Samsung R&D Institute Bangalore (SRIB) participation to JVET 30

Summary Report

21 April to 28 April 2023

Overview

- JVET 30 (AD) meeting was held from 21st April to 28th April 2023
- Meetings were held in Antalya, Turkiye
- This presentation covers the meetings attended by Samsung R&D Institute, Bangalore
 - SC29/WG 5: JVET (Neural network-based video coding, ECM, Video Coding For Machine, etc.)
- More discussion and notes can be found at
 - https://www.itu.int/wftp3/av-arch/jvet-site/2023_04_AD_Antalya/
 - https://dms.mpeg.expert/
 - http://phenix.int-evry.fr/jvet/

SC29/WG 5: JVET

- ☐ AHG11 : Neural network-based video coding (JVET-AD2023)
 - Loop Filtering: Unified reference code and model finalization
 - BoG met 4 times to discuss and decide on the following aspects
 - "Low complexity" and "High gain" points were defined with unified table for data generation, training, inference and model arch.
 - Contributions towards improving the current methods with EE and non EE contributions were made (improved gains, complexity reductions, etc.)
 - Timelines decided for new reference software and anchor results generation defined
 - Contributions towards EE, non-EE and EE related were discussed
 - Combining best features of FilterSet#1 and FilterSet#2: larger activation, large receptive field
 - Complexity reduction
 - Channel re-distribution for Luma and Chroma
 - · Adjustment of residual, Flipping, QP fix in inference and other minor improvement were also discussed
 - NN Intra Coding
 - Complexity reduction of NN based intra model was proposed
 - NN Inter and NN based E2E coding
 - Complexity reduction of previously proposed Inter tool was proposed

SC29/WG 5: JVET

- ☐ AHG12 : Enhanced compression beyond VVC capability
 - Contributions for enhanced compression capabilities through improvement in Intra prediction, SCC, Loop filter etc. were discussed
 - Emphasis on gain vs complexity trade-off discussed. Memory consumption identified as important.
- ☐ Exploration Experiments (EE1 & EE2) and related contributions were majorly discussed
- ☐ Joint meeting
 - Changes of CTC for VCM
 - Reliability of Metrics for VCM task was discussed
 - SEI for VCM and its viability was discussed

SAMSUNG

EE1-related and Non-EE1

	Category	Document	Title	MH ALDES
EE	In-loop filter	JVET-AD0156	EE1-1.1: Complexity Reduction on Neural-Network Loop Filter	
EE related	In-loop filter	JVET-AD0107	EE1-related: Simplified parameter selection for filter set #1	PEF
		JVET-AD0157	EE1-related: Neural-network loop filters in EE1-1.1.2 with further complexity reduction	ME-A00157
		JVET-AD0167	EE1-1.7-related: Combination test for NNVC based on filter set 0	
		JVET-AD0207	EE1-Related: Additional results for EE1-1.3.1 and EE1-1.3.5	MET-AD0207
		JVET-AD0211	EE1-Related: Combination test of EE1-1.3.5 and multi-scale component of EE1-1.6	MF-AXI211
		JVET-AD0237	EE1-related: Residue input for filter set #1	
	Inter	JVET-AD0162	EE1-2.1-related: DRF Model without QP Input	M∃-400165
	RPR	JVET-AD0170	EE1 related: Performance Improvement of AC0052 filter for RPR-based SR in RA configuration	
Non-EE	In-loop filter	JVET-AD0050	AHG11/AHG14: Fix input QP for NN filter set #1	MET-ADDIEGO
		JVET-AD0109	AHG11: Neural network loop filter	MET ACOUG
	Intra	JVET-AD0212	AhG11 : neural network-based intra prediction with reduced complexity	MET-400212
	Post filter	JVET-AD0163	AHG11: Updating NNPFC and NNPFA SEI messages for the NNPF	
	S/W	JVET-AD0111	AhG14: Guidelines for NNVC reference software development	
		JVET-AD0164	AhG14: SADL v5 changes	MET-A00111
		JVET-AD0365	AHG14: The extension of SADL library	

NNVC BOG

Unified NN-Loop filter

- Low operation point
 - JVET-AD0156 (16kMac/pxl)
 - Enable in default configuration of NNVC-5.0
- High operation point (HOP)
 - Decided by several rounds of discussion. Refer BoG Report
- Criteria for adoption to NNVC SW: training from the scratch scripts, cross-checked both test and training (both inference and RDO models), models in SADL int16 (for inference model).
- Filter design and filter training
 - See attachment