

ISO/IEC JTC 1/SC 42/WG 3 "Trustworthiness" Convenorship: NSAI Convenor: Filip David Dr

PWI_42118_Outline for Reliability of AI systems-v5-PDF version

Document type	Related content	Document date	Expected action
Project / Other	Project: ISO/IEC PWI 42118	2024-08-26	COMMENT/REPLY by 2024-09-06

1	Outline for Form 4 – New Work Item Proposal:							
2	Information Technology – Artificial Intelligence – Reliability assessment of Al							
3	systems							
	- /							
4								
5	Introduction							
6								
7	With the wide spread roll out of AI systems in every aspect of human life, it is important to assess the							
8	reliability of AI systems before and during each real-world deployment. This is especially important for							
9	Al systems that affect various aspects of human life, such as health-care, robotic surgery, autonomous							
10	vehicles, senior citizen monitoring and care, citizen-welfare services, robotic automation etc.							
12	Reliability evaluation assessment is crucial because failure events of an Arsystem can lead to business							
13	for failure free operation for a specified period of time under stated conditions, one can be x%							
14	confident that the system would function well as required and not create failures and faults during its							
15	run. With large-scale deployment of an Al system, evaluating assessing reliability can also help system							
16	administrators to have a level of confidence in the functioning of that AI system before roll-out and							
17	during its life-cycle.							
18								
19	Reliability <u>assessment</u> focuses on <u>evaluating estimating</u> how well the AI system can perform its							
20	designed functionality without failure, for the intended period of time, under given conditions for							
21	operational promes.							
22	Reliability models, can give a predictive measure that the system would function at a level of							
24	performance for a period of time in a given environment. High reliability can help consumers and users							
25	be confident of the AI system against potential failures during run-time of the system. This is important							
26	for all AI systems, especially the ones that can have a direct impact on human life and safety. Reliability							
27	is estimated by analysing all failure data of the system, using statistical modelling techniques leading							
28	to building an estimate of the potential future failure prediction in various scenarios.							
29								
30	Reliability can be viewed as related to quality and testing of AI systems, but is a very different aspect.							
31	predicts estimates the confidence in the system to function without failures for a specified period of							
33	time after development or deployment based on the test results and failures logs of the system. It is							
34	a time-based prediction of the performance of the AI system in real-world conditions. Quality, on the							
35	other handas described in ISO/IEC 25059:2023, has reliability as one of the characteristics of quality							
36	model of AI system. The Quality model, measures the performance of evaluates the AI system based							
37	on functional and non-functional specificationscharacteristics, and is a broader term that can include							
38	various aspects such as efficiency, effectiveness, <u>functional adaptability</u> , transparency, intervenability,							
39	societal and ethical risk mitigation etc. satisfaction, risk management etc. Reliability assessment does							
40	not determine whether an Al output is factually correct, fair, safe, secure, ethical or robust. In							
41	time period in a specific context. However, because Al systems are often systems of systems or are							
43	embedded in other systems, issues such as malformed output, adversarially engineered data, or							
44	similar can cause system failures.							
45								

46 47	The importance of reliability assessment for AI systems is described in various literature, some of which are listed in the references of this outline.	
48 49 50	This project describes methods and measures for evaluating <u>assessing</u> the reliability of AI systems so that it is measured and reported to the stakeholders. This can be done at any time after the testing <u>development</u> of the AI system or while it is being deployed or while it is in real-world use.	
51 52 53 54 55 56 57 58	1 Scope	
59 60 61	This document provides methods and mechanisms to evaluate <u>assess</u> the reliability of an AI system. It describes the metrics of reliability and the procedure for reliability assessment from a statistical perspective.	
62 63 64 65 66 67	2 Normative references The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.	
68 69 70	ISO/IEC 22989:2022, Information technology — Artificial intelligence — Artificial intelligence concepts and terminology	
71 72 73 74	 3 Terms and definitions For the purposes of this document, the terms and definitions given in ISO/IEC 22989 and the following apply. a) reliability 	
75	property of consistent intended behaviour and results [ISO/IEC 22989:2022]	
76	b) reliability level	
77 78	measure of the reliability of an AI system for failure free operation for specified period of time under stated conditions.	
79	c) reliability of an AI system	
80 81	collective measure of the reliability level of the AI system in different stated modes of operation	
82	4 Preconditions for the assessment of reliability of AI systems	
83 84 85	45 Overview of statistical models for Types of reliability assessment models	Formatted: Indent: Left: 0.63 cm, No bullets or numbering
86	4.1 <u>5.1</u> Statistical models	Formatted: Font: Bold
87	4.2 <u>5.2</u> Nonhomogeneous Poisson process	Formatted: Outline numbered + Level: 2 + Numbering Style: 1, 2, 3, + Aligned at: 0 cm + Indent at: 0.63 cm

1

88	4.3 <u>5.3</u> Spline models	
89	4.4 <u>5.4</u> Musa's basic execution time model	
90	4.5 <u>5.5</u> Musa-Okumoto model	
91	4.6 <u>5.6</u> Gompertz model	
92	4.7 <u>5.7</u> Weibull model	
93		
94	56_Sub-characteristics and Metrics of reliability assessment	
95		
96	67_Methods to measure assess reliability of AI systems	
97	7.1 Statistical measurement	
98	7.2 Analysis of failure models	
99	7.3 Parameter estimation	
100	7.4 Estimation of reliability	
101		
102	•	Formatted: Indent: Left: 0.63 cm, No bullets or
103	78 <u>Methods and mM</u> echanisms to measure <u>assess</u> reliability of <u>AI systems with</u> Machine Learning	numbering
104	models	
105		
106	89 Methods and mMechanisms to measure assess reliability of Al systems with Deep Learning	
107	models	
108		
109	910 Methods and mMechanisms to measure assess reliability of Al systems with Reinforcement	
110	Learning models	
111		
112		

Appendix-A

114			
115	А.	Real-world examples and their results	
116			
117		Example 1:	
118			
119		In the reliability estimation and analysis conducted by Jie Min et.al. [5] on autonomous	
120		vehicles (AV), a detailed study was carried out on the AVs produced by Waymo, Cruise, Pony	
121		Al, and Zoox. The study shows strong correlation between the reliability estimates and the	
122		recurrent events data for these AVs. The study also shows that the Gompertz estimation	
123		model fits well with the events data of Waymo and Cruise, while for Pony AI the Weibull model	
124		fits, and for the Zoox the Musa-Okumoto model fits well. This variation in applicable	
125		estimation models can occur due to various reasons, such as the sample size, the driving speed	
126		when the event occurred, the environment (e.g., busy street versus highway), and vehicle	
127		event (failure) characteristics.	
128			
129		The operational profile is that of a test driver who marks a failure of the AV system as a	
130		disengagement event, which occurs when there is an autonomous vehicle failure indicated by	
131		a warning from the AV system, or when situations arise that require the test driver to take	
132		manual control of the vehicle to operate safely.	
133		Δ	Formatted: Font: Not Bold
134		Example 2:	
135			
136		A business-rule engine was integrated into a banking product after extensive system-level and	
137		user-level testing, but without any measure on its reliability. When the reliability of its failure	
138		free operation was measured it was found out that the probability of failure free operation	
139		for 1 hour of continuous run of that rule engine was 10 ⁻⁸ . Later, the reliability was modelled	
140		for ensuring that the system would function failure-free for 24 hours of run with a probability	
141		of 85%, and it was discovered that there were 45 more potential failures hidden in that system	
142		that needed to be fixed. These failures were later identified with rigorous code analysis, use	
143		case analysis, user-modelling and testing. Once fixed the rule engine has been successfully	
144		running with no failures reported.	
145			
146		The operational profile is that of a business-rule engine user who defines and executes	
147		business rules for the banking product and failures are marked when the product does not	
148		function as expected.	
149			
150	<u>B.</u>	_Sample cases	
151			
152		Sample Case 1:	 Formatted: Font: Bold
153			Formatted: Indent: Left: 1.27 cm
154		An AI agent used for proposing scheduling and booking locations for client meetings consists	
155		of a set of prompts and calls to a language model using retrieval-augmented generation from	
156		email systems of users, combined with access to their calendar for reading and proposing new	
1-00			

events. In the system, unexpected combinations of inputs or a failure to identify the proper participants and calendar entries cause the system to propose overlapping or otherwise incorrect meetings. This is a reliability failure, as the system does not provide consistent intended behavior and results. By identifying the cases where this occurs, a reliability model may be built predicting probability of failure. Statistical methods can determine which model best fits the data, and when failure modes are identified and changed, system developers can expect measured reliability to increase. Changes to measured reliability can then be estimated by back-testing the system, and validated in production use.

166 <u>Sample Case 2:</u>

Β.

An AI system uses a commercial API for access to a large language model (LLM) as part of its operation. The domain performance of the system has increased with more recent models, and for this reason, the commercial API uses the latest version of the model. However, some past modifications of the model have introduced system failures, when a change to the LLM causes it to no longer produce conforming output, a failure which requires prompt engineering changes. Despite the fact that in the LLM this is a quality or functional adaptability issue, it is a reliability issue for the current system. Because fine tuning and model changes are relatively frequent but spaced erratically without knowledge of the model users, measuring the frequency of such breaking-changes is possible with traditional statistical measurement techniques which are applied to complex systems.

Formatted: Normal, Indent: Left: 0.63 cm, No bullets or numbering

182	1	https://	/users.ece	.cmu.edu	/~koo	pman	/des	s99/	/sw	reliability/	'
	_					p			· · · ·		

181

Anthony Corso, David Karamadian, Romeo Valentin, Mary Cooper and Mykel Kochenderfer, A
 Holistic Assessment of the Reliability of Machine Learning Systems, arXiv:2307.10586v2 [cs.LG] 29
 Jul 2023

References

- Yili Hong, Jiayi Lian, Li Xu, Jie Min, Yueyao Wang, Laura J. Freeman, and Xinwei Deng, Statistical
 Perspectives on Reliability of Artificial Intelligence Systems, <u>https://arxiv.org/abs/2111.05391v1</u>
- 4 Xingyu Zhao, Wei Huang, Alec Banks, Victoria Cox, David Flynn, Sven Schewe and Xiaowei Huang,
 Assessing the Reliability of Deep Learning Classifiers Through Robustness Evaluation and
 Operational Profiles, CEUR-WS.org/Vol-2916/paper_16.pdf
- Jie Min, Yili Hong, Caleb B. King, and William Q. Meeker, Reliability Analysis of Artificial Intelligence
 Systems Using Recurrent Events Data from Autonomous Vehicles, Journal of the Royal Statistical
 Society Series C Applied Statistics, April 2022, DOI: 10.1111/rssc.12564
- <u>6 Japan Liaison Council of Three Ministries on Disaster Prevention of Petroleum Complexes,</u>
 <u>Guidelines on Assessment of AI Reliability in the Field of Plant Safety, Second edition, March 2021.</u>
- Dustin Tran, Jeremiah Liu, Michael W. Dusenberry, Du Phan, Mark Collier, Jie Ren, Kehang Han, Zi
 Wang, Zelda Mariet, Huiyi Hu, Neil Band, Tim G. J. Rudner, Karan Singhal, Zachary Nado, Joost van
 Amersfoort, Andreas Kirsch, Rodolphe Jenatton, Nithum Thain, Honglin Yuan, Kelly Buchanan,
 Kevin Murphy, D. Sculley, Yarin Gal, Zoubin Ghahramani, Jasper Snoek, Balaji Lakshminarayanan,
 Plex: Towards Reliability using Pretrained Large Model Extensions,
 https://arxiv.org/pdf/2207.07411
- 8 Saurabh Mishra, Amin Aria, Andrea Renda, OECD.AI Policy Observatory, Ensuring Al's
 trustworthiness: reliability engineering meets data-driven risk management, December 12, 2023,
 https://oecd.ai/en/wonk/reliability-engineering-data-driven-risk-management.
- 205 59 RAND Research & Commentary Blog, Why Waiting for Perfect Autonomous Vehicles May Cost
 206 Lives Why Waiting for Perfect Autonomous Vehicles May Cost Lives, 207 https://www.rand.org/pubs/articles/2017/why-waiting-for-perfect-autonomous-vehicles-may-208 cost-lives.html, 2017.