	Verification and validation of the ports/interfaces
	a complex password.	0)	enabled in the production devices and the related access
	a complete pass word.		control mechanism for protection of the same as
			declared in the vendor documentation
		c)	Testing, in presence of OEM team, to verify the
			enabling/disabling of all the ports and debugging
			interfaces such as USB, UART, and other serial variants
			using their relevant hardware-based debuggers and
			access control mechanisms in case the interface is
			enabled.
		d)	Process verification of the manufacturing facility to
			validate the vendor's claim regarding the debugging
			interfaces which are closed/disabled during
			provisioning. [For instance, through Block connection
			diagram depicting pin connections between the host
			microcontroller and its interactions with various
			subcomponents/peripherals.]
6.	V7.2 Verify that memory	a)	Testing, in presence of OEM team, to verify the
	protection controls such		declared memory protection controls available and
	as ASLR and DEP are		enabled in the device using command line-based
	enabled by the		tools/commands or any other open-source tool like
	embedded/IoT operating		DEP, EMET tool etc.
	system, if applicable.		
7.	V7.3 Verify that on-chip	a)	Identification of the availability of debugging
	debugging interfaces		interfaces such as USB, UART, and other serial variants
	such as JTAG or SWD		through the Datasheet of the SoC being used in the
	are disabled or that		device under test
	available protection	b)	Verification and validation of the ports/interfaces
	mechanism is enabled		enabled in the production devices and the related access
	and configured		control mechanism for protection of the same as
	appropriately.	,	declared in the vendor documentation
	X	c)	Testing, in presence of OEM team, to verify the
			enabling/disabling of all the ports and debugging
			interfaces such as USB, UART, and other serial variants
			using their relevant hardware-based debuggers and
	· / X /		access control mechanisms in case the interface is
	V	۱۱,	enabled. Process varification of the manufacturing facility to
		d)	Process verification of the manufacturing facility to
			validate the vendor's claim regarding the debugging
			interfaces which are closed/disabled during
			provisioning. [For instance, through Block connection
			diagram depicting pin connections between the host microcontroller and its interactions with various
8.	V7.4 Verify that trusted	a)	subcomponents/peripherals.] Identifying whether TEE/SE/TPM is available or not in
0.	execution is	a)	the device through the SoC datasheet and technical
	implemented and		<u>-</u>
	enabled, if available on	Fire	documentation submitted by the vendor. orther assessment is done on the basis of scenarios as
	the device SoC or CPU.		blicable to device as defined below:
	the device Suc of Cro.	apl	meant to device as defined below.

		i. CASE 1: TEE/SE/TPM is not available: No further
		assessment
		ii. CASE 2: TEE/SE/TPM is available and enabled:
		Verification through code-review that crypto
		functions are called through TEE/SE/TPM APIs.
		iii. CASE 3: TEE/SE/TPM is available but not enabled
		by the vendor: Termed as non-conformance to the
		requirement. OEM is required to enable and
		implement the TEE/SE/TPM.
9.	V7.5 Verify that	
	sensitive data, private	device eco-system, sensitive data and their storage
	keys and certificates are	mechanism(s); and verification through:
	stored securely in a	i. Testing, in presence of OEM team
	Secure Element, TPM,	ii. Code review
	TEE (Trusted Execution	iii. Process audit of the key -life cycle process
	Environment), or	in. Trocess addit of the key into eyele process
	protected using strong	
	cryptography.	X
10.	V7.6 Verify usage of	a) Verification of the documentation provided by the
	cryptographically secure	vendor regarding the random number generators being
	pseudo-random number	used in the device.
	generator on embedded	b) Verification through code-review that random number
	device (e.g., using chip-	generators or related libraries as applicable are being
	provided random	used in the device.
	number generators).	
11.	V7.7 Verify that	a) Conduct a thorough review of the PCB design
	sensitive traces are not	schematics and layout.
	exposed to outer layers	b) Verify that sensitive traces carrying critical data or
	of the printed circuit	signals (such as cryptographic keys, sensitive
	board.	communications lines, or high-frequency signals) are
10	W7 9 W:C41-4 :4	routed on inner layers of the PCB.
12.	V7.8 Verify that inter-	a) Analyze the device's firmware for implemented
	chip communication is encrypted (e.g. Main	encryption mechanisms, focusing on inter-chip communication routines.
	board to daughter board	b) Verify the methods of encryption key generation,
	communication).	distribution, and storage.
	communication).	c) Monitor encryption in inter-chip communication by
		connecting the IoT device to the appropriate test
		equipment (e.g. logic analyser).
13.	V7.9 Verify the device	
	uses code signing and	following:
	validates code before	i. Device boots up successfully with the documented
	execution.	secure boot process when a valid boot image is
		provided.
		ii. Device does not boot up when a tampered boot
		image (like with missing signature, invalid
		signature) is provided.
14. 14	V7.10 Verify that	a) Determine the types of sensitive information handled
	sensitive information	by the IoT device (e.g., passwords, encryption keys,
	maintained in memory is	personal data).

	overwritten with zeros as	b)	Document specific memory locations or buffers where
	soon as it is no longer		sensitive information is stored during processing.
	required.	c)	ž ž
			information is overwritten with zeros. Look for explicit
			memory clearing functions (e.g., memset(),
		4)	SecureZeroMemory()) used in the code.
		a)	Use debugging tools to monitor memory regions before and after sensitive data is used.
		e)	Confirm that memory regions previously containing
			sensitive information are overwritten with zeros once
			the data is no longer required.
		f)	Perform memory dumps and analyze the dumps for any traces of sensitive data.
15.	V7.11 Verify that the	a)	Examine the device's technical documentation to
15.	firmware apps utilize	<i>u)</i>	understand its architecture and app isolation
	kernel containers for		mechanisms.
	isolation between apps.	b)	Look for references to kernel containers,
			containerization frameworks (e.g., Docker, LXC), or
			other isolation techniques.
		c)	Access the device's operating system (OS) through
		1	secure shell (SSH) or serial connection.
		d)	Execute apps and attempt to access resources or data
		2)	from other apps, verifying the isolation boundaries.
		e)	List and inspect running containers using container management tools.
		f)	Verify that each app runs within its container and check
		1)	the isolation parameters (e.g., namespaces, cgroups).
16.	V7.12 Verify that secure	a)	Examine the build scripts (e.g., Makefile,
	compiler flags such as -		CMakeLists.txt) to identify the compiler and linker
	fPIE, -fstack-protector-		flags being used.
	all, -Wl,-z,noexecstack,	b)	Verify the presence of the following or similar compiler
	-Wl,-z, noexecheap are	-)	flags in build system file configuration:
	configured for firmware builds.	4	-fPIE (Position Independent Executable)
	bullus.	(d)	-fstack-protector-all (Enables stack protection for all functions)
		e)	-Wl,-z,noexecstack (Prevents execution of code on the
	(O)	′	stack)
		f)	-Wl,-z,noexecheap (Prevents execution of code on the
			heap)
17.	V7.13 Verify that micro	a)	Identify the specific code protection features supported
	controllers are		by the microcontroller (e.g., Flash lock bits, code
	configured with code protection.	b)	readout protection, secure boot). Connect the microcontroller to a debugger or
	protection.	0)	programming tool to access and review its protection
			settings.
18.	V8.1 Verify that any use	a)	Secure code review [both automated and manual], in
	of banned C functions		presence of OEM team, using a licensed static analysis
	are replaced with the		tool through any of the following approaches:
	appropriate safe	i.	Visit to the evaluation agency by the vendor with the
	equivalent functions.		firmware code and installing the licensed static analysis

	Property protection technologies provided by the chip manufacturer are enabled.	provided by the chip manufacturer, if available.
21.	V8.4 Verify that any available Intellectual	a) Testing, in presence of OEM team, to verify the enabling of the Intellectual Property protection technologies
		analysis tool available with them. iv. Giving a remote access of the systems at vendor site to the evaluation agency containing the firmware code along with the licensed static analysis tool available with the vendors.
		agency. iii. Giving a remote access of the systems at vendor site to the evaluation agency for installing their licensed static
	KK/O.	ii. Visit to the evaluation agency by the vendor with the firmware code and any licensed static analysis tool available with them and demonstrating the code review activity in the presence of representatives of evaluation
	frameworks are reviewed for hardcoded credentials (backdoors).	i. Visit to the evaluation agency by the vendor with the firmware code and installing the licensed static analysis tool available with the evaluation agency in their systems. [Recommended]
20.	V8.3 Verify all code including third-party binaries, libraries,	a) Independent secure code review [both automated and manual] using a licensed static analysis tool through any of the following approaches:
	vaniciaomitics.	vendor for providing regular security updates and patches for the firmware to address any known vulnerabilities in third -party components.
	cataloguing third-party components, versioning, and published vulnerabilities.	b) Identifying vulnerabilities in the third-party component(s) through publicly available vulnerability databases.c) Verification and validation of the process defined by the
19.	V8.2 Verify that each firmware maintains a software bill of materials	a) Verification of the submitted list of third-party components by running automated tools like FACT on the firmware.b) Identifying vulnerabilities in the third-party
		the evaluation agency containing the firmware code along with the licensed static analysis tool available with the vendors.
		iii. Giving a remote access of the systems at vendor site to the evaluation agency for installing their licensed static analysis tool available with them. iv. Giving a remote access of the systems at vendor site to
		firmware code and any licensed static analysis tool available with them and demonstrating the code review activity in the presence of representatives of evaluation agency.
		tool available with the evaluation agency in their systems. [Recommended] ii. Visit to the evaluation agency by the vendor with the

22. V8.5 Verify that only a) Ev	aluate the availability of debugging interfaces such
	USB, UART, and other serial variants through the
	asheet of the System on Chip (SoC) utilized in the
	vice under test.
	nfirm and validate the enabled ports/interfaces in the
	duction devices, alongside the access control
	chanisms implemented for their protection, as
	oulated in the vendor documentation.
	nduct testing, with the Original Equipment
	nufacturer (OEM) team present, to verify the
	bling or disabling of all ports and debugging
	erfaces such as USB, UART, and other serial
vai	iants.
d) Uti	lize relevant hardware-based debuggers and access
con	atrol mechanisms to ensure the interfaces are
	perly managed when enabled.
	rify the processes at the manufacturing facility to
	stantiate the vendor's claim that debugging
	erfaces are closed or disabled during provisioning.
	is can be achieved by reviewing block connection
	grams that illustrate pin connections between the
	st microcontroller and its interactions with various
	view datasheets, technical specifications, and
	urity documentation provided by microcontroller
	nufacturers.
	tain sample microcontrollers or access to
1 - 1 -	velopment boards/kits for evaluation purposes.
11 0	form physical penetration tests to assess resistance
	inst de-capping and attempts to extract sensitive
inf	ormation from the microcontroller's internals.
24. V9.1 Ensure the a) Ex	amine design documents to verify the inclusion of
	urity features such as data validation, encryption,
	hentication, and fail-safe mechanisms.
-	form code reviews to identify potential security and
	ety flaws and ensure adherence to secure coding
	ctices.
	velop and execute test cases that simulate erroneous
-	corrupted control data scenarios, focusing on both urity and safety impacts.
	e network monitoring tools like Wireshark to capture
	fic between the IoT device and its communication
1 1 1 1	tners.
	form operations that involve data transmission (e.g.,
	ding commands or data).
	sure that the data is encrypted using TLS. Look for
	ications of encryption, such as the presence of TLS
	ndshake messages and encrypted data packets.
26. V10.2 Verify that the a) Pro	pare test environments with both legitimate and
firmware apps validate ma	licious server certificates.

	the digital signature of	b) Use a test server with a valid digital signature and a test
	server connections.	server with an invalid or compromised signature.
		c) Connect the IoT device to the test server with a valid
		digital signature.
		d) Verify that the firmware successfully validates the
		signature and establishes a secure connection.
		e) Connect the IoT device to the test server with an invalid
		or compromised digital signature.
		f) Verify that the firmware rejects the connection attempt
		and handles the error appropriately.
27.	V10.3 Verify that	a) Testing, in presence of OEM team, to verify the process
	wireless	of mutual authentication as laid down in the
	communications are	documentation by the vendor.
	mutually authenticated.	
28.	V10.4 Verify that	a) Identifying all the security mechanisms being used in
	wireless	the communication process verification through:
	communications are sent	i. Testing, in presence of OEM team
	over an encrypted	ii. Code review
	channel.	iii. Process audit of the key-life cycle process
29.	V10.5 Verify that the	a) Obtain a list of trusted servers that the firmware is
	firmware apps pin the	expected to interact with for digital signature
	digital signature to a	verification.
	trusted server(s).	b) Examine the firmware's source code or binary to
		identify how it handles digital signatures and server
		communication.
		c) Look for mechanisms where the firmware checks for
		signatures against a predefined list of trusted servers.
		Check for hardcoded values related to server addresses
		and digital signatures.

30.	V12.1 Ensure that states,	a) Ensure that the logging settings are correctly
	events, and network	configured for all devices and systems.
	traffic of IoT devices and	b) Simulate various states and events on the IoT devices
	systems are monitored	and observe if they are captured correctly by the
	and logged.	monitoring tools.
		c) Generate and capture network traffic and verify that it
21	V12 1 Validata that 1acc	is logged appropriately.a) Ensure that access to logs is restricted to authorized
31.	V13.1 Validate that logs for IoT devices protected	a) Ensure that access to logs is restricted to authorized personnel only through role-based access controls
	from leakage,	(RBAC).
	destruction, and	b) Confirm that log data is encrypted both in transit and at
	unintended alteration.	rest using industry-standard encryption protocols (e.g.,
	unintended afteration.	TLS, AES).
		c) Verify that logs cannot be modified without proper
		authorization and that any changes are traceable.
32.	V13.2 Verify the	a) Examine the physical construction of the device. Look
32.	presence of tamper	for secure enclosures, tamper-evident seals, and screws.
	resistance and/or tamper	for seedie enclosures, umper evident seals, and selews.
	detection features.	
	actediton reatures.	

		b)	Simulate tampering attempts such as opening the
			device or disconnecting components. Observe if the
			device detects and logs these events.
		c)	Verify the presence and effectiveness of alert
			mechanisms (e.g., alarms, notifications) triggered by
	******		tampering attempts.
33.	V15.1 Verify that IoT	a)	Examine the documentation to verify that it includes
	devices are delivered		secure default settings and recommendations for secure
	with secure settings and	1. \	configurations.
	configurations.	b)	Assess the initial setup process for security best practices.
		c)	Use automated tools to scan the device for common
			vulnerabilities related to default settings and
			configurations.
34.	V15.2 Ensure that only	a)	Examine the device's access control lists or similar
3 1.	authorized entities can	<i>u)</i>	configurations to ensure that only authorized entities
	modify the configuration		have modification rights.
	settings of the IoT device		
	if they are modifiable.		
35.	V15.3 Verify that IoT	a)	Obtain a sample of the device and perform a factory
	devices ensure that		reset to revert it to its initial state.
	common values for	b)	Check the initial values of critical security parameters
	critical security		(e.g., private keys and passwords) after the reset.
	parameters, such as	c)	ı
	global private keys or		observe if the device enforces uniqueness or external
	standard passwords, are		definition for these parameters.
	replaced by values that		
	are unique per device or		
	explicitly defined by an appropriate external		
	entity before they are put		
	into operation.		
36.	V15.4 Verify security	a)	Testing, in presence of OEM team, to verify the
	controls are in place to		security controls as provided by the vendor to hinder
	hinder firmware reverse		firmware reverse engineering.
	engineering (e.g.,		
	removal of verbose		
	debugging symbols).		
37.	V16.1 Confirm the	a)	Verify the presence of user authentication mechanisms
	implementation and		(e.g., passwords, biometrics, multi-factor
	application of		authentication) for accessing IoT systems and services.
	authentication	b)	Confirm the use of device authentication mechanisms
	mechanisms for users		(e.g., certificates, pre-shared keys, unique identifiers)
	and IoT devices		for IoT devices accessing the network.
	accessing IoT systems		
38.	and services. V16.2 Verify that IoT	9)	Varify documentation for datails on data storage
38.	devices protect stored	a)	Verify documentation for details on data storage protection mechanisms.
	and transmitted data,	b)	
	including configuration	0)	attempting unauthorized access to stored data.
	merading configuration		anompung anaumonzou access to stored data.

	settings, identifying	c)	Check the use of cryptographic checksums or hashes to
	data, user data, event		verify software integrity.
	logs, and sensitive	d)	Evaluate the security of the software update process,
	security parameters,	,	including digital signature verification.
	against unauthorized		8 8 8
	access, modification,		
	and disclosure, while		
	also safeguarding		
	software from		
	unauthorized access and		
	modification, utilizing		
	cryptography for data		
	confidentiality and		
	integrity.		
39.	V16.3 Verify that the	a)	List all interfaces (e.g., web interfaces, APIs,
37.	application and	u)	command-line interfaces) that accept user inputs and
	firmware components		interact with the operating system.
	±	1.)	
	are not susceptible to OS	b)	Ensure that the application and firmware do not invoke
	Command Injection by		shell command wrappers or scripts that could be
	invoking shell command		exploited for OS Command Injection.
	wrappers, scripts, or that	c)	Perform a thorough review of the source code, focusing
	security controls prevent		on input validation and sanitization. Look for functions
	OS Command Injection.		that execute OS commands, such as system(), exec(),
	-		popen(), and similar.
		d)	Conduct penetration tests to simulate OS command
			injection attacks. Use tools like OWASP ZAP, Burp
			Suite, and Metasploit to identify vulnerabilities.
40.	V17.1 Ensure that the	a)	Verification shall be done as per the applicable scenario:
70.	update procedure is	<i>a)</i>	i. Case 1: Automatic OTA updates are available:
	defined and includes		<u> </u>
			A standard operating procedure for issuing
	validation of updates,		automatic updates/upgrades to the in-field
	configuration choices		devices is required to be submitted by the
	for automatic/manual		vendor which can then be evaluated by the
	updates, scheduling		evaluation agency.
	options, and notification		ii. Case 2: Automatic OTA updates are not
	settings.		available and vendor provides manual updates:
	The update should		A standard operating procedure for issuing
	maintain the		manual updates/upgrades to the in-field devices
	cryptographic chain of		is required to be submitted by the vendor which
	trust with the root of		can then be evaluated by the evaluation agency.
	trust.	b)	Confirm that the update process maintains the
	uust.	0)	
		-1	cryptographic chain of trust from the root of trust.
		(C)	Ensure that certificates used in the update process are
			validated against the root of trust.
41.	V17.2 Ensure that	a)	Test the update initiation process by attempting to
	software updates for IoT		initiate updates with both authorized and unauthorized
	devices are securely		credentials.
	initiated by authorized	b)	Simulate various interruption scenarios (e.g., power
	entities and that		loss, network disconnection) during the update process.
	interruptions during		, , , , , , , , , , , , , , , , , , , ,

	updates minimize	c) Evaluate the device's ability to roll back to the previous
	potential harm.	stable state or resume the update process safely.
42.	V17.3 Verify that the firmware update process is not vulnerable to time-of-check vs time-of-use attacks.	a) Testing, in presence of OEM team, to verify the measures implemented in the device to make it resistant to time-of-check vs time-of-use attacks.
43.	V17.4 Verify the device uses code signing and validates firmware upgrade files before installing.	 a) Testing, in presence of OEM team, to verify the following: i. Device gets successfully updated with the documented secure upgrade process when a valid update package is provided. ii. Device does not boot up when a tampered update package (like with missing signature, invalid signature) is provided.
44.	V17.5 Verify that the device cannot be downgraded to old versions (anti-rollback) of valid firmware.	a) Testing, in presence of OEM team, to verify that the device cannot be downgraded to old versions (antirollback) of valid firmware.
45.	V18.1 Ensure that vulnerabilities of IoT devices are actively monitored and reported to IoT users and relevant parties along with associated risks.	 a) Obtain and review documentation describing the vulnerability monitoring system. b) Verify integration with external vulnerability databases and threat intelligence feeds. Simulate the identification of a vulnerability. c) Observe the reporting process and timing. d) Simulate risk assessment for an identified vulnerability. e) Evaluate the communication of risks to users.
46.	V19.1 Verify that the device wipes firmware and sensitive data upon detection of tampering or receipt of invalid message.	 a) Review the device documentation and design specifications to identify the tamper detection methods implemented (e.g., physical tamper switches, sensors, or software-based detection). b) Perform physical and software tampering attempts to trigger the detection mechanisms. Observe and record the device's response.
47.	V20.1 Verify that IoT users are provided with guidance on the proper use of IoT devices, including risks and potential undesirable effects.	 a) Verify the presence of user manuals, online help, and other resources that provide guidance on the proper use of IoT devices. b) Verify that the user guidance includes detailed information on the potential risks associated with the IoT device. c) Confirm that it addresses both security risks (e.g., unauthorized access, data breaches) and safety risks (e.g., physical harm, malfunction).
48.	V23.1 Ensure that the acquiring organization has a system in place to evaluate supplier security measures	a) Obtain and review the acquiring organization's policies, procedures, and governance framework related to supplier evaluation and security requirements.b) Design and architecture details till the PCBA and SoC level to be provided to aid in counterfeit mitigation and malware detection.

49.	according to local laws and regulations. V23.2 Design and architecture details till the PCBA and SoC level to be provided to aid in counterfeit mitigation and malware detection.	c)d)a)b)c)	Verify if the organization has established policies that align with local laws and regulations governing supplier security measures, such as data protection laws. Assess if the organization has clearly defined security criteria that suppliers must meet, covering areas such as data protection, confidentiality, integrity, availability, and compliance with legal requirements. Verify design documentation at the PCBA and SoC levels, ensuring availability and completeness. Cross-check documentation with actual components and assess traceability from manufacturer to device integration. Use X-ray imaging, visual inspection, and electrical testing to verify component authenticity, identify hardware vulnerabilities, and perform firmware analysis for anomalies.
50.	V23.3 Threat mitigation strategies for tainted and counterfeit products shall be implemented as part of product development.	a) b)	Ensure that threat analysis is conducted to identify risks related to counterfeit and tainted products and assess the effectiveness of existing mitigation strategies. Evaluate the integration of threat mitigation strategies in the product development lifecycle, ensuring they include verification and validation processes for components and subsystems.
51.	V23.4 One or more up-to-date malware detection tools shall be deployed as part of the code acceptance and development processes. Malware detection techniques shall be used before final packaging and delivery (e.g., scanning finished products and components for malware using one or more up-to-date malware detection tools).	a) b) c)	Ensure that malware detection tools are current and relevant, and integrated into code acceptance and development pipelines. Ensure that regular scanning of source code, binaries, and firmware are done and results are analyzed to confirm no malware presence. Ensure that final malware scans are performed before product packaging, review logs and reports to verify all components are found to be clean.
52.	V23.5 Supply chain risk identification, assessment, prioritization, and mitigation shall be conducted.	a)b)c)	Ensure that a comprehensive supply chain risk analysis is conducted, including sourcing, transportation, and storage. Ensure that suppliers are engaged for transparency, their risk management practices are assessed, and risks are prioritized by severity and likelihood. Ensure that risk mitigation strategies are tailored, ongoing monitoring and auditing processes are implemented, and corrective actions are enforced as needed.

53.	V24.1 Ensure that	۵)	Engine the existence and enforcement of nations
33.		a)	Ensure the existence and enforcement of policies
	documentation detailing		governing the management of IoT device security
	IoT device security	1 \	documentation.
	information is present	b)	Ensure that documentation access is restricted to
	and restrict disclosure		authorized personnel only.
	solely to pertinent	c)	Ensure that sensitive IoT device security information is
	parties.		encrypted both in transit and at rest to protect against
			unauthorized access.
54.	V28.1 Ensure that data	a)	Verify the existence of formal policies and procedures
	and licensed software		for data sanitization and device disposal.
	stored in IoT device are	b)	Confirm the use of approved data destruction
	removed or securely		techniques (e.g., cryptographic erasure, degaussing,
	overwritten prior to		physical destruction).
	disposal or re-use.	c)	Ensure that licensed software is removed or deactivated
			in compliance with software license agreements.
		d)	Conduct tests to ensure the tools effectively remove
			data and software.
		e)	Validate that no residual data or software remains on
			devices after sanitization.
55.	V28.2 Verify the IoT	a)	Attempt to bypass authentication mechanisms using
	device has a secure		standard penetration testing techniques.
	function allowing only	b)	Simulate role assignments and attempt to perform
	authorized entities to		deletions from non-authorized roles.
	delete relevant user data	c)	Perform controlled deletion operations and verify that
	stored on the device in		only the targeted user data is deleted.
	any memory type.		
56.	V29.1 Audit the IoT	a)	Obtain a comprehensive list of privacy-enhancing
	device to confirm the		features the device claims to support.
	incorporation of	b)	Examine the source code for the implementation of
	privacy-enhancing		privacy features.
	features.	c)	Verify data minimization practices and anonymization
			techniques
57.	V30.1 Ensure that	a)	Verify the user manual, technical documentation, and
	stakeholders of IoT		privacy policy of the IoT device.
	device ensure strict	b)	Assess the initial configuration process to ensure
	privacy settings by		privacy settings are automatically applied.
	default without requiring		
	IoT user interaction or		
	intervention.		
58.	V31.1.1 Confirm that	a)	Verify if the privacy notice is easily accessible to users
	IoT users are provided	′	through device interfaces, websites, or mobile
	with a privacy notice		applications.
	detailing the collection	b)	Check if the privacy notice clearly explains the
	of personal data by IoT		purposes for which data is collected, how it will be
	devices and the purpose		used, and whether it provides information on user rights
	of its use.		regarding their data.
59.	V31.2.1 Verify that the	a)	Assess how consent is obtained when users first interact
	consent to privacy notice		with the IoT device, including the methods used (e.g.,
	is obtained from IoT		checkboxes, explicit consent forms).
	users before data		, 1
		L	

	collection by IoT device	b) Verify if the IoT Service Provider maintains records of
	or changes in use.	consent obtained, updates made to consent preferences,
		and audit trails.
60.	V33.1 Validate that end users' privacy requirements and concerns are addressed in the design of IoT devices.	 a) Ensure that all relevant privacy requirements and concerns of end users are identified and documented. b) Conduct functional testing to ensure privacy features (e.g., data encryption, access controls) work as intended.
61.	V34.1 Obtain a declaration from the IoT device developer confirming regular review of privacy controls' effectiveness and continuous identification of new privacy risks.	 a) Ensure that the declaration includes: i) Frequency of privacy control reviews. ii) Processes for identifying new privacy risks. iii) Roles and responsibilities of personnel involved in these activities. iv) Any recent findings or updates made to privacy controls based on these reviews. b) Review historical records of privacy reviews and risk assessments conducted over a defined period (e.g., the past 2-3 years).
62.	V35.1.1 Ensure that unique cryptographic keys and certificates are assigned to each individual IoT device to enhance privacy and aid in identifying devices relevant to cyber incidents.	 a) Identify all keys and certificates utilized within the device ecosystem and conduct verification through the following methods: Testing in the presence of the Original Equipment Manufacturer (OEM) team. Code review. Process audit of the key lifecycle management process.
64.	V35.2.1 Ensure a documented process exists to map device identifiers to specific individuals or user profiles for IoT devices. This mapping should be securely maintained and accessible solely by authorized IoT users. V36.1 Verify IoT devices enforce authorized access to interfaces with proper authentication and resist any attempts to bypass, tamper with, or falsify implemented	 a) Check if access to mapping data is based on documented policies that define who can access, modify, or delete mapping information. b) Verify if logging mechanisms are in place to track access to mapping data, detect anomalies, and generate audit trails. c) Assess the effectiveness of authentication methods (e.g., MFA) in ensuring that only authorized personnel can access mapping data. a) Check device specifications and documentation for implemented authentication methods b) Perform security testing to validate the strength of authentication controls.
65.	authentication measures. V37.1 Verify that IoT devices minimize the collection of indirect	a) Test scenarios to verify that IoT devices collect only necessary data for their intended operation.

	data (data collected	b)	Simulate user interactions to assess the effectiveness of
	without user	,	consent prompts and user understanding.
	participation) to only	c)	Evaluate how devices respond to user preferences and
	what is necessary for	- /	consent settings over time (e.g., honoring opt-out
	operation, unless		requests).
	explicit user consent is		1
	obtained.		
66.	V38.1 Validate that user	a)	Simulate various scenarios, such as correct
	preferences for privacy		authentication attempts, incorrect password entries, and
	controls can only be		session timeout handling.
	added, modified, or	b)	Verify that unauthorized users are unable to bypass
	deleted when the		authentication measures to gain access to sensitive
	authorized user is		privacy controls.
	authenticated to the IoT		
	device.		
67.	V39.1 Ensure that there	a)	Identify and list all automated decisions made by the
	is a secondary,		IoT device that have the potential to cause irreversible
	independent verification		harm to users.
	for automated decisions	b)	
	made by IoT devices that		critical and could potentially harm users or impact
	could cause irreversible		safety.
	harm to users.	c)	Test the response of secondary verification systems to
			unexpected inputs, errors in primary decision-making
	Y/40.1		systems, or deliberate attempts to bypass verification.
68.	V40.1 Review	a)	Verify the documentation covers the following key
	documentation to		components of an accountability framework:
	confirm the presence of		i. Data Collection: Clear explanation of what data is
	an accountability framework that outlines		collected by the IoT device. i. Data Processing: Details on how the data is
	data privacy	1.	processed, including any transformations,
	responsibilities for the		aggregations, or analyses performed.
	IoT device.	ii	i. Data Storage: Information on where and how the data
	101 device.	11.	is stored, including the security measures in place.
	()<	ix	Data Sharing: Policies regarding data sharing with
	X		third parties, including any conditions or restrictions.
		Ι,	User Consent: Processes for obtaining user consent
	(C)		for data collection and processing.
		V	i. User Rights: Description of user rights regarding their
			data, such as access, correction, deletion, and
			portability.
,		vi	J
			responsibilities of different stakeholders (e.g.,
			manufacturers, service providers, users) concerning
			data privacy and security.
		vii	1
			with relevant data protection regulations and
	7741 1 E		standards.
69.	V41.1 Ensure that PII of	a)	Verify that the PII is encrypted using industry-standard
	the device owner is		encryption algorithms (e.g., AES-256) both at rest and
	saved securely with		during transmission.

	proper access control in place.	 b) Ensure proper key management practices are in place, including key generation, storage, rotation, and destruction. c) Review access control policies to ensure they limit access to PII based on the principle of least privilege. d) Evaluate the authentication mechanisms (e.g., passwords, multi-factor authentication) used to grant access to PII. e) Verify that access to PII is logged, including successful and unsuccessful access attempts. f) Verify that PII is securely deleted when no longer needed.
70.	V42.1 Ensure that PII protection measures related to privacy risk in IoT devices are appropriately managed and only disclosed to the parties that require them.	a) Audit the mechanism used to secure the details of PII protection measures within the IoT device and ensure the secure disclosure of these details to authorized parties.
71.	V46.1 Verify that all legal, statutory, regulatory, and contractual requirements relevant to IoT device security, along with the organization's approach to meet these requirements, are identified, documented, and regularly updated.	 a) Request and review all relevant documentation, including but not limited to: i. Legal and regulatory requirement documents ii. Internal policies and procedures iii. Contracts and agreements b) Verify that there is a comprehensive list of all legal, statutory, regulatory, and contractual requirements relevant to IoT device security. c) Review the internal audit process to verify that it includes regular checks for compliance with documented requirements. d) Check if there are any discrepancies between documented policies and actual practices.

250

251

253 Annex B

Illustrative Mapping of IoT Device Security & Privacy Checkpoints to Assessment Levels

To ensure a comprehensive approach to security and privacy, organizations often categorize their measures into different levels, with each level representing a different degree of rigor and complexity. This document allows IoT users or service developers to conduct risk assessments and select the appropriate assurance level based on identified risks. The risks are identified in line with the intent of standards IS/ISO/IEC 27001, IS/ISO/IEC 27402 and OWASP ASVS 4.0.3. The levels of IoT Device Security & Privacy Assessment and Evaluation are structured across three assurance levels: Level 1, Level 2, and Level 3 in line with below mentioned descriptions:

T 1.

Level 1: Basic Security and Privacy

At Level 1, the focus is on implementing fundamental security and privacy measures to provide a baseline level of protection for IoT devices and data. This level is suitable for simple IoT deployments and devices with limited capabilities.

Level 2: Enhanced Security and Privacy

Level 2 involves a more robust security and privacy approach, suitable for more complex IoT deployments and devices that handle sensitive data or operate in more challenging environments.

Level 3: Advanced Security and Privacy

Level 3 represents the highest level of security and privacy for IoT devices and systems. It is suitable for mission-critical applications, highly sensitive data, and deployments in high-risk environments.

 The choice of security and privacy level depends on factors such as the IoT device's purpose, the data it handles, the potential impact of security breaches, and the regulatory environment. Organizations should conduct a thorough risk assessment to determine the appropriate level of security and privacy controls needed for their specific IoT deployments. In scenarios where risks differ significantly from those outlined in this document, the compliance assessments can be conducted at enhanced levels designated as L1+ or L2+ as mentioned below:

- i. L1+: Additional security and privacy measures beyond Level 1.
- ii. L2+: Enhanced requirements surpassing Level 2 standards.

Additionally, compliance with relevant industry standards and regulations, such as IT Act, Digital Data Protection Act, should also be considered when defining security and privacy requirements for IoT devices.

This annexure provides detailed verification points mapped to each assurance level (L1, L2, L3). These points serve as benchmarks for evaluating compliance with the specified security and privacy requirements. IoT stakeholders can ensure thorough evaluation and validation of device security and privacy measures according to the chosen assurance level.

The IoT device security and privacy checkpoints, extracted from IS/ISO/IEC 27400, IS/ISO/IEC 27402, and OWASP ASVS 4.0.3 Appendix C, are mapped to assessment levels as given in Table 7.

Table 7: Assessment levels

Sl. No.	Security & Privacy Checkpoint	L1	L2	L3	Reference Check
1				,	point
1.	Ensure that a policy for IoT security is defined,			✓	V1.1
	approved by management, published,				
	communicated to relevant personnel and relevant				
	external parties and reviewed at planned intervals or if significant changes occur.				
2.	Confirm that roles and responsibilities for IoT			,	V2.1
۷.	security are defined and allocated, with			V	V 2.1
	,				
3.	accountability clearly established. Confirm that the IoT device developer has				V3.1
3.	identified all assets across the entire development			V	V 3.1
	process of the IoT device.				
4.	Ensure that mechanisms are in place to apply				V6.1
7.	knowledge gained from analyzing and resolving	X		√	V 0.1
	IoT device security incidents to reduce the				
	likelihood or impact of future incidents.				
5.	Verify that application layer debugging interfaces	V	√	√	V7.1
J.	such USB, UART, and other serial variants are	V	V	V	٧ / . 1
	disabled or protected by a complex password.				
6.	Verify that memory protection controls such as	/	√	/	V7.2
0.	ASLR and DEP are enabled by the embedded/IoT	V	'	V	V 7.2
	operating system, if applicable.				
7.	Verify that on-chip debugging interfaces such as	/	√	√	V7.3
,.	JTAG or SWD are disabled or that available	\ \	\ \ \	V	V 7.5
	protection mechanism is enabled and configured				
	appropriately.				
8.	Verify that trusted execution is implemented and	√	√	√	V7.4
	enabled, if available on the device SoC or CPU.	\ \ \	`	'	
9.	Verify that sensitive data, private keys and	√	√	√	V7.5
	certificates are stored securely in a Secure Element,	*	*	•	
	TPM, TEE (Trusted Execution Environment), or				
	protected using strong cryptography.				
10.	Verify usage of cryptographically secure pseudo-		√	√	V7.6
	random number generator on embedded device				
	(e.g., using chip-provided random number				
	generators).				
11.	Verify that sensitive traces are not exposed to outer			√	V7.7
	layers of the printed circuit board.				
12.	Verify that inter-chip communication is encrypted			√	V7.8
	(e.g. Main board to daughter board				
	communication).	<u></u>			
13.	Verify the device uses code signing and validates			√	V7.9
	code before execution.				
14.	Verify that sensitive information maintained in			√	V7.10
	memory is overwritten with zeros as soon as it is				
	no longer required.				

15.	Verify that the firmware apps utilize kernel			√	V7.11
1.6	containers for isolation between apps.				177.10
16.	Verify that secure compiler flags such as -fPIE, -			\checkmark	V7.12
	fstack-protector-all, -Wl,-z,noexecstack, -Wl,-z,				
1.77	noexecheap are configured for firmware builds.				177.10
17.	Verify that micro controllers are configured with			✓	V7.13
1.0	code protection.				3 70.1
18.	Verify that any use of banned C functions are	✓	✓	✓	V8.1
	replaced with the appropriate safe equivalent				
10	functions.				****
19.	Verify that each firmware maintains a software bill	✓	✓	V	V8.2
	of materials cataloguing third-party components,				
20	versioning, and published vulnerabilities.				X70.2
20.	Verify all code including third-party binaries,	✓	√	~	V8.3
	libraries, frameworks are reviewed for hardcoded				
21	credentials (backdoors).				X70 4
21.	Verify that any available Intellectual Property	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	√	✓	V8.4
	protection technologies provided by the chip				
22	manufacturer are enabled.				¥70.7
22.	Verify that only micro controllers that support			✓	V8.5
	disabling debugging interfaces (e.g. JTAG, SWD)				
	are used.				***
23.	Verify that only micro controllers that provide			\checkmark	V8.6
	substantial protection from de-capping and side				
2.4	channel attacks are used.				* * * * * * * * * * * * * * * * * * *
24.	Ensure the integration of security measures into			\checkmark	V9.1
	IoT device development to maintain safety,				
	including mechanisms to detect and halt erroneous				
	or corrupted control data to prevent malfunctions.				7740.4
25.	Verify that the firmware apps protect data-in-transit	✓	✓	✓	V10.1
2.5	using transport layer security.				****
26.	Verify that the firmware apps validate the digital	✓	\checkmark	✓	V10.2
2 =	signature of server connections.				¥7100
27.	Verify that wireless communications are mutually	✓	✓	✓	V10.3
20	authenticated.				¥74 0 4
28.	Verify that wireless communications are sent over	✓	✓	✓	V10.4
20	an encrypted channel.				***
29.	Verify that the firmware apps pin the digital		✓	✓	V10.5
2.0	signature to a trusted server(s).				**10.1
30.	Ensure that states, events, and network traffic of			✓	V12.1
2.1	IoT devices and systems are monitored and logged.				¥710.1
31.	Validate that logs for IoT devices protected from			✓	V13.1
	leakage, destruction, and unintended alteration.				**
32.	Verify the presence of tamper resistance and/or		✓	✓	V13.2
	tamper detection features.				
33.	Verify that IoT devices are delivered with secure			✓	V15.1
	settings and configurations.				

				•	
34.	Ensure that only authorized entities can modify the configuration settings of the IoT device if they are modifiable.	✓	✓	✓	V15.2
35.	Verify that IoT devices ensure that common values	√	√	√	V15.3
	for critical security parameters, such as global				
	private keys or standard passwords, are replaced by				
	values that are unique per device or explicitly defined by an appropriate external entity before				
	they are put into operation.				
36.	Verify security controls are in place to hinder		√	./	V15.4
20.	firmware reverse engineering (e.g., removal of		V	V	V 13
	verbose debugging symbols).				
37.	Confirm the implementation and application of			√	V16.1
	authentication mechanisms for users and IoT				
20	devices accessing IoT systems and services.				****
38.	Verify that IoT devices protect stored and	✓	\checkmark	\checkmark	V16.2
	transmitted data, including configuration settings,				
	identifying data, user data, event logs, and sensitive security parameters, against unauthorized access,				
	modification, and disclosure, while also				
	safeguarding software from unauthorized access				
	and modification, utilizing cryptography for data				
	confidentiality and integrity.				
39.	Verify that the application and firmware	<	\checkmark	√	V16.3
	components are not susceptible to OS Command				
	Injection by invoking shell command wrappers,				
	scripts, or that security controls prevent OS				
40.	Command Injection. Ensure that the update procedure is defined and	/	/	/	V17.1
40.	includes validation of updates, configuration	~	\checkmark	✓	V 1 / . 1
	choices for automatic/manual updates, scheduling				
	options, and notification settings.				
	The update should maintain the cryptographic				
	chain of trust with the root of trust.				
41.	Ensure that software updates for IoT devices are	✓	\checkmark	✓	V17.2
	securely initiated by authorized entities and that				
	interruptions during updates minimize potential harm.				
42.	Verify that the firmware update process is not		√	√	V17.3
72.	vulnerable to time-of-check vs time-of-use attacks.		V		V 1/.J
43.	Verify the device uses code signing and validates		√	√	V17.4
	firmware upgrade files before installing.				
44.	Verify that the device cannot be downgraded to old		√	√	V17.5
	versions (anti-rollback) of valid firmware.				
45.	Ensure that vulnerabilities of IoT devices are			✓	V18.1
	actively monitored and reported to IoT users and				
16	relevant parties along with associated risks.			,	V19.1
46.	Verify that the device wipes firmware and sensitive data upon detection of tampering or receipt of			✓	V 19.1
	invalid message.				
	111,4114 111000450.	1		l .	

47.	Verify that IoT users are provided with guidance on			/	V20.1
	the proper use of IoT devices, including risks and			•	
	potential undesirable effects.				
48.	Ensure that the acquiring organization has a system	√	√	/	V23.1
	in place to evaluate supplier security measures	'		·	
	according to local laws and regulations.				
49.	Design and architecture details till the PCBA and	√	√	/	V23.2
	SoC level to be provided to aid in counterfeit	'		·	
	mitigation and malware detection.				
50.	Threat mitigation strategies for tainted and	√	√	/	V23.3
	counterfeit products shall be implemented as part	•	`		
	of product development.				
51.	One or more up-to-date malware detection tools	/	√	/	V23.4
	shall be deployed as part of the code acceptance	*	`		
	and development processes. Malware detection				
	techniques shall be used before final packaging and				
	delivery (e.g., scanning finished products and				
	components for malware using one or more up-to-				
	date malware detection tools).		5		
52.	Supply chain risk identification, assessment,	/	1	/	V23.5
	prioritization, and mitigation shall be conducted.			·	
53.	Ensure that documentation detailing IoT device	7		√	V24.1
	security information is present and restrict			·	
	disclosure solely to pertinent parties.				
54.	Ensure that data and licensed software stored in IoT			√	V28.1
	device are removed or securely overwritten prior to			_	
	disposal or re-use.				
55.	Verify the IoT device has a secure function	√	√	√	V28.2
	allowing only authorized entities to delete relevant			_	
	user data stored on the device in any memory type.				
56.	Audit the IoT device to confirm the incorporation			√	V29.1
	of privacy-enhancing features.				
57.	Ensure that stakeholders of IoT device ensure strict			√	V30.1
	privacy settings by default without requiring IoT				
	user interaction or intervention.				
58.	Confirm that IoT users are provided with a privacy			√	V31.1.1
	notice detailing the collection of personal data by				
	IoT devices and the purpose of its use.				
59.	Verify that the consent to privacy notice is obtained			√	V31.2.1
	from IoT users before data collection by IoT device				
	or changes in use.				<u> </u>
60.	Validate that end users' privacy requirements and			√	V33.1
	concerns are addressed in the design of IoT				
	devices.				
61.	Obtain a declaration from the IoT device developer	√	√	√	V34.1
	confirming regular review of privacy controls'				
	effectiveness and continuous identification of new				
	privacy risks.				
•					

62.	Ensure that unique cryptographic keys and certificates are assigned to each individual IoT device to enhance privacy and aid in identifying devices relevant to cyber incidents.	✓	✓	√	V35.1.1
63.	Ensure a documented process exists to map device identifiers to specific individuals or user profiles for IoT devices. This mapping should be securely maintained and accessible solely by authorized IoT users.			✓	V35.2.1
64.	Verify IoT devices enforce authorized access to interfaces with proper authentication and resist any attempts to bypass, tamper with, or falsify implemented authentication measures.	✓	✓	√	V36.1
65.	Verify that IoT devices minimize the collection of indirect data (data collected without user participation) to only what is necessary for operation, unless explicit user consent is obtained.			>	V37.1
66.	Validate that user preferences for privacy controls can only be added, modified, or deleted when the authorized user is authenticated to the IoT device.		75	✓	V38.1
67.	Ensure that there is a secondary, independent verification for automated decisions made by IoT devices that could cause irreversible harm to users.			√	V39.1
68.	Review documentation to confirm the presence of an accountability framework that outlines data privacy responsibilities for the IoT device.			√	V40.1
69.	Ensure that PII of the device owner is saved securely with proper access control in place.			✓	V41.1
70.	Ensure that PII protection measures related to privacy risk in IoT devices are appropriately managed and only disclosed to the parties that require them.			√	V42.1
71.	Verify that all legal, statutory, regulatory, and contractual requirements relevant to IoT device security, along with the organization's approach to meet these requirements, are identified, documented, and regularly updated.	√	√	√	V46.1